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Abstract

We consider the homogeneous and the non-homogeneous convex relaxations for combinatorial
penalty functions defined on support sets. Our study identifies key differences in the tightness of the
resulting relaxations through the notion of the lower combinatorial envelope of a set-function along
with new necessary conditions for support identification. We then propose a general adaptive estimator
for convex monotone regularizers, and derive new sufficient conditions for support recovery in the
asymptotic setting.

1 Introduction

Over the last years, sparsity has been a key model in machine learning, signal processing, and statistics.
While sparsity modelling is powerful, structured sparsity models further exploit domain knowledge by
characterizing the interdependency between the non-zero coefficients of an unknown parameter vector
w. For example, in certain applications domain knowledge may dictate that we should favor non-zero
patterns corresponding to: unions of groups [31] in cancer prognosis from gene expression data; or
complements of union of groups [20] in neuroimaging and background substraction, or rooted connected
trees [21, 36] in natural image processing. Incorporating such key prior information beyond just sparsity
leads to significant improvements in estimation performance, noise robustness, interpretability and sample
complexity [4].

Structured sparsity models are naturally encoded by combinatorial functions. However, direct combinatorial
treatments often lead to intractable learning problems. Hence, we often use either non-convex greedy
methods or continuous convex relaxations, where the combinatorial penalty is replaced by a tractable
convex surrogate; cf., [4, 19, 2].

In this paper, we adopt the convex approach because it benefits from a mature set of efficient numerical
algorithms as well as strong analysis tools that rely on convex geometry in order to establish statistical
efficiency. Convex formulations are also robust to model mis-specifications. Moreover, there is a rich set of
convex penalties with structure-inducing properties already studied in the literature [35, 20, 22, 21, 36, 31].
For an overview, we refer the reader to [2] and references therein.

For choosing a convex relaxation, a systematic approach, already adopted in [1, 6, 30, 10], considers the
tightest convex relaxation of combinatorial penalties expressing the desired structure. For instance, [1]
shows that computing the tightest convex relaxation over the unit `∞-ball is tractable for the ensemble
of monotone submodular functions. Similarly, the authors in [10] demonstrates the tractability of such
relaxation for combinatorial penalties that can be described via totally unimodular constraints.
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A different principled approach in convex relaxations is proposed by [30], where the authors considered the
tightest homogeneous convex relaxation of general set functions regularized by an `p-norm. The authors
show, for instance, the resulting norm takes the form of a generalized latent group Lasso norm [31]. The
homogeneity imposed in [30] naturally ensures the invariance of the regularizer to rescaling of the data.
However, such requirement may cost a loss of structure as was observed in an example in [10]. This
observation begs the question:

When do the homogeneous and non-homogeneous convex relaxations differ and
which structures can be encoded by each?

In order to answer this question, we rigorously identify which combinatorial structures are preserved by the
non-homogeneous relaxation in a manner similar to [30] for the homogeneous one. We further study the
statistical properties of both relaxations. In particular, we consider the problem of support recovery in the
context of regularized learning problems by these relaxed convex penalties, which was only investigated so
far in special cases, e.g., for norms associated with submodular functions [1], or for the latent group Lasso
norm [31].

To this end, this paper makes the following contributions:

• We derive formulations of the non-homogeneous tightest convex relaxation of general `p-regularized
combinatorial penalties (Section 2.1). We show that any monotone set function is preserved by
such relaxation, while the homogeneous relaxation only preserves a smaller subset of set-functions
(Section 2.2).

• We identify necessary conditions for support recovery in learning problems regularized by general
convex penalties (Section 3.1).

• We propose an adaptive weight estimation scheme and provide sufficient conditions for support recov-
ery under the asymptotic regime (Section 3.2). This scheme does not require any irrepresentability
condition and is applicable to general monotone convex regularizers.

• We identify sufficient conditions with respect to combinatorial penalties which ensure that the suffi-
cient support recovery conditions hold with respect to the associated convex relaxations (Section 4).

• We illustrate numerically the effect on support recovery of the choice of the relaxation as well as the
adaptive weights scheme (Section 5).

In the sequel, we defer all proofs to the Appendix.

Notation. Let V = {1, . . . , d} be the ground set and 2V = {A|A ⊆ V } be its power-set. Given w ∈ Rd
and a set J ⊆ V , wJ denotes the vector in Rd s.t., [wJ ]i = wi, i ∈ J and [wJ ]i = 0, i 6∈ J . QJJ is defined
similarly for a matrix Q ∈ Rd×d. Accordingly, we let 1J be the indicator vector of the set J . We drop
the subscript for J = V , so that 1V = 1 denotes the vector of all ones. The notation Jc denotes the set
complement of J with respect to V .

The operations |w|, w ≥ w′ and w ◦ v are applied element-wise. For p > 0, the `p-(quasi) norm is given by
‖w‖p = (

∑d
i=1 |wi|p)1/p, and ‖w‖∞ = maxi |wi|. For p ∈ [1,∞], we define the conjugate q ∈ [1,∞]

via 1
p + 1

q = 1.

We call the set of non-zero elements of a vector w the support, denoted by supp(w) = {i : wi 6= 0}.
We use the notation from submodular analysis, w(A) =

∑
i∈A wi. We write R+ for R+ ∪ {+∞}. For

a function f : Rd → R = R ∪ {+∞}, we will denote by f∗ its Fenchel-Legendre conjugate. We will
denote by ιS(w) the indicator function of the set S, taking value 0 on the set S and +∞ outside it.
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2 Combinatorial penalties and convex relaxations

We consider positive-valued set functions of the form F : 2V → R+ such that F (∅) = 0, F (A) >
0,∀A ⊆ V to encode structured sparsity models. For generality, we do not assume a priori that F is
monotone (i.e., F (A) ≤ F (B),∀A ⊆ B). However, as we argue in the sequel, convex relaxations of
non-monotone set functions is hopeless.

The domain of F is defined as D := {A : F (A) < +∞}. We assume that it covers V , i.e., ∪A∈DA = V ,
which is equivalent to assuming that F is finite at singletons if F is monotone. A finite-valued set function
F is submodular if and only if for all A ⊆ B and i ∈ Bc, F (B∪{i})−F (B) 6 F (A∪{i})−F (A) (see,
e.g., [15, 2]). Unless explicitly stated, we do not assume that F is submodular.

We consider the same model in [30], parametrized by w ∈ Rd, with general `p-regularized combinatorial
penalties:

Fp(w) =
1

q
F (supp(w)) +

1

p
‖w‖pp

for p ≥ 1, where the set function F controls the structure of the model in terms of allowed/favored non-zero
patterns and the `p-norm serves to control the magnitude of the coefficients. Allowing F to take infinite
values let us enforce hard constraints. For p =∞, Fp reduces to F∞(w) = F (supp(w)) + ι‖w‖∞≤1(w).
Considering the case p 6=∞ is appealing to avoid the clustering artifacts of the values of the learned vector
induced by the `∞-norm.

Since such combinatorial regularizers lead to computationally intractable problems, we seek convex
surrogate penalties that capture the encoded structure as much as possible. A natural candidate for a convex
surrogate of Fp is then its convex envelope (largest convex lower bound), given by the biconjugate (the
Fenchel conjugate of the Fenchel conjugate) F ∗∗p . Two general approaches are proposed in the literature to
achieve just this; one requires the surrogate to also be positively homogeneous [30] and thus considers the
convex envelope of the positively homogeneous envelope of Fp, given by F (supp(w))1/q‖w‖p, which we
denote by Ωp, the other computes instead the convex envelope of Fp directly [10, 1], which we denote by
Θp. Note that from the definition of convex envelope, it holds that Θp ≥ Ωp.

2.1 Homogeneous and non-homogeneous convex envelopes

In [30], the homogeneous convex envelope Ωp of Fp was shown to correspond to the latent group Lasso
norm [31] with groups set to all elements of the power set 2V . We recall this form of Ω∞ in Lemma 1 as
well as a variational form of Ωp which highlights the relation between the two. Other variational forms can
be found in the Appendix.
Lemma 1 ([30]). The homogeneous convex envelope Ωp of Fp is given by

Ωp(w) = inf
η∈Rd+

1

p

d∑
j=1

|wj |p

ηp−1
j

+
1

q
Ω∞(η), (1)

Ω∞(w) = min
α≥0

{ ∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ |w|
}
. (2)

The non-homogeneous convex envelope Θp of Fp is only considered thus far in the case where p =∞.
[10] shows that Θ∞(w) = infη∈[0,1]d{f(η) : η ≥ |w|} where f is any proper (dom(f) 6= ∅), lower
semi-continuous (l.s.c.) convex extension of F , i.e., f(1A) = F (A),∀A ⊆ V (cf., Lemma 1 in [10]). A
natural choice for f is the convex closure of F , which corresponds to the tightest convex extension of F on
[0, 1]d (cf., Appendix for a more rigorous treatment).
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Figure 1: `2-regularized cardinality example in one dimension (left) and two dimensions (middle: homoge-
neous, right: non-homogeneous).

Lemma 2 below presents this choice, deriving a new form of Θ∞ that parallels (2). We also derive the
non-homogeneous convex envelope Θp of Fp for any p ≥ 1 and present the variational form relating it
to Θ∞ in Lemma 2. For simplicity, the variational form (3) presented below holds only for monotone
functions F ; the general form and other variational forms that parallel the ones known for the homogeneous
envelope are presented in the Appendix.
Lemma 2. The non-homogeneous convex envelope Θp of Fp, for monotone functions F , is given by

Θp(w) = inf
η∈[0,1]d

1

p

d∑
j=1

|wj |p

ηp−1
j

+
1

q
Θ∞(η), (3)

Θ∞(w) = min
α≥0

{ ∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ |w|,
∑
S⊆V

αS = 1
}
. (4)

The infima in (1) and (3), for w ∈ dom(Θp), can be replaced by a minimization, if we extend b→ a
b by

continuity in zero with a
0 =∞ if a 6= 0 and 0 otherwise, as suggested in [23] and [3]. Note that, for p = 1,

both relaxations reduce to Ω1 = Θ1 = ‖ · ‖1. Hence, the `1-relaxations essentially lose the combinatorial
structure encoded in F . Hence, we follow up on the case p > 1.

In order to decide when to employ Ωp or Θp, it is of interest to study the respective properties of these
two relaxations and to identify when they coincide. Remark 1 shows that the homogeneous and non-
homogeneous envelopes are identical, for p =∞, for monotone submodular functions.

Remark 1. If F is a monotone submodular function then Θ∞(w) = Ω∞(w) = fL(|w|),∀w ∈ [−1, 1]d,
where fL denotes the Lovász extension of F [27].

The two relaxations do not coincide in general: Note the added constraints η ∈ [0, 1]d in (3) and the sum
constraint on α in (4). Another clear difference to note is that Ωp are norms that belong to the broad family
of H-norms [28, 3], as shown in [30]. On the other hand, by virtue of being non-homogeneous, Θp are not
norms in general. We illustrate below two interesting examples where Ωp and Θp differ.

Example 1 (Berhu penalty). Since the cardinality function F (S) = |S| is a monotone submodular
function, Θ∞(w) = Ω∞(w) = ‖w‖1. However, this is not the case for p 6= ∞. In particular, we
consider the `2-regularized cardinality function F card2 (w) = 1

2‖w‖0 + 1
2‖w‖

2
2. Figure 2.1 shows that the

non-homogeneous envelope is tighter than the homogeneous one in this case. Indeed, Ωcard2 is simply the
`1-norm, while Θcard

2 is given by [Θcard
2 (w)]i = |wi| if |wi| ≤ 1 and [Θcard

2 (w)]i = 1
2 |wi|

2 + 1
2 otherwise.

This penalty, called “Berhu,” is introduced in [32] to produce a robust ridge regression estimator and is
shown to be the convex envelope of F card2 in [24].

This kind of behavior, where the non-homogeneous relaxation Θp acts as an `1-norm on the small coeffi-
cients and as 1

p‖w‖
p
p for large ones, is not limited to the Berhu penalty, but holds for general set functions.

However the point where the penalty moves from one mode to the other depends on the structure of F and
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Figure 2: Balls of different radii of the non-homogeneous `∞-convex envelope of the range function (top):
Θ∞(w) ≤ 1 (left), Θ∞(w) ≤ 2 (middle), Θ∞(w) ≤ 3 (right) and of its `2-convex envelope (bottom):
Θ2(w) ≤ 1 (left), Θ2(w) ≤ 2 (middle), Θ2(w) ≤ 4 (right).

is different along each coordinate. This is easier to see via the second variational form of Θp presented in
the Appendix. We further illustrate in the following example.

Example 2 (Range penalty). Consider the range function defined as range(A) = max(A)−min(A) + 1
where max(A) (min(A)) denotes maximal (minimal) element in A. This penalty allow us to favor the
selection of interval non-zero patterns on a chain or rectangular patterns on grids. It was shown in [30]
that Ωp(w) = ‖w‖1 for any p ≥ 1. On the other hand, Θp has no closed form solution, but is different
from `1-norm. Figure 2.1 illustrates the balls of different radii of Θ∞ and Θ2. We can see how the
penalty morphs from `1-norm to `∞ and squared `2-norm respectively, with different “speed” along each
coordinate. Looking carefully for example on the ball Θ2(w) ≤ 2, we can see that the penalty acts as an
`1-norm along the (x, z)-plane and as a squared `2-norm along the (y, z)-plane.

We highlight other ways in which the two relaxations differ and their implications in the sequel.

In terms of computational efficiency, note that even though the formulations (1) and (3) are jointly convex
in (w, η), Ωp and Θp can still be intractable to compute and to optimize. However, for certain classes
of functions, they are tractable. For example, since for monotone submodular functions, Ω∞ = Θ∞ is
the Lovász extension of F , as stated in Remark 1, then they can be efficiently computed by the greedy
algorithm [2]. Moreover, efficient algorithms to compute Ωp, the associated proximal operator and to
solve learning problems regularized with Ωp is proposed in [30]. Similarly, if F can be expressed by
integer programs over totally unimodular constraints as in [10], then Ω∞, Θ∞ and their associated Fenchel-
type operators can be computed efficiently by linear programs. Hence, we can use conditional gradient
algorithms for numerical solutions.

2.2 Lower combinatorial envelopes

In this section, we are interested in analyzing which combinatorial structures are preserved by each
relaxation. To that end, we generalize the notion of lower combinatorial envelope (LCE) [30]. The
homogeneous LCE F− of F is defined as the set function which agrees with the `∞-homogeneous convex
relaxation of F at the vertices of the unit hypercube, i.e., F−(A) = Ω∞(1A),∀A ⊆ V .

For the non-homogeneous relaxation, we define the non-homogeneous LCE similarly as F̃−(A) =
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Θ∞(1A). The `∞-relaxation reflects most directly the combinatorial structure of the function F . Indeed,
`p-relaxations only depend on F through the `∞-relaxation as expressed in the variational forms (1) and
(3).

We say Ω∞ is a tight relaxation of F if F = F−. Similarly, Θ∞ is a tight relaxation of F if F̃− = F . Ω∞
and Θ∞ are then extensions of F from {0, 1}d to Rd; in this sense, the relaxation is tight for all w of the
form w = 1A. Moreover, following the definition of convex envelope, the relaxation Ω∞ (resp. Θ∞) is
the same for F and F− (resp. F and F̃−), and hence, the LCE can be interpreted as the combinatorial
function which the relaxation can capture.

The homogeneous relaxation can capture any monotone submodular function [30]. Since Ω∞ is the
Lovász extension [1] in this case, and hence, F−(A) = Ω∞(1A) = fL(1A) = F (A). Also, since the
two `∞-relaxations are identical for this class of functions, their LCEs are also equal, i.e., F̃−(A) =
Θ∞(1A) = Ω∞(1A) = F (A).

The LCEs, however, are not equal in general. In fact, the non-homogeneous relaxation is tight for a larger
class of functions. In particular, the following proposition shows that F̃− is equal to the monotinization
of F , that is F̃−(A) = infS⊆V {F (S) : A ⊆ S}, for all set functions F , and is thus equal to the function
itself if F is monotone.
Proposition 1. The non-homogenous lower combinatorial envelope can be written as

F̃−(A) = Θ∞(1A)

= inf
αS∈{0,1}

{
∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ 1A,
∑
S⊆V

αS = 1}

= inf
S⊆V
{F (S) : A ⊆ S}.

Proof. To see why we can restrict αS to be integral, let E = {S : αS > 0}, then ∀T ⊆ V such that
∃e ∈ A, e 6∈ T , then

∑
αS>0,S 6=T αS = 1 and hence αT = 0. Hence ∀S ∈ E we have A ⊆ S and∑

αS>0 αSF (S) = minαS>0 F (S).

Proposition 1 argues that the non-homogeneous convex envelope is tight if and only if F is monotone. Two
important practical implications follow from this result.

Given a target model that cannot be expressed by a monotone function, it is impossible to obtain a tight
convex relaxation. Non-convex methods can be potentially better.

On the other hand, if the model can be expressed by a monotone non-submodular set function, the
homogeneous function may not be tight, and hence, a non-homogeneous relaxation can be more useful.
For instance, [30] shows that for any set function where F ({e}) = 1 for all singletons e ∈ V and
F (A) ≥ |A|,∀A ⊆ V , the homogeneous LCE F−(A) = |A| and accordingly Ωp is the `1-norm, thus
losing completely the structure encoded in F .

We discuss three examples that fall in this class of functions, where the non-homogeneous relaxation is
tight while the homogeneous one is not.

Example 3 (Range penalty). Consider range(A) = max(A)−min(A) + 1. For F (A) = range(A), we
have F−(A) = |A|, while F̃− = F by Proposition 1.

Example 4 (Dispersive `0-penalty). Given a set of predefined groups {G1, · · · , GM}, consider the dis-
persive `0-penalty, introduced by [10]: F (A) = |A|+ ιBT 1A≤1(A) where the columns of B correspond
to the indicator vectors of the groups, i.e., BV,i = 1Gi . The dispersive penalty enforces the selection of
sparse supports where no two non-zeros are selected from the same group. Neural sparsity models induce
such structures [17]. In this case, we have F−(A) = |A|, while F̃− = F by Proposition 1.
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Example 5 (Weighted graph model). Given a graph G = (V,E), consider a relaxed version of the
weighted graph model of [18]: F (A) = |A| + ιγ(FA)≤g,ω(FA)≤B(A), where γ(FA) is the number of
connected components formed by the forest FA corresponding to A and ω(FA) is the total weight of
edges in the forest FA. This model describes a wide range of structures, including 1D-clustering, tree
hierarchies, and the Earth Mover Distance model. We have F−(A) = |A|, while F̃− = F by Proposition 1.

The last two examples belong to a natural class of structured sparsity penalties of the form F (A) =
|A| + ιA∈M(A), which favors sparse non-zero patterns among a set M of allowed patterns. If M is
down-monotone, i.e., ∀A ∈ M,∀B ⊆ A,B ∈ M, then the non-homogeneous relaxation preserves
its structure, i.e., F̃− = F , while its homogeneous relaxation is oblivious to the hard constraints, with
F−(A) = |A|.

3 Sparsity-inducing properties of monotone convex regularizers

The notion of LCE essentially characterizes combinatorial structures we cannot hope to enforce via convex
relaxation.

In this section, we hence study the statistical properties of convex monotone penalties in general, and in the
following section we investigate these properties for the convex envelopes of `p-regularized combinatorial
functions.

To this end, we consider the linear regression model y = Xw∗ + ε, where X ∈ Rn×d is a fixed design
matrix, y ∈ Rn is the response vector, and ε is a vector of iid random variables with mean 0 and variance
σ2. Given λn > 0, we define ŵ as a minimizer of the regularized least-squares:

min
w∈Rd

1

2
‖y −Xw‖22 + λnΦ(w), (5)

where Φ is any proper convex function which is absolute, i.e., Φ(w) = Φ(|w|) and monotonic in the
absolute values of w, that is |w| ≥ |w′| ⇒ Φ(w) ≥ Φ(w′).

In what follows, monotone functions refer to this notion of monotonicity. We study the sparsity-inducing
properties of solutions of (5). We determine in Section 3.1 necessary conditions for non-zero patterns to be
allowed and in Section 3.2 sufficient conditions that lead to correct support recovery and estimation.

3.1 Continuous stable supports

Existing results on consistency typically rely heavily on decomposition properties of Φ [29, 1, 31, 30].
The notions of decomposability assumed in these prior works are either too strong or too specific to be
applicable to the general convex penalties Ωp and Θp we are considering. Instead, we introduce a general
weak notion of decomposability applicable to any absolute monotone convex regularizer.

Definition 1 (Decomposability). Given J ⊆ V andw ∈ Rd, supp(w) ⊆ J , we say that Φ is decomposable
at w w.r.t J if ∃MJ > 0 such that ∀∆ ∈ Rd, supp(∆) ⊆ Jc,

Φ(w + ∆) ≥ Φ(w) +MJ‖∆‖∞.

Note that for strictly monotone functions, such as the `1-norm, this decomposability property holds for any
J ⊆ V and w ∈ Rd. It is also reasonable to expect this property to hold at the solution ŵ of (5) and its
support Ĵ = supp(ŵ). Theorem 1 shows that this is indeed the case.
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In Section 3.2, we devise an estimation scheme able to recover supports J that satisfy this property at any
w ∈ Rd. This leads then to following notion of continuous stable supports, which characterizes supports
with respect to the continuous penalty Φ. In Section 4.1, we relate this to the notion of discrete stable
supports, which characterizes supports with respect to the combinatorial penalty F .

Definition 2 (Continuous stability). We say that J ⊆ V is weakly stable wrt Φ if there exists w ∈ Rd,
supp(w) = J such that Φ is decomposable at w wrt J . Furthermore, we say that J ⊆ V is strongly stable
wrt Φ if for all w ∈ Rd such that supp(w) ⊆ J , Φ is decomposable at w wrt J .

Theorem 1 considers slightly more general learning problems than (5) and shows that weak stability is a
necessary condition for a non-zero pattern to be allowed as a solution.

Theorem 1. The minimizer ŵ of minw∈Rd L(w) − z>w + λΦ(w), where L is a strongly-convex and
smooth loss function and z ∈ Rd has a continuous density w.r.t to the Lebesgue measure, has a weakly
stable support w.r.t. Φ, with probability one.

This new result extends and simplifies the previous results in [1] which proves the special case of Ω∞ and
submodular functions with quadratic loss functions. The proof we present, in the Appendix, is also shorter
and simpler.

Corollary 1. Assume y ∈ Rd has a continuous density wrt to the Lebesgue measure andXTX is invertible.
Then the minimizer ŵ of Eq. (5) is unique and its support supp(ŵ) is weakly stable wrt Φ, with probability
one.

3.2 Adaptive estimation

Restricting the choice of regularizers in (5) to convex relaxations as surrogates to the combinatorial
penalties is motivated by computational tractability concerns.

However, other non-convex sparsity-inducing regularization functions have been proposed in the literature.
For example, `α-quasi-norms [25, 14] or more generally penalties of the form Φ(w) =

∑d
i=1 φ(|wi|),

where φ is a monotone concave penalty [12, 8, 16] can be more advantageous than the `1-norm. Such
penalties are closer to the `0-quasi-norm and penalize more aggressively small coefficients, and thus lead
to a sparsity-inducing effect stronger than `1.

The authors in [23] extended this to define `α/`2- quasi-norm Φ(w) =
∑M
i=1 ‖wGi‖α for some α ∈ (0, 1),

which enforces sparsity at the group level more aggressively. We generalize this to Φ(|w|α) where Φ is
any structured sparsity-inducing monotone and convex regularizer.

These non-convex penalties lead to intractable estimation problems, but approximate solutions can be
obtained by majorization-minimization algorithms, as suggested for e.g., in [13, 38, 5].
Lemma 3. Let Φ be any monotone convex function, then for all w0 ∈ Rd, Φ(|w|α) admits the following
majorizer Φ(|w|α) ≤ (1− α)Φ(|w0|α) + αΦ(|w0|α−1 ◦ |w|), which is tight at w0.

We consider the adaptive weight estimator (6) resulting from applying a 1-step majorization-minimization
to (5),

min
w∈Rd

1

2
‖y −Xw‖22 + λnΦ(|w0|α−1 ◦ |w|), (6)

where w0 is a
√
n-consistent estimator to w∗, that is converging to w∗ at rate 1/

√
n (typically obtained

from w0 = 1 or ordinary least-squares).

We study sufficient support recovery and estimation consistency conditions for (6) for general convex
monotone regularizers Φ. Such consistency results have been established for (6), in the classical asymptotic
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setting, only in the special case of `1-norm in [37] and for the (non-adaptive) estimator (5) for homogeneous
convex envelopes of monotone submodular functions, for p =∞ in [1] and for general p in [30], in the
high dimensional setting, and for latent group Lasso norm in [31], in the asymptotic setting.

Compared to prior works, the discussion of support recovery is complicated here by the fact that Φ is not
necessarily a norm and only satisfies a weak notion of decomposability.

As in [37], we consider in this paper the classical asymptotic regime in which the model generating the
data is of fixed finite dimension d while n→∞. We further assume that Q = XTX/n is positive definite
and thus the minimizer of (6) is unique, we denote it by ŵ.

The following Theorem extends the results of [37] for the `1-norm to any normalized absolute monotone
convex regularizer if the true support satisfy the sufficient condition of strong stability in Definition 2.
Note that this sufficient condition is trivially satisfied in the case of the `1-norm.

The insights developed towards this results should contribute to understanding the high-dimensional
learning setting, which we defer to a later work.

Theorem 2. [Consistency and Support Recovery] Let Φ : Rd → R+ be a proper normalized (Φ(0) = 0)
absolute monotone convex function and denote by J the true support J = supp(w∗). If |w∗|α ∈ int dom Φ,
J is strongly stable with respect to Φ and λn satisfies λn√

n
→ 0, λn

nα/2
→ ∞, then the estimator (6) is

consistent and asymptotically normal, i.e., it satisfies

√
n(ŵJ − w∗J)

d−→ N (0, σ2Q−1
JJ ), (7)

and
P (supp(ŵ) = J)→ 1. (8)

Consistency results in most existing works are established under various necessary conditions on X , some
of which are difficult to verify in practice, such as the irrepresentability condition (c.f., [37, 1, 31, 30]).
Adding data-dependent weights does not require such conditions and allows recovery even in the correlated
measurement matrix setup as illustrated in our numerical results (c.f., Sect. 5).

4 Sparsity-inducing properties of relaxations of combinatorial penal-
ties

In this Section, we study the sparsity-inducing properties of Ωp and Θp . Both penalties are normalized
absolute monotone convex functions to which the necessary and sufficient conditions identified in Sec-
tions 3.1 and 3.2 apply. We investigate how these conditions translate to conditions with respect to the
combinatorial penalties themselves. Hence, the results of this section allows one to check which supports
to expect to recover, without the need to compute the corresponding convex relaxation. To that end, we
introduce in Section 4.1 discrete counterparts of weak and strong stability, and show in Section 4.2 that
discrete strong stability is a sufficient, and in some cases necessary, condition for support recover.

4.1 Discrete stable supports

We recall the concept of discrete stable sets [1], also referred to as flat or closed sets [26]. We refer to such
sets as weak discrete stable sets and introduce a stronger notion of discrete stability.

9



Definition 3 (Discrete stability). Given a monotone set function F : 2V → R+, a set J ⊆ V is said to be
weakly stable w.r.t F if ∀i ∈ Jc, F (J ∪ {i}) > F (J).
A set J ⊆ V is said to be strongly stable w.r.t F if ∀A ⊆ J, ∀i ∈ Jc, F (A ∪ {i}) > F (A).

Note that discrete stability imply in particular feasibility, i.e., F (J) < +∞. Also, as in the continuous case,
all supports are stable w.r.t a strictly monotone function, such as the cardinality function. It is interesting
to note that for monotone submodular functions, weak and strong stability are equivalent. In fact, this
equivalence holds for a more general class of functions, we call ρ-submodular.

Definition 4. A function F : 2V → R is ρ-submodular iff ∃ρ ∈ (0, 1] s.t., ∀B ⊆ V,A ⊆ B, i ∈ Bc

ρ[F (B ∪ {i})− F (B)] ≤ F (A ∪ {i})− F (A)

The notion of ρ-submodularity is related to another notion of “approximate" submodularity, called weak
submodularity (c.f., [7, 11]). We show in the appendix that ρ-submodularity is a stronger condition than
weak submodularity.

Proposition 2. If F is a finite-valued monotone function, F is ρ-submodular iff discrete weak stability is
equivalent to strong stability.

Example 6. The range function range(A) = max(A)−min(A) + 1 is ρ-submodular with ρ = 1
d−1 .

4.2 Relation between discrete and continuous stability

This section provides several technical results relating the discrete and continuous notions of stability. It
thus provides us with the necessary tools to characterize which supports can be correctly estimated w.r.t
the combinatorial penalty itself, without going through its relaxations.

Proposition 3. Given any monotone set function F , all sets J ⊆ V strongly stable w.r.t to F are also
strongly stable w.r.t Ωp and Θp.

It follows then by Theorem 2 that discrete strong stability is a sufficient condition for correct estima-
tion.
Corollary 2. If Φ is equal to Ωp or Θp for p ∈ (1,∞) and supp(w∗) = J is strongly stable w.r.t F , then
Theorem 2 holds, i.e., the adaptive estimator (6) is consistent and correctly recovers the support. This also
holds for p =∞ if we further assume that ‖w∗‖∞ < 1.

Furthermore, if F is ρ-submodular, then by Proposition 2, it is enough for supp(w∗) = J to be weakly
stable w.r.t F for Corollary 2 to hold. Conversely, Proposition 4 below shows that discrete strong stability
is also a necessary condition for continuous strong stability, in the case where p =∞ and F is equal to its
LCE.

Proposition 4. If F = F− and J is strongly stable w.r.t Ω∞, then J is strongly stable w.r.t F . Similarly,
for any monotone F , if J is strongly stable w.r.t Θ∞, then J is strongly stable w.r.t F .

Finally, in the special case of monotone submodular function, the following Corollary 3, along with
Proposition 3 demonstrates that all definitions of stability become equivalent. We thus recover the result in
[1] showing that weakly stable supports correspond to the set of allowed sparsity patterns for monotone
submodular functions.
Corollary 3. If F is a monotone submodular function and J is weakly stable w.r.t Ω∞ = Θ∞ then J is
weakly stable w.r.t F .
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4.3 Examples

We highlight in this section what are the supports recovered by the adaptive estimator (AE) (6) with the
homogeneous convex relaxation Ωp and non-homogeneous convex relaxation Θp of some examples of
structure priors. For simplicity, we will focus on the case p =∞. Also in all the examples we consider
below, weak and strong discrete stability are equivalent, so we omit the weak/strong specification. Note
that it is desirable that the regularizer used enforces the recovery of only the non-zero patterns satisfying
the desired structure.

Monotone submodular functions: As discussed above, for this class of functions, all stability definitions
are equivalent and Ω∞ = Θ∞ = fL. As a result, AE recovers any discrete stable non-zero pattern. This
includes the following examples (c.f., [30] for further examples).

• Cardinality: The cardinality function is strictly monotone, thus all supports are stable w.r.t to it.
Thus AE recovers all non-zero patterns with Ω∞ and Θ∞, given by the `1-norm.

• Overlap count function: F∩(A) =
∑
G∈G,G∩A 6=∅ dG where G is a collection of predefined groups

G and dG their associated weights. Ω∞ and Θ∞ are given by the `1/`∞-group Lasso norm, and
stable patterns are complements of union of groups. For example, for hierarchical groups (i.e.,
groups consisting of each node and its descendants on a tree), AE recovers rooted connected tree
supports.

• Modified range function: The range function can be transformed into a submodular function, if
scaled by a constant as suggested in [1], yielding the monotone submodular function Fmr(A) =
d− 1 + range(A),∀A 6= ∅ and Fmr(∅) = 0. This can actually be written as an instance of F∩ with
groups defined as G = {[1, k] : 1 ≤ k ≤ d} ∪ {[k, d] : 1 ≤ k ≤ d}. This norm was proposed to
induce interval patterns by [22], and indeed its stable patterns are interval supports. We will compare
this function in the experiments with the direct convex relaxations of the range function.

Range function: The range function is 1
d−1 -submodular, thus its discrete strongly and weakly stable

supports are identical and they correspond to interval supports. As a result, AE recovers interval supports
with Θ∞. On the other hand, since the homogeneous LCE of the range function is the cardinality, AE
recovers all supports with Ω∞.

Down monotone structures: Functions of the form F (A) = |A| + ιA∈M(A), where M is down-
monotone, also have their discrete strongly and weakly stable supports identical and given by the feasible
setM. These structures include the dispersive and graph models discussed in examples 4 and 5. Since
their homogeneous LCE is also the cardinality, then AE recovers all supports with Ω∞, and only feasible
supports with Θ∞.

5 Numerical Illustration

To illustrate the results presented in this paper, we consider the problem of estimating the support of a
parameter vector w ∈ Rd whose support is an interval. It is natural then to choose as combinatorial penalty
the range function whose stable supports are intervals. We aim to study the effect of adaptive weights, as
well as the effect the choice of homogeneous vs. non-homogeneous convex relaxation for regularization,
on the quality of support recovery.

As discussed in Section 4.3, the `∞-homogeneous convex envelope of the range is simply the `1-norm.
Its `∞-non-homogeneous convex envelope Θr

∞ can be computed using the formulation (3), where only
interval sets need to be considered in the constraints, leading to a quadratic number of constraints. We
also consider the `1/`∞-norm that corresponds to the convex relaxation of the modified range function
Fmr.
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Figure 3: (Left column) Best Hamming distance and (Right column) best least square error to the true
vector w∗, along the regularization path, averaged over 5 runs.

We consider a simple regression setting in which w∗ ∈ Rd is a constant signal whose support is an interval.
The choice of p = ∞ is well suited for constant valued signals. The design matrix X ∈ Rd×n is either
drawn as (1) an i.i.d Gaussian matrix with normalized columns, or (2) a correlated Gaussian matrix with
normalized columns, with the off-diagonal values of the covariance matrix set to a value ρ = 0.5. We
observe noisy linear measurements y = Xw∗ + ε, where the noise vector is i.i.d. with variance σ2, where
σ is varied between 10−5 and 1. We solve problem (6) with and without adaptive weights |w0|α−1, where
w0 is taken to be the least squares solution and α = 0.3.

We assess the estimators obtained through the different regularizers both in terms of support recovery and
in terms of estimation error. Figure 5 plots (in logscale) these two criteria against the noise level σ. We
plot the best achieved error on the regularization path, where the regularization parameter λ was varied
between 10−6 and 103. We set the parameters to d = 250, k = 100, n = 500.

We observe that the adaptive weight scheme helps in support recovery, especially in the correlated design
setting. Indeed, Lasso is only guaranteed to recover the support under an “irrepresentability condition"
[37]. This is satisfied with high probability only in the non-correlated design. On the other hand, adaptive
weights allow us to recover any strongly stable support, without any additional condition, as shown in
Theorem 2. The `1/`∞-norm performs poorly in this setup. In fact, the modified range function Fmr,
introduced a gap of d between non-empty sets and the empty set. This leads to the undersirable behavior,
already documented in [1, 22] of adding all the variables in one step, as opposed to gradually. Adaptive
weights seem to correct for this effect, as seen by the significant improvement in performance. Finally,
note that choosing the “tighter" convex relaxation leads to better support recovery. Indeed, Θr

∞ performs
better than `1-norm in all setups.

6 Conclusion

We presented an analysis of homogeneous and non-homogeneous convex relaxations of `p-regularized
combinatorial penalties. Our results show that structure encoded by submodular priors can be equally
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well expressed by both relaxations, while non-homogeneous relaxation is able to express the structure of
general monotone set functions. We also identified necessary and sufficient stability conditions on the
supports to be correctly recovered. We proposed an adaptive weight scheme that is guaranteed to recover
supports that satisfy the sufficient stability conditions, in the asymptotic setting, even under correlated
design matrix.
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7 Appendix

7.1 Variational forms of convex envelopes (Proof of lemma 2 and Remark 1)

In this section, we recall the different variational forms of the homogeneous convex envelope derived in
[30] and derive similar variational forms for the non-homogeneous convex envelope, which includes the
ones stated in lemma 2). These variational forms will be needed in some of our proofs below.
Lemma 4. The homogeneous convex envelope Ωp of Fp admits the following variational forms.

Ω∞(w) = min
α
{
∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ |w|, αS ≥ 0}. (9)

Ωp(w) = min
v
{
∑
S⊆V

F (S)1/q‖vS‖p :
∑
S⊆V

vS = |w|, supp(vS) ⊆ S}. (10)

= max
κ∈Rd+

d∑
i=1

κ
1/q
i |wi| s.t. κ(A) ≤ F (A),∀A ⊆ V. (11)

= inf
η∈Rd+

1

p

d∑
j=1

|wj |p

ηp−1
j

+
1

q
Ω∞(η). (12)

The non-homogeneous convex envelope of a set function F , over the unit `∞-ball was derived in [10],
where it was shown that Θ∞(w) = infη∈[0,1]d{f(η) : η ≥ |w|} where f is any proper, l.s.c. convex
extension of F (c.f., Lemma 1 [10]). A natural choice for f is the convex closure of F , which corresponds
to the tightest convex extension of F on [0, 1]d. We recall the two equivalent definitions of convex closure,
which we have adjusted to allow for infinite values.
Definition 5 (Convex Closure; c.f., [9, Def. 3.1]). Given a set function F : 2V → R, the convex closure
f− : [0, 1]d → R is the point-wise largest convex function from [0, 1]d to R that always lowerbounds F .
Definition 6 (Equivalent definition of Convex Closure; c.f., [34, Def. 1] and [9, Def. 3.2]). Given any set
function f : {0, 1}n → R, the convex closure of f can equivalently be defined ∀w ∈ [0, 1]n as:

f−(w) = inf{
∑
S⊆V

αSF (S) : w =
∑
S⊆V

αS1S ,
∑
S⊆V

αS = 1, αS ≥ 0}

It is interesting to note that f−(w) = fL(w) where fL is Lovász extension iff F is a submodular function
[34].

The following lemma derive variational forms of Θp for any p ≥ 1 that parallel the ones known for the
homogeneous envelope.
Lemma 5. The non-homogeneous convex envelope Θp of Fp admits the following variational forms.

Θ∞(w) = inf{
∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ |w|,
∑
S⊆V

αS = 1, αS ≥ 0}. (13)

Θp(w) = max
κ∈Rd

d∑
j=1

ψj(κj , wj) + min
S⊆V

F (S)− κ(S), ∀w ∈ dom(Θp(w)). (14)

= inf
η∈[0,1]d

1

p

d∑
j=1

|wj |p

ηp−1
j

+
1

q
f−(η), (15)
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where dom(Θp) = {w|∃η ∈ [0, 1]d s.t supp(w) ⊆ supp(η), η ∈ dom(f−)}, and where we define

ψj(κj , wj) :=

{
κ

1/q
j |wj | if |wj | ≤ κ1/p

j , κj ≥ 0
1
p |wj |

p + 1
qκj otherwise.

If F is monotone, Θ∞ = f−, then we can replace f− by Θ∞ in (15) and we can restrict κ ∈ Rd+ in (14).

To prove the variational form (13) in Lemma 5, we need to show first the following property of f−.
Proposition 5 (c.f., [9, Prop. 3.23] ). The minimum values of a proper set function F and its convex
closure f− are equal, i.e.,

min
w∈[0,1]d

f−(w) = min
S⊆V

F (S)

If S is a minimizer of f(S), then 1S is a minimizer of f−. Moreover, if w is a minimizer of f−, then every
set in the support of α, where f−(w) =

∑
S⊆V αSF (S), is a minimizer of F .

Proof. First note that, {0, 1}d ⊆ [0, 1]d implies that f−(w∗) ≤ F (S∗). On the other hand, f−(w∗) =∑
S⊆V α

∗
SF (S) ≥

∑
S⊆V α

∗
SF (S∗) = F (S∗). The rest of the proposition follows directly.

Given the choice of the extension f = f−, the variational form (13) of Θ∞ given in lemma 5 follows
directly from definition 6 and proposition 5, as shown in the following corollary.
Corollary 4. Given any set function F : 2V → R+ and its corresponding convex closure f−, the convex
envelope of F (supp(w)) over the unit `∞-ball is given by

Θ∞(w) = inf
α
{
∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ |w|,
∑
S⊆V

αS = 1, αS ≥ 0}.

= inf
v
{
∑
S⊆V

F (S)‖vS‖∞ :
∑
S⊆V

vS = |w|,
∑
S⊆V

‖vS‖∞ = 1, supp(vS) ⊆ S}.

Proof. f− satisfies the first 2 assumptions required in Lemma 1 of [10], namely, f− is a lower semi-
continuous convex extension of F which satisfies

max
S⊆V

m(S)− F (S) = max
w∈[0,1]d

mTw − f−(w),∀m ∈ Rd+

To see this note that mTw∗− f−(w∗) =
∑
S⊆V α

∗
S(mT1S −F (S)) ≥

∑
S⊆V α

∗
S(mT1S∗ −F (S∗)) =

m(S∗)− F (S∗). The other inequality is trivial. The corollary then follows directly from Lemma 1 in [10]
and definition 6.

Note that dom(Θ∞) = {w : ∃η ∈ [0, 1]d ∩ dom(f−), η ≥ |w|}. Note also that Θ∞ is monotone even if
F is not. On the other hand, if F is monotone, then f− is monotone on [0, 1]d and Θ∞(w) = f−(|w|).
Then the proof of remark 1 follows, since if F is a monotone submodular function and fL is its Lovász
extension, then Θ∞(w) = f−(|w|) = fL(|w|) = Ω∞(w),∀w ∈ [−1, 1]d, where the last equality was
shown in [1].

Next, we derive the convex relaxation of Fp for a general p ≥ 1.
Proposition 6. Given any set function F : 2V → R+ and its corresponding convex closure f−, the convex
envelope of Fµλ(w) = µF (supp(w)) + λ‖w‖pp is given by

Θp(w) = inf
η∈[0,1]d

λ

d∑
j=1

|wj |p

ηp−1
j

+ µf−(η).

Note that dom(Θp) = {w|∃η ∈ [0, 1]d s.t supp(w) ⊆ supp(η), η ∈ dom(f−)}.
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Proof. Given any proper l.s.c. convex extension f of F , we have:

First for the case where p = 1:

F ∗µλ(s) = sup
w∈Rn

wT s− µF (supp(w))− λ‖w‖1

= sup
η∈{0,1}d

sup
1supp(w)=η

sign(w)=sign(s)

|w|T (|s| − λ1)− µF (η)

= ι{|s|≤λ1}(s)− inf
η∈{0,1}d

µF (η).

Hence F ∗∗µλ(w) = λ‖w‖1 + infη∈{0,1}d λF (η). For the case p ∈ (1,∞).

F ∗µλ(s) = sup
w∈Rd

wT s− µF (supp(w))− λ‖w‖pp

= sup
η∈{0,1}d

sup
1supp(w)=η

sign(w)=sign(s)

|w|T |s| − λ‖w‖pp − µF (η)

= sup
η∈{0,1}d

λ(p− 1)

(λp)q
ηT |s|q − µF (η) (|si| = λp|x∗i |p−1,∀ηi 6= 0)

= sup
η∈[0,1]d

λ(p− 1)

(λp)q
ηT |s|q − µf−(η).

We denote λ̂ = λ(p−1)
(λp)q .

F ∗∗µλ(w) = sup
s∈Rd

wT s− F ∗µλ(s)

= sup
s∈Rd

min
η∈[0,1]d

sTw − λ̂ηT |s|q + µf−(η)

?
= inf
η∈[0,1]d

sup
s∈Rp

sign(s)=sign(w)

|s|T |w| − λ̂ηT |s|q + µf−(η)

= inf
η∈[0,1]d

λ(|w|p)T η1−p + µf−(η),

where the last equality holds since |wi| = λ̂ηiq|s∗i |q−1,∀ηi 6= 0, otherwise s∗i = 0 if wi = 0 and ∞
otherwise. (?) holds by Sion’s minimax theorem [33, Corollary 3.3]. Note then that the minimizer η∗

(if it exists) satisfies supp(w) ⊆ supp(η∗). Finally, note that if we take the limit as p→∞, we recover
Θ∞ = infη∈[0,1]d{f−(η) : η ≥ |x|}.

The variational form (15) given in lemma 5 follows from proposition 6 for the choice µ = 1
q , λ = 1

p .

The following proposition derives the variational form (14) for p =∞.
Proposition 7. Given any set function F : 2V → R ∪ {+∞}, and its corresponding convex closure f−,
Θ∞ can be written ∀w ∈ dom(Θ∞) as

Θ∞(w) = max
κ∈Rd+

{κT |w|+ min
S⊆V

F (S)− κ(S)}

= max
κ∈Rd+

{κT |w|+ min
S⊆supp(w)

F (S)− κ(S)} (if F is monotone)

Similarly ∀w ∈ dom(f−) we can write

f−(w) = max
κ∈Rd
{κT |w|+ min

S⊆V
F (S)− κ(S)}

= Θ∞(w) = max
κ∈Rd+

{κTw + min
S⊆supp(w)

F (S)− κ(S)} (if F is monotone)
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Proof. ∀w ∈ dom(Θ∞), strong duality holds by Slater’s condition, hence

Θ∞(w) = min
α
{
∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ |w|,
∑
S⊆V

αS = 1, αS ≥ 0}.

= min
α≥0

max
ρ∈R,κ∈Rd+

{
∑
S⊆V

αSF (S) + κT (|w| −
∑
S⊆V

αS1S) + ρ(1−
∑
S⊆V

αS)}.

= max
ρ∈R,κ∈Rd+

min
α≥0
{κT |w|+

∑
S⊆V

αS(F (S)− κT1S − ρ) + ρ}.

= max
ρ∈R,κ∈Rd+

{κT |w|+ ρ : F (S) ≥ κT1S + ρ)}.

= max
κ∈Rd+

{κT |w|+ min
S⊆V

F (S)− κ(S)}.

Let J = supp(|w|) then κ∗Jc = 0. Then for monotone functions F (S)− κ∗(S) ≥ F (S ∩ J)− κ∗(S), so
we can restrict the minimum to S ⊆ J . The same proof holds for f−, with the Lagrange multiplier κ ∈ Rd
not constrained to be positive.

The following Corollary derives the variational form (14) for p ∈ [1,∞].
Corollary 5. Given any set function F : 2V → R ∪ {+∞}, Θp can be written ∀w ∈ dom(Θp) as

Θp(w) = max
κ∈Rd

d∑
j=1

ψj(κj , wj) + min
S⊆V

F (S)− κ(S).

= max
κ∈Rd+

d∑
j=1

ψj(κj , wj) + min
S⊆V

F (S)− κ(S). (if F is monotone)

where

ψj(κj , wj) :=

{
κ

1/q
j |wj | if |wj | ≤ κ1/p

j , κj ≥ 0
1
p |wj |

p + 1
qκj otherwise

Proof. By Propositions 6 and 7, we have ∀w ∈ dom(Θp), i.e., ∃η ∈ [0, 1]d, s.t supp(w) ⊆ supp(η), η ∈
dom(f−),

Θp(w) = inf
η∈[0,1]d

1

p

d∑
j=1

|wj |p

ηp−1
j

+
1

q
f−(η)

= inf
η∈[0,1]d

1

p

d∑
j=1

|wj |p

ηp−1
j

+
1

q
max

ρ∈R,κ∈Rd
{κT η + ρ : F (S) ≥ κT1S + ρ}.

?
= max
ρ∈R,κ∈Rd

inf
η∈[0,1]d

{1

p

d∑
j=1

|wj |p

ηp−1
j

+
1

q
κT η + ρ : F (S) ≥ κT1S + ρ}.

(?) holds by Sion’s minimax theorem [33, Corollary 3.3]. Note also that

inf
ηj∈[0,1]

1

p

|wj |p

ηp−1
j

+
1

q
κjηj =

{
κ

1/q
j |wj | if |wj | ≤ κ1/p

j , κj ≥ 0
1
p |wj |

p + 1
qκj otherwise

:= ψj(κj , wj)
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where the minimum is η∗j = 1 if κj ≤ 0. If κj ≥ 0, the infimum is zero if wj = 0. Otherwise, the

minimum is achieved at η∗j = min{ |wj |
κ
1/p
j

, 1} (if κj = 0, η∗j = 1). Hence,

Θp(w) = max
κ∈Rd

d∑
j=1

ψj(κj , wj) + min
S⊆V

F (S)− κ(S).

7.2 Necessary conditions for support recovery (Proof of Theorem 1)

Before proving Theorem 1, we need the following technical Lemma.
Lemma 6. Given J ⊂ V and a vector w s.t supp(w) ⊆ J , if Φ is not decomposable at w w.r.t J , then
∃i ∈ Jc such that the i-th component of all subgradients at w is zero; 0 = [∂Φ(w)]i.

Proof. If Φ is not decomposable atw and 0 6= [∂Φ(w)]i,∀i ∈ Jc, then ∀MJ > 0,∃∆ 6= 0, supp(∆) ⊆ Jc
s.t., Φ(w + ∆) < Φ(w) +MJ‖∆‖∞. In particular, we can choose MJ = infi∈Jc,v∈∂Φ(wJ ),vi 6=0 |vi| > 0,
if the inequality holds for some ∆ 6= 0, then let imax denote the index where |∆imax

| = ‖∆‖∞. Then
given any v ∈ ∂Φ(w), we have

Φ(w + ‖∆‖∞1imax) ≤ Φ(w + ∆) < Φ(w) +MJ‖∆‖∞
≤ Φ(w) + 〈v, ‖∆‖∞1imaxsign(vimax)〉
≤ Φ(w + ‖∆‖∞1imax)

which leads to a contradiction.

Theorem 1. The minimizer ŵ of minw∈Rd L(w) − z>w + λΦ(w), where L is a strongly-convex and
smooth loss function and z ∈ Rd has a continuous density w.r.t to the Lebesgue measure, has a weakly
stable support w.r.t. Φ, with probability one.

Proof. Since L is strongly-convex, given z the corresponding minimizer ŵ is unique, then the function
h(z) := arg minw∈Rd L(w) − zTw + λΦ(w) is well defined. We show that the set of z such that
supp(h(z)) is weakly unstable has measure zero.

Given any weakly unstable J and any w s.t. supp(w) ⊆ J , we know by lemma 6 that there exists an
i ∈ Jc such that 0 = [∂Φ(w)]i. Then

P (h(z) is weakly unstable) = P (∪J weakly unstable ∪i∈Jc supp(h(z)) ⊆ J, [∂Φ(h(z))]i = 0)

Given fixed J ⊆ V, i ∈ Jc, we show that the set of z such that supp(h(z)) ⊆ J and [∂Φ(h(z))]i = 0 has
measure zero. Then, z belongs to a union of finitely many sets all of zero measure, hence z belongs to a set
of zero measure.

Given z, z′ and the corresponding solutions such that supp(h(z)) ⊆ J, supp(h(z)′) ⊆ J , denote by µ > 0
the strong convexity constant of L. We have by convexity of Φ:((
z −∇L(h(z))

)
−
(
z′ −∇L(h(z′))

))>(
h(z)− h(z′)

)
≥ 0

(z − z′)>(h(z)− h(z′)) ≥
(
∇L(h(z))−∇L(h(z′))

)>(
h(z)− h(z′)

)
(z − z′)>(h(z)− h(z′)) ≥ µ‖h(z)− h(z′)‖22

1

µ
‖z − z′‖2 ≥ ‖h(z)− h(z′)‖2
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Thus h is a deterministic Lipschitz-continuous function of z. Since [∂Φ(h(z))]i = 0 and by optimality
conditions z −∇L(h(z)) ∈ ∂Φ(h(z)), then zi −∇L(h(z))i = 0 and thus zi is a Lipschitz-continuous
function of z, which can only happen with zero measure.

7.3 Sufficient conditions for support recovery (Proof of Lemma 3 and Theorem
2)

Lemma 3. Let Φ be any monotone convex function, then for all w0 ∈ Rd, Φ(|w|α) admits the following
majorizer Φ(|w|α) ≤ (1− α)Φ(|w0|α) + αΦ(|w0|α−1 ◦ |w|), which is tight at w0.

Proof. The function w → wα is concave on R+ \ {0}, hence

|wj |α ≤ |w0
j |α + α|w0

j |α−1(|wj | − |wj |0)

|wj |α ≤ (1− α)|w0
j |α + α|w0

j |α−1|wj |
Φ(|w|α) ≤ Φ((1− α)|w0|α + α|w0|α−1 ◦ |wj |) (by monotonicity)

Φ(|w|α) ≤ (1− α)Φ(|w0|α) + αΦ(|w0|α−1 ◦ |w|) (by convexity)

If wj = 0 for any j, the upper bound goes to infinity and hence it still holds.

Theorem 2. [Consistency and Support Recovery] Let Φ : Rd → R+ be a proper normalized (Φ(0) = 0)
absolute monotone convex function and denote by J the true support J = supp(w∗). If |w∗|α ∈ int dom Φ,
J is strongly stable with respect to Φ and λn satisfies λn√

n
→ 0, λn

nα/2
→ ∞, then the estimator (6) is

consistent and asymptotically normal, i.e., it satisfies
√
n(ŵJ − w∗J)

d−→ N (0, σ2Q−1
JJ ), (7)

and
P (supp(ŵ) = J)→ 1. (8)

Proof. We will follow the proof in [37]. We write ŵ = w∗ + û√
n

and Ψn(u) = 1
2‖y −X(w∗ + u√

n
)‖22 +

λnΦ(c ◦ |w∗ + u√
n
|), where c = |w0|α−1. Then û = arg minu∈Rd Ψn(u). Let Vn(u) = Ψn(u)−Ψn(0),

then
Vn(u) =

1

2
uTQu− εT Xu√

n
+ λn

(
Φ(c ◦ |w∗ +

u√
n
|)− Φ(c ◦ |w∗|)

)
Since w0 is a

√
n-consistent estimator to w∗, then

√
nw0

Jc = Op(1) and n
1−α
2 c−1

Jc = Op(1). Since
λn
nα/2

→∞, by stability of J , we have

λn
(
Φ(c ◦ |w∗ +

u√
n
|)− Φ(c ◦ |w∗|)

)
= λn

(
Φ(cJ ◦ |w∗J +

uJ√
n
|+ cJc ◦

|uJc |√
n

)− Φ(cJ ◦ |w∗J |)
)

≥ λn
(
Φ(cJ ◦ |w∗J +

uJ√
n
|) +MJ‖cJc ◦

|uJc |√
n
‖∞ − Φ(cJ ◦ |w∗J |)

)
= λn

(
Φ(cJ ◦ |w∗J +

uJ√
n
|)− Φ(cJ ◦ |w∗J |)

)
+MJ‖λnn−α/2n

α−1
2 cJc ◦ |uJc |‖∞

p−→∞ if uJc 6= 0 (16)

Otherwise, if uJc = 0, we argue that

λn
(
Φ(c ◦ |w∗ +

u√
n
|)− Φ(c ◦ |w∗|)

)
= λn(Φ(cJ ◦ |w∗J +

uJ√
n
|)− Φ(cJ ◦ |w∗J |))

p−→ 0. (17)
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To see this note first that since w0 is a
√
n-consistent estimator to w∗, then cJ = |w0

J |α−1 p−→ |w∗J |α−1,
cJ ◦ |w∗J |

p−→ |w∗J |α and cJ ◦ |w∗J + uJ√
n
| p−→ |w∗J |α. Then by the assumption |w∗|α ∈ int dom Φ, we have

that both cJ ◦ |w∗J |, cJ ◦ |w∗J + uJ√
n
| ∈ int dom Φ with probability going to one. By convexity, we then

have:

λn(Φ(cJ ◦ |w∗J +
uJ√
n
|)− Φ(cJ ◦ |w∗J |)) ≥ 〈∇Φ(cJ ◦ |w∗J |), λn

uJ√
n
〉

λn(Φ(cJ ◦ |w∗J +
uJ√
n
|)− Φ(cJ ◦ |w∗J |)) ≤ 〈∇Φ(cJ ◦ |w∗J +

uJ√
n
|), λn

uJ√
n
〉

where ∇Φ(w) denotes a subgradient of Φ at w.

For all w ∈ int dom Φ where Φ is convex, monotone and normalized, we have that ‖z‖∞ < ∞,∀z ∈
∂Φ(w). To see this, note that since w ∈ int dom Φ, ∃δ > 0 s.t., ∀w′ ∈ Bδ(w),Φ(w′) < +∞. Let
w′ = w+ sign(z)1imax

δ, where imax denotes the index where |zimax
| = ‖z‖∞ then by convexity we have

Φ(w′) ≥ Φ(w) + 〈z, w′ − w〉, ∀z ∈ ∂Φ(w)

+∞ > Φ(w′) ≥ ‖z‖∞δ, ∀z ∈ ∂Φ(w), (since Φ(w) ≥ 0)

Since λn√
n
→ 0, we can then conclude by Slutsky’s theorem that (17) holds.

Hence by (16) and (17),

λn
(
Φ(c ◦ |w∗ +

u√
n
|)− Φ(c ◦ |w∗|)

) p−→

{
0 if uJc = 0

∞ Otherwise
. (18)

By CLT, X
T ε√
n

d−→W ∼ N (0, σ2Q), it follows then that Vn(u)
d−→ V (u), where

V (u) =

{
1
2u

T
JQJJuJ −WT

J uJ if uJc = 0

∞ Otherwise
.

Vn is convex and the unique minimum of V is uJ = Q−1
JJWJ , uJc = 0, hence by epi-convergence results

[c.f., [37]]

ûJ
d−→ Q−1

JJWJ ∼ N (0, σ2Q−1
JJ ), ûJc

d−→ 0. (19)

Since û =
√
n(ŵ − w∗), then it follows from (19) that

ŵJ
p−→ w∗J , ŵJc

p−→ 0 (20)

Hence, P (supp(ŵ) ⊇ J) → 1 and it is sufficient to show that P (supp(ŵ) ⊆ J) → 1 to complete the
proof.

For that denote Ĵ = supp(ŵ) and let’s consider the event Ĵ \ J 6= ∅. By optimality conditions, we know
that

−XT
Ĵ\J(Xŵ − y) ∈ λn[∂Φ(c ◦ ·)(ŵ)]Ĵ\J

Note, that −
XT
Ĵ\J (Xŵ−y)
√
n

=
XT
Ĵ\JX(ŵ−w∗)
√
n

−
XT
Ĵ\Jε√
n

. By CLT,
XT
Ĵ\Jε√
n

d−→W ∼ N (0, σ2QĴ\J,Ĵ\J) and by

(20) ŵ − w∗ p−→ 0 then −
XT
Ĵ\J (Xŵ−y)
√
n

= Op(1).
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On the other hand,
λncĴ\J√

n
= λnn

1−α
2 n

α−1
2 cĴ\J →∞, hence

λncĴ\J√
n

c−1

Ĵ\J
vĴ\J →∞, ∀v ∈ ∂Φ(c◦ ·)(ŵ),

since c−1

Ĵ\J
vĴ\J = Op(1)−1. To see this, let w′J = ŵJ and 0 elsewhere. Note that by definition of the

subdifferential and the stability assumption on J , there must exists MJ > 0 s.t

Φ(c ◦ w′) ≥ Φ(c ◦ ŵ) + 〈vĴ\J ,−ŵĴ\J〉

≥ Φ(c ◦ w′) +MJ‖cĴ\J ◦ ŵĴ\J‖∞ − ‖c
−1

Ĵ\J
◦ vĴ\J‖1‖cĴ\J ◦ ŵĴ\J‖∞

‖c−1

Ĵ\J
◦ vĴ\J‖1 ≥MJ

We deduce then P (supp(ŵ) ⊆ J) = 1− P (Ĵ \ J 6= ∅) = 1− P (optimality condition holds)→ 1.

7.4 Discrete stability (Proof of Proposition 2 and relation to weak submodular-
ity)

Proposition 2. If F is a finite-valued monotone function, F is ρ-submodular iff discrete weak stability is
equivalent to strong stability.

Proof. If F is ρ-submodular and J is weakly stable, then ∀A ⊆ J, ∀i ∈ Jc, 0 < ρ[F (J ∪ {i})−F (J)] ≤
F (J ∪ {i}) − F (J), i.e., J is strongly stable w.r.t. F . If F is such that any weakly stable set is
also strongly stable, then if F is not ρ-submodular, then ∀ρ ∈ (0, 1] there must exists a set B ⊆ V , s.t.,
∃A ⊆ B, i ∈ Bc, s.t., ρ[F (B∪{i})−F (B)] > F (A∪{i})−F (A) ≥ 0. Hence, F (B∪{i})−F (B) > 0,
i.e., B is weakly stable and thus it is also strongly stable and we must have F (A ∪ {i}) − F (A) > 0.
Choosing then in particular, ρ = minB⊆V minA⊆B,i∈Bc

F (A∪{i})−F (A)
F (B∪{i})−F (B) ∈ (0, 1], leads to a contradiction;

minA⊆B,i∈Bc F (A ∪ {i})− F (A) ≥ ρ[F (B ∪ {i})− F (B)] > F (A ∪ {i})− F (A).

We show that ρ-submodularity is a stronger condition than weak submodularity. First, we recall the
definition of weak submodular functions.
Definition 7 (Weak Submodularity (c.f., [7, 11])). A function F is weakly submodular if ∀S,L, S ∩ L =
∅, F (L ∪ S)− F (L) > 0,

γS,L =

∑
i∈S F (L ∪ {i})− F (L)

F (L ∪ S)− F (L)
> 0

Proposition 8. If F is ρ-submodular then F is weakly submodular. But the converse is not true.

Proof. If F is ρ-submodular then ∀S,L, S ∩ L = ∅, F (L ∪ S)− F (L) > 0, let S = {i1, i2, · · · , ir}

F (L ∪ S)− F (L) =

r∑
k=1

F (L ∪ {i1, · · · , ik})− F (L ∪ {i1, · · · , ik−1})

≤
r∑

k=1

1

ρ
(F (L ∪ {ik})− F (L))

⇒ γS,T = ρ > 0.

We show that the converse is not true by giving a counter-example: Consider the function defined on
V = {1, 2, 3}, where F ({i}) = 1,∀i, F ({1, 2}) = 1, F ({2, 3}) = 2, F ({1, 3}) = 2, F ({1, 2, 3}) = 3.
Then note that this function is weakly submodular. We only need to consider sets |S| ≥ 2, since otherwise
γS,T > 0 holds trivially. Accordingly, we also only need to consider L which is the empty set or a
singleton. In both cases γS,T > 0. However, this F is not ρ-submodular, since F (1, 2) − F (1) = 0 <
ρ(F (1, 2, 3)− F (1, 3)) = ρ for any ρ > 0.
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7.5 Relation between discrete and continuous stability (Proof of Propositions 3
and 4, and Corollary 3)

First, we present a useful simple lemma, which provides an equivalent definition of decomposability for
monotone function.
Lemma 7. Given w ∈ Rd, J ⊆ J, supp(w) = J , if Φ is a monotone function, then Φ is decomposable at
w w.r.t J iff ∃MJ > 0,∀δ > 0, i ∈ Jc, s.t,

Φ(w + δ1i) ≥ Φ(w) +MJδ.

Proof. By definition 2, ∃MJ > 0,∀∆ ∈ Rd, supp(∆) ⊆ Jc,

Φ(w + ∆) ≥ Φ(w) +MJ‖∆‖∞.

in particular this must hold for ∆ = δ1i. On the other hand, if the inequality hold for all δ1i, then given
any ∆ s.t. supp(∆) ⊆ Jc let imax be the index where ∆imax

= ‖∆‖∞ and let δ = ‖∆‖∞, then

Φ(w + ∆) ≥ Φ(w + δimax) ≥ Φ(w) +MJδ = Φ(w) +MJ‖∆‖∞.

Proposition 3. Given any monotone set function F , all sets J ⊆ V strongly stable w.r.t to F are also
strongly stable w.r.t Ωp and Θp.

Proof. We make use of the variational form (11). Given a set J stable w.r.t to F and supp(w) ⊆ J ,
let κ∗ ∈ arg maxκ∈Rd+{

∑
i∈J κ

1/q
i |wi| : κ(A) ≤ F (A),∀A ⊆ V }, then Ω(w) = |wJ |T (κ∗J)1/q. Note

that ∀A ⊆ J, F (A ∪ i) > F (A), by definition 3. Hence, ∀i ∈ Jc, we can define κ′ ∈ Rd+ s.t.,
κ′J = κ∗J , κ′(J∪i)c = 0 and κ′i = minA⊆J F (A ∪ i) − F (A) > 0. Note that κ′ is feasible, since
∀A ⊆ J, κ′(A) = κ∗(A) ≤ F (A) and κ′(A+ i) = κ∗(A) +κ′i ≤ F (A) +F (A∪ i)−F (A) = F (A∪ i).
For any other set κ′(A) = κ′(A∩(J+i)) ≤ F (A∩(J+i)) ≤ F (A), by monotonicity. It follows then that
Ω(w + δ1i) = maxκ∈Rd+{

∑d
i∈J∪i κ

1/q
i |wi| : κ(A) ≤ F (A),∀A ⊆ V } ≥ |wJ |T (κ∗J)1/q + δ(κ′i)

1/q ≥
Ω(w) + δM , with M = (κ′i)

1/q > 0. The proposition then follows by lemma 7.

Similarly, the proof for Θp follows in a similar fashion. We make use of the variational form (14). Given
a set J stable w.r.t to F and supp(w) ⊆ J , first note that this implicity implies that F (J) < +∞
and hence Θp(w) < +∞. Let κ∗ ∈ arg maxκ∈Rd+

∑d
j=1 ψj(κj , wj) + minS⊆V F (S) − κ(S) and

S∗ ∈ arg minS⊆J F (S)− κ∗(S). Note that ∀S ⊆ J, ∀i ∈ Jc, F (S ∪ i) > F (S), by definition 3. Hence,
∀i ∈ Jc, we can define κ′ ∈ Rd+ s.t., κ′J = κ∗J , κ′(J∪i)c = 0 and κ′i = minS⊆J F (S ∪ i) − F (S) > 0.
Note that ∀S ⊆ J, F (S) − κ′(S) = F (S) − κ∗(S) ≥ F (S∗) − κ∗(S∗) and F (S + i) − κ′(S + i) =
F (S + i) − κ∗(S) − κ′i ≥ F (S + i) − κ∗(S) − F (S + i) + F (S) ≥ F (S∗) − κ∗(S∗). Note also that
ψi(κ

′
i, δ) = (κ′i)

1/qδ if δ ≤ (κ′i)
1/p, and ψi(κ′i, δ) = 1

pδ
p + 1

qκ
′
i = δ( 1

pδ
p−1 + 1

qκ
′
iδ
−1) ≥ δ(κ′i)

1/q

otherwise. It follows then that Θp(w+δ1i) ≥
∑
j∈J ψj(κj , wj)+(κ′i)

1/qδ+minS⊆J∪i F (S)−κ′(S) ≥∑
j∈J ψj(κj , wj) + (κ′i)

1/qδ + minS⊆J F (S) − κ∗(S) = Θp(w) + δM with M = (κ′i)
1/q > 0. The

proposition then follows by lemma 7.

Proposition 4. If F = F− and J is strongly stable w.r.t Ω∞, then J is strongly stable w.r.t F . Similarly,
for any monotone F , if J is strongly stable w.r.t Θ∞, then J is strongly stable w.r.t F .

Proof. F (A+ i) = Ω∞(1A + 1i) = Θ∞(1A + 1i) > Ω∞(1A) = Θ∞(1A) = F (A),∀A ⊆ J.
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Corollary 3. If F is a monotone submodular function and J is weakly stable w.r.t Ω∞ = Θ∞ then J is
weakly stable w.r.t F .

Proof. If F is a monotone submodular function, then Ω∞(w) = Θ∞(w) = fL(|w|). If J is not weakly
stable w.r.t F , then ∃i ∈ Jc s.t., F (J ∪ {i}) = F (J). Thus, given any w, supp(w) = J , choosing
0 < δ < mini∈J |wi|, result in fL(|w|+ δ1i) = fL(|w|), which contradicts the weak stability of J w.r.t
to Ω∞ = Θ∞.
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