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The SI is organized as follows. Section 1 gives details con-
cerning several theoretical results which underlie the derivation
of the macroecological scaling linkages and generalizations of
our scaling framework. Section 2 addresses the compatibility of
our framework with empirical evidence of scaling macroecolog-
ical laws. Section 3 provides details and results of community
dynamics models which corroborate the validity and general
applicability of our scaling framework.

1 Mathematical scaling framework

The choice of variables suitable to describe an ecological system
is not obvious. In our case, the choice of n, m and A is the one
that better fits the scope of accounting for resource constraints.
Individual metabolic rate is assumed to depend on body mass
as b = cmα, with α ≤ 1. Thus, m and n determine the
metabolic rate of a species, and by summing over all species
one obtains the total ecosystem metabolic rate B, i.e. its
resource consumption rate. By assuming that the resources
supply rate R is proportional to the ecosystem area A and
that the total resource consumption rate (total metabolism B)
is constrained by R, we have B ∝ A (SI section 1.1 and 1.2).
The three variables n, m and A thus allow us to enforce the
constraint of finite resources supply by imposing B ∝ R ∝ A.

1.1 Proportionality of resources supply rate and ecosystem
area. In our scaling framework and community dynamics mod-
els, we fix the resource-supply per unit area to unity, that is
R/A = r = 1. The constant r determines the type of ecosys-
tem described by the model (endowed with abundant or scarce
resources, which could be interpreted e.g. as a tropical forest
or a desert). R will also affect the total number of species
S via the proportionality of the total consumption rate to
the resources supply rate B = cSI1,α = rA, where c is the
proportionality constant that appears in Kleiber’s law. Thus,
the number of species S varies linearly with r: S = r/c ·A/I1,α.
Similarly, the total biomass and total abundance vary linearly
with r given that M = SI1,1 and N = SI1,0. The power-law
scaling behavior for these quantities is valid at fixed values
of r, that is, for ecosystems of similar type, for example a
set of islands, lakes or forests sharing the same climate and
environmental conditions.

We expect R ∝ A to hold strictly for a community com-
posed of a single trophic level, such as plants competing for
light in a forest. In a generalized case, say describing multi-
trophic levels, resources (and thus the total metabolism) might
scale non-linearly with the area R ∝ Aκ for certain trophic
levels. For example, in a two-trophic levels community, the
predator resource is the prey biomass, which might scale
non-linearly with A (this case is discussed in section 1.8.2).

However, if the prey biomass scales linearly with the area,
which is most often the case (see section 1.8.2 and Eq. 14 of
the main text), then κ = 1.

1.2 Proportionality of total metabolic rate and resources sup-
ply rate. In the derivation of macrecological laws, we assume
that the total metabolism B of a community (i.e. the total
resource consumption rate) is proportional to the resource
supply rate R. Such assumption is motivated by the following
reasoning. Assume B ∝ Rι. The total metabolism per unit
resources is thus B/R ∝ Rι−1. If ι = 1, B/R is constant in
the limit of large A. If ι > 1, the total metabolism per unit
resources would diverge in the limit of large A, which would
not be sustainable. If ι < 1, conversely, the total metabolism
per unit resources would tend to zero in the limit of large A,
so that resources would be completely unexploited. We expect
that, at stationarity, the total metabolism of the community
will be the maximum sustainable one, which corresponds to a
linear dependence of the total metabolic rate on the resources
supply rate R.

1.3 Ansatz for the joint probability distribution of mass
and abundance. Consider an ecosystem of area A, and let
p(n,m|A)dm be the joint probability of finding a species
of abundance n ∈ N (including n = 0) and typical mass
m ∈ [m,m+dm]. The joint probability distribution p(n,m|A)
differs from P (n,m|A) presented in the main text, as described
in this section. We assume that the minimum viable mass
for an organism is m0 > 0 which is independent of A, so that
p(n,m|A) is null for m < m0. We measure mass and area
in units of m0 and a reference area a0, so that m and A are
dimensionless.

For a fixed ecosystem area A and in the limit of infinite
mass, the probability that a species has abundance n > 0
must go to zero, i.e. limm→∞ p(n > 0|m,A) = 0. Because
p(n > 0|m,A) = 1 − p(n = 0|m,A), one has limm→∞ p(n =
0|m,A) = 1, which implies that for large m there is a finite
probability that n = 0, i.e. p(n = 0|m,A) > 0. Therefore,
when approximating p(n,m|A) with a continuous (in both n
and m) probability density∗, care must be taken to separate
the value n = 0 from n > 0. Such procedure is analogous to the

∗ i.e., forn > 0, p(n,m|A)dndm is the probability that a species has abundance in (n, n+dn)
and mass in (m,m + dm).
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separation of the lowest energy state from the excited ones in
the computation of the energy distribution of a Bose-Einstein
condensate (1). For example, the normalization condition for
p(n,m|A) reads:

1 =
∫ ∞

1
p(0,m|A)dm+

∫ ∞
1

∫ ∞
0

p(n,m|A)dndm, [S1]

where we evaluated the contribution of n = 0 separately. We
indicate with p(m|A) and p(n|m,A) the distributions derived
from p(n,m|A) via the identity p(n,m|A) = p(m|A)p(n|m,A).
When estimating the joint probability distribution of mass
and abundance in real datasets or in simulations of community
dynamics models, one only observes species that exist, i.e.
one evaluates probability distributions conditional on n > 0.
Thus, we indicate with P (n,m|A) = p(n,m|A,n > 0) the
joint probability distribution that one can estimate in real
datasets or in community dynamics models simulations. Cor-
respondingly, we indicate with P (m|A) = p(m|A,n > 0) and
P (n|m,A) = p(n|m,A, n > 0) the distributions derived from
P (n,m|A). The relationship between P (m|A) and p(m|A) can
be derived using Bayes’ theorem as follows:

P (m|A) = p(m|A,n > 0) = p(m|A)p(n > 0|m,A)
p(n > 0|A)

= p(m|A)1− p(n = 0|m,A)
1− p(n = 0|A) ,

[S2]

which can be recast as:

p(m|A) = p(n = 0,m|A) + [1− p(n = 0|A)]P (m|A), [S3]

where we have used the fact that p(n = 0|m,A) = p(n =
0,m|A)/p(m|A) to express p(n = 0|m,A) in terms of p(n =
0,m|A). P (n|m,A), in turn, is p(n|m,A) renormalized for
n > 0, that is:

P (n|m,A) = p(n|m,A)∑
n>0 p(n|m,A)

= p(n|m,A)
1− p(n = 0|m,A) . [S4]

Eqs. S2 and S4 allow us to express p(n,m|A) in terms of the
experimentally or numerically observable distributions P (m|A)
and P (n|m,A) as:

p(n,m|A) =p(m|A)p(n|m,A)
= [1− p(n = 0|A)]P (m|A)P (n|m,A)
= [1− p(n = 0|A)]P (n,m|A),

[S5]

which holds for all n > 0. Note that P (n,m|A) is simply
p(n,m|A) renormalized for n > 0. Moments of P (n,m|A) are
computed as:

Ij,k =
∫ ∞

1

∫ ∞
0

njmkP (n,m|A)dndm, [S6]

whereas moments of p(n,m|A) are computed as:

ij,k =0j
∫ ∞

1
mkp(0,m|A)dm+

∫ ∞
1

∫ ∞
0

njmkp(n,m|A)dndm

=0j
∫ ∞

1
mkp(0,m|A)dm+ [1− p(n = 0|A)]

×
∫ ∞

1

∫ ∞
0

njmkP (n,m|A)dndm

=0j
∫ ∞

1
mkp(0,m|A)dm+ [1− p(n = 0|A)] Ij,k,

[S7]

and therefore for j > 0 one has: ij,k/Ij,k = [1− p(n = 0|A)].
Because 1− p(n = 0|A) is limited, ij,k and Ij,k have the same
scaling with A.

Supported by the characterization of the stationary state of
our stochastic community dynamics models (Section 3) and by
the empirical scaling behavior of ecological patterns (Section
2), we put forward an ansatz for the analytical form of the
joint probability distribution of species abundances and masses
P (n,m|A). Thus, for P (m|A), P (n|m,A) and 〈n|m,A〉 we
assume:

P (m|A) = (δ − 1)m−δ [S8]

P (n|m,A) = Ĝ

(
n

〈n|m,A〉

)
g(m,A), [S9]

where:
〈n|m,A〉 = m−γAΦh

(
m

Aλ

)
. [S10]

The term g(m,A) allows further dependencies on A and m
required for normalization and is characterized in the next
section. The functions Ĝ(x) and h(x) have the properties:∫ ∞

0
xjĜ(x)dx <∞ j = 0, 1, 2 [S11a]

h(x) = o
(
x−2+δ+γ) as x→∞ [S11b]

lim
x→0

h(x) = h0, [S11c]

where h0 is a positive constant. The rate of the decay of h
and Ĝ for large arguments is such as to allow convergence of
the (j, k)-th moment of P (n,m|A) for j = 0, 1, 2 and k ∈ [0, 1].
These are all the moments needed to derive ecological scaling
laws (see Methods). An example of functions satisfying the
above requests is h(x) = Ĝ(x) = e−x.

1.4 Normalization of P (n, m|A). Here we derive the nor-
malization condition for P (n,m|A). The marginal distri-
bution P (m|A) given in Eq. S8 is already normalized, as∫∞

1 dm(δ − 1)m−δ = 1. It remains to impose normalization
on P (n|m,A):

1 =
∫ ∞

0
P (n|m,A)dn = g(m,A)

∫ ∞
0

Ĝ

(
n

〈n|m,A〉

)
dn

= g(m,A)〈n|m,A〉
∫ ∞

0
Ĝ(x)dx.

[S12]

Thus, Eq. S12 reads:

1 = g(m,A)〈n|m,A〉, [S13]

where we have imposed
∫∞

0 Ĝ(x)dx = 1 without loss of gener-
ality. Therefore:

P (n|m,A) = 1
〈n|m,A〉 Ĝ

(
n

〈n|m,A〉

)
= n−1G

(
n

〈n|m,A〉

)
,

[S14]
where we defined G(x) = xĜ(x). In conclusion, the normalized
joint probability density distribution P (n,m|A) reads:

P (n,m|A) = (δ − 1)n−1m−δG

[
nmγ

AΦ
1

h(m/Aλ)

]
. [S15]
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This result motivates the choice of the factor n−1 in Eq. 2 of
the main text. Note that Eq. S15 can be recast as:

P (n,m|A) = (δ − 1)n−1m−δG

[
n

AΨ
(m/Aλ)γ

h(m/Aλ)

]
, [S16]

with Ψ = φ− γλ. For scaling to hold, Eq. S16 must be valid
for x = n/AΨ, y = m/Aλ fixed and n,m,A→∞. Therefore,
one has Ψ = φ− γλ > 0.

1.5 Average abundance conditional on mass and area
〈n|m, A〉. We show here that the distributions:

P (m|A) = (δ − 1)m−δ

P (n|m,A) = n−1G

[
nmγ

AΦ
1

h(m/Aλ)

] [S17]

lead to the average abundance conditional on mass and area
〈n|m,A〉 = AΦm−γh(m/Aλ). In fact:

〈n|m,A〉 =
∫ ∞

0
nP (n|m,A)dn =

∫ ∞
0

G

[
nmγ

AΦ
1

h(m/Aλ)

]
dn

= AΦm−γh
(
m

Aλ

)∫ ∞
0

G(x)dx = AΦm−γh
(
m

Aλ

)
,

[S18]
where we have redefined without loss of generality G(x)
as G′(x) = G(Cx), where C =

∫∞
0 G(x)dx, so that∫∞

0 G′(x)dx =
∫∞

0 x−1G′(x)dx = 1. We will drop the prime
symbol in the remainder of the text to simplify the notation.

1.6 Moments of P (n, m|A). One can compute the scaling of
the (j, k)th-moment (j = 1, 2, k ∈ [0, 1]) with A, for large A,
as:

Ij,k =
∫ ∞

1

∫ ∞
0

njmkP (n,m|A) dn dm

= (δ − 1)
∫ ∞

1
mk−δ

∫ ∞
0

nj−1G

[
nmγ

AΦ
1

h (m/Aλ)

]
dn dm

= (δ − 1)AjΦ
∫ ∞

1
mk−δ−jγhj

(
m

Aλ

)
dm

∫ ∞
0

xj−1G (x) dx

∝ AjΦ
∫ ∞

1
mk−δ−jγhj

(
m

Aλ

)
dm

∝ AjΦ+λ(1+k−δ−jγ)
∫ ∞

1/Aλ
yk−δ−jγhj(y)dy

∝ AjΦ+λ(1+k−δ−jγ)
[
hj0

∫ ε

1/Aλ
yk−δ−jγdy

+
∫ ∞
ε

yk−δ−jγhj(y)dy
]

∝ AjΦ+λ(1+k−δ−jγ) [c1A−λ(1+k−δ−jγ) + c2
]

∝ AjΦ+max{0,λ(1+k−δ−jγ)},

[S19]

with ε � 1, c1 and c2 constants. We used the property
Eq. S11a to ensure that the integral

∫∞
0 xj−1G (x) dx con-

verges for j = 1, 2, and properties (S11b-S11c) to evaluate the
integral in m (in particular, h(x) ' h0 constant for x ∈ (0, ε]).
Eq. S19 can be used to derive several macroecological scaling
laws, as outlined in the Methods section.

1.7 Relative species abundance (RSA). The RSA is the distri-
bution of species abundances P (n|A). In our framework it can
be obtained by marginalizing P (n,m|A) over m:

P (n|A) =
∫ ∞

1
P (n,m|A)dm

= (δ − 1)n−1
∫ ∞

1
m−δG

(
n

〈n|m,A〉

)
dm.

[S20]

This integral cannot be computed in the general case, that
is, without specifying G and h. We compute it here for the
particular choice G(x) = 1√

πσ
e−

1
σ

(log x+σ/4)2 , with σ > 0
constant. Note that

∫∞
0 G(x)dx =

∫∞
0 G(x)/xdx = 1 as

prescribed in sections 1.4 and 1.5. For h(x), it is sufficient to
know that h(x) is monotonically decreasing to carry out the
calculations, but to simplify the expressions we take h(x) =
h0e
−x with h0 > 0 constant. With these assumptions, P (n|A)

reads:
P (n|A) = 1

n

δ − 1√
πσ

∫ ∞
1

m−δef(m)dm, [S21]

where we defined

f(m) = − 1
σ

[
log
(
nmγ

h0AΦ

)
+ m

Aλ
+ σ

4

]2
. [S22]

The integral in Eq. S21 cannot be computed analytically. How-
ever, noticing that the contribution to the integral is maximum
when m = m∗ where m∗ maximizes f(m), we can approximate
the integral for certain values of n. The approximation is akin
to the Laplace method, but it is not possible to give an upper
bound on the error made by the approximation. Nonethe-
less, the approximation can be compared to the numerical
computation of P (n|A) (see Fig. S1). The derivative of f(m)
reads:

f ′(m) = − 2
σ

[
log
(
nmγ

h0AΦ

)
+ m

Aλ
+ σ

4

](
γ

m
+ 1
Aλ

)
. [S23]

Note that the derivative f ′(m) is negative for any m ∈ [1,∞]
if n > AΦh0e

−1/Aλe−σ/4 ' AΦh0e
−σ/4. Thus, for n �

AΦh0e
−σ/4 (i.e. in the tail of the distribution) f(m) is maxi-

mum at m∗tail = 1 and the approximation gives:

P (n|A)tail = 1
n

δ − 1√
πσ

e
− 1
σ

[
log
(

n

h0AΦ

)
+ 1
Aλ

+σ
4

]2

2
σ

[
log
(

n
h0AΦ

)
+ 1

Aλ
+ σ

4

] (
γ + 1

Aλ

)
' 1
n

δ − 1√
πσ

e
− 1
σ

[
log
(

n

h0AΦ

)
+σ

4

]2

2γ
σ

[
log
(

n
h0AΦ

)
+ σ

4

] .
[S24]

Note that the tail of the RSA resembles that of a lognormal
distribution, which is typically found empirically (2), plus a
correction of the form C1 +C2 logn at the denominator, where
C1 depends on A. For comparison, we plotted in Fig. S1 the

(rescaled) lognormal tail 1
n
δ−1√
πσ

σ
2γ e
− 1
σ

[
log
(

n

h0AΦ

)
+σ

4

]2

.

If n < AΦh0e
−1/Aλe−σ/4 ' AΦh0e

−σ/4, the maximum of
f(m) occurs at a value m̂ > 1. However, one cannot solve
f ′(m) = 0 analytically to determine m̂. We can approximate
the RSA at small and intermediate values of n as follows. The
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behavior of P (n|A) can be characterized for n ' AΦh0e
−σ/4

by recognizing that, at such values of n, the value m∗body
maximizing f(m) is close to 1. Therefore, we approximate
log
(
nmγ

h0AΦ e
m/Aλ

)
' log

(
nmγ

h0AΦ e
1/Aλ

)
in f ′(m) = 0 (see Eq.

S23) and solve form, yieldingm∗body '
[
AΦh0
n

e−1/Aλe−σ/4
] 1
γ
.

By applying the approximation method, one finds that the
approximation for the RSA for n ' AΦh0e

−σ/4 is:

P (n|A)body = δ − 1
γ

[
AΦh0e

−σ4
] 1−δ

γ n
−1− 1−δ

γ , [S25]

which is a power law with exponent −1− 1−δ
γ

. The extents of
the tail and body of the RSA distribution depend on the values
of h0 and σ. Fig. S1 shows the RSA computed numerically
via Eq. S21 (black curve) and its approximations computed
via equations Eq. S24 (blue curve) and Eq. S25 (green curve).

1.8 Generalizations of the scaling framework.
1.8.1 Consequences of curvature in Kleiber’s law
Various studies have claimed that Kleiber’s law, the relation-
ship linking metabolic rates to body size, displays curvature in
a log-log plot (3–6), implying departures from a power-law be-
havior. For example, respiration rates of mammals have been
claimed to increase with body size as m2/3 until m1 ' 400 g
and as m3/4 above (6). Conversely, respiration rates of trees
have been claimed to increase linearly with tree biomass m
until m1 ' 40 g and as m3/4 above (4, 6). Our framework can
be used to infer the implications of such curvature on other
macroecological patterns, as we show here.

In order to perform analytical calculations, we will make
the simplifying assumption that Kleiber’s law is described by
the piecewise power-law:

b(m) =
{
c0m

α1 if m < m1

cmα if m ≥ m1
[S26]

where c0 = c mα−α1
1 is such that b(m) is continuous in m =

m1. Using Eq. S26 we can compute the total community
consumption rate per species:

B/S =
∫ ∞

1

∫ ∞
0

nb(m)p(n,m|A)dndm

=(δ − 1)
∫ ∞

1

∫ ∞
0

b(m)m−δG
[
nmγ

AΦ
1

h (m/Aλ)

]
dndm

∝AΦ
∫ ∞

1
b(m)m−γ−δh

(
m

Aλ

)
dm

∫ ∞
0

G(x)dx

∝AΦ
∫ m1

1
c0m

α1−γ−δh
(
m

Aλ

)
dm

+AΦ
∫ ∞
m1

cmα−γ−δh
(
m

Aλ

)
dm

∝AΦ+λ(1+α1−γ−δ)
∫ m1A

−λ

A−λ
c0x

α1−γ−δh(x)dx

+AΦ+λ(1+α−γ−δ)
∫ ∞
m1A−λ

cxα−γ−δh(x)dx.

[S27]
We now consider separately two possible scenarios:

a) A� m
1/λ
1 :

B/S ∝ c0A
Φ+λ(1+α1−γ−δ)

[∫ ε

A−λ
xα1−γ−δh(x)dx

+
∫ m1A

−λ

ε

xα1−γ−δh(x)dx

]

+cAΦ+λ(1+α−γ−δ]
∫ ∞
m1A−λ

xα−γ−δh(x)dx

∝ c0A
Φ+λ(1+α1−γ−δ)

[
c3 + c4A

−λ(1+α1−γ−δ)

+
∫ m1A

−λ

ε

xα1−γ−δh(x)dx

]

+cAΦ+λ(1+α−γ−δ)
∫ ∞
m1A−λ

xα−γ−δh(x)dx

∝ AΦ+max{0,λ(1+α1−δ−γ)},

[S28]

where ε � 1, c3 and c4 are constants. In the first line
we have used the limiting behavior limx→0 h(x) = h0
constant and in the last line we have taken the limit
m1 →∞ before evaluating the integral.

b) A� m
1/λ
1 :

B/S ∝c0AΦ+λ(1+α1−γ−δ)
∫ m1A

−λ

A−λ
xα1−γ−δh(x)dx

+ cAΦ+λ(1+α−γ−δ)

(∫ ε

m1A−λ
xα−γ−δh(x)dx

+
∫ ∞
ε

xα−γ−δh(x)dx

)
∝c0c4AΦ (1−m1+α1−γ−δ

1
)

+ cAΦ+λ(1+α−γ−δ) [c5 + c6m
1+α−γ−δ
1 A−λ(γ+δ−1−α)]

∝AΦ+max{0,λ(1+α−γ−δ)},

[S29]

where ε � 1, c5 and c6 are constants and we have used
the properties of h.

Thus, in the limit of large area (i.e. above the crossover
value m

1/λ
1 ) the scaling of B/S with A is independent

on α1, whereas below such crossover value B/S scales as
AΦ+max{0,λ(1+α1−γ−δ)}. Thus, the curvature in the relation-
ship between individual metabolic rates and body mass trans-
lates into a curvature in the scaling of the specific community
consumption rate B/S with A. The scaling of the total number
of species S with A is in turn determined by the proportional-
ity of the total consumption rate to the ecosystem area, B ∝ A.
Imposing such proportionality we find the following scaling of
S with A:

a) A� m
1/λ
1 : S ∝ A1−Φ−max{0,λ(1+α1−δ−γ)}.

b) A� m
1/λ
1 : S ∝ A1−Φ−max{0,λ(1+α−δ−γ)}.

These equations are generalizations of the linking relation-
ship Eq. 6 of the main text and show that the curvature
in the relationship between individual metabolic rates and
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body mass causes a curvature in the scaling of S with A. The
difference in scaling exponents between the two regimes at
small and large areas (i.e. A� m

1/λ
1 and A� m

1/λ
1 ) is ∆z =

max{0, λ (1 + α1 − δ − γ)}−max{0, λ(1+α−γ−δ)}. Recall-
ing the values of α1 and α for mammals reported at the begin-
ning of this section one finds ∆z = max{0, λ (5/3− δ − γ)} −
max{0, λ(7/4 − γ − δ)}, which if δ + γ < 5/3 and λ > 0 is
equal to: ∆z = −λ/12, i.e. a concave curvature. In general,
if λ(1 + α1 − δ − γ) > 0 and λ(1 + α− δ − γ) > 0, a convex
curvature in Kleiber’s law implies a concave curvature in the
species-area relationship, and viceversa. Note that for tropical
forests, where we find λ = 0 (see Methods), a curvature in
Kleiber’s law does not imply any curvature in the species area
relationship.

Of course, the curvature in Kleiber’s law is likely to be
described by a smoother functional relationship than the
piecewise-power law assumed in Eq. S26. However, such as-
sumption should not affect the asymptotic estimates for small
and large areas, that is, the scaling of S with A for A� m

1/λ
1

and A� m
1/λ
1 .

We note here that a recent investigation by Chisholm et al.
(7) has highlighted curvatures in species-area relationships
that are qualitatively similar to the one we described
here, arguing that the origin of such curvature relies in a
transition from a niche-structured regime on small islands to
a colonization-extinction balance regime on large ones (7).
Despite the qualitative similarities between the predicted
curvatures in the two studies, we believe that further research
is required to understand whether the empirical curvatures
reported in Chisholm et al. (7) can be ascribed to a curvature
in Kleiber’s law as reported in this section. Because our
results hold strictly in the limit of large areas, however, we
believe that the ‘small-island effect’ described in Chisholm
et al. (7) is a fine detail that cannot be reconciled with
our framework in its present form. We do not believe that
this observation should call the general framework into
question, but rather it highlights how our results should be
applied to large ecosystems where scaling arguments can be
informative. May we note that our framework deals with
several macroecological patterns at once and not exclusively
with the species-area relationship, and one must trade the
level of detail with which each pattern is reproduced with the
capability to derive the covariations of several macroecological
patterns analytically. Finer details of some of these patterns
may be addressed by including additional ecological processes
in our approach, although we deem that such path is beyond
the scopes of this investigation, which aims at establishing a
general null model framework.

1.8.2 Multiple trophic levels
So far we have assumed that all individuals in the ecosys-

tem share the same resources. Thus, our results hold strictly
for organisms within the same trophic level. Power law distri-
butions and relationships, however, are empirically observed
even on multi-trophic level contexts. For example, power-law
size spectra across trophic levels are routinely observed in ma-
rine microbial ecosystems over several orders of magnitude (8).
Here, we show that the conceptual design of our framework can
be applied to multi-trophic level systems by means of a simple
example. We assume that species’ interactions are described
by a simple foodweb made of two trophic levels, with one level

feeding on abiotic factors like light (i.e. the producers) and the
latter feeding on the lower trophic level (i.e. the consumers).
In such an ecosystem, producers would be described by our
framework with resources limited by ecosystem area R ∝ A,
while consumers would be described by the same framework
where the limiting resource is now the total producers’ biomass,
which scales as Aµp (the subscript p identifies the producers).
Thus, one can describe the two trophic levels separately, with
the producers’ level being described by our current framework
and the consumers level being described by a similar scaling
framework where resources scale as R ∝ Aµp . The effect of
such modification on scaling relationship is easy to compute
and affects the species-area relationship via a modification of
Eq. S48b:

zc = µp − Φc −max{0, λc(1 + αc − ηc)}, [S30]

which differs from Eq. S48b only for the exchange of 1 with µp
(the subscript c identifies the consumers). Such modification
propagates to equations Eq. S48c and Eq. S48d (recall that
N = SI1,0 and M = SI1,1) which become:

µc = µp + max{0, λc(2− ηc)} −max{0, λc(1 + αc − ηc)},
νc = µp −max{0, λc(1 + αc − ηc)}.

[S31]
We note, however, that µp is most likely equal to one in most
ecosystems, as found for example in our empirical analysis
of tropical forests datasets. In such a case, the consumers
level is described exactly by the framework that we presented
in the main text. Obviously, more complicated schemes of
multi-level foodwebs may be envisioned in the proposed
framework. On this, research is forthcoming.

1.8.3 Area-independent limitation on maximum size
Eq. 5 of the main text predicts that, if z > 0, the maximum
species’ mass increases with A as mmax = Aξ. When A is
very large, area-independent constraints could settle in to
limit the maximum body size, either due to physiological
limits or due to ecological dynamics making larger body sizes
unfavorable. Because ξ = z/(δ − 1), the critical value of A
above which the maximum body size is independent of A is
equal to Ac = M

z/(δ−1)
0 . This observation can be reconciled

with our framework by generalizing Eq. 7 as:

P (m|A) = m−δH
(
m

M0

)
, [S32]

where the cutoff function H is such that limx→0 H(x) =
const, limx→∞H(x)/xmax{2−δ−γ,1−δ} = 0 and is such that∫∞

1 P (m|A)dm = 1. This generalization of Eq. 7 does not
affect our results for A < Ac. In fact, the joint probability
distribution in such a generalized setting reads:

P (n,m|A) = n−1m−δH
(
m

M0

)
G

(
n

〈n|m,A〉

)
= n−1m−δH

(
m

M0

)
G

[
nmγ

AΦh(m/Aλ)

] [S33]

and integrals of this distribution (e.g. marginals and moments)
depend on which of the two finite-size cutoffs (h and H) sets
in at the lowest value of m. We show this by calculating the
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moment Ij,k with j, k > 0:

Ij,k =
∫ ∞

1

∫ ∞
0

nj−1mk−δG

[
nmγ

AΦh(m/Aλ)

]
H
(
m

M0

)
dndm

=AjΦ
∫ ∞

1
mk−δ−jγhj

(
m

Aλ

)
H
(
m

M0

)
dm

∫ ∞
0

xj−1G(x)dx,

[S34]
where the properties ofG ensure the convergence of the integral.
The scaling of Ij,k with A is thus determined by which of the
two functions hj(m/Aλ) and H(m/M0) decays earlier in m.
For intermediate values of A (i.e. Aλ < M0) one can replace
H(m/M0) with (δ − 1) in equations Eq. S33 and Eq. S34,
and is left with the framework described in the main text.
For larger values of A (i.e. A > M

1/λ
0 ), instead, one replaces

the term h(m/Aλ) with the constant hj0 in equations Eq. S33
and Eq. S34. In the limit of very large area, therefore, the
maximum mass M0 ceases to increase with A, due to attained
physiological or ecological constraints. Furthermore, Damuth’s
law displays no cutoff in m, i.e. 〈n|m,A〉 ' h0m

−γAΦ (more
precisely, the cutoff in Damuth’s law would be unobservable
due to the extremely low probability to observe a species with
m > M0), and the ecosystem is effectively described by the
joint probability distribution:

P (n,m|A) = n−1m−δH
(
m

M0

)
G

(
n

〈n|m,A〉

)
= n−1m−δH

(
m

M0

)
G
(
nmγ

h0AΦ

)
,

[S35]

and thus by the modified P (n|m,A) = n−1G[nmγ/(h0A
Φ)].

One can show that in this limit of very large area the
linking relationship (1) goes unchanged, whereas equations
(6–9) are replaced by: z = 1 − Φ, µ = 1, ν = 1 (i.e. the
maxima in equations 6–8 disappear) and ξ = 0. This could
be the situation for the two forest datasets analyzed in
section 2.2.2, where one should have λ = 0 to verify the
reasonable assumption µ = ν = 1 (see section 2.2.2 for details).

1.8.4 Intra-specific size distributions
One assumption of our scaling framework is that all in-

dividuals of the same species have the same mass, although
in reality individuals masses within the same species are dis-
tributed according to intra-specific size distributions. The
scaling properties of intra-specific size distributions have been
studied by Giometto et al. (9), where it was shown that pro-
tist species belonging to four different phyla and covering five
orders of magnitude in mass are characterized by a universal
size distribution:

p(m|m̄) = 1
m
F
(
m

m̄

)
, [S36]

where m is the mass of an individual, m̄ is the characteristic
mass of the species and F (x) → 0 suitably fast for x → 0
and x→∞, as detailed in Giometto et al. (9). When intra-
specific size distributions are described by Eq. S36, the results
of our scaling frameworks hold exactly. The moment (j,k) is
computed as:

Ij,k =
∫ ∞

0

∫ ∞
1

∫ ∞
1

njmkP (n, m̄|A)p(m|m̄) dm dm̄ dn

=
∫ ∞

0

∫ ∞
1

njP (n, m̄|A)〈mk|m̄〉 dm̄ dn

[S37]

where :

〈mk|m̄〉 :=
∫ ∞

1
mkp(m|m̄)dm. [S38]

Usinq Eq. S36, we obtain:

〈mk|m̄〉 =
∫ ∞

1
mk−1F

(
m

m̄

)
dm = m̄k

∫ ∞
1/m̄

xk−1F (x)dx

' m̄k

∫ ∞
0

xk−1F (x)dx ∝ m̄k

[S39]
where x = m/m̄ and

∫∞
0 xk−1F (x)dx is a constant.

Substituting this result in Eq. S37, we have Ij,k =∫∞
0

∫∞
1 njm̄kP (n, m̄|A)dm̄ dn, which corresponds to Eq. S19.

Thus, the moments Ij,k computed in this generalized frame-
work have the same scaling with the area as the ones computed
by assuming that all individuals within a species have the
same mass. Therefore, the linking relationships (2–5), whose
derivation relies on the scaling of Ij,k with A, are unchanged.
Furthermore, we show that the linking relationship in Eq. 1
is also unchanged. In fact, assuming that intra-specific size
distributions are given by Eq. S36, the size spectrum is given
by:

s(m|A) = S

N

∫ ∞
0

n

∫ ∞
1

P (n, m̄|A)m−1F
(
m

m̄

)
dm̄dn

= S

N

∫ ∞
0

∫ ∞
1

m̄−δG

[
nm̄γ

AΦh(m̄/Aλ)

]
m−1F

(
m

m̄

)
dm̄dn

=m−δ S
N

∫ ∞
0

∫ ∞
1/m

x−δG

[
n(xm)γ

AΦh(xm/Aλ)

]
F
( 1
x

)
dxdn

=m−δ−γAΦ S

N

∫ ∞
1/m

x−δ−γh
(
xm

Aλ

)
F
( 1
x

)
dx

∫ ∞
0

G(y)dy,

[S40]

where x = m̄/m, y = [n(xm)γ ] /
[
AΦh(xm/Aλ)

]
and∫∞

0 G(y)dy is a constant. We note that we cannot compute
analytically the scaling of s(m|A) with m from Eq. S40,
because m appears both at the lower limit of the integral
in x and in the argument of h. However, for large m,
the lower limit of the integral in x tends to 0 and thus
s(m|A) ∝ m−δ−γ h̃(m/Aλ) in the limit of large m, where
h̃(y) =

∫∞
0 x−δ−γF (1/x)h(xy)dx has the same limiting

behavior of h(y) at y → 0 and y →∞†, and thus the linking
relationship η = δ + γ (Eq. 1) still holds. Thus, introducing
intra-specific variability in mass according to Eq. S36 does
not alter the linking relationships (1, 6–9).

1.8.5 Tree intraspecific size distributions
As we discuss in section 2.2.1, trees are an exception to

Eq. S36, given that a single species can cover several orders of
magnitude in mass. We show in section 2.2.1 that the intra-
specific size distributions of the most abundant tree species
in tropical forests are characterized by the finite-size scaling
form:

p(m|m̄) = m−∆F
(
m

m̄Ω

)
, [S41]

†Because limx→∞ h(x) = 0, limx→0 h(x) = h0 , h(x) ≤ h0 and∫∞
0

x−δ−γF (1/x)dx < ∞ if δ + γ > 1, then limy→∞ h̃(y) = 0 and

limy→0 h̃(y) = const follows from the Lebesgue’s dominated convergence theorem.
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where Ω = 1/(2 − ∆) ensures that
∫
mp(m|m̄)dm = m̄,

∆ = 1.12 ± 0.06 and F(x) is a scaling function with lim-
iting behaviors F(x)→ const for x→ 0 and F(x)→ 0 more
rapidly than any power of x for x→∞. The (j,k)th moment
Ij,k can still be computed exactly and some small corrections
to the scaling exponents arise, compared to Eq. S19. In fact,
using Eq. S41 we obtain:

〈mk|m̄〉 =
∫ ∞

1
mk−∆F

(
m

m̄Ω

)
dm

= m̄Ω(1+k−∆)
∫ ∞

1/m̄Ω
xk−∆F(x)dx

∝ m̄max{0,Ω(1+k−∆)}.

[S42]

Note that, among the consequences of this result, we obtain
that the variance of the intra-specific size distribution increases
with the average body size: 〈m2|m̄〉 ∝ m̄Ω(3−∆). Substituting
Eq. S42 in Eq. S37 gives:

Ij,k =
∫ ∞

0

∫ ∞
1

njm̄max{0,Ω(1+k−∆)}P (n, m̄|A)dm̄ dn

∝ AjΦ+max{0,λ(1−δ−jγ+max{0,Ω(1+k−∆)})},
[S43]

where the calculations have been performed as in section 1.6.
Eq. S43 differs only slightly from Eq. S19. As a result, a small
correction applies to the linking relationship (2): the term α
in Eq. 2 is substituted by 1+α−∆

2−∆ , which for the empirical
value ∆ = 1.12± 0.06 results in a very small correction C =
α − 1+α−∆

2−∆ = (α − 1)
( 1−∆

2−∆

)
' 0 which is compatible with

zero, given that ∆ is compatible with one. Equations (3–5)
are unchanged. The size spectrum is given by:

s(m|A) = S

N

∫ ∞
0

n

∫ ∞
1

P (n, m̄|A)m−∆F
(
m

m̄Ω

)
dm̄dn

= S

N

1
m∆

∫ ∞
1

1
m̄δ
F
(
m

m̄Ω

)∫ ∞
0

G

[
nm̄γ

AΦh(m̄/Aλ)

]
dn dm̄

= S

N
m−∆+(1−δ)/Ω

∫ m

0
x(δ−1)/Ω−1F(x)

×
∫ ∞

0
G

[
n(m/x)γ/Ω

AΦh [(m/x)1/Ω/Aλ]

]
dn dx

= S

N
AΦm−∆+(1−δ−γ)(2−∆)

∫ ∞
0

G(y)dy

×
∫ m

0
x(2−∆)(δ+γ−1)−1F(x)h

[
(m/x)1/Ω

Aλ

]
dx

[S44]

where x = m/m̄Ω, Ω = 1/(2−∆),
y =

[
n(m/x)1/Ω] /{AΦh

[
(m/x)1/Ω/Aλ

]}
and

∫∞
0 G(y)dy is

a constant. Note that we cannot compute the scaling exponent
of s(m|A) with m exactly, because x and m are found in the
arguments of both F and h. We can, however, derive an
approximation that holds for large m. This is most easily seen
if we assume that no finite-size effect is found in Damuth’s
law, i.e. h = const, for which we have:

s(m|A) ∝ S

N
AΦm(2−∆)(1−δ−γ)−∆

∫ m

0
x−(2−∆)(1−δ−γ)−1F(x)dx,

[S45]

which, for large m, is a power-law (s(m|A) ∝ m−η) with:

η = ∆− (2−∆)(1− δ − γ), [S46]

which generalizes Eq. 1 to the case of intra-specific size
distributions as in Eq. S41. We note, in analogy to the
calculations performed in the previous section, that for
large m the upper limit of the integral in x in Eq. S44
tends to +∞ and thus s(m) ∝ m(2−∆)(1−δ−γ)−∆h̃

(
m/AλΩ)

in the limit of large m, where the function h̃(y) =∫∞
0 x−(−2−∆)(1−δ−γ)F(x)h

[
(y/x)1/Ω] dx has the same

limiting behavior of h(y) for y → 0 and y →∞‡. Therefore,
the linking relationship in Eq. S46 holds also when h is not
identically constant. The correction to the linking relationship
(1) is small because the difference between η1 = δ + γ
computed via Eq. 1 and η2 = ∆− (2−∆)(1−δ−γ) computed
via Eq. S46 is η1−η2 = (∆−1)(δ+γ−2) and ∆ = 1.12±0.06
is compatible with one, in which case equations (1) and
Eq. S41 coincide. Using the values reported in Table S3, we
find η1 − η2 ' −0.07 ± 0.03, which is compatible with zero.
Because the differences between the linking relationships (1)
and (6) reported in the main text and the generalizations
reported in this section are negligible and compatible with
zero, we will neglect such generalizations in the rest of this
study.

1.8.6 Alternative forms of P (m|A)
Our ansatz for P (m|A) is a pure power function, Eq. S8.

There are two possible relaxation of this hypothesis that do
not compromise analytical tractability, in addition to the
one already explored in section 1.8.3. The first is the ad-
dition of a cut-off at large masses, P (m|A) = m−δF1

(
m
Aλ

)
with δ > 1 (for normalization purposes), where the expo-
nent λ is the same as the one of the cut-off in Damuth’s law
(Eq. S10) and where F1(x) is such that limx→0 F1(x) = const
and limx→∞F1(x) = 0. In this case, the computation of the
moments Ij,k is performed similarly to Eq. S34, where the role
of hj

(
m
Aλ

)
is now played by the product F1

(
m
Aλ

)
hj
(
m
Aλ

)
,

behaving similarly. The final result is the same as in Eq. S34.
In the computation of the community size-spectrum, Eq. 16
of the main text, the cut-off is now given by the product of
the two functions F1 and h. In conclusion, this generalization
does not change the linking relationships in Eq. 1, 6–8 of
the main text. The generalization of Eq. 9 of main text to
this case cannot be computed analytically. Some empirical
studies (10, 11) found a P (m|A) similar to a log-normal. We
can describe this case as P (m|A) = m−δF2

(
m
Aλ

)
where F2(x)

is such that limx→0,∞ x
jF1(x) = 0 ∀j. Normalization requires

δ = 1. Moments can be computed, again, as in Eq. S34 but
noticing that in this case

∫∞
1/Aλ x

k−δ−γjhj(x)F (x) ≈ const

in the limit of large A, as the expression inside the integral
tends to 0 faster than any power of x when x→ 0. Therefore,
we obtain Ij,k ∝ AΦj+λ(k−λj). Eq. 6–8 of the main text are
then replaced by: z = 1 − Φ − λ(α − γ), ν = 1 − λα and
µ = 1 + λ(1− α). The community size-spectrum is computed

‡Because limx→∞ h(x) = 0, limx→0 h(x) = h0 , h(x) ≤ h0 and∫∞
0

x−δ−γF (1/x)dx < ∞ if δ + γ > 1, then limy→∞ h̃(y) = 0 and

limy→0 h̃(y) = const follows from the Lebesgue’s dominated convergence theorem.
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as:

s(m|A) = S

N

∫ ∞
0

nP (n,m|A)dn

= S

N
m−1F2

(
m

Aλ

)∫ ∞
0

dnG
(

nmγ

AΦh(m/Aλ)

)
∝ m−1A

λ

m

γ

F2

(
m

Aλ

)
h
(
m

Aλ

)
= m−1H

(
m

Aλ

)
[S47]

where H(x) := x−γF2(x)h(x) is such that limx→0,∞ x
jH(x) =

0 ∀j. Therefore, s(m|A) is not a power-law, but has an internal
mode, similarly to P (m|A). The generalization of Eq. 9 of
main text to this case cannot be computed analytically.

1.9 Compatibility with previous works. Southwood et al. (12)
derived a linking relationship that is equivalent to our Eq. 5.
Here, we briefly review their result and illustrate how it must
be corrected due to a few miscalculations.

The authors start from the observation (13) that the total
number of species of length class L scale as SL(L) ∝ SL−∆,
where ∆ = 3/2 and S is the total number of species in the
ecosystem. The estimate ∆ = 3/2 made in that study (12)
is incorrect, because the correction needed to account for
logarithmic binning (14, 15) is missing. The correct estimate
that accounts for logarithmic binning (14) is ∆ = 5/2. First,
the authors of reference 9 say that the maximum length is
obtained by imposing SL(Lmax) = SL−∆

max = 1, i.e. S ∝ L∆
max.

This calculation is also incorrect, because it makes an improper
use of probability distributions. In fact, SL(L) is the fraction
of species with length in [L,L+dL] and the maximum species’
length is found by imposing that the probability of finding a
species with length larger than Lmax be equal to 1/S (this is
a widely employed argument to estimate the largest random
number drawn from a specified distribution (16, 17)) which
results in S ∝ L∆−1

max . Incidentally, these two miscalculations
compensate each other and together lead to the estimate
S ∝ L3/2

max. However, and this is crucial to derive the correct
linking relationship, the correct equation is S ∝ L∆−1

max and not
the one suggested in reference 9, i.e. S ∝ L∆

max. The equation
relating S and L converts into a species-mass relationship
via the scaling L ∝ m1/3, where we have assumed that body
density does not scale with body mass. Specifically, one
finds S ∝ mδ−1

max with δ = (∆ + 2)/3. Then, one can use the
finding by Burness et al. (18), mmax ∝ Aξ, to derive the
linking relationship between z, ξ and δ. In fact, by comparing
S ∝ mδ−1

max ∝ Aξ(δ−1) with the SAR S ∝ Az one obtains the
linking relationship z = ξ(δ − 1), which coincides with our Eq.
5. However, we note that, in reference 9, z was meant as the
exponent of the nested species-area relationship, differently
from here. Nonetheless, the linking relationship is the same.

Our results thus agree with the earlier result by Southwood
et al. (12), where one of the linking relationship was discovered.
Our investigation reveals that such linking relationship is only
one component of the broader set of linking relationships, Eqs.
1,6–9 of the main text.

We finally note the differences of the current work with a
previous scaling framework (19), namely: 1) the enforcement
and the implications of resource limitation, 2) the validation
based on a broad class of community dynamics models, 3)
the extensive empirical verification, and 4) the richer set of

macroecological laws that the scaling framework accounts for,
most importantly Damuth’s law, which allows us to reconcile
the predicted linkages with empirical data and community
dynamics models (see, e.g. Fig. S2). Such framework (19) took
as starting point an equation compatible with our assumption
on P (n,m|A) (Eq. 2 of the main text). Specifically, Eq. 1 in
Banavar et al. (19) is more general than our Eq. 6, but one
needs to specify further properties of P (n,m|A) in order to
recover Damuth’s law, as we did here. Furthermore, the scaling
properties hypothesized for the function F that appears in Eq.
1 of Banavar et al. (19) (hypothesisH1 therein) is incompatible
with Damuth’s law and leads to different predictions for the
pattern covariations (e.g. the linking relationship η = δ) that
are falsified by empirical data and by our model simulations
(Fig. S2). Note that the introduction of a constraint on
the total community consumption rate in the framework of
Banavar et al. would not affect the relationship η = δ, which
is instead a byproduct of the assumptions on P (n,m|A).

2 Compatibility with macroecological data

2.1 Empirical evidence of scaling ecological laws. Abundant
empirical evidence exists of scaling ecological patterns in di-
verse types of ecosystems: forests, terrestrial (including mam-
mals in particular) and aquatic ecosystems. A comparison of
these empirical results highlights the non-universality of the
values of scaling exponents. Fig. 1 in the main text shows
evidences of Kleiber’s law (panel a), Damuth’s law (panel
b), the Species-Area Relationship (SAR) (panel c) and the
community size-spectrum s(m) (panel d) for the three types
of ecosystems. Regression lines in Fig. 1 are fits provided in
the original papers (see legends), except for the patterns for
forests and terrestrial ecosystems in panel b, which were fitted
by linear least-squares fits on log-transformed data, and for the
community size-spectra from BCI and Niwot Ridge datasets
in panel d, which were fitted with maximum likelihood (20).
Table S1 reports the estimates for the scaling exponents. Table
S2 contains a compilation of references to empirical measures
of the ecological patterns referred to in the main text.

2.2 Compatibility of linking relationships and data. Our
framework predicts five relationships linking the scaling
exponents of ecological laws (Eqs. 1, 6–9 of the main text):

η = γ + δ, [S48a]
z = 1− Φ−max{0, λ(1 + α− η)}, [S48b]
µ = 1 + max{0, λ(2− η)} −max{0, λ(1 + α− η)}, [S48c]
ν = 1−max{0, λ(1 + α− η)}, [S48d]

ξ = z

δ − 1 . [S48e]

Eqs. S48b and S48d also imply

z + Φ = ν. [S49]

Notice that there are only 5 independent exponents (e.g.
γ, δ, Φ, α and λ), whereas the observable laws amount to 10:
Kleiber’s law and Eqs. 3, 12-18 of the main text. Note that
Eq. 13 contains three laws because it describes the scaling
of the average abundance of a species with body mass and
with the area of the ecosystem and the scaling of its cut-off
with the area of the ecosystem. Figure S3 summarizes the
predictions on the values or bounds of scaling exponents
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based on the linking relationships (S48a-e), for different
possible values of the independent exponents. As each of the
exponents appearing in Eqs. (S48a-e) could have different
values in different ecosystems and in different environmental
conditions, in order to verify the validity of Eqs. (S48a-e)
each relationship must be verified on a single dataset, where
all the exponents have been measured simultaneously.

2.2.1 Equation S48a (Eq. 1 of the main text)
We verified Eq. S48a on censuses of Barro Colorado Island

(BCI) (21) (Fig. 2) and the Luquillo forest (22) (Fig. S4).
These datasets report the trunk diameter and the species’
identity of every tree having a diameter at breast height (dbh)
>10 mm contained in a plot of 50 ha within the BCI for-
est (Panama), and a plot of 16 ha within the Luquillo forest
(Puerto Rico). Diameters were converted into mass using an
established allometric relationship between mass and diame-
ter (23, 24), m = 0.124d8/3 kg, with d expressed in cm. To
compute P (m̄|A), where m̄ is the typical species’ mass, we
used the mean mass of the species’ individuals as our esti-
mate of m̄. To obtain estimates of δ and η the probability
distributions P (m̄|A) and s(m|A) were fitted via maximum
likelihood to the functional forms P (m̄|A) = a1m̄

−δe−b1m̄

and s(m|A) = a2m
−ηe−b2m, where a1 and a2 are the nor-

malization constants (which can be expressed in terms of b1
and b2), b1 and b2 are constants that accounts for possible
finite-size effects, and δ and η are the power-law exponents§.
Section 1.8.3 justifies the possible presence of an upper cutoff
in P (m̄|A). To account for deviations from the power-law
behavior at low values of m or m̄ (these may arise for various
reasons, like e.g. sampling protocols affecting the estimates
of mean masses and mean abundances at small masses, as
described in the next paragraph) we performed the maximum-
likelihood estimation of δ and η by considering only the data
with m > mk at various values of mk = ak 0.124 kg in the
range (0.124− 102) kg (with 1 < a < 2 and k integer). Note
that 0.124 kg is the mass of a tree with dbh=10 mm, i.e.
the lower limit of the sampling protocol. If the data were
distributed according to a pure power-law with no finite-size
effects, such procedure would return approximately the same
value of the exponent for any mk. If the data were distributed
according to a power-law with finite-size effects at small and
large values ofm, instead, one would observe an approximately
constant estimate of the exponent at intermediate mk and
deviations from such estimate at small and large values of mk

(see e.g. Fig. S5). For each fit, we identified the extent of
the power-law regime and our estimate of the exponent and
the associated error are, respectively, the mean and standard
deviation of the maximum-likelihood exponent at different
values of m̄k in the power-law regime.

The estimate of Damuth’s law exponent γ, describing the
decay of mean abundances with species’ typical masses m̄,
requires a correction for a bias introduced by the sampling pro-
tocol on the estimates of mean abundances and mean masses
at small values of m̄. In fact, the sampling protocol in trop-
ical forests censuses instructs to sample only the trees with

§Specifically, one has: a1 = b1−δ1 /Γ(1 − δ, m̄0δ), where Γ is the incomplete Gamma func-

tion. We maximized the log-likelihood: logL(δ, b1) = S log
[
b1−δ1 /Γ(1− δ, m̄0δ)

]
−

δ
∑S

i=1
log m̄i − b1

∑S

i=1
m̄i with respect to δ and b1 , where m̄0 is the minimum

species mass, S is the total number of species and i is an index that identifies the species. The
maximum likelihood fitting of s(m|A) was performed analogously.

dbh larger than 10 mm. The measured abundances of small
species (i.e. those with typical diameter close to 10 mm) are
therefore lower than the true ones because individuals with
diameter d ≤ 10 mm were not censused. As a result, the
average abundance as a function of a typical species’ mass
initially increases with m̄ and is followed by the decreasing
power-law regime where the effect of the sampling protocol
becomes unimportant (fig. 2A). The initial increase is a sam-
pling artifact. In fact, we verified that this is the case by
creating an artificial forest dataset where species’ mean abun-
dances follow Damuth’s law exactly. Within such artificial
forest, we distributed species mean masses m̄ according to
the power-law p(m̄) = (δ − 1)m̄−δ. We drew the abundance
of each species from a Poisson distribution with mean m̄−γ .
Finally, we needed to assign a mass to each individual of each
species. To do so, we characterized the intra-specific mass
distributions of tropical trees p(m|m̄), i.e. the probability that
an individual has mass in (m,m+dm) given that it belongs to
a species with mean mass m̄. We computed intra-specific mass
distributions in the BCI and Luquillo forests (Fig. S6a) and
found, looking at the species with more than 1500 (BCI) and
400 (Luquillo) individuals, that most species have intraspecific
size distributions characterized by the finite-size scaling form:

p(m|m̄) = m−∆F
(
m

m̄Ω

)
, [S50]

where Ω = 1/(2 − ∆) ensures that
∫
mp(m|m̄)dm = m̄,

∆ = 1.12± 0.06¶ and F(x) is a scaling function with limiting
behaviors F(x)→ const for x→ 0 and F(x)→ 0 more rapidly
than any power of x for x→∞. A similar result was found
for unicellular protists (9). Furthermore, via data collapse (i.e.
plotting m∆p(m|m̄) vs m/m̄ψ) we found that F(x) = q0e

−q1x

provides a good fit to the data, where q0 = 0.17 and q1 = 0.21
are constants. Note that q0 is not a parameter of the fit, as it is
fixed by normalization. Having characterized the scaling form
of intraspecific distributions, we could then randomly sample
from such distributions the masses of individuals belonging
to each species in our artificial forest. We then mimicked the
sampling protocol by eliminating all individuals with mass
lower than 0.124 kg (corresponding to a dbh of 10 mm) and
computed Damuth’s law in such a filtered dataset. Fig. S7c
shows that, despite the fact that mean species abundances in
the artificial forest follow Damuth’s law exactly, the sampling
protocol causes the emergence of a new regime at small m̄
where the relationship between 〈n|m̄〉 and m̄ is monotonically
increasing. This demonstrates that the sampling protocol
introduces an artificial deviation from the power-law regime
which has to be considered with care while interpreting empiri-
cal data. The sampling artifact can be corrected as follows. To
derive our estimate for γ and the associated error, we binned
the typical species masses logarithmically and computed the
mean abundance of all species within each bin. Then, we varied
the number of bins nbin and computed the Damuth’s law ex-
ponent γnbin via least-squares fitting of log-transformed data,
weighted by the standard deviation of abundances within each
bin. Our estimate for γ is the mean γ = 〈γnbin〉 across several
values of nbin. To correct for the bias caused by the sampling
protocol, we repeated such computation by considering only
the species with mean mass m̄ > m̄k, with m̄k = ak 0.124 kg

¶The exponent estimate is computed using the method described in Bhattacharjee and Seno (25).
The error is computed as the value of the exponent at which the error functional Pb defined in
Bhattacharjee and Seno (25) is 1% larger than its value at the minimum.
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in the range (0.124− 102) kg (with 1 < a < 2 and k integer).
If mean abundances followed Damuth’s law exactly (in the
absence of sampling bias and with sufficient statistics), such
procedure would return the same value of γ for any m̄k. If
finite-size effects were present at small and large values of m̄,
instead, one would observe an approximately constant estimate
of the exponent at intermediate m̄k and deviations from such
estimate at small and large values of m̄k (see e.g. Fig. S7b).
At large values of m̄k a finite-size effect may also be induced
by low statistics. For each fit, we identified the extent of the
power-law regime and our estimate of γ and the associated
error are, respectively, the mean and standard deviation of
the exponents estimated at the different values of m̄k in the
power-law regime.

In our analysis, we used the fifth, sixth and seventh censuses
of BCI and the five censuses of the Luquillo forest available
online in the Center for Tropical Forest Science (CTFS) dataset
collection. All these censuses satisfy the linking relationship
Eq. S48a within the errors. Whereas BCI censuses appear very
similar to each other (and therefore also the exponent values
estimated in different censuses, see Table S3), the Luquillo
forest appears to be more dynamic (we note that the forest was
hit by a major hurricane between censuses 2 and 3), with the
values of γ decreasing in time after 1998 (census 2, see Table
S4). Because the estimate of δ remains constant suggesting
that climatic, ecological or anthropogenic dynamics affected
only species’ abundances in this forest, our framework would
predict via eq. Eq. S48a that η would also decrease in time,
and in fact this is also found in the data, with eq. Eq. S48a
being verified in all censuses. We note that both the BCI
and the Luquillo datasets reject the linking relationship η = δ
predicted in a previous theoretical work (19).

Although we do not have an estimate of the exponents
µ and ν for tropical forests, a reasonable assumption is
µ = 1 = ν. Given that η < 2 for the BCI and the Luquillo
datasets, such assumption is only verified if λ = 0, i.e. if the
maximum body size does not scale with the ecosystem area.
An analysis of this situation is provided in section 1.8.3.

2.2.2 Equations Eq. S48b and Eq. S48d in other datasets
(Eqs. 6, 8 of the main text)

To test the validity of Eq. S48b we used a dataset gathering
population densities of several species of lizards on 64 islands
worldwide (LIZ) (26), with areas ranging from 10−1 to 105 km2.
In this dataset, we fitted the SAR with linear least-squares
regression on log-transformed data and P (m̄|A) via maximum-
likelihood (20) (Fig. S8a and b), where m̄ are species’ mean
masses. The exponent Φ = 0.78 (describing the dependence of
〈n|m̄, A〉 on A) was obtained by maximizing the coefficient of
determination R2 of the linear least-squares regression of the
pairs

(
log m̄, log n

AΦ

)
obtained by varying Φ in the interval

[0,2] (Fig. S8c and d). The estimate of γ is obtained from the
pairs

(
log m̄, log n

AΦ

)
computed with the optimal value of Φ

with the same methods used for forests, with m̄k = 2ck10−1

kg in the range (10−1−102) kg ( with 1 < c < 2 and k integer).
Note that this estimate of γ is different from the one given
in Table S1, which was obtained by plotting densities versus
typical masses (equivalent to taking Φ = 1) in order to allow
comparison with other data from the literature. The estimates
for the scaling exponents in this dataset are reported in Table
S5. Because in this dataset η = δ + γ is compatible with 2,

Eqs. S48c and S48d imply µ = ν. Furthermore, because in
general α ≤ 1, one has max{0, λ(1 +α−η)} = 0 and therefore
our framework predicts:

ν = µ = 1. [S51]

Eq. S48b (or, equivalently, Eq. S49) thus implies that in
order to have z > 0, as found in the dataset analyzed here, Φ
needs to be smaller than one. Since Φ describes the scaling
of 〈n|m̄, A〉 with A, our framework predicts that species’
densities should decrease with increasing ecosystem area.
This is indeed found in LIZ and the values of z and 1− Φ are
compatible within the errors (see Table S5). Equivalently,
using Eq. S49 and our estimate of z we find ν = 0.95± 0.08,
which is compatible with the prediction (Eq. S51) ν = 1.

2.2.3 Equation S48e (Eq. 9 of the main text)
To test the validity of Eq. S48e we used a dataset of mam-

mals species presence/absence data on several islands in Sunda
Shelf (SSI) (27), covering a wide range of island areas (101 to
106 km2). The SAR and the scaling of the maximum body
mass with the area were fitted with linear least-squares regres-
sion on log-transformed data, while P (m̄|A) was fitted with
maximum-likelihood (20). Scaling exponents in this dataset
are reported in Table S6. We find that eq. Eq. S48e is verified
in the SSI dataset within one standard error, as z = 0.23±0.02
and ξ(δ − 1) = 0.29± 0.1.

3 Mathematical community dynamics models

3.1 Fixed number of species.
3.1.1 Basic model: exploration of parameters’ space
Our basic model for the community dynamics of an ecosystem
depends on a number of parameters (see Methods). As
explained in the Methods section, a thorough exploration
of the parameters’ space is computationally unfeasible.
Nonetheless, we verified that varying the values of the
parameters that are most meaningful for the dynamics (i.e.
Kleiber’s law exponent α, the speciation rate w, the SAR
exponent z and the exponent θ that describes the scaling of
vital rates with body mass), the scaling characterization of
the stationary state always holds and the linking relationships
in Eqs. 1, 6–9 of the main text are always satisfied. Starting
from the set of parameters w = 10−3, z = 1/4, α = 3/4 and
θ = 1/4 (parameters used to generate Fig. 3 of the main
text) we varied one or two parameters at a time, keeping the
other ones fixed. The parameters v0 and c which appear in
Eq. 20 of the main text were fixed to v0 = 1/2 and c = 10−5.
Figs. (S9–S15) show the ecological patterns computed at
stationarity for each set of parameters. Table S7 reports
the estimates of the scaling exponents obtained for each set
of parameters. All estimates were obtained as explained
in the Methods section, unless otherwise stated. For each
set of parameters, the relationships in Eqs. 1, 6–9 of the
main text are satisfied within errors, the data collapses
predicted by our scaling framework hold and the density
scatter-plot of η versus δ+γ estimated at each time-step (Figs.
S9–S15, panel e) is peaked along the 1:1 line, implying that
the linking relationship (1) is satisfied, on average, at all times.

3.1.2 Variation on the speciation dynamics
In order to investigate the sensitivity of our results (i.e. the

compatibility of the dynamic model with the scaling framework,
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Eqs. 6–9 of the main text) to changes in the dynamic model
assumptions, we investigated a variation of our basic model in
which the species that goes extinct at each speciation event
(to maintain S constant) is chosen randomly with a weight
inversely proportional to its abundance, but independent of
its mass. We ran this model with the same parameter values
reported in the Methods section for the basic model and
found that such modified model is compatible with our scaling
framework, and thus with the predicted pattern covariations,
which are verified within the errors. Table S7 reports the
corresponding exponents values and Fig. S16 displays the
macroecological patterns in this model.

3.2 Fluctuating number of species. In order to further investi-
gate the sensitivity of our results to changes in the dynamic
model assumptions, we relaxed the constraint of a fixed num-
ber of species S (as in the basic model) and we let 〈S〉 = Az

be an emergent property of the stochastic model. We achieved
this by maintaining the ecological dynamics of births and
deaths as in the basic model and by modifying the speciation
dynamics in two different ways:

a. At each time step, the number of species that undergo spe-
ciation is drawn from a Poisson distribution with rate w.
The species that undergo speciation are selected randomly.
At speciation, a random number n′i < ni of individuals
of species i maintains the original mass mi, whereas the
remaining individuals are assigned to a new species j
with mass mj = qmi, where q is drawn from a lognor-
mal distribution with constant mean and variance. To
avoid instability (i.e. extreme fluctuations that lead to
the extinction of the community), we impose that the
sum of the consumption rates of species i and j after
speciation is equal to the consumption rate of species
i before speciation. This is done by setting the abun-
dance of species j such that n′imα

i + njm
α
j = nim

α
i , i.e.

nj = (ni − n′i)mα
i /m

α
j .

b. Same as in model a, but the species that undergo specia-
tion are selected randomly with a weight proportional to
their abundance, so that more abundant species are more
likely to speciate.

We found that these models give rise to the empirically
observed set of macroecological laws described in the main
text, and of course the exponents of such laws depend both
on the model specifications and on the model parameters.
Most importantly, despite the differences in the speciation
dynamics, we found that these models are also compatible
with our scaling framework (Eqs. 6–9 of the main text),
which specifies the scaling properties of the joint distribution
P (n,m|A). Thereby, macroecological patterns in these models
comply with our predicted pattern covariations. Tables S9
and S10 report the exponents values measured in these models
and Figs. S17–S20 display the corresponding macroecological
patterns. Parameter values used to run the models are reported
in the figures captions.

3.3 Value of η in the community dynamic models. The size
spectrum exponent η in natural ecosystems typically assumes
values η ∈ (1, 2] (see Tables S1, S3 and S4), although values
of η > 2 can also be found in marine environments (Table S1).
All our community dynamics models yield values of η that are

on average larger than 2 (the average is performed over time,
see Tables S7, S8 and S9), although panels e in Figs. S9–S20
show that η can assume values smaller than 2 at any fixed
time point (i.e. in snapshots of the ecosystem). Unfortunately,
a suitably broad exploration of the parameters space in our
models is computationally unfeasible, as the estimation of
scaling exponents requires several hours of computation in a
high-performance computer in order to properly estimate the
tails of the distribution P (n,m|A). However, based on our
exploration of parameters’ space, 〈η〉 = 2 does seem to be a
lower limit in our community dynamics models. In the attempt
to find parameter sets that may allow for 〈η〉 < 2, we found
that increasing the mean q̄ of the multiplicative factor q that
specifies the mass of the descendant species at a speciation
event (this may be seen as an implementation of Cope’s rule
(28), which postulates that descendant lineages tend to increase
in body size) causes a reduction of the mean size spectrum
exponent 〈η〉 (Figs. S19 and S20, and Table S10). Nonetheless,
parameter sets that yield 〈η〉 < 2 lead to communities that
are very unstable and that rapidly go towards extinction.
It thus appears that our community dynamics models are
missing processes that would allow multiple species to coexist
at a stable equilibrium with 〈η〉 < 2. We speculate that one
reason for this behavior may be the fact that our models
assume a well-mixed system, unlike terrestrial ecosystems such
as forests. In this sense, it may not be coincidental that
values of η > 2 are typically found in aquatic ecosystems
(Table S1) rather than terrestrial ones (Tables S1, S3 and
S4). Further research will be dedicated to the investigation
of macroecological linkages in metacommunities (29–32), with
explicit focus on the implications of spatial structure and
connectivity on scaling exponents values and linkages.

3.4 Specificity and universality. Our investigation of dynamic
birth, death and speciation models corroborates the generality
of our scaling framework and the predicted pattern covaria-
tions. In fact, we found that all the models investigated that
are compatible with the empirically observed macroecologi-
cal patterns described in the main text are all characterized
by the same scaling properties of P (n,m|A), which are en-
capsulated in our scaling framework (Eqs. 2–5 of the main
text) and univocally specify the pattern covariations in Eqs.
1, 6–9 of the main text. Therefore, Eqs. 2–5 of the main
text do not rely on specific assumptions about the population
and speciation dynamics of a community, but rather specify
the universal scaling properties that possibly any dynamic
model compatible with the empirically observed macroecologi-
cal laws must satisfy. Furthermore, the pattern covariations
predicted by our scaling framework agree with empirical evi-
dence (section 2) and with heuristic arguments, i.e. the many
back-of-the-envelope calculations reported in the main text.
It must be understood, however, that the scaling framework
does not predict the values of scaling exponents, but rather
their covariations.

The various community dynamic models studied here, in-
stead, do predict scaling exponents values, which emerge from
the rates and assumptions concerning birth, death and specia-
tion events. However, there may exist several dynamic models
capable of reproducing quantitatively one specific set of ex-
ponents’ values, as it is often the case that several processes
lead to the same pattern (33). Furthermore, we do not claim
that our dynamic models describe any real ecosystem in all its
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complexity, as such models are of course overly simplified to
encompass the broad range of processes that may set the values
of macroecological scaling exponents (e.g. species’ interactions,
landscape structure and ecological disturbances, to name a
few). When modelling any natural process, the first step is
that of abstraction: unnecessary details are removed, until one
reaches the simplest model that is still compatible with the
observed patterns, which for the purpose of this investigation
are the functional forms of the various scaling relationships
and distributions. In this sense, we believe that our models
of birth, death and speciation capture the essential ingredi-
ents that produce the empirically-observed functional forms
of macroecological laws and that set the scaling properties of
the joint distribution of mass and abundance, and thus the
pattern covariations. The exact values of the macroecolog-
ical scaling exponents, instead, are most likely determined
by several processes that are not included in our community
dynamics models, but can be properly described by our scaling
framework.
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Table S1. Estimates for the scaling exponents of the ecological patterns depicted in Fig. 1 (main text). Errors are SEM, CI stands for
confidence interval. If no error is reported, none was given in the original paper.

Law Forests Terrestrial Aquatic
Kleiber’s law (panel a) 0.80± 0.01 0.67± 0.2 1.10, CI 95% : [0.94, 1.21]
Damuth’s law (panel b) 0.26± 0.05 0.57± 0.08 0.73, CI 95% : [0.73, 0.92]

SAR (panel c) 0.27± 0.01 0.23± 0.02 0.094
s(m) 1.59, CI 95% : [1.57, 1.63] 1.5± 0.2 2.11

Table S2. References to empirical measurements of the ecological patterns discussed in the main text. RSA stands for Relative Species
Abundance and Max. body mass stands for the scaling of the maximum body mass with the area of the ecosystem.

Law Forests Terrestrial Aquatic

Kleiber’s law Mori et al. (2010) (4) Kleiber (1932) (34) Nielsen and Sand-Jensen (1990) (35)
Dodds et al. (2001) (36) Finkel et al. (2004) (37)

Marañón et al. (2007) (38)

SAR Lomolino (1982) (39) MacArthur and Wilson (1963) (40) Dodson (1992) (41)
Newmark (1986) (42) Lonsdale (1999) (43)
Okie et al. (2009) (27) Smith et al. (2005) (44)
Preston (1962) (45)

Damuth’s law Cohen et al. (2012) (46) Damuth (1981) (47) Cyr et al. (1997) (48)
Nee et al. (1991) (49) Cohen et al. (2003) (50)

Novosolov et al. (2015) (26)

s(m) Muller-Landau et al. (2006) (51) White et al. (2007) (52) Sheldon (1972) (8)
Stegen and White (2008) (14) Halfpenny (2016) (53) Cavender-Bares et al. (2001) (54)

Condit et al. (2012) (21) Rinaldo et al. (2002) (55)
Marañón et al. (2015) (56)

P (m) Marquet and Taper (1998) (57)
Smith et al. (2003) (58)

Marquet et al. (2005) (59)
Southwood et al. (2006) (12)

Max. body mass Burness et al. (2001) (18)
Okie et al. (2009) (27)

RSA Preston (1948) (60)

Taylor’s law Giometto et al. (2015) (17) Taylor et al. (1961) (61)
Taylor et al. (1980) (62)

Anderson et al. (1982) (63)
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Table S3. Estimates of scaling exponents η, δ and γ in the BCI forest. Errors are computed as reported in the text.

BCI forest Census 5 Census 6 Census 7

s(m) η = 1.43± 0.04 η = 1.43± 0.03 η = 1.44± 0.04
P (m) δ = 1.03± 0.03 δ = 1.05± 0.03 δ = 1.07± 0.05
Damuth’s law γ = 0.41± 0.07 γ = 0.40± 0.06 γ = 0.38± 0.06

Table S4. Estimates of scaling exponents η, δ and γ in the Luquillo forest (22). Errors are computed as reported in the text.

Luquillo forest Census 1 Census 2 Census 3 Census 4 Census 5

s(m) η = 1.27± 0.04 η = 1.18± 0.03 η = 1.09± 0.03 η = 1.09± 0.04 η = 0.95± 0.07
P (m) δ = 1.02± 0.02 δ = 1.01± 0.03 δ = 1.02± 0.05 δ = 1.02± 0.03 δ = 1.02± 0.01
Damuth’s law γ = 0.21± 0.08 γ = 0.23± 0.04 γ = 0.16± 0.04 γ = 0.09± 0.06 γ = 0.03± 0.04

Table S5. Estimates of scaling exponents z, δ, Φ and γ for the LIZ dataset (26). Errors on z and δ are SEM, the error on γ is the SD, the error
on Φ was obtained by bootstrapping. P (m̄) is computed gathering together species from all the islands in the dataset.

SAR z = 0.17± 0.01 R2=0.46
Damuth’s law Φ = 0.78± 0.08
Damuth’s law γ = 0.53± 0.03 R2=0.89
P (m) δ = 1.45± 0.06

Table S6. Estimates of scaling exponents z, ξ and δ for the SSI dataset (27). Errors on z, δ and ξ are SEM.R2 is the coefficient of determination.
P (m̄) is computed gathering together species from all the islands in the dataset.

SAR z = 0.23± 0.02 R2 = 0.93
Mmax ξ = 0.49± 0.09 R2 = 0.76
P (m) δ = 1.6± 0.2
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Table S7. Scaling exponents measured in the basic model for different sets of parameters’ values. Each row (delimited by horizontal lines)
refers to a set, indicated by the parameter which value has been changed with respect to the parameters set described in the main text
(indicated as “Main text set", specified in section 3.1). Under each value, the lower and upper ends of the confidence intervals are reported.
The estimates and the confidence intervals were obtained as described in the Methods section.

δ η γ Φ λ χ ω µ ν

Main text set 2.23 2.54 0.26 0.74 0.38 0.99 0.18 1.0016 0.9982
Fig. S9 2.05 2.28 0.20 0.72 0.32 0.87 0.17 1.0016 0.9980

2.41 2.79 0.34 0.76 0.42 1.03 0.21 1.0017 0.9983

w = 10−4 2.27 2.64 0.33 0.76 0.52 0.98 0.19 1.0030 0.9968
Fig. S10 2.01 2.22 0.28 0.74 0.50 0.92 0.17 1.0027 0.9967

2.54 2.94 0.38 0.78 0.57 1.04 0.20 1.0034 0.9969

w = 10−5 2.28 2.63 0.30 0.75 0.46 0.94 0.18 1.000 0.998
Fig. S11 2.00 2.21 0.25 0.74 0.41 0.73 0.16 0.996 0.995

2.54 2.94 0.36 0.79 0.52 1.05 0.22 1.005 1.001

Fig. S12 2.00 2.21 0.26 0.74 0.73 0.93 0.18 1.0029 0.9989
2.54 2.93 0.31 0.78 0.87 1.03 0.21 1.0031 0.9989

α = 1/4 2.38 2.64 0.29 0.76 0.63 0.98 0.19 1.000 1.000
Fig. S13 2.01 2.22 0.25 0.73 0.60 0.94 0.19 0.998 0.998

2.54 2.94 0.35 0.80 0.69 1.03 0.20 1.002 1.000

θ = 1/2 2.13 2.62 0.49 0.78 0.47 0.95 0.22 1.002 0.997
Fig. S14 1.88 2.26 0.26 0.75 0.44 0.87 0.21 1.002 0.996

2.36 2.94 0.56 0.86 0.53 1.03 0.26 1.003 0.998

z = 1/2 2.23 2.41 0.32 0.50 0.93 0.98 0.38 1.0 0.99
Fig. S15 2.05 2.28 0.31 0.49 0.92 0.96 0.36 1.00 0.99

2.54 2.79 0.34 0.51 0.96 1.05 0.39 1.01 1.00
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Table S8. Scaling exponents measured in the variation of the basic model described in section 3.1.2, Fig. S16. Under each value, the lower
and upper ends of the confidence intervals are reported. The estimates and the confidence intervals were obtained as described in the
Methods section.

δ η γ Φ λ χ ω µ ν

2.54 2.78 0.13 0.76 0.36 0.94 0.14 1.0021 0.998
2.22 2.29 0.04 0.74 0.35 0.7 0.14 1.0021 0.998
2.83 3.11 0.28 0.78 0.40 1.1 0.17 1.0022 0.998

Table S9. Scaling exponents measured in the community dynamics models with fluctuating numbers of species. Each row (delimited by
horizontal lines) refers to a different model (see section 3.2). Model parameters are reported in Figs. S17 and S18. Under each value, the
lower and upper ends of the confidence intervals are reported. The estimates and the confidence intervals were obtained as described in the
Methods section.

Model δ η γ Φ λ χ ω µ ν z

a 2.52 2.83 0.28 0.51 0.92 1.00 0.32 1.01 1.00 0.50
Fig. S17 2.26 2.50 0.24 0.48 0.82 0.91 0.29 1.00 0.99 0.49

2.77 3.15 0.34 0.56 0.99 1.08 0.33 1.01 1.00 0.50

b 2.52 2.69 0.13 0.50 0.60 0.98 0.32 1.00 1.00 0.50
Fig. S18 2.27 2.41 0.10 0.48 0.56 0.92 0.30 0.98 0.99 0.49

2.76 2.96 0.18 0.52 0.66 1.11 0.34 1.02 1.01 0.50

Table S10. Scaling exponents measured in the models with fluctuating numbers of species and q̄ > 1 (see section 3.3). Each row (delimited
by horizontal lines) refers to a model and parameter set. Model parameters are reported in Figs. S19 and S20. Under each value, the lower and
upper ends of the confidence intervals are reported. The estimates and the confidence intervals were obtained as described in the Methods
section. The parameter q̄ is the mean of the multiplicative factor q that defines the descendant species’ mass at each speciation event (cfr.
section 3.2).

Model δ η γ Φ λ χ ω µ ν z

a with 1.96 2.22 0.31 0.52 0.80 0.94 0.50 1.06 0.98 0.49
q̄ = 1.2 1.75 1.98 0.26 0.50 0.75 0.75 0.45 0.91 0.95 0.48

Fig. S19 2.16 2.44 0.34 0.55 0.90 1.18 0.58 1.20 1.00 0.50

b with 1.93 2.06 0.25 0.53 0.93 0.91 0.64 1.13 0.93 0.47
q̄ = 1.2 1.71 1.83 0.19 0.50 0.89 1.65 0.57 0.97 0.87 0.43

Fig. S20 2.14 2.27 0.28 0.55 1.10 0.46 0.70 1.30 0.99 0.52

Table S11. Summary of the empirical tests performed. References are to equations in the main text.

Dataset Measured exponents Relationship that was verified

BCI η, γ, δ (Table S3) Eq.(1): η = δ + γ

Luquillo η, γ, δ (Table S4) Eq.(1): η = δ + γ

LIZ z, Φ,γ, δ (Table S5) Eq.(6): z = 1− Φ−max{0, λ(1 + α− γ − δ)}
SSI z, ξ, δ (Table S6) Eq.(9): ξ = z

δ−1
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Fig. S1. Relative species abundance P (n|A) computed numerically via Eq. S21 (solid black curve), with A = 100, h0 = 100, σ = 1/10, δ = 3/2, γ = 3/4, λ = 3/4
and Φ = 3/4. Shown are the approximations to the RSA computed via Eq. S24 (dashed blue curve) and Eq. S25 (dashed green curve). The blue and red curves are plotted
for n > AΦh0e

−σ/4. The green curve is plotted for 100 ≤ n ≤ AΦh0e
−σ/4. A lognormal tail is plotted for comparison (dashed red curve).
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Fig. S2. Density-scatter plot of δ + γ (panel a) and δ (panel b) versus η in simulations of the stochastic community dynamics model (model a, see section 3.2), with the
exponents estimated at each sampling time-point. The parameters of the stochastic community dynamics model are reported in Fig. S17; shown are simulation data for the
largest simulated area A = 103. Density histograms are normalized to one, with blue representing the value zero and yellow the value one. At each time-step, the exponent
γ was extimated by linear least-squares fit of (log(mi),log(ni)) where the index i runs on all the species present in the ecosystem at that time-step. Note that the small
deviations from the 1:1 line are also due to statistical errors in the estimation of the exponents at each time step. Panel b) shows that the prediction (19) that η = δ is not
supported by simulation data.
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Fig. S3. Scheme of predictions on the values or bounds of scaling exponents based on the linking relationships (S48a-e). Datasets names are located in different columns
according to the available information on their exponents’ values. Forests include Barro Colorado Island (21), Luquillo (22), SSI stands for Sunda Shelf Islands (27), LIZ for the
dataset of lizard densities on islands worldwide (26). Note that the relationship z < ξα is valid for forests only before the physiological constraint has been attained (see
section 1.8.3).
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finite-size effects may be present both at small and large values of m and m̄, for example due to the sampling protocol (see text).
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Size-spectrum exponent η estimated using only data with mass m > mk . The estimated exponent initially increases (until mk ' 0.2 kg) due to a finite-size effect, then is
rather stable until the statistics is not sufficient to properly estimate it (mk > 20 kg).
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19



a b

c d
m (kg)

m (kg)

102107106105

103

103100 101

104

10111010109108

P
(m

)

101100 102

10-2

100

50

10

5

1

A (m2)

0.10

0.05

S

0.30

0.05

0.10

0.15

0.20

0.25

102

100

10-2

0.5 1.0 1.5 2.0

0.20

n m
\ A

0.
75

R
2

�

10-4

0

Fig. S8. Empirical evidence of scaling patterns in LIZ dataset (26): a) SAR; b) P(m̄); c) Coefficient of determination R2 of the linear least-squares fit of
(

log m̄, log n(m̄,A)
AΦ

)
for Φ ∈ [0, 2]. Dashed line in correspondence of the value Φ = 0.75 giving the best fit; d) Non-binned Damuth’s law plotted using the estimated value of Φ (m̄ are species’
mean masses). Best fit parameters are reported in Table S5, details on the fit in the SI text.

20



m
100 104 10810

-1
8

10
-9

10
0

m m

A
‹N

›, 
‹M

›

η
1.2 4.2

δ+
γ

1.
2

4.
2

100 104 10810
-1

8
10

-9
10

0

100 104 10810
0

10
6

10
12

10-3 102 10710
-4

10
2

10
8

A
-Ф

m
γ ‹

n|
m

,A
›

P
(m

|A
)

s(
m

|A
)

‹n
|m

,A
›

100 107 101410
-2

0
10

-1
0

10
0

10-8 10-1 10610
-1

5
10

-5
10

5

100 104 10810
-1

4
10

-7
10

0

10-1 103 10710
-1

0
10

-3
10

4

100 10910
5

10
14

n

P
(n

|m
,A

)

n/‹n|m,A›

n 
P

(n
|m

,A
)

mmax

P
(m

m
ax

|A
)

mmax/A
ω

m
χ P

(m
m

ax
|A

)
m/Aλ

a              b          c     d                  e

f              g          h      i                 l

1:1 line

Fig. S9. Basic model statistics with parameters z = 1/4, w = 10−3, α = 3/4, θ = 1/4 (simulation results shown in Fig. 3 of the main text). Different colors refer to different
values of A = 10i, from i = 1 (lower blue curve in panel c) to i = 8 (upper blue curve in panel c). Panels a-c, f and h show respectively P (m|A), s(m|A), 〈n|m,A〉,
P (n|m,A) and P (mmax|A) estimated at stationarity. Panels d, g and i show collapses of simulation data for 〈n|m,A〉, P (n|m,A) and P (mmax|A), respectively.
Panel e shows the density scatter-plot of δ + γ versus η. The density histogram is normalized to one, with blue representing the value zero and yellow the value one. Shown
are simulation data for the largest area A = 108. Panel j shows the scaling of the average total biomass 〈M〉 (blue crosses and dashed lines) and average total abundance
〈N〉 (black dots and dashed lines) with A. See Table S7 for estimates of exponents’ values.
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Fig. S10. Basic model statistics with parameters z = 1/4, w = 10−4, α = 3/4, θ = 1/4. Different colors refer to different values of ecosystem area A = 10i, with
i = 2 (cyan); 3 (orange); 4 (yellow); 5 (purple); 6 (green). Panels a-c, f and h show respectively P (m|A), s(m|A), 〈n|m,A〉, P (n|m,A) and P (mmax|A) estimated at
stationarity. Panels d, g and i show collapses of simulation data for 〈n|m,A〉, P (n|m,A) and P (mmax|A), respectively. Panel e shows the density scatter-plot of δ + γ

versus η. The density histogram is normalized to one, with blue representing the value zero and yellow the value one. Shown are simulation data for the largest area A = 106.
Panel j shows the scaling of the average total biomass 〈M〉 (blue crosses and dashed lines) and average total abundance 〈N〉 (black dots and dashed lines) with A. See
Table S7 for estimates of exponents’ values.
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Fig. S11. Basic model statistics with parameters z = 1/4, w = 10−5, α = 3/4, θ = 1/4. Different colors refer to different values of ecosystem area A = 10i, with
i = 3 (cyan); 4 (orange); 5 (yellow); 6 (purple). Panels a-c, f and h show respectively P (m|A), s(m|A), 〈n|m,A〉, P (n|m,A) and P (mmax|A) estimated at stationarity.
Panels d, g and i show collapses of simulation data for 〈n|m,A〉, P (n|m,A) and P (mmax|A), respectively. Panel e shows the density scatter-plot of δ + γ versus η. The
density histogram is normalized to one, with blue representing the value zero and yellow the value one. Shown are simulation data for the largest area A = 106. Panel j shows
the scaling of the average total biomass 〈M〉 (blue crosses and dashed lines) and average total abundance 〈N〉 (black dots and dashed lines) with A. See Table S7 for
estimates of exponents’ values.
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Fig. S12. Basic model statistics with parameters z = 1/4, w = 10−3, α = 1/2, θ = 1/4. Different colors refer to different values of ecosystem area A = 10i, with
i = 2 (cyan); 3 (orange); 4 (yellow); 5 (purple); 6 (green). Panels a-c, f and h show respectively P (m|A), s(m|A), 〈n|m,A〉, P (n|m,A) and P (mmax|A) estimated at
stationarity. Panels d, g and i show collapses of simulation data for 〈n|m,A〉, P (n|m,A) and P (mmax|A), respectively. Panel e shows the density scatter-plot of δ + γ

versus η. The density histogram is normalized to one, with blue representing the value zero and yellow the value one. Shown are simulation data for the largest area A = 106.
Panel j shows the scaling of the average total biomass 〈M〉 (blue crosses and dashed lines) and average total abundance 〈N〉 (black dots and dashed lines) with A. See
Table S7 for estimates of exponents’ values.
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Fig. S13. Basic model statistics with parameters z = 1/4, w = 10−3, α = 1/4, θ = 1/4. Different colors refer to different values of ecosystem area A = 10i, with
i = 2 (cyan); 3 (orange); 4 (yellow); 5 (purple); 6 (green). Panels a-c, f and h show respectively P (m|A), s(m|A), 〈n|m,A〉, P (n|m,A) and P (mmax|A) estimated at
stationarity. Panels d, g and i show collapses of simulation data for 〈n|m,A〉, P (n|m,A) and P (mmax|A), respectively. Panel e shows the density scatter-plot of δ + γ

versus η. The density histogram is normalized to one, with blue representing the value zero and yellow the value one. Shown are simulation data for the largest area A = 106.
Panel j shows the scaling of the average total biomass 〈M〉 (blue crosses and dashed lines) and average total abundance 〈N〉 (black dots and dashed lines) with A. See
Table S7 for estimates of exponents’ values.
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Fig. S14. Basic model statistics with parameters z = 1/4, w = 10−3, α = 3/4, θ = 1/2. Different colors refer to different values of ecosystem area A = 10i, with
i = 2 (cyan); 3 (orange); 4 (yellow); 5 (purple); 6 (green). Panels a-c, f and h show respectively P (m|A), s(m|A), 〈n|m,A〉, P (n|m,A) and P (mmax|A) estimated at
stationarity. Panels d, g and i show collapses of simulation data for 〈n|m,A〉, P (n|m,A) and P (mmax|A), respectively. Panel e shows the density scatter-plot of δ + γ

versus η. The density histogram is normalized to one, with blue representing the value zero and yellow the value one. Shown are simulation data for the largest area A = 106.
Panel j shows the scaling of the average total biomass 〈M〉 (blue crosses and dashed lines) and average total abundance 〈N〉 (black dots and dashed lines) with A. See
Table S7 for estimates of exponents’ values.
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Fig. S15. Basic model statistics with parameters z = 1/2, w = 10−3, α = 3/4, θ = 1/4. Different colors refer to different values of ecosystem area A = 10i, where
i = 1 (cyan); 2 (orange); 3 (yellow); 4 (purple). Panels a-c, f and h show respectively P (m|A), s(m|A), 〈n|m,A〉, P (n|m,A) and P (mmax|A) estimated at stationarity.
Panels d, g and i show collapses of simulation data for 〈n|m,A〉, P (n|m,A) and P (mmax|A), respectively. Panel e shows the density scatter-plot of δ + γ versus η. The
density histogram is normalized to one, with blue representing the value zero and yellow the value one. Shown are simulation data for the largest area A = 104. Panel j shows
the scaling of the average total biomass 〈M〉 (blue crosses and dashed lines) and average total abundance 〈N〉 (black crosses and dashed lines) with A. See Table S7 for
estimates of exponents’ values.
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Fig. S16. Variation of the basic model, described in section 3.1.2. Statistics computed with parameters z = 1/4, w = 10−6, α = 3/4, θ = 1/2. Different colors refer to
different values of ecosystem area A = 10i, where i = 1 (cyan); 3/2 (orange); 2 (yellow); 5/2 (purple); 3 (green). Panels a-c, f and h show respectively P (m|A), s(m|A),
〈n|m,A〉, P (n|m,A) and P (mmax|A) estimated at stationarity. Panels d, g and i show collapses of simulation data for 〈n|m,A〉, P (n|m,A) and P (mmax|A),
respectively. Panel e shows the density scatter-plot of δ + γ versus η. The density histogram is normalized to one, with blue representing the value zero and yellow the value
one. Shown are simulation data for the largest area A = 103. Panel j shows the scaling of the average total biomass 〈M〉 (blue crosses and dashed lines) and average total
abundance 〈N〉 (black crosses and dashed lines) with A. See Table S8 for estimates of exponents’ values.
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Fig. S17. Model a (section 3.2) statistics computed with the parameter set: α = 3/4, θ = 1/4,w = 10−2, v0 = 1/2 and c = 10−5. Different colors refer to different values
of ecosystem area A = 10i, where i = 1 (cyan); 3/2 (orange); 2 (yellow); 5/2 (purple); 3 (green). Panels a-c, f and h show respectively P (m|A), s(m|A), 〈n|m,A〉,
P (n|m,A) and P (mmax|A) estimated at stationarity. Panels d, g and i show collapses of simulation data for 〈n|m,A〉, P (n|m,A) and P (mmax|A), respectively.
Panel e shows the density scatter-plot of δ + γ versus η. The density histogram is normalized to one, with blue representing the value zero and yellow the value one. Shown
are simulation data for the largest area A = 103. Panel j shows the scaling of the average total biomass 〈M〉 (blue crosses and dashed lines), average total abundance 〈N〉
(black crosses and dashed lines) and average number of species 〈S〉 (red crosses and dashed lines) with A. See Table S9 for estimates of exponents’ values.
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Fig. S18. Model b (section 3.2) statistics computed with the parameter set: α = 3/4, θ = 1/4,w = 10−2, v0 = 1/2 and c = 10−5. Different colors refer to different values
of ecosystem area A = 10i, where i = 1 (cyan); 3/2 (orange); 2 (yellow); 5/2 (purple); 3 (green). Panels a-c, f and h show respectively P (m|A), s(m|A), 〈n|m,A〉,
P (n|m,A) and P (mmax|A) estimated at stationarity. Panels d, g and i show collapses of simulation data for 〈n|m,A〉, P (n|m,A) and P (mmax|A), respectively.
Panel e shows the density scatter-plot of δ + γ versus η. The density histogram is normalized to one, with blue representing the value zero and yellow the value one. Shown
are simulation data for the largest area A = 103. Panel j shows the scaling of the average total biomass 〈M〉 (blue crosses and dashed lines), average total abundance 〈N〉
(black crosses and dashed lines) and average number of species 〈S〉 (red crosses and dashed lines) with A. See Table S9 for estimates of exponents’ values.
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Fig. S19. Model a (section 3.2) statistics computed with the parameter set: α = 3/4, θ = 1/4, w = 10−2, v0 = 1/2, c = 10−5 and q̄ = 1.2 (q̄ is the mean of the
multiplicative factor q that defines the descendant species’ mass at each speciation event, cfr. section 3.2). Different colors refer to different values of ecosystem area A = 10i,
where i = 1 (cyan); 3/2 (orange); 2 (yellow); 5/2 (purple); 3 (green). Panels a-c, f and h show respectively P (m|A), s(m|A), 〈n|m,A〉, P (n|m,A) and P (mmax|A)
estimated at stationarity. Panels d, g and i show collapses of simulation data for 〈n|m,A〉, P (n|m,A) and P (mmax|A), respectively. Panel e shows the density scatter-plot
of δ + γ versus η. The density histogram is normalized to one, with blue representing the value zero and yellow the value one. Shown are simulation data for the largest area
A = 103. Panel j shows the scaling of the average total biomass 〈M〉 (blue crosses and dashed lines), average total abundance 〈N〉 (black crosses and dashed lines) and
average number of species 〈S〉 (red crosses and dashed lines) with A. See Table S10 for estimates of exponents’ values.

31



  a                b         c     d                 e

 

f             g          h      i                l

m
100 104 10810

-1
8

10
-8

10
0

m m

A
‹N

›, 
‹M

›

η
1.4 3.2

δ+
γ

1.
4

3.
2

100 104 10810
-1

6
10

-8
10

0

100 10910
1

10
6

10-4 10510
0

10
5

A
-Ф

m
γ ‹

n|
m

,A
›

P
(m

|A
)

s(
m

|A
)

‹n
|m

,A
›

100 10810
-2

0
10

-1
0

10
0

10-6 10-2 10210
-1

1
10

-4
10

3

100 103 10610
-1

2
10

-6
10

0

10-1 102 10510
-1

0
10

-4
10

2

101 10410
6

10
9

n

P
(n

|m
,A

)

n/‹n|m,A›

n 
P

(n
|m

,A
)

mmax

P
(m

m
ax

|A
)

mmax/A
ω

m
χ P

(m
m

ax
|A

)
m/Aλ

102

103

104

‹S
›10

8
10

7

102 103

1:1 line

Fig. S20. Model b (section 3.2) statistics computed with the parameter set: α = 3/4, θ = 1/4, w = 10−2, v0 = 1/2, c = 10−5 and q̄ = 1.2 (q̄ is the mean of the
multiplicative factor q that defines the descendant species’ mass at each speciation event, cfr. section 3.2). Different colors refer to different values of ecosystem area A = 10i,
where i = 1 (cyan); 3/2 (orange); 2 (yellow); 5/2 (purple); 3 (green). Panels a-c, f and h show respectively P (m|A), s(m|A), 〈n|m,A〉, P (n|m,A) and P (mmax|A)
estimated at stationarity. Panels d, g and i show collapses of simulation data for 〈n|m,A〉, P (n|m,A) and P (mmax|A), respectively. Panel e shows the density scatter-plot
of δ + γ versus η. The density histogram is normalized to one, with blue representing the value zero and yellow the value one. Shown are simulation data for the largest area
A = 103. Panel j shows the scaling of the average total biomass 〈M〉 (blue crosses and dashed lines), average total abundance 〈N〉 (black crosses and dashed lines) and
average number of species 〈S〉 (red crosses and dashed lines) with A. See Table S10 for estimates of exponents’ values.
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