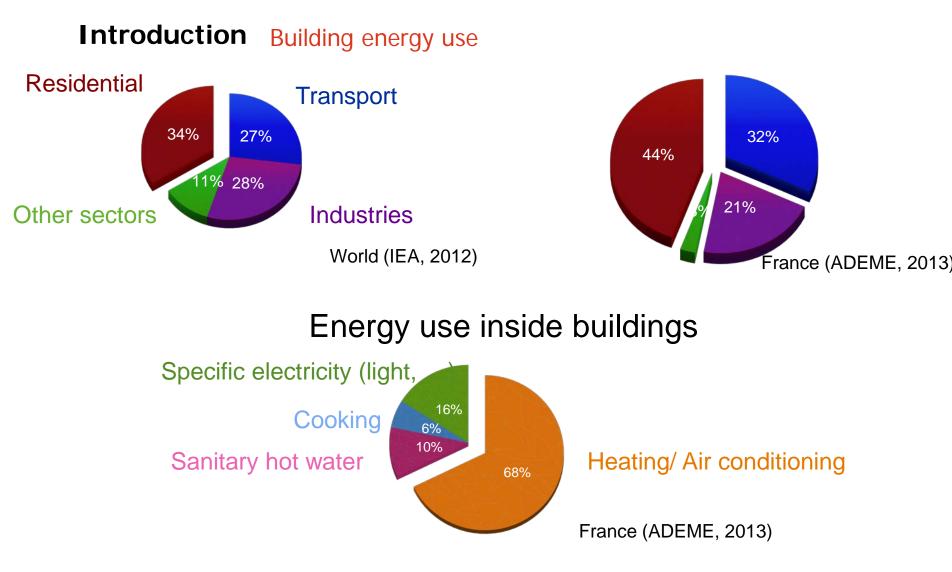


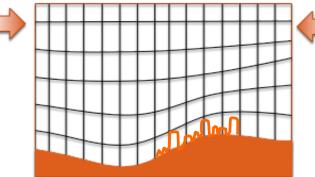
Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

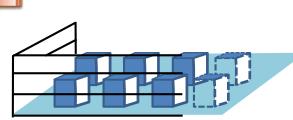
Measurement of the impact of buildings on meteorological variables

BSA 2017 – Building Simulation Applications 3rd IBPSA-Italy Conference, Bozen-Bolzano 8.2.2017 – 10.2.2017

Dr. D. Mauree, L. Deschamps, P. Bequelin, P. Loesch, Prof. J-L. Scartezzini







Introduction Urban climate: Meso-scale models

WRF (Skamarock et al., 2008) Meso-NH (Lafore et al., 1997) FVM (Clappier et al., 1996)

Rugosity Influence of obstacles - Additional term in equations

BEP (Martilli et al., 2002) UCM (Kusaka et al, 2001) TEB (Masson, 2000)

Buildings / Streets Solar radiation Courtesy of N. Blond

BEM (Krpo et al., 2010) (Kikegawa et al. 2003)

Walls, roofs & streets Window Cooling/ Heating

Experimental setup

EPFL Campus, Lausanne, Switzerland

Semi-urban setup

- different from BUBBLE experiment

Instruments

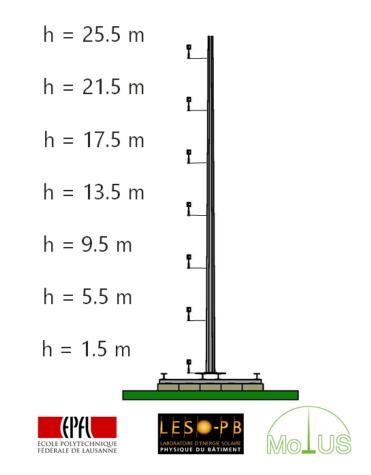
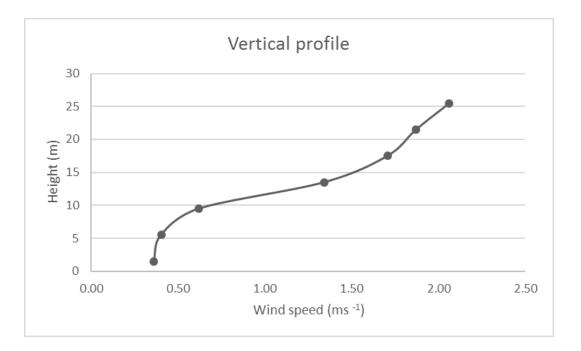
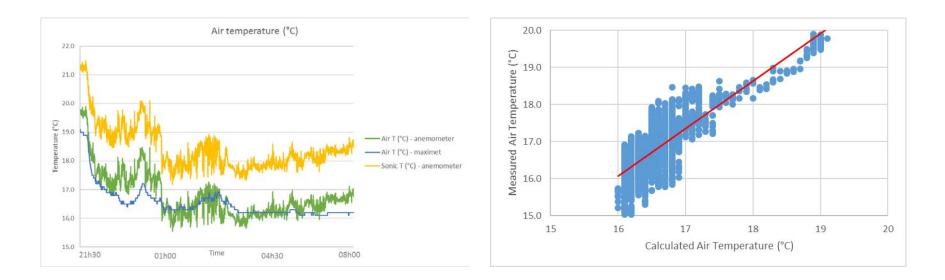

Instrument	Brand	Туре
3D sonic anemometers	Gill	WindMaster
Meteorological station	Gill	GMX 300
Surface temperature sensor	r Optris	OPTCSLT15K

Table 1 – List of instruments


MoTUS

Wind speed profile

Highly impacted vertical wind profile


Air temperature calculation

$$\theta_{a} = \frac{\theta_{s}}{1 + 0.32 \left(\frac{e}{P}\right)}$$
$$e = RH * 100 * \left(6.11 * 10^{\left(\frac{7.5\theta_{m}}{237.3 + \theta_{m}}\right)}\right)$$

Air temperature

Very good agreement between corrected air temperature and measured one

Convective heat transfer coefficient

$$h_c = 5.678 \left[m + n \left(\frac{U}{0.3048} \right) \right]$$

$h_c = 2.8 + 3U$

h_c '	 – convective coefficient
<i>'U'</i>	 – wind speed (ms⁻¹)
'm n'	– Constants

Heat transfer coefficient

Floor	h_c (W/m ² .K)	Relative difference	$h_c = 5.678 \left[m + n \left(\frac{U}{0.3048} \right) \right]$
1 st	7.0	35%	
2 nd	7.2	34%	
3 rd	8.1	26%	
Floor	$h_c(W/m^2.K)$	Relative difference	$h_c = 2.8 + 3U$
1 st	3.9	43%	
2 nd	4.0	41%	

Table 2 – Heat transfer coefficients

Energy calculation over EPFL campus.

But how useful are localized data ?

Real consumption	30,000 MWh	% difference
Localized data	32,600 MWh	8%
Meteonorm	34,400 MWh	15%

Table 3 – Comparison of energy consumption

Conclusions and Perspectives

MoTUS – Measurements

- High frequency measurement over vertical axis
- Long term monitoring of meteorological variables
- Preliminary results confirms previous findings
- Aim is to improve energy consumption calculation

Future steps:

- Develop new parameterization schemes for models
- Inclusion of radiation measurement and surrounding surface temperatures.

Thank you for your attention!

dasaraden.mauree@gmail.com dasaraden.mauree@epfl.ch @D_Mauree

sccer future energy efficient

buildings & districts

In cooperation with the CTI

D. Mauree et al., Measurement of the impact of buildings on meteorological variables BSA2017 – Building Simulation Applications 3rd IBPSA-Italy Conference, Bozen-Bolzano 8-10.2.2017

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

HYSIQUE DU BÂTIMENT