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Abstract

In this paper, we study convex relaxations of combinatorial penalty functions. Specifically, we
consider models penalized by the sum of an `p-norm and a set function defined over the support of the
unknown parameter vector, which encodes prior knowledge on supports. We consider both homogeneous
and non-homogeneous convex relaxations, and highlight the difference in the tightness of each relaxation
through the notion of the lower combinatorial envelope of a set-function. We characterize necessary
conditions under which the support of the unknown parameter vector can be correctly identified. We
then propose a general adaptive estimator for convex monotone regularizers based on majorization-
minimization, and identify sufficient conditions for support recovery in the asymptotic setting.

1 Introduction

In many applications, one aims at identifying a model of small complexity, well-approximated by a sparse
set of coefficients that obey domain structure. Indeed, structured sparse parameters frequently appear in
machine learning, signal processing, and statistics. Several penalties have been proposed in the literature to
encode a priori knowledge on the structure of the support (set of non-zero coefficients), e.g., group Lasso
[34], overlapping group Lasso [19, 21], hierarchical group Lasso [20, 35], exclusive Lasso [36], latent
group Lasso [30]. Other works introduced more general formulations, based on submodular functions [1],
atomic norms [6], totally unimodular constraints [10], graph models [17], or general `p-regularized set
functions [29]. Non-convex approaches were also proposed in [4, 18]. For an overview, we refer the reader
to [2] and references within.

In this paper, given a model parametrized by a vector of coefficients w ∈ RV where V = {1, · · · , d}, we
consider regularizers that are convex relaxations of combinatorial penalties of the form 1

qF (supp(w)) +
1
p‖w‖

p
p, where the set function F controls the structure of a model in terms of favored non-zero patterns

and the `p-norm controls the magnitude of their coefficients for p ∈ (1,∞].

Convex relaxations of general combinatorial penalties were studied in several prior works. In particular, [1]
showed that computing the tightest convex relaxation over the unit `∞-ball is tractable for the ensemble of
monotone submodular functions. Similarly, the authors in [10] showed the tractability of such a relaxation
for combinatorial penalties that can be described via totally unimodular constraints. Considering the case
where p ∈ (1,∞) is appealing to avoid the clustering artifacts of the values of the learned vector, induced
by the `∞-norm. This was proposed in [29], where the authors consider the tightest homogeneous convex
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relaxation of 1
qF (supp(w)) + 1

p‖w‖
p
p for general set functions and draw connections to the latent group

Lasso norm [30].

There is a subtle difference between the two possible approaches of convexifications; by computing the
tightest homogeneous convex relaxation, as adopted in [29], vs. computing the tightest non-homogeneous
convex relaxation, as adopted in [10] for the special case where p = ∞. It is of interest to study the
difference between the two approaches, in terms of which non-zero patterns can be encoded under each
relaxation. In fact, the problem of support recovery, in the context of a learning problem regularized by a
structure-inducing penalty, was only investigated so far in special cases, e.g., for submodular functions [1],
or for the latent group Lasso [30]. The main objective of this paper is to study sparsity-inducing properties
of both homogeneous and non-homogenous convex relaxation of general `p-regularized combinatorial
penalties.

To that end, this paper makes the following contributions:

• We derive the non-homogeneous tightest convex relaxation of general `p-regularized combinatorial
penalties (Section 2.1).

• We show that non-homogeneous relaxation is tight for any monotone set function, while the homo-
geneous relaxation is tight only for a smaller subset of set-functions. This is characterized through
the notion of lower combinatorial envelope (Section 2.2).

• We characterize necessary conditions for non-zero patterns to be allowed as solutions to learning
problems regularized by convex monotone penalties (Section 3.1), and in particular, for regularizers
that correspond to convex relaxations of combinatorial functions (Section 4).

• We propose an adaptive weight estimator based on majorization-minimization, and identify sufficient
conditions for support recovery, in the asymptotic regime (Section 3.2). We illustrate numerically in
Section 5 that the adaptive scheme outperforms non-adaptive ones.

Notation. Given w ∈ Rd and a matrix Q ∈ Rd×d, wJ and QJJ denote the corresponding subvector and
submatrix of w and Q. Jc denotes the complement of J . We let 1J be the indicator vector of the set J and
accordingly 1i is the i-th basis vector. We drop the subscript for J = V , so that 1V = 1 denotes the vector
of all ones. The absolute value of |w| is taken element-wise. Similarly, the comparison w ≥ w′ and the
product w ◦v are taken element wise. For p > 0, the `p-(quasi) norm is given by ‖w‖p = (

∑d
i=1 |wi|p)1/p,

and ‖w‖∞ = maxi |wi|. For p ∈ [1,∞], we define the conjugate q ∈ [1,∞] through 1
p + 1

q = 1. We call
the set of non-zero elements of a vector w the support, denoted by supp(w) = {i : wi 6= 0}. We use the
common notation from submodular analysis, w(A) =

∑
i∈A wi. We write R+ for R+ ∪ {+∞}. For a

function f : Rd → R = R∪{+∞}, we will denote by f∗ its Fenchel-Legendre conjugate. We will denote
by ιS(w) the indicator function of the set S, taking value 0 on the set S and +∞ outside.

2 Combinatorial penalties and convex relaxations

Let V = {1, . . . , d} and 2V = {A|A ⊆ V } be its power-set. We will consider positive-valued monotone
(i.e., such that F (A) ≤ F (B),∀A ⊆ B) set functions of the form F : 2V → R+ such that F (∅) =
0, F (A) > 0, and ∀A ⊆ V . The domain of F is defined as D := {A : F (A) < +∞} and we assume that
it covers V , i.e., ∪A∈DA = V (which is equivalent to assuming that F is finite at singletons).

A set function F is submodular if and only if for all A ⊆ B and i ∈ Bc, F (B ∪ {i}) − F (B) 6
F (A ∪ {i})− F (A) (see, e.g.,[15, 2]). In what follows, unless explicitly stated, we do not assume that F
is submodular.
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We consider `p-regularized combinatorial penalties of the form Fp(w) = 1
qF (supp(w)) + 1

p‖w‖
p
p for

p ∈ [1,∞) and F∞(w) = F (supp(w)) + ι‖w‖∞≤1(w). Such combinatorial regularizers lead to computa-
tionally intractable problems. Hence, it is necessary to find tight convex surrogate penalties that capture
the encoded structure as much as possible. A natural candidate for a convex surrogate of Fp is then its
convex envelope (largest convex lower bound), given by the biconjugate (the Fenchel conjugate of the
Fenchel conjugate) F ∗∗p . Two general approaches were proposed in the literature to do this; one requires the
surrogate to also be positively homogeneous [29] and thus considers the convex envelope of the positively
homogeneous envelope of Fp, given by F (supp(w))1/q‖w‖p, which we denote by Ωp, the other computes
instead the convex envelope of Fp directly [10], which we denote by Θp. Note that from the definition of
convex envelope, it holds that Θp ≥ Ωp. In what follows, we defer all proofs to the Appendix.

2.1 Homogeneous and non-homogeneous convex envelopes

The homogeneous convex envelope Ωp of Fp was derived in [29]. We recall in Lemma 1 one variational
form of Ω∞ and of Ωp which highlights the relation between the two. Other variational forms are presented
in the Appendix.
Lemma 1 ([29]). The homogeneous convex envelope Ωp of Fp is given by

Ωp(w) = inf
η∈Rd+

1

p

d∑
j=1

|wj |p

ηp−1
j

+
1

q
Ω∞(η), (1)

Ω∞(w) = min
α

{ ∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ |w|, αS ≥ 0
}
. (2)

The non-homogeneous convex envelope of a set function F , over the unit `∞-ball was derived in [10].
The following new proposition generalizes it to any p ∈ [1,∞). For simplicity, the variational form (3)
presented below holds only for monotone functions F ; the general form and other variational forms that
parallel the ones known for the homogeneous envelope are presented in the Appendix.
Lemma 2. The non-homogeneous convex envelope Θp of Fp, for monotone functions F , is given by

Θp(w) = inf
η∈[0,1]d

1

p

d∑
j=1

|wj |p

ηp−1
j

+
1

q
Θ∞(η), (3)

Θ∞(w) = min
α

{ ∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ |w|,
∑
S⊆V

αS = 1, αS ≥ 0
}
. (4)

The infima in (1) and (3) (for w ∈ dom(Θp)) can be replaced by a minimization, if we extend b→ a
b by

continuity in zero with a
0 =∞ if a 6= 0 and 0 otherwise, as suggested in [22] and [3].

Remark 1. If F is a monotone submodular function then Θ∞(w) = Ω∞(w) = fL(|w|),∀w ∈ [−1, 1]d,
where fL denotes the Lovász extension of F [26], i.e., homogeneous and non-homogeneous envelopes are
identical, on the unit `∞-ball, for monotone submodular functions.

Note moreover that, for p = 1, both relaxations reduce to Ω1 = Θ1 = ‖ · ‖1. Hence, the `1-relaxations
essentially lose the combinatorial structure encoded in F . Thus, we will focus on the case p > 1.

In general however, the two relaxations do not coincide: note the added constraints η ∈ [0, 1]d in (3) and
the sum constraint on α in (4). Moreover, this is not the case for the simple example of the `2-regularized
cardinality function F card2 (w) = 1

2‖w‖0 + 1
2‖w‖

2
2, illustrated in Figure 2.1, where the non-homogeneous

envelope is tighter than the homogeneous one. Indeed, the homogeneous envelope of F card2 is simply the
`1-norm, while the non-homogeneous envelope of F card2 is given by [F card2 (w)]i = |wi| if |wi| ≤ 1 and
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Figure 1: `2-regularized cardinality example in one dimension (left) and two dimensions (middle: homoge-
neous, right: non-homogeneous).

[F card2 (w)]i = 1
2 |wi|

2 + 1
2 otherwise. This penalty, called “Berhu" penalty [31], was introduced to produce

a robust ridge regression estimator and was shown to be the convex envelope of F card2 in [23].

In [29], it was shown that Ωp are norms that belong to the broad family of H-norms [28, 3]. On the other
hand, by virtue of being non-homogeneous, Θp are not norms in general.

The formulations (1) and (4) are jointly convex in (w, η), as noted in [29]. In general however, Ωp and Θp

can still be intractable to compute and to optimize. But for certain classes of functions, they are tractable.
For example, for monotone submodular functions, Ω∞ = Θ∞ is the Lovász extension of F , and hence
can be computed by the usual greedy algorithm [2]. Moreover, efficient algorithms to compute Ωp, the
associated proximal operator and to solve learning problems regularized with Ωp were proposed in [29].
Similarly, if F belongs to the class of “TU penalties”, i.e., penalties that can be expressed by integer
programs over totally unimodular constraints, introduced in [10], then Ω∞, Θ∞ and their associated
Fenchel-type operators can be computed efficiently by linear programs.

2.2 Lower combinatorial envelopes

In this section, we characterize the tightness of the two convex relaxations. To that end, we generalize the
notion of lower combinatorial envelope (LCE), which was introduced in [29]. The homogeneous LCE F−
of F is defined as the set function which agrees with the `∞-homogeneous convex relaxation of F at the
vertices of the unit hypercube, i.e., F−(A) = Ω∞(1A),∀A ⊆ V . For the non-homogeneous relaxation,
we define the non-homogeneous LCE similarly as F̃−(A) = Θ∞(1A). The `∞-relaxation reflects most
directly the combinatorial structure of the function F , hence defining the LCE through it makes sense.
Indeed, `p-relaxations only depend on F through the `∞-relaxation as expressed in the variational forms
(1) and (3).

We say Ω∞ is a tight relaxation of F if F = F−. Similarly, Θ∞ is a tight relaxation of F if F̃− = F . Ω∞
and Θ∞ are then extensions of F from {0, 1}d to Rd; in this sense, the relaxation is tight for all w of the
form w = 1A. Moreover, following the definition of convex envelope, the relaxation Ω∞ (resp. Θ∞) is
always the same for F and F− (resp. F and F̃−), and thus the LCE can be interpreted as the combinatorial
function which the relaxation is actually able to capture.

For monotone submodular functions Ω∞ is the Lovász extension [1], thus F−(A) = Ω∞(1A) =
fL(1A) = F (A) and by Remark 1 F̃−(A) = Θ∞(1A) = Ω∞(1A) = F (A). Hence, both relax-
ations are tight in the case of monotone submodular functions, and the two LCEs are equal. We will see
below that the LCEs are not equal in general and that the non-homogeneous is tighter.

The LCE value F−(A) can be interpreted, via the variational form (2), as the minimal fractional weighted
set-cover A, a classical relaxation of the minimal weighted set-cover problem [27], as noted in [29]. It is in
general not equal to F (A). The following proposition shows that F̃− is equal to the monotinization of F ,
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that is F̃−(A) = infS⊆V {F (S) : A ⊆ S}, for all set functions F , and is thus equal to the function itself if
F is monotone.
Proposition 1. The non-homogenous lower combinatorial envelope can be written as

F̃−(A) = Θ∞(1A) = inf{
∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ 1A,
∑
S⊆V

αS = 1, αS ∈ {0, 1}}

= inf
S⊆V
{F (S) : A ⊆ S}.

Proof. To see why we can restrict αS to be integral, let E = {S : αS > 0}, then ∀T ⊆ V such that
∃e ∈ A, e 6∈ T , then

∑
αS>0,S 6=T αS = 1 and hence αT = 0. Hence ∀S ∈ E we have A ⊆ S and∑

αS>0 αSF (S) = minαS>0 F (S).

The non-homogeneous convex envelope is thus always tight for monotone functions and hence a “tighter"
relaxation than the homogeneous one. Indeed, in certain instances, the homogeneous convex envelope
loses the combinatorial structure encoded in Fp.
Example 1 (Range function). Consider the range function defined as range(A) = max(A)−min(A) + 1
where max(A) (min(A)) denotes maximal (minimal) element in A, which induces the selection of interval
supports. It was shown in [29] that the homogeneous LCE of the range function is the cardinality. In fact,
this holds for any set function where F ({e}) = 1 for all singletons and F (A) ≥ |A|. By Proposition 1, the
non homogeneous LCE of the range function is itself.
Example 2 (Dispersive `0-“norm"). Given a set of predefined groups {G1, · · · , GM}, consider the
dispersive `0-“norm" defined as F (A) = |A| + ιBT 1A≤1(A) where the columns of B correspond to
the indicator vectors of the groups, i.e., BV,i = 1Gi . This penalty enforces the selection of sparse
supports which are dispersive, in the sense that no two non-zeros are selected from the same group.
The homogeneous LCE of the dispersive `0-“norm" is also the cardinality. By Proposition 1, the non
homogeneous LCE of the dispersive `0-“norm" is itself.

3 Sparsity inducing properties of monotone convex regularizers

The notion of LCE allowed us to characterize the combinatorial structure that can be captured by convex
relaxations. We are further interested in investigating the combinatorial structure that can be enforced
on solutions of learning problems regularized by convex monotone penalties in general, and by convex
envelopes of `p-regularized combinatorial functions in particular.

We consider a fixed design matrix X ∈ Rn×p and y ∈ Rn a vector of random responses. Given λn > 0,
we define ŵ as a minimizer of the regularized least-squares cost:

min
w∈Rd

1

2
‖y −Xw‖22 + λnΦ(w), (5)

where Φ is any proper convex function which is monotonic in the absolute values of w, that is |w| ≥
|w′| ⇒ Φ(w) ≥ Φ(w′). We study the sparsity-inducing properties of solutions of (5). We determine in
Section 3.1 which non-zero patterns are allowed and in Section 3.2 which sufficient conditions lead to
correct estimation.

3.1 Continuous stable supports

We now introduce the notion of continuous stable supports, which characterizes supports with respect to
the continuous penalty Φ. In Section 4.1, we will relate this to the notion of discrete stable supports, which
characterize supports with respect to the combinatorial penalty F .
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Definition 1 (Decomposability). Given J ⊂ V andw ∈ Rd, supp(w) ⊆ J , we say that Φ is decomposable
at w w.r.t J if ∃MJ > 0 such that ∀∆ ∈ Rd, supp(∆) ⊆ Jc,

Φ(w + ∆) ≥ Φ(w) +MJ‖∆‖∞.

Definition 2 (Continuous stability). We say that J ⊂ V is weakly stable w.r.t Φ if there exists w ∈ Rd,
supp(w) = J such that Φ is decomposable at w w.r.t J . Furthermore, we say that J ⊂ V is strongly
stable w.r.t Φ if for all w ∈ Rd such that supp(w) ⊆ J , Φ is decomposable at w w.r.t J .

Proposition 2 considers slightly more general learning problems than (5) and shows that weak stability is a
necessary condition for a non-zero pattern to be allowed as a solution.
Proposition 2. The minimizer ŵ of minw∈Rd L(w)− z>w + λΦ(w), where L is a strongly-convex and
smooth loss function and z ∈ Rd has a continuous density, has a weakly stable support w.r.t. Φ, with
probability one.

This result extends and simplifies previous results, e.g., in [1] where this was proved for the special case of
Ω∞ and submodular functions with quadratic loss functions. The proof we present, in the Appendix, is
short and simpler.
Corollary 1. Assume y ∈ Rd has a continuous density and XTX is invertible. Then the minimizer ŵ of
Eq. (5) is unique and its support supp(ŵ) is weakly stable w.r.t Φ, with probability one.

3.2 Adaptive estimation

Restricting the choice of regularizers in (5) to convex relaxations as surrogates to the combinatorial
penalties is motivated by computational tractability concerns. However, other non-convex sparsity-inducing
regularization functions have been proposed in the literature. For example, `α-quasi-norms [24, 14] or
more generally penalties of the form Φ(w) =

∑d
i=1 φ(|wi|), where φ is a monotone concave penalty

[12, 8, 16] can be more advantageous than the `1-norm. Such penalties are closer to the `0-quasi-norm and
penalize more aggressively small coefficients, and thus lead to a sparsity-inducing effect stronger than `1.
The authors in [22] extended this to define `α/`2- quasi-norm Φ(w) =

∑M
i=1 ‖wGi‖α for some α ∈ (0, 1),

which enforce sparsity at the group level more aggressively. We generalize this to Φ(|w|α) where Φ is any
structured sparsity-inducing monotone and convex regularizer.

These non-convex penalties lead to intractable estimation problems, but approximate solutions can be
obtained by majorization-minimization algorithms, as suggested for e.g., in [13, 38, 5].
Lemma 3. Let Φ be any monotone convex function, then for all w0 ∈ Rd, Φ(|w|α) admits the following
majorizer Φ(|w|α) ≤ (1− α)Φ(|w0|α) + αΦ(|w0|α−1 ◦ |w|), which is tight at w0.

We consider the adaptive weight estimator (6) resulting from applying a 1-step majorization-minimization
to (5),

min
w∈Rd

1

2
‖y −Xw‖22 + λnΦ(|w0|α−1 ◦ |w|), (6)

where w0 is a
√
n-consistent estimator to w∗, that is converging to w∗ at rate 1/

√
n (typically obtained

from w0 = 1 or ordinary least-squares).

We study sufficient support recovery and estimation consistency conditions for (6) for general convex
monotone regularizers Φ. To that end, we assume that the linear model is well-specified, with y = Xw∗+ε,
where ε is a vector of i.i.d. random variables with mean 0 and variance σ2. Sufficient support recovery
and estimation consistency conditions for the (non-adaptive) estimator (5) have been established for
homogeneous convex envelopes of submodular functions, for p =∞ in [1] and for general p in [29], in
the high dimensional setting, and for latent group Lasso norm in [30], in the classical setting.

For simplicity, we consider in this paper the classical asymptotic regime in which the model generating the
data is of fixed finite dimension p while n→∞. We further assume that Q = XTX/n is positive definite
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and thus the minimizer of (6) is unique, we denote it by ŵ. The following Theorem extends the results
from [37] for the `1-norm.
Theorem 1. [Consistency and Support Recovery] Let Φ : Rd → R ∪ {∞} be a convex, normalized
(Φ(0) = 0) and monotone function and denote by J the true support J = supp(w∗). If J is strongly
stable with respect to Φ and λn satisfies λn√

n
→ 0, λn

nα/2
→ ∞, then the estimator (6) is consistent and

asymptotically normal, i.e., it satisfies asymptotic normality, i.e.:

√
n(ŵJ − w∗J)

d−→ N (0, σ2Q−1
JJ ), (7)

and
P (supp(ŵ) = J)→ 1. (8)

Hence, the adaptive estimator (6) is able to correctly identify any strongly stable support for any nomalized
monotone convex regularizer. In particular, we are interested in structure-inducing regularizers that
correspond to convex relaxations of combinatorial penalties.

4 Sparsity inducing properties of relaxations of combinatorial penal-
ties

In this Section, we study the sparsity inducing properties of Ωp and Θp. Both penalties are normalized
monotone convex functions to which the necessary and sufficient conditions identified in Sections 3.1
and 3.2 apply. We investigate how these conditions translate to conditions with respect to combinatorial
penalties. To that end we recall the concept of discrete stable sets [1], also referred to as flat or closed
sets [25]. We refer to such sets as weak discrete stable sets and introduce a stronger notion of discrete
stability.

4.1 Discrete stable supports

Definition 3 (Discrete stability). Given a monotone set function F : 2V → R ∪ {+∞}, a set J ⊆ V is
said to be weakly stable w.r.t F if ∀i ∈ Jc, F (J ∪ {i}) > F (J).
A set J ⊆ V is said to be strongly stable w.r.t F if ∀A ⊆ J, ∀i ∈ Jc, F (A ∪ {i}) > F (A).

It is interesting to note that for monotone submodular functions, weak and strong stability are equivalent.
In fact, this equivalence holds for a more general class of functions, we call ρ-submodular.
Definition 4. A function F : 2V → R is ρ-submodular iff ∃ρ ∈ (0, 1] s.t., ∀B ⊆ V,A ⊆ B, i ∈ Bc

ρ[F (B ∪ {i})− F (B)] ≤ F (A ∪ {i})− F (A)

The notion of ρ-submodularity is related to another notion of “approximate" submodularity, called weak
submodularity (c.f., [7, 11]). We show in the appendix that ρ-submodularity is a stronger condition than
weak submodularity.
Proposition 3. If F is a monotone function, F is ρ-submodular iff weak stability is equivalent to strong
stability.
Example 3. The range function range(A) = max(A)−min(A) + 1 is ρ-submodular with ρ = 1

d−1 .
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4.2 Relation between discrete and continuous stability

It is more natural to characterize which supports can be correctly estimated w.r.t the combinatorial penalty
itself, without going through its relaxations. This is indeed achieved by the notion of discrete strong
stability.
Proposition 4. Given any monotone set function F , all sets J ⊆ V strongly stable w.r.t to F are also
strongly stable w.r.t Ωp and Θp.

It follows then by Theorem 1 that discrete strong stability is a sufficient condition for correct estima-
tion.
Corollary 2. If Φ is equal to Ωp or Θp and supp(w∗) = J is strongly stable w.r.t F then the adaptive
estimator (6) is consistent and correctly recovers the support.

Furthermore, if F is ρ-submodular, then by Proposition 3, it is enough for supp(w∗) = J to be weakly
stable w.r.t F for Corollary 2 to hold. Conversely, Proposition 5 below shows that discrete strong stability
is also a necessary condition for continuous strong stability, in the case where p =∞ and F is equal to its
LCE.
Proposition 5. If F = F− and J is strongly stable w.r.t Ω∞, then J is strongly stable w.r.t F . Similarly,
for any monotone F , if J is strongly stable w.r.t Θ∞, then J is strongly stable w.r.t F .

Finally, in the special case of monotone submodular function, the following Corollary 3 and Proposition 4
demonstrate that all definitions of stability become equivalent.
Corollary 3. If F is a monotone submodular function and J is weakly stable w.r.t Ω∞ = Θ∞ then J is
weakly stable w.r.t F .

Corollary 3 recovers the result in [1] showing that weakly stable supports correspond to the set of allowed
sparsity patterns for monotone submodular functions.

4.3 Examples

Cardinality: The cardinality function and both its homogeneous and non-homogeneous relaxation, given
by the `1-norm, are strictly monotone, hence all sets are stable (strongly and weakly) w.r.t to them.

Range function: Since the range function is 1
d−1 -submodular, then its stable (strongly and weakly)

supports are exactly interval supports. Since the range function is monotone, then by Proposition 5, sets
strongly stable w.r.t its non-homogeneous convex envelope Θr

∞ are interval supports too. On the other
hand, its homogeneous convex envelope Ωr∞ = ‖ · ‖1 admits all sets as strongly stable.

Modified range function: The range function can be made to be a submodular function, if scaled
by a constant as suggested in [1], yielding the monotone submodular function Fmr(A) = d − 1 +
range(A),∀A 6= ∅ and Fmr(∅) = 0. Since Fmr is submodular, both homogeneous and non-homogeneous
`∞-convex envelopes are identical and correspond to the `1/`∞-group norm with groups defined as
G = {[1, k] : 1 ≤ k ≤ d} ∪ {[k, d] : 1 ≤ k ≤ d}. This norm was proposed to induce interval patterns by
[21] and shown to be the convex envelope of Fmr in [1].

5 Numerical Illustration

To illustrate the results presented in this paper, we consider the problem of estimating the support of a
parameter vector w ∈ Rd whose support is an interval. It is natural then to choose as combinatorial penalty
the range function whose stable supports are intervals. We aim to study the effect of adaptive weights, as
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Figure 2: (Left column) Best Hamming distance and (Right column) best least square error to the true
vector w∗, along the regularization path, averaged over 5 runs.

well as the effect the choice of homogeneous vs. non-homogeneous convex relaxation for regularization,
on the quality of support recovery.

As discussed in Section 4.3, the `∞-homogeneous convex envelope of the range is simply the `1-norm.
Its `∞-non-homogeneous convex envelope Θr

∞ can be computed using the formulation (3), where only
interval sets need to be considered in the constraints, leading to a quadratic number of constraints. We
also consider the `1/`∞-norm that corresponds to the convex relaxation of the modified range function
Fmr.

We consider a simple regression setting in which w∗ ∈ Rd is a constant signal whose support is an interval.
The choice of p = ∞ is well suited for constant valued signals. The design matrix X ∈ Rd×n is either
drawn as (1) an i.i.d Gaussian matrix with normalized columns, or (2) a correlated Gaussian matrix with
normalized columns, with the off-diagonal values of the covariance matrix set to a value ρ = 0.5. We
observe noisy linear measurements y = Xw∗ + ε, where the noise vector is i.i.d. with variance σ2, where
σ is varied between 10−5 and 1. We solve problem (6) with and without adaptive weights |w0|α−1, where
w0 is taken to be the least squares solution and α = 0.3.

We assess the estimators obtained through the different regularizers both in terms of support recovery and
in terms of estimation error. Figure 5 plots (in logscale) these two criteria against the noise level σ. We
plot the best achieved error on the regularization path, where the regularization parameter λ was varied
between 10−6 and 103. We set the parameters to d = 250, k = 100, n = 500.

We observe that the adaptive weight scheme helps in support recovery, especially in the correlated design
setting. Indeed, Lasso is only guaranteed to recover the support under an “irrepresentability condition"
[37]. This is satisfied with high probability only in the non-correlated design. On the other hand, adaptive
weights allow us to recover any strongly stable support, without any additional condition, as shown in
Theorem 1. The `1/`∞-norm performs poorly in this setup. In fact, the modified range function Fmr,
introduced a gap of d between non-empty sets and the empty set. This leads to the undersirable behavior,
already documented in [1, 21] of adding all the variables in one step, as opposed to gradually. Adaptive
weights seem to correct for this effect, as seen by the significant improvement in performance. Finally,
note that choosing the “tighter" convex relaxation leads to better support recovery. Indeed, Θr

∞ performs
better than `1-norm in all setups.
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6 Conclusion

We presented an analysis of homogeneous and non-homogeneous convex relaxations of `p-regularized
combinatorial penalties. Our results show that structure encoded by submodular priors can be equally
well expressed by both relaxations, while non-homogeneous relaxation is able to express the structure of
general monotone set functions. We also identified necessary and sufficient stability conditions on the
supports to be correctly identified. We proposed an adaptive weight scheme that is guaranteed to recover
supports that satify the necessary stability conditions, with no other additional assumption.
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7 Appendix

7.1 Variational forms of convex envelopes (Proof of lemma 2 and Remark 1)

In this section, we recall the different variational forms of the homogeneous convex envelope derived in
[29] and derive similar variational forms for the non-homogeneous convex envelope, which includes the
ones stated in lemma 2). These variational forms will be needed in some of our proofs below.
Lemma 4. The homogeneous convex envelope Ωp of Fp admits the following variational forms.

Ω∞(w) = min
α
{
∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ |w|, αS ≥ 0}. (9)

Ωp(w) = min
v
{
∑
S⊆V

F (S)1/q‖vS‖p :
∑
S⊆V

vS = |w|, supp(vS) ⊆ S}. (10)

= max
κ∈Rd+

d∑
i=1

κ
1/q
i |wi| s.t. κ(A) ≤ F (A),∀A ⊆ V. (11)

= inf
η∈Rd+

1

p

d∑
j=1

|wj |p

ηp−1
j

+
1

q
Ω∞(η). (12)

The non-homogeneous convex envelope of a set function F , over the unit `∞-ball was derived in [10]. The
following proposition generalizes it to any p ∈ [1,∞) and derive variational forms that parallel the ones
known for the homogeneous envelope.
Lemma 5. The non-homogeneous convex envelope Θp of Fp admits the following variational forms.

Θ∞(w) = inf{
∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ |w|,
∑
S⊆V

αS = 1, αS ≥ 0}. (13)

Θp(w) = max
κ∈Rd+

d∑
j=1

ψj(κj , wj) + min
S⊆V

F (S)− κ(S), ∀w ∈ dom(Θ∞(w)). (14)

= inf
η∈[0,1]d

1

p

d∑
j=1

|wj |p

ηp−1
j

+
1

q
f−(η), (15)

where we define

ψj(κj , wj) :=

{
κ

1/q
j |wj | if |wj | ≤ κ1/p

j
1
p |wj |

p + 1
qκj otherwise.

In [10], it was shown that the non-homogeneous convex envelope of a set function F , over the unit `∞-ball
is given by infs∈[0,1]d{f(s) : s ≥ |w|} where f is any proper (dom(f) 6= ∅) lower semi-continuous (l.s.c.)
convex extension of F (c.f., Lemma 1 [10]). A natural choice for f is the convex closure of F , which
corresponds to the tightest convex extension of F on [0, 1]d.
Definition 5 (Convex Closure; c.f., [9, Def. 3.1]). Given a set function F : 2V → R, the convex closure
f− : [0, 1]d → R is the point-wise largest convex function from [0, 1]d to R that always lowerbounds f .
Definition 6 (Equivalent definition of Convex Closure; c.f., [33, Def. 1] and [9, Def. 3.2]). Given any set
function f : {0, 1}n → R, the convex closure of f can also be defined ∀w ∈ [0, 1]n as:

f−(w) = min{
∑
S⊆V

αSF (S) : w =
∑
S⊆V

αS1S ,
∑
S⊆V

αS = 1, αS ≥ 0}
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It is interesting to note that f−(w) = fL(w) where fL is Lovász extension iff F is a submodular function
[33]. For set functions that take∞ value, we extend definition 6 by replacing the min by inf , to have
f−(1S) = +∞ iff F (S) = +∞.
Proposition 6 (c.f., [9, Prop. 3.23] ). The minimum values of a proper set function F and its convex
closure f− are equal, i.e.,

min
w∈[0,1]d

f−(w) = min
S⊆V

F (S)

If S is a minimizer of f(S), then 1S is a minimizer of f−. Moreover, if w is a minimizer of f−, then every
set in the support of α, where f−(w) =

∑
S⊆V αSF (S), is a minimizer of F .

Proof. First note that, {0, 1}d ⊆ [0, 1]d implies that f−(w∗) ≤ F (S∗). On the other hand, f−(w∗) =∑
S⊆V α

∗
SF (S) ≥

∑
S⊆V α

∗
SF (S∗) = F (S∗). The rest of the proposition follows directly.

Given the choice of the extension f = f−, the variational form (13) of Θ∞ given in lemma 5 follows
directly from definition 6 and proposition 6, as shown in the following corollary.
Corollary 4. Given any set function F : 2V → R ∪ {+∞} and its corresponding convex closure f−, the
convex envelope of F (supp(w)) over the unit `∞-ball is given by

Θ∞(w) = inf{
∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ |w|,
∑
S⊆V

αS = 1, αS ≥ 0}.

= inf
v
{
∑
S⊆V

F (S)‖vS‖∞ :
∑
S⊆V

vS = |w|,
∑
S⊆V

‖vS‖∞ = 1, supp(vS) ⊆ S}.

Proof. f− satisfies the first 2 assumptions required in Lemma 1 of [10], namely, f− is a lower semi-
continuous convex extension of F which satisfies

max
S⊆V

m(S)− F (S) = max
w∈[0,1]d

mTw − f−(w),∀m ∈ Rd+

To see this note that mTw∗− f−(w∗) =
∑
S⊆V α

∗
S(mT1S −F (S)) ≥

∑
S⊆V α

∗
S(mT1S∗ −F (S∗)) =

m(S∗)− F (S∗). The other inequality is trivial. The corollary then follows directly from Lemma 1 in [10]
and (extended) definition 6.

Note that dom(Θ∞) = {w : ∃s ∈ [0, 1]d ∩ dom(f−), s ≥ |w|}. Note also that Θ∞ is monotone even if
F is not. On the other hand, if F is monotone, then f− is monotone on [0, 1]d and Θ∞(w) = f−(|w|).
Then the proof of remark 1 follows, since if F is a monotone submodular function and fL is its Lovász
extension, then Θ∞(w) = f−(|w|) = fL(|w|) = Ω∞(w),∀w ∈ [−1, 1]d, where the last equality was
shown in [1].

Next, we derive the convex relaxation of Fp for a general p ∈ [1,∞).
Proposition 7. Given any set function F : 2V → R ∪ {+∞} and its corresponding convex closure f−,
the convex envelope of Fµλ(w) = µF (supp(w)) + λ‖w‖pp is given by

Θp(w) = inf
η∈[0,1]d

λ

d∑
j=1

|wj |p

ηp−1
j

+ µf−(η).

Note that dom(Θp) = {w|∃η ∈ [0, 1]d s.t supp(w) ⊆ supp(η), η ∈ dom(f−)} ⊇ dom(Θ∞).
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Proof. Given any proper l.s.c. convex extension f of F , we have: First for the case where p = 1:

F ∗µλ(s) = sup
w∈Rn

wT s− µF (supp(w))− λ‖w‖1

= sup
η∈{0,1}d

sup
1supp(w)=η

sign(w)=sign(s)

|w|T (|s| − λ1)− µF (η)

= ι{|s|≤λ1}(s)− inf
η∈{0,1}d

µF (η).

Hence F ∗∗µλ(w) = λ‖w‖1 + infη∈{0,1}d λF (η). For the case p ∈ (1,∞).

F ∗µλ(s) = sup
w∈Rd

wT s− µF (supp(w))− λ‖w‖pp

= sup
η∈{0,1}d

sup
1supp(w)=η

sign(w)=sign(s)

|w|T |s| − λ‖w‖pp − µF (η)

= sup
η∈{0,1}d

λ(p− 1)

(λp)q
ηT |s|q − µF (η) (|si| = λp|x∗i |p−1,∀ηi 6= 0)

= sup
η∈[0,1]d

λ(p− 1)

(λp)q
ηT |s|q − µf−(η).

We denote λ̂ = λ(p−1)
(λp)q .

F ∗∗µλ(w) = sup
s∈Rd

wT s− F ∗µλ(s)

= sup
s∈Rd

min
η∈[0,1]d

sTw − λ̂ηT |s|q + µf−(η)

?
= inf
η∈[0,1]d

sup
s∈Rp

sign(s)=sign(w)

|s|T |w| − λ̂ηT |s|q + µf−(η)

= inf
η∈[0,1]d

λ(|w|p)T η1−p + µf−(η),

where the last equality holds since |wi| = λ̂ηiq|s∗i |q−1,∀ηi 6= 0, otherwise s∗i = 0 if wi = 0 and ∞
otherwise. (?) holds by Sion’s minimax theorem [32, Corollary 3.3]. Note then that the minimizer η∗

(if it exists) satisfies supp(w) ⊆ supp(η∗). Finally, note that if we take the limit as p→∞, we recover
Θ∞ = infs∈[0,1]d{f−(s) : s ≥ |x|}.

The variational form (15) given in lemma 5 follows from proposition 7 for the choice µ = 1
q , λ = 1

p .

The following proposition derives the variational form (14) for p =∞.
Proposition 8. Given any set function F : 2V → R ∪ {+∞}, and its corresponding convex closure f−,
Θ∞ can be written ∀w ∈ dom(Θ∞) as

Θ∞(w) = max
κ∈Rd+

{κT |w|+ min
S⊆V

F (S)− κ(S)}

= max
κ∈Rd+

{κT |w|+ min
S⊆supp(w)

F (S)− κ(S)} (if F is monotone)

Similarly ∀w ∈ dom(f−) we can write

f−(w) = max
κ∈Rd
{κT |w|+ min

S⊆V
F (S)− κ(S)}

= Θ∞(w) = max
κ∈Rd+

{κTw + min
S⊆supp(x)

F (S)− κ(S)} (if F is monotone)
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Proof. ∀w ∈ dom(Θ∞), strong duality holds by Slater’s condition, hence

Θ∞(w) = min
α
{
∑
S⊆V

αSF (S) :
∑
S⊆V

αS1S ≥ |w|,
∑
S⊆V

αS = 1, αS ≥ 0}.

= min
α≥0

max
ρ∈R,κ∈Rd+

{
∑
S⊆V

αSF (S) + κT (|w| −
∑
S⊆V

αS1S) + ρ(1−
∑
S⊆V

αS)}.

= max
ρ∈R,κ∈Rd+

min
α≥0
{κT |w|+

∑
S⊆V

αS(F (S)− κT1S − ρ) + ρ}.

= max
ρ∈R,κ∈Rd+

{κT |w|+ ρ : F (S) ≥ κT1S + ρ)}.

= max
κ∈Rd+

{κT |w|+ min
S⊆V

F (S)− κ(S)}.

Let J = supp(|w|) then κ∗Jc = 0. Then for monotone functions F (S)− κ∗(S) ≥ F (S ∩ J)− κ∗(S), so
we can restrict the minimum to S ⊆ J . The same proof holds for f−, with the Lagrange multiplier κ ∈ Rd
not constrained to be positive.

The following Corollary derives the variational form (14) for p ∈ [1,∞].
Corollary 5. Given any monotone set function F : 2V → R ∪ {+∞}, Θp can be written ∀w ∈ dom(Θp)
as

Θp(w) = max
κ∈Rd+

d∑
j=1

ψj(κj , xj) + min
S⊆V

F (S)− κ(S).

where

ψj(κj , wj) :=

{
κ

1/q
j |wj | if |wj | ≤ κ1/p

j
1
p |wj |

p + 1
qκj otherwise

Proof. By Propositions 7 and 8, we have ∀w ∈ dom(Θp), i.e., ∃η ∈ [0, 1]d, s.t supp(w) ⊆ supp(η), η ∈
dom(Θ∞),

Θp(w) = inf
η∈[0,1]d

1

p

d∑
j=1

|wj |p

ηp−1
j

+
1

q
Θ∞(η)

= inf
η∈[0,1]d

1

p

d∑
j=1

|wj |p

ηp−1
j

+
1

q
max

ρ∈R,κ∈Rd+
{κT η + ρ : F (S) ≥ κT1S + ρ}.

?
= max
ρ∈R,κ∈Rd+

inf
η∈[0,1]d

{1

p

d∑
j=1

|wj |p

ηp−1
j

+
1

q
κT η + ρ : F (S) ≥ κT1S + ρ}.

(?) holds by Sion’s minimax theorem [32, Corollary 3.3]. Note also that for κi ≥ 0,

inf
ηj∈[0,1]

1

p

|wj |p

ηp−1
j

+
1

q
κjηj =

{
κ

1/q
j |wj | if |wj | ≤ κ1/p

j
1
p |wj |

p + 1
qκj otherwise

:= ψj(κj , wj)

where the infimum is zero if wj = 0. Otherwise, the minimum is achieved at η∗j = min{ |wj |
κ
1/p
j

, 1} (if

κj = 0, η∗j = 1). Hence,

Θp(w) = max
κ∈Rd+

d∑
j=1

ψj(κj , wj) + min
S⊆V

F (S)− κ(S).
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7.2 Necessary conditions for support recovery (Proof of Proposition 2)

Before proving Proposition 2, we need the following technical Lemma.
Lemma 6. Given J ⊂ V and a vector w s.t supp(w) ⊆ J , if Φ is not decomposable at w w.r.t J , then
∃i ∈ Jc such that the i-th component of all subgradients at w is zero; 0 = [∂Φ(w)]i.

Proof. If Φ is not decomposable atw and 0 6= [∂Φ(w)]i,∀i ∈ Jc, then ∀MJ > 0,∃∆ 6= 0, supp(∆) ⊆ Jc
s.t., Φ(w + ∆) < Φ(w) +MJ‖∆‖∞. In particular, we can choose MJ = infi∈Jc,v∈∂Φ(wJ ),vi 6=0 |vi| > 0,
if the inequality holds for some ∆ 6= 0, then let imax denote the index where |∆imax | = ‖∆‖∞. Then
given any v ∈ ∂Φ(w), we have

Φ(w + ‖∆‖∞1imax) ≤ Φ(w + ∆) < Φ(w) +MJ‖∆‖∞
≤ Φ(w) + 〈v, ‖∆‖∞1imaxsign(vimax)〉
≤ Φ(w + ‖∆‖∞1imax)

which leads to a contradiction.

Proposition 2. The minimizer ŵ of minw∈Rd L(w)− z>w + λΦ(w), where L is a strongly-convex and
smooth loss function and z ∈ Rd has a continuous density, has a weakly stable support w.r.t. Φ, with
probability one.

Proof. Given any weakly unstable J , we show that the set of z such that supp(ŵ) = J has measure zero.
By optimality conditions z −∇L(ŵ) ∈ ∂Φ(ŵ). Hence, given z, z′ and the corresponding solutions ŵ, ŵ′

such that supp(ŵ) ⊆ J, supp(ŵ′) ⊆ J , denote by µ > 0 the strong convexity constant of L. We have by
convexity of Φ:(

(z −∇L(ŵ)− (z′ −∇L(ŵ′))
)>

(ŵ − ŵ′) ≥ 0

(z − z′)>(ŵ − ŵ′J) ≥ (∇L(ŵ)−∇L(ŵ′))>(ŵ − ŵ′)
(z − z′)>(ŵ − ŵ′) ≥ µ‖ŵ − ŵ′‖22

1

µ
‖z − z′‖2 ≥ ‖ŵ − ŵ′‖2

Thus ŵ is a deterministic Lipschitz-continuous function of z. If Φ is not decomposable at ŵ with
respect to J , we know by lemma 6 that there exists an i ∈ Jc such that 0 = [∂Φ(ŵ)]i, this implies that
zi −∇L(ŵ)i = 0 and thus zi is a Lipschitz-continuous function of z, which can only happen with zero
measure.

7.3 Sufficient conditions for support recovery (Proof of Lemma 3 and Theorem
1)

Lemma 3. Let Φ be any monotone convex function, then for all w0 ∈ Rd, Φ(|w|α) admits the following
majorizer Φ(|w|α) ≤ (1− α)Φ(|w0|α) + αΦ(|w0|α−1 ◦ |w|), which is tight at w0.

Proof. The function w → wα is concave on R+ \ {0}, hence

|wj |α ≤ |w0
j |α + α|w0

j |α−1(|wj | − |wj |0)

|wj |α ≤ (1− α)|w0
j |α + α|w0

j |α−1|wj |
Φ(|w|α) ≤ Φ((1− α)|w0|α + α|w0|α−1 ◦ |wj |) (by monotonicity)

Φ(|w|α) ≤ (1− α)Φ(|w0|α) + αΦ(|w0|α−1 ◦ |w|) (by convexity)
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If wj = 0 for any j, the upper bound goes to infinity and hence it still holds.

Before proceeding to the proof of theorem 1, we will need the following lemma.
Lemma 7. Given any normalized (Φ(0) = 0) convex function, we have for all w ∈ Rd:

tΦ(w) ≥ Φ(tw),∀t ≤ 1

tΦ(w) ≤ Φ(tw),∀t ≥ 1.

Proof. The first inequality holds since ∀t ≤ 1,Φ(tw + (1− t)0) ≤ tΦ(w) + (1− t)Φ(0) = tΦ(w). The
second inequality follows directly from the first one, since ∀t ≥ 1,Φ(w) = Φ(1

t (tw)) ≤ 1
tΦ(tw).

Theorem 1. [Consistency and Support Recovery] Let Φ : Rd → R ∪ {∞} be a convex, normalized
(Φ(0) = 0) and monotone function and denote by J the true support J = supp(w∗). If J is strongly
stable with respect to Φ and λn satisfies λn√

n
→ 0, λn

nα/2
→ ∞, then the estimator (6) is consistent and

asymptotically normal, i.e., it satisfies asymptotic normality, i.e.:
√
n(ŵJ − w∗J)

d−→ N (0, σ2Q−1
JJ ), (7)

and
P (supp(ŵ) = J)→ 1. (8)

Proof. We will follow the proof in [37]. We write ŵ = w∗+ û√
n

and Φn(u) = 1
2n‖y−X(w∗+ u√

n
)‖22 +

λnΦ(c ◦ |w∗ + u√
n
|), where c = |w0|α−1. Then û = arg minu∈Rd Φn(u). Let Vn(u) = Φn(u)− Φn(0),

then
Vn(u) =

1

2
uTQu− εT Xu√

n
+ λn

(
Φ(c ◦ |w∗ +

u√
n
|)− Φ(c ◦ |w∗|)

)
Since w0 is a

√
n-consistent estimator to w∗, then

√
nw0

Jc = Op(1) and n
1−α
2 c−1

Jc = Op(1). Since
λn
nα/2

→∞, by stability of J , we have

λn
(
Φ(c ◦ |w∗ +

u√
n
|)− Φ(c ◦ |w∗|)

)
= λn

(
Φ(cJ ◦ |w∗J +

uJ√
n
|+ cJc ◦

|uJc |√
n

)− Φ(cJ ◦ |w∗J |)
)

≥ λn
(
Φ(cJ ◦ |w∗J +

uJ√
n
|) +MJ‖cJc ◦

|uJc |√
n
‖∞ − Φ(cJ ◦ |w∗J |)

)
= λn

(
Φ(cJ ◦ |w∗J +

uJ√
n
|)− Φ(cJ ◦ |w∗J |)

)
+MJ‖λnn−α/2n

α−1
2 cJc ◦ |uJc |‖∞{

p−→∞ if uJc 6= 0

= λn
(
Φ(cJ ◦ |w∗J + uJ√

n
|)− Φ(cJ ◦ |w∗J |)

)
otherwise.

(16)

Since Φ is convex and normalized, then by lemma 7, it follows that:

λn
(
Φ(cJ ◦ |w∗J +

uJ√
n
|)− Φ(cJ ◦ |w∗J |)

)
≤ λn

2

(
Φ(2cJ ◦ |w∗J |) + Φ(2cJ ◦

|uJ |√
n

)
)
− λnΦ(cJ ◦ |w∗J |)

(17)

≤ Φ(cJ ◦
λn|uJ |√

n
) (if λn ≥ 2)

Since w0 is a
√
n-consistent estimator to w∗, then cJ = |w0

J |α−1 p−→ |w∗J |α−1. Since λn√
n
→ 0, we have

by Slutsky’s theorem, ΦJ(cJ ◦ λn|uJ |√
n

)
p−→ 0. Hence by (17),

λn(ΦJ(cJ ◦ |w∗J +
uJ√
n
|)− ΦJ(cJ ◦ |w∗J |))

p−→ 0. (18)
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Hence by (16) and (18),

λn
(
Φ(c ◦ |w∗ +

u√
n
|)− Φ(c ◦ |w∗|)

) p−→

{
0 if uJc = 0

∞ Otherwise
. (19)

By CLT, X√
n
ε
d−→W ∼ N (0, σ2Q), it follows then that Vn(u)

d−→ V (u), where

V (u) =

{
1
2u

T
JQJJuJ −WT

J uJ if uJc = 0

∞ Otherwise
.

Vn is convex and the unique minimum of V is uJ = Q−1
JJWJ , uJc = 0, hence by epi-convergence results

[c.f., [37]]

ûJ
d−→ Q−1

JJWJ ∼ N (0, σ2Q−1
JJ ), ûJc

d−→ 0. (20)

Since û =
√
n(ŵ − w∗), then it follows from (21) that

ŵJ
p−→ w∗J , ŵJc

p−→ 0 (21)

Hence, P (supp(ŵ) ⊇ J) → 1 and it is sufficient to show that P (supp(ŵ) ⊆ J) → 1 to complete the
proof.

For that denote Ĵ = supp(ŵ) and let’s consider the event Ĵ \ J 6= ∅. By optimality conditions, we know
that

−XT
Ĵ\J(Xŵ − y) ∈ λn[∂Φ(c ◦ ·)(ŵ)]Ĵ\J

Note, that −
XT
Ĵ\J (Xŵ−y)
√
n

=
XT
Ĵ\JX(ŵ−w∗)
√
n

−
XT
Ĵ\Jε√
n

. By CLT,
XT
Ĵ\Jε√
n

d−→W ∼ N (0, σ2QĴ\J,Ĵ\J) and by

(21) ŵ − w∗ p−→ 0 then −
XT
Ĵ\J (Xŵ−y)
√
n

= Op(1).

On the other hand,
λncĴ\J√

n
= λnn

1−α
2 n

α−1
2 cĴ\J →∞, hence

λncĴ\J√
n

c−1

Ĵ\J
vĴ\J →∞, ∀v ∈ ∂Φ(c◦ ·)(ŵ),

since c−1

Ĵ\J
vĴ\J = Op(1)−1. To see this, let w′J = ŵJ and 0 elsewhere. Note that by definition of the

subdifferential and the stability assumption on J , there must exists MJ > 0 s.t

Φ(c ◦ w′) ≥ Φ(c ◦ ŵ) + 〈vĴ\J ,−ŵĴ\J〉

Φ(c ◦ w′) ≥ Φ(c ◦ w′) +MJ‖cĴ\J ◦ ŵĴ\J‖∞ − ‖c
−1

Ĵ\J
◦ vĴ\J‖1‖cĴ\J ◦ ŵĴ\J‖∞

‖c−1

Ĵ\J
◦ vĴ\J‖1 ≥MJ

We deduce then P (supp(ŵ) ⊆ J) = 1− P (Ĵ \ J 6= ∅) = 1− P (optimality condition holds)→ 1.

7.4 Discrete stability (Proof of Proposition 3 and relation to weak submodular-
ity)

Proposition 3. If F is a monotone function, F is ρ-submodular iff weak stability is equivalent to strong
stability.
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Proof. If F is ρ-submodular and J is weakly stable, then ∀A ⊆ J, ∀i ∈ Jc, 0 < ρ[F (J ∪ {i})−F (J)] ≤
F (J ∪ {i}) − F (J), i.e., J is strongly stable w.r.t. F . If F is such that any weakly stable set is
also strongly stable, then if F is not ρ-submodular, then ∀ρ ∈ (0, 1] there must exists a set B ⊆ V , s.t.,
∃A ⊆ B, i ∈ Bc, s.t., ρ[F (B∪{i})−F (B)] > F (A∪{i})−F (A) ≥ 0. Hence, F (B∪{i})−F (B) > 0,
i.e., B is weakly stable and thus it is also strongly stable and we must have F (A ∪ {i}) − F (A) > 0.
Choosing then in particular, ρ = minB⊆V minA⊆B,i∈Bc

F (A∪{i})−F (A)
F (B∪{i})−F (B) ∈ (0, 1], leads to a contradiction;

minA⊆B,i∈Bc F (A ∪ {i})− F (A) ≥ ρ[F (B ∪ {i})− F (B)] > F (A ∪ {i})− F (A).

We show that ρ-submodularity is a stronger condition than weak submodularity. First, we recall the
definition of weak submodular functions.
Definition 7 (Weak Submodularity (c.f., [7, 11])). A function F is weakly submodular if ∀S,L, S ∩ L =
∅, F (L ∪ S)− F (L) > 0,

γS,L =

∑
i∈S F (L ∪ {i})− F (L)

F (L ∪ S)− F (L)
> 0

Proposition 9. If F is ρ-submodular then F is weakly submodular. But the converse is not true.

Proof. If F is ρ-submodular then ∀S,L, S ∩ L = ∅, F (L ∪ S)− F (L) > 0, let S = {i1, i2, · · · , ir}

F (L ∪ S)− F (L) =
r∑

k=1

F (L ∪ {i1, · · · , ik})− F (L ∪ {i1, · · · , ik−1})

≤
r∑

k=1

1

ρ
(F (L ∪ {ik})− F (L))

⇒ γS,T = ρ > 0.

We show that the converse is not true by giving a counter-example. Consider the set cover function,
with the ground set V = {1, 2, 3} and the groups G1 = {1, 2}, G2 = {2, 3}, then it’s easy to see that
γS,L > 0,∀S,L, S∩L = ∅, but F is not ρ-submodular for any ρ ∈ (0, 1] since 0 = F ({2, 3})−F ({2}) <
ρ(F ({1, 2, 3})− F ({2, 3})).

7.5 Relation between discrete and continuous stability (Proof of Propositions 4
and 5, and Corollary 3)

First, we present a useful simple lemma, which provides an equivalent definition of decomposability for
monotone function.
Lemma 8. Given w ∈ Rd, J ⊆ J, supp(w) = J , if Φ is a monotone function, then Φ is decomposable at
w w.r.t J iff ∃MJ > 0,∀δ > 0, i ∈ Jc, s.t,

Φ(w + δ1i) ≥ Φ(w) +MJδ.

Proof. By definition 2, ∃MJ > 0,∀∆ ∈ Rd, supp(∆) ⊆ Jc,

Φ(w + ∆) ≥ Φ(w) +MJ‖∆‖∞.

in particular this must hold for ∆ = δ1i. On the other hand, if the inequality hold for all δ1i, then given
any ∆ s.t. supp(∆) ⊆ Jc let imax be the index where ∆imax

= ‖∆‖∞ and let δ = ‖∆‖∞, then

Φ(w + ∆) ≥ Φ(w + δimax
) ≥ Φ(w) +MJδ = Φ(w) +MJ‖∆‖∞.
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Proposition 4. Given any monotone set function F , all sets J ⊆ V strongly stable w.r.t to F are also
strongly stable w.r.t Ωp and Θp.

Proof. We make use of the variational form (11). Given a set J stable w.r.t to F and supp(w) ⊆ J ,
let κ∗ ∈ arg maxκ∈Rd+{

∑
i∈J κ

1/q
i |wi| : κ(A) ≤ F (A),∀A ⊆ V }, then Ω(w) = |wJ |T (κ∗J)1/q. Note

that ∀A ⊆ J, F (A ∪ i) > F (A), by definition 3. Hence, ∀i ∈ Jc, we can define κ′ ∈ Rd+ s.t.,
κ′J = κ∗J , κ′(J∪i)c = 0 and κ′i = minA⊆J F (A ∪ i) − F (A) > 0. Note that κ′ is feasible, since
∀A ⊆ J, κ′(A) = κ∗(A) ≤ F (A) and κ′(A+ i) = κ∗(A) +κ′i ≤ F (A) +F (A∪ i)−F (A) = F (A∪ i).
For any other set κ′(A) = κ′(A∩(J+i)) ≤ F (A∩(J+i)) ≤ F (A), by monotonicity. It follows then that
Ω(w + δ1i) = maxκ∈Rd+{

∑d
i∈J∪i κ

1/q
i |wi| : κ(A) ≤ F (A),∀A ⊆ V } ≥ |wJ |T (κ∗J)1/q + δ(κ′i)

1/q ≥
Ω(w) + δM , with M = (κ′i)

1/q > 0. The proposition then follows by lemma 8.

Similarly, the proof for Θp follows in a similar fashion. We make use of the variational form (14). Given
a set J stable w.r.t to F and supp(w) ⊆ J , first note that this implicity implies that F (J) < +∞
and hence Θp(w) < +∞. Let κ∗ ∈ arg maxκ∈Rd+

∑d
j=1 ψj(κj , wj) + minS⊆V F (S) − κ(S) and

S∗ ∈ arg minS⊆J F (S)− κ∗(S). Note that ∀S ⊆ J, ∀i ∈ Jc, F (S ∪ i) > F (S), by definition 3. Hence,
∀i ∈ Jc, we can define κ′ ∈ Rd+ s.t., κ′J = κ∗J , κ′(J∪i)c = 0 and κ′i = minS⊆J F (S ∪ i) − F (S) > 0.
Note that ∀S ⊆ J, F (S) − κ′(S) = F (S) − κ∗(S) ≥ F (S∗) − κ∗(S∗) and F (S + i) − κ′(S + i) =
F (S + i) − κ∗(S) − κ′i ≥ F (S + i) − κ∗(S) − F (S + i) + F (S) ≥ F (S∗) − κ∗(S∗). Note also that
ψi(κ

′
i, δ) = (κ′i)

1/qδ if δ ≤ (κ′i)
1/p, and ψi(κ′i, δ) = 1

pδ
p + 1

qκ
′
i = δ( 1

pδ
p−1 + 1

qκ
′
iδ
−1) ≥ δ(κ′i)

1/q

otherwise. It follows then that Θp(w+δ1i) ≥
∑
j∈J ψj(κj , wj)+(κ′i)

1/qδ+minS⊆J∪i F (S)−κ′(S) ≥∑
j∈J ψj(κj , wj) + (κ′i)

1/qδ + minS⊆J F (S) − κ∗(S) = Θp(w) + δM with M = (κ′i)
1/q > 0. The

proposition then follows by lemma 8.

Proposition 5. If F = F− and J is strongly stable w.r.t Ω∞, then J is strongly stable w.r.t F . Similarly,
for any monotone F , if J is strongly stable w.r.t Θ∞, then J is strongly stable w.r.t F .

Proof. F (A+ i) = Ω∞(1A + 1i) = Θ∞(1A + 1i) > Ω∞(1A) = Θ∞(1A) = F (A),∀A ⊆ J.

Corollary 3. If F is a monotone submodular function and J is weakly stable w.r.t Ω∞ = Θ∞ then J is
weakly stable w.r.t F .

Proof. If F is a monotone submodular function, then Ω∞(w) = Θ∞(w) = fL(|w|). If J is not weakly
stable w.r.t F , then ∃i ∈ Jc s.t., F (J ∪ {i}) = F (J). Thus, given any w, supp(w) = J , choosing
0 < δ < mini∈J |wi|, result in fL(|w|+ δ1i) = fL(|w|), which contradicts the weak stability of J w.r.t
to Ω∞ = Θ∞.
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