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In this supplementary material, we analyze the influ-
ence of our regularization term encouraging sharp fusion
in Eq. 4, provide running time for our algorithm, and
show additional qualitative results on the Human3.6m [3],
HumanEva-I [6], KTH Multiview Football II [1] and Leeds
Sports Pose [4] datasets.

Effect of the regularization. Below, we analyze the ef-
fect of the regularization term that encourages sharp fusion
in Eq. 4. In the absence of the regularization term, the net-
work mixes the data and fusion streams without necessarily
fusing them at a specific layer. As discussed in the main
paper, this corresponds to a model with many active param-
eters. Therefore it is prone to overfitting and computation-
ally less efficient at test-time. In Table 1, we compare the
results of our approach with and without this regularization
term. For the latter, we do not parametrize the weights of
the network with a sigmoid function and do not constrain
the network to have a sharp fusion. The results confirm that
encouraging sharp fusion yields both better accuracy and
faster prediction.

Method 3D Pose Error ~ Runtime
Without regularization 68.30 0.013
With regularization 60.17 0.006

Table 1. Quantitative results of our fusion approach with and with-
out the regularization term encouraging sharp fusion. These exper-
iments were carried out on the Eating action class of Human3.6m.
3D pose error is computed as the average Euclidean distance (in
milimeters) between the predicted and ground-truth 3D joint posi-
tions. Runtime denotes the computational time spent, in sec/frame,
during testing for the fusion network with and without the regu-
larization term. With the regularization term, inactive layers are
pruned after training, which yields a more efficient network for
test-time prediction.

Running time. We carried out our experiments on a ma-
chine equipped with an Intel Xeon CPU E5-2680 and an
NVIDIA TITAN X Pascal GPU. It takes 90 ms to compute

2D joint location confidence maps and 6 ms to predict 3D
pose with our fusion network. Therefore, the total runtime
of our method is 0.096 sec/frame (over 10 fps), which com-
pares favorably with the recent model-based methods rang-
ing from 0.04 fpsto 1 fps [7, 5, &].

Additional qualitative results. We provide additional
qualitative results for the KTH Multiview Football II [1],
Human3.6m [3] and HumanEva [6] datasets in Figs. 1, 2
and 3, respectively. Finally, we demonstrate that our regres-
sor trained on the recently released synthetic dataset of [2]
generalizes well to real images obtained from the Leeds
Sports Pose dataset [4] in Fig. 4. Additional qualitative re-
sults can be found in the accompanying videos.
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Figure 1. Pose estimation results on KTH Multiview Football II. (a, e) Input images. (b, f) 2D joint location confidence maps. (c, g)
Recovered pose. (d, h) Ground truth. Best viewed in color.
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Figure 2. Pose estimation results on Human3.6m. (a, e) Input images. (b, f) 2D joint location confidence maps. (¢, g) Recovered pose. (d,
h) Ground truth. Note that our method can recover the 3D pose in these challenging scenarios, which involve significant amounts of self

occlusion and orientation ambiguity. Best viewed in color.
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Figure 3. Pose estimation results on HumanEva-I. (a, e) Input images. (b, f) 2D joint location confidence maps. (¢, g) Recovered pose. (d,
h) Ground truth. Best viewed in color.



Figure 4. Pose estimation results on LSP. We trained our network on the recently released synthetic dataset of [2] and tested it on the LSP
dataset. The quality of the 3D pose predictions demonstrates the generalization of our method. Best viewed in color.



