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Abstract
We humans are constantly preoccupied with our health and physiological status. From pre-

cise measurements such as the 12-lead electrocardiograms recorded in hospitals, we have moved

on to mobile acquisition devices, now as versatile as smart-watches and smart-phones. Estab-

lished signal processing techniques do not cater to the particularities of mobile biomedical health

monitoring applications. Moreover, although our capabilities to acquire data are growing, many

underlying physiological phenomena remain poorly understood.

This thesis focuses on two aspects of biomedical signal processing. First, we investigate the

physiological basis of the relationship between cardiac and breathing biosignals. Second, we

propose a methodology to understand and use this relationship in health monitoring applications.

Part I of this dissertation examines the physiological background of the cardio-respiratory

relationship and indexes based on this relationship. We propose a methodology to extract the

respiratory sinus arrhythmia (RSA), which is an important aspect of this relationship. Further-

more, we propose novel indexes incorporating dynamics of the cardio-respiratory relationship,

using the RSA and the phase lag between RSA and breathing. We then evaluate, systematically,

existing and novel indexes under known autonomic stimuli. We demonstrate our indexes to be

viable additions to the existing ones, thanks to their performance and physiological merits.

Part II focuses on real-time and instantaneous methods for the estimation of the breathing

parameters from cardiac activity, which is an important application of the cardio-respiratory

relationship. The breathing rate is estimated from electrocardiogram and imaging photoplethys-

mogram recordings, using two dedicated filtering schemes, one of which is novel. Our algorithm

measures this important vital rhythm in a truly real-time manner, with significantly shorter delays

than existing methods. Furthermore, we identify situations, in which an important assumption

regarding the estimation of breathing parameters from cardiac activity does not hold, and draw a

road-map to overcome this problem.

In Part III, we use indexes and methodology developed in Parts I and II in two applications for

mobile health monitoring, namely, emotion recognition and sleep apnea detection from cardiac

and breathing biosignals. Results on challenging datasets show that the cardio-respiratory in-

dexes introduced in the present thesis, especially those related to the phase lag between RSA and

breathing, are successful for emotion recognition and sleep apnea detection. The novel indexes

reveal to be complementary to previous ones, and bring additional insight into the physiological

basis of emotions and apnea episodes.

To summarize, the techniques proposed in this thesis help to bypass shortcomings of previous

approaches in the understanding and the estimation of cardio-respiratory coupling in real-life

mobile health monitoring.

Keywords: electrocardiogram, respiratory sinus arrhythmia, heart rate variability, breathing
rate, phase lag, phase lag variability, phase lag synchronization, time-varying filter, notch filter,
band-pass filter, altitude acclimatization, sleep apnea, emotion, imaging photoplethysmography.
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Résumé
L’être humain a toujours été préoccupé par sa santé et sa physiologie. Des mesures électrocar-

diographiques précises à 12 dérivations, nous sommes passés à présent aux dispositifs mobiles,

tels que les dénommés smart-phones, ou encore les textiles électroniques et les "vêtements intel-

ligents". Les méthodes de traitements de signaux conventionnelles ne répondent pas aux besoins

de ces nouvelles applications. De plus, en dépit de nos avancées technologiques sur les méthodes

d’acquisition, les phénomènes physiologiques sous-jacents n’en demeurent pas moins peu éluci-

dés.

Ce travail de thèse porte sur deux aspects du traitement de signaux biomédicaux. Dans un

premier temps, nous examinons les bases physiologiques de la relation entre les activités car-

diaque et respiratoire. Ensuite, nous proposons une méthodologie pour comprendre et utiliser

cette relation.

La première partie de cette thèse traite la relation cardio-respiratoire et les indices basés

sur celle-ci. Nous proposons une méthodologie pour extraire l’arythmie sinusale respiratoire, un

élément important de cette relation. De plus, nous proposons de nouveaux indices reflétant la

dynamique de la relation cardio-respiratoire, basés sur l’arythmie sinusale et son déphasage par

rapport à la respiration. Nous évaluons ensuite de manière systématique les nouveaux indices,

ainsi que les indices conventionnels avec des stimuli connus liés au système nerveux autonome.

Nous démontrons que nos indices constituent des additions avantageuses aux indices existants

de par leurs bonnes performances et leur interprétabilité physiologique.

La deuxième partie de cette dissertation est dédiée à l’estimation du rythme respiratoire

à partir du rythme cardiaque, une application importante de la relation cardio-respiratoire. Le

rythme respiratoire est estimé en utilisant l’électrocardiogramme et des mesures de vidéo-photo-

plethysmogramme, avec deux méthodes de filtrage dédiées, dont une novatrice. Notre algorithme

mesure ce rythme vital important en temps réel, avec des retards plus bas que les méthodes exis-

tantes. De plus, nous identifions les limitations d’une hypothèse importante lors de l’estimation

des paramètres respiratoires avec les méthodes conventionnelles, et proposons une solution pour

y remédier.

Dans la troisième partie de ce travail, nous utilisons les indices et la méthodologie des deux

premières parties pour des applications de surveillance de la santé, en particulier, la reconnais-

sance des émotions et les apnées du sommeil. Les résultats sur des données complexes dé-

montrent que les indices cardio-respiratoires proposés dans cette thèse, en particulier ceux liés au

déphasage entre l’arythmie sinusale et la respiration, sont utiles pour la reconnaissance d’émo-

tions et d’apnées du sommeil. Ces indices novateurs se révèlent complémentaires aux indices

existants et offrent un aperçu nouveau sur la physiologie de ces phénomènes.

En résumé, les techniques proposées dans cette thèse peuvent permettre de combler les

lacunes des méthodes existantes pour la compréhension et l’estimation du couplage cardio-

respiratoire dans les applications de surveillance de la santé de la vie réelle.

Mots-clés : électrocardiogramme, arythmie sinusale respiratoire, variabilité du rythme cardiaque,
rythme respiratoire, déphasage, variabilité de déphasage, synchronisation de déphasage, filtre
variable dans le temps, filtre coupe-bande, filtre passe-bande, acclimatation à l’altitude, apnée
du sommeil, émotion, vidéo-photoplethysmographie.

v





Remerciements

Un travail de doctorat ne s’effectue jamais seul. Je tiens à remercier :

– Le président du jury, Jean-Philippe Thiran et les rapporteurs, Luca Mainardi, Guy Carrault

et David Atienza, pour avoir accepté cette thèse et pour les discussions constructives lors

de l’examen oral.

– Grégoire Millet et son équipe pour les nombreuses collaborations et pour les données

précieuses qui ont constitué souvent la matière première des différents projets dans ce

travail. Particulièrement, je tiens à remercier Nicolas Bourdillon pour tout son aide pour

l’acquisition des données.

– Mes amis et mon entourage qui se sont dévoués pour être les sujets de mes expériences et

qui ont donné de leur temps et signaux physiologiques.

– Mathieu Lemay et Olivier Dériaz, concernant les projets qui, malgré leur absence de ce

manuscrit, ont formés mes premières collaborations lors de mon doctorat.

– Les laboratoires de traitement de signaux LTS et MMSPG, pour l’ambiance conviviale du

couloir et lors des fêtes communes. Un grand merci à Rosie pour tout son aide administratif

et logistique. Merci à Christine pour l’appartement, et d’avoir toujours été au bureau tôt

pour me prêter une clé ! Merci à Samia et l’équipe du café : Andréa, Sibylle, Elda, Meri,

Adrian, Sasan, Jean-Marc, Damien, David, Alessandra et les autres qui ont partagé le café

du matin.

– Les membres de l’ASPG, anciens, actuelles, honoraires : Sibylle, Andréa, Sasan, Adrian,

Ashkan, Jérôme, Elda, Laurent, Julia, Yann, Francesca, Martin, Benoît, Anil et les autres

pour toutes les soirées, les voyages et les super moments passés ensemble. Merci à mes

contemporains : Sibylle, Andréa, Sasan et Adrian. Merci pour la super ambiance du matin

au soir et pendant les conférences, le soutien, votre amitié. Merci à Sibylle et Andréa

pour le partage de données. Merci à Adrian, Sibylle, Sasan et Ashkan pour la relecture

des parties de ce manuscrit. Merci à mes compagnons de bureau Andréa et Adrian pour

la bonne ambiance, d’avoir toujours relu mes papiers et d’avoir supporté mes réactions

exagérées aux odeurs de la roulotte kébab ! Merci à Adrian pour les plantes !

– Flora et les dames de l’atelier de céramique pour la bonne ambiance détendue du mercredi

soir.

– Kristine and Ed from Ferring for their encouragement and the great professional opportu-

nity.

– My dear friends Afsoon and Ioana. Ioana, thank you for everything and for always being

only one whatsapp message away. And thank you for re-reading parts of this manuscript.

Afsoon, thank you for your support and for bringing perspective, Edward the hamster sat

below my monitor while I wrote this manuscript.

vii



– My family, particularly my mother Jacqueline and brother Madjid for their affection and

support. Thank you mom for always being there, for everything. My father, who awake-

ned the passion for engineering in me, passed away too soon, but deserves a very special

mention, I would not be writing these lines if it were not for his early encouragement and

support in my education.

– My partner Ashkan. Thank you Ashkan, for your love, support, friendship and partnership.

Thank you for always being there, for understanding and caring. Thank you for working

with me on the emotion project and thank you for re-reading this manuscript and each and

every paper I wrote during my time as a PhD student.

– Et le le plus important pour la fin : Jean-Marc Vesin. Jean-Marc, tu es un directeur de

thèse extraordinaire. Merci de m’avoir accueilli dans ton groupe, de m’avoir appris tant et

d’avoir toujours été disponible. Merci pour toutes ces leçons scientifiques et de vie, pour

tous tes conseils et ton soutien, ta patience et ton énergie, et ton sens de l’humour. Merci

pour l’ambiance géniale du labo et merci de m’avoir appris à voir le monde avec un recul

nécessaire. Merci pour tout ! ! !

viii



Contents

Remerciements vii

1 Introduction 1
1.1 Motivation and problem statement . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Original contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I Physiological Study 7

2 Respiratory Sinus Arrhythmia (RSA) 9
2.1 Heart rate regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 What is RSA? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 RSA measurement techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Usefulness of RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Characterization of the RSA and the Autonomic Balance 17
3.1 Non-invasive assessment of the autonomic balance . . . . . . . . . . . . . . . . 17

3.1.1 Body posture alteration of the autonomic balance . . . . . . . . . . . . . 17

3.1.2 Effects of controlled breathing on the autonomic balance . . . . . . . . . 18

3.1.3 Pharmacological altering of the autonomic balance . . . . . . . . . . . . 18

3.1.4 Motivation and contribution . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Body posture alteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 Controlled breathing and pharmacological alteration . . . . . . . . . . . 29

3.4 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Body posture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.2 Controlled breathing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.3 Pharmacological alteration . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Characterization of the RSA upon Exposure to Altitude 43
4.1 The RSA in studying the effects of altitude exposure . . . . . . . . . . . . . . . 43

4.1.1 Effect of real altitude on the RSA . . . . . . . . . . . . . . . . . . . . . 43

4.1.2 Effect of artificial hypoxia on the RSA . . . . . . . . . . . . . . . . . . . 44

ix



4.1.3 Motivation and contribution . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.2 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

II Estimation of Breathing Parameters using the RSA 53

5 Estimation of the Breathing Rate from the ECG 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Breathing rate estimation from the RSA . . . . . . . . . . . . . . . . . . 55

5.1.2 Estimating the instantaneous frequency of an oscillatory signal . . . . . . 56

5.1.3 Motivation and contribution . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 The W-OSC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.2 The NFB algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.3 Estimation of the reference BR . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.1 The bias and variance of the NFB algorithm . . . . . . . . . . . . . . . 66

5.3.2 Application of the W-OSC and NFB algorithms to data at rest . . . . . . 66

5.3.3 Application of the NFB algorithm to physical activity signals . . . . . . . 68

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4.1 The bias and variance of the NFB . . . . . . . . . . . . . . . . . . . . . 68

5.4.2 The performance of the W-OSC and NFB algorithms on data at rest . . . 68

5.4.3 Performance of the NFB method on physical activity data . . . . . . . . 72

5.5 Discussion and benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5.1 The bias and variance of the NFB . . . . . . . . . . . . . . . . . . . . . 72

5.5.2 The performance of the W-OSC and NFB algorithms on resting data . . . 74

5.5.3 The performance of the NFB method on physical activity data . . . . . . 76

5.5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Estimation of the Breathing Rate using Imaging Photoplethysmography 77
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1.1 What is imaging photoplethysmography (iPPG)? . . . . . . . . . . . . . 77

6.1.2 BR estimation from the iPPG . . . . . . . . . . . . . . . . . . . . . . . 78

6.1.3 Motivation and contribution . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.2 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

x



7 Estimation (and Removal) of the Breathing Oscillation from the Inter-Beat Intervals 87
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.1.1 Identification of the RSA without the reference breathing waveform . . . 87

7.1.2 Motivation and contribution . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2.2 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.3.1 Decomposition of the R-R intervals . . . . . . . . . . . . . . . . . . . . 91

7.3.2 Identification of the RSA . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3.3 Removal of the breathing influence . . . . . . . . . . . . . . . . . . . . 96

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

III Applications 99

8 Emotion Recognition using RSA and Breathing Signals 101
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.1.1 What are emotions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.1.2 Emotion recognition using physiological signals . . . . . . . . . . . . . 101

8.1.3 Motivation and contribution . . . . . . . . . . . . . . . . . . . . . . . . 103

8.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.2.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.2.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.3.1 Features and statistical analysis . . . . . . . . . . . . . . . . . . . . . . 106

8.3.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9 Sleep Apnea Detection with the RSA and the Breathing signals 115
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.1.1 Sleep apnea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.1.2 Sleep apnea detection using physiological signals . . . . . . . . . . . . . 115

9.1.3 Motivation and contributions . . . . . . . . . . . . . . . . . . . . . . . . 116

9.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.2.2 Data processing and feature extraction . . . . . . . . . . . . . . . . . . . 117

9.2.3 Statistical analysis and classification . . . . . . . . . . . . . . . . . . . . 118

9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.3.1 Illustrative examples and statistical analysis . . . . . . . . . . . . . . . . 120

9.3.2 Classification performance . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

10 Conclusion 127
10.1 Summary of achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

10.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xi



Appendix 133

A Definitions 135
A.1 Interpolation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.2 Evaluation of a classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B Characterization of the RSA and the Autonomic Balance - Further Results 139
B.1 Methods - additional material . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B.2 Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

C Characterization of the RSA upon Exposure to Altitude - Further Results 147

D Sleep Apnea Detection with the RSA and the Respiration - Further Results 149

Bibliography 153

Curriculum Vitæ 177

Publications 179

xii



List of Acronyms

k-NN k-Nearest Neighbors

ANS autonomic nervous system

AR autoregressive

BB β-blocker

BL baseline

bpm beats-per-minute

BR breathing rate

brpm breaths-per-minute

CAF caffeine

ECG electrocardiogram

EEG electroencephalogram

EMD empirical mode decomposition

EMG electromyogram

FIR finite impulse response

GSR galvanic skin response

HF high frequency

HR heart rate

HRV heart rate variability

IIR infinite impulse response

IMF intrinsic mode function

iPPG imaging photoplethysmography

IR infrared

LF low frequency

LMS least mean squares

PL phase lag

PLS phase lag synchronization

PLV phase lag variability

xiii



PPG photoplethysmography

PSD power spectral density

PSG polysomnography

PTT pulse transit time

RPA R-peak amplitudes

RSA respiratory sinus arrhythmia

sb spontaneous breathing

SNR signal to noise ratio

SSA singular spectrum analysis

STD standard deviation

STFT short time Fourier transform

SVM support vector machine

SWASVD sliding window adaptive singular value decomposition

xiv



List of Tables

3.1 Cardio-respiratory parameters in response to controlled breathing and autonomic

altering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 The estimation bias and variance of the NFB algorithm. . . . . . . . . . . . . . . 69

5.2 The errors and delays of the NFB algorithm over the “Fantasia” data set. . . . . . 70

5.3 The errors and delays of the W-OSC and the NFB algorithms over the “Fantasia”

data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 The delay-corrected errors of the NFB and the W-OSC algorithms. . . . . . . . . 71

6.1 The correlation between the iPPG and ECG inter-beat intervals. . . . . . . . . . 83

6.2 The error of the ECG and iPPG green BR estimates- SSA pre-processing. . . . . 84

6.3 The error of the ECG and iPPG green BR estimates- SWASVD pre-processing. . 84

7.1 Number of occurrences of the breathing-related component per SSA rank. . . . . 93

8.1 Statistical relevance of the cardiac and breathing-related features for emotion

recognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.2 Emotion classification with cardiac and breathing-related features. . . . . . . . . 112

8.3 Emotion classification using the difference in frequency between RSA and

breathing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9.1 The number of sleep apnea episodes and their average durations per recording. . 118

9.2 The statistical relevance of the cardiac and breathing-related features for sleep

apnea detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.3 The number of apneic and normal epochs and random guess values for the iden-

tification performance measures. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.4 Identification of apnea epochs with a 3-NN classifier trained with all features. . . 122

9.5 Identification of apnea epochs with a 1-NN classifier trained with all features. . . 123

9.6 Identification of apnea epochs with a 1-NN classifier trained with each feature

alone for recording 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.7 Identification of apnea epochs with a 1-NN classifier trained with each feature

alone for recording 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

D.1 Identification of apnea epochs with a 1-NN classifier trained with each feature

alone for recording 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

D.2 Identification of apnea epochs with a 1-NN classifier trained with each feature

alone for recording 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

D.3 Identification of apnea epochs with a 1-NN classifier trained with each feature

alone for recording 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

D.4 Identification of apnea epochs with a 1-NN classifier trained with each feature

alone for recording 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

xv



D.5 Identification of apnea epochs with a 1-NN classifier trained with each feature

alone for recording 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

D.6 Identification of apnea epochs with a 1-NN classifier trained with each feature

alone for recording 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

D.7 Identification of apnea epochs with a 1-NN classifier trained with each feature

alone for recording 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

D.8 Identification of apnea epochs with a 1-NN classifier trained with each feature

alone for recording 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

D.9 Identification of apnea epochs with a 1-NN classifier trained with each feature

alone for recording 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

xvi



List of Figures

1.1 Illustration of the links between the chapters of the present dissertation. . . . . . 4

2.1 The human nervous system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Parasympathetic and sympathetic innervation of the heart. . . . . . . . . . . . . 10

2.3 Illustration of the RSA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Three heartbeats in a normal ECG. . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 R-R interval time series illustration. . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 The power spectral density of an R-R intervals time series. . . . . . . . . . . . . 13

3.1 The ECG and breathing waveforms for one subject. . . . . . . . . . . . . . . . . 21

3.2 Illustration of phase lag estimation between two signals. . . . . . . . . . . . . . 23

3.3 The R-R intervals for one subject . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 The PSD of the R-R intervals in Figure 3.3. . . . . . . . . . . . . . . . . . . . . 25

3.5 The heart rate and breathing rate in the supine and orthostatic positions. . . . . . 25

3.6 The RSA and breathing-unrelated powers in the supine and orthostatic positions. 26

3.7 The normalized RSA and breathing-unrelated powers in the supine and ortho-

static positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.8 The synchronization measures between the RSA and breathing signals in the

supine and orthostatic positions. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.9 The LF, HF, cLF and cHF powers in the supine and orthostatic positions. . . . . . 27

3.10 The nLF, nHF, ncLF and ncHF powers in the supine and orthostatic positions. . . 28

3.11 The total R-R intervals power in the supine and orthostatic positions. . . . . . . . 28

3.12 The LF/HF index and the breathing-corrected cLF/cHF in the supine and ortho-

static positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.13 The breathing rates during the sb sessions. . . . . . . . . . . . . . . . . . . . . . 29

3.14 The RSA power- β-blocker case. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.15 The RSA power- caffeine case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.16 The normalized RSA power- β-blocker case. . . . . . . . . . . . . . . . . . . . . 31

3.17 The normalized RSA power- caffeine case. . . . . . . . . . . . . . . . . . . . . . 32

3.18 The breathing-unrelated power- β-blocker case. . . . . . . . . . . . . . . . . . . 32

3.19 The breathing-unrelated power- caffeine case. . . . . . . . . . . . . . . . . . . . 33

3.20 The normalized breathing-unrelated power- β-blocker case. . . . . . . . . . . . . 33

3.21 The normalized breathing-unrelated power- caffeine case. . . . . . . . . . . . . . 34

3.22 The PL- β-blocker case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.23 The PL- caffeine case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.24 The LF power- β-blocker case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.25 The LF power- caffeine case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.26 The HF power- β-blocker case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.27 The HF power- caffeine case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.28 The total power- β-blocker case. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

xvii



3.29 The total power- caffeine case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.30 The LF/HF index - β-blocker case. . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.31 The LF/HF index - caffeine case. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Sample signals from the “AltitudeOmics” project. . . . . . . . . . . . . . . . . . 45

4.2 The RSA and breathing signals at baseline and after exposure to altitude. . . . . . 46

4.3 The RSA power at baseline and after exposure to altitude. . . . . . . . . . . . . . 47

4.4 The breathing-unrelated power at baseline and after exposure to altitude. . . . . . 47

4.5 The total inter-beat intervals power at baseline and after exposure to altitude. . . . 47

4.6 The normalized RSA power at baseline and after exposure to altitude. . . . . . . 48

4.7 The normalized breathing-unrelated power at baseline and after exposure to alti-

tude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.8 The PL at baseline and after exposure to altitude. . . . . . . . . . . . . . . . . . 48

4.9 The PLV at baseline and after exposure to altitude. . . . . . . . . . . . . . . . . 49

4.10 The PLS at baseline and after exposure to altitude. . . . . . . . . . . . . . . . . . 49

4.11 The breathing rate at baseline and after exposure to altitude. . . . . . . . . . . . 49

4.12 The heart rate at baseline and after exposure to altitude. . . . . . . . . . . . . . . 49

4.13 The LF power at baseline and after exposure to altitude. . . . . . . . . . . . . . . 50

4.14 The HF power at baseline and after exposure to altitude. . . . . . . . . . . . . . 50

4.15 The nLF power at baseline and after exposure to altitude. . . . . . . . . . . . . . 50

4.16 The nHF power at baseline and after exposure to altitude. . . . . . . . . . . . . . 50

4.17 The LF/HF index at baseline and after exposure to altitude. . . . . . . . . . . . . 51

5.1 FIR notch filters with transfer functions according to (5.16). . . . . . . . . . . . 60

5.2 Flowchart of the NFB method with multiple inputs. . . . . . . . . . . . . . . . . 61

5.3 The decomposition of a signal into IMFs with the EMD. . . . . . . . . . . . . . 63

5.4 Flowchart of the beat-to-beat BR estimation from the ECG. . . . . . . . . . . . . 67

5.5 The estimation bias and variance of the NFB algorithm for F. . . . . . . . . . . . 69

5.6 The estimation bias and variance of the NFB algorithm for δ. . . . . . . . . . . . 69

5.7 An example of the RSA, RPA and the breathing waveforms from the “Fantasia”

data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.8 Breathing rate estimation with the W-OSC and NFB algorithms. . . . . . . . . . 71

5.9 The sensitivity of the W-OSC and the NFB algorithms. . . . . . . . . . . . . . . 72

5.10 The NFB BR estimate for Subject 1 during exercise . . . . . . . . . . . . . . . . 73

5.11 The NFB BR estimate for Subject 2 during exercise . . . . . . . . . . . . . . . . 73

5.12 The PSD of the ECG and PPG RSA and the PTT. . . . . . . . . . . . . . . . . . 74

5.13 Estimating the BR from several ECG and PPG breathing modulations. . . . . . . 75

6.1 Colormaps of the face representing HR-related power captured with a video-

camera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 The creation of the iPPG waveform from a video sequence. . . . . . . . . . . . . 79

6.3 The iPPG waveforms in the red, green and blue channels during the breathing

protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 The iPPG waveforms in the red, green and blue channels during the handgrip

protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.5 The ECG, iPPG and breathing signals. . . . . . . . . . . . . . . . . . . . . . . . 81

6.6 The sliding window adaptive SVD algorithm. . . . . . . . . . . . . . . . . . . . 82

6.7 An example of the pre-processing of the RSA. . . . . . . . . . . . . . . . . . . . 84

6.8 An example of the estimated BR and the pre-processing frequencies. . . . . . . . 84

6.9 BR estimation from the iPPG- subject 1. . . . . . . . . . . . . . . . . . . . . . . 85

6.10 BR estimation from the iPPG- subject 2. . . . . . . . . . . . . . . . . . . . . . . 85

xviii



7.1 Diagram of the proposed processing chain to estimate the RSA. . . . . . . . . . . 89

7.2 The reference BR for all recordings. . . . . . . . . . . . . . . . . . . . . . . . . 91

7.3 The decomposition of the R-R intervals of a supine recording. . . . . . . . . . . 92

7.4 The decomposition of the R-R intervals of a supine recording. . . . . . . . . . . 92

7.5 The decomposition of the R-R intervals of an orthostatic recording. . . . . . . . . 93

7.6 The R-R intervals breathing-related and breathing-unrelated components separa-

bility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.7 The sensitivity of the breathing-related/unrelated R-R interval component classi-

fication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.8 The specificity of the breathing-related/unrelated R-R interval component classi-

fication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.9 Accuracy of the breathing-related/unrelated R-R interval component classification. 95

7.10 The breathing-unrelated R-R interval power. . . . . . . . . . . . . . . . . . . . . 96

7.11 The relative power of the difference of the breathing-corrected tachograms. . . . 96

8.1 The circumplex model of emotions. . . . . . . . . . . . . . . . . . . . . . . . . 102

8.2 The sensors used in the acquisition of the DEAP data set. . . . . . . . . . . . . . 103

8.3 An example of the raw DEAP signals. . . . . . . . . . . . . . . . . . . . . . . . 104

8.4 The classification of the emotion elicited by one video with 5 single trials. . . . . 106

8.5 The RSA and breathing signals for a liked and a disliked video. . . . . . . . . . . 107

8.6 The RSA and breathing signals and difference in their instantaneous frequency

for a liked video. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.7 The RSA and breathing signals and difference in their instantaneous frequency

for a disliked video. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.8 The PL and PLslope for a liked and a disliked video. . . . . . . . . . . . . . . . . 108

8.9 The RSA amplitude for liked and disliked videos, for one subject. . . . . . . . . 109

8.10 The RSA amplitude for liked and disliked videos, for another subject than in

Figure 8.9.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.11 The RSA frequency for liked and disliked videos, for one subject. . . . . . . . . 109

8.12 The RSA frequency for liked and disliked videos, for another subject than in

Figure 8.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.13 The BR for liked and disliked videos, for one subject. . . . . . . . . . . . . . . . 110

8.14 The BR for liked and disliked videos, for another subject than in Figure 8.13. . . 110

8.15 The frequency difference of the RSA and the breathing signals for liked and

disliked videos, for one subject. . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.16 The frequency difference of the RSA and the breathing signals for liked and

disliked videos, for another subject than in Figure 8.15. . . . . . . . . . . . . . . 110

9.1 An example of the breathing and ECG waveforms acquired by the smart-shirt

during hypopnea episodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.2 An example of the RSA and breathing waveforms, and the amplitude index and

PLV during a hypopnea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.3 The amplitude index for normal sleep and hypopnea episodes for one subject. . . 121

9.4 The BR for normal sleep and hypopnea episodes for one subject. . . . . . . . . . 121

9.5 The PLV for normal sleep and hypopnea episodes for one subject. . . . . . . . . 121

9.6 The PLS for normal sleep and hypopnea episodes for one subject. . . . . . . . . 121

A.1 Interpolation of R-R intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.2 Interpolation and filtering of R-R intervals. . . . . . . . . . . . . . . . . . . . . . 136

B.1 The frequency response of the band-pass filter used to extract the RSA. . . . . . 139

xix



B.2 PL and PLslope in the supine and orthostatic positions. . . . . . . . . . . . . . . . 140

B.3 PLslope- β-blocker case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.4 PLslope- caffeine case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B.5 PLV- β-blocker case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B.6 PLV- caffeine case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.7 PLS- β-blocker case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.8 PLS- caffeine case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B.9 nLF power- β-blocker case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B.10 nLF power- caffeine case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B.11 nHF power- β-blocker case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B.12 nHF power- caffeine case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

C.1 The PLslope at baseline and after exposure to altitude. . . . . . . . . . . . . . . . 147

C.2 The ECG and pressure recordings with the cardiac cycle. . . . . . . . . . . . . . 148

xx



Introduction 1
1.1 Motivation and problem statement

We, as humans, have always been curious about our health and possible ways to preserve it.

Technological advances have helped us become more acquainted with our physiology. Precise

measuring techniques, such as 12-lead electrocardiography, have allowed us to observe and un-

derstand many physiological phenomena and to make major breakthroughs in medicine. Today,

with modern sensors, data processing and storage, we are capable of recording and processing

large amounts of health-related data. We use smart-phones and wearables such as smart watches

and smart shirts, which increasingly accompany us in our daily life and record continuous physi-

ological data, not only when we are sick, but also when are healthy. Monitoring at-risk situations

increases the chances of identifying and addressing health-problems in early stages and helps

people to pursue a healthy lifestyle. Furthermore, the availability of longer-term data has allowed

us to study our health in a different manner, taking into account variations over longer periods of

time. With these devices, we have a growing number of means to record a vast amount of data

about our physiology and health. We rely on signal processing tools and methods to transform

this data into knowledge.

The focus of the present thesis is on signal processing techniques for cardiac and breath-

ing biosignals, particularly designed for real-life applications, such as health-monitoring with

wearables. We place a special emphasis on the cardio-respiratory relationship.

Indeed, most of the physiological signals we record reflect information about the heart. It is

understandable, as the diseases of this vital organ are the leading cause of mortality in humans.

In conventional cardiac signal processing, aside from the obvious direct monitoring of the heart

function, changes in the heart rhythm are used as a surrogate to study the autonomic nervous

system (ANS). The ANS is an important part of our nervous system, managing key involuntary

functions of the body. The indirect monitoring of ANS activity is preferred, as it avoids the

burden of monitoring nerve traffic in-vivo. Heart rate variability (HRV) analysis has attempted

to study the mechanisms of ANS regulation, and its relation to different stimuli and even to

pathology. In conventional HRV analysis, the spectrum of the heart inter-beat intervals is divided

into several pre-defined frequency bands, each linked in the past to the activations of different

ANS branches through observational studies [1]. Recently, these measures have been contested,

because they are largely based on general assumptions, with little physiological justification, and

have experimentally been proven ill-conceived [2, 3]. Furthermore, frequency-based analysis

provides only mean values and important information from transitions may be lost.

Heart function is closely linked to the pulmonary breathing function through the ANS [4].

1



2 Introduction

Respiratory sinus arrhythmia (RSA) is an element of HRV defined as the modulation of the heart

inter-beat intervals concomitant with breathing [5, 6]. Its measurement is linked to conventional

HRV analysis and is performed generally within the HRV framework. Although there is a vig-

orous debate on the flaws of the current methodology [2, 3], HRV indexes, and especially the

RSA, are increasingly used to assess a number of different physiological and psychological oc-

currences. By virtue of their link to the ANS, HRV indexes are widely accepted physiological

markers and have been shown to be altered by clinical conditions, psycho-behavioral predica-

ments and in a larger sense, any external or internal stimulus affecting the ANS [1, 7].

Despite the open methodological questions and disputes, the advent of mobile health mon-

itoring with user-friendly wearables and portable devices has further fueled the rapid rise in

popularity of ANS indexes based on the cardio-respiratory relationship, while introducing new

complications [8–12]. These easy-to-use devices acquire signals in a continuous manner in a

variety of real-world applications and present two main challenges from the signal processing

viewpoint. First, the current technology requires a compromise between ease-of-use and signal

quality. For example, the breathing signal acquired with an impedance belt embedded in a smart-

shirt textile is usually of a poorer quality than one acquired in a laboratory, while the subject

wears an airflow mask. Indeed, the smart-shirt may move, the subject may run, change posture,

temperatures and humidity may change, the subject may sweat, etc. Second, in mobile health-

monitoring applications, the user may need/wish to follow the outcome of the measurement in a

real-time manner. Although signals are acquired in real-time, the vast majority of signal process-

ing techniques rely on established methodologies, which were not designed to cater to real-time

conditions. An example is the estimation of physiological rhythms, such as the heart rate or the

breathing rate. The most popular choice in estimating the frequency of an oscillation is spec-

tral analysis. Spectral analysis is achieved through power spectral density (PSD) estimation, or

time-frequency analysis. PSD analysis is unsuitable for non-stationary data as the temporal di-

mension of the spectral information is lost. As a result, the estimated values are representative

of a time-window and not a time-instant, and do not produce a real-time instantaneous result

when considered for a health-monitoring application. Time-frequency analysis, such as short-

term Fourier transform (STFT), provides a mapping of a signal frequency content over time.

However, it requires further non-trivial processing among other drawbacks. Spectral methods,

in general, suffer from the well-known time-frequency resolution trade off, as computations are

performed on a block-by-block basis.

It is increasingly important to adapt conventional signal processing methods to the particular

conditions of signals acquired with portable devices. Furthermore, for regulated medical devices,

any processing method should be interpretable from a physiological viewpoint, by an expert

physician, for its outcome to be medically salient.

To summarize, two aspects of cardio-respiratory signal processing are the focus of this thesis.

First, the physiological basis of measurements and measurement techniques are investigated.

Second, the convenience of the methods from the viewpoint of complexity and timing is held

at high importance. For mobile health monitoring, it is not only important for methods to be

real-time, or near real-time, but also that they reflect adequately the underlying processes and

especially transitions and fast changes.

1.2 Objectives

Despite the recent years’ rise in awareness about cardio-respiratory health and our ability to

monitor it, we are not coming closer to an exact knowledge on many of the underlying physio-

logical mechanisms, as apparent from the diverging opinions of experts. Furthermore, existing

methods do not answer to many of the modern health-monitoring particularities. There is, there-

fore, an unmet need for methods with physiological validation, that, at the same time, adhere to



1.3 Organization 3

the requirements of emerging health-monitoring applications.

The present dissertation is aimed at investigating existing and novel HRV indexes related to

the RSA, as autonomic markers, and to apply them in several mobile health-monitoring applica-

tions. To do so, a primary aim is to study existing HRV indexes in the context of known auto-

nomic stimuli, and to re-evaluate the methodology to define the RSA, and RSA-related indexes.

One important application of the RSA is the estimation of breathing parameters. Therefore, a

second, but equally important goal, is to re-visit breathing rate estimation from the RSA, in a

truly real-time and instantaneous manner. We aim to apply an existing algorithm and to evaluate

and overcome its shortcomings with respect to the particular needs of real-time processing. A re-

lated goal is the estimation of the breathing rate by using the RSA acquired with heart monitoring

technologies other than the electrocardiogram. Finally, one last goal is to apply the methodology

and indexes developed in the present thesis to monitoring applications.

To summarize, the main objectives of this thesis are:

• to define the instantaneous RSA in a generalized manner,

– to re-evaluate the potential of RSA as an HRV marker,

• to define novel means and indexes to assess the autonomic balance from the HRV,

– to evaluate these novel indexes in real conditions,

• to provide a methodology for robust real-time estimation of breathing parameters from the

HRV,

• to investigate the potential of the novel HRV measures in monitoring applications.

1.3 Organization

This dissertation is divided into three parts. The first part is focused on the physiology of

the RSA and its relationship to breathing. The second part is dedicated to the estimation of

breathing parameters from cardiac signals. The third part consists of two applications for novel

cardio-respiratory indexes. The three parts are described in more detail as follows.

Part I: Physiological Study

This part consists of theoretical background and several studies on RSA characterization.

Chapter 2 introduces the concept of HRV, RSA and considerations on autonomic activity in

relation with the regulation of cardiac and breathing functions. We describe conventional means

for the measurement of RSA, and discuss its clinical and psycho-behavioral utility. In Chapter

3, we present a methodology for RSA extraction and novel cardio-respiratory indexes and apply

them, along with conventional HRV measures, to a set of measurements performed under known

autonomic stimuli. In Chapter 4, we explore the autonomic particularities of exposure to altitude

using measures introduced in Chapter 3.

Part II: Estimation of Breathing Parameters using the RSA

This part is centered on one of the well-known practical applications of the cardio-respiratory

relationship, namely, estimating the breathing rate from the breathing modulation of cardiac ac-

tivity. In Chapter 5, we propose two algorithms for the estimation of the instantaneous breathing

rate from the RSA, as measured from the electrocardiogram (ECG), in real-time. We then ap-

ply one of the algorithms to estimate the instantaneous breathing rate from the RSA, but using

the novel contact-less imaging-based photoplethysmography technique in Chapter 6. As the two

previous chapters rely on assumptions about the recording conditions, in Chapter 7, we propose

a generalized scenario for the estimation of breathing parameters from ECG recordings.
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Figure 1.1: Illustration of the links between the chapters of the present dissertation. ANS: au-

tonomic nervous system; HRV: heart rate variability; ECG: electrocardiogram; iPPG: imaging

photoplethysmogram; RSA: respiratory sinus arrhythmia.
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Part III: Applications
This part contains two applications for the methodology presented in parts I and II. In Chapter

8, we explore the applicability and accuracy of the cardio-respiratory indexes introduced in this

dissertation for the task of automatic emotion recognition. In Chapter 9, we explore the cardio-

respiratory correlates of these indexes with sleep apnea conditions and delves into the automatic

screening of such events using wearables and real-time signal processing methods.

Chapter 10 concludes this dissertation with a summary of achievements and perspectives.

There are four appendices in this dissertation. Appendix A contains several relevant definitions,

while the other three enclose further results related to several chapters.

Figure 1.1 illustrates the links between the chapters of the present dissertation.

1.4 Original contributions

The main contributions of this work are 1:

• Physiological study
– Formulation of a generalized methodology to define the instantaneous RSA.

– Design of novel indexes to study autonomic influences on the HRV based on the cardio-

respiratory relationship.

– Introduction of these indexes to improve existing means of ANS assessment in particular

cases such as known autonomic conditions, exposure to altitude, ANS correlates of

emotions, and ANS particularities of sleep apnea.

• Estimation of breathing parameters
– Application of an existing frequency estimation algorithm for estimating the instanta-

neous breathing rate from the breathing modulation of cardiac activity in real-time.

– Development of a novel instantaneous and real-time capable frequency estimation algo-

rithm to overcome shortcomings of the previous method.

– Application of the proposed methodology to estimating the breathing rate from the novel

cardiac monitoring technique of imaging photoplethysmography.

• Applications
– Application of novel HRV indexes and RSA methodology for emotion recognition from

cardiac and breathing signals.

– Application of novel HRV and RSA indexes to aid in sleep apnea detection with cardiac

and breathing signals acquired in non-laboratory conditions.

1. See also a list of the publications at the end of this manuscript (p. 179)
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This chapter explores the physiological background on the variations in the heart rhythm in

Section 2.1, and in particular the breathing-related variations in Section 2.2. The quantification

and measurement of these variations is covered in Section 2.3, and finally, Section 2.4 gives a

brief overview of the importance and applications of these measurements.

2.1 Heart rate regulation

Every heartbeat starts with electrical impulses generated by the sinoatrial node. The sinoa-

trial node is a cluster of cells with particular electrical properties, located in the right atrium of

the heart. These cells have no resting potential and therefore “fire” in a regular manner, making

the sinoatrial node the natural pacemaker of the heart. These electrical impulses spread through-

out the atria and cause them to contract, thereby filling the ventricles with their content in blood.

The impulses are then transfered to the ventricles, causing them to contract and pump blood out

to the entire body. The sinoatrial node generates impulses thanks to the properties of its cells.

However, the rate of firing is controlled by the nervous system and in particular the autonomic

nervous system (ANS) [13]. As seen on Figure 2.1, the human nervous system receives sensory

inputs and provides motor control. The motor control division has two main branches, the so-

matic system, associated with voluntary muscle control and the ANS, unconsciously maintaining

the functions of internal organs. The ANS is further divided into the parasympathetic and sym-

pathetic systems. The parasympathetic system maintains rest-and-digest functions such as the

regulation of the heart rate and the breathing rate, while the sympathetic system is involved in

fight-or-flight responses. Each of these branches exert control via their specific nerves, receptors

and organic chemicals (hormones) [14].

Both the sympathetic and parasympathetic branches of the ANS innervate various parts of

the heart as illustrated in Figure 2.2. Both innervate in particular the sinoatrial node, and affect

how it generates electrical impulses and thus affect the heart rate. The sympathetic nerves also

innervate the ventricles, exerting control on the contraction of the ventricles. They innervate

the atrioventricular node as well, thereby controlling the conduction between the atria and the

ventricles. The parasympathetic nervous system, slows the heart rate by slowing the rhythm of

the sinoatrial node and by slowing the transmission of the impulses generated by it from the

atria into the ventricles, all by releasing a specific hormone, acetylcholine [4]. The vagus nerve

and its subsequent branches, the vagi, carry parasympathetic messages. On the other hand, in

response to external or internal stimuli, the sympathetic nervous system increases the heart rate

to accelerate the responses of the body. By releasing the hormone norepinephrine, it increases

9
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Figure 2.1: The human nervous system.

Figure 2.2: Parasympathetic and sympathetic innervation of the heart. The S-A node is the

sinoatrial node, where electrical impulses generating each heartbeat originate from. The A-

V node is the atrioventricular node, which transfers the electrical impulses originating in the

sinoatrial node from the atria to the ventricles. Image from [15] with permission, c© Elsevier

2006.

the rate of discharge in the sinoatrial node, increases the conduction between the atria and the

ventricles and increases the contraction force in the cardiac muscles [4]. The combination of

these events leads to an increased heart rate.

The baroreflex mechanism is an important element controlling the sympathetic and parasym-

pathetic drive to the heart [4]. Stretch receptors located in the carotid arteries and in the aorta

react to changes in blood pressure. If blood pressure is too high, causing the vessels to stretch, the

baroreceptors communicate this event to the brainstem by firing action potentials at a faster-than-

normal rate. As a response, the parasympathetic system action is increased and the sympathetic

action is inhibited. Consequently, the heart rate is decreased, peripheral vessels are dilated and

the blood pressure is quickly decreased. If the blood pressure falls (for example after assuming

an orthostatic position), the baroreceptors sense the drop and fire at a slower rate than normal.

The sensing of this event in the brain triggers an increase in the sympathetic nervous system

activity and a decrease in that of the parasympathetic system. Thus, the heart rate is increased,

vessels are constricted and the blood pressure increases.
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The study of heart rate variability (HRV), i.e. the variations of the heart inter-beat intervals,

in a systematic and widespread manner, started and was further facilitated with the emergence of

the electrocardiogram (ECG) in the twentieth century even though heart rhythm variations were

observed and documented in the eighteenth and nineteenth centuries through auscultation.

In the second half of the twentieth century, with the advent of precise monitoring techniques

and digital data processing, the study of HRV flourished. HRV has been studied in part to un-

cover its underlying physiological mechanisms. In particular, the exact autonomic events trig-

gering HRV have been a matter of interest, as monitoring nerve signals directly is a cumbersome

endeavor and HRV was early-on linked with the ANS and the brainstem. On the other hand,

physicians linked HRV events to medical and pathological conditions, and psychophysiologists

linked HRV with psychophysiological and behavioral conditions.

2.2 What is RSA?

Respiratory sinus arrhythmia (RSA) is the naturally occurring change in the interval between

heartbeats in relation to the pulmonary breathing [5, 6]. The heartbeats occur nearer each other

upon inspiration, and during expiration their distance lengthens. This phenomenon exists in all

vertebrates and is linked to pulmonary gas exchange, optimizing the transport of oxygen to the

body via the circulatory system [16–18] and energy exchange [6, 19]. The RSA is illustrated in

Figure 2.3, as seen in the electrical activity of the heart (ECG).

Figure 2.3: Illustration of the RSA. (a) the ECG, (b) RSA and (c) reference breathing signal.

The RSA has been observed, described and studied since at least over a century ago. Fast

and shallow breathing produces a smaller variation than slow and deep breathing [6]. However,

the exact mechanisms and physiological origins of RSA remain unknown. There are two much-

debated theories, one associating it with a central mechanism, another with a blood volume and

baroreflex mechanism [20–22]. According to the central-mechanism theory, a central breath-

ing gating of vagal motoneuron responses entirely explains the RSA, based on the observation

that vagal cardiac motoneuron membrane potentials fluctuate at breathing frequencies [21]. The

shortening of the heart beat intervals during inspiration would be due to the inhibition of the

vagal control of the heart concurrent with lung inflation. During expiration, the vagal nerve ac-

tivity reaches its maximum and thus lengthens the interval between heartbeats [17, 18]. For this

reason, the RSA is often used as a parasympathetic marker. The dependence of the kinetics of

the heart sinoatrial node on body posture and breathing enforces this view [21]. However, the



12 Respiratory Sinus Arrhythmia (RSA)

perpetuation of RSA, although in a reduced form, after blockade of the receptors of both sympa-

thetic and vagal systems and even after a vagotomy indicates there must be different or additional

mechanism involved [14, 23].

According to the baroreflex-mechanism theory (blood volume), RSA is mainly a reflex mech-

anism [20]. It is assumed that breathing induces blood pressure changes, which in turn translate

into heart rate changes because of the baroreflex. In other words, the RSA stabilizes blood

pressure [24]. However, there is debate on whether latencies related to the breathing-related fluc-

tuations in the heart rate are physiologically plausible within the baroreflex framework [21]. On

the other hand, fetal RSA has been recorded at a gestational age of 36 weeks [18], when there

are no breathing fluctuations so to speak of. Similarly, RSA persists during apnea and coincides

with diaphragm activity, even in the absence of oxygen intake [25].

The above-mentioned mechanisms have each their advocates and critics, however, it has been

suggested that they may be involved in parallel in the generation of the RSA, especially given

that they are both “central” in that both are operated from the brainstem [19, 25]. Other inputs

may have been overlooked in these theories, such as feedback from the lungs and atrial stretch

receptors [26].

To summarize, cardiac vagal traffic seems to have a role in the RSA formation, although

it is not the only contributing factor [6]. The RSA is therefore often used as an index of vagal

activity. It has been suggested that the RSA reflects vagal tone because of evidence for the central

mechanism although it must not be considered synonymous with vagal activity as breathing

affects the RSA, presumably through baroreflex mechanisms.

2.3 RSA measurement techniques

The RSA is measured in the context of HRV analysis. Most often, the inter-beat intervals

are measured from the ECG. The R-peak of the ECG, as indicated in Figure 2.4, represents the

heartbeat, with the QRS complex reflecting the heart ventricular re-polarization [27].

Figure 2.4: Three heartbeats in a normal ECG. The R-wave represents the heartbeat.

The RSA has been defined in the following manners:

(a) The power of the R-R intervals occurring at the breathing rate, in which case the RSA is

expressed in terms of squared time units:

The time differences between successive R-peaks constitutes the R-R intervals time series. How-

ever, the values of this time series, i.e. the intervals between heartbeats, are variable and therefore

the time series is naturally unequally sampled. Most commonly, the midpoint of each interval is

selected as time-index for that interval, as illustrated in Figure 2.5. Then the time series is re-

sampled uniformly at 4 Hz through cubic spline interpolation [28] 1. Since the normal breathing

rate of humans is most often in the range of 10-30 breaths-per-minute, the RSA is often defined

as the HRV occurring in those frequency ranges through spectral analysis [1, 18, 24, 29–51].

More precisely, the breathing bandwidth is designated by the high frequency (HF) range, defined

as the fixed range of 0.15 -0.4 Hz [1], illustrated in Figure 2.6, which is assumed to contain the

breathing. Such values are conventionally computed in 60-120 s windows of data according to

1. Several interpolation techniques are discussed in Appendix A
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Figure 2.5: R-R intervals time series illustration. (a) The ECG and the R-peaks. (b) The R-R

intervals constituted from the time-differences between consecutive R-peaks.

the guidelines [1]. There have been propositions to adjust the bandwidth of interest in special

cases to include lower and higher breathing frequencies, for example to 0.12- 1 Hz [32, 52–54].

Figure 2.6: The power spectral density of an R-R intervals time series from a 10-minute recording

in supine position, while the subject was breathing constantly at 0.2 Hz with the aid of an auditory

signal (metronome). The HF frequency band is highlighted.

(b) The average difference between the shortest and longest R-R intervals, in time units, for

example in milliseconds:

Given that spectral analysis only captures the mean values of the RSA, different methods for the

breath-by-breath or second-by-second analysis of the RSA have been proposed. In breath-by-

breath analysis, the RSA is the difference in heart rate between peak and trough [32, 55–57], or

the difference between the shortest inter-beat interval during inspiration and the longest during

expiration [58]. Second-by-second characterization of the RSA has also been performed via

vector-autoregressive modeling [59]. The square root of mean successive differences between

ECG R-waves has also been used as an index of the RSA [60].



14 Respiratory Sinus Arrhythmia (RSA)

(c) The RSA waveform, containing the breathing-related oscillation of the R-R intervals as il-

lustrated in Figure 2.3 (b), represented by amplitudes on a time scale, such as milliseconds:

The RSA waveform has been extracted form the R-R intervals in several ways such as adap-

tive filtering [61], principal component analysis [62], phase-rectified signal averaging [63–65],

autoregressive modeling [66], orthogonal subspace projection [67, 68], and mathematical mod-

eling of the relationship between the cardiac autonomic regulation and breathing [19, 69, 70].

Other points of view in characterizing the RSA involve the approximate entropy of the R-R

intervals time-series [32], Poincaré plots [18, 71], time-frequency analysis [72, 73], and sym-

bolic analysis [74]. Recently, the cross-correlation between the breathing waveform and the R-R

intervals series was also proposed as a means to quantify the RSA [75].

The HRV and the RSA can also be measured from other cardiac signals apart from the ECG,

such as photopletysmographs [76–78], which derive from the blood volume changes in the ves-

sels due to heartbeats. They have also been measured with non-contact measurement techniques,

such as imaging photoplethysmography [79] and Doppler radar cardiopulmonary remote sens-

ing [80, 81].

2.4 Usefulness of RSA

RSA can be acquired in a relatively easy and non-invasive manner and is believed to re-

flect, at least partly, the ANS function as it has been related to the parasympathetic nervous

system. It is therefore a very widely used descriptor and has long been considered a clinical

and psycho-physiological indicator [7, 82, 83]. It is often used as a clinical marker for a given

health-related condition or as a means to characterize response to a given stimuli. Although

the neuro-physiological basis of the link between autonomic regulation of the heart and psycho-

behavioral traits is not completely understood, RSA and other HRV parameters have been ob-

served to have specific trends with pathological and psycho-physiological processes. Changes

in these indexes are thought to aid in elucidating changes in the autonomic function related to

pathological and psychological states [1, 84, 85]. This section enumerates some recent studies

(2011-2016) involving RSA analysis, and is meant to give an overview of the wide range of clin-

ical and psycho-physiological utility of cardio-respiratory indexes and in particular the RSA. It

is by no means a comprehensive review.

Cardiac health

Because of its (at least partly) cardiac vagal origin, the RSA has been used to study particular

aspects of cardiac health [86]. Several HRV indexes, including the HF power have been used

to study autonomic regulation in relationship with myocardial infarction [47]. Several HRV

indexes, in particular the RSA, have been used in the early detection of cardiac iron accumulation

before myocardial dysfunction [87]. The RSA has also been employed in studying autonomic

particularities of the postural tachycardia syndrome in children [88].

Response to disease

The RSA, as measured with the HRV HF power, was used in the prediction of the levels

of inflammatory markers [89]. It has also been used to study autonomic dysfunction in breast

cancer patients [43].
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Mental health
As the ANS function may reflect on other cerebral functions given the inter-linked nature of

the human nervous system, several HRV measures pertaining to the cardio-respiratory relation-

ship have been employed to analyze autonomic particularities of schizophrenia [38] and other

mental illnesses [90].

Stress
Given its (at least partly) autonomic origins, the RSA is thought to reflect on the mental state.

It has been shown, for instance, to be affected by mental stress [34, 67]. The RSA defined as

the HF power of the HRV has been linked to anxiety and attention control [91], response to

worry [44], and the prediction of preoperative stress [92], and post-deployment post-traumatic

stress disorder [93]. The RSA has also been used to study maternal prenatal anxiety in relation

with infant negative affectivity [94] and maternal depressive symptoms in relation to toddler

sleep quality [95]. RSA levels have also been used as markers in studying the link between

socioeconomic status and self-reported stress [96]. They have also been used to assess social

adaptations mechanisms in maltreated children [97].

The RSA reactivity, i.e. the change in RSA in response to task demands, has been linked

to internalization and externalization symptoms [52, 98, 99] and also to the relation between

aggression and internalization symptoms in children [100, 101]. The RSA reactivity has also

been used as a measure in self-regulation and effortful control in children [57, 102].

Emotions
The HF HRV power has been used to assess autonomic changes in response to musci-

induced emotions [103]. The RSA has been used as a marker in understanding children with

neurobehavioral disinhibition [54]. Greater RSA has been observed during the experience of

compassion [104]. RSA levels have been measured in studying attachment insecurity in ado-

lescents [105]. In a biofeedback context, the success of the voluntary upregulation of the RSA

predicted altruistic behavior [49].

The RSA levels of students exaggerating their grade averages were used to study their anxiety

about academic performance [106].

RSA levels have been shown to be affected with the experience of transient emotions [107].

They have also been used as markers in studying emotion regulation [37, 48, 108–111].

Sleep
The RSA and its relationship to other cardiac variables has been used in the study of sleep

stages [55, 112] and sleep apnea [75]. RSA levels have been linked to sleep quality [35], and the

effects of obesity on sleep quality [113].

Long-stating psycho-physiological conditions
The RSA has also been studied in relation to long-standing mental states, such as personality

traits in general [114] or disorders, for example in the prediction of depressive symptoms [40, 45,

46, 51]. Changes in the RSA were shown to be potentially useful in the analysis and diagnosis

of autism spectrum disorder [36, 53, 115, 116], and borderline personality disorder [117]. The

RSA has also been used to study long-term physiological correlates of emphatic behavior [118]

and Internet gaming addiction [119].

Variations of the RSA over time have been linked to psycho-physiological synchrony in

husband-wife dyads [42]. RSA levels have been investigated in the context of the relationship
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between marital conflicts and children’s sleep [41]. The RSA has been used to predict eating

disorder symptoms and their relationship to parenting [120]. The co-regulation of the RSA in

romantic partners has been studied in the context of the association between relationship and

health [121]. The RSA was also measured to study cardio-respiratory synchronization of choir

singers [122].

RSA levels have been used for the prediction of the quality of life of breast cancer sur-

vivors [60].

Mental tasks
The phase synchronization between the RSA and the breathing waveform was reduced during

mental tasks such as arithmetic calculations [34, 123]. The RSA has been used in the prediction

of implicit learning [124].

Autonomic-mediated responses to non-pathological stimuli
The RSA was shown to increase when viewing a green urban scene in comparison with a built

urban setup, placing emphasis on the positive influence of green scenes on the parasympathetic

tone and the autonomic regulation [58, 125, 126].

Autonomic reactivity, as measured by changes in the RSA, was found to be associated with

narrative-aligned behavior, in particular in the context of appeal for charitable giving [39].

The phase relationship between the RSA and the breathing waveform has been used to study

the autonomic responses during food ingestion [50, 127].

The RSA defined as the HF power of the HRV has also been used to assess autonomic changes

occurring with athletic training [128].

Breathing-related parameters of the HRV, such as the HF power have been used to charac-

terize autonomic particularities of altitude exposure [129–135], which is of importance in the

prediction of mountain sickness [136, 137].

The RSA has been used to derive the breathing rate in a convenient and non-invasive manner,

as conventional breathing monitoring requires cumbersome apparatus [28, 138, 139].
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This chapter describes the non-invasive assessment of ANS function using the HRV and RSA.

Mapping RSA alterations to known ANS stimuli is discussed by examining the existing literature

and by reporting results of new experiments. Elements of the methods and results reported in

this chapter were presented as a conference paper [140].

3.1 Non-invasive assessment of the autonomic balance

Changes in ANS responsiveness to an excitatory stimulus are hypothesized to be related to

pathological conditions [128]. There is considerable interest to track changes in the ANS activity

in a non-invasive manner, as probing for nerve signals requires delicate invasive methods. As

discussed in Chapter 2, the heart rhythm is controlled by the ANS. Therefore, HRV analysis is a

choice means to assess changes in the ANS [141, 142].

In HRV analysis, the low frequency (LF) power of the inter-beat intervals, the high frequency

(HF) power, and the ratio of the LF/HF powers are often used as autonomic indexes [1, 2, 143].

The LF power, between 0.04 Hz and 0.15 Hz is believed to reflect the activation of the sympa-

thetic and parasympathetic branches of the ANS [1]. In humans, there are particular oscillations

in the LF band at around 0.1 Hz. These oscillations have been linked to functions of the barore-

flex loop [144, 145], and also seem related to the sympathetic innervation of the baroreflex, as

they are attenuated by the blockade of sympathetic receptors [145]. As these oscillations con-

stitute an important part of the LF power, the LF power and the power ratio LF/HF are used as

markers of sympathetic activation [2, 146]. The HF power, between 0.15 Hz and 0.4 Hz is be-

lieved to reflect the parasympathetic branch of the ANS and is related to breathing as discussed

in Chapter 2. The underlying physiological justifications of these autonomic indexes remain a

matter of debate [20–22]. One avenue into the exploration of the relation of these indexes to

autonomic states, is to observe their responses to particular autonomic stimuli. As such, the links

between autonomic events and these indexes can be studied in a cause-and-effect manner, and

consolidated or challenged.

3.1.1 Body posture alteration of the autonomic balance
Changing one’s body posture is an easy an rapid manner of inducing autonomic changes [128].

When one is in the supine position, blood circulation occurs in a horizontal manner as the height

difference between the heart and major body parts is small. When one stands up, this height

difference increases. It has been reported that standing increases (up to 10-fold) the LF power

17
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as compared to the supine position, while decreasing the HF power [88, 128, 147–149]. The in-

crease in LF power in the orthostatic position is hypothesized to be either due to increased blood

pressure fluctuations causing increased beat-to-beat interval fluctuations, or increased baroreflex

control of the blood pressure.

3.1.2 Effects of controlled breathing on the autonomic balance
Often, the RSA has been studied under controlled breathing, which involves controlling the

breathing rate or volume or both [150]. Doing so reduces variations due to spontaneous breathing

and facilitates the identification of the RSA. However, the process of controlling the breathing

parameters induces changes to the physiological state because of the mental effort involved in

addition to the disruption of the bi-directional interaction between cardiac control and breathing

function control [151]. It has been hypothesized that the mental processes required to control

one’s breathing entail an increase of sympathetic activity, which reduces the breathing fluctua-

tions on the cardiac rhythm [150]. However, in a ramped breathing protocol, the muscle sympa-

thetic nerve activity was found to be lower during controlled breathing compared to spontaneous

breathing [152].

Studies investigating the effect of controlled breathing on RSA magnitude (most frequently

as measured by the HF power of the HRV) have found very different results, ranging from a

nearly 50% decrease to no change, to nearly 90% increases in the RSA amplitude induced by

the breathing mode [56, 150, 153, 154]. In studies reporting a large increase in RSA magnitude,

high breathing rates such as 0.25 Hz and 0.33 Hz were imposed. Studies in which no differences

were found, either normalized the RSA amplitude using the tidal volume or used a frequency

close to that of each subject’s spontaneous breathing for controlling the breathing rate [56, 150].

Regarding the adjustment of the breathing volume, when the breathing rate is controlled,

subjects automatically modify their tidal volume, such that in one study, the investigators found

no noticeable differences between the actual inspired volume when the tidal volume was not

controlled and when the tidal volume was controlled to maintain normal alveolar ventilation

regardless of breathing rate [155].

Combining an increase in respiratory frequency and a decrease in the respiratory volume

induced a larger decrease in the HF power than each maneuver alone [156].

3.1.3 Pharmacological altering of the autonomic balance
To study the ANS responses to specific autonomic conditions, it is possible, by administering

drugs, to artificially modify the ANS control on the heart. Specific drugs block the receptor sites

related to each of the ANS branches. The β-blockers are a class of drugs that block the receptors

of the norepinephrine hormone involved in the sympathetic nervous system activation [157]. By

blocking the receptor sites of the norepinephrine hormone, the sympathetic influence over the

heart rhythm is effectively null.

If, as is believed, the LF band was mediated by both the sympathetic and parasympathetic sys-

tems, and the HF band was mostly mediated by parasympathetic activity, blockade of the sympa-

thetic system would reduce power in the LF band while leaving the HF band unchanged. Indeed,

after β-blocker ingestion, the sympathetic nerve activity has been observed to decrease [23].

However, what has been generally reported in literature after the ingestion of a β-blocker com-

pound such as propranolol, is mostly an increase of the HF power with little decrease or no

influence on the LF power [143, 157, 158].

The parasympathetic branch of the ANS can also be blocked by administering an acetyl-

choline receptor antagonist for example by atropine injection [23, 159].

On the other hand, artificial activation of the sympathetic nervous system in particular, is

thought to provide insights into the functioning of ANS in healthy and pathological condi-
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tions [160]. One widely used stimulant is caffeine, which has been reported to increase sym-

pathetic nerve activity [161, 162]. The exact effect of caffeine on the ANS is not completely

understood yet, although one important event is the inhibition of adenosine receptors [163].

Adenosine, which occurs naturally in the body, is an important vasodilatator [164]. Vasodi-

latation refers to the widening of the veins and arteries. When blood vessels widen, blood flow is

increased and blood pressure decreases. Therefore, caffeine ingestion affects the normal dilata-

tion of the veins and arteries, affecting blood pressure and eliciting sympathetic activation [161].

Caffeine ingestion stimulates the ANS, however with conflicting effects. For example, its

reported effects on the heart rate range from decrease to no change to increase [162, 165–167].

Regular ingestion of caffeine was reported to increase HRV as measured by the standard deviation

of the normal inter-beat intervals, with no significant effect on the LF and HF powers and their

ratio [160]. In another study, punctual intake of caffeine was reported to increase the HF power

with no effect on the LF power [168].

3.1.4 Motivation and contribution

The LF-HF partitioning and the use of the LF/HF marker are widely contested [2, 3, 62, 169–

171], in part because there is evidence against a clear linear separability of the activations of the

two branches of the ANS, but also due to the influence of breathing on HRV [2, 3, 62]. The

conventional LF-HF partitioning assumes that the breathing rate is between 0.15 Hz and 0.4 Hz.

However, in practice, the influence of breathing can extend to the LF band, when the breathing

rate is below 0.15 Hz or 9 breaths-per-minute (brpm) [3, 170]. For instance, people with athletic

training for example often have low resting breathing rates [3, 172]. Furthermore, breathing rates

higher than 24 breaths-per-minute (0.4 Hz) are also likely to occur, especially during exercise,

in children, or in pathological conditions [173]. There have been propositions to adjust the

bandwidth of interest in special cases, for example to 0.12- 1 Hz [32, 52–54]. Breathing may

occur in the LF or the HF band, or jump from one to the other within a given experimental

protocol, and since it has a large influence on the power of the inter-beat intervals, it cannot

be ignored when performing HRV analysis [174]. Furthermore, tasks such as speech shift the

breathing frequency into the LF band [175]. Some researchers have proposed to analyze the

breathing-related and breathing-unrelated HRV [62], while others propose to center the HF band

on the breathing rate and to adjust the LF boundary accordingly [169].

RSA extraction

RSA is a widely used physiological marker related to the HF power as reported in Chapter 2.

If extracted by taking into account the reference breathing waveform instead of fixed bandwidth-

filtering the inter-beat intervals based on general assumptions, the RSA has the advantage of

always being related to breathing and the parasympathetic branch of the ANS in contrast to the

limitations of the standard LF-HF partitioning. Existing methods to extract the RSA according

to the breathing waveform have many limitations when considering real-time health monitoring

applications. Phase-rectified signal averaging and projection methods are based on analyzing

fixed-length segments of data [62–65, 67, 68]. Adaptation to real-time processing requires em-

pirical choices on the length of data to be analyzed. Filtering-based methods seem to perform

poorly in the presence of wide-band spontaneous breathing [66]. Mathematical modeling of the

cardio-respiratory relationship aims at uncovering the RSA generation mechanisms and have not

been intended to provide a “functional” RSA waveform, for instance to study RSA responses to

particular autonomic stimuli [19, 69, 70].

Given the growing interest in real-time processing, for example in mobile health monitoring

applications, the automatic extraction of the RSA from the inter-beat interval times series is
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achieved by local filtering of the HRV with the true breathing rate measured from the breathing

waveform.

Phase relationship between the RSA and the breathing waveforms

Furthermore, the relationship and the synchronization between the RSA and the breathing

waveforms are of particular interest, as it may bring valuable information about the autonomic

control of the cardio-respiratory system [176–178]. The breathing and the RSA waveforms are

mostly in phase opposition, as inspiration coincides with the shortening of R-R intervals (min-

imum of RSA) [34, 63, 64, 179]. The autonomic effects on this relationship have not been

widely studied, although it has been reported that β-blocker ingestion did not modify this phase

lag [179]. Postural changes on the other hand, affected this phase difference between the cardio-

vascular and breathing signals [180]. This phase relationship has also been studied in the context

of the autonomic characterization of mental stress [34, 177], altitude exposure effects [133],

cardio-respiratory synchronization of choir singers [122], the autonomic effects of age and coro-

nary artery disease [181] and sleep stage and sleep apnea characterization [55, 112, 182].

The phase relationship is most often studied by using the signal instantaneous phases, as mea-

sured with the Hilbert transform [34, 112, 133, 177, 180]. The Hilbert transform is an important

linear operator in signal processing. It derives from a given input, its analytic representation,

extended into the complex plane. The instantaneous phase of the signal is then derived from

the phase of the analytic signal [183]. However, for the Hilbert transform to yield meaningful

results, the input needs to be narrow-band [184–186].

Once the phase of the RSA has been defined, it can be further employed to characterize

various aspects of the cardio-respiratory relationship. In particular, the ratio of heart beats to

breathing cycles, deduced visually from the cardio-respiratory synchrogram, has often been used

to characterize the cardio-respiratory relationship [55, 112, 133, 181, 187].

The synchronization of the phase lag between the RSA and breathing waveforms, reported as

the mean angular dispersion of the phase differences in the complex space, is another parameter

used sometimes to describe the cardio-respiratory relationship [34, 122].

Mapping HRV and RSA indexes to autonomic conditions using known autonomic stimuli

In the present chapter, changes in the RSA and the autonomic control of the heart are studied

in the supine and orthostatic body positions, assumed to elicit parasympathetic and sympathetic

dominance, respectively. They are also studied under the influence of β-blocker drugs (sym-

pathetic blockade) and caffeine (sympathetic activation), for both spontaneous and controlled

breathing.

The RSA and several aspects of the relationship between breathing and the RSA are inves-

tigated and compared to the conventional autonomic indexes of the LF and HF power and the

LF/HF ratio. The relationship between breathing and the RSA is assessed with the phase lag

between them, as well as its variability and its synchronization. The variation of the phase lag

was used as an index in [188] to assess the relationship of the fundamental and first harmonic of

specific biosignals, and thus their regularity, which is reflected in their phase difference [189].

3.2 Materials and methods

3.2.1 Data acquisition
Young healthy volunteers were recruited. The single-lead ECG and breath-by-breath airflow

were recorded simultaneously with an in house ECG device and the Medgraphics spirometer

(Medgraphics, CPX, St. Paul, MN, USA) respectively. The two data streams were acquired with
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a sampling frequency of 1000 Hz using an analogue-to-digital converter (PowerLab 16/30, ADIn-

struments, Bella Vista, Australia) and recorded with commercially available software (LabChart

v.7.2 ADInstruments, Bella Vista, Australia) 1.

Study 1- Autonomic alterations induced by body posture

Data were recorded from 21 healthy volunteers (16 men, age 34 ± 8 years, weight 78 ± 17 kg,

height 178 ± 9 cm). Recordings were performed while the subjects lay supine for 8 minutes

and then stood in the orthostatic position for 7 minutes breathing spontaneously. An example

of the acquired signals is shown in Figure 3.1. All the study procedures were in accordance

with the Declaration of Helsinki, and the study was approved by the Canton de Vaud ethical

committee (#2016-00308). The subjects gave informed consent prior to participation.

Figure 3.1: The (a) ECG and (b) breathing waveform for one subject in supine position.

Study 2- Autonomic alterations induced by controlled breathing and pharmacological ma-
nipulations

Data were recorded from 17 healthy volunteers (10 men, age 33 ± 9 years, weight 78 ± 22 kg,

height 175 ± 10 cm). The recordings were performed over two days for each subject. The

subjects were asked to refrain from coffee, alcohol and tobacco use on the days of the experi-

ment. One day the subjects underwent recording 45 minutes after the ingestion of a β-blocker

drug (propranolol, 0.2 mg/kg, administered by pills [179]) and the other day (random order),

they underwent recording 45 minutes after the ingestion of caffeine (6 mg/kg, administered by

pills [190, 191]). Each recording session consisted of a 10-minute spontaneous breathing (sb)

segment, a 10-minute segment breathing at 9 brpm, with the help of a metronome and a 10-

minute segment breathing at 12 brpm, also with the help of a metronome (in a random order).

On each day, baseline recordings were performed before the subjects ingested the drugs in all

three breathing modes (in the same breathing-mode order). All recordings were performed in a

laboratory setting, with a temperature of 25 ± 2 ◦C and 44 ± 7% humidity. All the study pro-

cedures were in accordance with the Declaration of Helsinki, and the study was approved by

the Canton de Vaud ethical committee (#451/14). The subjects gave informed consent prior to

participation and filled a medical questionnaire.

1. The data acquisition was coordinated by Nicolas Bourdillon, from the Institute of Sport Science of the University

of Lausanne.
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3.2.2 Data processing
The ECG R-peaks were extracted. The maxima of the signal were identified with a local ex-

trema detection method, adjusting the maxima detection constraints based on the autocorrelation

of the ECG in a 30-second window. All the extractions were manually inspected and artifacts

were removed. The R-R intervals series was then created and re-sampled uniformly at 4 Hz using

cubic spline interpolation 2, by setting the time index of each interval to its midpoint as described

in Section 2.3. The breathing signal was re-sampled similarly to the R-R intervals time series.

Both signals were filtered with a Butterworth filter (order 18) between 0.06 and 1 Hz to remove

drift and high frequency artifacts. The heart rate in beats-per-minute (bpm) was computed from

the inverse of the R-R intervals.

The RSA was extracted from the pre-processed R-R intervals by bandpass filtering the latter

with a time-varying filter with the transfer function H described in (3.1) centered on the breathing

rate fbr. In (3.1), β = 0.95 defines the filter bandwidth as narrow and selective (as illustrated in

Figure B.1 in Appendix B).

H(z; n) =
1 − β

2

1 − z−2

1 − cos(2π fbr)(1 + β)z−1 + βz−2
. (3.1)

Using H, with the pre-processed R-R intervals series as input, the RSA is extracted as:

RS A[n] = cos (2π fbr[n])(β + 1)RS A[n − 1] − βRS A[n − 2]

+ 0.5(1 − β)(RR[n] − RR[n − 2]), (3.2)

where RS A[2] = RS A[1] = RR[1] for n > 2.

The breathing rate fbr was estimated from the re-sampled breathing signal by using a notch

filter bank estimation algorithm (see Section 5.2.2). Briefly, this method consists in identifying

the dominant frequency of a signal by probing the outputs of a bank of FIR notch filters spaced

equally over a given bandwidth. The instantaneous frequency of the signal is estimated as the

weighted sum of the notch frequencies, where the weights are computed using the inverse of the

filter output powers.

The outcome, RS A[n], was subtracted from the R-R intervals to produce the breathing-

unrelated component of the R-R intervals:

RRnon−br = RR − RS A. (3.3)

The RSA power (PRS A) was measured from its power spectral density (PSD) estimate (Welch

method) over 60-second-long windows with 50% overlap. The breathing-unrelated power of the

R-R intervals (Pnon−br) was computed from RRnon−br in a similar manner.

The phase lag (PL) between the RSA and the breathing signal was computed by using the

spacing between the successive maxima of the two signals similarly to [178]. Given a reference

signal s1, the phase lag of another signal s2 is computed for each sample n by identifying two

successive maxima of the reference signal p1(s1) and p2(s1) and one maximum of the second

signal p1(s2) as follows:

PL[n] = 2π
tp1(s2) − tp1(s1)

tp2(s1) − tp1(s1)

tp1(s1) < n ≤ tp1(s2). (3.4)

As illustrated in Figure 3.2, when the phase lag between the two signals is π and the signals

are in exact phase opposition, the distance between the maxima of the two signals is half the

period of the reference signal, in other words tp1(s2) − tp1(s1) is the half of tp2(s1) − tp1(s1) and the

phase lag is correctly computed as π.

2. described in Appendix A
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Figure 3.2: Illustration of the phase lag between two signals. The phase lag of s2 with respect

to s1 is computed using the ratio of the time-difference between successive maxima of s2 and s1

(tp1(s2) − tp1(s1)) and two successive maxima of s1 (tp2(s1) − tp1(s1)). The maxima p1(s1), p1(s2)

and p2(s1) are marked with asterisks. In this particular case, given that tp1(s2) − tp1(s1) is half

tp2(s1) − tp1(s1), the phase lag is computed as π.

The maxima of each signal were extracted by using a conventional window-based extrema

detection method. This window length was empirically set as 2/(3 fresp).

The PL variability (PLV), was assessed by the standard deviation of the slope of the PL [192],

computed as:

PLslope[n] =
PL[n + L/2] − PL[n − L/2]

L + 1
, (3.5)

where L = 16 (equivalent to 4 s at the 4 Hz sampling rate chosen here) is the computation

window size. This value was empirically chosen to capture an average breathing period and

experimentally proved to be adequate. The variation of the slope, i.e. PLV, was computed by

calculating the standard deviation of the latter in a sliding window of length W = 40 (equivalent

to 10 s at the 4 Hz sampling rate chosen here):

PLV[n] = S T D(PLslope[n −W/2 : n +W/n]) (3.6)

The phase lag synchronization (PLS), which is the mean angular dispersion of the phase

differences in a complex space, was computed as in [34]:

PLS [n] =

∣∣∣∣∣∣∣∣
1

W

n+W/2∑

j=n−W/2

e(iPL[ j])

∣∣∣∣∣∣∣∣

2

, (3.7)

where W = 40 (equivalent to 10 s at the 4 Hz sampling rate chosen here) is the computation

sliding window. PLS values range from 0, in the case of randomly distributed phase lags, to 1, if

the PL is always constant.

The conventional HRV LF and HF powers were computed in 60-second-long windows with

50% overlap as well as their normalized versions (with respect to the total peak-to-peak intervals

power minus the very low frequency band, below 0.04 Hz), nLF and nHF. The LF/HF ratio was

also computed.

The power in the breathing-corrected LF and HF bands, denoted as the cLF and cHF powers,

were computed from the R-R interval PSD by setting the LF-HF boundary according to the
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breathing rate, as min( fbr − δ f , 0.15), where two values of 0.05 and 0.1 Hz were investigated for

δ f . Their normalized versions ncLF and ncHF were computed similarly to the nLF and nHF

powers.

Comparisons were made between the different conditions by directional hypothesis testing

using the Mann-Whitney U-test, which does not make assumptions on the distribution of the

data.

3.3 Results

3.3.1 Body posture alteration
Results using data from study 1 are reported in this section. Comparisons were made between

the supine (sup.) and orthostatic (orth.) positions and the significance of the p-values for the

directional hypothesis testing are reported for the two significance levels of 5% and 10% (trend).

There were no significant differences between the instantaneous frequency of the RSA and the

instantaneous breathing rate, meaning that the RSA extraction was correct for all subjects. The

breathing rates of 12 subjects (57%) were below the LF upper boundary of 0.15 Hz. For six of

these subjects (28%), it was close to the baroreflex frequency (0.1 Hz).

Figure 3.3 shows the R-R intervals series for one subject in the supine and orthostatic po-

sitions. Figure 3.4 illustrates the PSD of these R-R intervals series. Visually, the breathing

influence on the R-R intervals, seen in the main oscillation, is more prominent in the supine posi-

tion. In both graphs of Figure 3.4, a peak can be seen around 0.1-0.11 Hz because the breathing

rate of this subject for both recordings was 0.11 Hz, which is close to the baroreflex frequency.

In this case, the HF power does not represent breathing activity at all, and the LF power contains

both breathing-related and baroreflex-related power. This case illustrates the need for taking into

account the true breathing rate in HRV analysis.
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Figure 3.3: The R-R intervals for one subject: (a) in the supine and (b) in the orthostatic positions.

Figure 3.5 reports the heart rates and breathing rates of all subjects in the supine and ortho-

static positions. They both increased (p < 0.05 for the HF difference and P < 0.1 for the BR

difference) in the orthostatic position.

Figure 3.6 shows the RSA power and the breathing-unrelated power of the R-R intervals.

Both were larger in the supine position although the differences were relatively small (p < 0.05 for

the RSA power, while the breathing-unrelated power differences were not significant). Figure 3.7
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Figure 3.4: The PSD of the R-R intervals in Figure 3.3: (a) in the supine and (b) in the orthostatic

positions. In both cases, the breathing frequency was in the LF band, making the usual LF-HF

separation meaningless.

Figure 3.5: The heart rate (HR) and breathing rate (BR) in the supine and orthostatic positions

for all 21 subjects. *p < 0.1; **p < 0.05.
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reports the normalized versions of the RSA and breathing-unrelated powers. Differences between

the two positions were more visible in the normalized parameters. The normalized RSA power

was significantly smaller (p < 0.05) in the orthostatic position, while the normalized breathing-

unrelated power was significantly larger (p < 0.05).

Figure 3.6: The RSA and breathing-unrelated powers in the supine and orthostatic positions for

all 21 subjects. **p < 0.05.

Figure 3.7: The normalized RSA and breathing-unrelated powers in the supine and orthostatic

positions for all 21 subjects. **p < 0.05.

Figure 3.8 reports the phase-related RSA-breathing synchronization parameters. The PLV

was significantly larger (p < 0.05) in the orthostatic position while the PLS was significantly

smaller (p < 0.05). Furthermore, the values of both parameters were more diverse in the ortho-

static position. The PL and PLslope did not show any significant differences in the two positions

as reported in Appendix B, Figure B.2.

Figure 3.9 reports the LF and HF powers as well as the breathing-corrected cLF and cHF

powers over all 21 subjects in the supine and orthostatic positions for δ f = 0.05 Hz. For δ f =
0.1 Hz, the cLF could not be computed for several subjects, as for low breathing rates, the cLF

effectively became null. There were no significant differences between the supine and orthostatic
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Figure 3.8: The synchronization measures between the RSA and breathing signals in the supine

and orthostatic positions for all 21 subjects. **p < 0.05.

positions for the LF and cLF powers but the HF and cHF powers were significantly larger (p

< 0.05) in the supine position. The cLF was smaller than the LF and the cHF was larger than

the HF because the cLF, in contrast to the LF, does not contain any breathing-related power,

and the cHF, contrary to the HF, always contains the breathing-related power. The normalized

versions reported in Figure 3.10 reveal that the nLF and ncLF powers were significantly larger

(p < 0.05) in the orthostatic position. The total R-R intervals power was slightly larger in the

supine position as seen in Figure 3.11. The LF/HF and cLF/cHF were also larger (p < 0.1) in

the orthostatic position, however the difference is smaller in the case of the breathing-corrected

index as seen in Figure 3.12.

Figure 3.9: The LF, HF, cLF and cHF powers in the supine and orthostatic positions for all 21

subjects. **p < 0.05.
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Figure 3.10: The nLF, nHF, ncLF and ncHF powers in the supine and orthostatic positions for all

21 subjects. **p < 0.05.

Figure 3.11: The total R-R intervals power in the supine and orthostatic positions for all 21

subjects. *p < 0.1.
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Figure 3.12: The LF/HF index and the breathing-corrected cLF/cHF in the supine and orthostatic

positions for all 21 subjects. **p < 0.05.

3.3.2 Controlled breathing and pharmacological alteration
Results on data from all subjects in study 2 are reported here. Comparisons were made

between the breathing modes: spontaneous breathing (sb) vs 9 brpm, sb vs 12 brpm and 9 vs 12

brpm at baseline (BL) and between the baseline and each condition, i.e, the β-blocker (BB) and

caffeine (CAF) conditions for each breathing mode (BL vs BB or CAF). The significance of the

p-values for the directionals hypothesis testing are reported for the two significance levels of 5%

and 10% (trend). There were no significant differences between the instantaneous frequency of

the RSA and the instantaneous breathing rate, meaning that the RSA extraction was correct for

all subjects.

Figure 3.13 reports the breathing rates of all the subjects in the spontaneous breathing ses-

sions (baseline and under β-blocker influence and caffeine influence). The spontaneous breathing

rate was below the LF-HF boundary of 0.15 Hz in 34% of all sb records.

Figure 3.13: The breathing rates during the sb sessions for all 17 subjects. BL: baseline, BB:

β-blocker case, CAF: caffeine case.

Figure 3.14 reports the RSA power for all three breathing modes at baseline and under β-
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blocker influence. The RSA power was significantly higher under β-blocker influence regardless

of the breathing mode. Figure 3.15 reports the same results for the caffeine case. Under caffeine

influence, there were no significant differences expect for an increase after caffeine ingestion

when breathing at 9 brpm (p < 0.1). The only influence of the breathing mode on baselines

values, which was observed over the two days of the experiment, was a significant increase in

the RSA power when breathing at 9 brpm compared to breathing at 12 brpm.

Figures 3.16 and 3.17 report the normalized RSA powers for the β-blocker and caffeine cases,

respectively. The differences observed between baseline and β-blocker influence during sponta-

neous breathing were not reproduced after normalization. There were no differences between

baseline conditions and caffeine ingestion. However, the differences in the baseline values be-

tween the breathing modes were maintained for both the β-blocker and caffeine cases.

Figures 3.18 and 3.19 illustrate the breathing-unrelated power in the β-blocker and caffeine

cases, respectively. Under β-blocker influence, the breathing-unrelated power was significantly

larger than at baseline for all breathing modes. Under caffeine influence, it was significantly

larger only during the 9 brpm breathing mode. There were no significant differences or trends

between the breathing modes at baseline present in both cases.

Figures 3.20 and 3.21 report the normalized non respiratory power. After β-blocker ingestion,

the power decreased in the 9 brpm (p < 0.1) and 12 brpm (p < 0.05) breathing modes. Caffeine

did not have an influence on this parameter. In both cases, at baseline, the power was larger

during spontaneous breathing and 12 brpm breathing than 9 brpm breathing.

Figure 3.14: The RSA power for the three breathing modes in the β-blocker case for all 17

subjects. BL: baseline, BB: β-blocker influence. *P < 0.1; **P < 0.05.

Figure 3.22 presents the PL values at baseline and under β-blocker influence in the three

breathing modes. During controlled breathing, the PL was smaller under β-blocker influence.

There were no significant differences in its values during spontaneous breathing. There were

no significant changes in the PL value under caffeine influence compared to baseline as seen in

Figure 3.23. There were no significant differences in the baseline values between the different

breathing modes consistent in both days.

The analysis of the other phase-related parameters, the PL slope, PLV and PLS did not yield

consistent differences. The results pertaining to these parameters are reported in Figures B.3 -

B.8, in Appendix B.

The LF power was significantly larger after β-blocker ingestion in all three breathing modes

as reported in Figure 3.24. However, the nLF only displayed an increase (p < 0.1) in the 9 brpm

mode as seen in Figure B.9 in Appendix B. Caffeine changed neither the LF nor nLF values,
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Figure 3.15: The RSA power for the three breathing modes in the caffeine case for all 17 subjects.

BL: baseline, CAF: caffeine influence. *P < 0.1; **P < 0.05.

Figure 3.16: The normalized RSA power for the three breathing modes in the β-blocker case for

all 17 subjects. BL: baseline, BB: β-blocker influence. **P < 0.05.
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Figure 3.17: The normalized RSA power for the three breathing modes in the caffeine case for

all 17 subjects. BL: baseline, CAF: caffeine influence. **P < 0.05.

Figure 3.18: The breathing-unrelated power for the three breathing modes in the β-blocker case

for all 17 subjects. BL: baseline, BB: β-blocker influence. **P < 0.05.
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Figure 3.19: The breathing-unrelated power for the three breathing modes in the caffeine case

for all 17 subjects. BL: baseline, CAF: caffeine influence. *P < 0.1; **P < 0.05.

Figure 3.20: The breathing-unrelated power for the three breathing modes in the β-blocker case

for all 17 subjects. BL: baseline, BB: β-blocker influence. *P < 0.1; **P < 0.05.
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Figure 3.21: The breathing-unrelated power for the three breathing modes in the caffeine case

for all 17 subjects. BL: baseline, CAF: caffeine influence. *P < 0.1; **P < 0.05.

Figure 3.22: The PL for the three breathing modes in the β-blocker case for all 17 subjects. BL:

baseline, BB: β-blocker influence. *P < 0.1; **P < 0.05.
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Figure 3.23: The PL for the three breathing modes in the caffeine case for all 17 subjects. BL:

baseline, CAF: caffeine influence. *P < 0.1.

except for producing a trend towards decrease at 9 brpm. The LF and nLF powers were smaller

during breathing at 12 brpm compared to 9 brpm or spontaneous breathing during the two days

of the experiment. This observation is not surprising, as only at 12 brpm the breathing was never

in the LF band.

Figure 3.24: The LF power for the three breathing modes in the β-blocker case for all 17 subjects.

BL: baseline, BB: β-blocker influence. **P < 0.05.

The HF power was significantly larger after β-blocker ingestion in all three modes as seen

in Figure 3.26. Caffeine ingestion increased the HF power as well, but only during the 9 brpm

breathing mode as seen in Figure 3.27. The nHF power did not exhibit a significant difference

between the baseline and the β-blocker cases in spontaneous breathing as seen in Figure B.11 in

Appendix B. The differences in the HF power and the nHF power between the three breathing

modes were not reproduced over the two days and were not consistent in the HF and the nHF

cases.

Figures 3.28 and 3.29 report the total power for the three breathing modes in the β-blocker

and caffeine cases. β-blocker ingestion increased the total power regardless of the breathing
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Figure 3.25: The LF power for the three breathing modes in the caffeine case for all 17 subjects.

BL: baseline, CAF: caffeine influence. **P < 0.05.

Figure 3.26: The HF power for the three breathing modes in the β-blocker case for all 17 subjects.

BL: baseline, BB: β-blocker influence. *P < 0.1; **P < 0.05.
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Figure 3.27: The HF power for the three breathing modes in the caffeine case for all 17 subjects.

BL: baseline, CAF: caffeine influence. *P < 0.1; **P < 0.05.

mode while caffeine increased its value only for the 9 brpm breathing mode. There were no

significant differences in the total power between the breathing modes, consistent over the two

days of the experiment.

Figure 3.28: The total power for the three breathing modes in the β-blocker case for all 17

subjects. BL: baseline, BB: β-blocker influence. **P < 0.05.

Figure 3.30 reports the LF/HF index for the three breathing modes during baseline and under

β-blocker influence. The index significantly decreased under β-blocker influence at 9 brpm. In

that breathing mode, it also significantly increased after caffeine ingestion as seen in Figure 3.31.

No other significant differences were observed. Regarding the differences in the index at baseline

between the breathing modes, it was observed that in both days, the LF/HF was smallest during

the 12 brpm breathing mode than the two other modes, similarly to the LF and nLF powers.

The results are summarized in Table 3.1.
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Figure 3.29: The total power for the three breathing modes in the caffeine case for all 17 subjects.

BL: baseline, CAF: caffeine influence. *P < 0.1.

Figure 3.30: The LF/HF index for the three breathing modes in the β-blocker case for all 17

subjects. BL: baseline, BB: β-blocker influence. *P < 0.1; **P < 0.05.

Table 3.1: Summary of parameters in response to controlled breathing and autonomic altering.

BB CAF Breathing mode

PRSA larger than BL for all larger than BL only for 9 brpm larger for 9 brpm than 12 brpm
nPRSA larger than BL only for 9 brpm and 12 brpm - larger for 9 than sb and 12 brpm
Pnon-resp larger than BL for all larger than BL only at 9 brpm -
nPnon-resp smaller than BL for 9 brpm and 12 brpm - larger for sb and 12 brpm than 9 brpm

PL larger than BL for 9 brpm and 12 brpm - -
PLslope - larger than BL only for sb -
PLV larger than BL only for 12 brpm larger than BL only for sb -
PLS - smaller than BL only for sb -

LF larger than BL for all - larger for sb and 9 brpm than 12 brpm
nLF larger than BL only for 9 brpm smaller than BL only for 9 brpm larger for and 9 brpm than 12 brpm
HF larger than BL for all larger than BL only for 9 brpm -
nHF larger than BL only for 9 brpm and 12 brpm larger than BL only for 9 brpm larger for 12 brpm than sb and 9 brpm
Total pow. larger than BL for all larger than BL only for 9 brpm -
LF/HF smaller than BL only for 9 brpm smaller than BL only for 9 brpm larger for sb and 9 brpm than 12 brpm
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Figure 3.31: The LF/HF index for the three breathing modes in the caffeine case for all 17

subjects. BL: baseline, CAF: caffeine influence. **P < 0.05.
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3.4 Discussion and conclusion

3.4.1 Body posture

It is unanimously reported in literature that the orthostatic position elicits larger LF and

smaller HF power than the supine position [88, 128, 147–149]. The results reported in this

chapter are in accordance with literature.

The breathing-corrected cLF power was generally lower than the LF power, as it was com-

puted on the same or a narrower frequency bandwidth that did not contain any breathing-related

power. By the same reasoning the cHF power was larger than the HF power, especially with

respect to the normalized parameters (Figures 3.9 and 3.10). It is therefore important to consider

the true breathing rate, as it may contribute to producing erroneous values, even though trends

exist between different autonomic conditions. However, one problem with the modification of

the boundary was the arbitrary nature of the new boundary. The LF band was highly dependent

on the distance of the boundary from the actual breathing rate as demonstrated by the sensitivity

of the results to the boundary parameter δ f . For a large δ f , when the actual breathing rate was

low, the LF or breathing-unrelated band was non-existent.

The RSA power showed the same patterns as the conventional and corrected HF powers,

its value decreasing in the orthostatic position (Figures 3.6 and 3.7). On the other hand, the

breathing-unrelated power was larger in the orthostatic position. These differences were em-

phasized in the normalized powers, highlighting again the importance of normalization. As

the breathing-unrelated power is mostly low-frequency power, the RSA and breathing-unrelated

power can be used as physiologically interpretable alternatives to the conventional LF and HF

powers.

The relationship between breathing and RSA, as measured using the variability and the syn-

chronization of their phase lag, was significantly affected by the change in posture from supine

to orthostatic, in spite of the phase lag itself not being affected (Figures 3.8 and B.2). The in-

crease in variability and decrease in synchronization of the phase lag indicate that the relationship

between the RSA and the breathing was less stable in the orthostatic position. Given the sym-

pathetic dominance in the orthostatic position, the activation of this branch of the ANS can be

associated with a decrease in the stability in the RSA-breathing relationship compared to the

parasympathetic dominance of the supine position.

3.4.2 Controlled breathing

Breathing modes did not seem to affect the total power and the HF power, as no consistent

differences were observed over the two days (Figures 3.26 - 3.29). The LF power and LF/HF

index were lowest at 12 brpm, which is expected since at this breathing rate, the breathing ac-

tivity did not appear in the LF band (Figures 3.24, 3.25, 3.30 and 3.31). Normalized nLF and

nHF powers showed the same differences more clearly (Figures B.9 to B.12). In summary, the

differences observed in these conventional indexes were expected.

The RSA power on the other hand was not significantly different in spontaneous and con-

trolled breathing except in its normalized form (Figures 3.14 - 3.17). It was however larger in 9

brpm than in 12 brpm controlled breathing. The absence of difference between the spontaneous

and controlled breathing may be due to the fact that, in spontaneous breathing, the breathing

rates of the subjects had a wide range as seen in Figure 3.13, and therefore no distinctive trend

was apparent. On the other hand, since the controlled breathing rate was relatively close to the

natural breathing rates of the subjects, our results are in concordance with reports of no change

in the RSA when the controlled breathing rate is close to the natural breathing rate [56, 150].

The phase-related indexes were not affected by the breathing modes.
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3.4.3 Pharmacological alteration

Blockade of the sympathetic nervous system influence on the cardiac rhythm regulation with

β-blocker ingestion increased the LF, HF and total power for all breathing modes (Figures 3.24,

3.26 and 3.28). When normalized, some trends in the LF and HF powers during the spontaneous

breathing mode were no longer visible (Figures B.9 and B.11). Activation of the sympathetic

nervous system with caffeine ingestion resulted in an increase in the total power but only during

the 9 brpm breathing mode (Figure 3.29). Several trends were present in the LF, HF powers

and their normalized versions, but all were related to the 9 brpm breathing mode (Figures 3.25,

3.27, B.10, B.12). The LF/HF index was smaller under the influences of both the β-blocker and

caffeine, only for the 9 brpm mode (Figures 3.30 and 3.31). In this mode the assumption that

the breathing occurs in the HF mode does not hold, in which case the observed trends can be

incorrectly attributed to the influence of breathing.

The RSA power was larger after β-blocker ingestion for all breathing modes (Figure 3.14).

This observation held for its normalized version, except during spontaneous breathing (Figure

3.16). The breathing-unrelated power was also larger after β-blocker ingestion, however its nor-

malized version revealed the opposite trend, except during spontaneous breathing (Figures 3.18

and 3.20). The absence of difference during spontaneous breathing in the normalized RSA and

breathing-unrelated powers may be attributed to the large differences in the breathing rates of

the subjects, such that no overall trend exists over the population. Both the RSA and breathing-

unrelated powers were increased after caffeine ingestion, while their normalized versions were

unchanged (Figures 3.15, 3.17, 3.19 and 3.21). Given the absence of any real effect of caffeine

on the indexes believed to report the sympathetic activation (the cLF power and the cLF/cHF

index) [1, 2, 146], the absence of significant differences in the normalized breathing-unrelated

power after caffeine ingestion is not surprising. This index reported correctly on the sympathetic

dominance of the orthostatic posture in Section 3.4.1. The differences observed in the absolute

value of the index at 9 brpm (Figure 3.19) can be attributed to the total power (Figure 3.29). The

absence of change in the RSA power may indicate that caffeine has no effect on the breathing

power and parasympathetic activation, as expected.

The phase lag between RSA and breathing was increased after β-blocker ingestion only dur-

ing controlled breathing (Figure 3.22). During spontaneous breathing, the changes in breathing

rate may themselves introduce phase shifts and the phase relationship of the RSA and the breath-

ing may be less stable. The fact that no change was detected after β-blocker ingestion in this

breathing mode may be attributed to this instability. Indeed, even at baseline, the relationship

was somewhat instable. The slope of the phase lag and its synchronization showed no differ-

ences between baseline and β-blocker influence (Figures B.3 and B.7). Caffeine ingestion had

no effect on the phase lag (Figure 3.23) but induced changes in the slope, variability and syn-

chronization of the phase lag, however, only during spontaneous breathing (Figures B.4, B.6

and B.8). All changes were in the direction of decreased stability after caffeine ingestion. The

absence of differences during controlled breathing may be due to the fact that artificial imposi-

tion of a pattern on the breathing, in conjunction with the effects of caffeine, hinders the natural

relationship between the latter and the RSA, and yields an abnormally stable relationship.

The increase in the total power and in the RSA power observed in this study with β-blocker

ingestion (Figures 3.28 and 3.14) confirms the previous reports of increases of the breathing-

related power [143, 157, 158]. Our results show that the breathing rate must be considered, as

the occurrence of the breathing in the LF band leads to erroneous measurements. In several

cases, only measurements at 9 brpm showed significant differences in the parameters between

the breathing modes and the autonomic conditions. At this frequency, breathing occurs partly

in the LF band. Furthermore, some subjects reported that the auditory signal at this breathing

rate was rather difficult to follow, which may have induced stress on them, and thus bias in the

recordings during this mode. However, even after taking into account the breathing rate, none of
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the investigated parameters reflected changes thought to be caused by the caffeine ingestion with

its subsequent increase in sympathetic tone.

When normalized, after β-blocker ingestion, some of the effects observed on the absolute LF

and HF powers were no longer visible, which leads to believe that the normalization aids in the

observation of the theoretical effects, i.e., no change in LF or HF powers. However, with respect

to the effects of caffeine ingestion, the normalization changed nothing in the HF results but

caused an increase in LF power at 9 brpm. Given that at this rate, the breathing occurs within the

LF band, it is deduced that the observed change is related to the respiratory and parasympathetic

tone.

3.5 Conclusion
Although the conventional measures of the autonomic balance, namely the LF and HF powers

and the LF/HF index sometimes may seem to report autonomic changes, they are difficult to

interpret on a physiological basis.

The real breathing rate must be measured and taken into account as the breathing is not

confined to the conventional 0.15-0.4 Hz bandwidth in many people.

Correcting the conventional LF-HF boundary of 0.15 Hz for the breathing rate is a solution,

however lacking in robustness.

The RSA and breathing-unrelated powers report changes in the autonomic condition which

are physiologically interpretable. The RSA power is related to the parasympathetic dominance

and the breathing-unrelated power increases when sympathetic dominance increases. Measuring

them always requires the real breathing rate.

The breathing-unrelated power reflected the expected autonomic changes because of posture

change and in particular the increase in sympathetic tone in the orthostatic position. However, it

did not reflect the expected changes in the sympathetic tone due to caffeine ingestion. As none of

the conventional indexes were affected by caffeine ingestion either, our results confirm those in

the literature reporting an absence of increase in sympathetic tone due to caffeine ingestion [160,

168].

As stated in previous works, normalization is necessary to avoid the inclusion of changes in

the baseline values of the parameters. For example, in the orthostatic position, the heart rate tends

to be higher. Therefore changes in the heart rate are higher than the same changes occurring in

the supine position, where the heart rate is lower.
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In this chapter, the ANS response to altitude exposure is investigated. The HRV indexes

introduced in Chapter 3 are employed to study ANS responses to an acute exposure to altitude as

well as to acclimatization to altitude.

4.1 The RSA in studying the effects of altitude exposure

HRV indexes, such as the LF and HF powers, the LF/HF index and the RSA were intro-

duced as non-invasive measures of autonomic activity in Chapter 3. One of the applications of

these indexes is the analysis of the changes occurring in the human ANS upon exposure to alti-

tude, often with the end goal of studying the acclimatization to altitude and predicting mountain

sickness [136, 137].

Hypoxia is the condition of decreased concentration of the air oxygen (11% at 5000 m vs.

21% at sea level). Hypoxia exposure to achieve altitude acclimatization is somewhat popular

in athletic training, as it has been shown that living at a high altitude, e.g. above 5000 m and

training in low altitudes improves athletes performance at sea-level [193]. There is evidence

that the increased athletic performance following this so-called “live high, train low” regime

of training would be due to an increased red cell mass, increased muscle buffer capacity and

increased mechanical efficacy. Given that access to high altitude is geographically inconvenient

in many countries, simulated altitude, in a normobaric chamber, has also been studied within

this training technique. Since the “live high, train low” regime may possibly have undesired

autonomic effects, it has become important to study the effects of altitude exposure on cardiac

autonomic control.

Given these motivations, there have been works on the characterization of HRV parameters

at high altitudes by studying changes due to exposure to real altitude and exposure to artificial

hypoxia, for example in a hypoxic chamber.

4.1.1 Effect of real altitude on the RSA
Early studies on HRV parameters at high altitudes above or near 5000 m reported decreases

in the HF power [194, 195], sometimes with increases in the LF power [196, 197]. Other studies

reported decreases in both LF and HF powers but with increases in the LF/HF index [131, 198–

201]. Some works pointed to decreases in the total power and the HF power with no change in

the LF/HF index [202]. There has even been a report on the increase in HF power upon exposure

to altitude [203]. Some of these works on HRV and hypoxia were summarized in [129], and

43
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the authors concluded that their findings imply that “acute exposure to hypoxia causes decreased

parasympathetic and increased sympathetic tone and during acclimatization there is a progressive

shift toward still higher sympathetic tone.”

More recent studies also show a variety of patterns: one study reported no changes in HRV

parameters above 5000 m compared to their sea-level values [204]. Another study reported a

decrease in the HF and total power, and an increase in the LF power and LF/HF indexes [205].

To summarize, consistent with the findings reported in [129], it seems that at altitude, the

sympathetic activity increases while the parasympathetic tone decreases.

4.1.2 Effect of artificial hypoxia on the RSA
Due to differences in heart rate and physiology in normobaric hypoxia (hypoxia in a hypo-

baric chamber at sea level with a pressure of 760 mmHg) and hypobaric hypoxia (hypoxia at

natural altitude with a pressure < 760 mmHg) [206, 207], studies reporting information related

to normobaric hypoxia (simulated altitude) are reported here, separately from studies at real alti-

tude.

Acute hypoxia has been shown to affect the sympathetic nerve activity in animals such as rats

and dogs [129]. In dogs, the RSA has been observed to be attenuated with hypoxia [17].

Regarding the traditional HRV parameters, one study found that the exposure during 8 hours

to normobaric hypoxia reduced total HRV power, LF and HF powers, while the LF/HF index

increased [130]. Another also reported a general decrease in HRV power during hypoxia when

subjects were exposed to intermittent hypoxia episodes [135]. There is also a report of no change

in the HF power [132].

One study reported an increase in the LF power, LF/HF index and total power upon exposure

to a normobaric hypoxic air mixture and after the withdrawal of the hypoxic factor, the HF

power increased and the LF/HF decreased [134]. The authors concluded that sympathetic tone

prevails in hypoxic conditions, while immediately after their withdrawal, the parasympathetic

tone increases.

The LF/HF index has been reported to increase upon exposure of the subjects to a hypobaric

chamber set for 4000 m, which were confirmed by measurements when the subjects were actually

at an altitude of 2700 m [208].

Similarly to the studies at real altitude, under artificial hypoxia it seems that there is an

increase in the sympathetic activity and a decrease in parasymathetic tone.

4.1.3 Motivation and contribution
As described in Section 3.1.4, the conventional LF and HF power indexes and the LF/HF

index do not accurately take into account the breathing influence on the autonomic sate. Previous

studies on the characterization of the autonomic effects of altitude, although mostly coherent,

have sometimes reported contradictory changes in the LF, HF and total HRV powers, ranging

from increases to decreases, and including no change upon exposure to the subject to real or

simulated hypoxia. Most studies report an increase in sympathetic activity and a decrease in

parasympathetic tone at real or simulated altitude.

On the other hand, the RSA, extracted using the reference breathing waveform as described

in Section 3.2.2, as well as its phase relationship with breathing were introduced as promising

descriptors for the autonomic state in Chapter 3. They have not been widely investigated in

relation to the autonomic changes induced by altitude exposure, while the cardio-respiratory

phase coupling has been shown to be affected after exposure to hypobaric hypoxia conditions in

a hypoxic chamber [133]. In the present study, the changes in the RSA and its relationship to

breathing were analyzed upon acute exposure to altitude (> 5000 m) and after acclimatization to

that altitude for 16 days.
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4.2 Materials and methods

4.2.1 Data
The data used in this study were the arterial blood pressure (ABP) and breathing waveform

(%O2 in airflow) acquired in the framework of the “AltitudeOmics” project [209]. This project

was designed to study several aspects of human acclimatization to altitude and its data were very

extensive. The subset of the “AltitudeOmics” data used in the present study consists of: resting-

state recordings of 16 subjects (nine male, age 20 ± 1 years, height 175 ± 7 cm, weight 70 ± 8 kg)

at sea-level (baseline recordings), upon acute exposure to an altitude of 5260 m at Mt Chacaltaya,

Bolivia (ALT1), and after 16 days of acclimatization at that same altitude (ALT16). Both signals

were acquired with a sampling rate of 200 Hz. An example of the raw signals for a baseline

recording is shown in Figure 4.1. A heart rate estimate was also provided. Most subjects had a

6-minute recording for all three conditions. However, in ALT1, one subject only had 2 minutes

and in the ALT16, two subjects had about 3 minutes only.
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Figure 4.1: Sample signals from the “AltitudeOmics” project: (a) The ABP; (b) the % O2 in

airflow.

4.2.2 Data processing
The maxima of the ABP signal were identified with a local extrema detection method, using

the available heart rate estimate as reference. The extracted peaks were manually inspected to

ensure their correctness. The inter-beat intervals series was then created and re-sampled uni-

formly at 4 Hz using cubic spline interpolation 1, by setting the time index of each interval to

its midpoint. The %O2 in airflow was re-sampled similarly to the ABP inter-beat intervals time

series. It must be noted that the ABP inter-beat intervals are not exactly equivalent to the heart

R-R intervals, which are normally used to derived the RSA, as in Chapter 3. Given that the aortic

valve opening, the beginning of the increase in the ABP signal, coincides with the end of the

ECG S-wave (see Figure 2.4 for ECG waves), the ABP peak location is somewhere in the T-

wave, meaning the ABP maximum has a delay of about 200 ms with respect to the ECG R-peak

(see Figure C.2 in Appendix C). At a sampling rate of 4 Hz, this delay is less than one sampling

period. Therefore, in the analysis below, the ABP inter-beat intervals were considered to be a

surrogate for the heart inter-beat intervals.

1. described in Appendix A
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The RSA was extracted from the inter-beat intervals according to (3.2) described in Sec-

tion 3.2.2. The RSA power and its normalized version were computed as described in Sec-

tion 3.2.2. The breathing rate (BR) was computed from the airflow signal using the notch filter

bank method described in Section 5.2.2. The portion of the inter-beat intervals power unrelated

to breathing, as well as its normalized version, were also computed as described in Section 3.2.2.

The phase lag (PL) between the RSA and breathing waveforms, the phase lag variability

(PLV) and the phase lag synchronization (PLS) index, were computed as described in Sec-

tion 3.2.2, in particular by using (3.4) and (3.7).

The conventional HRV LF and HF powers were measured, as well as their normalized ver-

sions nLF and nHF, as described in Section 3.2.2.

4.3 Results

An example of the RSA and breathing waveforms (normalized for visualization purposes)

for the three cases of baseline, ALT1 and ALT16 are depicted in Figure 4.2 for one subject. It

can be seen that, in this example, at baseline, the delay of the RSA with respect to the breathing

waveform is smaller than after exposure to altitude and acclimatization.

Figure 4.2: The RSA and breathing signals at (a) baseline, (b) after acute exposure to altitude

(ALT1) and (c) after acclimatization (ALT16) for one subject.

Figure 4.3 reports the RSA power in the three conditions. This power was significantly

reduced after exposure to altitude, and stayed reduced during acclimatization. There was no sig-

nificant difference between the power at acute exposure and after acclimatization. The breathing-

unrelated power followed the same pattern as the RSA power as seen in Figure 4.4. Although

the normalized RSA power followed mostly the same pattern as the RSA power (Figure 4.6), the

normalized breathing-unrelated power differences were inverted as observed in Figure 4.7. It was

smallest at baseline, and increased upon acute exposure. It slightly decreased after acclimatiza-

tion. As reported in Figure 4.5, the total power was also largest at baseline, which may account

partly for the differences observed in the absolute values of the RSA and breathing-unrelated

powers.

Figure 4.8 shows the PL of the RSA with respect to the breathing waveform. The PL was

significantly larger upon exposure and after acclimatization to altitude than at baseline. The PL

slope did not change significantly as seen in Figure C.1 in Appendix C.
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Figure 4.3: The RSA power at baseline and

after exposure to altitude for all 16 subjects.

**p<0.05.

Figure 4.4: The breathing-unrelated power at

baseline and after exposure to altitude for all 16

subjects. **p < 0.05.

Figure 4.5: The total inter-beat intervals power at baseline and after exposure to altitude for all

16 subjects. **p < 0.05.
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Figure 4.6: The normalized RSA power at base-

line and after exposure to altitude for all 16 sub-

jects. **p < 0.05.

Figure 4.7: The normalized breathing-unrelated

power at baseline and after exposure to altitude

for all 16 subjects. **p < 0.05.

Figure 4.8: The PL at baseline and after exposure to altitude for all 16 subjects. **p < 0.05.
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Figure 4.9 reports the PLV at baseline, after acute exposure to altitude and after acclimatiza-

tion. The PLV was significantly larger upon exposure and after acclimatization than at baseline.

Figure 4.10 shows the PLS for the three cases. The PLS was significantly smaller upon

exposure to altitude, but it did not significantly change further after acclimatization.

Figure 4.9: The PLV at baseline and after expo-

sure to altitude for all 16 subjects. **p < 0.05.

Figure 4.10: The PLS at baseline and after expo-

sure to altitude for all 16 subjects. **p < 0.05.

Figures 4.11 and 4.12 report the BR and HR values of the subjects. In each of the baseline,

ALT1 and ALT16 sessions, two subjects (12.5% of the population) had BR values below the LF-

HF boundary of 0.15 Hz. BR and HR values were significantly higher in the altitude recordings,

but they were not significantly different after acute exposure and after acclimatization.

Figure 4.11: The breathing rate at baseline and

after exposure to altitude for all 16 subjects.

**p < 0.05.this caption is too short for my mini-

page

Figure 4.12: The heart rate at baseline and after

exposure to altitude for all 16 subjects. **p <
0.05.

Figures 4.14 and 4.13 show the conventional LF and HF powers at baseline, upon exposure

to altitude and after acclimatization. Both the LF and HF powers were significantly larger at

baseline, however this may be due to the total power as seen in Figure 4.5, as the differences



50 Characterization of the RSA upon Exposure to Altitude

were visible in the normalized nHF, although less prominent, and no longer visible in the nLF

power as seen in Figures 4.15 and 4.16. There were no significant differences in the LF/HF index

at baseline or in either of the altitude conditions as reported in Figure 4.17.

Figure 4.13: The LF power at baseline and after

exposure to altitude for all 16 subjects. **p <
0.05.

Figure 4.14: The HF power at baseline and after

exposure to altitude for all 16 subjects. **p <
0.05.

Figure 4.15: The nLF power at baseline and af-

ter exposure to altitude for all 16 subjects.this

caption is too short for my minipage

Figure 4.16: The nLF power at baseline and

after exposure to altitude for all 16 subjects.

*p < 0.1; **p < 0.05.

4.4 Discussion

When analyzing the RSA and breathing-unrelated power of the inter-beat intervals, it was

apparent that normalization by the total power was necessary, as the inter-beat intervals total

power was affected by the altitude conditions as seen in Figure 4.5 as a result of the change

in heart rate (Figure 4.12). The normalized RSA power decreased in altitude (acute exposure
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Figure 4.17: The LF/HF index at baseline and after exposure to altitude for all 16 subjects.

and acclimatization) compared to baseline, and between acute exposure and acclimatization, it

slightly increased as seen in Figure 4.6. The normalized breathing-unrelated power increased in

altitude compared to baseline, however it slightly decreased after acclimatization compared to

its value after acute exposure as reported in Figure 4.7. It seems that acclimatization brings the

values of these parameters slightly closer to their baseline values. The increase of the breathing-

related power and decrease of the breathing-unrelated power in altitude is consistent with the

conclusion made to the decrease in parasympathetic tone and increase in sympathetic tone with

altitude [129].

The total power and both the LF and HF powers decreased in the altitude conditions (Fig-

ures 4.13 and 4.14). The normalized LF power did not reveal any trends at all, while the nor-

malized HF power showed the same trends as the HF power, however less marked. These obser-

vations are consistent with those reported in [202] and partly consistent with those in [131, 198,

200, 201].

It has been reported in literature, that the normalization of the power indexes with respect

to the total power is necessary, as the latter is also affected by the autonomic state [143]. The

observations made in the present study on the RSA and breathing-unrelated power confirm the

need for normalization.

In light of the importance of the normalization, the normalized LF and HF indexes do not

adequately reflect changes in the autonomic state, which are better reflected by the breathing-

related and unrelated powers of the inter-beat intervals.

The phase lag between the RSA and the breathing waveform, its variability and its synchro-

nization were all significantly affected by exposure to altitude. The increase in phase lag, and

its variability and the decrease in its synchronization attest to the fact that upon exposure to al-

titude, the relationship between the RSA and the breathing waveform becomes less stable and

somewhat more erratic. It can be deduced that the sympathetic activation decreases the stability

of the RSA-breathing relationship. This is in accordance with finding on ANS responses to body

posture changes reported in Section 3.4.1 and in particular, the decrease of the stability of the

RSA-breathing relationship in the orthostatic position (sympathetic activation). After acclimati-

zation, these phase-related parameters did not change significantly from their values after acute

exposure to altitude.

To summarize, our findings of decreased RSA power (or increased breathing-unrelated power),

along with the increase in the instability in the relationship between the RSA and breathing, re-

port on an increase sympathetic activation and decreased parasympathetic tone, similarly to most
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previous studies on the effects of altitude on cardiac autonomic indexes.

4.5 Conclusion
The conventional LF and HF indexes have been widely used in literature to assess the au-

tonomic state upon exposure to altitude. However, the absolute values of these indexes may

present differences attributable to the underlying inter-beat interval power related to the heart

rhythm. Their normalized versions, carrying relative information, reported effects partially in

accordance with the literature. The breathing-related and unrelated power of the inter-beat inter-

vals, on the other hand, reported physiologically interpretable effects upon exposure to altitude.

Their reported effects were in accordance with theoretical considerations accepted in the litera-

ture. The phase relationship between breathing and the RSA revealed changes in the relationship

between the two, which is also related to the autonomic state. These changes reflect aspects of

the cardio-respiratory relationship which are not revealed by the LF and HF powers or even their

breathing-related and unrelated counterparts and may offer new avenues into the exploration of

the autonomic system role in altitude exposure and acclimatization.
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In this chapter, two algorithms are studied for the estimation of the breathing rate (BR) from

the ECG. One is an existing algorithm and the other a novel technique designed to overcome

shortcomings of the existing method. Section 5.1.1 provides background on the estimation of

the BR from the ECG and the RSA in particular. Section 5.1.2 discusses frequency estimation in

general, and Section 5.1.3 gives the motivation behind the work presented in this chapter as well

as a summary of contributions. The algorithms are described in detail in Sections 5.2.1 and 5.2.2.

Section 5.2.3 describes the creation of a reference for the evaluation of the algorithms. Section

5.3 outlines evaluation scenarios. Results are presented in Section 5.4 and discussed in Section

5.5. Conclusions are drawn in Section 5.6. Elements of this chapter have been published in two

journal articles and presented in several conferences [210–214].

5.1 Introduction

5.1.1 Breathing rate estimation from the RSA
The BR is one of the human vital signs that need to be monitored in clinical and non-clinical

applications for diagnosis and control purposes [173, 215, 216]. It is currently difficult to ac-

curately and continuously monitor the BR, as the apparatus and devices are intrusive, expensive

and uncomfortable for the patient [217]. It is therefore of great interest to provide easy and inex-

pensive means for accurate, continuous and convenient monitoring of the BR. The breathing and

heart activities are linked through physiological processes. As discussed in Chapter 2, the RSA

is a waveform containing the breathing modulation of the heart rate. Furthermore, the filling

and emptying of the lungs during breathing causes a rotation of the electrical axis of the heart

and a change in the impedance of the thorax, which yield changes in the ECG beat morphol-

ogy [28]. As a result, the R-peak amplitudes are also modulated by the breathing activity. A

waveform can be extracted from the ECG representing this modulation, which is referred to as

the R-peak amplitudes (RPA). In the last twenty years, many researchers have investigated the

possibility of deriving the BR by exploiting the influence of breathing on the heart rate or ECG

beat morphology by using either the RSA or RPA waveforms.

The BR is traditionally computed from the spectra of the the RSA or the RPA [28, 218,

219]. For instance, windowed spectral analysis has been applied to extract the BR from the RSA

waveform [220]. Windowed temporal analysis using peak count was also applied to estimate

the BR from the RSA waveform [215, 220–222] as well as from the RPA waveform [221].

Correlation analysis [220, 223] and Kalman filtering have also been applied to this task [224].

55
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In a pioneering work, Orphanidou et al. fused spectral information form ECG-derived RSA

and RPA waveforms in order to derive the BR [138]. The most dominant peak was selected

from the autoregressive (AR)-estimated spectra of the RSA and RPA waveforms according to

several criteria as representing the BR. Vehkaoja et al. also used the RSA and RPA signals

simultaneously and combined their temporal maxima and minima counts after ad-hoc filtering to

estimate the BR [225].

Generally speaking, the problem of instantaneous BR estimation from the RSA or the RPA

is a problem of tracking the instantaneous frequency of these waveforms.

5.1.2 Estimating the instantaneous frequency of an oscillatory signal
The instantaneous frequency of an oscillatory signal is an important attribute defined as the

derivative of its instantaneous phase [226].

By definition, the instantaneous frequency is difficult to measure and determine exactly, es-

pecially when a signal contains several oscillations and other components. In theory, the instan-

taneous frequency can be computed by deriving the instantaneous phase of the signal, as given by

the Hilbert transform [227]. However, for the Hilbert transform to yield a meaningful result, the

oscillation must be narrow-band [184]. The Hilbert-Huang transform tackles this problem by ex-

tracting the main oscillation of the signal with the empirical mode decomposition [185, 186, 228].

Other methods, such as Kalman filters [229] and energy tracking operators [227] can also be used

to estimate the instantaneous frequency of a signal. In real cases, particularly in biomedical ap-

plications, the above-mentioned methods do not seem to have found a widespread use because

of their complexity and lack of robustness.

In practice, the frequency of a signal is commonly computed via its spectrum with the short-

term Fourier transform. However, this method does not provide a truly instantaneous estimate

and two major drawbacks are the well-known time-frequency resolution trade-off and the delay,

which is half the length of the computation window.

Adaptive filters represent another family of approaches to track the instantaneous frequency

of a signal. Adaptive notch filters have been proposed, but suffer from a convergence-bias trade-

off [230–232]. Adaptive band-pass filters, such as the weighted multi-signal oscillator-based

adaptive band-pass filter (W-OSC) have been used in biomedical applications to track an oscilla-

tion in one signal or in several signals carrying the same oscillatory component [233]. However,

a major shortcoming of adaptive methods is the inherent and signal-dependent adaptation delay,

which needs further attention. Indeed, when an IIR band-pass filter is employed, the output is

delayed due to the long response of the recursive filter. An interesting property of this type of

algorithm on the other hand is its versatility with respect to the number of signals from which the

target frequency is estimated. This aspect is of particular interest in biomedical applications as

one oscillatory phenomenon could modulate several recordings. For example, the breathing mod-

ulates the heart rhythm and the heart-beat magnitude [28]. Using this modulation is of growing

interest in health monitoring, as recording the breathing waveform directly requires cumbersome

apparatus as discussed in the previous section.

5.1.3 Motivation and contribution
None of the existing BR estimation methods using ECG-derived breathing waveforms offer

a real-time and robust instantaneous (sample-by-sample) estimate. With the advent of portable

health monitoring devices and the general growing interest in real-time systems, it is increasingly

important to be able to measure basic physiological rhythms, such as the BR, in a real-time

manner.

Conscious of the growing interest in real-time processing and motivated by the recent con-

tribution of Orphanidou et al. to fuse breathing-related information from the RSA and RPA
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waveforms extracted from the ECG [138], the estimation of the BR from the RSA and the RPA

is addressed with two different real-time-capable methods in the present chapter.

In a first step, the instantaneous real-time BR was estimated using an adaptive band-pass

filter method, the W-OSC algorithm [233], to track the common oscillatory component present in

the RSA and RPA waveforms. This multi-signal frequency tracking method operates recursively

on several signals, simultaneously, to track a common oscillatory component. This method has

been shown to successfully track a common oscillatory component in biomedical signals such as

electroencephalogram signals [234]. Furthermore, it is instantaneous and provides an automatic

approach to BR estimation from the RSA and RPA, in contrast to the ad hoc processing proposed

in [138]. Therefore, it can be implemented in a real-time setting to estimate the BR continuously

without the need for any subject-dependent adjustment. The performance of this tracking method

was assessed using the single-lead ECG recordings of the PhysioNet “Fantasia” data set.

In a second step, a novel algorithm is introduced, which is a real-time and low-delay fre-

quency tracking algorithm to estimate the instantaneous frequency of one signal, or the com-

mon instantaneous frequency of several signals, particularly designed for biomedical applica-

tions such as estimating the BR. It uses a bank of length-3 FIR notch filters over a range of

discrete frequencies to filter the algorithm inputs. The output powers are then used in a recursive

scheme to compute weights for the discrete notch frequencies. The weighted sum of the notch

frequencies yields an estimate of the dominant frequency of the inputs at each sample. To the

best of our knowledge, this scheme is original. The proposed algorithm was tested on synthetic

data with one or two inputs. It was then applied to the estimation of the BR from the RSA and

the RPA and compared to the W-OSC algorithm on the “Fantasia” data set. The novel algorithm

was further tested on signals acquired during physical activity.

5.2 Materials and Methods

5.2.1 The W-OSC algorithm
The W-OSC algorithm is an adaptive band-pass filter with an oscillator-based mean-square

error update algorithm [233]. This algorithm can track a common frequency, which is present in

M signals {um}, m = 1, . . . , M of the form:

um[n] = sm[n] + bm[n], (5.1)

where the sm[.] are oscillations at the time-varying frequency ω[.] and the bm[.] are additive white

noises. All M signals are filtered with the same filter and the tracking quality of the outcome is

used to weigh the contribution of each signal to the filter update in order to track a common

oscillation ω[.] in the signals. The transfer function of the filter is:

Hband−pass(z; n) =
1 − β

2

1 − z−2

1 − α[n](1 + β)z−1 + βz−2
, (5.2)

where 0 < β < 1 defines the bandwidth of the filter and α[.] = cos(ω[.]) is the central frequency

coefficient of the filter. The output of the filter for signal m is:

ym[n] = (1 + β)α[n]ym[n − 1] − βym[n − 2] +
1 − β

2
(um[n] − um[n − 2]). (5.3)

Since the breathing modulation is oscillatory, it is desired that the filter output follows the

oscillator model, i.e., that the filter output, ym[.], is locally as close as possible to a sinusoid:

d[n] = 2α0d[n − 1] − d[n − 2]. (5.4)
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In order to update the filter such that the output follows (5.4), the following cost function is

minimized:

Jm[n] = E{(ym[n] − 2α[n + 1]ym[n − 1] + ym[n − 2])2} (5.5)

with E{.} denoting the mathematical expectation. The minimization of Jm yields the optimal

α[n + 1] as:

α[n + 1] =
E{ym[n − 1](ym[n] + ym[n − 2])}

2E{y2
m[n − 1]} . (5.6)

In practice, the expectations in the expression of α[n+1] cannot be computed and are replaced

by time recursive estimates such that:

α[n + 1] =
Qm[n]

2Pm[n]
(5.7)

with

Qm[n] = δQm[n − 1]

+ (1 − δ)ym[n − 1](ym[n] + ym[n − 2])

Pm[n] = δPm[n − 1] + (1 − δ)y2
m[n − 1] (5.8)

where 0 < δ < 1 is the update coefficient. If the frequency of a unique signal is estimated,

(5.7) describes the update of the filter. If the common frequency of M signals is estimated, it

is natural to weigh the contribution of each signal to update the filter central frequency. The M
signals do not necessarily have the same signal to noise ratio (SNR), therefore a set of weights

{Wm | ∑M
m=1 Wm = 1} is sought based on the estimates of the SNRs that minimize the variance of

the linear combination of the updates [233]:

Wm =
1/σ2

m∑M
i=1 1/σ2

i

. (5.9)

These weights are proportional to the inverse of the variances σ2
m of each signal, in order

to maximize the effect of signals with high SNR and to minimize the effect of signals with low

SNR. It is assumed that the variances in (5.9) are proportional to:

σ2
m ∝

Jm

S um

(5.10)

where Jm is defined in a recursive manner as:

Jm[n] = λJm[n − 1] + (1 − λ)|ym[n] − 2α[n + 1]ym[n − 1] + ym[n − 2]|2 (5.11)

and S um is the variance of the input u, which in its recursive estimate form is:

S um [n] = λS um [n − 1] + (1 − λ)u2
m[n] (5.12)

with 0 < λ < 1. The weights in (5.9) are therefore obtained as:

Wm[n] =
S um [n]/Jm[n]
∑M

i=1 S ui [n]/Ji[n]
. (5.13)

The inclusion of the weighting process yields:

α[n + 1] =

M∑

m=1

Wm[n]
Qm[n]

2Pm[n]
. (5.14)
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The instantaneous frequency is computed as:

f [n + 1] = arccos(α[n + 1])/2π. (5.15)

The BR was expressed as festim = f × fs × 60 brpm, where fs is the sampling rate of the

inputs.

5.2.2 The NFB algorithm
One input signal: A notch filter output is smallest when its input is an oscillation at the notch

frequency. The notch filter bank (NFB) algorithm is based on this fact and uses a bank of notch

filters to probe the input signal for its main frequency. Given the output powers of a bank of

notch filters with notch frequencies ranging over a certain band, the main frequency of the input

is close to the notch frequency of the filter resulting in the smallest output. It is possible to design

short FIR notch filters, so estimating the input frequency with a small delay with such a scheme

is feasible. The NFB algorithm is, accordingly, based on a bank of length-3 FIR notch filters

characterized by a pair of complex-conjugate zeros defined by the transfer function Hnotch:

Hnotch(z) = 1 − 2z−1 cos(2π fi) + z−2, (5.16)

where fi is a discrete frequency from a given range [ f1, fF], with F the number of discrete fre-

quencies. An example is shown in Figure 5.16. At sample n, the output of such a filter is yi[n]:

yi[n] = u[n] − 2u[n − 1] cos(2π fi) + u[n − 2], n = 3, 4, ..., (5.17)

where u is the input signal.

If the dominant frequency of the input u is close to fi, then the output yi is small. The input

u is filtered with all the filters of the bank. For each filter, the output-to-input power is computed

as:

Pi[n] =
Yi[n]

U[n]
, (5.18)

with

Yi[n] = δYi[n − 1] + (1 − δ)y2
i [n], (5.19)

U[n] = δU[n − 1] + (1 − δ)u2[n], (5.20)

which are the estimates of the mean squared values of the filter outputs and the input, initialized

to Yi[2] = U[2] = 0.5(u2[1] + u2[2]) with a forgetting factor 0 � δ < 1.

The set of Pi for i = 1, ..., F are then used to compute a set of weights such that the weighted

sum of the notch frequencies estimates the input dominant frequency. It is necessary to scale

the weights in such a way as to give more importance to the small powers (where the notch fre-

quency is close to the input dominant frequency) and little-to-no importance to the larger powers.

An exponential weight dissociation scheme is employed to create large differences between the

weights. The weights are thus computed as:

Wi[n] = exp(−γPi[n]), (5.21)

where γ is a weight dissociation parameter. It is computed as γ = [mini=1,...F(Pi[n])]−1, for the

smallest output power to yield the largest weight. The final frequency estimate is computed as

the weighted sum of the notch frequencies of the filter bank:

f [n] =

∑F
i=1 Wi[n] fi∑F
i=1 Wi[n]

. (5.22)



60 Estimation of the Breathing Rate from the ECG

Figure 5.1: FIR notch filters with transfer functions according to (5.16).

Multiple input signals: By using vectors to represent the input, the outputs of the bank of

filters and the weight computation, a single implementation is used regardless of the number of

input signals containing the oscillation of interest. If there are multiple inputs with a common

dominant frequency, then u becomes a vector signal u. For each column of u, i.e., u[n, j], for

j = 1, ..., S with S the number of input signals, (5.18) yields one set of {Pi[n, j]} for the notch

frequencies. In order to obtain a single weight per frequency fi, a weighted sum of the Pi[n, j] is

computed across the inputs j = 1, ..., S :

Wi[n] = exp(−γ 1

S

S∑

j=1

R[n, j]Pi[n, j]), (5.23)

where γ = [mini=1,...,F(R[n, j]Pi[n, j])]−1 and the R[n, j] for j = 1, ..., S are a set of weights re-

lated to the input signals. These weights are introduced to emphasize signals with a clearer man-

ifestation of the oscillation. In an application, one may be in presence of several measurements

differing in noise level and/or modulation strength. It is useful to take into account how well

multiple inputs present the oscillation of interest. One possible indication is the power remaining

in each input after the suppression of the oscillation at the estimated frequency. Therefore, the

R weights are defined as the signal-to-output power ratios of the input signals for a notch filter

centered on the target frequency. Emphasis is therefore placed on the signal or signals with a

smaller output and thus containing a stronger manifestation of the estimated frequency. This

quality is assessed for each input by using its output yf from a notch filter, according to (5.16),

centered at the estimated frequency of the previous sample:

yf[n, j] = u[n, j] − 2u[n − 1, j] cos(2π f [n − 1]) + u[n − 2, j], (5.24)

with f [n − 1] being the previously estimated frequency (initialized to f [2] = f1). The mean

squared value of the input is estimated in (5.20) and that of the output yf is assessed recursively

as:

O[n, j] = δO[n − 1, j] + (1 − δ)yf
2[n, j], (5.25)

initialized to O[2] = (u[3] − 2u[2] cos(2π f1) + u[1])2. The signal-to-output ratios are computed

and normalized to create a set of weights R for the S inputs as:

R[n, j] =
U[n, j]/O[n, j]

∑S
j=1 U[n, j]/O[n, j]

. (5.26)
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After the weights related to the input signals are combined and scaled in (5.23), the frequency is

computed as in (5.22). The BR is expressed as festim = f × fs × 60 brpm.
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Figure 5.2: Flowchart of the NFB method with multiple inputs.

5.2.3 Estimation of the reference BR
To evaluate the BR estimated from the RSA and RPA waveforms, one needs to compare

the estimate with the true BR. However, deriving the BR from a real breathing signal is a chal-

lenging problem as the breathing signal derived from thoracic volume changes (measured with

impedance pneumography) or nasal/oral airflow is neither stationary nor band limited. It also

contains many artifacts and noise due to the acquisition process. Many methods have been pro-

posed until today, but no single automated technique exists to reliably compute the BR from this

signal in a window or instantaneously. In fact, deriving the instantaneous BR from the breath-

ing waveform poses the same challenges as deriving the BR from an ECG-derived breathing

waveform.

One could apply the W-OSC or the NFB algorithms of course, but for evaluation purposes, it

is chosen not to introduce a bias due to the method.

A common practice to estimate the BR from the breathing waveform is to compute the power

spectrum in a sliding window and to consider the frequency of its dominant peak as the BR

[28]. The power spectrum can be computed using either a non-parametric or a parametric esti-

mator. AR modeling [138] and extrema detection [235] have been previously used to estimate a

reference BR.

In this chapter, eight frequency estimation algorithms were used to estimate the BR from the

reference breathing signal. The various frequency-domain and time-domain estimates were then

combined to provide a robust estimate, to be used as reference BR. The majority of the selected

methods are instantaneous.

Prior to the reference BR estimation process, the breathing signal was re-sampled at 4 Hz

using cubic spline interpolation 1. In addition, a high pass filter with a cutoff frequency of 0.01 Hz

was applied to the re-sampled breathing signal in order to remove its baseline wander.

1. described in Appendix A.
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1. Short term Fourier transform maximum frequency estimate: In order to determine the

frequency content of a non-stationary signal using its spectrum, the short term Fourier transform

(STFT) can be used. The STFT of a signal u windowed by a given window w (e.g., Hamming

window) of length L is:

X(n, k) =

L−1∑

m=0

u[m]w[n − m]e− j2πkm/L. (5.27)

Using the STFT, the instantaneous frequency was computed as the pulsation corresponding

to the local maximum in the magnitude of the Fourier transform as:

ω[n] = arg max
k

[|X(n, k)|2]. (5.28)

The instantaneous BR was computed as the normalized frequency corresponding to ω for L
set to 75 s. This window length was empirically found to allow for necessary frequency resolution

based on several trials.

2. Frequency estimate using the Hilbert-Huang transform: The Hilbert transform allows

to generate, from a real signal, a complex signal, termed the analytic signal with separable am-

plitude and phase components [236]. However, for the Hilbert transform to be meaningful, the

input signal must be narrow band [184]. Empirical mode decomposition (EMD) is a data anal-

ysis method that decomposes the signal into a set of intrinsic mode functions (IMFs) based on

the extraction of energy from different intrinsic time scales [228]. EMD is used to extract a

component of the breathing signal, which contains the BR and is narrow band such that the

Hilbert transform outcome is meaningful. This method is referred to as the Hilbert-Huang trans-

form [185, 186, 228]. When the EMD was applied to the breathing signal, the first IMF was

generally observed to contain oscillations within the range of the BR. The instantaneous fre-

quency was obtained by differentiating the phase of the analytic representation of the first IMF.

The Hilbert transform generates, from a real signal u, a complex valued signal, termed the

analytic signal ua, with instantaneous amplitude a and instantaneous phase φ such that:

ua[n] = a[n]e jφ[n]. (5.29)

The instantaneous phase of the analytic signal is

φ[n] = arg{ua[n]}, (5.30)

and the instantaneous frequency is computed by differentiating the phase:

ω[n] = φ[n] − φ[n − 1]. (5.31)

An IMF represents an oscillation mode embedded in the signal. Oscillation modes are iden-

tified based on their characteristic time scales (time lapse between one maximum and one min-

imum) empirically using local extrema and zero-crossing detections. The decomposition of the

signal into IMFs uses the upper and lower envelopes defined by the local maxima and minima,

respectively. The mean envelope is computed and subtracted from the signal. The same proce-

dure is repeated for the difference signal, and so on, till a stopping criterion, such as a limitation

on the standard deviation of two difference waves, is met. This sifting process has the effect of

eliminating riding waves and making the oscillation more symmetric and results in the first IMF

component of the data. Once an IMF component is obtained, it is subtracted from the original

signal and the sifting process is applied to the residue in order to extract the next IMF, and so

on. This iterative process extracts the oscillations in the order of the finest scale (shortest period)

to the largest, the finest being extracted as the first IMF component. The method is summarized
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in Algorithm 5.1 and an example of its application is illustrated in Figure 5.3. The process ends

when a stopping criterion such as a limitation on the amplitude of the residue rmode is met [237].

Algorithm 5.1 empirical mode decomposition (EMD).

1. Identify extrema of u.

2. Interpolate between maxima to obtain the upper envelope emax and interpolate between minima

to obtain the lower envelope emin.

3. Compute mean of envelopes m[n] = (emax[n] + emin[n])/2.

4. Compute the residual r[n] = u[n] − m[n].

5. Iterate steps 1-4 on u = r until the residual is an IMF according to stopping criteria: r = cmode.

The residual is rmode[n] = u[n] − cmode[n].

6. Iterate steps 1-5 on residual u = rmode to obtain the next IMF.

IMFs are extracted from the signal such that the number of extrema and zero crossings are

equal (or at most, differ from each other by one) and the mean of the upper and lower envelopes

is zero or close to zero. Due to their definition, IMFs have well-behaved Hilbert transforms,

from which the instantaneous frequency can be derived. The first IMF is selected as the main

breathing component of the signal.

Figure 5.3: The decomposition of a signal into IMFs with the EMD. The first four IMFs were ex-

tracted through EMD from a sample breathing signal. The first IMF contains the main breathing-

related oscillation.

3. Frequency estimate based on the breathing cycle: The time difference between two

breathing peaks is interpreted as a breathing cycle. The peaks were extracted by local max-

ima detection. The time series of their differences, attributed to the time index of the second

peak, was created and inversed in order to estimate the instantaneous BR. The resulting BR was
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re-sampled at 4 Hz using cubic spline interpolation 2.

4. Frequency estimate based on the number of peaks per windows: The number of local

maxima in a window determines the number of breathing cycles in that window. The BR was

estimated as the ratio of the number of breathing cycles in the window by the length of the

window. A 20-s-long sliding window was chosen based on several trials. Respiratory peaks were

extracted by local maxima detection.

5. Frequency estimate based on the Teager-Kaiser energy tracking operator: The Teager-

Kaiser energy tracking operator estimates the energy required to generate a given amplitude

and frequency modulated signal, which is then used to separate the amplitude and frequency

components [227]. The operator is defined for a discrete-time signal u as:

Ψd{u[n]} = u2[n] − u[n − 1]u[n + 1]. (5.32)

When the nonlinear operator Ψd is applied to an signal u defined as:

u[n] = a[n] cos(φ[n]) (5.33)

with envelope |a[n]| and instantaneous frequency ωi[n] =
dφ
dn [n], it can estimate the squared

product of the amplitude and frequency:

Ψd{u[n]} ≈ a2[n] sin2[(ω[n]). (5.34)

When Ψd is applied to both u and its backward difference y[n] = u[n] − u[n − 1], the in-

stantaneous frequency of u can be separated following the energy operator separation algorithm

according to [227] as

ωi[n] ≈ arccos(1 − Ψd{y[n]} + Ψd{y[n + 1]}
4Ψd{u[n]} ). (5.35)

6. Frequency estimate based on the modified covariance method: The modified covariance

method is a recursive frequency tracking algorithm derived from the linear prediction property

of sinusoids [238]. For a signal u in the form of:

u[n] = s[n] + b[n], (5.36)

where s is a sinusoid expressed as s[n] = cos(ω0[n]+ φ), and b is additive white noise, the linear

prediction expresses the recurrence of the signal such that:

s[n] = 2cos(ω)s[n − 1] − s[n − 2]. (5.37)

The prediction error is thus:

e[n] = u[n] − 2cos(ω)u[n − 1] + u[n − 2], (5.38)

where ω is the estimation of ω0. The modified covariance method minimizes the sum of the

squares of e, which leads to:

ω[n] = arg min
λ

{
k∑

n=3

e2[n]} = cos−1(
Ak

2Bk
), (5.39)

where

2. described in Appendix A.
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Ak =

k∑

n=3

u[n − 1](u[n] + u[n − 2]),

Bk =

k∑

n=3

u2[n − 1], (5.40)

with k the number of available samples. Ak and Bk can be approximated in an instantaneous

manner such that:

Ak = λAk−1 + u[k − 1](u[k] + u[k − 2]),

Bk = λBk−1 + u2[k − 1], (5.41)

where 0 < λ < 1 is the forgetting factor. The empirical value of λ = 0.65 was used here based

on several trials.

7. Frequency estimate based on AR modeling: The BR was extracted as the largest peak,

within a 20-s-long sliding window, of the spectrum estimated using an AR model fit to the data

[28]. The window length was found to be optimal based on several trials. A Yule-Walker 10-th

order autoregressive model was used. In [138], an AR model of order 8 was used to estimate the

spectrum of the breathing signal. However, several trials showed that increasing the order to 10

yields more detailed BR estimates. The signal is expressed in terms of an autoregressive model

such that:

u[n] = −a1u[n − 1] − . . . − aPu[n − p] + b[n], (5.42)

where p is the model order and b is a white noise. The model transfer function is:

Har(e jk) =
b∑p

l=0
ale− jkl

. (5.43)

The power spectrum is:

P(e jk) =
|b|2∑p

l=0
ale− jkl

. (5.44)

The largest peak within a given window is chosen as the BR within that window:

ωwindow = arg max
k

[P(e jk)]. (5.45)

8. Frequency estimate based on Prony’s method: Prony’s method is a technique for mod-

eling a discrete-time signal as a linear combination of exponentials. It extends Fourier analysis

by directly estimating frequency, damping, strength and relative phase of modal components

present in a signal [239]. In the original approach, a model is fit to the data. Using this model,

the frequency and other signal attributes are computed. Later, a modified instantaneous linear-

prediction-based version of Prony’s frequency estimator was proposed [240], which uses five

data points to directly estimate the instantaneous frequency of a sinusoidal signal u:

ω[n] = acos(
(u[n − 1]u[n + 2] − u[n − 2]u[n + 1]) + (u[n]u[n + 1] − u[n − 1]u[n + 2])

4(u[n]2 − u[n − 1]u[n + 1])
).

(5.46)
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Reference BR: At each time index, the three closest estimates to the median of the eight afore-

mentioned estimates were chosen as the three most accurate BRs. The reference BR was com-

puted as the mean of the three retained estimates. This combination method is robust to outliers

and allows to take into account different estimates, some of which are spectral and some other

temporal. Estimates 1, 4 and 7 were computed in windows and estimates 2, 3, 5, 6 and 8 were in-

stantaneous. A low-pass Butterworth filter with a cutoff frequency of 0.8 Hz (48 brpm) was used

to filter the estimates 2, 5, 6, 7 and 8 in order to smooth sudden changes due to the imperfection

of the breathing signal with respect to the assumptions of each algorithm. The final reference BR

was filtered as well. In the filtering operations mentioned, forward-backward filtering was used

in order to avoid phase shifts. The BR was expressed as fre f = 2πωre f × fs × 60 brpm.

5.3 Evaluation

Three separate evaluation tasks were performed: 1) The bias and variance of the NFB were

evaluated on synthetic data. 2) The performance of the W-OSC and the NFB methods was eval-

uated on a set of real data pertaining to the resting state. 3) The performance of the NFB method

was evaluated on signals acquired during physical exercise.

5.3.1 The bias and variance of the NFB algorithm
The bias and variance of the NFB algorithm output were evaluated using Monte-Carlo simu-

lations. 1000-sample sinusoids were generated with a normalized time-varying frequency with a

sinusoidal pattern (one period of the sine was generated over the 1000 samples) ranging between

two values drawn randomly in the interval [0.02, 0.1] and with random initial phases. A Gaus-

sian white noise was added to the sinusoids with several SNR values ranging from 0 to 5 dB.

The bias (relative) and variance of the frequency estimates were computed over the length of the

test signals and averaged over 1000 runs. The algorithm was tested with one input and with two

inputs. The sensitivity of the algorithm to its parameters F (number of filters) and δ (forgetting

factor of the recursion) was assessed by recording the estimation bias and variance for different

values of each parameter. F was varied between 10 and 100 and δ was varied between 0.8 and

0.99.

5.3.2 Application of the W-OSC and NFB algorithms to data at rest
The PhysioNet “Fantasia” data set [241, 242] was used to evaluate the algorithms in this

study. This data set provides 120-minute recordings of simultaneously acquired single-lead ECG

and spontaneous breathing signals (thought to be recorded through impedance pneumography

according to [138]) from 20 young (21-34 years of age) and 20 elderly (68-85 years of age)

subjects. The subjects were healthy and lay supine watching the movie “Fantasia”. Both sets of

signals were digitized with a sampling rate of 250 Hz.

The test data are off-line recordings. However, given the interest in real-time processing in

monitoring systems, both the W-OSC and the NFB algorithms were implemented to support real-

time processing. In the particular case of BR estimation from the ECG, a pipeline was designed

to process immediately each heartbeat in chronological order. The overall implementation is

therefore a beat-to-beat implementation. Regardless, the frequency estimation methods were

implemented to process one sample at a time, while keeping in memory the internal variables

and parameters necessary for the processing.

After each new heartbeat, the RSA and the RPA were extracted from the ECG. The R-peaks

of the ECG were identified with a conventional extrema detection method. The R-R intervals time

series was created and re-sampled uniformly at 4 Hz using sample-and-hold interpolation [28]
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as described in Section A.1. The resulting re-sampled waveform contains steps and must be

low-pass filtered. This type of interpolation was chosen because of its truly real-time (with one

beat delay) nature. The resulting samples were concatenated with those in memory and band-

pass filtered (causal filtering) within the breathing frequencies, i.e., between 0.08 Hz and 0.8 Hz,

equivalent to 4.8 to 48 brpm using an order 18 Butterworth filter to yield the RSA waveform.

The R-peak amplitudes were re-sampled and filtered similarly to yield the RPA waveform.

In [138] it was noted that in the “Fantasia” data set, the baroreflex activity (occurring around

the frequency of 0.1 Hz) 3 was sometimes very strong and could be confused for a low BR. The

authors therefore used a filter with a higher cutoff frequency of 0.2 Hz (12 brpm) in addition to the

wider breathing-range filtering. In an additional processing step, they combined the various filter

outputs. Similarly, in the present study, a narrow-band version of the RSA was created (the RPA

is not assumed to contain baroreflex activity) by filtering the inter-beat intervals between 0.2 Hz

and 0.8 Hz. The narrow-band version was fed as input to the algorithm in addition to its wider-

band counterpart. It was hypothesized that in the case of a high BR, as both versions contain

the high frequency breathing oscillation, there was less chance that the low-frequency baroreflex

oscillation would be extracted by the algorithm. In the case of a low BR, two out of the three

inputs (the narrow-band RSA, the wide-band RSA and the RPA) would contain the common

modulation, which should be sufficient for a valid estimation. After filtering, the new samples

were fed to the frequency estimation algorithm. It must be noted that, at most, one-minute worth

of data was retained in memory. Figure 5.4 displays the flowchart of the implementation.

New 
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Memory
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frequency
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Memory
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Figure 5.4: Flowchart of the beat-to-beat BR estimation from the ECG.

The algorithms were tested with one or two inputs. In the single-input case, either the

RSA (wide-band) or the RPA was used by the algorithms. In the two-input case, both the

RSA (narrow-band and wide-band) and the RPA were used, meaning that in fact, the algorithms

ran with three inputs. The fixed range of [ f1, ..., fF] = [0, ..., 0.2] equivalent to 0 to 0.8 Hz (given

the 4 Hz sampling rate) or BRs ranging from 0 to 48 brpm, was used to define the filter bank.

The W-OSC algorithm was applied with the parameter set β = 0.95 (band-pass filter band-

width), δ = λ = 0.95 (forgetting factors) [233]. Given that the W-OSC has already been exten-

sively tested on simulated and real data in [233], its performance is reported here only for this

set of default parameters.

The mean absolute error was computed as:

error =
1

N

N∑

i=1

∣∣∣ festim − fre f

∣∣∣ , (5.47)

where N is the length of the signals. festim is the estimated BR and fre f is the reference BR.

3. see Section 2.1 for a brief explanation on the baroreflex mechanism.
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In order to assess the delays of the frequency estimates, the correlation of the estimates with

the reference BR was computed using the Pearson correlation coefficient for lag values ranging

from 1 to 200 samples. The lag yielding the highest correlation was chosen as the estimation

delay.

The statistical significance of the differences between the errors and delays of the two algo-

rithms for the two age groups was assessed with student’s T-test or the Mann-Whitney U-test,

depending on the normality of the data. The normality of the data was tested using the Anderson-

Darling test.

5.3.3 Application of the NFB algorithm to physical activity signals
To test the NFB algorithm on challenging signals with extreme BR values, we used signals

acquired from two subjects (healthy young males, moderately trained) during a VO2 max test (in-

cremental exercise test to assess maximum oxygen uptake) on an ergo-cyclometer (i.e., 3 minutes

of rest followed by 3 minutes of cycling with no load followed by load increments of 30 W/min

every 2 s until exhaustion). The inter-beat intervals were recorded with a Polar R© belt and the

breathing waveform was acquired with a spirometer 4. The signals were re-sampled at 4 Hz with

cubic spline interpolation 5. The RSA (only wide-band, filtered between 0.1 and 1.5 Hz, equiva-

lent to 6 to 90 brpm, because of the plausibility of high BRs during exercise) was extracted from

the inter-beat intervals as described for the “Fantasia” signals. The BR was estimated from the

RSA with the NFB algorithm with [ f1, ..., fF] = [0, ..., 1.5] Hz.

5.4 Results

5.4.1 The bias and variance of the NFB
The bias and variance of the frequency estimates of one and two inputs are shown in Fig-

ure 5.5 for two values of F with δ = 0.9 (mid-range). Figure 5.6 shows the estimation bias and

variance for one and two inputs for two values of δ with F = 50 (mid-range). It can be seen that

the benefit of a second input is the reduction of the bias and especially the variance, particularly

at low SNR values. Over the test range, F did not appear to have a notable effect on the bias or

the variance. A smaller δ resulted in a smaller bias and larger variance, especially at low SNR

values.

Table 5.1 summarizes the bias and variance of the estimates for several combinations of the

algorithm parameters F and δ for the single-input and two-input cases over 1000 runs for an SNR

value of 5 dB. It can be seen that the benefit of a second input is the reduction of the bias and the

variance by up to 50%.

5.4.2 The performance of the W-OSC and NFB algorithms on data at rest
An example of the RSA and RPA waveforms from the “Fantasia” data set is shown in Figure

5.7 together with the simultaneously recorded breathing waveform. An oscillatory component

corresponding to breathing can be observed in both the RSA and RPA waveforms.

An example of the BR estimates using the W-OSC and the NFB algorithms with both the

RSA and the RPA as inputs is presented along with the reference BR in Figure 5.8. It can be seen

that, generally, the estimate using the NFB algorithm is closer to the reference compared to that

of the W-OSC. It also follows the reference with less delay in time.

4. The raw signals were provided thanks to Dr Fabio Borrani from the Institute of Sport Science, University of

Lausanne, Switzerland.

5. described in Appendix A.
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Figure 5.5: The estimation bias (a) and variance (b) of the the NFB method for different values

of the parameter F with δ = 0.9 (mid-range).

Figure 5.6: The estimation bias (a) and variance (b) of the NFB method for different values of

the parameter δ with F = 50 (mid-range).

Table 5.1: The estimation bias (relative) and variance of the NFB algorithm for several combina-

tions of F and δ. SNR = 5 dB.

bias variance

single-input

F = 10, δ = 0.8 -2.03×10−2 4.08×10−4

F = 10, δ = 0.99 8.54×10−2 3.17×10−4

F = 100, δ = 0.8 3.53×10−4 1.49×10−4

F = 100, δ = 0.99 4.10×10−2 1.22×10−4

two-input

F = 10, δ = 0.8 -2.03×10−2 4.08×10−4

F = 10, δ = 0.99 8.54×10−2 3.17×10−4

F = 100, δ = 0.8 1.33×10−4 1.48×10−4

F = 100, δ = 0.99 4.07×10−2 1.19×10−4
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Figure 5.7: An example of the RSA, RPA and the breathing waveforms from the “Fantasia” data

set: (a) RSA waveform; (b) RPA waveform; (c) breathing signal.

Table 5.2 reports the estimation errors and delays of the NFB algorithm over the entire data

set for different combinations of the algorithm parameters F and δ. It can be seen that a larger

F reduces the estimation error with a plateau at F = 50. However, F does not seem to have

a uni-directional relationship with the delay. A smaller δ reduces the estimation delay, but the

value of δ does not have a uni-directional relationship with the error. Therefore for a small error

and a small delay, both parameters need to be chosen from their mid-range values. The average

reference BR over the entire data set was 17.34 brpm.

Table 5.2: The mean (STD) of the error (brpm) and the delay (s) of the NFB algorithm with

several combinations of F and δ over the “Fantasia” data set using both the RSA and the RPA.

The values in bold highlight the smallest errors and delays achieved.

F \δ 0.8 0.9 0.99

10
error 2.32 (1.18) 2.29 (1.12) 2.51 (1.04)

delay 11.89 (7.37) 13.58 (7.33) 30.04 (12.09)

50
error 2.23 (1.15) 2.20 (1.11) 2.32 (1.08)

delay 12.88 (8.13) 13.41 (7.98) 27.93 (10.66)

100
error 2.23 (1.15) 2.20 (1.11) 2.32 (1.08)

delay 13.42 (8.40) 13.89 (8.04) 28.13 (11.91)

Table 5.3 reports the errors of the W-OSC and the NFB (F = 50 and δ = 0.9) algorithms with

only the RSA or the RPA, or both as inputs. In all cases, the differences between the errors of

the young population and those of the elderly were not significant. For both the young and the

elderly, the errors of the NFB algorithm were significantly smaller (p < 0.05) than those of the

W-OSC method. In line with intuition and simulation results, using both the RSA and the RPA

yielded more accurate estimates than using each signal alone. The number of inputs did not seem

to have a unique effect on the estimation delay.

In order to check the estimation delay, the mean delay for each algorithm was introduced

and the errors were re-computed. The corrected errors are reported in Table 5.4. It can be seen

that as expected, the errors were smaller than when no delay correction was performed. In this

setting also, the errors of the NFB algorithm were significantly smaller (p < 0.05) than those of

the W-OSC.
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Figure 5.8: Breathing rate estimation with the W-OSC and NFB algorithms: (a) the reference

breathing waveform; (b) the RSA and RPA waveforms; (c) the BR estimates of the NFB method

and the W-OSC, and the reference BR.

Table 5.3: The mean (STD) of the estimation error (brpm) and delay (s) of the W-OSC and the

NFB algorithms over the “Fantasia” data set. The errors and delays of the NFB algorithm were

significantly smaller (p < 0.05) than those of the W-OSC for all categories. The values in bold

highlight the smallest errors and delays achieved.

Young Elderly All

W-OSC

RSA
error 3.50 (1.57) 4.31 (1.74) 3.91 (1.71)

delay 24.33 (9.52) 27.33 (11.49) 25.76 (10.61)

RPA
error 3.50 (1.68) 3.27 (1.25) 3.38 (1.49)

delay 23.08 (9.60) 24.44 (8.94) 23.74 (9.32)

both
error 2.42 (1.28) 2.84 (1.11) 2.63 (1.22)

delay 24.45 (9.92) 26.29 (9.95) 25.30 (9.98)

NFB

RSA
error 3.41 (1.59) 3.59 (2.00) 3.50 (1.81)

delay 14.68 (10.19) 12.08 (8.15) 13.45 (9.37)

RPA
error 2.43 (1.09) 2.56 (1.18) 2.50 (1.14)

delay 14.25 (11.57) 12.85 (7.26) 13.55 (9.69)

both
error 2.02 (0.94) 2.38 (1.25) 2.20 (1.11)
delay 11.98 (4.97) 14.84 (9.93) 13.41 (7.98)

Table 5.4: The delay-corrected errors (brpm) of the NFB and the W-OSC algorithm over the

“Fantasia” data set using both the RSA and the RPA. The errors and delays of the NFB algorithm

were significantly smaller (p < 0.05) than those of the W-OSC. The values in bold highlight the

smallest errors and delays achieved.

Young Elderly All

W-OSC 1.77 2.17 1.97

NFB 1.72 2.03 1.87
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Figure 5.9 shows the sensitivity of the W-OSC and the NFB algorithms to variation in the

parameter δ (λ = δ for the W-OSC here) over the “Fantasia” data set (δ is a parameter similar

in both algorithms). The algorithms were tested in the two-input case. The NFB algorithm was

used with F = 50 and the W-OSC with β = 0.95 and λ = δ (λ is also a forgetting factor). It can

be seen that the NFB algorithm presented mean errors and delays which were less variable with

respect to δ compared to the W-OSC. For example, for δ = [0.8, 0.95], the error and delay of the

NFB algorithm estimates were 2.20 ± 0.02 brpm and 14.12 ± 1.69 s respectively, whereas the

error and delay of the W-OSC estimates were 2.99 ± 0.47 brpm and 20.58 ± 4.78 s, respectively.

Figure 5.9: The sensitivity of the W-OSC and the NFB algorithms to their respective forgetting

factors δ (a) in terms of error and (b) in terms of delay.

5.4.3 Performance of the NFB method on physical activity data

Figures 5.10 and 5.11 illustrate the reference BR and the estimated BR (F = 50 and δ = 0.9)

from the inter-beat intervals of the two subjects during the entire length of the exercise. It can

be seen from the two figures that the NFB generally tracked the BR well with average errors

of 1.61 brpm and 3.71 brpm over the length of the records. It must be noted that there is a

large deviation of the estimated frequency for subject 2 between 500 s and 700 s, but a time-

frequency analysis of the inter-beat intervals revealed that the algorithm was in fact truthful to

their variation.

5.5 Discussion and benchmarking

5.5.1 The bias and variance of the NFB

On simulated data, the NFB algorithm yielded estimates with bias and variance approaching

zero with increasing input SNR values. The simulations showed that the sensitivity of the NFB
algorithm to its parameters (i.e., the filter bank resolution F and the forgetting factor δ) depends

on the input SNR. A second input to the NFB algorithm reduced the estimation bias and variance

by up to 50% compared to using a single input with a larger effect on the bias than on the variance.
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Figure 5.10: The reference and NFB estimate BRs for Subject 1 during exercise. The mean

absolute error over the length of the record was 1.61 brpm.

Figure 5.11: The reference and NFB estimate BRs for Subject 2 during exercise. The mean

absolute error over the length of the record was 3.71 brpm.
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5.5.2 The performance of the W-OSC and NFB algorithms on resting data
Both the W-OSC and the NFB methods yielded instantaneous BR estimates in a continuous

and automatic manner, without requiring special adjustments based on subject characteristics.

Furthermore, sudden changes in the BR estimate because of abnormal beats or bad quality seg-

ments in the recordings were rectified within a limited number of iterations due to the recursive-

ness of both methods, thus no special data-dependent pre-processing was needed.

Since the number of input signals in the W-OSC and NFB algorithms is not limited, the

breathing-related waveforms extracted from more than one ECG lead can be used to estimate the

BR. In fact, other inputs containing the breathing modulation can be used as well. In particular,

the RSA extracted from photoplethysmogram (PPG) recordings and the pulse transit time (PTT)

are candidates as seen from their power spectral densities (PSD) in Figure 5.12. They both

contain the breathing modulation of the heart rate similarly to the RSA and RPA of ECG. PPG

waveforms are somewhat popular for the estimation of the cardiac and breathing parameters in

a non-invasive and easy manner [139, 219] and the PTT can be derived by using ECG and PPG

recordings, and also carries the breathing modulation of the cardiac rhythm [243]. Figure 5.13

shows a snapshot of a demonstration created for the startup company Leman Micro Devices 6

in a collaborative project. In this demonstration, the BR was estimated from the ECG RSA and

RPA, RSA from PPG signals acquired in red and infrared (IR) illuminations, the PTT and several

combinations of them.

Figure 5.12: The PSD of the ECG and PPG RSA and the PTT. All contain the breathing modu-

lation as seen in the peak at around 0.2 Hz.

From real ECG data, the NFB estimated the BR with a smaller error and less delay (nearly

half less) than the W-OSC method. When the mean delay was introduced in the estimates, the

errors were smaller for both algorithms, as expected.

On the ECG data, the estimation error of the NFB method was consistent with the results of

the simulations in terms of variations with respect to the parameter choice and the number of in-

puts. The estimation delay appeared to be directly related to δ. On the other hand, the resolution

(F) did not seem to have a specific relationship with the delay, but it had an effect on the complex-

ity of the algorithm. A mid-range value of the two parameters provided an acceptable error-delay

compromise. Nonetheless, over the range of tested values, the error varied at most by 0.31 brpm,

which is not a large variation considering that the reference BR was on average 17.34 brpm. In

comparison with the W-OSC, the NFB algorithm showed a considerably smaller sensitivity to its

6. www.leman-micro.com/site/
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Figure 5.13: Estimating the BR from several ECG and PPG breathing modulations: (a) The PPG

and ECG and the heart beats; (b) the reference breathing waveform and the RSA extracted from

the ECG and the PPG; (c) The BR estimated with the W-OSC method.

parameter choice. This property is especially beneficial in real biomedical applications, in which

there is a large variability in the signals between individuals and even within one individual. It is

therefore beneficial to use a method, which does not require much adjustment of its parameters.

Using the RSA and RPA, separately, was also by far not as good as using both together,

which shows the importance of the additional information. The RPA alone yielded better results

than the RSA alone. This result is not in line with other studies [138]. In [138], all the inputs

were narrow-band filtered to avoid the baroreflex oscillation. However, in the event of a low

BR (lower than 0.2 Hz equivalent to 12 brpm), the breathing-related component would not be

correctly extracted. The results were good regardless, because in the “Fantasia” data set, the BR

is always above 12 brpm. The filtering operation removed the unwanted baroreflex influence

without removing breathing-related oscillations. It seems that indeed, in the present study, the

large baroreflex amplitude interferes with the identification of the breathing-related component

of the RSA (wide-band). It is important to note that without prior knowledge about the BR, which

is normally the case in an application, one cannot justify using only the narrow-band RSA. In a

spirit of objectivity, we respected this condition in this study.

Results obtained in the present study can be compared to those of Orphanidou et al. [138],

which were also presented on the “Fantasia” data set. It must be noted that the others used the

same AR-based frequency estimation method on both the ECG-derived breathing waveform and

the breathing signal to derive estimated BRs and reference BRs. A degree of correlation may

therefore exist between the derived BRs. Furthermore, a validity criterion was used to exclude

up to 35% of the data. In the present study, the W-OSC tracking method was excluded for

reference estimation in order to avoid bias in the results. Due to the unavoidable differences

in methodology and the different reference BR, the W-OSC and NFB estimates are not directly

comparable to Orphanidou et al.’s. However, the order of magnitude of the errors in the present

study are similar, despite using the entire data set, and not imposing restrictive bandwidths in the

filtering processes.

Unlike the AR-based method of Orphanidou et al., both the W-OSC and the NFB methods

are automatic and instantaneous, robust to abnormal beats and segments of bad quality data.

The delay in the estimates of Orphanidou et al. is half the window length, which is 30 s. Both

methods in this chapter were implemented in a truly real-time manner, such that heart beats were

processed in chronological order, and the BR estimates were updated with information from each
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new beat.

5.5.3 The performance of the NFB method on physical activity data
On the data acquired during physical activity, the NFB method was robust and tracked the

rapidly varying BR accurately and with no need for any special adjustments compared to its

application to resting-state signals, except for a slightly larger application bandwidth.

It must be noted that the W-OSC method was also applied to the task of etimating the BR

during exercise. The results were similar to those of the NFB with a larger estimation delay,

as expected. Due to the small amount of data available, we chose not to carry out an extensive

analysis on the exercise data.

5.5.4 Limitations
On the real data, i.e. the “Fantasia” data set and the VO2MAX data, the reference BR was

computed with automated methods. Despite our best care and intentions, the automatic reference

could be influenced by noise and artifacts and does not fully represent a ground-truth.

As discussed in Chapter 3, in the supine position, the RSA is generally the largest component

of the R-R intervals. In the orthostatic position, the baroreflex activity influence is larger than at

supine, and may be confused for the breathing-related component. This problem even occurred

in the “Fantasia” supine data in [138]. Other studies have also highlighted that estimating the

BR in positions other than supine or seated is more difficult [224]. Most of the results presented

in this chapter were also on supine data. It must be noted that estimating the BR regardless of

the position my be more challenging than on supine resting data. However, interestingly, on the

exercise data, this problem did not arise. This could be due to the more prominent breathing

patterns and the autonomic particularities of exercise.

5.6 Conclusions
Two algorithms were applied to the case of estimating the BR from the ECG and in particular

the RSA. The W-OSC method is an established algorithm and the other, the NFB algorithm, is

a novel technique, attempting to overcome a shortcoming of the W-OSC method, namely its

estimation delay.

Both were successful in estimating the BR with the same accuracy as other existing methods,

however in a truly real-time manner and with a lower estimation delay. These algorithms can

be applied to the estimation of the BR from various modalities (such as the PPG [139]) and to

combinations (e.g. ECG and PPG).
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The direct measurement of BR requires a mask or an impedance belt. Measuring the BR

using the RSA from the ECG requires at least one ECG lead, with electrodes placed sufficiently

apart on the body. However, it is of increasing interest to monitor the heart rate and the BR in an

entirely contactless manner. For example, for monitoring new born infants, devices with cables

or transmission capabilities are considered cumbersome and unreliable.

In Chapter 5, the BR was estimated from the ECG and in particular from the RSA, in a

real-time manner with two different algorithms. As the main necessity for these methods is the

heart inter-beat intervals, other signals representing the cardiac activity, from which the inter-

beat intervals can be derived, are also useful for the goal of estimating the BR from the RSA.

This chapter explores the BR estimation from imaging photoplethysmography using one of the

methods described in Chapter 5, namely the notch filter bank (NFB) method. Imaging photo-

plethysmography is a novel technique to capture heartbeats via blood volume changes, reflected

in skin tone changes observable in a video sequence of a person’s face. Elements of this chapter

were presented at a conference [244].

6.1 Introduction

6.1.1 What is imaging photoplethysmography (iPPG)?

Photoplethysmography (PPG) is a non-invasive technique to measure blood volume varia-

tions by placing a small illumination and detection probe on the surface of the skin [245]. PPG

systems produce a waveform representing blood volume changes caused by heartbeats by mea-

suring reflectance or transmittance of a light source placed in contact with the skin. This method

has many medical uses in the measurement of cardio-vascular features such as heart rate (HR),

blood volume, oxygen saturation and even the BR [219, 245].

Recently, it has been demonstrated that PPG signals can be acquired in an entirely contactless

manner, bringing forth the imaging photoplethysmography (iPPG) [246, 247]. In iPPG systems,

a visible-light or infrared video camera is placed in front of the subject at a distance of about

1 m, and captures skin tone changes (often in the face) in visible red, green, blue or infrared

channels [248, 249]. Figure 6.1 shows colormaps of the face, under visible and infrared illumi-

nations, highlighting regions of the face where the HR is visible from images acquired with a
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video camera. The variation of skin tone in time is then extracted from the pixels of each frame

to produce the iPPG waveform.

Figure 6.1: Colormaps of the face representing HR-related power captured with a video-camera.

The green channel captures the most HR-related information. Figure from [249] with permission.

6.1.2 BR estimation from the iPPG
The BR has previously been estimated from conventional PPG waveforms [139, 235, 250–

254]. iPPG waveforms have also been used to estimate the breathing-related information di-

rectly [248, 255] or indirectly through the RSA. The latter is usually measured as the HF compo-

nent of the HRV [256]. These studies employ conventional spectral estimation and fixed band-

widths (drawbacks of which have been discussed in Chapter 3) or EMD, which requires analyzing

fixed-length segments of the iPPG waveforms.

6.1.3 Motivation and contribution
The goal of the present chapter is to estimate the BR from the iPPG signal (acquired in a

contactless manner) using the RSA in real-time. As with the estimation of the BR from the ECG

in Chapter 5, the instantaneous and real-time NFB algorithm introduced in Section 5.2.2 was

applied to track the main frequency component of the iPPG HRV, in other words, the iPPG RSA.

The BR estimates were compared to an estimate computed from the simultaneously recorded

ECG and to the reference BR, computed from the signal recorded by the impedance belt.

6.2 Materials and methods

6.2.1 Data acquisition
Data were acquired from 12 subjects with two different protocols: breathing-protocol and

isometric hand-grip exercise. The subjects were supine, facing a RGB camera (20 frames-per-

second, with artificial light) at a distance of 1 m and wore ECG and impedance belt (for the

breathing waveform) Biopac R© sensors. The breathing protocol included a short apnea (10-15

seconds) and an increase in the BR from 5 to about 20 brpm. The handgrip protocol alternated
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between rest and contraction periods of 15 to 30 seconds. Both protocols induced changes in the

HR of the subjects [257]. All the subjects gave informed consent. In total, 96 minutes of data

were acquired. All procedures were in accordance with the Declaration of Helsinki 1.

6.2.2 Data processing

iPPG waveform creation

The iPPG waveform was obtained from the consecutive frames of the video by averaging pix-

els, in a region-of-interest extracted from the forehead of the subjects as illustrated in Figure 6.2.

The forehead has been shown to be an optimal location to capture blood volume changes in iPPG

waveforms [249]. The video was acquired with a frame-rate of 20 frames-per-second, therefore

the resulting iPPG waveform was sampled at 20 Hz. The waveforms were extracted 2 for each

of the red, green and blue (RGB) channels separately [257], and subsequently band-pass filtered

between 0.6 and 4 Hz. An illustration is provided in Figure 6.3. Figure 6.5 shows an example

of the ECG, iPPG (green channel only) and the reference breathing signals for a duration of 50

seconds during the hand-grip protocol.

iPPG waveform

Figure 6.2: The creation of the iPPG waveform from a video sequence. The region-of-interest is

highlighted with a red rectangle.

RSA extraction

The instantaneous HR was computed using the NFB algorithm with the three channels as

simultaneous inputs. The mean heart rate was used to compute an appropriate inter-beat estimate

for an extrema detection method to identify the heartbeats in each channel. Given the rather low

sampling rate of the iPPG waveform (20 Hz), it was necessary to locally interpolate the value

around the identified maxima to correct for the lack of time-resolution. The local neighborhood

of the maxima were interpolated linearly to equivalent of 500 Hz.

The inter-beat intervals time series were created for each channel and all three series were re-

sampled uniformly at a sampling rate of 4 Hz using linear interpolation 3. The re-sampled series

was then band-pass filtered between 0.09 and 1 Hz, considered to be a large breathing band

comprising rates from 5.4 to 60 brpm. Given the challenging protocol and the large variations in

the BR, this wide frequency band was necessary to correctly estimate the BR.

1. The data were acquired thanks to Virginie Moser and Fabian Brown from the Swiss Center for Electronics and

Microtechnology (CSEM) in Neuchâtel, and Sibylle Fallet from EPFL-ASPG.

2. The iPPG waveform extraction was performed by Sibylle Fallet from EPFL-ASPG

3. described in Appendix A.
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Figure 6.3: The iPPG waveforms in the (a) red, (b) green and (c) blue channels during the

breathing protocol.

Figure 6.4: The iPPG waveforms in the (a) red, (b) green and (c) blue channels during the

handgrip protocol.
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Figure 6.5: The (a) ECG, (b) iPPG and (c) reference breathing signals for one subject during the

handgrip protocol.

The wide-band filtered RSA poses a major problem with frequency estimation methods such

as the NFB method (presented in Section 5.2.2). It was therefore necessary to locally filter the

RSA further. However, given the fast-changing nature of the BR in the study protocol, and given

the sample-by-sample nature of the NFB method, we chose to filter the RSA in an adaptive

manner using local information from the signal at each sample. The BR was therefore estimated

using a modified version of the NFB algorithm with each of the three filtered iPPG inter-beat

intervals as input. This modified version comprises an extra pre-processing step, in which the

principal oscillation of the R-R intervals series is enhanced. Two schemes were considered to

identify the oscillatory components of the RSA:

• Singular spectrum analysis (SSA) [258, 259]: This method decomposes a time series s[n]

of N samples into trend, periodic components and noise. It is based on the singular value

decomposition of a trajectory matrix X, which is a multi-dimensional mapping of the one-

dimensional time-series s. This matrix is created by stacking segments of length L of the

time-series with L−1 overlaps as X = [s[1] : s[k] : s[K]] with s[k] = (s[k] s[k+1]...s[k+L−
1])T and K = N − L+ 1. The parameter 2 ≤ L ≤ N − 1 determines the size of the trajectory

matrix. The L columns of the matrix are L time-adjacent observations of the underlying

process of the original time-series. This matrix X is then decomposed as X =
∑r

i=1 Xi,

where r is the rank of X and Xi = σiUiVT
i via singular value decomposition. The σi are

the non-zero singular values of X and the (U1,V1) ...(Ur,Vr) the singular vectors. The

diagonals of UiVT
i are averaged. The decomposition yields L components or sources of s.

The selection of L is crucial, it depends on the structure of s and in particular its periodicity

[259]. There is no generalized accepted scheme to optimally select L [260]. The empirical

value of L = 10 was used in the present chapter. The selection of L is also discussed later

in Section 7.2.

• Sliding window adaptive singular value decomposition (SWASVD) [261]: This method is

an adaptation of the conventional eigenvalue decomposition of a square matrix to perform

the decomposition in a sliding window in an adaptive manner without having to perform

the full decomposition at every sample. The algorithm is based on a bi-orthogonal iteration

of the conventional SVD. Orthogonal basis are derived using QR decompositions 4 at every

time step. The projection of the data on this basis and subsequent decomposition yields a

set of final components representing, in this case, prominent oscillations of the input. This

4. The A=QR decomposition of matrix A yields an orthogonal basis Q and an upper triangular matrix R.
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algorithm is described in Figure 6.6 and was implemented in [257] 5 for the estimation of

the instantaneous HR from iPPG signals [257]. Experimentally, it proved not to be directly

applicable to estimate the BR from the RSA. A 30-second sliding window was used here.

Figure 6.6: The sliding window adaptive SVD algorithm. Two iterative QR decompositions

are performed. After the projection of the input data (x(t)) onto the first decomposition of the

previous step (QA), a decomposition is performed to yield another basis (QB). The projection

of the input data onto this basis yields the basis for the next step and also a set of components.

Image from [261], c© 2004 IEEE.

The above-mentioned methods are based on identifying the eigenvalue-eigenvector pairs

from a matrix created from samples of the RSA. As such, by choosing the first eigenvalue-

eigenvector pair, the most prominent oscillation of the input is selected. The dominant frequency

of the component was estimated through its Fourier-based spectrum. The RSA was then locally

filtered with the band-pass filter described in (3.2) in Section 3.2.2. The bandwidth of the lo-

cal filter was set to β = 0.8 for the filter to be rather wide-band (as illustrated in Figure B.1 in

Appendix B). In effect, the RSA extraction in the present chapter is similar to the extraction de-

scribed in Section 3.2.2, but instead of the reference BR ( fresp in (3.2)), the dominant frequency

of the first oscillatory component of the RSA was used.

BR estimation

The instantaneous BR was estimated from the filtered RSA with the NFB method presented

in Section 5.2.2. For comparison purposes, the BR was estimated in a similar manner from the

inter-beat intervals of the ECG.

Reference BR

The reference BR was computed from the reference breathing recorded with the impedance

belt. This signal was re-sampled at 4 Hz and filtered similarly to the iPPG and ECG inter-beat

intervals. Its instantaneous frequency was then estimated in three ways: (1) by identifying the

largest peak of the Welch PSD in a sliding window, (2) using the NFB, and (3) the average of (1)

and (2).

5. By Sibylle Fallet.
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Evaluation

The correlations between the iPPG and ECG inter-beat intervals were computed with Pear-

son’s correlation coefficient. The errors of their smoothed (4 second-long windows) estimates

were computed as the mean absolute difference, in brpm, between the estimates and the smoothed

(4 s-long windows) reference rate as described in (5.47) in Section 5.3.1. However, due to large

artifacts in the iPPG, it was necessary to develop a quality index to identify portions of sufficient

quality and to consider errors only in good quality segments. Indeed, in practice, one would pre-

fer to know that the signals are of poor quality rather than being presented with a bad estimate.

Therefore, an empirical quality index based on the amplitude of the iPPG signals was developed.

To compute this quality index, an amplitude index was computed as the squared amplitude of the

signal, divided by its variance (computed in a sliding window). The quality index was set to 1

where the amplitude index was smaller than ten times its interquartile range (computed in a slid-

ing window) and 0 elsewhere. Portions with a quality index of 1 were retained when computing

the correlations and the errors.

6.3 Results
The evaluation was performed on the entire length of the recordings where the quality index

was equal to 1. Among the three iPPG channels, the green channel yielded the inter-beat intervals

most similar to the ECG R-R intervals with an average correlation of 0.65 ± 0.27 (all per-record

correlations were significant with p < 0.05). The red and blue channels intervals yielded corre-

lations with the ECG R-R intervals below 0.5 as reported in Table 6.1. Therefore, only the green

channel was retained for BR estimation.

Table 6.1: The mean correlations (STD) between the inter-beat intervals of the three iPPG chan-

nels and the ECG R-R intervals over all subjects.

iPPG red iPPG green iPPG blue

ECG 0.04 (0.11) 0.65 (0.27) 0.38 (0.24)

RSA extraction

As expected, the SSA pre-processing step was computationally expensive. The SWASVD

was much faster as the matrix was not required to be entirely decomposed at every iteration. An

example of the filtered versions of the RSA for the green channel are shown for the two pre-

processing schemes in Figure 6.7. As the pre-processing scheme involves already a frequency

estimation step, one could imagine stopping the operation at this point. However, as illustrated in

Figure 6.8, the two estimates only roughly narrow-down the RSA bandwidth, and do not directly

constitute a good BR estimate.

BR estimation

Figures 6.9 and 6.10 illustrate, respectively, the iPPG and ECG BR estimates and the refer-

ence for two subjects during the breathing protocol. The iPPG quality index is displayed as well.

It can be seen that both estimates follow the steep increase in the reference for the two subjects.

The errors between the estimates and the reference are reported in Table 6.2 for the ECG and

the iPPG with the SSA pre-processing. The difference between the ECG and iPPG estimates was

3.05 ± 1.69 brpm. Table 6.3 shows the iPPG and ECG-based estimation errors for the SWASVD

pre-processing. The difference between the ECG and iPPG estimates is 3.96 ± 2.02 brpm.

The results were obtained on 88% of the data selected as having sufficient iPPG quality.
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Figure 6.7: An example of the pre-processing of the RSA with the SSA and SWASVD schemes.

Figure 6.8: An example of the estimated BR and the pre-processing frequencies from the two

SSA and SWASVD schemes.

Table 6.2: The mean error (STD) in brpm of the ECG and iPPG green BR estimates over all

subjects with the SSA pre-processing.

Welch (1) NFB (2) mean (3)

ECG 3.22 (3.25) 2.94 (3.38) 2.93 (3.3)

iPPG 4.56 (2.06) 4.23 (2.10) 4.26 (2.08)

Table 6.3: The mean error (STD) in brpm of the ECG and iPPG green BR estimates compared

to the reference over all subjects with the SWASVD pre-processing.

Welch (1) NFB (2) mean (3)

ECG 3.18 (2.94) 2.86 (3.67) 2.74 (3.25)

iPPG 4.06 (1.88) 3.49 (2.32) 3.52 (1.99)
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Figure 6.9: BR estimation (SWASVD pre-processing) from the iPPG- subject 1. (a) Displays the

quality index and (b) the BR estimated from the iPPG and the ECG and the reference.

Figure 6.10: BR estimation (SWASVD pre-processing) from the iPPG- subject 2. (a) Displays

the quality index and (b) the BR estimated from the iPPG and the ECG and the reference.
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6.4 Discussion

6.4.1 Accuracy
The iPPG green channel yielded the inter-beat intervals most similar to those of the ECG,

which corroborates with other works stating that the green wavelength is more suitable than red

and blue to capture skin tone differences due to blood circulation, because of its better absorption

by hemoglobin [247, 249]. The accuracy of the iPPG estimates was slightly less than that of

ECG estimates. However, considering the challenging conditions of the iPPG acquisition and

processing, the errors are still comparable to errors reported in the literature for estimating the

BR from the ECG or the PPG [138, 219].

The two RSA processing schemes were proven to be necessary in extracting a narrow-band

RSA, without using restrictive bandwidths based on general assumptions. The SWASVD scheme

yielded in more accurate estimates and was also computationally less expensive than the SSA

scheme.

It has been shown that the breathing influence on the inter-beat intervals subsists in a weaker

form even without the breathing act [262], which means that apneas cannot be detected reliably

via the inter-beat intervals. Therefore, the subject of apnea detection with iPPG-derived inter-

beat intervals was not addressed in the present study.

This kind of estimation can be combined with other modes of estimating the BR from videos,

for example by using breathing-induced motion [263, 264], as performed recently in [265].

6.4.2 Limitations
In the present study, the subjects were in a supine position. In this case, most often, the breath-

ing influence on the HRV is much stronger than the baroreflex activity, occurring at 0.1 Hz 6.

Therefore, the main component of the HRV in all but one subject was the breathing oscilla-

tion. However, in the orthostatic position, the baroreflex activity would be larger than that of the

breathing and the previous assumption would not hold.

The iPPG waveform contained a large amount of artifacts and noise, in part due to the video

capture, but also due to the waveform extraction procedure. Slight illumination changes and the

movement of the subjects contributed to these artifacts. This modality remains a challenging one

even for HR estimation [257], let alone BR estimation from HRV.

6.5 Conclusion
In this study, real-time BR was estimated from the inter-beat variations of the contactless

iPPG waveform, acquired in visible light with a commercial video-camera. The estimation

errors are comparable to commonly reported errors for BR estimation from the ECG and the

conventional contact-based PPG. Moreover, the data were recorded with varying BRs, which is

challenging. These findings are encouraging in the use of iPPG for real-time contactless BR

monitoring.

6. see Section 2.1 for a brief explanation on the baroreflex mechanism.
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As discussed in Chapter 2, one major influence on the HRV is the RSA, originating from the

breathing. It is of much interest to separate the waveform containing the breathing influence, i.e.

the RSA, from the inter-beat intervals, to either study it alone, for example for the purpose of

estimating the breathing rate as in Chapter 5, or to study breathing-unrelated influences on HRV

as in Chapters 3 and 4. In Chapter 5, breathing was assumed to be the most dominant influence

on the inter-beat intervals due to the particular conditions of the experiments (supine posture).

However, this assumption does not hold in more general conditions. Current methods to identify

the RSA in a generalized scenario, such as those in Chapters 3 and 4, rely on using a reference

breathing waveform. However, in some situations, a breathing waveform cannot be acquired

directly, or historical and retroactive data must be analyzed. The present chapter introduces an

automatic methodology to decompose the inter-beat intervals of a given subject without using

a reference breathing waveform and to classify the components as being related to breathing-

related or not, based on a training set composed of data from independent subjects. An article

based on this study is in preparation.

7.1 Introduction

7.1.1 Identification of the RSA without the reference breathing waveform
As discussed in Chapter 3, the LF and HF powers of the inter-beat intervals time series

are widely used indexes of the autonomic state. However, these indexes rely on an assumption

on the breathing rate (BR), which often does not hold. In Chapter 3, by taking into account the

breathing signal, several avenues for assessing the autonomic state with modified and novel HRV

parameters were explored. These approaches hinge on the identification of the RSA using the

reference breathing waveform.

However, in some applications, in which the cumbersome apparatus for the recording of a

breathing signal cannot be used, such as during athletic training, for practical reasons (e.g., the

inter-beat intervals can be easily recorded with a heart rate monitor [266], while the breathing

signal is less accessible); or applications in which historical or retroactive data must be analyzed,

the reference breathing waveform may not be available. In such cases, it is necessary to deduce

the RSA from the HRV by only using inter-beat intervals. In the seated or supine positions, this

may not be a challenge, as the largest influence on the inter-beat intervals is that of breathing
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as discussed in Chapters 3 and 5. However, in the orthostatic (standing) position, the baroreflex

control of the blood pressure fluctuations greatly influence the inter-beat intervals. Indeed, as

compared to the supine position, assuming an upright position induces a decrease in the blood

pressure, which triggers baroreflex mechanisms to stabilize the latter. This influence may be

equal to or larger than that of breathing.

Current methods to identify and separate the RSA waveform are divided into data-driven

and model-based methods. Data-driven methods use a reference breathing waveform to iden-

tify the RSA, and then proceed to subtracting it to obtain the breathing-unrelated portion of the

intervals [68, 267]. These methods are based on techniques such as adaptive filtering [61, 70],

independent component analysis [268], autoregressive modeling [66], principal component anal-

ysis [62], and subspace projection [68]. Model-based methods describe the relationship between

the inter-beat intervals and the breathing waveform [69].

One method developed to identify the RSA, without using a reference breathing waveform (to

the best of our knowledge), is to analyze the HRV spectrum and to choose plausible breathing-

related peaks in a decision-based manner [269]. Another, designed to study the RSA during

sleep, derived the RSA by decomposing the inter-beat intervals into their oscillatory components

and choosing the first one as the RSA [267].

7.1.2 Motivation and contribution
There is a need for a methodology to efficiently identify the RSA without the use of restric-

tive bandwidths and without the reference breathing in general conditions. The method presented

in [269] does not seem to have found practical application and has not been validated, possibly

due to the lack of robustness in the decision-making step. The method presented in [267] is de-

pendent on a number of assumptions about the inter-beat intervals during sleep, which may not

hold globally. During sleep, one is presumably in the supine position and the baroreflex oscil-

lation is not amplified by sympathetic stimulation. It is reasonable to assume that, during sleep,

the largest influence on the inter-beat intervals is that of breathing. In the present chapter, we

decomposed the inter-beat intervals into a set of (mostly oscillatory) constituents using singular

spectrum analysis (SSA) [258, 259]. A scheme for component grouping and selection was ap-

plied to retain possibly breathing-related components. These components were then classified

with a support vector machine (SVM) scheme as being breathing-related or breathing-unrelated

based on a training set composed of recordings acquired from other subjects, where the reference

breathing (airflow) was available. The experiments were performed in the supine and orthostatic

body postures. These two postural conditions were investigated to include a wide range of auto-

nomic conditions elicited by body posture, as described in Chapter 3. We tested the hypothesis

that removing the estimated breathing leads to similar results as when the reference breathing

waveform is used.

7.2 Materials and Methods

7.2.1 Data
The data from Study 1- Body posture autonomic alteration, described in Section 3.2 were

used in this chapter.

7.2.2 Processing
The ECG R-peaks were extracted using a conventional extrema detection method and man-

ually inspected for artifacts. The R-R intervals were then created by setting the time index of

each interval at its midpoint. There are three distinct steps in the proposed processing: first,
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the decomposition (and component grouping) of the R-R intervals, then the identification of the

breathing component (the RSA) and finally its removal from the R-R intervals. The removal

of the estimated breathing influence was compared to the removal using the reference breathing

waveform. Figure 7.1 illustrates this process.
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Figure 7.1: Diagram of the proposed processing chain to estimate the RSA.

Decomposition of the R-R intervals

The R-R intervals and the reference breathing were re-sampled at 4 Hz using cubic spline

interpolation 1. They were band-pass filtered using an order-18 Butterworth filter between 0.06

Hz and 1 Hz (equivalent to 3.6 to 60 brpm).

The SSA technique [258, 259] was used to decompose the band-pass filtered R-R intervals.

This method was described in Section 6.2. The parameter L, which determines the size of the

trajectory matrix (L × K) is a crucial factor [260, 270]. L depends on the structure of the time-

series and in particular its periodicity. If L is equal to the number of sources which create a

given mixed-source time series, and the sources are independent, then the eigenvectors of the

trajectory matrix will point to the sources [270]. The primary dilemma is the presupposition on

the number of sources. There are studies suggesting to select L based on the position and location

of the peaks of the autocorrelation of the time series [270], which introduces further parameters

required for the selection process and seems counterproductive. In the present chapter, several

values of L were investigated.

After this decomposition, it may be necessary to group similar components and to retain the

pertinent ones. Indeed, in the case of a large value of L, the SSA decomposition may yield several

components for a given frequency. With a hierarchical-tree grouping, similar components were

grouped [271]. This method starts by assigning a class to each component and then clustering

the two (distinct) most similar components to the same class and so on. The similarity criterion

was the cross-correlation between components. Care was taken to group only components with

similar frequencies. It must be noted that for small values of L, it was observed that this grouping

scheme had little effect, but it was necessary for large values of L. After this refinement step, the

five most powerful components were retained.

In summary, for each subject, the R-R intervals were decomposed into five components for

each of the two cases of supine and orthostatic recordings. The order of extraction of each of the

1. described in Appendix A.
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five components reveals its importance (from the power point of view [271]) and is referred to

as the SSA component rank. The estimation and removal of the breathing influence is based on

identifying which one of these five components is breathing-related in each case.

For each component, three attributes were considered: 1) its power, computed in the time-

domain; 2) its dominant frequency, as estimated by the frequency of the peak of its power spec-

trum; 3) its correspondence to the supine or orthostatic body posture.

Identification of the breathing influence

The SSA components were classified using an SVM classifier as being breathing-related

or breathing-unrelated on the basis of the three attributes described previously. To construct

a reference for the training and the evaluation of the classifier, the components were labeled

manually as being breathing-related or not, according to the reference BR. The reference BR

was computed from the breathing signal with the NFB method introduced in Chapter 5.

For each subject, the classifier was trained with the data from all other 20 subjects (there

were 21 subjects in the data set). All 10 components of the test subject were then classified. This

leave-one-subject-out cross validation scheme was adopted to assess how well the results would

generalize to an independent set as our data set was not large enough to be split into training and

testing sets. Polynomial orders from 2 to 6 were considered for the SVM kernel. The components

identified as breathing-related by the classifier were summed to create the estimated RS Aestim,raw.

Removal of the breathing influence

Because of classification errors, RS Aestim,raw may be composed of several components and

may not be narrow band. It is therefore necessary to refine it. To this end, an approximate BR

was estimated from RS Aestim,raw, which was then used to locally filter the R-R interval series

to extract the RSA as in Chapter 3. The RS Aestim,raw was therefore treated as the breathing

waveform in the procedures reported in Section 3.2.2. More specifically, in Equation (3.2), fbr

was replaced by frsa,raw. The instantaneous frequency of RS Aestim,raw, frsa,raw, was computed

with the NFB method. The outcome of Equation (3.2) is RS Aestim, which was then subtracted

from the R-R intervals, as described by Equation (3.3) to yield RRnon−br,estim, the R-R intervals,

devoid of the estimated RSA. For reference, the same procedure was applied by using the BR

obtained from the reference breathing waveform, in other words, fbr and obtaining RRnon−br,re f ,

the R-R intervals devoid of the true breathing influence through Equations (3.2) and (3.3).

7.2.3 Evaluation
Two aspects were evaluated: the identification of the breathing influence on the R-R intervals

and the impact of its removal from the R-R intervals on the power of the latter.

The identification was evaluated from the outcome of the SVM classification with the con-

ventional identification measures of sensitivity, specificity and accuracy, defined in (7.1), (7.2)

and (7.3). The sensitivity or the true positive rate (TPR) reflects the proportion of correctly

identified breathing-related components, the specificity or the true negative rate (TNR) reflects

the proportion of correctly identified breathing-unrelated components, and the accuracy (ACC)

reports the proportion of all true results 2.

T PR =
T P

T P + FN
(7.1)

T NR =
T N

T N + FP
(7.2)

2. Appendix A, Section A.2 expands on classification measures.
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ACC =
T P + T N

T P + T N + FP + FN
(7.3)

The impact of the removal of the estimated breathing influence was evaluated by measuring

the remaining power in the R-R intervals after its application, and by comparing it to the re-

maining power after removal by using the reference breathing signal. In other words, comparing

power(RRnon−br,estim) to power(RRnon−br,re f ). The power was measured in 120-second long seg-

ments with 50% overlap, resulting in 6-7 segments per recording. The values were then averaged

for each recording.

7.3 Results

The reference BRs for all recordings are reported in Fig 7.2. Thirteen subjects (62%) had

BRs below 0.16 Hz (The LF upper limit is 0.15 Hz).

Figure 7.2: The reference BR for all recordings.

7.3.1 Decomposition of the R-R intervals
Figures 7.3 and 7.4 illustrate the decomposition of supine R-R interval time series into their

five main components with L = 8 (L is the length of the SSA trajectory matrix). In one ex-

ample, the first component is breathing-related, and in the other, the second component is the

breathing-related oscillation. Figure 7.5 illustrates the decomposition of R-R intervals acquired

in the orthostatic position. Generally, The most prominent components of the R-R intervals were

the breathing and the baroreflex (occurring around 0.1 Hz) activities. The lower frequency com-

ponents had larger powers and were retrieved in the first SSA ranks. Small values of L (≤ 10)

yielded very dissimilar components. Larger values such as L = 60 resulted in many extra com-

ponents in addition to the breathing and the baroreflex activities. Values of L = 5 to L = 60 were

further considered for systematic evaluation.

Table 7.1 reports the number of manually labeled breathing-related components based on

their rank in the SSA. With L = 5, 8, 10, the breathing-related component was always either

the first or the second most prominent component of the R-R intervals. For supine recordings,

the breathing-related component was often the first component. For orthostatic recordings, it

was often second after the baroreflex component. In some orthostatic recordings, the breathing-

related oscillation was not extracted as a component at all (the rank is reported as “none” in Table
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Figure 7.3: The decomposition of the R-R intervals of a supine recording. The component 1 is

the breathing-related component (L = 8).

Figure 7.4: The decomposition of the R-R intervals of a different supine recording than that of

Figure 7.3. The component 2 is the breathing-related component (L = 8).
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Figure 7.5: The decomposition of the R-R intervals of an orthostatic recording. The component

2 is the breathing-related component (L = 8).

7.1). For example, for L = 8, for six recordings, no breathing-related component was extracted.

Larger values of L (≥ 20) extracted more often a breathing-related component. However, it

was not necessarily in the first or second rank. For L = 60, a breathing-related component

was always extracted, however, it was positioned in various SSA ranks, up to the fifth, meaning

it had a reduced importance in the decomposition. In 9 recordings (21% of recordings), the

BR of the subjects was close to the baroreflex oscillation frequency of 0.1 Hz. In these cases,

the breathing-related and baroreflex activities were extracted as one single component, as it is

difficult to separate frequencies that close.

Table 7.1: The number of the occurrence of the breathing-related component per SSA rank.

There were 21 recordings (subjects) for each of the supine and orthostatic cases.

SSA rank\L 5 8 10 20 60

Supine 1 19 19 17 19 17

2 2 2 4 1 4

none 0 0 0 1 0

Orthostatic 1 6 6 6 8 7

2 10 9 11 8 7

3 0 0 0 3 2

4 0 0 0 0 1

5 0 0 0 0 4

none 5 6 4 2 0
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7.3.2 Identification of the RSA
Figure 7.6 shows the separability of the breathing-related and breathing-unrelated compo-

nents based on their power and frequency features. It can be seen that, generally, the component

spaces of the two conditions are well separated. Breathing-related components are within a cer-

tain frequency range and have rather large powers.

Figure 7.6: The R-R intervals breathing-related and breathing-unrelated components separability.

The frequency (Hz) vs. power (ms2) of the breathing-related and breathing-unrelated components

over all subjects (L = 8).

Figures 7.7, 7.8 and 7.9 illustrate the sensitivity, specificity and accuracy of the classification,

respectively, for values of the SSA trajectory matrix length L = 5 to L = 60 and SVM kernel

polynomial orders 2 to 6. It can be seen that small values of L such as 5 and large values such

as 20 and 60 were not as good as the intermediate values of 8 and 10. Higher order polynomial

kernels yielded in a higher specificity but lower sensitivity, while lower order polynomials re-

sulted in the inverse. Therefore to evaluate the removal of the respiratory influence, the outcome

of classification with L = 8 and an SVM kernel of order 4 was retained.
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Figure 7.7: The sensitivity of the breathing-related/unrelated R-R interval component classifica-

tion as a function of L and the SVM kernel order.
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Figure 7.8: The specificity of the breathing-related/unrelated R-R interval component classifica-

tion as a function of L and the SVM kernel order.
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Figure 7.9: Accuracy of the breathing-related/unrelated R-R interval component classification as

a function of L and the SVM kernel order.
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7.3.3 Removal of the breathing influence
Figure 7.10 shows the power of the R-R intervals, after the removal of the breathing influence

using the RSA or the reference breathing waveform. Removal using the estimated RSA is com-

pared to removal using the reference breathing waveform. It can be observed, that in the supine

position, the distributions are similar. In the orthostatic position, the power seemed larger after

the removal of the estimated rather than the reference breathing waveform, which could be due to

the six recordings in which the breathing-related activity was not extracted as a component form

the R-R intervals at all. However, a hypothesis test (paired t-test) did not reveal statistical differ-

ences in either posture. Furthermore, Fig. 7.11 illustrates the relative difference of RRnon−br,re f

and RRnon−br,estim, i.e., the difference between the two respiration-corrected tachograms, where

the breathing influence was removed either with the estimation or with the reference. It can be

seen that on average, the difference was below 20%.

Figure 7.10: The breathing-unrelated R-R interval power, after removal using the estimated RSA

(estim.) and the reference breathing signal (ref.).

Figure 7.11: The relative power of the difference of the breathing-corrected tachograms, when

the estimated and the reference breathing waveforms were used.
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7.4 Discussion
In the orthostatic posture, due to the changes occurring in the blood pressure, the baroreflex

activity is heightened and is more prominent than in the supine posture. Therefore, it is not

surprising that the breathing-related oscillation was not the most prominent component of the

R-R intervals in this posture. In 62% of the subjects, the resting breathing rate was close to,

or below the usual LF band upper limit. Conventional HRV analysis would clearly not reflect

expected autonomic influences. These elements contribute to the difficulties of identifying the

breathing influence on the R-R intervals in generalized conditions.

The existence and importance (SSA rank) of the breathing-related component of the R-R

intervals was dependent on the SSA trajectory matrix length L as seen in Table 7.1. When L
was small (e.g. 8), the decomposition of 14% of the records did not yield a breathing-related

component. All these cases were related to the orthostatic position and in most of them, the

BR was high, leading to a reduced power of the breathing-related component [272]. Therefore,

the absence of a clear breathing-related component in the decomposition is not surprising in

these cases. For L ≤ 10, 100% of the breathing-related components in the supine position and

71-81% of the breathing-related components in the orthostatic position were extracted in the

SSA first and second ranks. For L = 60 the decomposition always yielded a breathing-related

component. However, it was ranked in the first or second only in 66% of the orthostatic records.

This means that the breathing-related component was not always the most important component.

In the remaining records, its rank was more scattered as third, fourth or fifth, which increased

the difficulty of the classification, as no distinctive trend existed. As a result, the classification

performance was better for L = 8, 10 than for L = 60 as seen in Figures 7.7, 7.8 and 7.9.

The SVM classifier identified the vast majority of the breathing-related components. How-

ever, the order of the kernel polynomial affected the performance. It was found that the third and

fourth order polynomials yielded good overall results as seen in Figures 7.7, 7.8 and 7.9.

The refinement process of the identified component may not seem straightforward. It is not an

absolutely crucial step and in some applications, the raw estimate as identified with the classifier

may be sufficient. A number of different schemes could be employed to refine the estimate,

such as a second SSA pass or EMD. The proposed solution, however, is less computationally

expensive than both the aforementioned options.

Of course, once the RSA is identified, estimating the BR is only one step away. In fact, a

rough BR estimate was computed and utilized in the RSA refinement process. However, given

the SSA decomposition (and to a lesser extent the classification), this entire methodology does

not allow to estimate the BR in a truly real-time manner. The application of the SWASVD

decomposition introduced in Chapter 6 may be a route to rendering the process instantaneous.

Globally, the R-R interval powers were similar whether the reference breathing oscillation or

estimated RSA was used for the removal of the breathing influence as shown in Figure 7.10. The

relative difference was smaller in the supine posture as seen in Figure 7.11. Deeper investigation

into the results revealed that most of the records in which the removal yielded significantly dif-

ferent results compared to the reference, were from subjects whose BRs were near the baroreflex

frequency (0.1 Hz). In this case, it is indeed difficult to separate the breathing influence from

that of the baroreflex and the correction removes all or part of the baroreflex influence. These

subjects represented 24% of our sample, which contained 61% subjects with athletic training. It

would be of interest to investigate the percentage of these subjects in a larger population.

The results for different values of L showed that the choice of L is crucial for the success of

such a scheme. In the present chapter, the value of L was maintained for all recordings and all

subjects. A closer look showed, however, that the optimal value of L was different for different

recordings and different subjects. This chapter did not uncover a theoretical justification for such

differences, and given the nature of the SSA decomposition, such justification would presumably

not be straightforward. One way of choosing a value for each recording would be to do so based
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on the outcome of the decomposition rather than a rule on the input, such as correlation-based

selections of L proposed in literature [260, 270]. One could decompose the input with several

values of L, and based on a quality derived from the decomposition outputs, chose the best value.

Such a scheme would avoid a general sub-optimal pre-selection.

The posture, i.e., supine or orthostatic position adopted during the recordings was a feature

in the recognition of the breathing-related oscillation. However, if the posture is not known,

one could imagine a similar classification scheme using the power and dominant frequency to

recognize the posture from training data, as a first step before identifying the breathing influence.

In view of the results of the leave-one-out cross validation, the classifier can be used for a

subject when it has been trained with data from other subjects. Indeed, in the case of retroactive

or historical data, one may not have access to the same subjects and the same conditions, so

one could construct a training set for the classifier from a completely different set of subjects.

However, we believe that training subjects similar to the test ones in their general characteristics

(age, height, weight, sex), and more importantly their level of athletic training, would yield a

more accurate model for identification of the breathing influence.

In summary, the identification and removal of the breathing-related influence, without the use

of the reference breathing waveform, with the aid of a training set proves to be accurate except

when the subject breathes at a frequency close to the baroreflex mechanism oscillation.

7.5 Conclusion
In the present study, the possibility of identifying the RSA without using a reference breathing

signal was investigated. We found that classifying constituting SSA components of the R-R

intervals of a given subject was accurate in identifying the breathing influence on the basis of a

training set constructed from data of 20 other subjects. Furthermore, we found that removal of

the identified breathing-related oscillation yielded similar results, in terms of breathing-corrected

R-R intervals power, to R-R intervals from which the RSA was removed using the reference

breathing waveform. This work is promising in improving HRV analysis in cases where it is not

possible to acquire a breathing signal or when historical and retroactive data are processed.
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Recognizing human emotions automatically has received much interest in many clinical and

non-clinical fields, such as personality disorders monitoring, multimedia applications with rec-

ommendation and personalization, and improvement of mutual sympathy in human-machine in-

teractions, to cite a few [273–276]. The present chapter explores the automatic recognition of

emotions using the RSA and breathing signals. Elements of this chapter were presented as a

conference paper [277].

8.1 Introduction

8.1.1 What are emotions?

Human emotions, such as happiness, sadness, serenity and anger among others, are men-

tal states originating from the cortex and subcortical regions in the brain, which affect various

systems in the body [274]. The exact definition of emotion is a subject for debate. However, ac-

cording to one well cited source “emotion is defined as an episode of interrelated, synchronized

changes in the states of all or most of the five organismic subsystems in response to the evaluation

of an external or internal stimulus event as relevant to major concerns of the organism” [278].

There are many models to characterize emotions, to facilitate their quantification and use. In

most models, dimensions and intensities are assigned to emotions and emotions are organized

on bipolar scales. One widely used model is the circumplex model, characterized by the two

dimensions of arousal and valence [279], in which arousal is related to inner activation (excited

vs. calm) and valence describes the experienced pleasantness. Emotions are organized in this

two-dimensional space as illustrated in Figure 8.1.

8.1.2 Emotion recognition using physiological signals

The central nervous system is among the many physiological systems affected by emo-

tions [273, 280]. Analyzing brain activity recorded using the electroencephalogram (EEG) has

previously been proposed in emotion recognition [281, 282]. Changes in the EEG are related to

the central nervous system (controlled from the brain) and are a logical avenue to capture emo-

tions even though the exact neurophysiological mechanisms of emotions remain unknown [273].

However, due to the cumbersome apparatus and large number of electrodes necessary for its

recording, the EEG cannot be considered for most mobile applications.

101
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Figure 8.1: The circumplex model of emotions.

Another physiological system affected by emotions is the autonomic nervous system (ANS)

[103]. Brain imaging has identified several brain regions, which are involved in emotional re-

sponses, and present correlations with the ANS [283]. Emotions affect many physiological

signals because the ANS controls a number of body functions with visible and recordable ef-

fects. The cardiac and breathing functions are affected for instance. In addition, sweating in

relation with emotions changes the electrical properties of skin. There is a body of literature

investigating emotion recognition through physiological signals affected by the ANS such as

the ECG, breathing, blood pressure and galvanic skin response (GSR), to cite those most of-

ten used [103, 273, 284, 285]. The correlates of emotions with ANS indexes such as the RSA

have also been investigated, for example in [29, 107], in which the directionality of changes in the

RSA magnitude during positive and negative emotional experience were studied. Decrease in the

RSA following the experience of high-arousal emotions has been reported [29] as well as a gen-

eralized (non-significant) decrease in the RSA with the experience of emotion, irrespective of its

kind [107]. These changes may be dependent on gender and other subject-related factors [107].

Some studies have investigated the RSA as a marker for emotional regulation, for example in re-

lation with cognitive performance or Internet addiction [30, 48]. Abnormal RSA levels have been

observed in impaired emotional regulation [37, 37, 108, 110, 111]. Breathing-related parameters

have also been reported to contribute to RSA responses and it has been suggested to control for

breathing volume among other things when using the RSA in emotion recognition [107].

Several emotion recognition systems based solely on the ECG have been proposed, as this

modality is easy to acquire and process. In these systems, linear and nonlinear features are

typically extracted from the ECG and then classified as corresponding to an emotional state with

SVM or neural network schemes [285–287]. However, the ECG has been shown to be less

reactive to emotions than other modalities such as the GSR [287]. The breathing signal alone

has also been used to recognize distinct emotional states [288]. Using features from several

physiological modalities has been proposed as well, and advocated as being superior to a single

modality alone [281, 289, 290]. The correlations between different modalities has also been

employed in the context of emotion recognition [291].

One of the predicaments in studying emotions is that they have to be artificially elicited in
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the subjects. To this effect, in such studies, stimuli are first chosen and the subjects are exposed

to them. Most of the above-mentioned studies used image stimuli to elicit emotions, and not

always in a random emotional order. Some used music to elicit emotions [273] and others used

films [291]. It has been noted that the type of stimulus and the order of presentation have a rather

large effect on the performance of a given system [273, 286, 287].

8.1.3 Motivation and contribution
With the increasing volume of available multimedia content, especially music video clips,

many diffusion services attempt to recommend personalized contents to users [292]. This rec-

ommendation can be based on the emotions of the user, i.e., the arousal and valence. For instance,

a user might seek exciting and/or pleasant content. Moreover, the recommender can take into ac-

count whether the subject likes the content. Indeed, it is possible that a user likes content with

low arousal and/or negative valence. With this possible application in mind and given the fact

that music video clip stimuli have only attained limited success in emotion recognition [281],

this chapter aims to investigate automatic emotion recognition from the RSA and breathing sig-

nals, as well as their interaction and combination when using music video clips as emotional

stimuli. It is hypothesized that, as both the heart function and breathing are affected by the ANS,

the synchronization of the two is an additional revealing aspect. Furthermore, previous work

has highlighted the need to consider the breathing when using the RSA to study emotions [107].

Features from the RSA and the breathing waveforms, and their interaction are extracted and

classified as related to a particular emotional state with an SVM scheme.

8.2 Methods

8.2.1 Data

Figure 8.2: The sensors used in the acquisition of the DEAP data set. The signals acquired with

the sensors in the dashed rectangle were used in the present chapter. Sensors 7 and 8 were used

to acquired the EMG on the Trapezius muscle, employed as an ECG in the present chapter and

the impedance belt acquired the reference breathing signal. Image from [281], c© 2012 IEEE.

The publicly available Database for Emotion Analysis using Physiological Signals (DEAP)
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[281] was used in the present chapter. This dataset contains EEG, and thirteen peripheral physio-

logical signals, including GSR, blood volume pressure, breathing (impedance belt), skin temper-

ature, electromyogram (EMG) and electro-oculogram recordings from 32 healthy subjects (50%

female) aged between 19 and 37 years (mean age 27 years). The subjects watched, in laboratory

conditions, in the seated position, in random order, 40 one-minute video clips with emotional

content, and rated them on liking, arousal and valence from 1 (negative/low) to 9 (positive/high).

All signals were sampled at 512 Hz. Figure 8.2 illustrates the sensors used to acquire the DEAP

data.

One of the EMG recordings, acquired from the Trapezius muscle (on the shoulder), contains

ECG activity due to the proximity of the electrode location to the heart. In the present chapter, to

infer heart rhythm information, this EMG signal was used instead of the blood volume pressure

signal, as the latter was corrupted for subjects 24 through 32 and of poorer quality than the EMG

signal for at least two other subjects. This EMG signal is hereafter referred to as the ECG signal.

Figure 8.3 illustrates a typical example of the raw ECG (EMG) and breathing signals, which

were used in the present chapter.

Figure 8.3: An example of the raw DEAP signals. (a) ECG; (b) Breathing waveform.

8.2.2 Feature extraction
Extracting the breathing-related oscillations
The first step of the processing chain was to extract the RSA. This was done using the reference

instantaneous breathing rate (BR) to locally filter the R-R intervals as described in Chapter 3,

Section 3.2.2. The breathing waveform was also re-sampled at 4 Hz and locally filtered similarly

to the RSA. This refined breathing waveform is referred to as the breathing oscillation.

Features
The instantaneous heart rate (HR) was computed from the inverse of the R-R intervals. The LF

and HF power of the R-R interval series were computed in a 25 s-long sliding window by in-

tegrating the Welch PSD over the concerned frequency bounds. The power of the RSA signal

was also computed in a 25-s-long sliding window. The instantaneous RSA frequency and the

BR were estimated from the respective signals using the notch filter bank (NFB) method intro-

duced in Chapter 5, Section 5.2.2. The difference between the two frequencies was computed

as well. It is hypothesized that, although this value should be small, it varies with changes in

the relative phases of the two signals and thus could be an indicator of their synchronization.
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The instantaneous amplitudes of the RSA and the breathing oscillation were extracted using the

Hilbert transform (the parameter a in (5.29) in Section 5.2.3). Their ratio was also computed as

it is hypothesized to carry information about the relative importance of the RSA amplitude. The

phase lag (PL) between the two signals was assessed as described in (3.4) in Section 3.2.2. The

slope of the PL (PLslope) and its variability (PLV) were also computed as in Section 3.2.2.

To summarize, a total of 13 features were extracted from the signals acquired from each

subject for each video, of which the following ones are cardiac: the HR, the R-R interval LF

and HF powers, the RSA power, the RSA instantaneous frequency and the RSA amplitude; the

following are breathing-related features: the instantaneous BR and breathing amplitude; and the

following features are jointly from the breathing and the RSA waveforms: the amplitude ratio

of the RSA to the breathing oscillation, the difference in frequency between RSA and breathing,

the PL of the RSA with respect to the breathing waveform, the PLslope and PLV.

Statistical analysis
To assess the relevance of the various features to emotional states, for each subject, the following

statistical analysis was performed:

• the features corresponding to videos with a liking score ≥ 5 were compared to those cor-

responding to videos with liking scores < 5.

• the features corresponding to videos with an arousal score ≥ 5 were compared to those

corresponding to videos with arousal scores < 5.

• the features corresponding to videos with a valence score ≥ 5 were compared to those

corresponding to videos with valence scores < 5.

A Mann-Whitney U test was used for directional hypothesis testing in all the above cases

as it does not require any assumption on the distribution of the data, and can compare sets with

different sizes.

8.2.3 Classification

Three different binary classifiers were build: low/high liking, low/high arousal and posi-

tive/negative valence. To this end, the subjects’ ratings by self-assessment during the experiment

were used as the ground truth. The ratings for each of these scales were thresholded at mid-scale

into two classes (low/high or negative/positive). The signals corresponding to each video were

broken down into 12-s-long non-overlapping windows. 12 seconds is long enough to contain

an entire period of even the slowest BR (5.4 brpm). These windows are hereafter referred to

as single trials. Therefore, for each video, a total of 5 single trials were created. In order to

perform the final classification of signals corresponding to each video, a majority voting on the

results of single-trial classification was performed as depicted in Figure 8.4. An SVM classifier

with a multilayer perceptron kernel was used for the classification of single trials. In order to

evaluate classification performance, a leave-one-video-out cross-validation approach was used.

More precisely, for each subject, all single trials of a given video were left out and the SVM

was trained using the single trials from the remaining (39) video clips. This was repeated for

all videos. The rationale for this cross-validation is that the single trials of a video were not

used both as training and test samples in the cross-validation. Therefore, for testing each video,

the training was performed using 195 trials (5 single trials × 39 videos). It was subsequently

labeled according to the majority voting scheme on its single trials. To quantify the classification

accuracy, the accuracy (ACC), true positive rate (TPR), true negative rate (TNR), false positive

rate (FPR) and false negative rate (FNR) values are reported. These measures were defined in

Chapter 7, Section 7.2.3 1. An ACC value of 0.8 for classifying a subject’s valence, for instance,

1. Appendix A, Section A.2 further expands on classification measures.
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would indicate that for 80% of the video clips (32 out of 40 video clips), the signal-based clas-

sified valence values match the subject’s self-assessments. Similarly, a TPR of 0.8 means that

80% of positive-valence videos were correctly classified as such. A TNR of 0.8 means that

80% of negative-valence videos were correctly labeled as such. An FPR of 0.2 means that 20%

of negative-valence videos were incorrectly labeled as being positive-valence. An FNR of 0.2

means that 20% of positive-valence videos were incorrectly labeled as being negative-valence.

5× single trials
12 s

classify classify classify classify classify

majority 
voting

label: high/low

feature: 60 s

Figure 8.4: The classification of the emotion elicited by one video with 5 single trials using any

given feature.

8.3 Results

8.3.1 Features and statistical analysis

Figure 8.5 shows an example of the RSA and breathing oscillations for one subject, for one

video she/he liked and one video she/he disliked. It can be seen that the signals related to the

video that the subject liked differ considerably in amplitude and frequency from those related to

the video that the subject disliked. In this particular case, the RSA and breathing related to the

liked video were of lower amplitude and frequency than those pertaining to the disliked video.

Figures 8.6 and 8.7 illustrate the difference in frequency between RSA and breathing for one

subject, for liked and a disliked video, respectively. In these two examples, when the subject

liked the content, the RSA and breathing waveforms displayed more erratic behavior than when

the subject disliked the content. Hence, the RSA-breathing frequency difference was less variable

for the disliked video.

Figure 8.8 shows an example of the phase lag between the RSA and the breathing oscillation,

as well as its slope, for one subject, for one video she/he liked and for another she/he disliked.

It can be seen that the features related to video-clips the subject liked differ considerably in

amplitude and variation from those related to video-clips the subject disliked. Both features were

more uniform for video-clips the subject disliked. Similar differences were observed between

videos with low vs. high arousal and positive vs. negative valence.
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Figure 8.5: The RSA (a) and breathing signal (b) for a liked and a disliked video.

Figure 8.6: (a) The RSA and breathing signals; (b) difference in their instantaneous frequency-

liked video.
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Figure 8.7: (a) The RSA and breathing signals; (b) difference in their instantaneous frequency-

disliked video.

Figure 8.8: The PL (a) and PLslope (b) for a liked and a disliked video.



8.3 Results 109

The directionality of the feature trends were not similar for all subjects. For some subjects,

the RSA amplitude was larger when they disliked the content as shown in Figure 8.9 for one

subject. In others, it was the inverse as depicted in Figure 8.10 for another subject. Similarly, in

some subjects, the RSA and breathing frequencies were larger in the case of videos they liked

as in Figures 8.11 and 8.13, but in others they were larger when they disliked the videos as in

Figures 8.12 and 8.14. The frequency difference exhibited opposite trends depending on the

emotion as shown in Figures 8.15 and 8.16 for two different subjects.

Figure 8.9: The RSA amplitude for liked and

disliked videos, for one subject. **p < 0.05. this

caption is too short for my minipage

Figure 8.10: The RSA amplitude for liked and

disliked videos, for another subject than in Fig-

ure 8.9. **p < 0.05.

Figure 8.11: The RSA frequency for liked and

disliked videos, for one subject. **p < 0.05. this

caption is too short for my minipage

Figure 8.12: The RSA frequency for liked and

disliked videos, for another subject than in Fig-

ure 8.11. **p < 0.05.

Table 8.1 reports the statistical relevance of the features. For each feature, the number of

subjects for whom the feature was statistically different in each of the three scenarios of 1) low

vs. high liking, 2) low vs. high arousal and 3) positive vs. negative valence, are reported. The

features showing the largest trends across the subjects were the HR, the HF power, the RSA and
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Figure 8.13: The BR for liked and disliked

videos, for one subject. **p < 0.05. this cap-

tion is too short for my minipage

Figure 8.14: The BR for liked and disliked

videos, for another subject than in Figure 8.13.

**p < 0.05.

Figure 8.15: The frequency difference of the

RSA and the breathing signals for liked and dis-

liked videos, for one subject. **p < 0.05. this

caption is too short for my minipage

Figure 8.16: The frequency difference of the

RSA and the breathing signals for liked and dis-

liked videos, for another subject than in Figure

8.15. **p < 0.05.
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breathing frequencies and their difference.

Table 8.1: Statistical relevance of cardiac and breathing-related features for emotion recognition.

The number of subjects for whom there was a significant difference (p < 0.1) between the feature

for videos with high vs. low liking, high vs. low arousal and positive vs. negative valence are

reported for each feature. The most relevant features are reported in bold.

feature liking arousal valence

HR 12 10 13
R-R LF power 11 8 8

R-R HF power 12 15 6
LF/HF 5 7 9

RSA amplitude 10 9 9

RSA power 9 11 8

RSA frequency 10 9 18
Breathing amplitude 9 6 12

BR 13 7 15
RSA-breathing frequency difference 11 10 8
RSA/breathing amplitude ratio 9 6 13

PL 7 3 6

PLslope 7 4 7

PLV 7 9 12

8.3.2 Classification
Each of the 13 features was used alone in each of the three classification scenarios (low/high

liking, low/high arousal and positive/negative valence). The impact of each feature was assessed

by its average ACC over all subjects. The features resulting in the highest ACC values across

all three classification scenarios were then employed together in classification schemes involving

the best two and the best four features. Table 8.2 summarizes the ACC values for each feature

alone, as well as for several feature combinations. The best classification was obtained with the

frequency difference of the RSA and the breathing waveforms and with the RSA frequency. The

accuracy was slightly lower when combining the best two or the best four features and even all

13 features.

Table 8.3 reports the average (over all subjects) performance metrics using the difference in

frequency between RSA and breathing. The TPR was higher than the TNR, and the FPR was

higher than the FNR.

8.4 Discussion

The directionality and intensity of the changes occurring in the RSA and other features with

emotions were not uniform over the subjects. Opposite trends were even observed as seen in

Figures 8.9 and 8.10 for example. This observation is coherent with the heterogeneous changes

in the RSA with emotions reported in [107] and the accepted notion that there is no unique corre-

spondence between physiological states and emotional states across different individuals [273].

It is therefore beneficial for the recognition system to be personalized for each subject.

It is interesting to note that conventional features, such as the HR and the HF power of the

R-R intervals, although statistically relevant, were not the most discriminant features based on
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Table 8.2: Emotion classification with cardiac and breathing-related features. Av-

erage ACC (STD) values for classification with each feature.

feature liking arousal valence

HR 0.69 (0.11) 0.71 (0.10) 0.72 (0.09)

R-R LF power 0.67 (0.16) 0.63 (0.17) 0.67 (0.09)

R-R HF power 0.69 (0.16) 0.72 (0.14) 0.67 (0.12)

LF/HF 0.56 (0.21) 0.62 (0.16) 0.64 (0.11)

RSA amplitude 0.72 (0.13) 0.68 (0.14) 0.68 (0.10)

RSA frequency 0.75 (0.07) 0.74 (0.07) 0.72 (0.07)

Breathing amplitude 0.73 (0.13) 0.73 (0.08) 0.70 (0.09)

BR 0.74 (0.07) 0.74 (0.08) 0.70 (0.07)

RSA-breathing frequency difference 0.73 (0.09) 0.76 (0.08) 0.72 (0.06)

Ratio RSA/breathing amplitude 0.69 (0.17) 0.65 (0.17) 0.64 (0.14)

PL 0.73 (0.08) 0.72 (0.08) 0.72 (0.06)

PLslope 0.71 (0.12) 0.72 (0.09) 0.70 (0.07)

PLV 0.72 (0.09) 0.75 (0.08) 0.72 (0.06)

best 2� 0.73 (0.06) 0.73 (0.06) 0.70 (0.06)

best 4�� 0.73 (0.07) 0.73 (0.06) 0.70 (0.08)

all 13 0.73 (0.08) 0.71 (0.07) 0.71 (0.09)
�The best two features were those with the largest average ACC over all three classification scenarios and include

the RSA-breathing frequency difference and the RSA frequency.
��The best four features were the RSA-breathing frequency difference, the RSA frequency, the PLV and the BR.

Table 8.3: Emotion classification using the difference in frequency between RSA and breathing.

Average classification measures (STD) over all subjects.

liking arousal valence

TPR 0.83 (0.15) 0.78 (0.19) 0.80 (0.19)

FPR 0.44 (0.30) 0.36 (0.28) 0.41 (0.23)

FNR 0.16 (0.15) 0.21(0.19) 0.19 (0.19)

TNR 0.55 (0.30) 0.63 (0.28) 0.59 (0.23)
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their average performance in the classification of liking, arousal and valence as can be noted in

Table 8.2.

The best features for the classification were the difference in frequency between RSA and

breathing, and the PLV. These two features are related to the synchronization of the RSA and the

breathing waveforms and both are affected by irregularities and sudden shift in the PL. It seems

that changes to the ANS because of emotions has a particular effect on the co-regulation of these

two signals.

The classification performance was better when recognizing high/positive liking, arousal and

valence than when recognizing low/negative states as seen from results reported in Table 8.3.

This large difference in performance might be due to imbalance in the number of instances in

each class. Indeed, some subjects tended to rate the videos rather high or rather low, such that

their scores were not uniformly distributed. Furthermore, contrary to theoretical considerations

and intuition, using a larger number of features degrades the accuracy of the SVM classifier as

observed in Table 8.2. The difference in frequency between RSA breathing achieved the highest

accuracy; however, when this feature was combined with another (best two features) or several

others (best four features), the accuracy dropped. This shows that is it not necessary to combine

many features in order to achieve better accuracy. A single well-chosen feature performs better.

In all the classification scenarios, the labels were separated as pertaining to the two classes

(high vs. low liking, high vs. low arousal and positive vs. negative valence) by placing the

threshold in the middle of the rating scale. However, as the ratings were subjective, the scores

were not necessarily well distributed between the two classes and might be skewed for subjects

who tended to rate generally rather high or rather low on the scale. One way to circumvent this

asymmetry would be to separate the classes such that they contain an equal number of instances.

We chose the midscale threshold primarily to be able to compare our results to those reported in

the literature for the DEAP data set.

It is incorrect to compare our results to those of other studies that used different stimuli

and different subjects, thus we limit ourselves to the comparison of our method to the system

presented in [281]. On the DEAP dataset, the authors used a total of 106 features extracted

from the recorded peripheral physiological signals, of which 14 were related to the HR and 19

were related to breathing. They reported ACC values of 0.59, 0.57 and 0.62 for liking, arousal

and valence, respectively, for the 106 features used together. These values were similar to those

obtained with EEG features. In the present study, we used only two signals, namely the ECG

and the breathing waveform, and we obtained much higher ACC values of 0.73, 0.76 and 0.72

for the classification of liking, arousal and valence, respectively.

There is no unique accepted way for extracting the RSA. Although the methodology em-

ployed throughout this thesis proved to be adequate for the tasks we selected, it must be noted

that other methods can be used as well. In fact in [277], which was our paper used as the basis

for the present chapter, the RSA was extracted using an SSA-based scheme. Although the results

were slightly different than those reported in the present chapter, the overall accuracy of emotion

recognition with the RSA remains similar in both cases. In [277], phase indexes were also found

to be the most pertinent in relation to emotions.

8.5 Conclusion

We presented a scheme, which uses one and at most two physiological signals, namely the

RSA and the breathing signals, to recognize emotions elicited by music video clips. Our method-

ology was based on the RSA waveform extracted from the inter-beat intervals using the local

filtering scheme described in Chapter 3. We further successfully employed features based on the

phase lag between the RSA and the breathing waveform (introduced in Chapter 3) to classify

emotional states. This system was evaluated on a public dataset, and achieved higher accuracy
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than the state-of-the-art, while employing a smaller number of physiological signals and features.

This system is a good candidate for portable monitoring systems because of the ease of acquisi-

tion of the two signals, compared to other modalities conventionally used in emotion recognition,

such as the EEG.
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Automatic screening of sleep apnea has gained interest recently with the advent of portable

monitoring devices such as wearables. In the present chapter, particularities of sleep apnea events

are investigated from the stand-point of the physiological changes induced by apneas on the RSA

and the breathing waveforms, by using signals acquired with a smart-shirt. Elements of this

chapter were presented in a conference paper [293].

9.1 Introduction

9.1.1 Sleep apnea
Sleep apnea is a common condition with many implications on health and well-being [294].

Sleep apnea is characterized by pauses in breathing or by shallow breaths during sleep. These

episodes can last from a few seconds to minutes. Apnea episodes are divided into three categories

according to their severity and physiological causes. The first category, obstructive sleep apnea,

is caused by the blockage of the upper airway. The second category, central sleep apnea, occurs

when the neural drive to the muscles involved in breathing is transiently abolished and breathing

is completely ceased. The third and mildest kind, hypopnea, occurs due to a partial cessation

of breathing. To classify different kinds of apnea, some criteria have been established based

on the decrease of the breathing amplitude, oxygen desaturation and the duration of the event

[295]. These transient instabilities of the breathing process cause restless sleep and are liked to

an elevated risk of cardio-vascular disease [294].

9.1.2 Sleep apnea detection using physiological signals
The gold standard method in sleep apnea detection is polysomnography (PSG) [295]. PSG

is performed at a sleep laboratory, where the subject sleeps while wearing multiple sensors to

measure physiological signals. Over 20 different physiological signals such as nasal airflow,

ECG and EEG among others are acquired and analyzed a posteriori in 30 seconds segments by a

specialist to detect apnea events.

The bulky and uncomfortable acquisition devices, as well as the fact that the evaluation must

take place in a clinical facility, hinder the routine and widespread use of this technique for sleep

apnea screening over long periods of time. It is therefore of practical interest to devise methods,

which use physiological signals acquired in a comfortable manner, for sleep apnea screening.

A number of studies have been carried out on apnea detection using signals such as the ECG

115
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and the breathing waveform. These signals are of interest as they can be acquired easily using

wearable devices in non-laboratory conditions.

There have been many studies on the detection of sleep apnea using ECG signals. In [296],

nearest neighbor classification was performed using features related to the power in several fre-

quency bands of the HRV to detect apneas (undisclosed category) with an accuracy of 88% on

a public data set of 50 subjects. In [297, 298], between 40 to 111 time-domain and spectral

features were extracted from the ECG, and an SVM classifier was used to detect apnea episodes,

irrespective of their kind (central apneas or hypopneas). The features included mean and standard

deviations of the R-R intervals, an ECG-derived breathing waveform, and energy features related

to a wavelet decomposition of the R-R intervals, among several others. Both studies used a pub-

licly available ECG dataset containing 70 recordings, each about eight-hours long and reported

an accuracy of 88% [298] and a sensitivity of 96% [297]. The breathing signal has also been

used in the context of apnea detection. In [299], central apnea and hypopnea events confounded

were detected using an SVM classifier with an accuracy of 96% with features derived from the

amplitude and frequency of the breathing signal on proprietary data. In a recent study, the RSA,

as defined by the cross-correlation between the R-R intervals series and the breathing waveform

was employed to detect obstructive sleep apnea [75]. In segments of data related to obstructive

sleep apnea, the cross-correlation was markedly reduced compared to normal sleep.

9.1.3 Motivation and contributions
In the present study, ECG and breathing waveforms were acquired using a smart-shirt during

a night sleep. The goal of this study was to devise features with clinical relevance and inter-

pretation, from ECG and breathing recordings obtained with a convenient recording method, to

detect sleep apnea episodes. Given that the ECG and the breathing signals alone have already

been investigated for apnea detection, for example in [298, 299], the present chapter focuses on

the RSA and several novel aspects of its relationship with the breathing waveform as potential

features for apnea detection. To this end, several indexes were extracted from each signal alone,

and several were computed jointly from the two. In addition to conventional features such as

the amplitude of the breathing signal, phase indexes related to the relationship between RSA and

breathing were also investigated.

Data recorded with the smart-shirt were favored over existing datasets because of the ease-

of-use and comfort for the subject of such acquisition devices. Indeed, several publicly available

PSG datasets exist [242, 300, 301], that contain the breathing and the ECG signals among others.

In conventional PSG, the breathing waveform can be acquired as the nasal airflow or chest/ab-

domen movements (impedance belt) or both. For example, in [299], the PSG airflow signal was

used. Furthermore, there is little literature on multi-modal breathing/ECG signals to detect sleep

apnea. These motivations gave rise to this chapter on apnea screening using smart-shirt-acquired

cardiac and breathing signals.

9.2 Methods

9.2.1 Data
Data were recorded from 12 subjects during three nights. The subjects were all healthy adult

males (age 33 ± 9.4 years, height 179 ± 4 cm, weight 75.4 ± 6.8 kg) with a minimum of 3 hours-

per-week physical training. None lived in altitude or was exposed to altitude the two weeks

prior to the study. In a randomized order, they slept one night at 3450 m altitude (Jungfraujoch,

Switzerland), one night in simulated 3450 m altitude (hypoxic chamber, Sion, Switzerland), and

one night near sea-level (500 m). Acquisition nights were spaced by at least 10 days in normal
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conditions. Over the duration of each night, ECG and breathing (thoracic impedance) wave-

forms, as well as conventional PSG data were collected for each subject. The ECG and breath-

ing waveforms were acquired by an instrumented smart-shirt (model SEW, CSEM, Neuchâtel,

Switzerland) [10] worn by the subjects. Sample signals are presented in Figure 9.1). The ECG

was sampled at 250 Hz and the breathing waveform was sampled at 25 Hz. The protocol was ap-

proved by the institutional ethical committee (CCVEM, 051/09) and all subjects gave informed

consent 1.

Figure 9.1: An example of the (a) breathing and (b) ECG waveforms acquired by the smart-shirt

during hypopnea episodes (indicated by yellow rectangles).

Due to poor recording conditions (non-laboratory conditions) only 16 recordings over all

subjects and all nights were usable and constituted a the data set for the present chapter. The

PSG data were analyzed by an expert and periods of wake, central apnea, hypopnea and micro-

arousals were identified and marked. The PSG data constituted the ground-truth. Table 9.1

contains the number of apnea episodes per usable recording as well as the duration of each

recording. Recordings 1, 2, 4, 12, 14 and 16 were acquired in altitude. It is known that there

is an alteration in the breathing pattern when one sleeps in altitude, which could account for the

increased number of apneas in the recordings acquired in these conditions [302].

9.2.2 Data processing and feature extraction
Data were processed in 5-minute-long segments. The breathing waveform and ECG R-peaks

were processed as described in Chapter 8 to yield the RSA and the breathing oscillation wave-

forms. For several recordings, there were segments of bad quality ECG (possibly due to a loss of

contact between electrodes and skin), where no R-peaks could be extracted. To avoid processing

such segments further, 5-minute-long segments were marked as having poor quality, if the heart

rate was lower than 30 bpm.

From the breathing signal, the instantaneous breathing rate (BR) was computed with the

NFB algorithm (see Chapter 5). The amplitude of the breathing waveform was estimated as the

half-sum of its upper and lower envelopes. The envelopes were computed by interpolating the

local maxima and minima, identified in windows with lengths defined by the main period of the

1. The data were acquired in a multi-institutional project, with the following persons involved: Grégoire P. Millet

and Jonas Saugy from the Institute of Sport Science of the University of Lausanne, Raphaël Heinzer from the University

Hospital (CHUV) in Lausanne and Thomas Rupp from the Laboratoire de Physiologie de l’Exercice of the Université de

Savoie in Chambéry, France
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Table 9.1: The number of sleep apnea episodes (c. ap.: central apnea, hypop.: hypopnea) and

their average durations (STD) per recording (RC. recording).

RC. c. ap. dur. (s) hypop. dur. (s) RC. dur. (h)

1 132 12 (1) 323 15 (5) 8.06

2 1 11 100 12 (2) 6.4

3 3 13 (2) 32 30 (17) 7.4

4 1 12 111 19 (9) 7.39

5 0 - 26 12 (1) 5.92

6 1 12 63 27 (16) 6.85

7 0 - 14 12 (3) 7.28

8 0 - 13 16 (8) 8.25

9 0 - 70 13 (3) 7.99

10 5 13 (2) 39 22 (9) 6.25

11 1 20 49 33 (27) 6.93

12 3 13 (3) 112 17 (9) 7.58

13 1 11 23 12 (2) 6.7

14 3 12 (1) 30 14 (3) 7.32

15 3 15 (3) 5 32 (36) 7.51

16 0 - 17 17 (11) 7.28

breathing oscillations. The latter was computed from the BR. An additional amplitude index was

also computed to account for the change in the breathing amplitude during apneas. For each

sample, a 10-s-long window centered on it was considered. The amplitude index was computed

as the ratio of the maximum of the envelope of the breathing waveform in the 2 seconds preceding

the 10-s to the mean envelope during the 10-s window [303] 2.

The instantaneous RSA frequency was estimated using the NFB algorithm similarly to BR

estimation. The RSA amplitude was also computed similarly to the breathing amplitude, as

described previously. The RSA power was computed by integrating its power spectral density, in

a 30-second-long sliding window.

The phase lag (PL) between the RSA and the breathing waveform was computed as described

in Chapter 3, Section 3.2.2. The PL slope (PLslope), its variance (PLV), and synchronization

(PLS), were also computed as described in Section 3.2.2.

9.2.3 Statistical analysis and classification
The features were compared during apnea episodes and during normal sleep (periods of wake

and arousal were excluded) using a Mann-Whitney U-test.

Given that the duration of the apnea episodes was between 12 and 30 seconds, classification

was performed on 10-s epochs, with 50% overlap. Each epoch was labeled as follows: if more

than half of it was during a central apnea or hyponea episode, it was labeled as apneic. If it

was not apneic, not related periods of wake and arousal and was not within a poor quality data

segment, it was labeled as normal. Central apneas and hypopneas were confounded here as there

were too few central apneas in the dataset for this category to be considered separately.

Classification was performed using a k-Nearest Neighbor (k-NN) scheme. This non-parametric

classification scheme assigns labels based on the nearest neighbors of an instance in the training

set. For k = 1, the classifier assigns the label of the nearest neighbor of the input in the train-

ing set. For k > 1, the label is assigned with majority voting. Several values were empirically

2. Based on an implementation by Sibylle Fallet [293].
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tested for, and k = 1 and k = 3 were retained as yielding the most accurate results. For each

recording, 10% of the apneic epochs and 10% of the normal epochs were retained as a test set.

The remainder was used as a training set. This scheme was adopted to reflect the real ratio of

normal to apneic epochs in the training and test sets, as classification of unbalanced data is noto-

riously problematic [304]. A 10-fold cross validation was performed to assess the classification

performance.

Classification was performed and evaluated in a per-subject manner. The rationale is that such

physiological features are strongly subject-dependent and vary with age, gender, and physiology

in general. Moreover, apnea screening is usually performed for a person in particular, therefore,

one can expect the screening method to be personalized.

The task at hand was the identification of apnea events from normal sleep. Given that the

classification is actually an identification problem, reporting a classification accuracy may be

misleading and insufficient to assess the performance. There were generally much more normal

epochs than apneic epochs, if a classifier assigns normal labels to all epochs, a high accuracy is

achieved even though no apneic episodes were actually identified. Therefore the performance is

reported here with the sensitivity, specificity, precision and F-score. The sensitivity or true posi-

tive rate (TPR) is the ratio of identified apnea events and is computed as in (9.1). The precision is

the fraction of the retrieved positives which are actually real positives and is computed according

to (9.2). The specificity or true negative rate (TNR) is the ratio of normal sleep classified as

normal sleep measured according to (9.3). The F-score is the combination of the sensitivity and

precision, and is a general indicator of the accuracy of the identification measured as in (9.4) 3.

For comparison purposes, given the ratio of apneic epochs to normal epochs, the values of

the classification metrics for a random guess classification were calculated for each recording.

An example is given: Consider that for a recording with 100 epochs, 10 are apneic and 90 are

normal. The random guess assigns an apneic label to 50 and a normal label to 50 in a random

manner. If we assume that of the 10 actual apneic epochs, half are labeled as apneic, of the first

50, 5 are true positives (TP), the other 45 are false positives (FP). From the second 50, 5 are false

negatives (FN) and the other 45 are true negatives (TN). Then the random guess specificity is

0.5 (half the normal sleep epochs are labeled as such), the random guess sensitivity is also 0.5

(half the apnea epochs are labeled as such), the random guess precision is 0.1 (only 10% of the

labeled positives are actually apneas) and the random guess F-score is 0.16. In fact, the precision

is equivalent to the proportion of apneic epochs from all epochs. This particular definition of a

random guess assigns apneic labels to half the epochs. It could be conceivable to assign labels

based on an a priori guess about the number of apneic epochs. For example by assuming that only

10% of all epochs should be assigned an apneic label. In this case, the precision would be even

lower, given that there is a small probability that that small number of apneic labels be assigned

to actual apneic epochs. Moreover, computing such probabilities are less straightforward and are

therefore not considered at all here.

sensitivity =
T P

T P + FN
(9.1)

precision =
T P

T P + FP
(9.2)

speci f icity =
T N

T N + FP
(9.3)

F-score = 2
precision × sensitivity
precision + sensitivity

(9.4)

3. Appendix A extends on the performance assessment of classification.
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9.3 Results

9.3.1 Illustrative examples and statistical analysis
Most of the apneic events were hypopneas, which are the mildest kind of apnea. These events

induce smaller amplitude changes compared to central and obstructive apneas. Generally, during

a hypopnea episode, the breathing amplitude and consequently the RSA decreased, yielding an

increase in the amplitude index. The PLV increased as a result of the disorganization of the

waveforms, which can be observed visually in Figure 9.2.

Figure 9.2: An example of the RSA and breathing waveforms, and the amplitude index and PLV

during a hypopnea episode. The hypopnea episode is highlighted in gray.

Table 9.2 reports, for each feature and each condition, the number of recordings, for which

there was a statistical difference (p<0.05), between normal sleep and each condition. The most

discriminant features were the BR, breathing amplitude, amplitude index, RSA frequency, PLV

and PLS.

Table 9.2: The statistical relevance of the cardiac and breathing-related features for sleep ap-

nea detection. The number of recordings (16 total) in which there was a significant difference

(p<0.05) between the feature for normal sleep and for specific events are reported.

Hypopnea Central apnea Both confounded

BR 16 11 16

Breathing amplitude 16 9 16

Amp index 16 11 16

RSA frequency 16 11 16

RSA power 15 11 14

RSA amplitude 15 10 13

PL 13 9 12

PLslope 9 7 10

PLV 16 10 15

PLS 16 10 15

The analysis of the amplitude index in hypopneas vs. normal sleep for one subject in Figure

9.3 shows this difference over one night.
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Figure 9.3: The amplitude index for normal

sleep and hypopnea episodes for one subject.

**p<0.05.

Figure 9.4: The BR for normal sleep and hy-

popnea episodes for one subject. **p<0.05.this

caption is too short

As expected, the BR decreased during hypopneas as seen for one subject in Figure 9.4. The

PLV increased during hypopnea episodes and the PLS decreased, as seen in Figures 9.5 and 9.6.

Figure 9.5: The PLV for normal sleep and hy-

popnea episodes for one subject. **p<0.05.

Figure 9.6: The PLS for normal sleep and hy-

popnea episodes for one subject. **p<0.05.

9.3.2 Classification performance
Table 9.3 reports the number of apneic and normal epochs per recording. Because of the

small number of apneas in 7, 8, 13, 15 and 16, these recordings were excluded for classification.

Based on the proportion of apneic epochs, the values of the classification measures for a random

guess are reported as well. It can be seen that between 2% and 26% of the epochs were apneic

and for most recordings, this ratio was below 10%. The random guess F-scores were between

0.03 and 0.34.

Table 9.4 reports the classification performance for each recording when using all ten fea-
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Table 9.3: The number of apneic and normal epochs and random guess values for the classifica-

tion performance measures.

RC. nb apnea nb normal specificity sensitivity precision F-score

1 980 2863 0.50 0.50 0.26 0.34

2 243 4364 0.50 0.50 0.05 0.10

3 203 5130 0.50 0.50 0.04 0.07

4 425 4896 0.50 0.50 0.08 0.14

5 65 4200 0.50 0.50 0.02 0.03

6 355 4576 0.50 0.50 0.07 0.13

9 177 5420 0.50 0.50 0.03 0.06

10 190 4075 0.50 0.50 0.04 0.08

11 332 4617 0.50 0.50 0.07 0.12

12 389 4704 0.50 0.50 0.08 0.13

14 88 5041 0.50 0.50 0.02 0.03

tures. The k-NN classifier was trained with k = 3. It can be seen that the classification was

much better than a random guess. The sensitivity was high, often above 0.85. This means that

the 3-NN classifier labeled normal sleep mostly as such. The sensitivity was mostly close to 0.5,

meaning that roughly half the apnea events were identified. This is similar to a random guess.

However, the precision and the F-score of the 3-NN classifier were much higher than the random

guess, meaning that the former labeled a smaller number of normal epochs as apneic compared

to the latter. Table 9.5 reports the same values but for a 1-NN classifier. This classifier performed

with a generally lower specificity and sensitivity than the 3-NN but with a higher precision. The

F-scores were not much different in the two cases.

Table 9.4: Identification of apnea epochs with a 3-NN classifier trained with all features.

RC. specificity sensitivity precision F-score

1 0.58 0.77 0.39 0.52

2 0.89 0.39 0.16 0.22

3 0.93 0.50 0.21 0.30

4 0.84 0.52 0.23 0.32

5 0.96 0.33 0.14 0.19

6 0.86 0.53 0.23 0.32

9 0.93 0.42 0.16 0.23

10 0.92 0.52 0.22 0.31

11 0.86 0.60 0.24 0.34

12 0.85 0.57 0.24 0.34

14 0.95 0.17 0.06 0.09

Table 9.6 and 9.7 report the classification performance using each feature alone for record-

ings 1 and 10, respectively. For recording 1, the best features were, in order, the amplitude index,

the BR, the RSA frequency, and the PLS. The amplitude index yielded the same F-score as clas-

sification with all ten features. None of the other features alone was as good. For recording 10,

the best features were the PLS, the amplitude index, breathing amplitude and the RSA amplitude.

The F-score for the PLS and the amplitude index alone was better than that of classification with

all ten features. Other features alone were not as good as all ten combined. Examination of clas-

sification with each feature alone for other recordings (see tables in Appendix D) revealed that
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Table 9.5: Identification of apnea epochs with a 1-NN classifier trained with all features.

RC. specificity sensitivity precision F-score

1 0.83 0.50 0.50 0.50

2 0.96 0.23 0.23 0.23

3 0.98 0.37 0.43 0.39

4 0.94 0.34 0.32 0.33

5 0.99 0.16 0.25 0.19

6 0.95 0.33 0.35 0.34

9 0.98 0.29 0.34 0.30

10 0.98 0.28 0.37 0.32

11 0.95 0.42 0.38 0.40

12 0.95 0.32 0.34 0.33

14 0.98 0.12 0.11 0.11

for different recordings, different features were relevant but that generally, the amplitude features

and the PLS were often among the most discriminant ones in apnea detection.

Table 9.6: Identification of apnea epochs with a 1-NN classifier trained with each feature alone

for recording 1.

specificity sensitivity precision F-score

BR 0.80 0.40 0.40 0.40
Breathing amplitude 0.83 0.30 0.38 0.33

Amplitude index 0.83 0.52 0.51 0.52
RSA frequency 0.80 0.38 0.40 0.38
RSA power 0.80 0.33 0.36 0.34

RSA amplitude 0.81 0.32 0.37 0.34

PL 0.78 0.30 0.32 0.31

PLslope 0.77 0.33 0.33 0.33

PLV 0.77 0.32 0.33 0.32

PLS 0.80 0.35 0.37 0.36

9.4 Discussion

Generally, as expected, breathing became strongly reduced and even sometimes non-existent

during apneas. Indexes based on the amplitude of the breathing waveform and the RSA were

the best for the identification of apnea episodes. This observation is in line with the results

reported in [75], where the amplitude of the RSA, as measured by the cross-correlation between

the breathing waveform and the R-R intervals series was also shown to be a discriminant feature

in detecting obstructive sleep apneas. In particular, the amplitude index, measuring the evolution

of the breathing amplitude was often the most discriminant feature. Indexes pertaining to the

phase lag of the RSA with respect to the breathing waveform were not as good as the amplitude

indexes. However, the phase lag synchronization was the best phase-related feature.

It must be noted that, given the rather small size of the dataset and the quality of the data,

it was not possible to investigate differences in apnea detection between recordings related to

normal or hypoxic conditions. Generally, a larger number of hypopnea episodes occurred while
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Table 9.7: Identification of apnea epochs with a 1-NN classifier trained with each feature alone

for recording 10.

specificity sensitivity precision F-score

BR 0.96 0.21 0.19 0.20

Breathing amplitude 0.97 0.27 0.31 0.29
Amplitude index 0.98 0.31 0.43 0.35
RSA frequency 0.97 0.16 0.18 0.17

RSA power 0.97 0.11 0.13 0.11

RSA amplitude 0.97 0.24 0.28 0.25
PL 0.96 0.21 0.22 0.21

PLslope 0.97 0.20 0.22 0.21

PLV 0.97 0.21 0.24 0.22

PLS 0.97 0.34 0.39 0.36

the subjects slept at real altitude compared to when they slept in a hypoxic chamber or normally.

The number of central apneas did not seem to vary notably with altitude, although the generally

small number of central apneas may not allow to distinguish an effect of the altitude.

There were many limitations in the classification of apnea episodes. With one or two nights

of data per subject, recorded in different conditions (altitude), one cannot realistically build a

classifier. Furthermore, the number of apnea episodes per recording was very variable, which

affects the training of any classifier. There was far more data pertaining to normal sleep than to

apnea conditions. Typically, over a recording, apnea (mostly hypopnea) events occurred in about

5% of the recording duration. Such imbalance is notoriously difficult to handle in classification

schemes and an entire branch of the machine learning field is devoted to it [304]. Last but not

least, the signals were acquired with a smart-shirt, and differed considerably from typical good

quality signals recorded in the framework of PSG.

Preliminary attempts to classify apnea episodes are encouraging and with more sophisticated

classifiers, these features may have a potential to detect apnea episodes. It must be noted that

the purpose of this chapter was merely investigative. The effect of sleep apnea on the RSA and

ANS indexes was of interest and developing a robust and precise classification scheme was not a

primary aim. Apnea episodes (hypopnea and central apnea confounded) were identified with a set

of ten features extracted from the breathing waveform, the RSA and their relationship. Although

not very high, the precision and the F-score of the classification were much larger than that of

a random guess. The vast majority of the apnea episodes in the data were hypopneas, which

are a mild kind of apnea, unlike central apneas and obstructive apneas. Presumably, the more

distinctive effects of these sever apneas on physiological signals makes them easier to identify.

The high precision reported in [298, 299] for apnea detection with the ECG or the breathing

waveform alone may be related to several factors. The quality of the signals plays an important

role. Unlike the signals used in the present chapter, those used in [298, 299] were acquired in

laboratory settings. Furthermore, the airflow signal used in [299] is generally a better breathing

signal than that of an impedance belt, prone to movement artifacts. Furthermore, it must be

noted that wearing a mask all night provides less comfort for the subject than wearing a garment

with integrated sensors. The impact of the recording conditions on the results is non-negligible

and for a given system to be scalable to a real situation, one must validate methods in non-

laboratory conditions. The scheme for classification validation and performance measurement

may also have a large effect on the performance metrics. In the present chapter, when the test set

was composed of an equal number of apneic and normal epochs, the performance metrics were

improved several-fold. However, this scenario is not representative of a real situation.
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The dependency of sleep apneas on the activity of the autonomic nervous system (ANS)

[305] may be reflected by the RSA because of its link to the ANS. In [305], it was shown that the

sympathetic nervous system is influenced by the sleep cycle. In addition, different sleep stages

are associated with a dominant sympathetic or parasympathetic ANS activity [306]. Further

investigation on such phase relationships could reveal a link between the sympathetic regulation

of breathing and the RSA. However, this aspect is purely hypothetical at this stage.

All the signal processing techniques employed in the present chapter are real-time capable.

Provided a prior trained classifier, apnea detection can be performed in near-real-time as the

k-NN classifier is a fast and relatively simple method.

9.5 Conclusion
In this chapter, features pertaining to the detection of sleep apnea episodes from the ECG

and breathing signals acquired with a wearable smart-shirt were presented. These features were

computed from the RSA and breathing waveforms and their phase relationship. In particular

amplitude indexes were the most relevant for apnea detection. The synchronization of the phase

lag between the RSA and the breathing waveforms was also interestingly discriminative for this

task. A preliminary identification scheme to automatically label segments of data as being apneic

or normal proved encouraging for the use of these indexes in conjunction with conventional ECG

and breathing-related measures already accepted in literature for apnea detection.
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This thesis finds its place at an intersection between physiology and medical sciences on one

hand, and signal processing and information technology on the other hand.

The main focus of this thesis was the relationship, mediated by the autonomic nervous system

(ANS), between cardiac and breathing activities, as analyzed using carefully selected, adapted

and designed signal processing methods. Special emphasis was placed on methods with end-

applications in real-life, particularly with personal health monitoring devices, such as wearables.

To begin, we described the physiological basis of the relationship between the cardiac and

breathing rhythms. The regulation of the heart rate by the ANS was reviewed and the importance

of studying cardiac ANS-related phenomena outlined. In particular, we underlined respiratory

sinus arrhythmia (RSA) as one of the main elements of this regulation. The importance of this

entity in the regulation of the cardiac and breathing rhythms, studied through heart rate variability

(HRV) analysis, and its benefit to many health-related ventures were put forth through a survey

of relevant literature.

We then argued several inconsistencies and shortcomings of current signal processing method-

ologies in the study and use of these (becoming ever more) widespread physiological phenomena.

We demonstrated dilemmas involved with the fixed bandwidths employed in conventional HRV

analysis and built a case to take into consideration breathing when discriminating between the

various influences on the HRV. On a physiological basis, and bearing in mind health monitoring

implications such as clinical interpretation and real-time processing, we introduced a methodol-

ogy to define and measure the RSA and several other aspects of the relationship between cardiac

and breathing rhythms. We developed and put to trial novel indexes based on this relationship

using data acquired in the framework of collaborative projects. We especially investigated the

particularities of autonomic modification with posture changes, ANS receptor antagonist and pro-

tagonist drugs, and altitude exposure. Our evaluations demonstrated areas in which the concepts

introduced could complete and improve current techniques, as markers of the cardio-respiratory

regulation in general.

On a different but related note, as a result of the relationship between cardiac and breathing

rhythms, cardiac signals can be used to infer breathing information. This aspect is becoming

increasingly important in the context of mobile health monitoring. Indeed, by using one type of

sensor and one type of signal to measure several phenomena, there is an improvement in the cost

and ease-of-use of devices. By applying a real-time capable and multi-variate algorithm devel-

oped previously in our group, we built on recent advances in the field of breathing rate estimation

from cardiac activity. While answering to a major shortcoming of this existing method, namely

the problem of delays in real-time processing, we designed a novel algorithm with the important

requirement of minimal delays. We applied and evaluated this algorithm not only with inputs ex-
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tracted from ECGs, but also using the novel imaging photoplethysmography cardiac monitoring

technology. We also showed that this algorithm can be applied to estimating the instantaneous

rhythm of other oscillatory signals, for example to estimate the instantaneous breathing rate from

the breathing signal.

Acknowledging that such estimation of breathing parameters from cardiac recordings de-

pends on assumptions about the acquisition conditions (mostly the body posture of the subject),

we proposed a general methodology to separate breathing influences from cardiac recordings

without making any kind of a priori assumptions. It must be added here that this work was trig-

gered by a need for such specific methodology for a study being carried out by the Institute of

Sport Science of the University of Lausanne (ISSUL). The ISSUL intended to analyze HRV on

historical data acquired in the past, and over a number of years from high-level athletes. This

data did not comprise recordings of a breathing waveform, therefore to apply breathing-aware

HRV processing, there was a clear need to identify the breathing influence without a reference.

We discovered that this task was non-trivial, and accordingly, devised methodology to cater to

the generalized conditions.

Aside from the important application of breathing rate estimation, we applied the RSA es-

timation and frequency estimation algorithms developed in this thesis to other ventures. In par-

ticular, emotion recognition and sleep apnea screening using cardiac and breathing signals were

chosen. Our proposals built on previous achievements in the field to take the processing one step

closer to the user end of any biomedical system, by contributing to real-time processing, inter-

pretable processing, and by introducing novel indexes based on the complexity of the relationship

between cardiac and breathing rhythms.

10.1 Summary of achievements

Robust and breathing-aware RSA extraction with and without the reference
breathing waveform

In Chapter 3, we extracted the RSA by filtering the heart inter-beat intervals with a time-

varying IIR filter, centered on the local instantaneous breathing rate. This methodology ensures

the RSA is in fact related to the real breathing rate and is not merely based on a generic as-

sumption about the mean breathing rate in humans. The need to continuously adjust method

parameters based on the study population or conditions thereby disappears. Furthermore, the

filtering operation always extracts an oscillatory component due to the width of the band-pass.

Therefore, this methodology also serves as a noise-removal scheme and ensures accuracy of the

phase calculations. HRV parameters measured from the RSA extracted with this methodology

were physiologically more relevant than those measured with conventional methods as demon-

strated in Chapters 3 and 4. In addition to yielding a robust and instantaneous RSA waveform,

this methodology also resulted in the creation of successful features for emotion recognition in

Chapter 8 and for sleep apnea detection in Chapter 9.

On data acquired in supine and standing positions, it arose that, in such heterogeneous acqui-

sition conditions, identifying and isolating the RSA without making use of the reference breath-

ing waveform was not straightforward. Therefore, in Chapter 7 we proposed a methodology to

decompose the heart inter-beat intervals into oscillatory constituents, and using a model, identify

the one related to breathing, in other words the RSA. We performed classification using a previ-

ously validated model created from a set of independent subjects. In light of the success of this

methodology, it can be applied to target historical data.
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Novel markers of the relationship between cardiac and breathing rhythms

In this dissertation, we studied several aspects of the relationship between cardiac and breath-

ing rhythms, which have remained largely unexplored until today. In particular the phase rela-

tionship between the cardiac and breathing activities was investigated in Chapters 3 and 4. Phase-

based indexes were introduced in a previous thesis within our group to assess the organization

of cardiac signals in relation with atrial fibrillation [192]. The stability of the phase between

the dominant frequency component and the component related to its first harmonic in cardiac

biosignals was demonstrated to predict atrial fibrillation therapy outcomes. In the present thesis,

the phase lag between the RSA and breathing waveforms and the variations associated with this

phase lag proved to carry interesting and valuable information on the regulation of cardiac and

breathing rhythms. We defined two indexes based on the phase lag of the two waveforms and

implemented one existing measure. These phase indexes represented synchronization aspects

between the two waveforms in an instantaneous manner and showed patterns of influence un-

der known autonomic stimuli, such as posture change and autonomic blockade as demonstrated

in Chapter 3. They were also representative of ANS changes induced due to altitude exposure

as seen in Chapter 4. Furthermore, these indexes showed potential in emotion recognition and

sleep apnea screening with cardiac and breathing signals in Chapters 8 and 9. Through the ap-

plication of these phase indexes to various situations, we observed that the phase relationship

between the RSA and breathing seemed to be mostly related to the sympathetic activation of the

ANS, although this connection remains hypothetical at this stage. We propose them as additional

and complementary indexes to conventional markers as they report on complementary aspects of

the relationship between cardiac and breathing rhythms. Furthermore, the instantaneous nature

of the indexes proposed in this thesis permits to study novel aspects of the cardio-respiratory

relationship, in contrast to coherence maps and synchrogams, commonplace in estimating the

relationship between two signals.

Real-time breathing rate estimation from cardiac recordings

Adaptive frequency tracking schemes were the focus of two previous thesis in our group [307,

308]. In [308], it was suggested that they have a potential in estimating modulatory rhythms, such

as the breathing rate from cardiac inter-beat intervals. The present thesis built on that idea and in

Chapter 5, we applied a weighted multi-signal adaptive oscillator-based band pass filter (W-OSC)

to the task of estimating the breathing rate from two breathing modulations of cardiac activity.

We implemented the algorithm, including the pre-processing, conceptually in real-time. We

designed the pipeline to process each new heartbeat and to update previously estimated values.

To the best of our knowledge, there were no previous methods to estimate the breathing rate from

the ECG beat-to-beat by using simultaneously multiple breathing modulations. In the course of

the adaptation of this algorithm, we set about to further reduce de facto estimation delays of

adaptive methodology. The outcome of our endeavors was a novel algorithm, based on a bank of

short FIR filters, that we referred to as the NFB method. Indeed, the response delays of the new

filters were shorter than that of the IIR filters, employed in the adaptive W-OSC scheme. In this

new scheme, we designed a bank of similar filters to span a wide frequency band. Once filtered

with all filters, the smallest output powers were indicative of filters whose central frequency was

close to that of the input. To the best of our knowledge, this scheme is original. It allowed to

further reduce the already short delays of the W-OSC method, while keeping the flexibility of

introducing multiple inputs. The scheme proved to be adequate on resting state data, but also on

data acquired during physical exercise, proving the robustness of the scheme. We further applied

the algorithm to estimate the breathing rate from the breathing modulation of cardiac activity, as

acquired by the novel imaging photoplethysmography technology in Chapter 6. This technology

is based on using a video camera to sense skin tone changes in the face, which are the result
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of blood volume changes occurring with every heartbeat. This technology has a potential in

monitoring cardiac activity, where a close-contact sensing device cannot be used, for example in

monitoring vehicle drivers or newborn infants.

Contributions to emotion recognition with cardiac and breathing signals
We tackled emotion recognition in Chapter 8 using the novel indexes introduced in Part I of

the present thesis. It is increasingly important to automatically gain knowledge about the feeling

of the user of a connected system, multi-media or other, to improve human-machine interactions,

for example in recommendation systems. Monitoring of personality disorders and mood swings

may also be a potential clinical avenue of automatic emotion recognition. We showed that the

phase indexes and RSA methodology introduced in Part I of this dissertation were successful in

helping to classify signals based on the emotion associated with them.

Contributions to sleep apnea screening with cardiac and breathing signals
We further investigated the indexes presented in Part I in relation to sleep apnea screening in

Chapter 9. Polysomnography, the gold standard for apnea screening, takes place in a sleep clinic

while the patient wears a large number of sensors and acquisition devices. A specialist then

examines a large number of signals over the duration of one or several nights to identify apnea

events based on their manifestation in various physiological signals. This cumbersome screening

methodology prevents large-scale deployment, especially for at-risk populations such as elderly

and obese people. Moreover, with the increasing incidence of certain cardiac arrhythmia, such

as atrial fibrillation, and its link to sleep disorders [192], it is becoming more important to screen

for sleep apnea easily. We applied novel indexes and methodology to particularly challenging

data acquired with an instrumented t-shirt to detect apnea episodes. The indexes we proposed as

complements to existing markers have a potential to aid in the “at home” sleep apnea screening

with user-friendly devices and automated processing techniques.

10.2 Perspectives

Algorithm implementation
The methodology and algorithms developed throughout this thesis have been presented in

a conceptual manner keeping in mind the end goal of mobile health monitoring applications.

However, for these algorithms to be implemented on a portable device or an embedded system,

they must undergo a number of adaptations. In particular, floating point computations must be

revisited. Given the precision of the present methodology, floating point values are not necessary.

Integer filtering can be used and quantization can be applied in many stages of the computations.

Furthermore, to compute central frequencies of the filters in both the W-OSC scheme and the

NFB scheme, look-up tables can be employed. It must be noted that FPGA-based algorithm

implementation has received some attention recently, and algorithms as complex as the singular

value decomposition have been implemented on such systems [309].

Further investigations into novel indexes describing the relationship between
the cardiac and breathing rhythms

With the many uncovered enigmas about human physiology in general and ANS regulation

in particular, there is much capacity for improvement and new discoveries. By taking a different

point of view, we put forth previously unexplored aspects of ANS regulation. It is necessary to
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further study and evaluate this methodology on additional data in other conditions. In Chapter 3,

the ANS regulation and balance was artificially modified using receptor antagonist agents to sup-

press the sympathetic ANS activation. Parasympathetic blockade (with the injection of atropine)

would bring the complimentary view to this study. Moreover, the pertinence and usability of

these indexes for special populations, such as coronary disease patients should be investigated in

view of the wider clinical acceptability of this methodology, for example for screening purposes.

On a different note, we hypothesized that the phase relationship between the breathing and

RSA waveforms may be related to the sympathetic activation of the ANS. Further experiments

are necessary to verify or to reject this hypothesis.

Catering to generalized conditions in breathing rate estimation
The application of the W-OSC and the NFB frequency estimation methods in Chapter 5 relies

on the main oscillatory component of the input being related to breathing. This property holds

true only in particular conditions. Resting data from sedentary subjects resulted in accurate

estimations, as did data during exercise. One of the properties of all this data was the rather

high breathing rate. In later stages of this thesis, in Chapter 7, we observed that in several

conditions, these assumptions do not hold, in particular for individuals with naturally low resting

breathing rates such as athletes. Also, with varying body postures, ANS regulation introduces

further complications, which must be taken into account. The methodology for automatic RSA

identification described in Chapter 7 caters especially to this problem by using a model trained

on generalized data. The application of this methodology prior to breathing rate estimation with

the W-OSC and the NFB methods can yield a general procedure to handle data regardless of

their particular source. Furthermore, the methodology from Chapter 7 could also serve as a

pre-processing stage to enhance the component of interest, similarly to the techniques applied in

Chapter 6, when estimating a highly variable breathing rate from imaging photoplethysmography

inter-beat intervals.

Application of the methodology for automated RSA identification
We created and validated a model to classify oscillatory constituents of a given recording of

heart inter-beat intervals in Chapter 7. This model was built using data from 21 subjects with

recordings in the supine and orthostatic postures. The model makes use of the decomposition of

the inter-beat intervals and several attributes of the components and recording conditions. This

model can now be used to identify the RSA in unseen data from independent subjects in a study

of ANS particularities of high level athletes by the ISSUL.

Improving breathing rate estimation using a video camera
There are efforts in estimating the breathing rate using a video camera by monitoring breath-

ing movements captured by the camera [248, 255]. Estimating the breathing rate in real-time

from the cardiac breathing modulation of imaging photoplethysmographs presented in Chapter

6 can be used in complement with movement-based estimation to further improve robustness or

accuracy.

Sport physiology signal processing
This thesis warranted several close encounters with sport physiology. The studies corre-

sponding to the Chapters 3, 4 and 7 used data related to, or of interest for athletic training.

Indeed, RSA characterization, and autonomic regulation, for example in altitude training, are of

interest in sport physiology. They could help better understand and plan the effects of training and
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training schedules. They could also aid in identifying, understanding, or avoiding unwanted and

harmful situations for the athletes, such as fatigue and overtraining. With the increasing possibil-

ities in portable monitoring devices, sport physiology signal processing offers many possibilities

for exploration.
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Definitions A
A.1 Interpolation methods

As described in Chapter 2, the R-R intervals time series is by nature a time-series, with no

naturally occurring time indexes, with unequally spaced values. In its raw format, many conven-

tional signal processing techniques cannot be applied to it directly. It is therefore necessary to

re-sample the series uniformly. Among the possible methods to do so, two have been considered

in this manuscript: spline interpolation and sample-and-hold interpolation.

• Spline interpolation (linear, cubic): In spline interpolation, the interpolant is a piecewise

polynomial. The polynomial is a line in the case of linear interpolation and a third-order

polynomial in the case of cubic spline interpolation.

• Sample-and-hold interpolation: This technique is based on holding the interval value until

the occurrence of the next value [28].

Figure A.1 illustrates the spline and sample-and-hold interpolation of an R-R intervals series.

The sample-and-hold interpolation effectively introduces a delay equivalent to the first interval,

as only after the occurrence of the second beat can one compute a first R-R interval. The spline

interpolation introduces a second (beat of) delay, because, for linear interpolation, two interval

values are necessary and for cubic interpolation two additional (interval) values are required.

The sample-and-hold interpolation introduces step-like discontinuities, requiring an extra

low-pass filtering operation. After filtering with a band-pass filter, the cubic spline-interpolated

and sample-and-hold-interpolated R-R interval series are very similar as illustrated in Figure A.2.
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Figure A.1: Interpolation of R-R intervals.

Figure A.2: Interpolation and filtering of R-R intervals.
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A.2 Evaluation of a classifier
In a two-class problem, after classification of each event, given its true condition, true posi-

tives (TP), false positives (FP), true negatives (TN) and false negatives (FN) are counted. These

values are then used to compute the classification performance and errors. The conventional

classification measures include the true positive rate (TPR), true negative rate (TNR), accuracy

(ACC), false positive rate (FPR) and false negative rate (FNR):

T PR =
T P

T P + FN
(A.1)

T NR =
T N

T N + FP
(A.2)

ACC =
T P + T N

T P + T N + FP + FN
(A.3)

FPR =
FP

T N + FP
(A.4)

FNR =
FN

T P + FN
(A.5)

The TPR or sensitivity reflects the proportion of positives identified as such. The TNR or

specificity similarly reflects the proportion of negatives identified as negatives. The accuracy

reports the proportion of correctly identified cases. The FPR, or fall-out, indicates the proportion

of negatives identified as positives, and vice-versa, the FNR or miss raten reflects the proportion

of positives miss-identified as negatives.

These measures report well on the performance when the classes are rather balanced. If, on

the other hand, 90% of the data belong to one class, then a high accuracy only means that the

classifier identified the majority class. In an identification problem, the majority class is usually

the class of the normal data. For example, in Chapter 9, the problem at hand was the identification

of apnea episodes. If for one recording, apneas occurred in roughly 10% of the data, the retrieval

of these events by the classifier is of interest. A high accuracy might be a consequence of a high

number of TN values, meaning that in fact, normal sleep was mostly classified as such. In an

identification or information retrieval problem, one might want to know that from the retrieved

data, what fraction is correct. The precision reports this fraction and is defined as:

precision =
T P

T P + FP
(A.6)

The counterpart of precision in an identification case is recall, which reports on the fraction

of relevant instances that are actually retrieved. The F-score is a measure that reports on the

identification performance. It is the harmonic mean of sensitivity (fraction of events that are

retrieved) and precision (fraction of retrieved events that are correct):

F-score = 2
precision × sensitivity
precision + sensitivity

(A.7)





Characterization of the
RSA and the Autonomic
Balance - Further Results B

This appendix reports further results on the characterization of the RSA and other autonomic

indexes in different autonomic conditions, related to Chapter 3.

B.1 Methods - additional material

Figure B.1: The frequency response of the band-pass filter used to extract the RSA for two values

of β. Smaller values of β entail a wider frequency response while larger values result in a more

selective filter.
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B.2 Additional results

Figure B.2: PL and PLslope in the supine and orthostatic positions for all 21 subjects.

Figure B.3: PLslope for the three breathing modes in the β-blocker case for all 17 subjects. BL:

baseline, BB: β-blocker influence.
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Figure B.4: PLslope for the three breathing modes in the caffeine case for all 17 subjects. BL:

baseline, CAF: caffeine influence. **P < 0.05.

Figure B.5: PLV for the three breathing modes in the β-blocker case for all 17 subjects. BL:

baseline, BB: β-blocker influence. **P < 0.05.
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Figure B.6: PLV for the three breathing modes in the caffeine case for all 17 subjects. BL:

baseline, CAF: caffeine influence. *P < 0.1.

Figure B.7: PLS for the three breathing modes in the β-blocker case for all 17 subjects. BL:

baseline, BB: β-blocker influence. **P < 0.05.
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Figure B.8: PLS for the three breathing modes in the caffeine case for all 17 subjects. BL:

baseline, CAF: caffeine influence. **P < 0.05.

Figure B.9: nLF power for the three breathing modes in the β-blocker case for all 17 subjects.

BL: baseline, BB: β-blocker influence. *P < 0.1; **P < 0.05.
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Figure B.10: nLF power for the three breathing modes in the caffeine case for all 17 subjects.

BL: baseline, CAF: caffeine influence. *P < 0.1; **P < 0.05.

Figure B.11: nHF power for the three breathing modes in the β-blocker case for all 17 subjects.

BL: baseline, BB: β-blocker influence. **P < 0.05.
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Figure B.12: nHF power for the three breathing modes in the caffeine case for all 17 subjects.

BL: baseline, CAF: caffeine influence. *P < 0.1; **P < 0.05.





Characterization of the
RSA upon Exposure to
Altitude - Further Results C

This appendix reports further results of the characterization of the RSA and other cardiac

autonomic indexes in different autonomic conditions, related to Chapter 4.

Figure C.1: The PLslope at baseline and after acute exposure to altitude (ALT1) and acclimatiza-

tion to altitude after 16 days (ALT16).
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Figure C.2: The ECG and pressure recordings with the cardiac cycle. Image from [15] with

permission, c© Elsevier 2006.



Sleep Apnea Detection
with the RSA and the
Respiration - Further
Results D

This appendix reports further results on the identification of sleep apneas related to Chap-

ter 9. Details of apnea classification with various features are reported for all recordings of the

dataset, except those already presented in Chapter 9. For each recording, the best two features

are reported in bold font.

Table D.1: Identification of apnea epochs with a 1-NN classifier trained with each feature alone

for recording 2.

feature specificity sensitivity precision F-score

BR 0.96 0.21 0.20 0.20

Breathing amplitude 0.97 0.58 0.53 0.55
Amplitude index 0.96 0.25 0.27 0.26

RSA frequency 0.96 0.16 0.16 0.16

RSA power 0.96 0.17 0.19 0.18

RSA amplitude 0.97 0.33 0.36 0.34
PL 0.95 0.15 0.15 0.15

PLslope 0.95 0.20 0.17 0.18

PLV 0.95 0.12 0.13 0.12

PLS 0.96 0.20 0.22 0.21
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Table D.2: Identification of apnea epochs with a 1-NN classifier trained with each feature alone

for recording 3.

feature specificity sensitivity precision F-score

BR 0.96 0.12 0.11 0.11

Breathing amplitude 0.97 0.32 0.35 0.33
Amplitude index 0.97 0.34 0.33 0.33
RSA frequency 0.96 0.12 0.11 0.11

RSA power 0.97 0.25 0.24 0.24

RSA amplitude 0.98 0.27 0.33 0.30

PL 0.97 0.17 0.19 0.17

PLslope 0.97 0.24 0.23 0.23

PLV 0.97 0.15 0.16 0.16

PLS 0.97 0.33 0.29 0.30

Table D.3: Identification of apnea epochs with a 1-NN classifier trained with each feature alone

for recording 4.

feature specificity sensitivity precision F-score

BR 0.94 0.23 0.25 0.24

Breathing amplitude 0.94 0.21 0.22 0.21

Amplitude index 0.96 0.45 0.49 0.47
RSA frequency 0.93 0.23 0.23 0.23

RSA power 0.94 0.16 0.18 0.17

RSA amplitude 0.95 0.29 0.32 0.30

PL 0.94 0.23 0.26 0.24

PLslope 0.94 0.28 0.28 0.28

PLV 0.93 0.19 0.20 0.19

PLS 0.95 0.30 0.33 0.31

Table D.4: Identification of apnea epochs with a 1-NN classifier trained with each feature alone

for recording 5.

feature specificity sensitivity precision F-score

BR 0.98 0.06 0.06 0.06

Breathing amplitude 0.99 0.04 0.05 0.04

Amplitude index 0.99 0.16 0.21 0.17

RSA frequency 0.99 0.00 Nan 0.00

RSA power 0.99 0.11 0.12 0.12

RSA amplitude 0.99 0.17 0.24 0.19

PL 0.99 0.17 0.17 0.17

PLslope 0.99 0.10 0.10 0.09

PLV 0.99 0.21 0.21 0.21
PLS 0.99 0.21 0.34 0.24
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Table D.5: Identification of apnea epochs with a 1-NN classifier trained with each feature alone

for recording 6.

feature specificity sensitivity precision F-score

BR 0.94 0.26 0.26 0.26

Breathing amplitude 0.94 0.21 0.22 0.21

Amplitude index 0.96 0.41 0.45 0.42
RSA frequency 0.95 0.24 0.26 0.25

RSA power 0.94 0.24 0.25 0.24

RSA amplitude 0.95 0.33 0.34 0.33

PL 0.94 0.19 0.20 0.19

PLslope 0.95 0.25 0.28 0.26

PLV 0.94 0.26 0.24 0.25

PLS 0.95 0.38 0.39 0.38

Table D.6: Identification of apnea epochs with a 1-NN classifier trained with each feature alone

for recording 9.

feature specificity sensitivity precision F-score

BR 0.98 0.13 0.16 0.14

Breathing amplitude 0.97 0.19 0.21 0.19

Amplitude index 0.98 0.35 0.35 0.35
RSA frequency 0.97 0.11 0.12 0.11

RSA power 0.98 0.17 0.19 0.18

RSA amplitude 0.98 0.25 0.28 0.26
PL 0.97 0.17 0.17 0.17

PLslope 0.98 0.12 0.14 0.13

PLV 0.97 0.14 0.14 0.14

PLS 0.98 0.24 0.24 0.24

Table D.7: Identification of apnea epochs with a 1-NN classifier trained with each feature alone

for recording 11.

feature specificity sensitivity precision F-score

BR 0.95 0.26 0.26 0.26

Breathing amplitude 0.95 0.29 0.30 0.30

Amplitude index 0.96 0.44 0.43 0.43
RSA frequency 0.95 0.29 0.28 0.29

RSA power 0.96 0.16 0.21 0.18

RSA amplitude 0.95 0.24 0.28 0.25

PL 0.95 0.28 0.29 0.28

PLslope 0.95 0.23 0.24 0.23

PLV 0.95 0.26 0.27 0.26

PLS 0.96 0.39 0.40 0.39
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Table D.8: Identification of apnea epochs with a 1-NN classifier trained with each feature alone

for recording 12.

feature specificity sensitivity precision F-score

BR 0.94 0.20 0.21 0.20

Breathing amplitude 0.93 0.11 0.13 0.12

Amplitude index 0.96 0.47 0.52 0.49
RSA frequency 0.94 0.19 0.21 0.20

RSA power 0.95 0.19 0.23 0.21

RSA amplitude 0.95 0.24 0.28 0.26

PL 0.94 0.22 0.23 0.22

PLslope 0.95 0.18 0.23 0.20

PLV 0.94 0.19 0.20 0.19

PLS 0.95 0.31 0.32 0.31

Table D.9: Identification of apnea epochs with a 1-NN classifier trained with each feature alone

for recording 14.

feature specificity sensitivity precision F-score

BR 0.99 0.10 0.15 0.11

Breathing amplitude 0.99 0.14 0.19 0.16

Amplitude index 0.99 0.52 0.48 0.49
RSA frequency 0.99 0.12 0.18 0.14

RSA power 0.99 0.13 0.17 0.15

RSA amplitude 0.99 0.24 0.29 0.26
PL 0.99 0.11 0.12 0.11

PLslope 0.99 0.13 0.16 0.14

PLV 0.98 0.08 0.08 0.08

PLS 0.99 0.14 0.16 0.15
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