The five-minute rule thirty years later

<u>Raja Appuswamy</u>, Renata Borovica-Gajic, Goetz Graefe, and Anastasia Ailamaki

The five-minute rule in 1987

- Storage hardware: Two-tier hierarchy
 - 1MB RAM: \$5,000 ~ \$5,000/MB
 - 180MB HDD: \$30,000 ~ \$160/MB

• Optimization problem

"When does it make sense to cache data in DRAM?"

• Gray & Putzolu's answer

"Pages referenced every 5 minutes should be memory resident"

Five-minute rule formulation

Break-even Reference Interval (seconds) =

PagesPerMBofRAM

AccessPerSecondPerDisk Technology ratio

X

PricePerDiskDrive

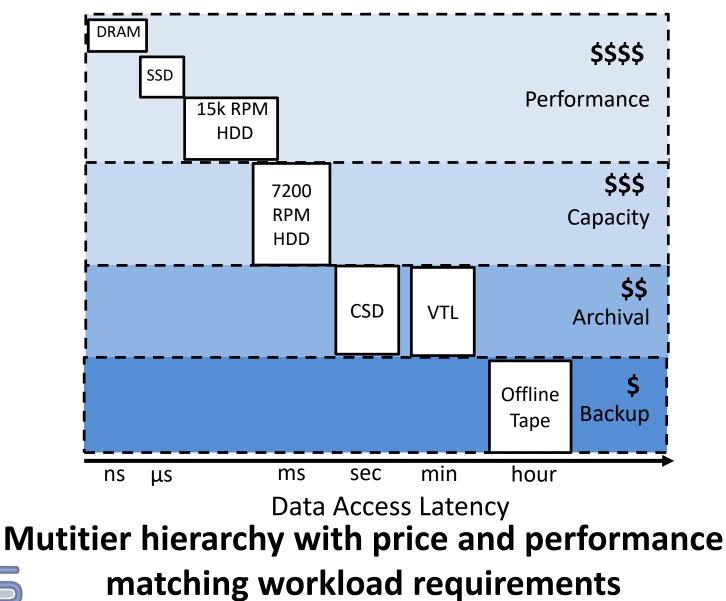
PricePerMBofDRAM Economic ratio

Five-minute rule formulation

Break-even Reference Interval (seconds) = (400 secs)

PagesPerMBofRAM (1024) AccessPerSecondPerDisk (15) **Technology** ratio

X


PricePerDiskDrive (\$30k)

PricePerMBofDRAM (\$5k) Economic ratio

Popular rule of thumb for engineering data management systems

Modern storage hierarchy

(Pfl

Agenda

- Revisiting the five-minute rule
 - DRAM-HDD break-even interval after 30 years
 - DRAM-SSD, HDD-SSD break-even intervals
- Five-minute rule and the performance tier
 - Break-even intervals with NVDIMM & NVMe SSD
- Five-minute rule and the capacity tier
 - Break-even intervals with Cold Storage, LTO-7 tape

Storage hardware 30 years later

Parameter	Disk (then)	Disk (now)	DRAM (then)	DRAM (now)
Unit cost (\$)	\$30,000	\$49	\$5,000	\$80
Unit capacity	180MB	2TB	1MB	16GB
Random IO/s	15	200	-	-

Capacity: 10,000×, Cost: 1,000×, HDD Performance: 10×

Five-minute rule 30 years later

Parameter	Disk (then)	Disk (now)	DRAM (then)	DRAM (now)
Unit cost (\$)	\$30,000	\$49	\$5,000	\$80
Unit capacity	180MB	2TB	1MB	16GB
Random IO/s	15	200	-	-

Capacity: 10,000×, Cost: 1,000×, HDD Performance: 10×

Page size (4KB)	Then	Now
RAM-HDD	5 mins	5 hours

• RAM-HDD break-even 60× higher due to fall in DRAM price

Store only extremely "cold" data in HDD

Five-minute rule with SATA SSD

Parameter	Disk (now)	DRAM (now)	SATA SSD (now)
Unit cost (\$)	\$49	\$80	560
Unit capacity	2TB	16GB	800GB
Cost/MB	0.00002	0.005	0.0007
Random IO/s	200	-	67k/20k

- Two properties of SSDs
 - Middleground between DRAM and HDD w.r.t cost/MB
 - 100-1000× higher random IOPS than HDD

Five-minute rule with SATA SSD

Parameter	Disk (now)	DRAM (now)	SATA SSD (now)
Unit cost (\$)	\$49	\$80	560
Unit capacity	2TB	16GB	800GB
Cost/MB	0.00002	0.005	0.0007
Random IO/s	200	-	67k/20k

- Two properties of SSDs
 - Middleground between DRAM and HDD w.r.t cost/MB
 - 100-1000× higher random IOPS than HDD
- Two new rules with SSDs
 - DRAM-SSD rule: SSD as a primary store
 - SSD-HDD rule: SSD as a cache

Break-even interval for SATA SSD

Parameter	Disk (now)	DRAM (now)	SATA SSD (now)
Unit cost (\$)	\$49	\$80	560
Unit capacity	2TB	16GB	800GB
Cost/MB	0.00002	0.005	0.0007
Random IO/s	200	-	67k (r)/20k (w)
Page size (4KB)	Ther	า	Now
RAM-HDD	5 mir	IS	5 hours
RAM-SSD	-		7 m (r)/24m (w)

5-minute rule now ~applicable to SATA SSD

Break-even interval for SATA SSD

Parameter	Disk (now)	DRAM (now)	SATA SSD (now)
Unit cost (\$)	\$49	\$80	560
Unit capacity	2TB	16GB	800GB
Cost/MB	0.00002	0.005	0.0007
Random IO/s	200	-	67k (r)/20k (w)

Page size (4KB)	Then	Now
RAM-HDD	5 mins	5 hours
RAM-SSD	-	7 m (r)/24m (w)
SSD-HDD	-	1 day

5-minute rule now ~applicable to SATA SSD With 1 day interval, all active data will be in RAM/SSD 12

Agenda

- Revisiting the five-minute rule
 - DRAM-HDD break-even interval after 30 years
 - DRAM-SSD, HDD-SSD break-even intervals
- Five-minute rule and the performance tier
 - Break-even intervals with NVDIMM & NVMe SSD
- Five-minute rule and the capacity tier
 - Break-even intervals with Cold Storage, LTO-7 tape

Trends in performance tier

- SSDs inching closer to the CPU
 - SATA -> SAS/FiberChannel -> PCIe -> NVMe -> DIMM
 - NVMe PCIe SSDs are server accelerators of choice

Device	Capacity	Price (\$)	IOPS (k) r/w	B/W (GBps)
SATA SSD	800GB	560	67/20	500/460
Intel 750	1TB	630	460/290	2.5/1.2

Trends in performance tier

- SSDs inching closer to the CPU
 - SATA -> SAS/FiberChannel -> PCle -> NVMe -> DIMM
 - NVMe PCIe SSDs are server accelerators of choice
- Storage Class Memory devices (ex: 3D Xpoint)
 - Faster than Flash, Denser than DRAM, and non-volatile
 - Standardized, byte-addressable, NVDIMM-P soon

Device	Capacity	Price (\$)	IOPS (k) r/w	B/W (GBps)
SATA SSD	800GB	560	67/20	500/460
Intel 750	1TB	630	460/290	2.5/1.2
Intel P4800X	384GB	1520	550/500	2.5/2

Break even interval for PCIe SSD/NVM

Device	Capacity	Price (\$)	IOPS (k) r/w	B/W (GBps)
SATA SSD	800GB	560	67/20	500/460
Intel 750	1TB	630	460/290	2.5/1.2
Intel P4800X	384GB	1520	550/500	2.5/2
P	age size (4KI	3)	Now	
F	AM-SATA SS	D	7 m (r) / 24m (w)	
F	AM-Intel 75	0	41 s (r) / 1m (w)	
	RAM-P4800>	<	47 s (r) / 52s (w)	

DRAM-NVM break-even interval is shrinking Interval disparity between reads and writes is shrinking

Break even interval for PCIe SSD/NVM

Device	Capacity	Price (\$)	IOPS (k) r/w	B/W (GBps)
SATA SSD	800GB	560	67/20	500/460
Intel 750	1TB	630	460/290	2.5/1.2
Intel P4800X	384GB	1520	550/500	2.5/2
P	age size (4KI	3)	Now	
F	RAM-SATA SS	D	7 m (r) / 24m (w)	
F	RAM-Intel 75	0	41 s (r) / 1m (w)	
	RAM-P4800>	<	47 s (r) / 52s (w)	

DRAM-NVM break-even interval is shrinking Interval disparity between reads and writes is shrinking <u>Impending shift from DRAM to NVM-based data</u> management engines

Agenda

- Revisiting the five-minute rule
 - DRAM-HDD break-even interval after 30 years
 - DRAM-SSD, HDD-SSD break-even intervals
- Five-minute rule and the performance tier – Break-even intervals with NVDIMM & NVMe SSD
- Five-minute rule and the capacity tier
 - Break-even intervals with Cold Storage, LTO-7 tape

- HDD scaling falls behind Kryder's rate
 - PMR provides 16% improvement in areal density, not 40%

- HDD scaling falls behind Kryder's rate
 - PMR provides 16% improvement in areal density, not 40%
- Tape density continues 33% growth rate
 - IBM's new record: 201 Billion bits/sq. inch
 - But high access latency

- HDD scaling falls behind Kryder's rate
 - PMR provides 16% improvement in areal density, not 40%
- Tape density continues 33% growth rate
 - IBM's new record: 201 Billion bits/sq. inch
 - But high access latency
- Flash density outpacing rest
 - 40% density growth due to volumetric + areal techniques
 - But high cost/GB

- HDD scaling falls behind Kryder's rate
 - PMR provides 16% improvement in areal density, not 40%
- Tape density continues 33% growth rate
 - IBM's new record: 201 Billion bits/sq. inch
 - But high access latency
- Flash density outpacing rest
 - 40% density growth due to volumetric + areal techniques
 - But high cost/GB
- Cold storage devices (CSD) filling the gap
 - 1,000 high-density SMR disks in MAID setup
 - PB density, 10s latency, 2-10GB/s bandwidth

Break-even interval for tape

Metric	DRAM	HDD	SpectraLogic T50e tape library
Unit capacity	16GB	2TB	10 * 15TB
Unit cost (\$)	80	50	11,000
Latency	100ns	5ms	65s
Bandwidth	100GB/s	200MB/s	4 * 750 MB/s

DRAM-tape break-even interval: 300 years!
 "Tape: The motel where data checks in and never checks out"

- Jim Gray

- Kaps is not the right metric for tape
 - Maps, TB-scan better

Alternate comparison metrics

Metric	DRAM	HDD	SpectraLogic T50e tape library
Unit capacity	16GB	2TB	10 * 15TB
Unit cost (\$)	80	50	11,000
Latency	100ns	5ms	65s
Bandwidth	100GB/s	200MB/s	4 * 750 MB/s
\$/Kaps (amortized)	9e-14	5e-9	8e-3
\$/TBScan (amortized)	8e-6	3e-3	3e-2

HDD 1,000,000× cheaper w.r.t Kaps, only 10× w.r.t TBScan

HDD-tape gap shrinking for sequential workloads

(PFL

Implications for the capacity tier

- Traditional tiering hierarchy
 - HDD based capacity tier. Tape, CSD only used in archival.

Implications for the capacity tier

- Traditional tiering hierarchy
 - HDD based capacity tier. Tape, CSD only used in archival.
- Clear division in workloads
 - Only non-latency sensitive, batch analytics in capacity tier

Implications for the capacity tier

- Traditional tiering hierarchy
 - HDD based capacity tier. Tape, CSD only used in archival.
- Clear division in workloads
 - Only non-latency sensitive, batch analytics in capacity tier
- Is it economical to merge the two tiers?
 - "40% cost savings by using a cold storage tier" [Skipper, VLDB'16]

Implications for the capacity tier

- Traditional tiering hierarchy
 - HDD based capacity tier. Tape, CSD only used in archival.
- Clear division in workloads
 - Only non-latency sensitive, batch analytics in capacity tier
- Is it economical to merge the two tiers?
 - "40% cost savings by using a cold storage tier" [Skipper, VLDB'16]
- Can batch analytics be done on tape/CSD?
 - Query Execution in Tertiary Memory Databases [VLDB'96]
 - Skipper: Cheap data analytics over cold storage devices [VLDB'16]
 - Nakshatra: Running batch analytics on an archive [MASCOTS'14]

Time to revisit traditional capacity—archival division of labor

29

Summary

• Growing DRAM-HDD & shrinking DRAM-NVM intervals

Most performance critical data will sit in SSD/NVM

- Rapid improvements in SSD/NVM density
 <u>All randomly accessed data can sit in SSD/NVM</u>
- Shrinking HDD—tape/CSD difference w.r.t \$/TBscan
 <u>Can merge archival+capacity tier into cold storage tier</u>
 <u>Sequential batch analytics can be hosted on new tier</u>

Five-minute rule suggests impending consolidation in the storage hierarchy