ESTIMA: Extrapolating ScalabiliTy of In-Memory
Applications

GEORGIOS CHATZOPOULOS, Ecole Polytechnique Fédérale de Lausanne
ALEKSANDAR DRAGOJEVIC, Microsoft Research
RACHID GUERRAQUI, Ecole Polytechnique Fédérale de Lausanne

This article presents ESTIMA, an easy-to-use tool for extrapolating the scalability of in-memory applications.
ESTIMA is designed to perform a simple yet important task: Given the performance of an application on a
small machine with a handful of cores, ESTIMA extrapolates its scalability to a larger machine with more
cores, while requiring minimum input from the user. The key idea underlying ESTIMA is the use of stalled
cycles (e.g., cycles that the processor spends waiting for missed cache line fetches or busy locks). ESTIMA
measures stalled cycles on a few cores and extrapolates them to more cores, estimating the amount of waiting
in the system. ESTIMA can be effectively used to predict the scalability of in-memory applications for bigger
execution machines. For instance, using measurements of memcached and SQLite on a desktop machine, we
obtain accurate predictions of their scalability on a server. Our extensive evaluation shows the effectiveness
of ESTIMA on a large number of in-memory benchmarks.

CCS Concepts: « Computing methodologies — Shared memory algorithms; Concurrent algorithms;
« Computer systems organization — Multicore architectures;

Additional Key Words and Phrases: ESTIMA, scalability, extrapolation, prediction, in-memory, stalled cycles

ACM Reference format:

Georgios Chatzopoulos, Aleksandar Dragojevi¢, and Rachid Guerraoui. 2017. ESTIMA: Extrapolating Scala-
biliTy of In-Memory Applications. ACM Trans. Parallel Comput. 4, 2, Article 10 (August 2017), 28 pages.
https://doi.org/10.1145/3108137

1 INTRODUCTION

Commodity machines nowadays have hundreds of gigabytes of memory. This enables building
performance-critical parallel applications, such as databases and key-value stores, that keep their
datasets in main memory. This way, applications avoid slow secondary storage and networks, leav-
ing the CPU as the main performance bottleneck [9, 12, 26, 30]. Understanding the performance
of these applications proves to be hard, since the number of CPU cores available during the de-
ployment of a parallel application can be significantly higher than that during its development and
testing. Applications developed today can be tested on machines with 16 or 24 cores, but in a few
years the same applications are likely to be run on machines with 64 or even more cores.

Part of this work was supported by the European Research Council (ERC) Grant 339539 (AOC).

Authors’ addresses: G. Chatzopoulos and R. Guerraoui, EPFL IC IINFCOM LPD, Station 14, 1015 Lausanne, Vaud, Switzer-
land; emails: {georgios.chatzopoulos, rachid.guerraoui}@epfl.ch; A. Dragojevi¢, Microsoft Research UK Ltd, 21 Station Road,
Cambridge, CB1 2FB, UK; email: alekd@microsoft.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

2017 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 2329-4949/2017/08-ART10 $15.00

https://doi.org/10.1145/3108137

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

https://doi.org/10.1145/3108137
https://doi.org/10.1145/3108137

10:2 G. Chatzopoulos et al.

Consequently, the crucial question about performance of in-memory applications is that of their
scalability on an increasing number of cores. Answering this question is very hard. Typical ap-
proaches include performing extensive performance evaluation or developing detailed models of
applications [15, 28], which are time-consuming, error-prone, and require detailed knowledge of
each application and the machine it executes on.

This article presents ESTIMA, a practical tool that enables developers and users to predict the
scalability of parallel in-memory applications in a simple way, without having to understand in
detail the internals of the application or the machine it will run on. ESTIMA enables developers to
visualize the scalability of their applications, as well as to discover bottlenecks that might not be
evident during initial performance benchmarking. ESTIMA can be applied with little effort to any
parallel in-memory application, in contrast to other approaches that heavily rely on application-
specific information [4, 6, 22, 24, 25, 31, 46].

Instead, ESTIMA leverages stalled cycles to extrapolate the scalability of an application. These are
cycles the application spends on non-useful work, such as waiting for a cache line to be fetched
from memory or waiting on a busy lock. Contention for shared resources typically increases with
the number of cores used by an application, resulting in an increase in stalled cycles that directly
impact the application’s scalability. The application’s performance keeps improving as long as
adding cores mainly increases the number of useful cycles. As soon as adding more cores mostly
results in stalls, performance stops improving, or even degrades: The application stops scaling.

ESTIMA measures stalled cycles in both hardware and software and extrapolates them (using an-
alytic functions) to higher core counts to predict the overheads of using more cores. Then, EsTIMA
correlates stalls to execution time to produce predictions of the execution time of the application
at higher core counts. In addition to predicting scalability, analyzing the dominating stalled cycle
categories reported by ESTIMA can reveal bottlenecks that will appear for higher core counts and
guide developers’ optimization efforts. To the best of our knowledge, EsTIMA is the first system to
use stalled cycles for scalability extrapolations.

By default, EsTIMA uses hardware performance counters to measure hardware stalls. These are
counters offered by modern hardware that can collect the values of events that stall the execution of
an application with low overhead. Measuring software stalls requires configuring or instrumenting
runtime libraries, such as pthreads or a transactional memory library. In our experience, software
stalls can be exposed with minimal changes to the runtime libraries, but because they are not
always available, ESTIMA does not require software stalled cycles to function.

Our evaluation shows that ESTIMA’s simple approach yields accurate predictions. We illustrate
the use of EsTIMA to successfully predict the performance of a memcached and a SQLite workload
on a server machine based on measurements on a desktop. We then extensively evaluate EsTIMA
using 21 workloads that span a wide range of application characteristics and synchronization tech-
niques on two different platforms: a 4-socket, 48-core AMD Opteron machine and a 2-socket, 20-
core Intel Xeon machine. We conduct both strong scaling and weak scaling experiments. Finally, we
pick two applications that exhibit poor scalability (streamcluster and intruder from our bench-
mark workloads) and show how stalled cycles can help identify bottlenecks. More specifically:

e ESTIMA accurately extrapolates scalability between different machines with similar archi-
tectures on real-world workloads. For our memcached and SQLite workloads measured on
a desktop machine, EsTiMA predicts their scalability on a server machine with errors lower
than 30% and 26%, respectively.

o EsTIMA successfully captures the scalability of all applications we consider for its evaluation,
correctly identifying the number of cores for which the applications stop scaling, for both
strong and weak scaling predictions. The predictions are fairly accurate in absolute terms,

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

ESTIMA: Extrapolating ScalabiliTy of In-Memory Applications 10:3

too. ESTIMA can predict performance when doubling the number of cores with errors lower
than 15% on more than half of the workloads.
e Prediction errors do not result in prediction of a different behavior. In other words, there
are no cases where EsTIMA predicts that an application will scale, when in fact it does not.
e ESTIMA can help identify bottlenecks as we illustrate through two parallel applications
that exhibit poor scalability, intruder and streamcluster from the STAMP and PARSEC
benchmark suites, respectively.

In summary, the main contribution of this work is EsSTIMA, a practical tool that uses stalled
cycles from both hardware and software sources to extrapolate the scalability of in-memory appli-
cations. ESTIMA can help users make better decisions regarding the deployment of their application.
To the best of our knowledge, ESTIMA is the first system to use stalled cycles for scalability extrap-
olations. It showcases the power of stalled cycles in extrapolating the scalability of an application,
while being applicable to a wider range of application than existing tools and methodologies.

The rest of this article is organized as follows. We present the insights behind EsTIMA in
Section 2. We explain how EsTIMA works in Section 3. We present the implementation, as well as
our extensive evaluation of ESTIMA in Section 4. We discuss some interesting findings of our work
in Section 5. We present related work in Section 6 and conclude this article in Section 7.

2 ESTIMA: INSIGHTS

In this section, we present the insights behind EsTiMA. We first recall what stalled cycles are, their
main sources, and how they affect scalability. We discuss why we use stalled cycles in ESTIMA, in
contrast to the straightforward approach of extrapolating time. Finally, we present some of the
decisions we have made when designing estima and how they affect its capabilities.

2.1 Stalled Cycles

During the execution of an application, CPU cycles are spent to produce useful work, while part
of the cycles is spent stalling (called stalled cycles), either at the hardware level (i.e., waiting on a
cache line miss) or at the software level (i.e., spinning on a busy lock). In an ideal scenario, stalled
cycles would not constitute a significant part of the execution time and cycles that produce useful
work would be evenly distributed across processors, resulting in linear speedup for the application
(assuming that the instructions executed do not change significantly when running on more cores).

However, this is rarely the case. Stalled cycles can comprise a significant part of execution time,
increasing with the number of cores. Stalled cycles are present both in hardware and software. At
the hardware level, stalls are the result of the unavailability of processing units or data, which typ-
ically degrades the performance of an application as the number of cores increases. What further
aggravates the problem is that parallel applications need synchronization, which causes further
increases in stalled cycles at the software level. These stalls minimize the benefits from scaling up
an application and could be the reason behind even slowdown for higher core counts.

2.2 Hardware Stalled Cycles

Measuring hardware stalls is at the core of EsTIMA. These can be divided into two big categories,
depending on the stalled execution stage. Frontend stalls are stalled cycles in the fetch and decod-
ing phase of an instruction execution, while backend stalls are stalled cycles during the rest of the
execution of an instruction. Frontend stalls can typically be attributed to waiting on an instruction
fetch that missed in the instruction cache or a target fetch after a branch misprediction. Backend
stalls are typically the result of resources or data not being available during execution. Both cat-
egories of stalled cycles have a negative effect on the performance of an application. However,

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

10:4 G. Chatzopoulos et al.

’550 Measured Time o

0 40 Time Extrapolation -----
E @

=30 '

= 1

% 20 9;) OcPO
8 10 OG:‘BQ Oomooodtfpoo

R Froefearfoo™ "

06—9F0 20 30 40 50

Cores

Fig. 1. Time extrapolation for kmeans.

frontend stalled cycles do not change significantly for increasing core counts. In contrast, back-
end stalled cycles have a direct impact on the scalability of an application, as they significantly
increase when adding more cores. We have found no benefits in prediction accuracy when using
frontend stalls. For this reason, and given that modern processors can measure up to four events
concurrently, ESTIMA uses only backend stalls at the hardware level.

2.3 Software Stalled Cycles

Previous research has shown that Instructions-Per-Cycle (IPC) related metrics are not always use-
ful in predicting the performance of an application [2]. Stalled cycles are closely related to IPC cal-
culations and can thus face the same problem. A processor can spend time executing instructions
that do not contribute to useful work but are also not considered stalled cycles at the hardware
level. If only hardware stalls are considered, then this choice can be the source of prediction in-
accuracies. Stalls at the software level can typically be found in synchronization of threads. This
includes both lock-based synchronization (e.g., spinning on a busy lock), as well as optimistic con-
currency control mechanisms, such as software transactional memory (STM)[18, 37]. In applications
that use STM libraries, aborted transactions discard all work done inside the transaction.

ESTIMA solves this problem by enabling the use of software stalled cycles. These represent cycles
during which the application is executing instructions that do not produce useful work. Software
stalls are optional: users can use a runtime that reports software-level stalled cycles, or modify
their applications to provide such information, to improve the accuracy of predictions.

2.4 Extrapolating Time

A straightforward approach for scalability predictions is to extrapolate the execution time of an
application, measured for low core counts. Indeed, such approaches already exist [4] and provide
high accuracy for the workloads they target. They typically function as follows: Initially, they take
measurements of the execution time of the application for different core counts. The next step is
to use analytic functions to approximate the measurements, and extrapolate the measurements to
higher core counts. An important drawback of this approach is that extrapolation requires scala-
bility trends to be present in the existing measurements. When that is not the case, such as in the
case of kmeans, shown in Figure 1, directly extrapolating time can lead to erroneous conclusions.
In this case, the time extrapolation method predicts that the application will continue scaling for
up to 48 cores, which is not the case. Similar cases can appear when small changes in the exe-
cution time steer the extrapolation towards wrong predictions. In our evaluation (Section 4), we
show how ESTIMA compares against time extrapolation, as well as cases where ESTIMA is able to
capture the scalability of applications for which trends are not visible in measurements.

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

ESTIMA: Extrapolating ScalabiliTy of In-Memory Applications 10:5

11
o 4x10 Measured Values o — 140 Measured Time o
8 £ 120
> 3x10" 2 100
Q = 80
11
c% 2x10 é 60 bo
o 35
2 1x10'" 3 ‘2‘8 %
a L
060 20 30 40 50 06—90 20 30 40 50
Cores Cores
(a) intruder stalled cycles per core. (b) intruder execution time.
11
o 4x10 Measured Values o — 300 Measured Time o
8 1l £ 250
Z 3x10 ©
a E 200
2 2xio'! 5 1501°
© ° S 100} o
3 1x10'}5, 3 o
< g %0
n X
06—0 20 30 40 50 0690 20 30 40 50
Cores Cores
C ackscholes stalled cycles per core. ackscholes execution time.
(c) blackschol lled cycles p (d) blackschol

Fig. 2. Stalled cycles and execution time correlation.

2.5 Stalled Cycles for Scalability Predictions

ESTIMA uses the number of stalled cycles per core to predict the scalability of an application as the
number of cores increases. We show two examples of applications, presenting the stalled cycles per
core and the execution time in Figure 2. They are the intruder and blackscholes benchmarks
from the STAMP [29] and PARSEC [5] suites, respectively. For both applications, the correlation
of the number of stalled cycles per core to execution time is 1.00. We evaluate the correlation of
stalled cycles to execution time more extensively in Section 5.1.

ESTIMA leverages stalled cycles for its predictions. By default, ESTIMA uses hardware perfor-
mance counters, dedicated CPU registers, used to monitor performance events, such as the number
of instructions executed, cache misses per cache level, stalled cycles, as well as I/O requests and
memory accesses. Different architectures offer various performance counter events that measure
a wide range of backend stalled cycles. There usually exist aggregate events that measure the total
backend hardware stalled cycles, as well as more detailed events that measure different types of
backend stalled cycles individually [3, 20]. EsTIMA does not use the aggregate events. Instead, it
uses the performance counters that measure fine-grain backend stalled cycles on each architec-
ture. These counters are low-level enough to provide insights into the behavior of the application
for higher core counts. In addition, when combined, they give the same high-level image of the
scalability of the application as aggregate events.

The insight behind using fine-grain stall events is the following: Using an aggregate event would
be similar to extrapolating the execution time itself, since the two follow the same trends. For
example, from the aggregate backend stalls shown in Figure 2, with measurements up to 12 cores,
we do not see trends that show the poor scalability of the applications for higher core counts.

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

10:6 G. Chatzopoulos et al.

A B C
Stalled Cycles HER Stalled Cycles
Collection Approximation)
Application Stalled Cycles Working Set
N per Core > N
Execution N Adjustment
Computation

Execution Time Scaling Factor N Scaling Factor N Execution Time
Measurements Computation Approximation Prediction

Fig. 3. Constructing extrapolations with ESTIMA.

Using aggregate events would not capture significant changes in the scalability of applications,
which is the main goal of EsSTIMA. By using fine-grained stalls, trends appear in their values for
lower core counts, before the effect on the scalability of the application is significant. These trends
are helpful in predicting scalability changes that are otherwise difficult to capture (we give more
details in the prediction example in Section 3.2). A second reason for using the individual stalled
cycles is that aggregate events do not provide any information on the scalability bottlenecks. By
using the detailed events and pinpointing the parts of the code they come from, EsTIMA can help
identify the area that inhibits scalability, as we show in Section 4.6.

2.6 Other Performance Counters

Prior work [43] has used performance counters to measure events such as cache misses and branch
mispredictions to identify bottlenecks in applications. A similar approach in EsTIMA would involve
extrapolating counters such as cache misses for the different levels of cache and incorporating
them in the prediction process. The problem with this approach is that cache misses require a
very detailed model that takes into account the memory access patterns of the application. This
is necessary to translate the misses captured to time and quantify their effect to the scalability
of the application. Quantifying the interactions between misses and scalability requires detailed
knowledge of the application, which is against the generic purpose of EsTIMA. For this reason,
we chose not to use cache misses in our predictions. However, their effect is captured by the
stalled cycles that EsTIMA uses. In this case, their actual effect on scalability is captured through
its manifestation in stalls in the pipeline.

3 ESTIMA

The prediction scheme of ESTIMA is depicted in Figure 3. It involves three main steps: (A) first,
ESTIMA executes the application on the measurements machine, collecting different types of stalled
cycles from hardware and optionally from software. (B) Then, ESTIMA extrapolates the values of
these stalls to higher core counts, using regression analysis and a set of pre-defined function ker-
nels. (C) Finally, ESTIMA combines the extrapolated values and calculates the stalled cycles per
core. By correlating stalled cycles to execution time, ESTIMA predicts the execution time of the
application for higher core counts. In the next sections, we provide a detailed description of the
internals of this process and present a step-by-step execution example of ESTIMA.

3.1 Prediction Process

3.1.1 Stalled Cycles Collection. The first step of the prediction process of ESTIMA is to execute
the application for different core counts, up to the number of cores available on the measurements
machine, collecting hardware performance counters and software-reported stalls. During the

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

ESTIMA: Extrapolating ScalabiliTy of In-Memory Applications 10:7

1
Measurements (m)
A 2

Checkpoint
designation
I
Measurements (m-c)
)
Choose subsets Predefined
Checkpoints (c) fqr . function kernel
approximation types

I
Measurement subsets (Sm)
¥

Function

Approximation ——Function types (Sf)

I
Candidate functions (Sm x Sf)
¥

Function
selection

T
Function (1)
A

Fig. 4. The regression analysis of ESTIMA.

execution of the application, ESTIMA also measures the application’s execution time. ESTIMA uses
these measurements for the execution time predictions in the last step of the process.

For the hardware stalls, EsTIMA collects the backend stalled cycles (as available by the archi-
tecture). Choosing the backend stalls for an architecture involves identifying the counters that
measure stalled cycles in the pipeline. From this set, we discard the events that refer to instruction
fetching, keeping only the stalls in the execution phase of an instruction. We also discard events
that significantly overlap, such as aggregate events for backend stalls. Intuitively, stalls that overlap
can make predictions pessimistic, depending on the extent to which they overlap.

Processor families typically share the same set of counters, and using EsTIMA with different
processors of the same family requires no changes in its configuration. Adding support for a new
processor family requires consulting the developer’s manual of the processor and identifying these
backend stalls. For the machines that we had available, identifying the stalls to be used was a simple
task that was necessary only once for each manufacturer. The same counters were then used for
both desktop and server machines, without the need to choose different counters.

When choosing the software stalls to be (optionally) collected, the developer needs to consider
the parts of (mainly synchronization) code that, when executed, produce no useful work for the
workload. Such cases include (but are not limited to) spinning on locks and looping on trylock
operations. An interesting case is Software Transactional Memory (STM), where deciding on the
cycles that are not producing useful work is straightforward (aborted transactions), and an STM
runtime can report these measurements directly.

3.1.2 Stalled Cycles Regression Analysis. This step consists of regressing the stalled cycles mea-
surements. ESTIMA uses function approximation [1] to construct a set of functions for each stall
category. Function approximation takes the measurements, a function type (e.g., a polynomial
function of degree d), and constructs a function that closely fits the measurements (e.g., calculates
the coefficients of the polynomial). EsTIMA chooses one function for each stall category and uses
it to extrapolate the measured values. The approximation process, shown in Figure 4, consists of
the following steps, assuming m measured values for a specific category of stalled cycles:

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

10:8 G. Chatzopoulos et al.

Table 1. Extrapolation Function Types

Name Function
ag+ajn+asn’®

Ratzz 1+byn+byn?

Rat23 ag+ayn+ayn®

1+bin+byn?+bsn’
2 3
agtaintazn®+asn
Rat33 1+b1n+byn’+bsn’

CubicLn a + bln(n) + cIn(n)? + dIn(n)?
a+bn

ExpRat ec+dn
Poly25 y =a+bx +cx? + dx?>

(1) From the m available measurements, ESTIMA designates the c measurements with the high-
est core counts as checkpoints. In our experiments, we set ¢ to 2 and 4.

(2) Using the first n measurements (n = m — c¢), ESTIMA creates functions from the predefined
kernels in Table 1. These functions are used based on the approximation library used (see
Section 4.1), discarding the function types that produce functions that are not realistic for
this approximation. The process is repeated for i in 3..n, to avoid over-fitting the function
to the available measurements. Intuitively, small deviations in the measurements some-
times steer the function in the wrong direction, resulting in less accurate predictions.

(3) For each of the constructed functions, EsTIMA calculates the root mean square error
(RMSE) at the checkpoints. By using only the checkpoints, functions that have deviations
for low core counts but approximate performance counter values accurately for higher
core counts are considered as possible choices.

(4) EsTIMA chooses the function that minimizes the error and subsequently uses it to approx-
imate the stalled cycle values for higher core counts.

3.1.3 Translating Stalled Cycles to Execution Time. After all the stalled cycle events have been
approximated, ESTIMA calculates the total stalled cycles per core, using the approximated values.
The total stalled cycles per core and the execution time have similar curves, including minima
and maxima points. However, they represent different quantities. An example has already been
introduced in Figure 2, where execution time and stalled cycles are shown for the intruder and
blackscholes applications. The two quantities are not similar, in the sense that there is no con-
stant number that connects them. Their similarity factor is rather a function of the number of cores.

ESTIMA uses the stalled cycles and the execution time measurements, collected during the ex-
ecution of the application, to calculate the values of the scaling factor function for the available
core counts. It then extrapolates this function using the same kernels as before (Table 1). In this
case, ESTIMA no longer chooses the function that best fits the points. In contrast, it chooses the
function that produces execution time predictions that have the highest correlation to the total
stalled cycles per core. The reason is that we have already argued that execution time and stalled
cycles have a very high correlation. As such, the produced execution time values should retain
high correlation to the total stalled cycles per core that were calculated in the previous step. After
the factor function has been created, EsTIMA uses the stalled cycles per core (from step B) and the
factor function to calculate the execution time of the application for higher core counts.

3.2 Prediction Example

To better explain the prediction process, we use intruder from the STAMP benchmark suite as
an example. intruder is a signature-based network intrusion detection system (NIDS) benchmark
that scans network packets and matches them against a set of intrusion signatures. It emulates

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

ESTIMA: Extrapolating ScalabiliTy of In-Memory Applications 10:9

12 12 12
1x10 Measured Values © 5x10 Measured Values © 5x10 Measured Values ©
g 8x1 011 f’redicted Values g 4x1012 f’redicted Values g 4x1012 f’redicted Values
c 11 : o 12 : < 12 :
> 6x10 > 3x10 > 3x10
Q Q Q
£ 4x10" £ 2x10'? : £ 2x10'?
3 1" wp 3 12 : 3 12
O 2x10 O © O 1x10 : O 1x10
: T : MM :
07020 30 40 50 0690720 30 40 50 060" 20 30 40 50
Cores Cores Cores
(a) Performance counter 0D2h (b) Performance counter 0D5h (c) Performance counter 0D6h
extrapolation. extrapolation. extrapolation.
7 12 13
1x10 Measured Values © 1x10 Measured Values o 1x10 Measured Values °
g 8x10° iPredicted Values 5 8x10'! f’redicted Values S 8x10'2 fredicted Values
c 6 : o 11 : g 12 :
> 6x10 > 6x10 > 6x10
Q Q Q
£ 4x10° £ 4x10" £ 4x10'?
3 6 3 11 3 3 12
O 2x10 O 2x10 e O 2x10 3
0 50 060 20 30 40 50 0F7~=T0"20 30 40 50
Cores Cores Cores
(d) Performance counter 0D7h (e) Performance counter 0D8h (f) STM aborted transaction cycles
extrapolation. extrapolation. extrapolation.
11
E—OJ 5x10 Measured Values o 2 ' Measured Factor ;;;140 : Measured Time o
O 4x10"! Predicted Values 5 15 pproximated Factor ;120 : ESTIMA
= y : ‘g . g 100
% 3x10 [’ =
3 2x10" %’ _%
8 1xio" 058 8
I L— : a
@ 0 06— %0 20 30 40 50 06— 16 20 30 40 50
Cores Cores
(g) Stalled cycles per core. (h) Scaling factor extrapolation. (i) Execution time prediction.

Fig. 5. intruder prediction example.

Design 5 of the NIDS described by Haagdorens et al. [14]. Network packets are processed in parallel
and go through three phases: capture, reassembly, and detection. In the version included in STAMP,
the capture and reassembly phases are each enclosed in STM transactions.

For this example, we use a machine with four AMD Opteron 6172 processors, each containing
two chips with 6 cores each, clocked at 2.1GHz (48 cores in total). ESTIMA uses only one processor
of the machine (12 cores) for measurements and targets a machine with four such processors.
Hence, the measurements machine is a 12-core machine, while the target machine is a 48-core ma-
chine. We then execute the application on the target machine and measure the stalled cycles and
execution time for up to 48 cores. We present the extrapolated and measured values in Figure 5. The
vertical lines in the figures represent the maximum number of cores used for the measurements.

The first step of the process is to collect performance counters for executions of the application
when using up to 12 cores (the application is configured to use as many threads as cores available).
For this AMD Opteron machine, the performance counters that measure backend stalled cycles are
the ones presented in Table 2 [3]. intruder uses software transactional memory as a concurrency
control mechanism. We configure the SwissTM software transactional memory runtime [11] to
report aborted transaction cycles for the application and configure ESTIMA to use these cycles.

ESTIMA then approximates each stalled cycle category individually. It creates multiple functions
for each category and chooses the function that minimizes the RMSE at the checkpoints. With one
function for each stalled cycle category, ESTIMA can extrapolate the stall values for higher core
counts. In Figures 5(a)—-(f), we present the result of this process. ESTIMA uses the measurements

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

10:10 G. Chatzopoulos et al.

Table 2. Hardware Performance Counters used for the
Opteron machine

Event Code Event Description

0D2h Dispatch Stall for Branch Abort to Retire
0D5h Dispatch Stall for Reorder Buffer Full
0D6h Dispatch Stall for Reservation Station Full
0D7h Dispatch Stall for FPU Full

0D8h Dispatch Stall for LS Full

left of the vertical line and produces the functions presented. In each figure, we also show the
measured values on all 48 cores of the Opteron machine.

After the performance counter values have been approximated, EsTIMA computes the stalled
cycles per core, shown in Figure 5(g). It is important to note here that although the stalled cycles
for each category increase, the total number of stalled cycles divided by the number of cores de-
creases for up to 12 cores. This quantity starts increasing for more cores, hinting at a slowdown for
the application for higher core counts. Intuitively, as the application runs on more cores, stalled
cycles increase “faster.” That means that by scaling up the application, we introduce overheads
that surpass the benefits in terms of performance. This observation validates the reasons behind
ESTIMA’s use of fine-grain stalls in the place of an aggregate event (as discussed in Section 2.5).
By only examining the total number of backend stalls (which is what an aggregate performance
counter would report) in Figure 5(g), we notice that the slowdown of the application is not visi-
ble for measurements with up to 12 cores. As a result, if ESTIMA simply extrapolated the values
of such an aggregate counter, it would fail to predict the behavior of intruder for higher core
counts, similarly to the time extrapolation method. In contrast, by using fine-grain stalls, EsTIMA
captures the behavior of each stall cycle category and extrapolates them individually. The resulting
values, when combined, are able to predict the fast increase in the total number of stalls, resulting
in accurate predictions.

The correlation of stalled cycles to execution time involves a scaling factor that connects the
two quantities. ESTIMA computes the values of this factor for up to 12 cores using the stalled
cycles per core and the execution time values collected. It then approximates this factor. For this
approximation, it chooses the function that produces execution time predictions that have the
highest correlation to stalled cycles per core. The approximation of the scaling factor is presented in
Figure 5(h). Finally, using this scaling factor, EsSTIMA predicts the execution time of the application.
We then measure the execution time of intruder for up to 48 cores of the machine and use the
measurements to evaluate our prediction. Both the predicted and measured execution times are
presented in Figure 5(i). EsTIMA successfully predicts the scalability of the application and the
slowdown it exhibits for higher core counts.

4 EVALUATION
4.1 Implementation

We implement EsTiMA in Python. We integrate the functionality in an easy-to-use tool. For the
function approximation, we use the pythonequation library from [34] to create functions based
on specific kernels and fit them to collected values of stalled cycles. EsTimMA offers a variety of
options for different prediction scenarios. It can either discover the number of cores of the machine
it runs on or take the number of cores to use as an input parameter. EsSTIMA discovers the topology
of the cores and uses cores within the same socket first. It supports current x86 processor families
by both Intel and AMD, and uses all the available events for backend stalls on each architecture.

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

ESTIMA: Extrapolating ScalabiliTy of In-Memory Applications 10:11

Extending ESTIMA to support additional families of processors is straightforward, by adding the
necessary performance counters that need to be collected.

To improve the accuracy of predictions, ESTIMA enables the use of plugin components. The user
can specify additional categories of stalled cycles that can be used for the predictions, either at the
hardware or the software level. ESTIMA takes a configuration file that includes the path to the file
the stalls are reported in (including special files like stdout or stderr), as well as the expression that
is used to report the cycles. EsTIMA can apply a function to the collected values (e.g., min, max, sum,
average) and use the resulting values for its predictions. For example, extending ESTIMA to take
into account Intel’s RTM [20] would require including additional stalled cycle events (currently
there are no available events that measure aborted RTM transaction cycles but rather only aborted
transactions). The way ESTIMA collects additional stalls can vary between applications. In our
evaluation, for the collection of synchronization overheads we use a thin wrapper around the
pthread library. For the applications that use transactional memory, we use SwissTM [10, 11] with
detailed statistics enabled, which reports the duration of committed and aborted transactions.

4.2 Evaluation Setup

We evaluate EsTIMA using three different machines. The first is a desktop Intel Core i7 Haswell
machine with 4 cores clocked at 3.4GHz (8 hardware threads in total). The second machine is a
four-processor AMD Opteron 6172 one, with each CPU containing two chips with 6 cores each,
clocked at 2.1GHz (48 cores in total). In the remainder of the text, we refer to this machine as
Opteron. We also use a machine that has two Intel Xeon E5-2680 v2 processors with 10 cores each,
clocked at 2.80GHz (40 threads in total). We refer to this machine as Xeon20.

We use several applications to evaluate ESTIMA. These span a variety of workloads, with different
lengths of critical sections, levels of contention and synchronization techniques. In total, we use
21 different workloads, among which 8 are STM based.

4.3 Extrapolating to Different Machines

We start our evaluation with two production applications, in a realistic setting. We use memcached
and a SQLite application. We use a desktop machine for our measurements and predict the scal-
ability of the applications on a server machine. We then execute the applications on the server
machine and evaluate the accuracy of our predictions.

In our first experiment, we use ESTIMA to predict the scalability of memcached. We use ESTIMA on
the desktop Haswell machine and target Xeon20 with our predictions. We run clients on the same
machine as the memcached server to remove any network effects. The client and dataset are from
cloudsuite [13], with a scaling factor of 10x. We use the number of workers and connections that
produces the highest throughput. The workload is read-mostly and objects have a size of 550 bytes.

ESTIMA collects stalled cycles and execution time from the memcached server using up to three
hardware threads of the desktop machine (clients run on all other hardware contexts) and ex-
trapolates its performance to a machine 7 times its size. The performance counters that measure
backend stalled cycles for our Intel machines are presented in Table 3 [20]. As presented in Sec-
tion 3.1, ESTIMA uses measured execution time to correlate stalled cycles to the execution time of
the application for higher thread counts. In this experiment, because the machines have processors
with different frequencies, the measured execution time is also scaled using the ratio of execution
frequencies.

We then measure the execution time of the workload on the Xeon20 machine, using all 20 cores.
We execute the memcached server on one socket of the machine and the clients on the other socket
(20 hardware contexts each). We present EsTIMA’s prediction and the measured execution time in
Figure 6(a). EsTIMA successfully predicts the scalability of the application. The absolute errors are

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

10:12 G. Chatzopoulos et al.

Table 3. Hardware Performance Counters Used for the Latest Intel Processors

Event Code Event Description
0487h Stalled cycles due to IQ full
01A2h Cycles allocation stalled due to resource-related reasons
04A2h No eligible RS entry available
08A2h No store buffers available
10A2h Re-order buffer full
5 100 Measurgg_}l'liﬂAe ° 5 250 Measurgg_l'[limg °
o 80 o 200
S ° E
= 60 = 150
c c
S 40 \{ S 100l R,
8 8 900000000090
$ 20f " Tovvesn00000000! £ 50
w i
0 0
0 5 10 15 20 0 5 10 15 20
Cores Cores
(a) memcached execution time prediction. (b) SQLite execution time prediction.

Fig. 6. Predictions for memcached and SQLite.

below 30% for all core counts. ESTIMA successfully predicts that the server will stop scaling, using
only three cores for the measurements, while predicting for up to 7 times more cores.

The second experiment uses the SQLite in-memory DBMS, and a TPC-C workload with 10GB of
data. We use the same Haswell desktop machine and target Xeon20 again. We use tmpfs to avoid IO
bottlenecks for logging. EsTIMA collects stalled cycles and execution time from the SQLite process
for up to four cores of the desktop machine and extrapolates its performance to a machine 5 times
its size. We measure the same stalled cycles and scale the execution frequencies as before.

We then measure the execution time of the workload on the server machine, using all 20 cores.
We keep the threads on the same processor when possible. The result of the prediction produced
by EsTIMA, as well as the actual time measurements from the server machine are presented in
Figure 6(b). EsTIMA successfully predicts the scalability of the application on the server machine.
The execution time errors are below 26% for all core counts. ESTIMA successfully predicts that the
server will stop scaling, as well as the number of cores for which this will happen. It does so using
only four cores for the measurements and predicting for a machine with 5 times more cores.

4.4 Scaling-up Applications

In our previous experiments, we show how we use ESTIMA to extrapolate the scalability of pro-
duction applications. We now evaluate the extent to which our tool can predict the scalability of
applications by using three suites of in-memory benchmarks: STAMP [29], Parsec [5], and stan-
dard data structure micro-benchmarks (used in [10]). We also use a modified k-nearest neighbors
(KNN) calculation kernel, commonly used in recommender systems. The benchmark suites we use
are written in C/C++ and compiled using GCC, while the KNN calculation kernel is written in Java
and compiled using GCJ. We use one CPU of the Opteron and Xeon20 machines for our measure-
ments (12 and 10 cores, respectively) and then predict for up to four and two CPUs, respectively
(the full machines).

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

ESTIMA: Extrapolating ScalabiliTy of In-Memory Applications 10:13

Table 4. Maximum Prediction Errors with Measurements on
One Processor of Each Machine
(12 Cores for Opteron and 10 Cores for Xeon20)

Opteron Errors (%) Xeon20 Errors (%)

Benchmark 2CPUs 3 CPUs 4 CPUs 2 CPUs
lock-based HT 7.8 8.3 8.9 41.7
lock-based SL 27.7 24.3 214 16.1
lock-free HT 3.3 3.4 3.7 15.8
lock-free SL 13.2 10.4 9.9 24.8
stamp:

genome 4.4 44 4.6 6.3
intruder 9.2 22.1 31.9 30.0
kmeans 50.3 50.9 17.0 30.2
labyrinth 154 15.0 18.4 9.9
ssca2 2.8 4.6 8.1 21.4
vacation-high | 14.7 14.3 10.3 16.8
vacation-low 18.9 18.5 25.0 10.0
yada 8.1 23.0 15.1 40.3
parsec:

blackscholes 3.7 44 2.9 13.9
bodytrack 1.3 3.0 5.9 8.5
canneal 10.7 12.4 8.3 6.4
raytrace 2.7 3.6 4.6 1.7
streamcluster 15.6 59.0 88.8 20.1
swaptions 10.6 14.7 20.3 9.3
K-NN 11.5 22.5 32.0 13.1
Average 11.3 16.8 17.7 17.7
Std. Dev. 11.2 15.0 18.9 11.0
Max. 50.3 59.0 88.8 41.7

In Table 4, we present the summary of the predictions produced by EstiMa for Opteron and
Xeon20. The errors presented are the maximum errors observed when using one processor and
targeting up to the full machines with our predictions (two, three, and four processors of Opteron
and two processors of Xeon20). For brevity, we present examples using Opteron, for which we
have predictions for higher core counts. In our examples, we also present the results of the time
extrapolation method presented in Section 2.5 (time extrapolation). This method involves directly
extrapolating time measurements of an application, using the function kernels that ESTIMA uses to
extrapolate stalled cycle measurements. This approach is similar to using aggregate events for our
measurements. It fails to predict changes in the application behavior that are not evident from the
measurements, which explains the significant differences in accuracy when compared to ESTIMA.
We highlight the biggest of these differences in accuracy between time extrapolation and ESTIMA
in Figure 7.

Our benchmark evaluation shows that EsTIMA is successful in predicting the scalability of most
benchmarks with small prediction errors. Of 19 workloads used for the evaluation of EsTIMA:

e ESTIMA is successful in predicting the scalability of the applications used. There are no
cases where ESTIMA incorrectly predicts that an application will or will not scale. ESTIMA
also successfully predicts the core counts for which an application will stop scaling,

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

10:14 G. Chatzopoulos et al.

100
S
< 80t 1
S
5 60f 1
E aof]
£
X 20f 1
=

0

ESTIMA 24 Cores C——
Time Extrapolation 24 Cores xxxx
ESTIMA 36 Cores ©==xX
Time Extrapolation 36 Cores zzzzl
ESTIMA 48 Cores ez
Time Extrapolation 48 Cores

Fig. 7. Comparison of errors between ESTIMA and time extrapolation.

e When extrapolating from one socket of Xeon20 to the full machine (double the number
of cores used for the measurements), 15 workloads have execution time prediction errors
lower than 25% and 9 of them have errors lower than 10%.

e When extrapolating from one socket of Opteron to the full machine (4 times the number
of cores used for the measurements), 16 workloads have execution time prediction errors
lower than 25% and 9 of them have errors lower than 10%.

In Figure 8(a), we present an example of a prediction result, using raytrace from the PARSEC
benchmark suite. raytrace is an Intel RMS application that uses a version of the raytracing method
that would typically be employed for real-time animations such as computer games, optimized for
speed rather than realism. ESTIMA accurately predicts its scalability, with the maximum execution
time prediction error observed for predictions for up to 48 cores being 4.6%. This is in contrast to
the time extrapolation method, which produces errors up to 17.3%.

The main advantages of ESTIMA appear when predicting changes in the behavior of an appli-
cation, such as the ones seen in intruder and yada from the STAMP benchmark suite, presented
in Figures 8(b) and (c). intruder has already been introduced in Section 3.2. yada implements
Ruppert’s algorithm for Delaunay mesh refinement [36]. The input consists of an initial mesh and
threads identify the triangles of the mesh for which the minimum angle is below some threshold.
Once such triangles are found, new points are added to the mesh and the process continues with
new triangulations. For both workloads EsTimA successfully predicts the changes that appear, as
well as the scalability of the applications. These cases demonstrate the advantage of using stalled
cycles for our predictions, as the trends in stalled cycles appear before their effect in performance
is significant enough. This is unlike time extrapolation, which fails to predict the scalability trends
and has higher prediction errors (up to 81% and 130% higher for intruder and yada, respectively).

Another interesting example is kmeans from the STAMP suite. kmeans is a partition-based
clustering benchmark that represents a cluster by the mean value of all objects contained in it.
We present a scalability prediction for kmeans on the Opteron machine in Figure 8(d). Although
the maximum prediction error for kmeans is 50.9% in Table 4, the prediction is accurate. The high
error value is the result of fluctuations in kmeans’ execution time for different core counts, which
the prediction does not follow. Nevertheless, EsTiMA successfully predicts the scalability of the

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

ESTIMA: Extrapolating ScalabiliTy of In-Memory Applications 10:15

. 30 Measured Time o . 140 Measured Time o
@ o5 ESTIMA @ 120 ESTIMA
) Time Extrapolation - - - - @ 100 Time Extrapolation - - - -
£ 20 =
(= ~ 80
5§ O i s S 60
g 10 3 40
L 5 2
00—90 20 30 40 50 00—%0 20 30 40 50
Cores Cores
(a) raytrace execution time prediction. (b) intruder execution time prediction.
. 100 Measured Time o . 50 Measured Time o
L 80 MA @ 40 ESTIMA
g Time Extrapolation = - - - e Time Extrapolation = - - -
= 60 = 30
5 40 5 20 °
2 20 210 5o
(i W TSmeEE
06—%0 20 30 40 50 O0—=0 20 30 40 50
Cores Cores
(c) yada execution time prediction. (d) kmeans execution time prediction.

Fig. 8. Predictions using ESTIMA.

application. As with intruder and yada, the scalability degradation of kmeans is not evident in
the performance on the measurement machine. However, EstTima successfully captures the trends
in stalled cycles and predicts the performance degradation accurately.

4.5 Weak Scaling

Using a larger machine enables users to also use bigger datasets, due to the bigger amount of
memory typically available. To evaluate how we can use ESTIMA with changing workload sizes,
we use measurements of an application on a machine and predict its scalability on a machine with
double the number of cores but also with twice as large a dataset. We use genome and intruder
from the STAMP benchmark suite, introduced earlier in this section. We run our experiments on
the Xeon20 machine. We use both applications with the default datasets from the STAMP suite.

ESTIMA executes measurements on one processor of the Xeon20 machine and targets the full
machine. We configure EsTIMA with a target dataset size of 2X. ESTIMA uses the same technique
for extrapolating the scalability of the applications but also measures the memory footprint of the
execution. During the extrapolation process, ESTIMA scales the extrapolated values accordingly to
produce predictions for the target machine and dataset for both applications.

We then execute the applications on the full Xeon20 using the bigger dataset. We present both
ESTIMA’s prediction, as well as the measured execution time in Figure 9. EsTIMA successfully pre-
dicts the scalability for both applications. The predictions are accurate in absolute terms, too. The
maximum errors (excluding single core performance) are 28% for intruder and 29% for genome.
The most significant errors appear for single core performance of intruder on the bigger ma-
chine. This can be explained due to the simple scaling that we use to target the bigger dataset,
which does not accurately connect the performance on a single core.

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

10:16 G. Chatzopoulos et al.

— 40 Measured Time o — 100 Measured Time o
» 35 ESTIMA 2 9 ESTIMA
(0]) [}
€ S
= = 60
c [
i/ 2 40
s 5
E :) °oos 000 3 20 W
05 5 10 15 20 00— 5 140 15 20
Cores Cores
(a) genome execution time prediction. (b) intruder execution time prediction.
Fig. 9. Predictions with changing workload sizes.
— 20 ESTIMA —— . 140 ESTIMA ———
K2) w120
g 15 2 100
= =
= 10 c 80
2 S 60
= =
§ 5 § 40
w 4 20
0070 20 30 40 50 00—%0 20 30 40 50
Cores Cores
(a) Prediction for streamcluster. (b) Prediction for intruder.

Fig. 10. Predictions for streamcluster and intruder using ESTIMA.

Although with higher errors than their strong scaling counterparts, these predictions show how,
with a simple technique, ESTIMA can scale both the workload size and together the core counts at
the same time, while maintaining the generality and wide applicability of EsTIMA, that is, without
using complex models for the interaction between the workload and the different cache levels. We
expect more complex methods, such as scaling different stalled cycle categories differently based on
measurements, to be able to produce even more accurate predictions for different workload sizes.

4.6 Identifying Future Bottlenecks

In our evaluation so far, we present how ESTIMA can be used to extrapolate stalled cycles to pre-
dict the scalability of an application. A question that arises is the following: Can ESTIMA help
developers identify the sources of poor scalability in their applications, before such poor scalabil-
ity even appears? We now show how we can use ESTIMA to identify bottlenecks in two exam-
ples. We use two applications that use different concurrency control mechanisms: streamcluster
and intruder. For both applications, ESTIMA collects stalled cycles from both hardware and soft-
ware sources. For streamcluster, we create a thin wrapper around the pthread library calls. For
intruder, we simply configure the SwissTM runtime library to report aborted transaction cycles.

ESTIMA extrapolates the scalability of the two applications on Opteron. It uses measurements on
one processor of the machine (12 threads) and extrapolates to all four processors (48 threads). We
show the results of these extrapolations in Figure 10. Both applications exhibit slowdown for high
core counts. We observe the individual stalled cycle category extrapolations and identify the ones
that contribute most to stalls for higher core counts. We then use the perflinux tool to pinpoint

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

ESTIMA: Extrapolating ScalabiliTy of In-Memory Applications 10:17
— 60 Original Mutex o — 100 Single Get o
£ 50 Spinlock @2 80 Multiple Get
E 40 £ o
= = 60pP ©
g 30 o] g
3 20 g 40 K
[&] (] 5) Q
g g 20 _—
w w
0070 20 30 40 50
Cores Cores

(a) streamcluster scalability. (b) intruder scalability.

Fig. 11. Improving the scalability of streamcluster and intruder using ESTIMA’s predictions.

the most significant sources of the reported stalls in our measurements. For streamcluster,
we notice a high number of stalled cycles in the pthread mutex_trylock function of the PAR-
SEC barriers. This leads us to identify the mutexes used as a potential scalability bottleneck. For
intruder, we similarly notice a high number of stalled cycles from aborted STM transactions in the
processPackets function and more specifically in the TMDECODER_PROCESS call. By examining the
function code, we understand that aborted transactions are the result of contention for a shared
data structure.

To fix the problems identified, we modify the two applications. For streamcluster, we replace
the standard pthread mutexes used by PARSEC with test-and-set spinlocks, which incur lower
synchronization overheads. For intruder, we modify the application to decode more elements
in every step. The measurements on the full Opteron machine validate our findings for the scala-
bility bottlenecks. We show the original and modified applications’ performance in Figure 11. For
streamcluster, we improve its execution time by up to 74%. Similarly, our optimization improves
intruder’s performance by up to 70%. Evidently, the applications continue to scale poorly. There
do exist more bottlenecks that we could identify and try to remove. Nevertheless, the goal of this
example is to showcase how ESTIMA can be used to identify future scalability bottlenecks. It is
important to note here that identifying bottlenecks is not the main goal of EsTIMA, and as such, it
cannot replace tools specifically designed for this purpose.

5 DISCUSSION
5.1 Stalled Cycles and Scalability

The main insight behind EsTIMA is the usage of backend stalled cycles for scalability extrapolations.
This assumes that stalled cycles contain the necessary information about the scalability of an
application. Our evaluation shows that, indeed, by using backend stalls from both hardware and
software, ESTIMA successfully extrapolates the scalability of a wide range of applications.

We notice that for some workloads and platforms, prediction errors are higher. Although these
cases are limited, it is crucial to understand the cause of such errors. To do so, we need to first
consider where errors can occur in ESTIMA. The two main components of the extrapolations EsTIMA
performs are the following:

(1) The extrapolation of stalled cycles from hardware (and optionally software).
(2) The correlation of the extrapolated stalled cycles to execution time, and the extrapolation
of the scaling factor that connect the two quantities.

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

10:18 G. Chatzopoulos et al.

Table 5. Correlation of Stalled Cycles per Core
with Execution Time for the Full Machines

Benchmark Opteron | Xeon20 | Xeon48
lock-based HT 0.71 0.66 0.93
lock-based SL 1.00 1.00 1.00
lock-free HT 1.00 1.00 1.00
lock-free SL 0.83 0.81 0.70
stamp:

genome 1.00 1.00 1.00
intruder 1.00 0.97 0.92
kmeans 0.88 0.98 0.96
labyrinth 0.99 1.00 1.00
ssca2 0.99 1.00 1.00
vacation-high 1.00 1.00 0.99
vacation-low 0.99 1.00 0.98
yada 0.62 0.95 0.77
parsec:

blackscholes 1.00 1.00 1.00
bodytrack 1.00 1.00 1.00
canneal 0.97 0.99 0.95
raytrace 0.94 0.98 0.96
streamcluster 0.84 1.00 0.81
swaptions 1.00 1.00 1.00
K-NN 1.00 1.00 0.99
Average 0.93 0.97 0.94
Std. Dev. 0.11 0.08 0.09
Min. 0.62 0.66 0.70

Both of these steps are potential sources of errors. Function approximation can produce func-
tions that do not extrapolate accurately either a category of stalled cycles or the scaling factor that
connects stalled cycles to execution time. In this last step, inaccuracies can result in significant er-
rors in the prediction of the scalability of an application. Nevertheless, ESTIMA assumes that stalled
cycles can tell the full story of scalability, and errors are due to the limitations of function approxi-
mation. If this does not hold true, then extrapolation errors can be significantly higher. Even worse,
ESTIMA could predict that an application will continue scaling, while in fact it will not.

To evaluate this assumption, we conduct the following experiment, using an additional Intel
machine with 4 E7-4830 v3 processors (48 cores, Xeon48). We execute all benchmarks for all core
counts and measure both stalled cycles and execution time. We then calculate the correlation be-
tween stalled cycles per core and execution time. Ideally, this correlation should be 1.0, so errors
are mainly due to function approximation. More importantly, such a high correlation would indi-
cate that stalled cycles follow the changes of execution time and will correctly predict whether an
application will stop scaling, as well as the core count for which this will happen.

Correlations across applications and machines (Table 5) are higher than 0.95 for the vast
majority of cases, supporting ESTIMA’s use of stalled cycles. What this implies is that errors in pre-
dictions are mainly due to function approximation errors. These numbers include software stalls
for the applications of the STAMP benchmark suite, as well as streamcluster from the PARSEC
suite. In the presented results, we notice cases with lower correlation, namely the lock-based hash

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

ESTIMA: Extrapolating ScalabiliTy of In-Memory Applications 10:19
11

— 80 Execution Time o o 210 Stalled Cycles o
w 70 S
e 60 O sxio™
i: 50 ° E 11
c 40 Q 1x10
_230 ° OOOO oooOOO 5’- OOOOO °00q,
> [} Sl o °© 10 © ®o [}
g 20 © D 5x10 °
o =

10 S
- 0 @ 0

0 5 10 15 20 0 5 10 15 20
Cores Cores
(a) lock-based hash table on Xeon20.
11

— 60 Execution Time o o 210 Stalled Cycles o
(2] o
3 X O .5x10"
E 40 e
= Q@
§ 300 9 1x10"
3 20fo o © K
8 OoO o o Q@ 5x10'° © o
& 10 Q™0 qupmpmmamoae % S o °

0 n 0 ° o S

0 10 20 30 40 50 0 10 20 30 40 50
Cores Cores

(b) lock-free skip list on Xeon48.

Fig. 12. Execution time and stalled cycles for two data structure microbenchmarks.

table microbenchmark on the Xeon20 machine and the lock-free skip list on the Xeon48 machine.
We present the execution time and stalled cycle measurements for both workloads in Figure 12.
Execution time and stalled cycles per core have similar curves. The correlation is lower because
of small changes in core to core measurements that are not in sync for the two curves. However,
in both cases, ESTIMA accurately extrapolates scalability, as we show in our evaluation (Table 4).

5.2 Backend vs. Frontend Stalled Cycles

When designing ESTIMA, we opted to use backend stalled cycles as our main tool. As discussed in
Section 2, there also exist frontend stalls, which mainly refer to instruction fetch stalls (e.g., misses
in the instruction cache). We chose to not use these stalls for two reasons: (a) Bottlenecks that
hinder scalability do not typically stem from instruction fetching but rather the execution, and (b)
there is a limit to the number of hardware counters that modern platforms can accurately monitor
at the same time without imposing additional overheads to an application.

To verify the extent to which frontend stalls indeed do not contribute to the accuracy of ESTIMA,
we extend the experiment of the previous subsection. We measure both frontend and backend stalls
and calculate the correlation between the number of stalled cycles (including frontend stalls) per
core and the execution time of a workload. We present the differences in correlation to execution
time between with and without including frontend stalled cycles in Table 6. Positive values in the
table signify that using frontend stalls improves the correlation, while negative values signify that
using frontend stalled cycles degrades the correlation between the two quantities.

As seen from the table, the average improvement in the results is either close to zero, or negative.
This indicates that frontend stalls do not contribute additional information about the scalability of

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

10:20 G. Chatzopoulos et al.

Table 6. Frontend+backend Stalled Cycles
Improvement over Backend-only Stalls (%)

Benchmark Opteron | Xeon20 | Xeon48
lock-based HT 2.09 —6.93 | —2.63
lock-based SL 0.00 —0.52 0.00
lock-free HT 0.01 0.00 | —0.16
lock-free SL 7.52 6.76 3.53
stamp:

genome 0.02 0.02 | —0.10
intruder 0.08 1.31 | —9.98
kmeans 2.86 —12.07 5.67
labyrinth 0.37 —-0.28 | —0.02
ssca2 -0.71 -0.05 | —=0.46
vacation-high 0.00 —-0.02 | —0.03
vacation-low —0.04 -0.01 | —0.10
yada 3.43 -0.10 5.57
parsec:

blackscholes 0.00 0.00 | —0.01
bodytrack 0.00 —-0.01 | —0.04
canneal -0.03 0.01 | —0.11
raytrace 0.13 —-0.03 0.13
streamcluster 0.80 —14.79 | —2.67
swaptions 0.00 0.00 0.00
K-NN 0.05 0.52 -0.12
Average 0.87 -1.38 | —0.08
Std. Dev. 1.89 4.73 3.16
Max. 7.52 6.76 5.67
Min. -0.71 —-14.79 | -9.98

the applications. In some cases using frontend cycles can decrease correlation to execution time
by more than 10%, which can result in significant prediction errors for EsTimMA. These findings
confirm our decision to not include frontend cycles in ESTIMA.

Similarly to frontend stalls, we could omit stalls that have an insignificant effect. Indeed, not all
backend stall categories contribute equally to the total. However, the most important stalled cycle
category varies per application. For example, while the 0D7h event (Table 2) contributes less than
0.01% of the total number of stalls for vacation-high and less than 0.1% for intruder on Opteron,
it contributes more than 30% of the total stalls for blackscholes on the same machine. As such,
ESTIMA uses all the available backend stall events of a processor.

5.3 Software Stalled Cycles

ESTIMA by default uses only hardware stalls for its extrapolations. However, as presented in Sec-
tion 4.1, users can configure ESTIMA via plugins to also include software stalls in its extrapolations.
This way the accuracy of its predictions can be improved.

We measure software stalled cycles for all applications from the STAMP suite by configuring
the STM runtime to report aborted transaction cycles. Because of the nature of STM, the effect of
software stalls is expected to be high: contention for resources and data memory locations leads to

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

ESTIMA: Extrapolating ScalabiliTy of In-Memory Applications 10:21

120
100
80
60
40
20
0

Maximum Error (%)

24 Cores w Software Cycles ——
24 Cores w/o Software Cycles EXxxxi
36 Cores w Software Cycles ==X
36 Cores w/o Software Cycles zzzzl
48 Cores w Software Cycles ez
48 Cores w/o Software Cycles

Fig. 13. Comparison of prediction errors with and without software stalled cycles.

o o 1x10" o 1x10'"
w S S
o o0 O gx10' O gx10'
£50 ® @ 10 8 10
F 40 . S 6x10 8 6x10 P
c o) o
g gg 3 4x10'° S 4x10'° 5
o o %
810k o 2 2100 2 2100 Py
© © b
0 0 0 0 0 o T
0 10 20 30 40 50 0 10 20 30 40 50
Cores Cores
(a) Execution time. (b) Stalled cycles per core without (c) Stalled cycles per core with
synchronization cycles. synchronization cycles.

Fig. 14. Effect of software stalled cycles for streamcluster.

aborted transactions. Thus, although at the hardware level instructions are executed, all the work
is discarded when a transaction is aborted, not contributing to useful work at the application level.

We additionally measure software stalled cycles due to synchronization for applications that use
the pthread library. We do so by writing a thin wrapper around the library that measures the cycles
each threads spends spinning on locks and barriers. We measure these synchronization cycles for
streamcluster from the PARSEC suite, as well as for genome and ssca?2 from the STAMP suite.

In Figure 13, we present all the applications for which we configure EsTiMA to additionally
use software stalled cycles. We show the prediction errors for the applications with and without
software cycles. We observe that using software cycles can significantly improve the prediction
accuracy: by 57% on average, and for certain applications (e.g., genome) by up to 87% when targeting
a machine with four times the number of cores.

An application for which hardware stalls alone do not accurately capture its scalability is
streamcluster from the PARSEC benchmark suite. For streamcluster, synchronization over-
heads introduce a significant bottleneck (one that we identify using EsTiMA in Section 4.6). The
execution time of streamcluster on our Opteron machine can be seen in Figure 14(a). When using
only hardware stalls (Figure 14(b)), stalled cycles per core do not show the synchronization bot-
tleneck, resulting in lower correlation with execution time (0.86). When incorporating the cycles

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

10:22 G. Chatzopoulos et al.

70 Measured Time o 70 Measured Time o

60 ESTIMA 60 ESTIMA
50 Time Extrapolation - - - -
40 o
30
20
10 w

06— 10 20 30 40 50
Cores Cores

(a) streamcluster execution time prediction. (b) streamcluster execution time prediction
with measurements for up to 24 cores.

me Extrapolation - - - -

(€2
o
—

Execution Time (s)
Execution Time (s)

Fig. 15. Predictions for streamcluster.

spent on synchronization, stalled cycles per core give a more complete image of the scalability of
the application (Figure 14(c)), resulting in very high correlation to execution time (0.98).

5.4 Limitations

Table 4 shows that predictions for streamcluster from the PARSEC benchmark suite exhibit high
absolute prediction errors. streamcluster is a clustering benchmark that, for a stream of input
points, finds a predetermined number of medians, so each point is assigned to its nearest center.
We show both the extrapolated and measured execution time of the application in Figure 15(a).

The behavior of streamcluster changes significantly for more than 30 cores. ESTIMA success-
fully captures the slowdown of the application, but with higher absolute errors, because there is no
hint of this performance change in the measured stalls. When using 24 cores for the measurement
(two sockets of Opteron), the prediction is significantly better, as seen in Figure 15(b). This shows
the main limitation of EsTIMA. Although stalled cycles show trends before they have an impact on
performance, as discussed in Section 2, there are cases where significant changes in the applica-
tion happen for higher core counts. In this example, the synchronization overheads, together with
memory bandwidth saturation, cause slowdown for core counts greater than 36. This behavior is
not captured by stalled cycles when using measurements for up to 12 cores.

Moreover, ESTIMA is not a silver bullet for predicting the scalability of parallel applications.
ESTIMA’s main use case involves predictions for machines with similar architectures. ESTIMA suc-
cessfully predicts the performance of an application across such machines, as we show in our
evaluation. However, cross-platform predictions with significant differences between the mea-
surements and target architectures (e.g., using measurements from an Intel machine to predict
performance on a SPARC machine), will typically result in higher errors. Similarly, EsTIMA is not
meant to predict the performance of an application for very different workload configurations,
as it does not rely on static or dynamic analysis of the target application. We believe that these
shortcomings are outweighed by the simplicity and generality of ESTIMA.

5.5 NUMA Effects

Because of its nature, ESTIMA does not capture effects that are not present in the measurements
machine. As an application scales to more sockets, effectively changing the underlying architec-
ture (e.g., introducing Non-Uniform Memory Access effects), prediction accuracy will be lower.
The effect of NUMA accesses on the scalability of an application varies with the application, the
target machine, and the dataset. Capturing the interaction of such factors would require a detailed

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

ESTIMA: Extrapolating ScalabiliTy of In-Memory Applications 10:23

. 30 Measured Time o . 20 Measured Time o
L 25 ESTIMA 10Cores &L ESTIMA 10Cores
) ESTIMA 14Cores - - - - o 15 ESTIMA 14Cores - - - -
E 20 =
= [
c 15 c 10
kel xe]
3 10 3 5
% 5 0
L LLi

0 0

0 5 10 15 20 0 5 10 15 20
Cores Cores
(a) intruder execution time prediction. (b) kmeans execution time prediction.

Fig. 16. Predictions with NUMA effects captured.

model of the application (e.g., memory access patterns), which is against ESTIMA’s goal of wide
applicability and ease of use.

However, this is not the case on our Opteron machine. The reason lies in its architecture, which
enables ESTIMA to account for NUMA effects. Each processor of Opteron consists of 2 chips, each
containing 6 cores (12 in total per processor). Thus, memory accesses on one processor introduce
remote accesses between the 2 chips. With these effects present in measurements, ESTIMA accu-
rately extrapolates their impact, resulting in predictions with high accuracy.

When observing the results for Xeon20, we see the average prediction errors are higher. Con-
trary to Opteron, Xeon20 is a typical NUMA machine with two sockets. As such, single-socket
execution measurements do not include the effects of NUMA accesses. Thus, EsTIMA fails to cap-
ture the trends that they cause, resulting in higher prediction errors for high core counts. Including
these effects significantly improves the accuracy of predictions. For example, using measurements
with more than 10 cores involves cores from the second socket, capturing non-local accesses and
improving the prediction accuracy. We present two examples of such extrapolations in Figure 16.

To further demonstrate how non-uniformity can be accounted for in measurements, we conduct
an experiment with our two Intel platforms. We use ESTIMA to execute and measure stalled cycles
for all of the benchmarks used in our evaluation on both sockets of Xeon20, targeting the Xeon48
machine introduced in Section 5.1 (2.5X the number of cores). We then execute the application
on the Xeon48 machine and measure the execution time for the same workload. Table 7 presents
the maximum prediction errors for each application. In the same table, we have also copied the
errors observed when extrapolating the scalability of one socket of Xeon20 to the full machine
(from Table 4). The results clearly show that prediction accuracy is significantly improved. The
average prediction error falls from 17.7% to 13.9% (an improvement of 21.47%). Additionally, and
more importantly, the prediction errors have a lower standard deviation (6.5 instead of 11). What
this implies is that errors are better clustered around the average, rather than having multiple very
small values, and a few very large ones. This is also evident in the absence of significant errors in
the results: The maximum error observed is 30%, down from 41.7%, (an improvement of 28.06%).

6 RELATED WORK

The work that is most closely related to EsTIMA is that of Crovella et al. [8], in which the authors
identify two categories of stalls at the software level: productive cycles and stalled cycles. They
collect measurements of the two categories of cycles and use them to predict the performance of
an application. In contrast, ESTIMA relies primarily on hardware stalls, using low-overhead perfor-
mance counters offered by modern hardware. EsTiMA can, however, leverage software-level stalls

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

10:24 G. Chatzopoulos et al.

Table 7. Maximum Prediction Errors for Predictions Targeting Our
Xeon48 Machine (Xeon20 Prediction Errors from Table 4 for Comparison)

Benchmark Xeon20 Errors (%) | Xeon20 to Xeon48 Errors (%)
lock-based HT 41.7 19.8
lock-based SL 16.1 18.4
lock-free HT 15.8 6.8
lock-free SL 24.8 23.1
stamp:

genome 6.3 8.2
intruder 30.0 5.2
kmeans 30.2 30.0
labyrinth 9.9 18.0
sscaz 21.4 15.3
vacation-high 16.8 12.8
vacation-low 10.0 10.9
yada 40.3 15.2
parsec:

blackscholes 13.9 134
bodytrack 8.5 11.4
canneal 6.4 8.9
raytrace 1.7 4.0
streamcluster 20.1 21.1
swaptions 9.3 11.6
K-NN 13.1 9.2
Average 17.7 13.9
Std. Dev. 11.0 6.5
Max. 41.7 30.0

in addition to hardware stalls to further improve its extrapolations, making it applicable to a wider
variety of workloads.

Barnes et al. [4] use linear logarithmic functions to predict the scalability of message-passing
scientific applications on large-scale parallel systems. The number and the configuration of CPUs
are the inputs and the process uses linear logarithmic functions. ESTIMA targets in-memory ap-
plications that use shared data and leverages hardware and software stalls to extrapolate their
scalability.

In [25], statistical techniques and regression analysis are used to build piecewise black-box poly-
nomial and neural network models of scientific programs. Neural networks are also used in [21]
to build models of SMG2000 applications executing on two different large-scale machines. Unlike
ESTIMA, such models do not address the question of an application’s scalability on a machine with
significantly higher number of CPUs available.

In [32], the author extrapolates address stream profiles, using low-level metrics collected on
memory access patterns, to study the memory performance of an application under strong scal-
ing. In [7], the authors use call path profiles and expectations on the cost differences between
executions to estimate the scalability costs incurred by different parts of the program. EsTIMA uses
both hardware and software cycles to extrapolate the scalability of the application as a whole.

Several systems combine predictions of the sequential performance of single-node tasks per-
formed by distributed cores with models of communication between them [6, 28, 46]. Similar

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

ESTIMA: Extrapolating ScalabiliTy of In-Memory Applications 10:25

cross-platform performance predictions for large-scale machines using a combination of known
relative performance of the two systems and partial execution of the workload are described in [44].
These systems use different, more detailed models than ESTIMA.

Various formal modeling techniques for distributed and concurrent systems have been pro-
posed [22], including petri nets and queuing theory [33]. They were used to develop detailed
analytic models for several applications [19, 24]. These models are very accurate. They require
however in-depth understanding of the applications and the system. In contrast, ESTIMA can be
used with little effort on any parallel in-memory application.

Models based on discrete-time Markov chains were developed for several STM algorithms
[15-17] to compare different STM designs. Usui et al. [41] use a simple cost-benefit analysis to
choose between locking and transactions. The performance model from [35] focuses on modeling
transactional conflict behavior. Unlike ESTIMA, this approach requires heavy instrumentation of
the application memory accesses.

Performance counter research has mainly focused on profiling of applications. In [38] and [42],
the authors use performance counters to increase power efficiency, through thread scheduling
and placement. In [43], the authors use performance counters to capture performance impacts as
a function of resource usage. Srikanthan et al. [39] use performance counters for online workload
scheduling in multiprogrammed environments. Jiménez et al. [23] devise a model based on per-
formance counters to predict total power consumption. While performance counters have been
used for many different goals, the low-level information they provide has not yet been exploited
for scalability predictions, as in ESTIMA.

Finally, numerous projects have focused on identifying bottlenecks in parallel applications. Liu
et al. [27] develop ScaAnalyzer, a tool that uses event-based sampling to identify memory-related
bottlenecks in parallel applications and suggest optimizations that improve scaling. In [45], the
author proposes a set of new performance counters, which, together with a new analysis method,
can identify performance bottlenecks in out-of-order processors. Torrellas et al. [40] use hardware
performance counters to identify scalability bottlenecks in parallel applications running on dis-
tributed shared-memory multiprocessors. The main goal of ESTIMA is to predict the scalability of
an application for larger machines. By pinpointing the sources of stalled cycles predicted by Es-
TIMA, developers can also identify bottlenecks that will appear in their applications. This, however,
does not replace tools specifically built for performance tuning and bottleneck identification.

7 CONCLUSION

We presented ESTIMA, a practical tool for extrapolating the scalability of in-memory parallel appli-
cations. ESTIMA is designed to help developers and users predict the scalability of applications with
minimum effort, without the need for detailed models. To achieve that, EsTIMA uses stalled cycle
measurements at the hardware and optionally at the software level, and function approximation
on the collected values. ESTIMA is general and easy to use. It can be applied to any in-memory
parallel application with minimum effort. It can also take advantage of application-specific user
input to further improve the accuracy of its predictions.

ESTIMA produces accurate predictions, as conveyed by our extensive evaluation. We success-
fully used EsTIMA to predict the scalability of production applications, as well as a wide range of
benchmarks. The errors when predicting for a machine up to 4 times larger than the one available
for measurements were lower than 15% for more than half of the applications. Moreover, ESTIMA
successfully captured the scalability behavior of all the applications used. Finally, we used EsTIMA
to identify scalability bottlenecks in two applications, showing how developers can further benefit
from EsTIMA during the development phase.

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

10:26 G. Chatzopoulos et al.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers of both PPoPP ’16 and ACM TOPC, as well as the
shepherd of the paper for the PPoPP ’16 conference, Alexandro Baldassin, for their helpful com-
ments on improving this article.

REFERENCES

(1]
(2]

(3]
(4]
(5]

(6]
(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

Naum I Achieser. 1992. Theory of Approximation. Dover Publications.

Alaa R. Alameldeen and David A. Wood. 2006. IPC considered harmful for multiprocessor workloads. IEEE Micro 26,
4 (2006), 8-17. DOI : http://dx.doi.org/10.1109/MM.2006.73

AMD. 2010. BIOS and Kernel Developer’s Guide (BKDG) For AMD Family 10h Processors. (2010).

Bradley J. Barnes, Barry Rountree, David K. Lowenthal, Jaxk Reeves, Bronis R. de Supinski, and Martin Schulz. 2008.
A regression-based approach to scalability prediction. In Proceedings of the 22nd Annual International Conference on
Supercomputing (ICS’08). ACM, 368-377. DOI : http://dx.doi.org/10.1145/1375527.1375580

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The PARSEC benchmark suite: Charac-
terization and architectural implications. In 17th International Conference on Parallel Architecture and Compilation
Techniques (PACT 08). ACM, 72-81. DOI : http://dx.doi.org/10.1145/1454115.1454128

Laura Carrington, Allan Snavely, and Nicole Wolter. 2006. A performance prediction framework for scientific appli-
cations. Future Gener. Comp. Syst. 22, 3 (2006), 336—346. DOI : http://dx.doi.org/10.1016/j.future.2004.11.019

Cristian Coarfa, John M. Mellor-Crummey, Nathan Froyd, and Yuri Dotsenko. 2007. Scalability analysis of SPMD
codes using expectations. In Proceedings of the 21th Annual International Conference on Supercomputing (ICS’07). ACM,
13-22. DOI: http://dx.doi.org/10.1145/1274971.1274976

Mark E. Crovella and Thomas J. LeBlanc. 1994. Parallel performance prediction using lost cycles analysis. In Pro-
ceedings of the 1994 ACM/IEEE Conference on Supercomputing (Supercomputing’94). IEEE Computer Society Press, Los
Alamitos, CA, 600-609.

Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal, Ryan Stonecipher, Nitin Verma,
and Mike Zwilling. 2013. Hekaton: SQL server’s memory-optimized OLTP engine. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data (SIGMOD’13). ACM, 1243-1254. DOI : http://dx.doi.org/10.1145/
2463676.2463710

Aleksandar Dragojevic, Pascal Felber, Vincent Gramoli, and Rachid Guerraoui. 2011. Why STM can be more than a
research toy. Commun. ACM 54, 4 (2011), 70~77. DOI : http://dx.doi.org/10.1145/1924421.1924440

Aleksandar Dragojevic, Rachid Guerraoui, and Michal Kapalka. 2009. Stretching transactional memory. In Proceedings
of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’09). ACM, 155-165.
DOI:http://dx.doi.org/10.1145/1542476.1542494

Bin Fan, David G. Andersen, and Michael Kaminsky. 2013. MemC3: Compact and concurrent memcache with dumber
caching and smarter hashing. In Proceedings of the 10th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI'13). USENIX Association, 371-384. https://www.usenix.org/conference/nsdi13/technical-sessions/
presentation/fan.

Michael Ferdman, Almutaz Adileh, Yusuf Onur Kogberber, Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic,
Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki, and Babak Falsafi. 2012. Clearing the clouds: A study
of emerging scale-out workloads on modern hardware. In Proceedings of the 17th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS’12). ACM, 37-48. DOI : http://dx.doi.org/
10.1145/2150976.2150982

Bart Haagdorens, Tim Vermeiren, and Marnix Goossens. 2004. Improving the performance of signature-based net-
work intrusion detection sensors by multi-threading. In Proceedings of the 5th International Workshop on Information
Security Applications (WISA’04). Springer, 188-203. DOI : http://dx.doi.org/10.1007/978-3-540-31815-6_16

Armin Heindl and Gilles Pokam. 2009. An analytic framework for performance modeling of software transactional
memory. Comput. Netw. 53, 8 (2009), 1202-1214. DOI : http://dx.doi.org/10.1016/j.comnet.2009.02.006

Armin Heindl and Gilles Pokam. 2009. An analytic model for optimistic STM with lazy locking. In Proceedings of the
16th International Conference Analytical and Stochastic Modeling Techniques and Applications (ASMTA’ 09). Springer,
339-353. DOI : http://dx.doi.org/10.1007/978-3-642-02205-0_24

Armin Heindl, Gilles Pokam, and Ali-Reza Adl-Tabatabai. 2009. An analytic model of optimistic software transac-
tional Memory. In Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS’09). IEEE Computer Society, 153-162. DOI : http://dx.doi.org/10.1109/ISPASS.2009.4919647

Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional memory: Architectural support for lock-free data structures.
In Proceedings of the 20th Annual International Symposium on Computer Architecture. ACM, 289-300. DOI : http://dx.
doi.org/10.1145/165123.165164

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

http://dx.doi.org/10.1109/MM.2006.73
http://dx.doi.org/10.1145/1375527.1375580
http://dx.doi.org/10.1145/1454115.1454128
http://dx.doi.org/10.1016/j.future.2004.11.019
http://dx.doi.org/10.1145/1274971.1274976
http://dx.doi.org/10.1145/2463676.2463710
http://dx.doi.org/10.1145/1924421.1924440
http://dx.doi.org/10.1145/1542476.1542494
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan
http://dx.doi.org/10.1145/2150976.2150982
http://dx.doi.org/10.1007/978-3-540-31815-6_16
http://dx.doi.org/10.1016/j.comnet.2009.02.006
http://dx.doi.org/10.1007/978-3-642-02205-0_24
http://dx.doi.org/10.1109/ISPASS.2009.4919647
http://dx.doi.org/10.1145/165123.165164

ESTIMA: Extrapolating ScalabiliTy of In-Memory Applications 10:27

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(36]
(37]

(38]

Adolfy Hoisie, Olaf M. Lubeck, and Harvey J. Wasserman. 2000. Performance and scalability analysis of teraflop-scale
parallel architectures using multidimensional wavefront applications. Int. J. High Perf. Comput. Appl. 14, 4 (2000),
330-346. DOI : http://dx.doi.org/10.1177/109434200001400405

Intel. 2016. Intel 64 and IA-32 architectures software developer’s manual, volume 3B: System programming guide.
Part 1 (2016), 64.

Engin Ipek, Bronis R. de Supinski, Martin Schulz, and Sally A. McKee. 2005. An approach to performance prediction
for parallel applications. In Proceedings of the 11th International Euro-Par Conference on Parallel Processing (Euro-
Par’05). Springer, 196-205. DOI : http://dx.doi.org/10.1007/11549468_24

Raj Jain. 1991. The Art of Computer Systems Performance Analysis—Techniques for Experimental Design, Measurement,
Simulation, and Modeling. Wiley.

Victor Jiménez, Francisco J. Cazorla, Roberto Gioiosa, Mateo Valero, Carlos Boneti, Eren Kursun, Chen-Yong Cher,
Canturk Isci, Alper Buyuktosunoglu, and Pradip Bose. 2010. Power and thermal characterization of POWERG system.
In Proceedings of the 19th International Conference on Parallel Architecture and Compilation Techniques (PACT’10).
ACM, 7-18. DOI: http://dx.doi.org/10.1145/1854273.1854281

Darren J. Kerbyson, Henry J. Alme, Adolfy Hoisie, Fabrizio Petrini, Harvey]J. Wasserman, and Michael L. Gittings.
2001. Predictive performance and scalability modeling of a large-scale application. In Proceedings of the 2001
ACM/IEEE Conference on Supercomputing. ACM, 37. DOI : http://dx.doi.org/10.1145/582034.582071

Benjamin C. Lee, David M. Brooks, Bronis R. de Supinski, Martin Schulz, Karan Singh, and Sally A. McKee. 2007.
Methods of inference and learning for performance modeling of parallel applications. In Proceedings of the 12th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP’07). ACM, 249-258. DOI : http://dx.
doi.org/10.1145/1229428.1229479

Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. 2014. MICA: A holistic approach to fast
in-memory key-value storage. In Proceedings of the 11th USENLX Symposium on Networked Systems Design and Imple-
mentation (NSDI'14). USENIX Association, 429-444. https://www.usenix.org/conference/nsdi14/technical-sessions/
presentation/lim.

Xu Liu and Bo Wu. 2015. ScaAnalyzer: A tool to identify memory scalability bottlenecks in parallel programs. In
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC
2015). ACM, 47:1-47:12. DOI : http://dx.doi.org/10.1145/2807591.2807648

Gabriel Marin and John M. Mellor-Crummey. 2004. Cross-architecture performance predictions for scientific appli-
cations using parameterized models. In Proceedings of the International Conference on Measurements and Modeling of
Computer Systems (SIGMETRICS 04). ACM, 2-13. DOI : http://dx.doi.org/10.1145/1005686.1005691

Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. 2008. STAMP: Stanford transactional
applications for multi-processing. In Proceedings of the 4th International Symposium on Workload Characterization
(IISWC’08). IEEE Computer Society, 35-46. DOI : http://dx.doi.org/10.1109/IISWC.2008.4636089

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy, Mike
Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony Tung, and Venkateshwaran Venkataramani. 2013. Scaling
memcache at facebook. In Proceedings of the 10th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI'13). USENIX Association, 385-398. https://www.usenix.org/conference/nsdi13/technical-sessions/
presentation/nishtala.

Graham R. Nudd, Darren J. Kerbyson, Efstathios Papaefstathiou, S. C. Perry, John S. Harper, and Daniel V. Wilcox.
2000. Pace—A toolset for the performance prediction of parallel and distributed systems. Int. J. High Perf. Comput
Appl. 14, 3 (2000), 228-251. DOI : http://dx.doi.org/10.1177/109434200001400306

Catherine Rose Mills Olschanowsky. 2011. Hpc Application Address Stream Compression, Replay and Scaling. Ph.D.
Dissertation. University of California at San Diego, La Jolla, CA.

Carl Adam Petri. 1966. Communication with Automata, New York: Griffiss Air Force Base. Technical Report. Technical
Report RADC-TR-65-377.

James R. Phillips. 2013. ZunZun.com. Retrieved from http://www.zunzun.com.

Donald E. Porter and Emmett Witchel. 2010. Understanding transactional memory performance. In IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS’10). IEEE Computer Society, 97-108. DOI : http://
dx.doi.org/10.1109/ISPASS.2010.5452061

Jim Ruppert. 1995. A delaunay refinement algorithm for quality 2-dimensional mesh generation. J. Algor. 18, 3 (1995),
548-585. DOI : http://dx.doi.org/10.1006/jagm.1995.1021

Nir Shavit and Dan Touitou. 1995. Software transactional memory. In Proceedings of the 14th Annual ACM Symposium
on Principles of Distributed Computing. ACM, 204-213. DOI : http://dx.doi.org/10.1145/224964.224987

Karan Singh, Major Bhadauria, and Sally A. McKee. 2009. Real time power estimation and thread scheduling via per-
formance counters. SSGARCH Comput. Arch. News 37, 2 (2009), 46—55. DOI : http://dx.doi.org/10.1145/1577129.1577137

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

http://dx.doi.org/10.1177/109434200001400405
http://dx.doi.org/10.1007/11549468_24
http://dx.doi.org/10.1145/1854273.1854281
http://dx.doi.org/10.1145/582034.582071
http://dx.doi.org/10.1145/1229428.1229479
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
http://dx.doi.org/10.1145/2807591.2807648
http://dx.doi.org/10.1145/1005686.1005691
http://dx.doi.org/10.1109/IISWC.2008.4636089
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
http://dx.doi.org/10.1177/109434200001400306
http://www.zunzun.com
http://dx.doi.org/10.1109/ISPASS.2010.5452061
http://dx.doi.org/10.1006/jagm.1995.1021
http://dx.doi.org/10.1145/224964.224987
http://dx.doi.org/10.1145/1577129.1577137

10:28 G. Chatzopoulos et al.

(39]

Sharanyan Srikanthan, Sandhya Dwarkadas, and Kai Shen. 2016. Coherence stalls or latency tolerance: Informed
CPU scheduling for socket and core sharing. In Proceedings of the 2016 USENIX Annual Technical Conference
(USENIX ATC 2016). USENIX Association, 323-336. https://www.usenix.org/conference/atc16/technical-sessions/
presentation/srikanthan.

[40] Josep Torrellas, Yan Solihin, and Vinh Vi Lam. 1999. Scal-tool: Pinpointing and quantifying scalability bottlenecks in

[41]

[42]

[43]

[44]

[45]

DSM multiprocessors. In Proceedings of the ACM/IEEE Conference on Supercomputing (SC’99). ACM, 17. DOI : http://
dx.doi.org/10.1145/331532.331549

Takayuki Usui, Reimer Behrends, Jacob Evans, and Yannis Smaragdakis. 2009. Adaptive locks: Combining transac-
tions and locks for efficient concurrency. In Proceedings of the 18th International Conference on Parallel Architectures
and Compilation Techniques (PACT 09). IEEE Computer Society, 3—14. DOI : http://dx.doi.org/10.1109/PACT.2009.20
Augusto Vega, Alper Buyuktosunoglu, and Pradip Bose. 2013. SMT-centric power-aware thread placement in chip
multiprocessors. In Proceedings of the 22nd International Conference on Parallel Architectures and Compilation Tech-
niques. IEEE Computer Society, 167-176. DOI : http://dx.doi.org/10.1109/PACT.2013.6618814

Richard West, Puneet Zaroo, Carl A. Waldspurger, and Xiao Zhang. 2010. Online cache modeling for commodity
multicore processors. In 19th International Conference on Parallel Architecture and Compilation Techniques (PACT’10).
ACM, 563-564. DOI : http://dx.doi.org/10.1145/1854273.1854353

Leo T. Yang, Xiaosong Ma, and Frank Mueller. 2005. Cross-platform performance prediction of parallel applications
using partial execution. In Proceedings of the ACM/IEEE SC2005 Conference on High Performance Networking and
Computing. IEEE Computer Society, 40. DOI : http://dx.doi.org/10.1109/SC.2005.20

Ahmad Yasin. 2014. A top-down method for performance analysis and counters architecture. In Proceedings of the 2014
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS’14). IEEE Computer Society,
35-44. DOI : http://dx.doi.org/10.1109/ISPASS.2014.6844459

[46] Jidong Zhai, Wenguang Chen, and Weimin Zheng. 2010. PHANTOM: Predicting performance of parallel applications

on large-scale parallel machines using a single node. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPOPP’10). ACM, 305-314. DOI : http://dx.doi.org/10.1145/1693453.1693493

Received November 2016; revised May 2017; accepted May 2017

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 10. Publication date: August 2017.

https://www.usenix.org/conference/atc16/technical-sessions/presentation/srikanthan
http://dx.doi.org/10.1145/331532.331549
http://dx.doi.org/10.1109/PACT.2009.20
http://dx.doi.org/10.1109/PACT.2013.6618814
http://dx.doi.org/10.1145/1854273.1854353
http://dx.doi.org/10.1109/SC.2005.20
http://dx.doi.org/10.1109/ISPASS.2014.6844459
http://dx.doi.org/10.1145/1693453.1693493

