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Scaling laws in ecology, intended both as functional relationships
among ecologically relevant quantities and the probability distri-
butions that characterize their occurrence, have long attracted the
interest of empiricists and theoreticians. Empirical evidence exists
of power laws associated with the number of species inhabiting
an ecosystem, their abundances, and traits. Although their func-
tional form appears to be ubiquitous, empirical scaling exponents
vary with ecosystem type and resource supply rate. The idea that
ecological scaling laws are linked has been entertained before,
but the full extent of macroecological pattern covariations, the
role of the constraints imposed by finite resource supply, and a
comprehensive empirical verification are still unexplored. Here,
we propose a theoretical scaling framework that predicts the
linkages of several macroecological patterns related to species’
abundances and body sizes. We show that such a framework
is consistent with the stationary-state statistics of a broad class
of resource-limited community dynamics models, regardless of
parameterization and model assumptions. We verify predicted
theoretical covariations by contrasting empirical data and provide
testable hypotheses for yet unexplored patterns. We thus place
the observed variability of ecological scaling exponents into a
coherent statistical framework where patterns in ecology embed
constrained fluctuations.

macroecology | species–area relation | Kleiber’s law | allometry |
power law

Aprototypical example of the ecological scaling law is the
species–area relationship (SAR) on which island biogeog-

raphy is based (1). It states that the number of species S inhab-
iting disjoint ecosystems increases as a power of their area; i.e.,
S ∝ Az , where z is the SAR scaling exponent. The widespread
interest in scaling laws (2–8) lies in their intrinsic predictive
power, e.g., the use of SAR to forecast how many species might
go extinct if the available habitat shrinks or is fragmented into
smaller unconnected parts. Precise estimates of the scaling expo-
nents’ values are thus crucial. Empirical evidence, however,
shows that they vary considerably across ecosystems (9–11), sug-
gesting that exponents of scaling ecological laws are far from uni-
versal, although the power-law form proves remarkably robust
(Fig. 1).

Scaling patterns in ecology have mostly been studied within
independent ecosystems, leading to canonical estimates of scal-
ing exponents which may not be simultaneously achievable in
a single ecosystem due to extant and consistency constraints.
Although ecological scaling laws have historically been treated
as disconnected, it is instructive to show by a simple exam-
ple that they are functionally related. Consider a community
hosted within a resource-limited ecosystem of area A whose i th
species is characterized by abundance ni and typical body mass
mi . Empirical evidence suggests that the following patterns can
be described at least approximately by power laws, disregard-
ing possible cutoffs at large sizes: (i) the community size spec-
trum (7, 9, 12, 13), s(m)∝m−η , i.e., the fraction of individu-
als of body mass m regardless of species; (ii) the distribution

of species’ typical body masses (5, 14) P(m)∝m−δ; and (iii)
the average abundance of a species with typical body mass m ,
〈n|m〉∝m−γ [Damuth’s law (3, 15) or local size-density rela-
tionship (7)]. A back-of-the-envelope calculation suggests that
the total number of individuals of mass m (regardless of species)
is the product of the number of species with typical mass m and
the average abundance of a species with typical mass m [i.e.,
s(m)∝P(m)〈n|m,A〉]. Thus, the scaling exponents must satisfy
the consistency relationship

η = δ + γ, [1]

which proves that exponents measured in the same ecosystem are
not independent, unlike exponents measured in disparate ones.
This example and a few others identified in earlier works (13,
16–18) and in the context of MaxEnt (19) highlight the need for
a framework that comprehensively accounts for linking relation-
ships among macroecological scaling laws.

Results
Here, we show that supply limitation imposes precise constraints
on macroecological patterns, along with consistency relation-
ships such as Eq. 1. Assuming that individual resource consump-
tion (metabolic) rates under field conditions, b, relate to body
mass m via Kleiber’s law (2, 20, 21), i.e., b = cmα (with α≤ 1,
c constant), we argue that the constraint placed on the total
community consumption rate B by the finiteness of available
resources translates into constraints on sustainable body sizes
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Fig. 1. Empirical evidence of scaling ecological patterns in different
ecosystems: forests (green) and terrestrial (yellow) and aquatic ecosystems
(magenta). Regression lines are linear least-squares fits of log-transformed
data. (A) Kleiber’s law: metabolic rates in carbon dioxide micromoles per
second (forests), watts (terrestrial ecosystems), and picograms of carbon per
cell per day (aquatic ecosystems). Size is in kilograms (forests and terrestrial
ecosystems) and in cubic micrometers (aquatic ecosystems). (B) Damuth’s
law (m̄ is a species’ mean mass). (C) SAR. (D) Community size spectrum:
size in grams (forests and terrestrial ecosystems) and cubic micrometers
(aquatic ecosystems). See SI Appendix, section 2 for scaling exponents esti-
mates/errors.

and abundances. To show this, we move from a scaling ansatz
for the joint probability P(n,m|A)dndm of finding a species of
abundance n ∈ [n,n + dn] and typical mass m ∈ [m,m + dm]
within an ecosystem of area A that postulates correlated fluctu-
ations in mass and abundance for any species. Such a joint dis-
tribution, which we term the “fundamental distribution,” must
be viable in the sense that its marginals must reproduce the
empirical scaling observed in the field. Our conclusion (Materials
and Methods and SI Appendix) is that a general, yet analytically
tractable to some extent, form for P(n,m|A) is

P(n,m|A) = (δ − 1)m−δn−1G

(
n

〈n|m,A〉

)
, [2]

where

P(m|A) = (δ − 1)m−δ [3]

is the probability density of finding a species of typical mass m ∈
[m,m + dm],

P(n|m,A) = n−1G

(
n

〈n|m,A〉

)
[4]

is the probability density of finding a species of abundance n ∈
[n,n + dn] among those of mass m , and

〈n|m,A〉 = m−γAΦh

(
m

Aλ

)
[5]

is the average abundance of a species of typical mass m within an
ecosystem of area A. The properties of G and h are described in
Materials and Methods and SI Appendix, section 1.3.

Eqs. 2–5, through their marginals and moments, give rise to
the empirically observed set of macroecological scaling laws (SI
Appendix, section 1): namely, the SAR, S ∝Az ; Damuth’s law,
〈n|m,A〉∝AΦm−γ , where the A dependency is an addition
to the original relationship proposed by Damuth; the commu-
nity size-spectrum s(m|A)∝m−η; the species’ mass distribution

P(m|A)∝m−δ; the scaling of the total biomass, M ∝Aµ; the
scaling of the total abundance (22), N ∝Aν ; the scaling of the
largest organism’s mass (8, 23), mmax ∝Aξ; the relative species’
abundance (RSA) (24), defined as the probability of finding a
species with abundance n; and Taylor’s law (25, 26), linking mean
and variance of a species’ abundance as 〈n2〉−〈n〉2 ∝ 〈n〉β . Note
that the SAR and the scaling of N and M with A are predictions
(i.e., not assumptions) of our framework which follow from the
imposed constraint on shared resources.

In addition to Eq. 1, the scaling framework predicts the follow-
ing exact relationships among scaling exponents,

z = 1− Φ−max{0, λ(1 + α− η)} [6]

µ = 1 + max{0, λ(2− η)} −max{0, λ(1 + α− η)} [7]

ν = 1−max{0, λ(1 + α− η)} [8]

ξ =
z

δ − 1
, [9]

where λ accounts for a finite-size effect in Damuth’s law:
〈n|m,A〉=AΦm−γh(m/Aλ), with limx→0h(x ) = const and
limx→∞h(x ) = 0 (Materials and Methods). The exponent β does
not appear because its value is found to be independent from
other exponents (26) (Materials and Methods). Only 5 of the 10
observable exponents are thus independent. Eq. 6 implies, in any
ecosystem where z > 0, as observed for forests (27), mammals
(8), and lizards (28), that Φ< 1 and therefore species’ densi-
ties decrease with increasing area. Eq. 9 is compatible with the
linking relationship derived in Southwood et al. (16), which is
shown here to be one component of a broader set of linking rela-
tionships (SI Appendix, section 1.9). Also, area-independent con-
straints to the maximum size of an organism may lead to a break-
down of Eq. 9 at large A (SI Appendix, section 1.8.3).

To corroborate the validity of our framework, we investigated
a broad class of stochastic models for the dynamics of a com-
munity limited by resource supply which is assumed to be pro-
portional to the ecosystem area (Materials and Methods and SI
Appendix, section 3). Despite major changes in the speciation
dynamics and regardless of parameterization, all models are
compatible with the finite-size scaling structure of P(n,m|A)
and therefore reproduce both the macroecological laws reported
above and their covariations.

The empirical verification of all of the relationships 1 and 6–9
would require the simultaneous measurement within the same
ecosystem of all scaling exponents. Unfortunately, such a com-
prehensive dataset does not seem to exist to date. Therefore, we
searched for empirical data that would allow verifying, at least
partially, Eqs. 1 and 6–9. We found that Eq. 1 is verified within
the errors in the tropical forest datasets of Barro Colorado Island
(BCI) (Fig. 2) (29) and of the Luquillo forest (30) (Materials and
Methods and SI Appendix, section 2.2.1). Eq. 6 is verified within
the errors in a dataset of lizard population densities on 64 islands
worldwide (LIZ) (28) (SI Appendix, section 2.2.2). Finally, Eq. 9
is verified within one SE in a dataset of mammal body sizes in sev-
eral islands in Sunda Shelf (SSI) (8) (Materials and Methods and
SI Appendix, section 2.2.3). All of the empirical tests performed
are summarized in SI Appendix, Table S11.

Discussion
The theoretical framework proposed here rationalizes the ob-
served variability of ecological exponents across ecosystems.
Jointly with empirical evidence, our framework supports the
tenet that scaling exponents may vary across ecosystems but must
satisfy consistency relationships that result in exact covariations
of ecological patterns. When applying scaling laws, for example
in conservation, care should be exerted not to combine expo-
nents measured in different settings, which may not satisfy the
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Fig. 2. Empirical evidence of scaling patterns in BCI (29), seventh census.
(A) Community size spectrum, i.e., the probability distribution of individuals’
mass regardless of species (red dots). (B) Distribution of species mean masses
P(m̄) (red dots). (C) Damuth’s law, i.e., the average abundance 〈n|m̄, A〉
of a species of mean mass m̄ (red dots), where each point is the average
abundance over bins of logarithmic size. Dashed black lines show power
functions with exponents as in SI Appendix, Table S3. Details on expo-
nents’ estimates are reported in Materials and Methods and SI Appendix,
section 2.2.1.

relationships 1 and 6–9, leading to misled predictions for unmea-
sured patterns.

Our framework adopts the minimum set of hypotheses allow-
ing us to reproduce widespread macroecological patterns found
in empirical data, without compromising analytical tractability.
Such analytical tractability is important in this context because
it highlights the relationships among macroecological patterns in
simple terms, i.e., via algebraic relationships among their scal-
ing exponents. However, there may be empirical examples where
some of the patterns considered here deviate from pure power
laws. The framework presented here already comprises cutoffs
in the community size spectrum and in Damuth’s law, allow-
ing deviation from pure power-law behavior at large body sizes,
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and can be generalized to describe more complex ecological set-
tings. For example, one can account for the fact that individ-
uals’ body sizes within the same species are characterized by
intraspecific distributions (31). Such generalization of the frame-
work bears no modification to the linking relationships among
macroecological laws, unless intraspecific size distributions are
heavy tailed, in which case corrections apply (SI Appendix, sec-
tions 1.8.4 and 1.8.5). One can also account for curvatures in
Kleiber’s law (32–35), which are found to induce curvatures in
the SAR (SI Appendix, section 1.8.1). A cutoff or a non–power-
law form for P(m|A) can also be considered (SI Appendix, sec-
tion 1.8.6). Finally, the assumption that all individuals share
the same resources would imply that our results apply to single
trophic levels. However, we show in SI Appendix, section 1.8.2
how our framework can be extended to describe multitrophic sys-
tems. In the most general scenario in which the dependence of
P(m|A) on m and 〈n|m,A〉 on m and A cannot be expressed
as in Eqs. 3 and 5 (which, however, are compatible with sev-
eral empirical case studies) or described by the generalizations
treated in SI Appendix, section 1.8.6, one would have to rely on
numerical methods to derive the covariations between macro-
ecological patterns, following the same route adopted in our the-
oretical investigation. We anticipate that generalizations of Eqs.
1 and 6–9 would hold in this scenario, although they would be
expressed as integral equations in terms of the probability distri-
butions introduced above. The next step in the study of covary-
ing ecological patterns is the identification of the mechanisms
that determine the values of the independent exponents. For
example, theoretical evidence (36) suggests that the value of
z is affected by topological constraints posed by the ecological
substrate.

Materials and Methods
The Fundamental Distribution P(n, m|A). We consider an ecosystem of area A.
We assume that the minimum viable mass for an organism is m0 > 0 inde-
pendent of A, so that P(n, m|A) is zero for m<m0. We measure mass and
area in units of m0 and of a reference unit area a0, so that m and A are
dimensionless. To comply with empirical evidence (5, 14), we assume that
P(m|A) is a power function of m (Eq. 3): P(m|A) = (δ − 1)m−δ , where δ > 1
ensures integrability (SI Appendix, section 1.8.6). For P(n|m, A), in accor-
dance with the community dynamics models and with the empirical obser-
vation of Damuth’s law, we posit (Eq. 4) P(n|m, A) = n−1G (n/〈n|m, A〉),
where G(x) is such that

∫∞
0 xjG(x)dx<∞ for j =−1, 0, 1 and (Eq. 5)

〈n|m, A〉= m−γAΦh(m/Aλ) is the average abundance of a species of typical
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mass m in an ecosystem of area A. The properties of G ensure that∫∞
0 dn n P(n|m, A) = 〈n|m, A〉; that is, Damuth’s law is reproduced. The fac-

tor n−1 in Eq. 4 is discussed in SI Appendix. The function h(x) describes
an A-dependent cutoff on the abundances as observed in simulations of
stochastic models of community dynamics (e.g., Fig. 3C). h(x) is such that
h(x) = o(x−2+δ+γ ) as x→∞ to ensure convergence of the moments we
are interested in and limx→0h(x) = h0 constant to yield a power-law regime
before the cutoff. Eqs. 2–5 constitute our ansatz on the scaling form of
P(n, m|A).

Derivation of Scaling Ecological Laws. Eq. 2 can be used to compute the scal-
ing of the (j,k)th moment with A exactly (see SI Appendix, section 1.6 for
the detailed computation) as

Ij, k =

∫ ∞
1

∫ ∞
0

njmkP(n, m|A)dndm ∝ AjΦ+max{0, λ(1+k−δ−jγ)}
. [10]

Scaling laws are derived from Eq. 10 as follows:

i) SAR. The total number of species S is linked to the area A via the con-
straint B ∝ A (SI Appendix, sections 1.1 and 1.2). The total metabolic rate
of the community is

B ∝ S I1, α = S
∫ ∞

1

∫ ∞
0

nmαP(n, m|A)dndm, [11]

where we have used Kleiber’s law. The hypothesis B ∝ A (SI Appendix, sec-
tions 1.1 and 1.2) leads to

S ∝ Az, with z = 1− Φ−max{0, λ(1 + α− δ − γ)}, [12]

which corresponds to Eq. 6. Note that, if z > 0, Eq. 12 predicts that species’
densities decrease with increasing A (recall that 〈n|m, A〉 ∝ AΦ with Φ < 1).
This can be understood through a heuristic argument: If N ∝ Aν with ν ≤ 1
and S ∝ Az, it follows that the average abundance per species scales sub-
linearly as 〈n|A〉= N/S ∝ Aν−z. Such scaling of 〈n|A〉 with A is retained by
the average abundance conditional on body size, 〈n|m, A〉, and thus back-
of-the-envelope calculations suggest Φ = ν− z, which coincides with Eqs. 6
and 12, given Eq. 8. This result is a prediction of our framework and implies
that species’ densities decrease with ecosystem area. Note also that we refer
here to the so-called island SAR (37), obtained by counting species inhab-
iting disjoint patches of land (e.g., islands, lakes, or, in general, areas sepa-
rated by environmental barriers from the surroundings which we can think
of as closed ecosystems), rather than to nested SARs where areas are sub-
patches of a single larger domain (38, 39). The two SARs are quite different,
as the nested SAR is related to the spatial distribution of individuals, while
the island SAR stems from complex eco-evolutionary dynamics shaping the
community.

ii) Damuth’s law is traditionally intended as the scaling of the average den-
sity of a species, 〈n|m, A〉/A, with its typical mass m. However, as dis-
cussed in i, the density of a species depends on the inhabited area, as
found for example in our empirical analyses of the LIZ dataset (28) (SI
Appendix, section 2.2.4). Thus, we consider here a generalized version
of Damuth’s law, relating the average abundance 〈n|m, A〉 to the typical
mass of the species and to the area of the ecosystem A. Indeed, in our
framework the average abundance of a species of characteristic mass m
in an ecosystem of area A is

〈n|m, A〉 =

∫ ∞
0

nP(n|m, A)dn =

∫ ∞
0

G
[

nmγ

AΦ

1

h (m/Aλ)

]
dn

= AΦm−γh
(

m

Aλ

)∫ ∞
0

G (x) dx ∝ AΦm−γh
(

m

Aλ

)
, [13]

where the properties of G ensure the convergence of the integral. The aver-
age abundance of a species of mass m, thus, has a power-law dependence
on m and A, as found in empirical data, and an A-dependent cutoff at large
masses provided by the function h, as shown by our community dynamics
models (Fig. 3C).

iii) Scaling of total biomass. The total biomass can be computed as

M = S〈nm〉 = S I11 ∝ A1+max{0, λ(2−δ−γ)}−max{0, λ(1+α−δ−γ)}, [14]

yielding Eq. 7 of the main text.

iv) Scaling of total number of individuals. The total number of individuals
N in the ecosystem is given by

N = S〈n〉 = S I10 ∝ A1−max{0, λ(1+α−δ−γ)}, [15]

yielding Eq. 8 of the main text.

v) Community size spectrum. The size spectrum s(m|A) is the probability
that a randomly sampled individual (regardless of its species) has mass in
[m, m + dm] and is therefore equal to

s(m|A) =
S

N

∫ ∞
0

nP(n, m|A) dn

∝ A−max{0, λ(1−δ−γ)}m−δ−γh
(

m

Aλ

)
= m−δ−γh

(
m

Aλ

)
, [16]

where we have used Eqs. 12 and 15, δ > 1, and the properties of G ensure
the convergence of the integral. The size spectrum has a power-law depen-
dence on m and we can identify η = γ + δ, corresponding to Eq. 1. Further-
more, s(m|A) displays a cutoff at m ∝ Aλ.

vi) Scaling of the maximum body mass. The maximum body mass observed
in an ecosystem is mmax such that S

∫∞
mmax

P(m|A)dm = 1, that is, the
maximum mass extracted in S samples drawn from P(m|A) (discussion in
SI Appendix, section 1.9). Substituting S ∝ Az we find

∫∞
mmax

x−δdx ∝

A−z, leading to

mmax ∝ A
z
δ−1 , [17]

which implies z = ξ(δ − 1), i.e., Eq. 9.

vii) Taylor’s law. Its exponent is given by

β =
log 〈n2〉m
log 〈n〉m

= 2 + O
(

1

log(A)

)
. [18]

In the large area limit β = 2, which is the value typically found empir-
ically (26). Note that this computation of Taylor’s law corresponds to the
so-called “spatial Taylor’s law” and not to its temporal counterpart (26), in
which case empirical estimates typically report values of β ∈ [1, 2]. Devi-
ations from β= 2 may arise from the logarithmic correction in Eq. 18 and
from the fact that the scaling of the variance (which is the second cumulant)
and the second moment may differ (26).

viii) Relative species abundance. It is the distribution of species’ abundances

P(n|A) =

∫ ∞
1

P(n, m|A)dm. [19]

There has been much interest in its analytical form. In our theoretical frame-
work, PRSA cannot be computed in the general case where the exact form of
h and G is unknown. SI Appendix, section 1.7 reports an approximate ana-
lytical computation for a particular choice of the two functions satisfying
the required properties, yielding a RSA with a tail well approximated by a
lognormal.

Data Analysis.
Eq. 1. We verified Eq. 1 on censuses of BCI (29, 40, 41) (Fig. 2) and of the
Luquillo forest (30) (SI Appendix, Fig. S4). Tree diameters were converted
into mass, using an established allometric relationship between mass and
diameter (42, 43), m ∝ d8/3. For each species, we used the mean mass of
its individuals as our estimate of the typical species’ mass m̄. To account for
possible deviations from the power-law behavior at small and large values
of m̄ we performed a maximum-likelihood estimation (SI Appendix, section
2.2.1) of δ and η by considering only the species with mass larger than a
lower cutoff and by accounting for possible finite-size effects at large m̄ in
the form of a cutoff function (SI Appendix, section 2.2.1). The estimation
of the exponent γ of Damuth’s law in tropical forest datasets is affected by
the sampling protocol and a correction is required to avoid sampling bias
(SI Appendix, section 2.2.1). In our analysis, we used the fifth, sixth, and sev-
enth censuses of BCI and the five censuses of the Luquillo forest available
online in the Center for Tropical Forest Science dataset collection. All cen-
suses satisfy the relationship Eq. 1 within the errors. Whereas BCI censuses
appear very similar to each other (and therefore also the exponent values
estimated in different censuses; SI Appendix, Table S3), the Luquillo forest
appears to be more dynamic (we note that the forest was hit by a major
hurricane between the second and third censuses), with values of γ decreas-
ing in time after 1998 (second census; SI Appendix, Table S4). Because the
estimate of δ remains constant, our framework would predict via Eq. 1 that
η would also decrease in time, and this is found to be true. Finally, we note
that both the BCI and the Luquillo datasets reject the linking relationship
η = δ predicted earlier by a scaling framework (17) which is not capable of
reproducing Damuth’s law (SI Appendix, Fig. S2).
Eq. 6. Eq. 6 is verified within one SE in a dataset gathering population densi-
ties of several species of lizards on 64 islands worldwide (LIZ) (28), with areas
ranging from 10−1 km2 to 105 km2, where Φ = 0.78±0.08, z = 0.17±0.01
(mean ± SE, R2 = 0.46), and max{0, λ(1 + α− η)} = 0 because α ≤ 1 and
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η = δ + γ = 1.98 ± 0.07 (mean ± SE) (SI Appendix, Table S5 and Fig. S8).
Details of the fitting procedures and further discussion of the results can be
found in SI Appendix, section 2.2.2.
Eq. 9. To test the validity of Eq. 9 we used a dataset of mammal species
presence/absence data on several islands in Sunda Shelf (SSI) (8), covering
more than four orders of magnitude in island areas. The SAR and the scal-
ing of the maximum body mass with the area were fitted by linear least-
squares regression on log-transformed data, while P(m|A) was fitted by
maximum likelihood (44). Scaling exponents in this dataset are reported in
SI Appendix, Table S6. Eq. 9 is verified in the SSI dataset within the errors,
with z = 0.23 ± 0.02 (mean ± SE, R2 = 0.93), δ = 1.6 ± 0.2 (mean ± SE),
and ξ = 0.49± 0.09 (mean ± SE, R2 = 0.76).

Stochastic Models of Community Dynamics. We developed several commu-
nity dynamics models accounting for the constraint on resource supply
rate and incorporating empirically observed allometric relationships for the
dependence of vital rates on individuals’ body sizes (4). In all our models,
the birth and death rates at which an individual of a species of mass mi and
abundance ni is born or dies are, respectively,

ui = m−θi ni ,

vi =

[
v0 + (1− v0)c

∑
j njm

α
j

R

]
m−θi ni ,

[20]

and thus the per-capita growth rate of species i is
ui−vi

ni
= (1 − v0)[

1− c
R
∑

j njm
α
j

]
m−θi , which is equal to zero when c

∑
j njm

α
j = R ∝ A,

where R is the resource supply rate. At the stationary state, therefore, the
total rate of resource consumption of the community fluctuates around R
but the ecological dynamics continue and determine species’ abundances
through the constraints imposed by resources and by physiological rates.
Speciation was implemented in several ways (SI Appendix, section 3), to test
the robustness of our results to changes in the models’ assumptions. We
investigated models where we fixed the total number of species S ∝ Az (SI
Appendix, section 3.1) and models where 〈S〉 ∝ Az is an emergent property
of the community dynamics (SI Appendix, section 3.2). By performing data
collapses (Fig. 3) of P(m|A), P(n|m, A), and 〈n|m, A〉 calculated using model
data, we verified that they all comply with Eqs. 2–5. We note that the scaling
exponents in Eqs. 1 and 6–9 depend on model specifications, but the scaling
properties of the fundamental distribution P(n, m|A) specified in Eqs. 2–5
always hold.

Basic Community Dynamics Model. In this section we describe the sim-
plest model of community dynamics that reproduces the set of empiri-
cally observed macroecological laws reported in the main text. We refer to
such model as the basic model. Variations of the basic model assumptions,
the exploration of parameters’ space, and other models are discussed in SI
Appendix, section 3.

In the basic model, each species speciates with probability w per unit
time (i.e., species-specific speciation events are Poisson distributed with rate
w). At each speciation event, a species is selected at random and a random
fraction of individuals from such species is assigned to a new species j. The
mass of the new species is obtained from the mass of the parent species
as mj = max{m0; qmi}, where q is extracted from a lognormal distribu-
tion with mean and variance equal to unity so that the descendant has, on
average, the same mass of the parent species. The maximum in the expres-
sion for mj ensures that the bound on the minimum mass m0 that a species
can attain is satisfied. The mass of the parent species is left unchanged.
Species’ masses thus undergo a process that is a combination of a multi-
plicative bounded process, known to produce power laws (45, 46), and of
the birth/death dynamics.

The number of species S is set to a constant value proportional to the
area: S = 10Az. Although the number of species in natural ecosystems may
fluctuate in time, fixing it in the basic model allows us to vary the scaling
exponent z to effectively account for relevant ecological and evolutionary
processes not included in the model which may affect the value of z in nat-
ural ecosystems (SI Appendix, section 3.4). Note that fixing the number of
entities in the model (here, S) is a common approximation in many related
fields, such as population genetics [e.g., the Wright–Fisher model (47) with
fixed population size N] and neutral and metacommunity theory (39). To
maintain S constant, we imposed that each extinction event causes a spe-
ciation event. Vice versa, at each speciation event, extinction is enforced
on a species selected at random with probability inversely proportional to
its abundance (i.e., more abundant species are less likely to go extinct) and
proportional to the power −θ of its mass, which accounts for the fact that

ecological rates are faster for smaller species. A variation on this extinction
rule is discussed in SI Appendix, section 3.1.2. Models where 〈S〉∝ Az is an
emergent random variable are discussed in SI Appendix, section 3.2.

The total number of individuals N =
∑S

i=1 ni and the total biomass M =∑S
i=1 nimi are not fixed in the basic model (or in the other models discussed

in SI Appendix, section 3), but fluctuate in time around mean values that
depend on the models’ parameters and, most importantly, on the ecosystem
area A. In other words, the mean biomass and the mean total abundance
are given by a balance between birth, death, and speciation events, with
the constraint of resource supply limitation set by the ecosystem area A. The
model thus allows us to study the scaling of the total number of individuals
and the total biomass as functions of A.

The distribution P(m|A) exhibits power-law behavior in m [3] (Fig. 3A).
The size spectrum is also a power law across several orders of magnitude
(Fig. 3B). The curves 〈n|m, A〉 exhibit power-law behavior in m and A with
a cutoff at large m (Fig. 3C). Data collapse (Fig. 3D) shows that its func-
tional form is the one given by Eq. 5. In fact, the curves mγA−Φ〈n|m, A〉
plotted vs. m/Aλ collapse onto the same curve for different values of A.
Moreover, Fig. 3F shows that the curves nP(n|m, A) vs. n/〈n|m, A〉 collapse
onto the same curve for different values of m and A, implying that Eq. 4
holds. The mean total biomass 〈M〉, the mean total abundance 〈N〉, and
the mean maximum mass 〈mmax〉 were measured for each value of A as the
means across sampling times and are power functions of A. Parameter val-
ues used to generate the simulation data reported in Fig. 3 are reported in
SI Appendix, section 3.1.1. The stochastic model was simulated via a Gille-
spie tau-leap algorithm with estimated midpoint technique (48), with time
step τ = 1.

Because the ansatz for the fundamental distribution P(n, m|A) given by
Eqs. 2–5 holds, the linking relationships among exponents (Eqs. 1 and 6–9)
are satisfied at steady state by the basic model and by the other models
studied in SI Appendix, section 3. The linking relationship η = δ+ γ is satis-
fied by the mean values of the exponents, and the density scatterplot com-
puted counting the occurrences of the pairs (η, δ + γ) during the temporal
evolution of the community dynamics model (Fig. 3E, shown are simulation
data for the largest area value) is peaked along the 1:1 line. Thus, Eq. 1
is satisfied, on average, during the temporal evolution of the community
dynamics model.

A broad range of empirical evidence (SI Appendix, section 2) shows that
ecological patterns are compatible with the predictions of our framework,
which also agrees with heuristic calculations as shown in the main text
and above. Thus, we hypothesize that our scaling framework describes not
only the basic community dynamics model described here and the models
described in SI Appendix, section 3, but also more generally any ecosystem
subject to the constraint of finite-resource supply rate. Further discussions
on the specificity of our community dynamics models and the generality of
our scaling framework are provided in SI Appendix, sections 3.3 and 3.4.
The basic model is thus arguably the simplest of a class of models that
share the same scaling properties of the fundamental distribution, which
in turn imply the same covariations of ecological patterns. This is akin to
the concept of universality class (49, 50), applied to the scaling form rather
than to the exponents of the joint probability distribution and of ecological
scaling laws.

Code Availability. Numerical implementations of the models will be made
available upon request.
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