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Abstract

This paper presents the 2D and 3D numerical analysis of pullout tests on steel anchorages in
concrete blocks using standard and mixed finite elements. A novel (stabilized) mixed formulation
in the variables of total strain ε and displacements u is introduced to overcome the intrinsic de-
ficiencies of the standard displacement-based one in the context of localization of strains, such as
mesh dependency. The quasi-brittle behaviour of concrete is described through an elastoplastic
constitutive law with a local Rankine yielding criterion. The proposed formulation is shown to be
a reliable and accurate tool, sensitive to the physical parameters of the pullout tests, but objective
with respect to the adopted FE mesh. Furthermore, the mixed ε/u finite element is able to capture
the correct failure mechanism with relatively coarse discretizations. At the same time, the spurious
behavior of the standard formulation is not alleviated by mesh-refinement.
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1 Introduction

Concrete is widely used in the context of civil structures, and yet, it is a rather complex material.
Having an inherent internal heterogeneity and reacting to environmental conditions makes the post-
peak non-linear behavior and the subsequent failure very difficult to predict, if not impossible. Then,
it is clear the key role of experimental tests in the context of concrete structures reliability. Within
the extensive literature in the field, one can recall L-shaped panels tests by Winkler et al. [1], wedge
splitting by Trunk [2], single edge notched beams by Guinea et al. [3], Gálvez et al. [4], mixed mode
fracture tests by Nooru-Mohamed [5], Ballatore et al. [6] and indentation tests by Berenbaum and
Brodie [7].

In this work, the pullout test is addressed, being one of the most interesting experimental techniques
to evaluate the strength of concrete and the overall behavior of embedded anchorages. First accounts
of the pullout test come from Abrams [8] and Slater et al. [9]. Later, Elfgren et al. [10] and Peier [11]
introduced numerical modeling as a validation of the experimental procedure. While the laboratory
setup can be easily reproduced, the test outcomes are strictly dependent on the choice of various
parameters as the mechanical properties of the employed materials, the size of specimens and the
anchorage embed depth. The influential works of Eligehausen and Sawade [12], Bažant et al. [13],
Ožbolt et al. [14], Karihaloo [15] emphasized the structural size effect on the pullout test and its
influence on the energy dissipated in the cracking process. Most recent advances are related to the
possibility of testing the coupling between FRP composites and concrete [16, 17]. Hereafter, the
attention will be focused on the reported experiments from Dejori [18], Thenier and Hofstetter [19]
for the 2D case, whereas the work by Gasser and Holzapfel [20], Areias and Belytschko [21] will be
considered for the 3D case.

The methodology used to assess physical properties of specimens during a test is as critical as
the details that characterize the particular experiment. Slight changes in the application of a load
or in the supporting system can affect severely the results without a clear explanation. Permutating
over multiple experimental settings can help to understand better the numerous variables involved,
but, in reality, not all combinations are possible, due to limitations in controlling the test bench as
well as time and cost restrictions. Hence, it is in this framework that numerical simulations play a
fundamental role for the prediction and the possible improvement of experiments.

Recently, the authors presented a general purpose finite element technology for compressible and
incompressible plasticity [22], which has successfully tackled geotechnical problems [23]. The proposed
mixed strain-displacement (ε/u) formulation has been applied to local constitutive models in plasticity,
in the framework of the smeared crack approach [24]. In problems involving strain-localization, stan-
dard finite elements present numerous limitations, being affected by spurious mesh-biased dependence
and stress locking. In such cases, the sensibility required to evaluate the change of results with respect
to diverse boundary conditions can be overshadowed by the lack of precision in the inelastic range of
classical displacement-based finite elements. On the contrary, the mixed ε/u finite element formulation
is capable to overcome these issues, predicting effectively the peak load, the failure mechanism and
the localization bands. The method is also free from any mesh dependence and it does not require any
additional tracking technique. This is a substantial clinching feat, as, leaving out theoretical qualms
and from the factual point of view, local crack tracking procedures are very difficult to implement in
3D and global methods cannot deal with crack branching.

Taking advantage of its reliability, the proposed method is applied in this work to the pullout
problem, using 2D and 3D elements with linear interpolations of both the displacement and total
strain fields. In previous works [25, 26, 27], the formulation has been used in the context of isotropic
damage models. In this work, though, a plasticity model based on the Rankine failure criterion is
used, similarly to those used in references [20, 28, 29, 30, 31]. Furthermore, plasticity with strain
softening has been proved to be able to reproduce structural size-effect in a wide range of scales and,
particularly, in engineering-size problems [25].

The objective of the paper is proving that the use of an appropriate finite element technology is
crucial for the study of the experimental setting and for the assessment of the results, even in the case
of a very well known application, as the pullout test is. The outline of the paper is as follows. First,
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the displacement-based and the mixed strain-displacement formulations are introduced. Then, the
plasticity constitutive model is presented and the Rankine yielding criterion is extended in the case of
multi-axial loading condition. A regularization of the singular points, useful to avoid indetermination
issues in the return mapping algorithm, is shown. Finally, numerical simulations of 2D and 3D pullout
tests are presented: standard and mixed finite element analyses are compared, demonstrating both
the sensibility to changes on the boundary conditions and the replication of experiments. The results
show that the mixed ε/u finite element provides reliable and high quality outcomes when compared
to the standard irreducible formulation.

2 Governing equations

A solid body B occupying the space domain Ω is described by the position X of each point with
respect to a system of coordinates x, y, z.

On the one hand, every point of such domain has a displacement u and a total strain ε. Both
displacements and strains are considered small. The compatibility condition relates both fields as:

−ε+∇su = 0 (1)

where ∇s(·) is used to denote the symmetric gradient operator. On the other hand, the equilibrium
of forces in (quasi-)static conditions states that:

∇ · σ + f = 0 (2)

where σ is the Cauchy stress tensor and f are the external forces applied to the body. The symbol
∇ · (·) refers to the divergence operator. The total strain ε is decomposed additively in the elastic
εe and the plastic εp parts. The link between Cauchy’s stress and the total strain is given by the
constitutive law:

σ = C : εe = C : (ε− εp) (3)

where C is the fourth order elastic constitutive tensor. Recalling Equations (1) and (2), the problem
reads:

−ε+∇su = 0

∇ · [C : (ε− εp)] + f = 0
(4)

This set of equations represents the strong form for the mixed problem involving the unknown fields
of displacements u and total strains ε in the case of plasticity. In order to obtain a symmetric system,
the first equation is pre-multiplied by the elastic constitutive tensor C:

−C : ε+ C : ∇su = 0

∇ · [C : (ε− εp)] + f = 0
(5)

The irreducible problem, in terms of the displacement field u only, is recovered substituing the first
equation into the second, to yield:

∇ · [C : (∇su− εp)] + f = 0 (6)

With proper conditions on the boundary ∂Ω and evolution laws for the plastic strain field [32], both
irreducible and mixed formulations provide a well posed boundary value problem.

3 Irreducible finite elements

Recalling the strong form in Equation (6), the corresponding weak problem can be written as:∫
Ω
v · (∇ · [C : (∇su− εp)]) +

∫
Ω
v · f = 0 ∀v ∈ V (7)
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where V is the space of test functions which are square integrable. Integrating by parts, the forcing
terms can be extracted as: ∫

Ω
∇sv : C : (∇su− εp) = F (v) (8)

where the boundary terms accounting for body forces f on Ω and tractions t on the boundary ∂Ω are
collected in the term

F (v) =

∫
Ω
v · f +

∫
∂Ω

v · t (9)

The discretized version of Equation (8) is obtained by selecting a finite set of interpolation functions
for the displacement field as well as the test function as:

u → uh =

npts∑
i=1

v
(i)
h u

(i)
h vh ∈ Vh (10)

such that the discrete functional space Vh is a subset of the continuous version V ⊆ H1(Ω)dim. From
Equation (8), the final discrete system of equations reads:∫

Ω
∇svh : C : (∇suh − εp) = F (vh) (11)

For the standard finite element interpolation, linear triangles P1 and quadrilateral Q1 are considered
in this work.

4 Mixed ε− u finite elements

4.1 Galerkin method

The weak form of the set of equations in (5) is:

−
∫
Ω
γ : C : ε+

∫
Ω
γ : C : ∇su = 0 ∀γ ∈ G

∫
Ω
v · (∇ · σ) +

∫
Ω
v · f = 0 ∀v ∈ V

(12)

In this case, besides the functional space V for the test functions v of the displacement field u, it is
required to introduce the set of test function tensors for the strain ε pertaining to G. Integrating by
parts the second equation, it can be written:

−
∫
Ω
γ : C : ε+

∫
Ω
γ : C : ∇su = 0 ∀γ ∈ G

∫
Ω
∇sv : σ = F (v) ∀v ∈ V

(13)

From the mathematical requirements of the problem, V is in the space of square integrable functions
v which are at least square integrable and have square integrable first derivative, whereas G belongs
to the set of square integrable symmetric tensors γ.

The discretized version of the weak form in Equation (13) is obtained by approximating the strain
tensor ε and the displacement field u as

ε → εh =

npts∑
i=1

γ
(i)
h ε

(i)
h γh ∈ Gh

u → uh =

npts∑
i=1

v
(i)
h u

(i)
h vh ∈ Vh

(14)
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The system of equations (13), in its discrete form, reads

−
∫
Ω
γh : C : εh +

∫
Ω
γh : C : ∇suh = 0 ∀γh ∈ Gh

∫
Ω
∇svh : σ = F (vh) ∀vh ∈ Vh

(15)

For the mixed finite element method, equal interpolation finite element spaces for displacements and
strains are considered in this work, and, in particular, the case of linear and bilinear interpolations,
i.e. P1P1 and Q1Q1 elements. However, the stability of a discrete mixed formulation derived by the
Galerkin method depends from the choice of the finite element spaces Gh and Vh as stated by the
Inf-Sup condition [33]. Using equal order of interpolation does not satisfy the previous condition;
consequently, a Variational Multiscale Stabilization procedure is now introduced.

4.2 Variational Multiscale Stabilization

The Variational Multiscale Stabilization was developed in first instance by Hughes et al. [34] and then
generalized by Codina [35]. This technique modifies appropriately the variational form of the problem
in order to provide the required numerical stability (see Benedetti et al. [23], Cervera et al. [26], Badia
and Codina [36], Codina [37] for details).

The stabilization procedure decomposes the solution of fields (ε, u) into a resolvable scale (εh,uh),
calculated on the FEM mesh, and an irresolvable one (ε̃, ũ), proper of a finer scale:

ε = εh + ε̃
u = uh + ũ

(16)

The fine scale variables (also known as subscale variables) and their test functions pertain to their
respective functional spaces G̃ for the strain subscale and Ṽ for the displacement subscale. This
decomposition allows to consider extended solution spaces given by G ≈ Gh ⊕ G̃ and V ≈ Vh ⊕ Ṽ.
The subscale part (ε̃, ũ) can be thought as a high frequency solution that cannot be captured by the
FEM mesh.

Rewriting the set of equations within this enhanced functional setting, the solution of the subscale
variables depends on the residuals of the strong form of the equations upon substitution of the FEM
solution. Defining R1,h and R2,h as the residuals of the strong form equations as:

R1,h = −C : εh + C : ∇suh

R2,h = ∇ · σh + f
(17)

it is possible to approximate the subscale variables within each element as done in the work of Codina
[35] with the projection of the residuals on the mesh grid:

ε̃ = τεC−1 : P̃1 (R1,h)

ũ = τu P̃2 (R2,h)

(18)

where P̃1 and P̃2 represent the projection operators. τu and τε are the stabilization parameters
computed as:

τu = cu
hL0

E
and τε = cε

h

L0
(19)

In the last expression, cu and cε are arbitrary positive numbers; E is the Young’s modulus, being
the mechanical parameter of the problem; h is the representative size of the finite element mesh and
L0 is a characteristic length of the problem. To complete the stabilization method, an appropriate
projection operator has to be selected in order to be able to compute the subscale variables.
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4.2.1 OSGS stabilization

In the Orthogonal Subgrid Scale stabilization [36], the projection operator selected to solve the unre-
solvable scale variables is the orthogonal projector

P̃ (X) = P̃⊥
h (X) = I (X)− Ph (X) (20)

where Ph represents the projection over the finite element mesh. It represents the L2 projection of
X, or least square fitting, on the finite element space [38] and it is performed taking advantage of the
orthogonality condition ∫

Ω
ηh : (XΠ −X) = 0 ∀ηh ∈ Vh or Gh (21)

where XΠ is the projected value of X on the mesh nodes. Substituting in (18), the subscale variables
ũ and ε̃ can be approximated as:

ε̃ = τεC−1 : [R1,h − Ph (R1,h)]

ũ = τu [R2,h − Ph (R2,h)]
(22)

with the residuals R1,h,R2,h defined in (17). Back-substituting in the set of equations of the problem,
the final set of equations is:

− (1− τε)

∫
Ω
γh : C : (εh −∇suh)+

−τu

∫
Ω
[∇ · (C : γh)] · [∇ · σh − Ph (∇ · σh)] = 0 ∀γh ∈ Gh

∫
Ω
∇svh : C : (εstab − εp) = F (vh) ∀vh ∈ Vh

(23)

In order to compute the projection of stresses at each time step, expression (21) is recalled to write∫
Ω
ηh : (Πσ −∇ · σh) = 0 ∀ηh ∈ Gh (24)

and, with the additional projection equation, it reads:

− (1− τε)

∫
Ω
γh : C : (εh −∇suh)

−τu

∫
Ω
[∇ · (C : γh)] · [∇ · σh −Πσ] = 0 ∀γh ∈ Gh

∫
Ω
∇svh : C : [εstab − εp] = F (vh) ∀vh ∈ Vh

∫
Ω
ηh : (Πσ −∇ · σh) = 0 ∀ηh ∈ Gh

(25)

4.2.2 ASGS stabilization

In the Algebraic Subgrid Scale stabilization method [36], the projection operator is taken as the
identity, that is, P̃ (X) = I (X):

ε̃ = τε (−εh +∇suh)

ũ = τu (∇ · σh + f)
(26)
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Substituting in Equation (16) and then in the set of equations (15) and rearranging, the final system
of equations reads:

− (1− τε)

∫
Ω
γh : C : (εh −∇suh)

−τu

∫
Ω
[∇ · (C : γh)] · [∇ · σh + f ] = 0 ∀γh ∈ Gh

∫
Ω
∇svh : C : [(1− τε) εh + τε∇suh − εp] = F (vh) ∀vh ∈ Vh

(27)

The first term in the first equation represents a projection (smoothing) of the strain field obtained
by differentiation of the discrete displacement field. This is exactly the same projection operator
presented in Equation (21). The second additional term is given by the displacement subscale that,
in turn, depends on the residual of the strong form of the equilibrium equation. The second equation
is related to the balance of momentum. The set of equations with OSGS stabilization resembles the
one for the ASGS, except for the second term in the first equation: in fact the Orthogonal Subgrid
Stabilization scheme is less diffusive than the Algebraic one [39]. However, this comes at the price
of solving an additional equation; in the implementation details it is shown how this problem can be
circumvented.

5 Implementation

Both in the standard and the mixed formulations, the presence of the non-linear plastic strains εp =
εp (σ) requires an iterative procedure to deal with the nonlinearity of the system. One of these
schemes is the Newton-Raphson method, which ensures quadratic convergence for convex functions.
In addition, constitutive laws involving plasticity are usually written in terms of rate equations and,
consequently, the tangent matrices are involved in the resulting algebraic set of equations. Consider
the nonlinear multidimensional-multivariable problem

F (X) = 0 (28)

where X is the unknown. A non-linear problem of this kind can be solved starting from a Taylor
approximation around the solution point at iteration i+ 1 in a particular time step n+ 1:

F i+1
n+1 ≈ F i

n+1 + J i
n+1 δXi+1 (29)

where the Jacobian matrix J is defined as

J =
∂F

∂X
(30)

Assuming that F i+1
n+1 = 0, an iterative correction is computed as

δXi+1 = −
[
J i

n+1

]−1
F i

n+1 (31)

and the solution vector is updated as

Xi+1 = Xi + δXi+1 (32)

In the irreducible formulation, the unknown vector X corresponds to the displacement field u. The
Jacobian matrix can be found by differentiating the set of equation with respect to the unknowns
variable u at iteration i. In particular, it is possible to write the algebraic set of equations necessary
to find the correction δu at the iteration i+ 1 as:

Ki
t,n+1δu

i+1
n+1 = F i

n+1 (33)
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where F is the residual force and the tangent stiffness matrix Kt is defined as

Ki
t = BTCi

epB (34)

being B the discrete gradient of shape functions and Ci
ep the algorithmic consistent elastoplastic

constitutive tensor at iteration i.
Akin to the irreducible FEM implementation, the mixed finite element problem considers the

unknown variable as X = [ε,u]T . The algebraic system of equations the case of the OSGS implemen-
tation is given by

−

 M τ Gτ DT
Π

Dτ Kτ 0
DΠ 0 MΠ

i

n+1

 δεh
δuh

δΠh

i+1

n+1

=

 R1,h

R2,h

R3,h

i

n+1

(35)

where (δεh, δuh, δΠh) are the iterative corrections for (εh,uh,Πh) in the Newton-Raphson scheme.
In the previous expression, M represents a mass-like projection matrix, G a gradient matrix, D a
divergence matrix and K a stiffness matrix. The subscript τ refers to the fact that those matrices
incorporate stabilization terms. Differentiating (25), within the hypothesis of plastic strain depending
only on εh, the previous matrices read:

M τ = − (1− τε)

∫
Ω
Nε

TCNε − τu

∫
Ω
CBBT Cn+1

ep (36)

Gτ = (1− τε)

∫
Ω
Nε

TCB (37)

Dτ =

∫
Ω
BT

[
Cn+1
ep − τεC

]
Nu (38)

Kτ = τε

∫
Ω
BTCB (39)

where Nε and Nu are the matrices of shape functions of the respective strain and displacement fields
and B is the matrix of the gradient of those shape functions. The added projection matrices are
computed as:

MΠ = −
∫
Ω
Nε

TNε (40)

DΠ =

∫
Ω
BTNε (41)

Note that the resulting algebraic system of equations is, in general, not symmetric. However, disregard-
ing the terms due to plasticity, the system matrix is symmetric and it coincides with the one presented
in Cervera et al. [26, 40]. In order to reduce computational costs, the following approximation can be
considered:

Πn+1
σ = P⊥

h

(
∇ · σn+1

h

)
≈ P⊥

h (∇ · σn
h) (42)

which can be computed at the beginning of time step n+ 1.
Instead, in the case of the ASGS method, the last algebraic equation is automatically verified and

the Jacobian matrix presents the mathematical structure:

J i
n+1 =

[
M τ Gτ

Dτ Kτ

]i
n+1

(43)

Matrices M τ ,Gτ ,Dτ ,Kτ are the same in both the presented methods. Details on the differentiation
of the plastic strain tensor εp with respect to the problem unknown εh are given in the work by
Benedetti et al. [23].
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6 Rankine plasticity model

The Rankine yielding criterion is defined by taking the i-th principal stress, denoted with σi, and
comparing it to the threshold limit stress r (ξ):

f (σ, q) = σi − r (ξ) (44)

where r (ξ) is
r (ξ) = σy − q (ξ) (45)

being σy the uniaxial yielding value of stresses and q (ξ) the hardening/softening function. In plasticity,
the Cauchy’s stress tensor is defined as:

σ = C : εe = C : (ε− εp) (46)

where the total strain tensor ε can be split in elastic strain εe and plastic strain εp. The plastic
strain-like database is composed of the tensor εp and the isotropic hardening strain-like variable ξ.
The evolution equations, also known as flow rule, are defined as:

ε̇p = γ̇
∂g (σ, q)

∂σ

ξ̇ = γ̇
∂g (σ, q)

∂q

(47)

where γ̇ is the plastic multiplier and the function g (σ, q) represents the plastic potential. In associated
plasticity, the plastic potential corresponds with the yielding function f (σ, q).

Such definition of the plastic flow gives to the inelastic deformation a directional character by
construction. In the case of the Rankine model, the behavior is orthotropic, as the plastic strain
depends on the stress eigenvalues. This is in contrast with isotropic continuum damage models,
where the effective stress tensor is scaled isotropically, affecting all eigenvalues in the same manner.
There exist also orthotropic damage models (see, for instance, Ju [41], Meschke et al. [42], Berto
et al. [43], Rizzi and Carol [44], Pelà et al. [45]), closely related to the classical smeared crack models
[24, 46, 47, 48, 49] but they are seldom used in practice, being extremely prone to severe stress-locking.
In this respect, the mixed formulation can also be used advantageously with these latter models.

In the Haig-Westergaard space, the Rankine criterion appears as the intersection of three planes
in the first octant, where σ1, σ2, σ3 are positive (Figure 1). The yielding surface loci are also described
by the following conditions:

Faces: σ1 = r (ξ) or σ2 = r (ξ) or σ3 = r (ξ)

Edges: σ1 = σ2 = r (ξ) or σ2 = σ3 = r (ξ) or σ1 = σ3 = r (ξ)

Apex: σ1 = σ2 = σ3 = r (ξ)

(48)

The edges and apex are singular cases that require special treatment, to avoid ill-definition of the flow
direction in the case of associated plasticity [50]. One possibility to circumvent this problem is to
smooth the domain in the vicinity of the corners [51, 52].

The sharp edges are regularized with a quarter of cylindrical surface whereas the apex with an
eighth of a sphere. In this way, it is possible to join up the three faces in a unique surface, whose radii
are expressed as fraction c ∈ [0, 1] of the uniaxial threshold:

ρ (c, q (ξ)) = c (σy − q (ξ)) (49)

The Extended Rankine yielding criterion is defined as:

f (c,σ, q (ξ)) =

√
⟨f1 (c,σ, q (ξ))⟩2 + ⟨f2 (c,σ, q (ξ))⟩2 + ⟨f3 (c,σ, q (ξ))⟩2 − ρ (c, q (ξ)) (50)
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σ2

σ1

σ3

σ
1 =

σ
2 =

σ
3

Figure 1: Representation of the yielding surface in the principal stress space
(
σ1, σ2, σ3

)
for c = 0.

The gray area is the admissible stress domain, while the red line represents the hydrostatic axis.

where fi (c,σ, q (ξ)) is the uniaxial yield function defined as:

fi (c,σ, q (ξ)) = σi − (1− c) (σy − q (ξ)) (51)

and ⟨·⟩ is the Macaulay brackets, or ramp function. Two important aspects are peculiar of this
representation of the yielding function. On the one hand, f (c,σ, q) is the norm of the positive valued
uniaxial yielding functions in the three principal directions. In fact, if f1 is the only non-negative
value, the yielding function reduces to the uniaxial original case as in (44):

f (c,σ, q (ξ)) =
√

f2
1 (c,σ, q (ξ))− ρ (c, q (ξ)) = σi − (σy − q (ξ)) (52)

On the other hand, the surface is smooth and differentiable at all points. In the case of c = 0 the
original yielding surface with sharp edges is recovered, whereas, when c = 1, the first octant presents
a spherical sector.

Defining:

f̄i (σ, q) =
⟨fi (σ, q)⟩√

f1 (σ, q)
2 + f2 (σ, q)

2 + f3 (σ, q)
2

(53)

the evolution equations for the continuous case can be compactly written as:
ε̇p = γ̇

3∑
i=1

f̄i (σ, q)Hii

ξ̇ = γ̇

(
c+ (1− c)

3∑
i=1

f̄i (σ, q)

) (54)

where the second order tensor Hij = ϕi ⊗ ϕj represents the direction of the plastic flow, being ϕj the
j-th eigenvector of the stress tensor.

The time variation of the plastic multiplier is computed as [32]:

γ̇ =
∂f
∂σ : C : ε̇

∂f
∂σ : C : ∂f

∂σ − ∂f
∂q

∂q
∂ξ

∂f
∂q

(55)
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σ3 = r (ξ)

σ 1
=
r (
ξ)

σ2 = r (ξ)

σ1

σ3

σ2

f2
2 + f2

3 = ρ2

f2
1 + f2

3 = ρ2

f2
1 + f2

2 = ρ2

f2
1 + f2

2 + f2
3 = ρ2

Figure 2: Extended Rankine yield surface: the smoothing of the corners is highlighted and each part
presents its own descriptive equation

The discrete version of Rankine plasticity model follows the closest point projection algorithm,
where introducing a Backward Euler time scheme, the plastic multiplier ∆γn+1 is computed by finding
the root of the yield function at the step n+ 1:

fn+1
(
σn+1, qn+1

)
=

√
f1 (σn+1, qn+1)2 + f2 (σn+1, qn+1)2 + f3 (σn+1, qn+1)2 − ρ (q) =

=

[∑nret
i=1

(
Hi : σtrial −∆γn+1HiC ∂fn+1

∂σn+1 − (1− c)
(
σy − q

(
ξn +∆γn+1 ∂fn+1

∂qn+1

)))2] 1
2

−c
(
σy − q

(
ξn +∆γn+1 ∂fn+1

∂qn+1

))
= 0

(56)

where nret is the number of principal stresses to be considered in the return mapping. For linear
hardening/softening, function q (ξ) reads

q (ξ) =

{
HS
σy

ξ for 0 ≤ ξ ≤ σy

HS

0 for
σy

HS
≤ ξ ≤ ∞

(57)

and the value of ∆γn+1 is explicitly computed from Equation (56). For exponential softening, q (ξ) is

q (ξ) = σy

[
1− exp

(
−2HS

σy
ξ

)]
for 0 ≤ ξ ≤ ∞ (58)

and a local Newton-Raphson iterative scheme is required to compute ∆γn+1. The update of the stress
and the hardening function is performed as:

σn+1 = C :
[
εn+1 − εn+1

p

]
= σn+1

trial − C : ∆γn+1 ∂f
n+1

∂σn+1

q
(
ξn+1

)
= q

(
ξn +∆γn+1∂f

n+1

∂qn+1

) (59)
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Following standard arguments [32], the continuous elastoplastic constitutive fourth order tensor is:

Cep =

C−

(
C : ∂f

∂σ

)
⊗
(
C : ∂f

∂σ

)
∂f
∂σ : C : ∂f

∂σ − ∂f
∂q

∂q
∂ξ

∂f
∂q

 (60)

In the discrete time setting, an algorithmic tangent operator is used; this is defined by the change of
stresses around an admissible equilibrium position (i.e. σn+1) due to a small variation in the strain.
The i-th column of the approximated constitutive matrix can be computed as:

Cn+1
ep êi ≈

σ (ε+ hêi)− σ (ε− hêi)

2h

∣∣∣∣
n+1

(61)

where êi is the unit vector of the i-th direction in the reference system. The smaller the perturbation,
the closer the approximation tends to the original definition of the elastoplastic tensor. However, it
has to be noted that the lower limit of the value of the perturbation is proportional to the machine
precision, below which numerical cancellation and instabilities are frequent. Numerical experiments
justify a perturbation size of h = 10−5 ∥ε∥. First, from the value εn+1, the perturbed strain tensors
ε + hêi and ε − hêi in the selected direction are computed. Second, the respective stress values are
evaluated and the return mapping procedure is applied on both of them. Finally, the i-th column
of Cn+1

ep can be approximated as in Equation (61). Further details and alternative approximation
schemes can be found in the work by Miehe [53], Pérez-Foguet et al. [54], Reps and Rall [55].

Softening behavior

In a softening process, the energy dissipated by inelastic behavior is linked with the fracture energy
Gf [56], defined by unit surface. When using a plastic model defined in terms of stress and strain, the
dissipated plastic energy Wp is defined by unit volume. In the discrete FE setting, these two definitions
are related through a characteristic length lch, connected to the mesh resolution:

Wp =
Gf

lch
(62)

On the one hand, this relation enforces mesh-size objectivity of the FE results, and, on the other
end, it effectively introduces structural size effect in quasi brittle failure [25]. In the plastic model,
recovering Equation (46) and (54), the rate of plastic work is computed as:

Ẇp = σ : ε̇p = r (ξ) ξ̇ (63)

From expressions (57) and (58), in both the linear and exponential softening cases, the total plastic
work is calculated then as:

Wp =

∫ t=∞

t=0
Ẇp dt =

∫ ξ=∞

ξ=0
r (ξ) ξ̇ =

σy
2

2HS
(64)

and this represent the area underlying the r− ξ curve. Now, comparing expressions (62) and (64), the
parameter HS can be computed as:

HS =
σy

2

2Gf
lch = H̄Slch (65)

The parameter H̄S , depends only on material properties, whereas lch depends on the resolution of the
discretization. In fact, the size of the strain concentration band depends on the finite element technol-
ogy used, as pointed out by Cervera et al. [26]: irreducible finite elements, due to the discontinuous
strain field, provide a concentration band within a single element span whereas in the ε−u mixed FE
formulation, with inter-elemental continuous strain, the slip line spans two elements. Consequently,
the characteristic length lch is taken accordingly.
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7 Numerical Simulations

In the present section, the problem of pullout test of a metal anchor in a concrete block is addressed,
both in 2D and in 3D. The aim of the pullout test is to evaluate the overall response of embedded
steel heads in concrete. On the one hand, the experiment provides valuable data about the fracture
pattern and the quality of the anchorage. On the other hand, the maximum tensile strength and the
post peak energy dissipation of the concrete can be evaluated with simplified or empiric formulas.

The objective of the following numerical simulations is to demonstrate the advantages of the ε/u
mixed FEM with respect to the standard irreducible one. These are assessed in two complementary
aspects: (a) convergence to the appropriate solution, without spurious numerical issues, like mesh-
size and mesh-bias dependence; (b) enhanced accuracy, able to reproduce optimally the solution for
a computational mesh of a chosen degree of refinement. These two facts translate in a high-fidelity
simulation of experimental results obtained for the pullout test, in a way that makes it possible to
study the sensibility of the data to the variations, desired or not, of the boundary conditions or the
bracing system.

Computations have been realized using an enhanced version of COMET-Coupled mechanical and
thermal analysis [57], developed by the authors at the International Center of Numerical Methods in
Engineering (CIMNE) in Barcelona, Spain. The geometrical models have been created using GiD,
a pre and post-processing software, also developed by CIMNE. In all the examples, the convergence
tolerance used for the iterative Newton-Raphson procedure is 10−4 with respect to the residual forces.

7.1 2D Pullout Test

The 2D pullout test under consideration was performed by Dejori [18], later published by Thenier and
Hofstetter [19]. The test consists of a panel of unreinforced concrete of dimensions 700×500 mm2 in
which a T-shaped steel flange is embedded. The latter is 80×20 mm2 in the horizontal part, whereas
the vertical stem has a width of 10 mm (Figure 3).

The experiment, shown in Figure 4(a), is carried out by imposing a vertical displacement to the
steel component, which translates in a force applied to the concrete in the surrounding of the horizontal
flange. The consequent displacement/reaction plot of the structure is recorded until failure is reached.
In order to apply such force to the specimen without suffering of rigid body motions, a bracing system
is devised on the sides of the steel flange, as shown in Figure 4(b).

Multiple setups of this experiment are reported, in terms of embedding depth and bracing position.
On the one hand, the steel head is positioned at three different positions (60, 80 and 100 mm) from
the top surface of the concrete panel. In the present numerical simulations, only the latter case of 100
mm is considered, following the work by Thenier and Hofstetter [19]. On the other hand, the bracing
system presents two different dispositions. The first one considers the steel rods centered at a distance
of 70 mm from the sides. The rods are then connected with a flange of width of 50 mm in contact
with the top of the panel. Instead, the second setup is reported to reduce the distance of between the
two bracing systems: “The distance between the vertical supports has been shortened in order to have
the expected fracture growing in the direction of the supports at an average inclination of 30 degrees”
[18]. Despite explicit values are not given, the distance of the bracing system to the symmetry axis
can be computed as

lbr =
wf

2
+

√
3

2
hef (66)

where wf is the flange width equal to 80 mm and hef is the embedding height. Consequently, lbr has
a value of about 92, 109, 126 mm with respect to the 60, 80, 100 mm deep setups. Additionally, the
50 mm strip has been substituted by a metal bearing in order to concentrate the load.

Although the experiment appears to be quite straightforward in its description, significant differ-
ences and unexpected results were reported. Almost independently of the flange depth,it is possible
to identify two families of failure modes in the experimental series. The first one is quasi-symmetric,
which implies that the load has been evenly transferred from the steel flange to the specimen. Surely,
a small amount of sway in the fractures is to be expected due to the accidental misalignment of the
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Figure 3: Geometry of the 2D pullout test (from Thenier and Hofstetter [19])

(a) (b)

Figure 4: Detail of the experimental setup and the two different bracing systems used in the 2D pullout
test [18]
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load, as well as the intrinsic heterogeneity of concrete. The symmetric behaviour, even if it is not the
more frequent, happens for all the setup configurations (Figure 5). The second family of failure modes

(a) (b)

Figure 5: Detail of the symmetric results for the 2D pullout test in the case of 6 centimeters embed
[18]

is clearly asymmetric. Whilst on one side of the specimen a single fracture line forms and progresses
upwards to the upper surface (Figure 6 and Figure 7), on the other side a peculiar bifurcation behavior
appears, with fracture lines that reach the upper and lower part of the concrete panel. It is unclear
from the reported experimental data if the asymmetry is due to different lateral boundary conditions
or a sudden change in the force configuration during the test.

The first setup, characterized by spread bracing, results very frequently in the asymmetric mode
of failure, with an almost straight crack growing in the direction of the upper bearing whereas the
bifurcation appears around the half-height of the panel, independently of the flange depth (Figure 6).

As far as the second setup is concerned, the effect of the closer bracing as well as of concentrating
the load with different bearings is evident (Figure 7). The fracture lines form closer to the steel head
and show a more symmetrical behavior. Nevertheless, the bifurcation pattern appears again, always
on the side with a more curved crack.

(a) (b) (c)

Figure 6: Asymmetric results for the first experimental setup (distant bracing) [18]

It is clear from this that the distance of the bracing frame plays a major role in the outcome of the
experiment, as well as the concentration of stresses under the bearings. Not so clear is the dependence
of the test results on the mechanical characteristics of the rods of the bracing system, which provide
a different stress state for a similar deformation field. With or without little bracing, the concrete
panel may be lifted from its base. In addition, little attention has been given to the effect of the
sequence of cracking. The delay in the formation of cracks could be the main cause of asymmetry
in the experimental outcomes. In fact, if a fracture has already appeared on one side of the panel,
the pullout of the anchor provokes a shift of the force scheme resulting in a bending moment in the
concrete (Figure 8). This fact would easily explain the onset of horizontal tension which results in
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(a) (b) (c)

Figure 7: Asymmetric results for the second experimental setup (close bracing) [18]

vertical cracking.

b b

F/2

F

F/2

b

F

(1− α)F

b

αF

Figure 8: Symmetric and asymmetric force configuration for the pullout test. On the right, the
symmetric case due to the initial uncracked state of the concrete. On the left, when one of the sides
is cracked, the force shifts to the other side of the specimen and a bending moment equivalent to
(1− α)2Fb appears (α ≤ 1/2).

In the following, two different case studies are presented. The first one is a pure shear case, where
a (simplified) analytical solution is compared to the finite element one, to assess the correctness of the
numerical results. In the second one, the experimental test cases are addressed and the dependency
of the results on the steel bracing constraint is studied.

In all the examples, the discretized domain represents half of the concrete panel, taking advantage
of the vertical symmetry line (Figure 9). As shown in the picture, the steel bracing and the top
constraint are modeled as a strip of elements which connects line FG in the upper surface to the
line CB in the bottom interface. No other connection or friction is simulated between the bracing
system and the concrete panel. The thickness of the strip coincides with the resisting area of the metal
rods. In this way, it is possible to simulate the presence of a vertical elastic constraint, but allowing
horizontal sliding. The pullout of the steel flange is modeled imposing the vertical displacement of the
boundary HILM in contact with the head. The complete computational mesh consists of a structured
grid with 6936 quadrilateral elements and 7105 nodes. The characteristic size of the concrete element
is 5 mm.

The mechanical properties for the concrete are taken from the cited references. Young’s modulus
E = 36630 MPa with a Poisson’s ratio ν = 0.2. The tensile strength σy = 3780 kPa and the fracture
energy Gf = 65 J/m.
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Figure 9: Discretization of the 2D pullout problem: (a) the discretized domain and (b) the structured
mesh used in the analysis for the concrete panel.
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7.1.1 Virtual shear test

In the first example, the boundary HILM, representing the contact with the steel flange, is constrained
to move vertically, but no horizontal restriction is set. Considering the upper part of the panel as
a semi infinite strip as in Figure 10, the imposed displacement u0 induces a tensional state of pure
shear, with average value along the line LL’ τ = F/A. This approximation holds for ML/ML’>> 1.
Locally, a concentration of stresses appears close to the imposed boundary condition (Figure 11(a)).
The elastic stresses computed in the vicinity of point M are shown in Figure 11(b): the principal
directions are at 45◦ with respect to the horizontal, with equal value and opposite sign of compression
and tension. Considering a quasi-brittle material, with a Rankine yielding criterion, the initiation of

L’ H

L

M

I
u0

τ

B

G

Figure 10: Resultant force scheme for initial loading due to the imposed displacement u0.

(a)

σ1σ2

τ

σ

45◦

(b)

Figure 11: Stress vectors in the elastic case (left) and Mohr’s circle at point M (right). The pure
shear condition creates a stress state characterized by principal directions inclined at 45◦ with the
horizontal.

the crack follows the direction orthogonal to the maximum tensile stress. Therefore, a crack initiates
in M and progresses at 45◦. The force scheme changes as depicted in Figure 12. From the global
equilibrium of the block M’B’GL’, it is possible then to infer that a new shear stress τ ′, in a similar
fashion as before. The crack will consequently follow a 45 degree line.

This crack pattern is typical of the symmetric solution in the pullout test. In fact, when the
imposed displacement is applied in such a way that horizontal forces are very small or lateral reactions
are equilibrated, the stress state transferred from the steel head is close to pure shear. Whether the
concrete panel is effectively constrained by a steel bar at the line GB, located far from the applied
shear, the same solution pattern is expected, with a crack growing diagonally at approximately 45◦.
Considering Poisson’s effect, normal and shear stress-transfer across the fissured crack makes the
problem more complex and obtaining an analytical solution is unfeasible. However, the expected
solution does not depart significantly from the upward crack at approximately 45◦.

Figure 13 and 14 show contours for the equivalent plastic strain and displacements obtained with
mixed (top row) and standard (bottom row) finite elements in two situations: with (left) and without
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Figure 12: Forces scheme for the initiated crack

(right) steel rod bracing.
All the solutions attempt to reproduce a crack that initiates at point M and progresses upward

(Figure 13), inducing the rotation of the detaching part around the tip of the crack (Figure 14).
However, the results produced by the mixed and the standard formulations are very different.

On the one hand, the mixed finite elements produce results which are: (a) consistent with those
expected from the (simplified) analytical solution; (b) correctly insensitive to the change in the bracing
system; (c) correctly insensitive to the mesh alignment.

On the other hand, the standard formulation produces unreliable results that are: (a) not consistent
with the expected crack at approximately 45◦; (b) spuriously sensitive to the stress state induced by
the bracing; (c) spuriously sensitive to the alignment of the mesh.

Figure 15 shows the force F versus the vertical displacement u for the four cases. The mixed
formulation produces very consistent results, with very limited effect of the bracing system in the for-
mation of the crack. The standard formulation overestimates the peak load and the energy dissipated
in the formation of the crack.

It has to be noted that the reaction force cannot vanish because the compression stresses are not
affected by the adopted Rankine criterion. This means that the crack progresses towards the upper
surface but it can not reach it.
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(a) ε/u FEM - Bracing (b) ε/u FEM - No bracing

(c) Std FEM - Bracing (d) Std FEM - No Bracing

Figure 13: Equivalent plastic strain contours with mixed (top row) and the standard (bottom row)
finite element formulations in the pure shear case.

(a) ε/u FEM - Bracing (b) ε/u FEM - No bracing

(c) Std FEM - Bracing (d) Std FEM - No bracing

Figure 14: Displacements contours with mixed (top row) and the standard (bottom row) finite element
formulations in the pure shear case.
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Figure 15: Force versus vertical displacement curves for the pure shear case.

7.1.2 Simulation of the experimental results

In this section, the horizontal displacement of the embedded steel head is restrained, to simulate the
high friction between the anchored head and the surrounding concrete. Contrariwise to the cases
considered in the previous section, in this situation the steel bracing counterbalances the effect of the
applied pullout vertical force, as it supplies an opposed downward concentrated force. This force is
proportional to the stiffness of the metal rods and, therefore, the resulting fracture pattern is effectively
affected by the rigidity of the bracing system.

Figure 16 and 17 show contours for the equivalent plastic strain and displacements obtained with
mixed (top row) and standard (bottom row) finite elements in the two cases given by stiff or loose
support frames. For the case for a stiff support, the resulting fracture path is curved, from the base
of the bolt to the bearing structure (Figure 16(a) and Figure 16(c)). Both mixed and standard finite
elements are able to capture the displacement of the mass of concrete under bending (Figure 17(a)
and Figure 17(c)). Even if the two solutions appear similar, it is important to notice two details.
First, a clear mesh dependency is visible in the standard solution (Figure 16(c)) while this is not the
case in the mixed formulation, with a defined inclination at the crack tip (Figure 16(a)). Second, the
proposed formulation produces a crack that turns effectively in the direction of the support, while the
curvature given by the standard one is reduced, affected by mesh dependence.

In the case of low rigidity, the solution is qualitatively similar in terms of direction of the crack
between the two methods, but it is possible to observe a bifurcation in the crack path for the mixed
formulation (Figure 16(b)) which is not captured for the irreducible one (Figure 16(d)). The rotation
of the detaching part, due primarily to bending effects, is evident also in this case (Figure 17(b) and
Figure 17(d)).

In Figures 18, 19 and 20, the numerical solutions of the more reliable mixed ε/u finite elements
are compared with the experimental results. The agreement between numerical solutions and the
experimental results is remarkably good. This is achieved even if the adopted constitutive model
(Rankine plasticity under tension) does not include phenomena like compressive crushing or friction
and dilatation due to grain effects.

In Figure 18, the symmetric pattern (Figure 5) is compared against the solution found in Figure
13(a). With a distant positioning of the bracing and no horizontal restraint, the result is approximately
a 45◦ inclined crack. Note that a shallower embedding of the flange favours less horizontal constraint,
being smaller the vertical reaction (and consequently the frictional forces) of the affected concrete.

In Figure 19, the crack formed with the effective restraint of the steel bracing and zero horizontal
sliding of the bolt is presented. The numerical simulation, shown in Figure 19(a), considers a ho-
mogeneous material whereas the intrinsic heterogeneity of concrete, with an internal distribution of
aggregates, affects the direction of the crack observed in Figure 19(b).
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(a) ε/u FEM - High Eb (b) ε/u FEM - Low Eb

(c) Std FEM - High Eb (d) Std FEM - Low Eb

Figure 16: Equivalent plastic strain contours with mixed (top row) and the standard (bottom row)
finite element formulations in the experimental setup case.

(a) ε/u FEM - High Eb (b) ε/u FEM - Low Eb

(c) Std FEM - High Eb (d) Std FEM - Low Eb

Figure 17: Displacements contours with mixed (top row) and the standard (bottom row) finite element
formulations in the experimental setup case.
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In Figure 20, the bifurcation pattern is shown. This case is due to the low stiffness of the bracing,
which implies an initial almost horizontal initiation of the crack, followed by a bifurcation. The longer
the horizontal crack path, the bigger the effect of bending is; the slight curvature before the bifurcation
point is noticeable. After the bifurcation, the upper part of the crack propagates almost straight to
the support bracing. The lower fracture is longer than the upper one in both of the pictures. The
agreement between the two results is remarkable.

In Figure 21, the vertical reaction is plotted against the imposed displacement. Two different cases
are shown: the first one, corresponding to an effective support action, gives an increasing reaction
as the experiment progresses; the second one, corresponding to the bifurcation case, with less stiff
bracing, shows a softening behavior. Comparing those results with the ones shown in Figure 15, it is
possible to asses the influence of friction and bracing system with respect to the pure shear virtual test.
In addition, the peaks load and the dissipated energy fall within the experimental ranges discussed in
Dejori [18].

Thanks to the enhanced accuracy provided by the mixed formulation, it is still possible to discuss
particular details of the pullout tests, without the need of referring to specific experimental results.
For example, the starting point of the crack is determined by the effective contact between the steel
flange and the concrete. With reference to Figure 9, in the case of pure vertical motion (i.e. line LI
has an imposed displacement, but not LM), the crack starts from point L. Instead, if a slight lateral
motion of the head presses on line LM, so that friction makes steel and concrete adherent, then the
crack will start from point M. This small horizontal sliding has found to occur frequently for the
asymmetric configuration of cracks, where the onset of a first diagonal crack on one side provokes a
rotation of the other side. This effect is more visible for larger depth of embedding.

Another key aspect is the sequence of cracking; it is statistically impossible to reach failure at the
same time on both sides of the panel due to the natural imperfections in the positioning of the force and
in the composition of the concrete. Perturbations largely affect brittle crack propagation and this is
reflected by the greater percentage of asymmetric results obtained in the experiments. Nevertheless, a
sound hypothesis on the probable sequence of failure can be outlined thanks to the previous examples.
The initial cracking is given by a tensile failure as in Figure 18, for the symmetric case, or as in Figure
19, for the asymmetric one. Then, in the latter case, after the first fracture develops, the loading
acts unevenly on the two opposite side of the panel and the consequent bifurcating cracks grow in the
direction of the steel bracing due to bending-like effects.

7.2 3D Pullout Test

3D pullout tests have been considered in many publications treating numerical methods for crack
propagation. Gasser and Holzapfel [20] analyzed it with the partition of the unity method. Later,
Areias and Belytschko [21] and Duan et al. [58] studied it using extended finite elements. Recently,
Kaczmarczyk et al. [59] solved the problem with a configurational mechanics method, consistent with
Griffith’s theory.

The problem, shown in Figure 22, is axis-symmetric, so that only a quarter is depicted. A steel bolt
with circular head is placed in a cylindrical concrete anchorage and imposes a vertical displacement to
the block. To avoid rigid body motion, a metal hoop is placed on top, reacting vertically. In the same
picture, the mechanical properties are reported as taken from Areias and Belytschko [21]. Vertical
displacement is imposed, whereas no horizontal displacement is allowed at the contact between the
bolt and the concrete.

Here, the problem is studied with three different mesh sizes and comparing the results obtained
with mixed ε/u and standard formulations. The elements used for the discretization are triangular
prisms, so that a semi-structured mesh is easily built. Figure 23 shows the top face of the quarter
cylinder composed of triangles, supported by a structured vertical square grid. Table 1 shows the
average size of the triangles, the number of nodes and elements in three meshes (coarse, medium and
fine) so that the convergence of the solution with respect to the mesh sizes can be assessed.

In Figure 24 it is possible to see the computed deformed shape along the resulting conical crack
surface in the case of the mixed finite element with fine meshing. The fields of equivalent plastic strain
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(a) (b)

Figure 18: Comparing the symmetric pattern in the case of free horizontal sliding of the steel flange.

(a) (b)

Figure 19: Comparing the symmetric pattern for the case of effective vertical constraint of steel bracing
and constrained horizontal motion of the steel flange.

(a) (b)

Figure 20: Comparing the bifurcation pattern in the asymmetric case.
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Figure 21: Force versus vertical displacement curves for the experimental case.

24



Figure 22: Geometry of the problem and mechanical properties of the concrete (from Areias and
Belytschko [21])

Mesh h Nodes Elements

Coarse 40 mm 4664 7742

Medium 30 mm 11555 20166

Fine 25 mm 20672 36985

Table 1: Characteristic mesh sizes, number of nodes and number of elements for the 3D pullout test
numerical simulation

for each mesh size are presented in Figure 25. As for the 2D case, the robustness provided by the two
methods is very different.

The mixed method yields very consistent results throughout the levels of refinement. For the
three meshes, a conical crack starts at the bolt head and progresses towards the steel bracing. The
inclination of this crack is defined by the physical geometry of the problem. A secondary, more diffuse,
vertical crack appears at the top surface. The standard method produces results which are clearly
affected by the bias of the discretization adopted. This is evident for the primary and, even worse, for
the secondary cracks.

Figure 26 shows the vertical reaction on the bolt with respect to the imposed displacement. The
curves from the three different meshes from both methods are presented. It confirms that:

(a) the mixed formulation provides convergent results; even relatively coarse meshes can produce
fairly accurate results, in good agreement with reported numerical simulations;

(b) the standard formulation is severely affected by the discretization adopted, both qualitatively and
quantitatively; the corresponding curves show significant over-dissipation.

Finally, it is interesting to observe the similarity in the plots of the reaction forces, between the
2D test (in Figure 21) and 3D test (Figure 26).

8 Conclusion

High-fidelity simulations of 2D and 3D pullout tests on concrete are presented. An elasto-plastic model
with Rankine criterion is adopted as constitutive law; details on the formulation and regularization of
edge and apex are given.
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(a) (b) (c)

Figure 23: Discretization meshes for the 3D pullout problem: from left to right, coarse mesh (a),
medium mesh (b) and fine mesh (c).

(a) (b)

Figure 24: Deformed concrete block with the crack opening (left) and crack conical surface (right)
resulting from the mixed formulation analysis with fine mesh.
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(a) (b) (c)

(d) (e) (f)

Figure 25: Equivalent plastic strains for the mixed (top) and the standard formulations (bottom).
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Figure 26: Reaction versus displacement curve for the 3D pullout test.
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A novel mixed strain/displacement formulation is used; the necessary stabilization procedure to
ensure stability with equal order interpolation spaces is described and implementation issues are cov-
ered. The enhanced convergence and accuracy properties of the mixed formulation are demonstrated
through the numerical simulation of plane and axis-symmetrical pullout tests. The mixed method
yields accurate results, on the one side, showing sensitivity to the physical parameters of the tests,
and, on the other side, without spurious sensitivity to the mesh adopted.

In all cases, the expected cracks are predicted as plastic-strain localization bands, without the need
of using ad-hoc auxiliar tracking techniques. Crack bifurcation, in accordance with the experimental
results, can also be predicted; this is an impossible feat for the local or global tracking algorithm. In
addition, the mixed formulation demonstrates ability to capture the correct failure mechanism and
the corresponding peak and post-peak behavior with relative coarse meshes. This is an important
consideration on the cost-effectiveness of the formulation.
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Eidgenössischen Technischen Hochschule Zürich, 1999.
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