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Abstract

Decision making in electricity markets under uncertainty has worldwide gained attention due

to an increasing number of uncertain parameters associated to technology developments and

market evolution. Hence, the market operator faces new challenges pertaining to technical

and economic aspects of electricity markets. To tackle these challenges, appropriate models

are necessary.

This dissertation aims to analyze some of the challenges pertaining to the management in

electricity markets under uncertainty and to provide the market operator with the models that

enable it to make informed decisions in such uncertain market environments.

In the context above, we categorize market operation problems into the following four groups.

With the aim of obtaining informed day-ahead decisions in the presence of a number of intra-

day markets and high renewable production, we propose a multi-stage stochastic clearing

model, where the first stage represents the day-ahead market, n stages model n intra-day

markets, and a final stage represents real-time operation. The proposed multi-stage clearing

model considers not only different realizations of renewable power output, but also how these

realizations evolve from day-ahead forecasts into real-time values, and allows flexibility for

the contribution of renewable production in both the day-ahead and intra-day markets in

form of scheduled productions and their adjustments. This improves the market outcomes

and integration of renewable generation.

With the purpose of obtaining marginal prices with cost-recovery features, we develop novel

pricing methodologies in the presence of non-convexities and uncertainty in the market.

These models minimize the duality gap of a stochastic non-convex clearing model and the

dual problem of a relaxed version of this original model subject to primal constraints, dual

constraints, cost-recovery constraints, and integrity constraints. The prices obtained deviate

in the least possible manner from conventional marginal prices. This implies that a minimum

deviation from the optimal value of social welfare is also guaranteed. Moreover, the new

prices preserve the short-term economic efficiency and long-term cost recovery properties of
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marginal prices, while eliminating a need for uplifts.

We provide insightful analyses on the impact of demand flexibility on the operational and eco-

nomic aspects of the power system operation. We investigate how market prices are affected

by flexible demands and what economic consequences are observed. For this purpose, we

consider a system with high renewable production and a number of comparatively expensive

fast-ramping units, which are flexible to react to the uncertainty pertaining to renewable

power production. We investigate the role of flexible demands from an economic viewpoint,

particularly the impact of flexible demands on demand revenues.

Lastly, we develop a risk-neutral two-stage stochastic clearing model and a risk-averse one

for reserve markets. We particularly focus on the Swiss reserve market, which consists of a

weekly market with a gate closure one week ahead of real-time operation and a daily market

with a gate closure two days ahead of real time. The decision-making problem consists of

determining which amount of reserves to procure in the weekly market and which one in the

daily market. In the proposed two-stage model, the first stage represents the weekly market

and the second stage the daily market. The source of uncertainty is the unknown offers in the

daily market, which are represented by scenarios. If the system operator aims to minimize the

risk pertaining to expensive reserve offers in the daily market, a risk-averse instance of this

two-stage clearing model is also proposed.

Key words: Electricity Markets, Multi-Stage Stochastic Programming, Uncertainty Man-

agement, Decision Making, Pricing Schemes, Flexible Demands, Reserve Markets, Renew-

able Production, Intra-Day Markets, Risk, Non-convexity, Uplift, Cost recovery, Value of

the Stochastic Solution, Informed Day-ahead Decisions.
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Résumé

La prise de décision dans les marchés de l’électricité sujet à l’incertitude attire l’attention

à l’échelle mondiale en raison du nombre croissant de paramètres incertains associés aux

développements technologiques et à l’évolution du marché. Par conséquent, l’opérateur du

marché doit faire face à de nouveaux défis liés aux aspects techniques et économiques des

marchés de l’électricité. Pour relever ces défis, des modèles appropriés sont nécessaires.

Cette thèse vise à analyser un certain nombre de défis liés à la gestion des marchés de l’élec-

tricité sujet à l’incertitude et à fournir à l’opérateur du marché des modèles permettant de

prendre des décisions appropriées dans des environnements de marché aussi incertains. Aussi,

dans le contexte ci-dessus, nous classons les problèmes de fonctionnement du marché dans

les quatre groupes suivants.

Dans le but d’obtenir des décisions le jour d’avant en présence d’un certain nombre de

marchés intra-journaliers et d’une production renouvelable élevée, nous proposons un modèle

de marché stochastique à plusieurs étapes, où les étapes représentent respectivement le

marché du jour d’avant, N marchés intra journaliers, et un marché en temps réel. Le modèle

multi-étapes proposé considère non seulement les différentes réalisations de la production

d’énergie renouvelable, mais aussi la façon dont ces réalisations évoluent depuis leur prévision

le jour d’avant jusqu’à leur valeur en temps réel. Il permet une flexibilité de la production

d’énergie renouvelable dans le marché du jour d’avant et les marchés intra journaliers sous

forme de productions programmées et d’ajustement. Cela améliore les résultats du marché

ainsi que l’intégration de la production renouvelable.

Dans le but d’obtenir des prix marginaux avec des options de recouvrement des coûts, nous

développons un nouveau mécanisme de tarification tenant compte de la présence de non-

convexité et d’incertitude dans le modèle de marché. Ce modèle minimise l’écart de dualité

entre un modèle de marché stochastique non convexe et sa version duale relaxée tout en tenant

compte des contraintes du problème primal, des contraintes duals, des contraintes concernant

le recouvrement des coûts et des contraintes sur les variables binaires. Les prix obtenus
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s’écartent le moins possible des prix marginaux conventionnels. En outre, Ces nouveaux prix

préservent l’efficacité économique à court terme et les propriétés de recouvrement des coûts

à long terme des prix marginaux tout en éliminant la nécessité des up-lifts.

Ensuite, nous fournissons des analyses approfondies sur l’impact de la flexibilité de la de-

mande sur les aspects opérationnels et économiques de l’exploitation du réseau électrique.

Nous étudions comment les prix du marché sont affectés par des demandes flexibles et les

conséquences économiques observées. À cet effet, nous considérons un système à forte pro-

duction renouvelable et un certain nombre d’unités à forte montée en charge et réputées

onéreuses. Ces dernières sont considérées suffisamment flexibles pour réagir à l’incertitude

relative à la production d’énergie renouvelable. Nous étudions le rôle des demandes flexibles

d’un point de vue économique, en particulier l’impact des demandes flexibles sur les revenus

de la demande.

Enfin, pour les marchés de réserve, nous développons deux modèles stochastiques à deux

étapes respectivement neutre vis-à-vis du risque et robuste face au risque. Nous nous concen-

trons particulièrement sur le marché de réserve suisse qui comprend un marché hebdoma-

daire avec clôture une semaine avant l’exploitation en temps réel et un marché quotidien

avec clôture deux jours avant le temps réel. Le problème de la prise de décision consiste à

déterminer les quantités de réserve à vendre sur le marché hebdomadaire et le marché journa-

lier respectivement. Dans le modèle proposé en deux étapes, la première étape représente

le marché hebdomadaire et la deuxième étape représente le marché journalier. La source

d’incertitude est liée à l’offre inconnue sur le marché quotidien qui est représentée par des

scénarios. Si l’opérateur du système vise à minimiser le risque lié aux prix des offres de réserve

sur le marché quotidien, le modèle de marché robuste face au risque est proposée à cet égard.

Mots clefs : Marchés d’électricité, Programmation stochastique à multi-étapes, Gestion de

l’incertitude, Prise de décision, Mécanisme de fixation des prix, Demandes flexibles, Mar-

ché de réserve, Production renouvelable, Marchés intra journaliers, Risque, Non convexité,

Uplift, Recouvrement des coûts, Valeur de la solution stochastique.
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The notation used in this dissertation is listed below for quick reference; others are defined

as required in the text. For the sake of clarity, the symbols used to formulate the proposed

models in Chapters 2, 3 and 4 are stated below separately from the symbols used in Chapter 5.
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Constants

αWUs1 Constant determining the upper limit of wind power output at the day-ahead

market.



Notations

αWDs1 Constant determining the lower limit of wind power output at the day-ahead

market.

αWUs2 Constant determining the upper limit of wind power output at the intra-day

market.

αWDs2 Constant determining the lower limit of wind power output at the intra-day

market.

αΔW Constant determining the upper limit of wind adjustments at the intra-day mar-

ket.

αΔP Constant determining the upper limit of conventional unit adjustments at the

intra-day market.

πω Probability of wind power scenario ω.

L j t Power consumption by inflexible demand j in period t [MW].

P max
i Capacity of unit i [MW].

P min
i Minimum power output of unit i [MW].

f max
nr Transmission capacity of line (n,r) [MW].

Ci Variable energy cost of unit i [$/MWh].
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i Start-up cost of unit i [$].
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i Maximum down-reserve that can be provided by unit i [MW].
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Dmin
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1 Introduction

In this dissertation, we analyze some of the challenges pertaining to the management in

electricity markets under uncertainty. The objective of this dissertation is to provide the

market operator with the models that enable it to make informed decisions in electricity

markets where uncertainty matters.

In this chapter, we provide an introduction to the thesis. First, we present an overview of some

existing challenges in electricity markets, and how these challenges motivate the problems

tackled in this thesis. Next, we provide the descriptions of the corresponding problems, and

the approaches used to address them. To contextualized the analysis, a literature review is

also carried out. Finally, the objectives and the layout of this dissertation are provided.

1.1 Motivation

Since the liberalization of the electric energy sector in the 90s, electricity markets have been

evolving across the world. A key question is whether or not the commitment of a unit is

a decision of the owner of that unit or a decision of a central planner, who has detailed

information of the system. This has led to two market organizations in practice: self-dispatch

markets (i.e., decentralized markets) and central-dispatch markets (i.e., centralized markets).

The former is the current practice in many European countries, while the latter is implemented

in the US [3, 27, 12, 71].

The self-dispatch market separates energy markets and transmission system operation to a

large extent. The unit commitment is left to producers while dispatch decisions are made

by the market operator in the day-ahead market [5]. We should note that according to the

common practice in Euope, dispatch schedules are decided by Market Operator on portfolio

basis and the dispatch of individual units is decided by producers. The production schedules

1



Chapter 1. Introduction

of all units are delivered to the system operator over a specific horizon before real-time

operation. The system operator then analyzes the impacts of production schedules on network

congestion. In case of congestion, the system operator sends a command of re-dispatching

to specific units in order to eliminate congestion. The system balancing is the responsibility

of the system operator and it is done by procuring appropriate amounts of reserves in a

reserve market (separated from the energy market), and deploying them when appropriate in

real-time operation.

In a central-dispatch market, a central operator determines the unit commitment and dis-

patch schedules of all generating units. These decisions are made considering the technical

constraints of the units, offer prices, network constraints, and load over day ahead and real-

time horizons. Therefore, the market operator and system operator is the same entity. This

gives the possibility of a co-optimization of energy and reserves in the day-ahead market.

Although these market organizations differ in many ways, some of the challenges that they

face are similar since these challenges are inherent to the nature of power system.

In electricity markets, obtaining right market outcomes necessitates a precise modeling of the

power system operation which includes discontinuities (non-convexities) pertaining to the

operation of generation units. Thus, the market outcomes (i.e., scheduled power productions

and clearing prices) are derived through models with non-convexities. These market-clearing

models are formulated as Mixed-Integer Linear Problems (MILP). Obtaining marginal prices

(i.e., strict linear clearing prices) directly as dual variables from MILP problems is not possible.

In other words, dual variables loose their exact meaning as marginal prices for mixed-integer

optimization problems, contrary to linear ones. The lack of marginal prices in terms of strict

linear clearing prices in the market may question the market outcomes. That is, clearing prices

may not provide dispatch-following incentives to producers, as they may result in inadequate

revenues for producers [50]. In other words, some producers may not be able to recover

their costs under these prices and they may leave market. This eventually results in market

inefficiency.

In short, while from a technical perspective, the use of MILP clearing models might be in-

evitable, from an economic point of view, these models fail to define clearing marginal prices.

On top of this, the growth of renewable generation adds another layer of complexity to the

existing problem: uncertainty. Weather-dependent renewable energy production is uncertain.

Therefore, the renewable units cannot be dispatched as conventional units. On the other hand,

an efficient use of this energy resource is desired due to its small marginal cost. Therefore, an

appropriate clearing model to facilitate the integration of renewable production is required.
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1.1. Motivation

From the market operator point of view, the decision making problem is to determine optimal

power productions and clearing prices in the presence of non-convexities and uncertainties.

In the context above, the following questions arise:

• How should a clearing model be so that an efficient use of resources is obtained in a

market environment under uncertainty?

• How should a pricing scheme be designed to facilitate the operation of the power system

in the presence of uncertainty?

• How does uncertainty affect the cost-recovery conditions of producers?

• What is the impact of uncertainty on a pricing scheme with cost-recovery features?

Another facet of managing electricity markets under uncertainty is flexibility. Flexibility is the

ability of generating units and demands to be scheduled by the system operator with some

degree of freedom. Demand flexibility in form of demand response has gained attention as

one of the effective mechanism to facilitate the integration of uncertain renewable production

[44]. The operational flexibility of demands and units allows the system operator to adapt

them in order to absorb renewable productions to the largest extent, which generally results in

reduced cost. Therefore, systems with a high penetration of renewable production generally

move toward adopting fast-ramping units and flexible demands. That is, future markets may

include comparatively cheap renewable units, comparatively costly fast-ramping units, and

flexible demands. In this context, the following questions arise:

• What are the impacts of demand flexibility on the operational and economic dimensions

of electricity markets?

• How does demand flexibility facilitate the operation of the power system with uncertain

renewable generation?

• Is being flexible advantageous for demands?

The issues thus-far considered are problems faced by an operator in a centrally dispatched

market. Next, we turn the view to a self-dispatched market organization, and focus on a

uncertainty management problem from the Swiss reserve market. In Switzerland, as in other

European countries, the system operator procures the required amount of reserves prior to

real-time operation. The reserve market consists of two different market segments with gate

closures one week ahead and two days prior to real-time operation (i.e., weekly and daily
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reserve markets, respectively). Therefore, the decision-making problem of the system operator

is to identify which quantity of reserves to purchase in the weekly reserve market and which

quantity to procure in the daily reserve market. In this context, the main question is:

• What is an appropriate decision-making model to assist the system operator to procure

the right quantity of reserve in each reserve market?

This thesis seeks to answer the questions above by providing appropriate models and compre-

hensive analyses.

1.2 Market Operations

The questions above can be grouped under one umbrella: market operations under uncertainty.

Market operations include operational aspects involving scheduling problems (i.e., scheduling

power productions, scheduling reserves, and scheduling demands) and economic aspects

consisting of pricing schemes, producers profits, and consumer payments.

To address the above operation challenges, the problems addressed in this thesis are the

following:

• Multi-Stage Stochastic Market-Clearing Model

To obtain efficient market outcomes in the presence of uncertain renewable generation

and an increasing number of intra-day markets, we propose a multi-stage clearing

model involving the day-ahead market, a number of intra-day markets, and real-time

operation. Considering that the two major facets of a market-clearing model are the

scheduling problem and the pricing problem, our focus here is the scheduling problem.

• Pricing Schemes Pertaining to a Stochastic Non-Convex Market-Clearing Model

The other facet of a clearing model is the pricing problem. The non-convexities of the

stochastic clearing model raise the problem of cost recovery of producers. The uncer-

tainty associated with renewable production adds an additional layer of complexity. We

design a pricing model to enforce cost-recovery conditions of producers in a non-convex

stochastic market model with imperfect information of renewable production.

• Economic Impact of Flexible Demands

We consider a system with a high penetration of renewable power production and a large-

scale flexibility provided by fast-ramping units and flexible demands, as the system

in Texas or in Spain. We incorporate demand flexibility in the clearing model, and

investigate whether being flexible under marginal pricing is advantageous for demands.

4



1.3. Literature Review

• Reserve scheduling in the reserve market

In the context of a self-dispatch market (with separated energy and reserve markets) in

the presence of non-convexity and uncertainty, a system operator may face a decision

dilemma for procuring reserves if there exist multiple reserve markets with different

gate closures in different points in time. An example of such a market structure is the

Swiss reserve market, where the operator may procure reserves in a weekly reserve

market and/or a daily one. We propose a two-stage stochastic clearing model appropri-

ately including imperfect market information to identify the best reserve procurement

strategy.

1.3 Literature Review

1.3.1 Methodology: Stochastic programming

To address market operation problems under uncertainty, the method used in this thesis is

stochastic programming.

Important decisions within an electricity market involve a significant level of uncertainty. To

tackle decision-making problems under uncertainty, stochastic programming is an appropri-

ate framework. Stochastic programming models decision-making problems by considering

plausible realizations of the uncertain parameters. Therefore, the solution obtained balances

all these future realizations.

The major drawback of stochastic programming is the dependency of problem size on the

number of scenarios modeling uncertain parameters. On one hand, a high number of scenar-

ios models uncertain parameters in an accurate fashion, but on the other hand, this results in

a high number of variables and constraints, which may lead to computational intractability.

The basics and principles of stochastic programming can be found in [4], [17], and [67]. The

fundamentals of stochastic programming along with the relevant applications in electricity

markets are comprehensively discussed in [14].

When applying a stochastic programming framework to a problem, two relevant questions

arises:

1. Why do we use a stochastic approach with high computation efforts instead of a deter-

ministic one, where the uncertain parameters are replaced by their expected values?

2. How much do we gain by improving the scenarios selected to represent the uncertain

parameters?
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To address the first question, the Value of the Stochastic Solution (VSS) is the relevant metric

[4] and [22]. The VSS is the difference between the optimal objective function computed by a

stochastic approach and the one computed by a counterpart deterministic one. Therefore, the

VSS quantifies the economic advantage of using a stochastic approach over a deterministic

one. The Expected Value of Perfect Information (EVPI) is the metric used to answer the second

question [4]. The EVPI quantifies how much a decision maker is willing to pay for obtaining

perfect information about future, and it is computed as the difference between the optimal

value of objective function obtained from a stochastic approach and the optimal objective

function of a scenario-dependent instance of the same problem.

A relevant topic within stochastic programming framework is risk. References [37], [57], [60],

and [55] provide the risk definition to control the variability associated to uncertain variables

in decision-making problems.

Since scenarios are used to represent the uncertain parameters, it is important to consider an

adequate number of representative scenarios. In this context, scenario generation techniques

([19], [30], and [42]) and scenario reduction techniques ([20], [25], and [41]) are relevant.

1.3.2 Market Operations: Scheduling of Energy and Reserves

From a market-clearing point of view, it is widely accepted that co-optimizing energy and

reserves is the most appropriate scheduling approach. A number of relevant references are

provided in the following.

Reference [9] formulates a stochastic security-constrained multi-period electricity clearing

problem. Using the same concept, [8] formulates a two-stage stochastic clearing problem,

where wind power variability and demand forecast error are the uncertain parameters. Ref-

erence [23] applies stochastic programming to an electricity market to schedule energy and

reserves, where balance power is considered during primary, secondary and tertiary regulation

intervals. Reference [70] proposes a stochastic model to clear the day-ahead market by solving

the unit commitment problem as a master problem and wind scenarios as sub-problems.

In [40], a stochastic clearing model is proposed to determine the optimal quantity and the

costs of spinning and non-spinning reserves in a power system with a high penetration of

wind production. Reference [66] considers a system with wind generation and shows the clear

advantages of using a stochastic market-clearing model instead of a deterministic one, as

the proposed stochastic model results in a less costly and better performing schedules than

those of the deterministic model. In [52], a two-stage stochastic unit commitment model is

proposed to determine the reserve requirements in a power system with a high penetration

of wind power output. This reference suggests a method to generate and to rank scenarios
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representing wind power output using criteria that capture typical wind behavior. Also, [48]

assesses spinning reserve requirements in systems with significant wind power production.

Reference [18] proposes a probabilistic method based on empirical load and wind forecast

data to quantify reserve requirements in systems with a high wind power production.

All these references mainly focuses on modeling the day-ahead market and real-time operation.

However, actual electricity markets have evolved to include intra-day markets [43] and [21].

The structures of intra-day markets differ across the countries. While European intra-day

markets relay on continuous trade principles [21], a centralized market-clearing mechanism

is in favor of the system operators in the US [26]. Reference [32] highlights the value of intra-

day markets in managing wind power uncertainty in competitive electricity markets. This

paper, however, does not explicitly model the day-ahead and intra-day market constraints,

and therefore, the subsequent prices are missed.

1.3.3 Market Operations: Pricing

It is widely recognized that a non-convex market equilibrium with linear prices 1 may not exist

[11]. Many proposed solutions try to get close to a convex problem where marginal prices exist.

In the context of getting close to a convex problem, [46] proposes to fix the integer decisions

at their optimal values obtained from the mixed-integer model, and to derive prices from

the resulting continuous problem. An uplift is then paid to each producer incurring losses

under these prices. Since uplifts are discriminatory, alternative methods may be desirable.

In this context and in a deterministic setting, [59] proposes to obtain prices from a problem

whose objective is to minimize the duality gap of the primal problem and dual problem of a

relaxed versions of the original primal problem while enforcing primal, dual, integrity and

cost recovery constraints. Minimizing the duality gap is a proxy for deviating in the least

possible manner from maximum social welfare. An alternative approach is the convex hull

pricing techniques that convexify the original market-clearing problem prior to solving it,

[24], [68] and [69]. Note that the convex hull approach requires a convexification that is not

unique. Thus, the resulting prices depend on the convexification technique selected. The

semi-Lagrangean approach has similar issues. Reference [6] presents equilibrium prices

composed of an energy price and an uplift charge based on the generation of a condition

that supports optimal allocation. Reference [29] proposes a pricing approach based on a

minimum uplift payment. Authors in [24] show that the prices proposed in [29] correspond to

the optimal Lagrangean multipliers that are also equivalent to the slope of the best convex

1Under linear prices, all offers are financially settled at a single price per node (or per market area) and per time
period; therefore, no financial losses occur given these linear prices.
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dual function of the mixed-integer primal clearing model.

In the context of stochastic market-clearing models, [73] considers a linear model and shows

that balancing prices are dual variables of the real-time market model once the wind power

uncertainty is actualized, provided that first-stage variables (scheduled quantities) are fixed

to their optimal values. This reference also shows that in the presence of uncertainty, cost

recovery for producers is not trivial and proposes different settlement schemes based on the

expectation of prices. Reference [38] develops a single-period network-constrained linear

clearing model focusing on an energy-only market2. The explicit modeling of the market

stages allows to obtain day-ahead and balancing prices. Reference [54] proposes a similar

formulation, but allows different offers for energy and reserve deployment. However, this

may constitute a gaming incentive for some producers. Both, references [38] and [54], discuss

producer cost recovery in expectation.

To the best of our knowledge, no existing reference focuses on the pricing problem in stochastic

non-convex electricity markets.

1.3.4 Market Operations: Demand Flexibility

Demand flexibility in form of demand response is recognized to be an effective mechanism

for facilitating the integration of renewable production, as well as lowering volatility in market

prices, [44] and [62]. Programs promoting demand flexibility in form of demand response are

reviewed in [1]. Reference [35] provides an overview of recent regulations, policies, and the

status of demand response in Europe.

The contribution of demands in providing flexibility from the system operator point of view is

discussed in [33, 39, 75] and [74]. Reference [63] proposes a method for quantifying the effect

of demand flexibility on the various categories of market participants.

Since centralized market mechanisms raise communication, computational and privacy

issues, [51] proposes an algorithm that combines the optimal solution of centralized coordina-

tion problem with decentralized demand participation.

In the context of demand flexibility, dynamic pricing is a relevant topic, where demands are

exposed to real-time prices instead of fixed tariffs, and therefore, encouraged to use their

flexibility by modifying their consumption patterns [7] and [28]. Reference [28] identifies

dynamic pricing as a priority for the implementation of wholesale electricity markets with

demand response. However, reference [58] argues that increases in demand response and

2In an energy-only market, no unit commitment decisions are made, and thus, the problem is convex.
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distributed generation may potentially lead to increased volatility.

Reference [15] proposes an optimization model to adjust the hourly load level of a given

consumer in response to hourly electricity prices. Reference [65] proposes a dynamic pricing

mechanism that explicitly encourages consumers to shift their peak load, and therefore, this

mechanism has the potential to reduce the need for long-term investment in peaking plants.

1.4 Market Operations & Uncertainty Management

In this thesis, market operation problems are segmented into four categories, namely: (i) a

multi-stage stochastic clearing model with the aim of obtaining informed day-ahead decisions,

(ii) a pricing model addressing cost-recovery conditions of producers in the presence of non-

convexities and uncertainty, (iii) insightful analyses on the impact of demand flexibility on

the operational and economic aspects of the power system operation, and (iv) a two-stage

clearing model for reserve markets in a self-dispatch market organization.

In the rest of this section, we summarize these problems.

• Multi-stage stochastic clearing model

Observing the actual electricity markets, two major factors affect energy trade: a large

amount of renewable production and the evolution of markets to include intra-day

trading. These factors motivate a revision of the day-ahead clearing approaches.

We develop a day-ahead clearing model by formulating a multi-stage stochastic pro-

gramming problem, where the first stage represents the day-ahead market, n additional

stages model n intra-day markets, and the last-stage stands for real-time operation. We

showcase the performance of the proposed model by applying it to an illustrative exam-

ple and larger case studies, and benchmark it against the market outcomes obtained

from a two-stage stochastic clearing counterpart.

• Pricing schemes pertaining to a stochastic non-convex market-clearing model

Pricing problem is one of the issues inherent to the non-convex nature of the power

system. In actual electricity markets, marginal prices are obtained from a linear rep-

resentative of the actual non-convex clearing model. These marginal prices may only

reflect the marginal production cost of energy and not costs pertaining to non-convex

decisions such as fixed start-up costs. In such situations, some producers may incur

losses and may eventually leave the market. Therefore, the notion of clearing prices

with cost-recovery features are considered. In the presence of uncertain renewable

production, the definition of cost recovery conditions is not trivial.
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We approach this problem by formulating a stochastic non-convex clearing model.

Next, we develop a model which guarantees cost-recovery conditions for producers.

This model minimizes the duality gap of the stochastic non-convex model and the

dual problem of a relaxed version of that model subject to primal constraints, dual

constraints, cost-recovery constraints, and integrity constraints. The proposed model is

benchmarked against the standard marginal pricing model through a simple example

as well as larger case studies.

• Economic impact of flexible demands

This problem focuses on the role of flexible demands in a market with uncertain wind

production. While the main stream research enumerates a number of advantages arising

from demand flexibility, we take a closer look at the economic impacts of flexible de-

mands: how market prices are affected and what economic consequences are observed.

We approach the problem by incorporating flexible demands in a stochastic clearing

model, where the source of uncertainty is renewable power production. We consider

a flexible system with a number of flexible fast-ramping units which are able to react

to the uncertainty pertaining to renewable power production. In this market context,

we investigate the impact of flexible demands on marginal prices, operation cost, and

consumer payment, and compare these outcomes with those pertaining to a case with

inflexible demands.

• Stochastic clearing model for the reserve market

In the context of self-dispatch markets with separated energy and reserve market, we

present a reserve scheduling problem motivated by the actual reserve market in Switzer-

land.

The sequence of the Swiss reserve market includes a weekly market with a gate closure

one week ahead of real-time operation and a daily market with a gate closure two-days

ahead of real-time operation. The system operator should decide on the amount of

reserves to procure in each reserve market.

We propose a risk-neutral and a risk-averse stochastic clearing model, where the source

of uncertainty is the future reserve offers in the daily market. We showcase the clear

advantages of the proposed stochastic models as compared to a deterministic model

(used in practice) through real cases from the Swiss reserve market.
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1.5 Thesis Objectives

In the crossroad of market operations and uncertainty management, this dissertation aims to

provide appropriate models to assist the system operator to make informed decisions.

The scope of the thesis is on short-term electricity markets and embraces the daily operation

of the power system.

Addressing the market operation problems, previously described, leads to the development

of models including a scheduling model and a pricing model, the economic assessment of

demand flexibility, and finally, the design and implementation of a reserve-clearing model.

In the following, we elaborate on specific objectives of these models.

1.5.1 Objectives for the Multi-Stage Market-Clearing Model

The specific objectives for the scheduling model are:

• To develop a day-ahead clearing model which considers a number of intra-day markets

and uncertain renewable production.

• To formulate the clearing model, described in the previous item, as a multi-stage stochas-

tic programming problem, where the first stage models the day-ahead market, n stages

represent n intra-day markets, and a final stage stands for the real-time operation.

• To benchmark the proposed model against a two-stage stochastic model by comparing

the market outcomes, the Value of the Stochastic Solution (VSS), and computation time

using illustrative examples and larger case studies.

1.5.2 Objectives for the Pricing Scheme Pertaining to a Stochastic Non-Convex

Market-Clearing Model

The specific objectives for the pricing model are:

• To develop a pricing scheme for a stochastic non-convex clearing model, where prices

shall guarantee cost-recovery conditions for units in the presence of uncertain renew-

able production.

• To define and formulate cost-recovery conditions of producers in the presence of uncer-

tainty pertaining to renewable production.
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• To formulate a novel nonlinear optimization problem which minimizes the gap of

the stochastic clearing model and its dual subject to the market and the operation

constraints, dual constraints, and cost-recovery constraints.

• To obtain a computationally tractable model of the nonlinear optimization problem,

described in the previous item.

• To benchmark the outcomes of the proposed model against the conventional approach

using illustrative examples and larger case studies.

1.5.3 Objectives for the Economic Impact of Flexible Demands

The specific objectives related to the impact assessment of flexible demands are:

• To investigate the overall economic impact of large-scale flexible demands, particularly

their impact on marginal prices, in a system with flexible units and uncertain renewable

production, such as those in Texas and Spain.

• To adapt a two-stage stochastic clearing model to consider demand flexibility.

1.5.4 Objectives for Stochastic Reserve Clearing Model

The specific objectives for the reserve clearing model are:

• To develop a new clearing approach with a focus on the structure of Swiss reserve

market.

• To formulate a two-stage stochastic MILP model for clearing the reserve market, de-

scribed in the previous point, where the first stage represents the weekly reserve market

and the second stage stands for the daily reserve market.

• To formulate a risk-averse version of the two-stage model described in the previous

item.

• To characterize uncertain offers in the daily market and represent them via scenarios.

• To provide the results using real cases from the Swiss reserve market.

1.6 Thesis Outline

The outline of the thesis is as follows:
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Chapter 1 provides an introduction to this dissertation. First, we motivate the problems

addressed in this dissertation by reviewing some of the existing challenges in electricity

markets. Next, we outline the problems addressed in this thesis. Then, we provide a general

overview of the literature relevant to the problems considered in this dissertation. Finally, the

approaches and objectives of this thesis are outlined.

Chapter 2 proposes a scheduling model for a system with uncertain power production. If

two major facets of a clearing model are considered to be scheduling (technical aspect) and

pricing (economic aspect), this chapter focuses on the scheduling problem. The model is

formulated as a three-stage stochastic programming problem, where the first stage represents

the day-ahead market, the second stage the intra-day market, and the third-stage the real-

time operation. We showcase the performance of this model by applying it to an illustrative

example and larger case studies, and benchmark it against the market outcomes obtained

from a two-stage stochastic market-clearing model.

Chapter 3 proposes pricing methodologies which guarantee cost recovery for units in the

presence of non-convexities and uncertainty. Considering two major facets of a clearing

model, i.e., scheduling and pricing, this chapter focuses on pricing. The proposed models

minimize the duality gap of a stochastic non-convex clearing primal model and the dual

problem of a relaxed version of the original primal model subject to primal constraints, dual

constraints, cost-recovery constraints, and integrity constraints. The cost-recovery constraints

make the proposed problem nonlinear with bi-linear terms. For computational tractability,

this problem is linearized and recast as a MILP problem. The proposed models are applied to

an illustrative example and larger case studies, and benchmarked against a standard marginal

pricing model.

Chapter 4 incorporates flexible demands to a two-stage stochastic market-clearing model,

where demand consumption level can be scheduled to some extent by the system operator.

The uncertainty related to wind power production is represented via scenarios. We analyze

the economic impacts of flexible demands in a system consisting of a generation-mix of

comparatively expensive fast-ramping units and comparatively cheap renewable units, which

resembles the case of Texas and Spain. The economic assessment of flexible demands include

their impacts on operation costs, day-ahead prices, and consequently, consumer payments

and producer profits. This assessment is done using a small example and larger case studies.

Chapter 5 develops a two-stage MILP model for the Swiss reserve market. The first stage

represents the weekly reserve market, and the second stage the daily reserve market. The

first-stage variables denote decisions for the acceptance or rejection of indivisible offers in

the weekly reserve market, while the second-stage variables are the quantity of reserves to
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be procured in the daily market. The decision-making problem is to minimize the expected

procurement cost of reserves considering the known offers in the weekly market and the

unknown offers in the daily market. We characterize uncertain offers and represent them via

scenarios. The results obtained from the implementation of the developed model in the Swiss

reserve market are provided. A risk-averse version of the developed model is also formulated

and tested.

Chapter 6 provides a summary of the work developed in this thesis accompanied with main

conclusions and contributions. Also, some suggestions for future research are listed in this

chapter.

Appendix A provides some notions related to a multi-stage stochastic programming.

Appendix B provides the technical characteristics of the IEEE 24-node system used in the case

studies of Chapters 2, 3, and 4.

Appendix C provides the mathematical description of minimum up- and down-time con-

straints pertaining to the operation conditions of generating units.
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2 Multi-Stage Stochastic Market-

Clearing Model

2.1 Introduction

Since the start of the liberalization in the electricity industry in the 90s, the electricity trade

has been subject to short-term transactions in the form of pools dealing with daily operations,

and future markets pertaining to mid-term and long-term transactions.

The scope of this chapter is short-term pool-based markets, where electricity is traded in a

day-ahead market, in a number of intra-day markets (also known as adjustment markets), as

well as in real-time operation.

Traditionally, a pool includes a day-ahead market and a real-time one. In the day-ahead market

the on-off status of units and their scheduled production levels are determined considering

day-ahead forecasts. In real-time operation, there is a need to compensate mismatches

between consumption and production in order to preserve the power balance in the system.

For this purpose, reserves are scheduled in the day-ahead market to be eventually deployed

in real-time operation. In a system with conventional units, the amount of reserves can be

easily determined by considering the factors influencing supply-demand mismatch, such as

deviation between the day-ahead load forecast and the actual load, the probability of failure of

generating units, etc. From an energy trade perspective, conventional units can be scheduled

one day in advance without the need for adjusting their scheduled production levels, and

hence, there is usually no need for an extra trading floor between the day-ahead market and

the real-time power delivery. Therefore, pools consisting of a day-ahead market and a real-time

one fit well a system with conventional units. However, the boom in renewable production

challenges this traditional setting.

In the day-ahead market, where scheduling is done, the production ability of renewable units is

still uncertain, as renewable power production depends on weather, whose day-ahead forecast
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still deviates from its actual value. Moving toward real-time operation, a better forecast of

weather conditions becomes available that results in a more precise forecast of the renewable

power production. Therefore, electricity trades in a horizon between the day-ahead market

and real-time operation facilitate the integration of renewable production.

In practice, electricity markets have been evolving to include intra-day trades, where sched-

uled production levels in the day-ahead market can be adjusted using the best available

information related to weather conditions, and thus, renewable production. The intra-day

markets facilitate the integration of renewable production as they give renewable units the

opportunity of offering closer to power delivery, and thus, with reduced uncertainty [43] and

[32].

The structures of intra-day markets differ on both sides of the Atlantic. While European intra-

day markets rely on continuous trade principles (i.e., first come, first serve [21]), a centralized

market-clearing mechanism is in favor in the US [26]. The gate closure of intra-day markets

may vary from several hours to an hour ahead of power delivery. Also, their clearing horizon

may include the whole 24 hours or only some hours [45].

While intra-day markets become the norm, actual clearing processes still rely on deterministic

models, which are not suitable for systems with a large amount of renewable production. In

such systems, a deterministic model generally results in either under-commitment, which is

risky, or over-commitment, which is expensive.

As a solution to deal with uncertain renewable production, mainstream research proposes

to apply two-stage stochastic programming framework to the traditional market structure,

consisting of the day-ahead market and real-time operation. However, consideration of intra-

day markets and their mathematical descriptions in clearing models are missing.

Therefore, the evolving market conditions, involving an increasing number of intra-day mar-

kets and large amounts of uncertain renewable production, call for a revision in clearing

models.

Since our aim is to take informed day-ahead decisions in a trading environment with an

increasing number of intra-day markets and a large amount of renewable production, we

believe that the transient from a deterministic clearing model to a stochastic one should be

a multi-stage clearing model, and not a two-stage one. The corresponding decision-making

processes are described in the following.
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2.2 Decision-Making Process and Scenario Tree

In a stochastic programming framework, uncertain parameters are represented by a number of

scenarios in the form of a scenario tree. A scenario tree schematically describes the decision-

making process in term of the sequence of decisions and the order in which uncertainty

unfolds. Each stage corresponds to a point in time where a decision has to be made, and it

is represented by a node in the scenario tree. The decision points (i.e, stages) are connected

through branches, which represent realizations of uncertain parameters. The mathematical

description of a multi-stage stochastic programming problem is provided in Appendix A.1.

In an electricity market consisting of a day-ahead market, n number of intra-day markets,

and a real-time one, each stage corresponds to a market. That is, the first stage represents

the day-ahead market (the decision point for the day-ahead scheduled productions), n stages

model n intra-day markets (the decision points for schedule adjustments), and a final stage

stands for real-time operation, where uncertain renewable production realizes, and therefore,

the balancing actions (i.e., deployed reserves) are taken. The corresponding scenario tree is

shown in Fig. 2.1.

Stage 1 Stage Ns-1 Stage Ns Stage 2 … 

Day-Ahead  
Market 

A Number of   
Intra-Day Markets 

Real-Time  
Operation 

Figure 2.1 – Scenario tree for a multi-stage decision-making process

We consider a market structure including a day-ahead market settling 24 hourly-based sched-

ules with a gate closure in day d-1, an intra-day market settling 24 hourly-based adjustments

with a gate closure usually several hours ahead of power delivery, and real-time operation.

Thus, corresponding to each time period t in day d, there are three points in time when the

operator makes a decision: the scheduling decision in the day-ahead market with a gate

closure in day d-1, the adjustment decision in the intra-day market with a gate closure several

hours ahead of power delivery (in day d-1), and the deployed reserve decision in real time.
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In this context, we propose a three-stage stochastic model, as an instance of a multi-stage

stochastic model, to clear the day-ahead market, where uncertainty stems from stochastic

renewable generation. The stochastic clearing process includes the first stage representing

the day-ahead market, the second stage modeling the intra-day market, and the third stage

standing for real-time operation. Therefore, the day-ahead schedules are decided with a

detailed prognosis of the future, which includes the intra-day market and real-time operation.

As previously mentioned, a common two-stage model proposed by mainstream research

includes the day-ahead market and real-time operation, and does not consider the intra-day

market.

The scenario trees corresponding to the three-stage, described above, and its two-stage coun-

terpart are shown in Fig. 2.2.

First 
Stage:

Day-Ahead
Market

Second 
Stage:

Intra-Day 
Markets

Third 
Stage:

Real-Time 
Operation

First 
Stage:

Day-Ahead
Market

Second 
Stage:

Real-Time 
Operation

Three-Stage Model Two-Stage Model

Figure 2.2 – Scenario trees for the three-stage market-clearing model and its two-stage coun-
terpart

Fig. 2.3 depicts an example of a scenario tree corresponding to the three-stage model with

two scenarios in the second stage and for each second-stage scenario three scenarios in the

third stage. We can see that scenarios ω1, ω2, and ω3 have a common history until the second

stage, and thereafter they are represented by different paths. The same observation is valid

for scenarios ω4, ω5, and ω6. Therefore, each scenario represents a path from the day-ahead

market (the root node) to the real-time operation (the leaf nodes). This is mathematically

modeled through non-anticipativity constraints, which are mathematically explained in

Section 2.4.1.
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Stage1:
Day-ahead 

Market

Stage 2:
Intra-day 

Market

Stage 3:
Real-time 
Operation

Figure 2.3 – Scenario tree and scenario paths (dashed lines) for a three-stage market-clearing
model

2.3 Assumptions

For simplicity and computational tractability, we consider the following assumptions to

formulate the three-stage market-clearing model.

• The uncertain renewable resource is wind power generation. The wind generation leads

renewable production in term of installed capacity and technological development

[31]. Considering other stochastic resources does not change the nature of the model

proposed.

• The production of wind units depends on the uncertain wind power output. Wind power

production is represented using scenarios. These scenarios are built using historical

wind production data as samples without applying any scenario generation/reduction

techniques.

• The wind producers are assumed to offer their production at a comparatively small

marginal cost.

• A linear representation of the transmission network is considered through a dc load

flow model and losses are neglected. The simultaneous consideration of on/off deci-

sions, stochasticity and an ac power flow model leads severally to intractability of the

optimization problem.

• We do not consider security criteria, such as n-1, to focus on the treatment of wind

uncertainty, and also, to avoid an increase in the size of the model which consequently
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leads to an increase in computation time.

• All generating units are required to offer energy at marginal cost. This is in line with com-

petitive markets, where market players do not have incentive to offer a price different

from their marginal production cost under a marginal pricing scheme. Also, generation

cost functions are assumed to be linear for simplicity.

• The costs of the deployed reserves (i.e., balancing energy) is assumed to be equal to the

cost of producing energy.

• The stochastic clearing model co-optimizes energy and reserve deployment without ex-

plicit reserve offers in the day-ahead market. Units and flexible demands can specify the

reserve levels that they are willing to provide, and hence, they are given the opportunity

of reserve deployment for a profit.

• Loads are assumed to be inelastic. This assumption is for the sake of simplicity, and can

easily be modified by including demands as variables with appropriate utility functions.

• We assume that loads are deterministic. This assumption allows focusing on wind

uncertainty. Note that in systems with stochastic wind power production, load variability

is generally small in comparison with wind uncertainty.

• Non-convexities considered are solely those due to non-zero minimum power out-

puts of conventional units and start-up costs. Taking into account other source of

non-convexities, such as shut-down costs and minimum up/down time constraints, is

straightforward.

2.4 Model Description

In this section, we provide mathematical descriptions of a three-stage clearing model, as well

as its two-stage counterpart.

2.4.1 Three-stage Stochastic Clearing Model

The proposed three-stage clearing model seeks to find optimal power production schedules of

units, their adjustments, and deployed reserves to minimize the expected cost while satisfying

operational constraints.

Decision Variables

The decision variables are categorized into three groups:
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• The first-stage decision variables are related to the day-ahead market before the real-

ization of any scenario (actual wind power output). These variables are here-and-now

decisions and include:

• On/off commitment of each unit in each period (ui t , binary) and its related cost

(C SU
i t , $) at the day-ahead market.

• Scheduled power output (production level) of each conventional unit in each

period at the day-ahead market (Pi t , [MW]).

• Scheduled power output of each wind unit in each period at the day-ahead market

(Wqt , [MW]).

• Angle of each node in each period at the day-ahead market (θnt , [rad]).

• The second-stage decisions pertain to the intra-day market. They are wait-and-see

decisions with respect to the day-ahead market and here-and-now regarding the real-

time operation. These decisions are made after the scheduling stage is over and before

the realization of any scenario in real-time operation.

• Upward power adjustment of each conventional unit in each scenario and each

period at the intra-day market (ΔP U
i tω, [MW]).

• Downward power adjustment of each conventional unit in each scenario and each

period at the intra-day market (ΔP D
i tω, [MW]).

• Upward power adjustment of each wind unit in each scenario and each period at

the intra-day market (ΔW U
qtω, [MW]).

• Downward power adjustment of each wind unit in each scenario and each period

at the intra-day market (ΔW D
qtω, [MW]).

• Angle of each node in each scenario and each period at the intra-day market (θs2
ntω,

[rad]).

• The third-stage decision variables are made after the realization of the uncertain wind

production in real-time operation. They represent recourse actions compensating for

the actual wind power output, and thus, constitute wait-and-see decisions, and are

defined for each single scenario considered in the third stage:

• Deployed up reserve of each conventional unit in each scenario and each period

in real-time operation (r U
i tω, [MW]).

• Deployed down reserve of each conventional unit in each scenario and each period

in real-time operation (r D
i tω, [MW]).
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• Angle of each node in each scenario and each period in real-time operation (θs3
ntω,

[rad]).

• Wind power spillage of each wind unit in each scenario and each period in real-

time operation (wspill
qtω , [MW]).

• Involuntarily load shedding of each load in each scenario and each period in

real-time operation (Lshed
j tω , [MW]).

We should note that ω represents a scenario path, as previously described in Section 2.2 and

illustrated in Fig. 2.3. Taking the scenario path into account, instead of separately considering

second-stage and third-stage scenarios, helps to clarify the mathematical formulation, as the

scenarios of the second stage and the scenarios of the third stage do not have to be denoted

differently.

Objective Function

The objective function consists of three terms pertaining to the cost in the day-ahead market,

the expected cost in the intra-day market, and the expected balancing cost in real-time

operation:

• The day-ahead cost includes the start-up cost and production costs of conventional

units, as well as the production cost of wind units over all periods of the market horizon:

NT∑
t=1

[ NG∑
i=1

[C SU
i t +Ci Pi t ]+

NQ∑
q=1

CqWqt
]

(2.1)

• The expected intra-day cost results from the adjustments of day-ahead scheduled pro-

ductions of conventional units as well as wind units in the intra-day market. Since

schedule adjustments depend on the wind power output represented by scenarios, the

intra-day cost depends on scenarios:

NT∑
t=1

NΩ∑
ω=1

πω

[ NG∑
i=1

Ci (ΔP U
i tω−ΔP D

i tω)+
NQ∑

q=1
Cq (ΔW U

qtω−ΔW D
qtω)

]
(2.2)

• The expected balancing cost results from the deployed reserves (first term in equation

(2.3)), actual wind power output and its spillage (second term in equation (2.3)), and

involuntary load shedding (third term in equation (2.3)) in real-time operation. The

expected balancing cost also depends on scenarios representing wind power output, as
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the third-stage decisions compensate for the realization of the wind power production:

NT∑
t=1

NΩ∑
ω=1

πω

[ NG∑
i=1

Ci (r U
i tω− r D

i tω)+
NQ∑

q=1
Cq (W RT

qtω−Wq −ΔW U
qtω+ΔW D

qtω−wspill
qtω )

+
NL∑
j=1

V LOL
j t Lshed

j tω

]
(2.3)

The summation of these cost components results in the total cost. The objective of the

three-stage clearing model is to minimize this cost, as expressed by (2.4).

Minimize
Ξ3s

NT∑
t=1

[
NG∑
i=1

C SU
i t +

NΩ∑
ω=1

πω

[ NG∑
i=1

Ci (Pi t +ΔP U
i tω−ΔP D

i tω+ r U
i tω− r D

i tω)+
NQ∑

q=1
Cq (W RT

qtω−wspill
qtω )

+
NL∑
j=1

V LOL
j t Lshed

j tω

]]
(2.4)

The minimization is over the set of variablesΞ3s = {C SU
i t ,ui t ,Pi t ,∀i ,∀t ;Wqt ,∀q,∀t ;θnt ,∀n,∀t ;

ΔP U
i tω,ΔP D

i tω,∀i ,∀t ,∀ω;ΔW U
qtω,ΔW D

qtω,∀q,∀t ,∀ω;r U
i tω,r D

i tω,∀i ,∀t ,∀ω; wspill
qtω ,∀q,∀t ,∀ω;θs2

ntω,

θ
s3
ntω,∀n,∀t ,∀ω;Lshed

j tω ,∀ j ,∀t ,∀ω}, as described in Section 2.4.1.

We note here that reserve offer prices are not considered in the objective function. We allow

units to indicate their reserve levels (MW) that they are willing to provide, thus give them the

opportunity of reserve deployment for a profit.

Constraints

There are four categories of constraints: the constraints pertaining to the day-ahead market,

those accounting for the intra-day market, the constraints representing the real-time opera-

tion, and finally, the non-anticipativity constraints implying that decisions must be equal if

the realizations of stochastic parameter are equal.

First-Stage Constraints (Day-ahead Market):

Any market seeks to balance supply and demand. In power systems with a large amount of

stochastic wind generation, a share of the energy supply is uncertain at the scheduling stage

occurring in the day-ahead market. This implies that the day-ahead scheduled productions

(first-stage decisions) shall account for the impact of uncertain wind power production. There-

fore, units shall be scheduled such that the power system is able to absorb actual wind power

output at minimum cost.
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We represent the contribution of wind unit q in the power balance equation at the day-ahead

market through variable Wqt , and formulate the power balance equation for each node n and

period t as follows:

∑
i∈M G

n

Pi t +
∑

q∈M Q
n

Wqt −
∑

j∈M L
n

L j t −
∑

r∈Λn

Bnr (θnt −θr t ) = 0, ∀n,∀t (2.5)

The term
∑

r∈Λn

Bnr (θnt −θr t ) represents the power flows (dc model) between node n and the

nodes connected to it, denoted by r ∈Λn , at period t .

The production level of conventional units is limited by their minimum and maximum power

output:

ui t P min
i ≤ Pi t ≤ ui t P max

i , ∀i ,∀t (2.6)

The wind production is also bounded within a range. We consider coefficients αWDs1 and

αWUs1 to specify the limits of wind production with respect to its best available day-ahead

forecast W DA
qt :

αWDs1W DA
qt ≤Wqt ≤αWUs1W DA

qt , ∀q,∀t (2.7)

In the objective function (2.4), the start-up cost of conventional units C SU
i t is one of the cost

terms in the day-ahead market. This cost results from a change in the status of a conventional

unit and is modeled using the commitment variable ui t and the start-up cost K SU
i as follows:

K SU
i (ui t −ui ,t−1) ≤C SU

i t , ∀i ,∀t (2.8)

C SU
i t ≥ 0, ∀i ,∀t (2.9)

ui t ∈ {0,1}, ∀i ,∀t (2.10)

Equations (2.8) and (2.9) enforce that variable C SU
i t equals either zero or the start-up cost K SU

i .

Other technical constraints that must be considered at the day-ahead market are the ramp

limits of generators. In a multi-period model, the scheduled production of a unit over the

periods shall respect its minimum and maximum ramping limits, denoted by RDi and RUi

respectively:

RDi ≤ Pi t −Pi ,t−1 ≤ RUi , ∀i ,∀t (2.11)
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Finally, the slack bus is considered to be node 1:

θ1t = 0, ∀t (2.12)

Second-Stage Constraints (Intra-day Market):

The second-stage constraints include the constraints modeling the intra-day market and

involve variables pertaining to adjustments of day-ahead scheduled productions of units (i.e.,

conventional units as well as wind units).

The intra-day market allows upward or downward power adjustments in order to adopt to the

best available forecast of wind power output W ID
qtω in each scenario. Therefore, the second-

stage constraints are defined for each scenario.

Given the best available forecast of wind power output W ID
qtω and the wind scheduled pro-

duction Wqt decided at the day-ahead market, a set of adjustment decisions (i.e., ΔP U
i tω,

ΔP D
i tω,∀i ,∀t ,∀ω; ΔW U

qtω, ΔW D
qtω,∀q,∀t ,∀ω) are made to compensate for wind changes of

W ID
qtω−Wqt . The adjustment decisions shall respect the power balance in the system:

∑
i∈M G

n

ΔP U
i tω−ΔP D

i tω+ ∑
q∈M Q

n

W ID
qtω−Wqt −ΔW U

qtω+ΔW D
qtω

− ∑
r∈Λn

Bnr (θs2
ntω−θ

s2
r tω−θnt +θr t ) = 0, ∀n,∀ω,∀t (2.13)

We enforce that the day-ahead scheduled productions and their power adjustments satisfy

generation capacity limits through equation (2.14). Also, we consider that power adjustments

are limited to αΔP % of the maximum power output, as enforced by equations (2.15) and (2.16).

A zero value of αΔP means that there is no power adjustment possible in the intra-day market,

and a value of 1 (or 100%) extends the power adjustments to full generation capacity, P max
i :

ui P min
i ≤ Pi t +ΔP U

i tω−ΔP D
i tω ≤ ui t P max

i , ∀i ,∀ω,∀t (2.14)

0 ≤ΔP U
i tω ≤αΔP P max

i , ∀i ,∀ω,∀t (2.15)

0 ≤ΔP D
i tω ≤αΔP P max

i , ∀i ,∀ω,∀t (2.16)

Constraint (2.17) enforces that the wind scheduled production adapted by their corresponding

power adjustments stay within a range specified by a percentage of W ID
qtω. This range is not

necessarily symmetric; hence, constants αWDs2 and αWUs2 are considered differently from
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each other in equation (2.17):

αWDs2W ID
qtω ≤Wqt +ΔW U

qtω−ΔW D
qtω ≤αWUs2W ID

qtω, ∀q,∀ω,∀t (2.17)

For individual up and down power adjustments of each wind unit, we assume a limit prescribed

by αΔW % of installed capacity, as in (2.18) and (2.19). A zero value of αΔW means that no

power adjustments are possible for wind units in the intra-day market, and a value of 100%

allows power adjustments to full installed capacity, W max
q :

0 ≤ΔW U
qtω ≤αΔW W max

q , ∀q,∀ω,∀t (2.18)

0 ≤ΔW D
qtω ≤αΔW W max

q , ∀q,∀ω,∀t (2.19)

The power scheduled for each unit modified by its adjustments shall respect the ramping

limits:

RDi ≤
(
Pi t +ΔP U

i tω−ΔP D
i tω

)− (
Pi ,t−1 +ΔP U

i ,t−1,ω−ΔP D
i ,t−1,ω

)≤ RUi , ∀i ,∀ω,∀t (2.20)

Finally, the slack variable in node 1 is enforced by equation (2.21):

θ
s2
1tω = 0 : σ1tω, ∀ω,∀t (2.21)

Third-Stage Constraints (Real-Time Operation):

The third-stage constraints pertain to the actual power system operation in real time and

involve the third-stage decisions made to balance the actual wind power output in real-time

operation, which is modeled through scenarios. Hence, these constraints and decisions are

defined per scenario.

Once the wind power output realizes in real-time operation, preserving the energy balance in

the system necessitates to deploy upward or/and downward reserves, to spill wind power, and

as a last measure, to eventually shed the load. The power balance in real-time operation is

modeled through equation (2.22), where upward reserve deployment r U
i tω, downward reserve

deployment r D
i tω, and wind spillage wspill

qtω compensate for the actual wind power output W RT
qtω

considering the wind power scheduled in the day-ahead market, Wqt , and its adjustments in

the intra-day stage, ΔW U
qtω and ΔW D

qtω. Load shedding Lshed
j tω is the last resort to preserve the
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power balance in the system:

∑
q∈M Q

n

(W RT
qtω−Wqt −ΔW U

qtω+ΔW D
qtω−wspill

qtω )+ ∑
i∈M G

n

(r U
i tω− r D

i tω)

− ∑
r∈Λn

Bnr (θs3
ntω−θ

s3
r tω−θ

s2
ntω+θ

s2
r tω)+ ∑

j∈M L
n

Lshed
j tω = 0, ∀n,∀ω,∀t (2.22)

The term Bnr (θs3
ntω−θ

s3
r tω−θ

s2
ntω+θ

s2
r tω) models the power flow (dc approximation) through

the line connecting nodes n and r per scenario ω. In each scenario, the power flow must be

within thermal limits of each line. This is modeled through equation (2.23):

− f max
nr ≤ Bnr (θs3

ntω−θ
s3
r tω) ≤ f max

nr , ∀n,∀r ∈Λn ,∀ω,∀t (2.23)

Note that enforcing line limit constraints is not generally required in the day-ahead and intra-

day markets. However, in real-time operation actual power flows must remain within the line

limits in any realization of the wind power outputs.

Node 1 is set to be the reference node:

θ
s3
1tω = 0, ∀ω,∀t (2.24)

The final power output of each unit involves its scheduled production level at the day-ahead

market, its power adjustment in the intra-day market, and eventually, its reserve deployment

in real-time operation for each scenario. This power output is denoted by Pi t +ΔP U
i tω−ΔP D

i tω+
r U

i tω− r D
i tω and needs to be within the generation capacity limits:

ui t P min
i ≤ Pi t +ΔP U

i tω−ΔP D
i tω+ r U

i tω− r D
i tω ≤ ui t P max

i , ∀i ,∀ω,∀t (2.25)

Additionally, equation (2.26) enforces that the final power output of each unit meets its ramp-

ing constraints:

RDi ≤
(
Pi t +ΔP U

i tω−ΔP D
i tω+ r U

i tω− r D
i tω

)
− (

Pi ,t−1 +ΔP U
i ,t−1,ω−ΔP D

i ,t−1,ω+ r U
i ,t−1,ω− r D

i ,t−1,ω

)≤ RUi , ∀i ,∀ω,∀t (2.26)

Finally, we describe the limits of the third-stage decision variables in the following.

The up/down deployed reserves of each unit are limited between zero and the corresponding
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up/down reserve offers:

0 ≤ r U
i tω ≤ RU,max

i ,∀i ,∀ω,∀t (2.27)

0 ≤ r D
i tω ≤ RD,max

i ,∀i ,∀ω,∀t (2.28)

Involuntary load shedding Lshed
j tω vary between zero and the actual load L j t :

0 ≤ Lshed
j tω ≤ L j t , ∀ j ,∀ω,∀t (2.29)

Additionally, wind power spillage is below the actual wind power output:

0 ≤ wspill
qtω ≤W RT

qtω, ∀q,∀ω,∀t (2.30)

Non-Anticipativity Constraints:

The fourth group of constraints is the non-anticipativity of decisions, which implies that if the

realizations of stochastic wind power output are identical up to stage s, the value of decisions

shall be then identical up to stage s. In other words, if scenarios ω and ω̂, which represent

two realizations of wind power output, are equal, the decisions depending on these scenarios

must be also equal.

The non-anticipativity of the intra-day decisions is mathematically expressed as:

ΔP U
i tω =ΔP U

i tω̂,ΔP D
i tω =ΔP D

i tω̂, ∀i ,∀ω,ω̂|ω= ω̂,∀t

ΔW U
qtω =ΔW U

qtω̂,ΔW D
qω =ΔW D

qω̂, ∀q,∀ω,ω̂|ω= ω̂,∀t

θ
s2
ntω = θ

s2
ntω̂, ∀n,∀ω,ω̂|ω= ω̂,∀t (2.31)

An example of the non-anticipativity of the decisions at the second stage is described in Fig

2.3. The corresponding mathematical statements are as follow. The non-anticipativity of the

intra-day decisions let θs2
nω1

= θ
s2
nω2

= θ
s2
nω3

and θ
s2
nω4

= θ
s2
nω5

= θ
s2
nω6

, ΔP U
iω1

=ΔP U
iω2

=ΔP U
iω3

and

ΔP U
iω4

=ΔP U
iω5

=ΔP U
iω6

, ΔW U
qω1

=ΔW U
qω2

=ΔW U
qω3

and ΔW U
qω4

=ΔW U
qω5

=ΔW U
qω6

, and similar

equalities for downward schedule adjustments.

28



2.4. Model Description

Complete Formulation

The complete formulation of the proposed three-stage clearing model is as follows:

Minimize
Ξ3s

NT∑
t=1

[
NG∑
i=1

C SU
i t +

NΩ∑
ω=1

πω

[ NG∑
i=1

Ci (Pi t +ΔP U
i tω−ΔP D

i tω+ r U
i tω− r D

i tω)

+
NQ∑

q=1
Cq (W RT

qtω−wspill
qtω )+

NL∑
j=1

V LOL
j t Lshed

j tω

]]
(2.32a)

subject to

First-stage constraints:∑
i∈M G

n

Pi t +
∑

q∈M Q
n

Wqt −
∑

j∈M L
n

L j t −
∑

r∈Λn

Bnr (θnt −θr t ) = 0,∀n,∀t (2.32b)

ui t P min
i ≤ Pi t ≤ ui t P max

i ,∀i ,∀t (2.32c)

αWDs1W DA
qt ≤Wqt ≤αWUs1W DA

qt ,∀q,∀t (2.32d)

K SU
i (ui t −ui ,t−1) ≤C SU

i t ,∀i ,∀t (2.32e)

ui t ∈ {0,1},∀i ,∀t (2.32f)

RDi ≤ Pi t −Pi ,t−1 ≤ RUi ,∀i ,∀t (2.32g)

θ1t = 0,∀t (2.32h)

Second-stage constraints:∑
i∈M G

n

ΔP U
i tω−ΔP D

i tω+ ∑
q∈M Q

n

W ID
qtω−Wqt −ΔW U

qtω+ΔW D
qtω

− ∑
r∈Λn

Bnr (θs2
ntω−θ

s2
r tω−θnt +θr t ) = 0,∀n,∀ω,∀t (2.32i)

ui P min
i ≤ Pi t +ΔP U

i tω−ΔP D
i tω ≤ ui t P max

i ,∀i ,∀ω,∀t (2.32j)

αWDs2W ID
qtω ≤Wqt +ΔW U

qtω−ΔW D
qtω ≤αWUs2W ID

qtω,∀q,∀ω,∀t (2.32k)

ΔP U
i tω ≤αΔP P max

i ;ΔP D
i tω ≤αΔP P max

i ,∀i ,∀ω,∀t (2.32l)

ΔW U
qtω ≤αΔW W max

q ;ΔW D
qtω ≤αΔW W max

q ,∀q,∀ω,∀t (2.32m)

RDi ≤ (Pi t +ΔP U
i tω−ΔP D

i tω)− (Pi ,t−1 +ΔP U
i ,t−1,ω−ΔP D

i ,t−1,ω) ≤ RUi ,∀i ,∀ω,∀t (2.32n)

θ
s2
1tω = 0 : σ1tω,∀ω,∀t (2.32o)

Third-stage constraints:∑
q∈M Q

n

(W RT
qtω−Wqt −ΔW U

qtω+ΔW D
qtω−wspill

qtω )+ ∑
i∈M G

n

(r U
i tω− r D

i tω)

− ∑
r∈Λn

Bnr (θs3
ntω−θ

s3
r tω−θ

s2
ntω+θ

s2
r tω)+ ∑

j∈M L
n

Lshed
j tω = 0,∀n,∀ω,∀t (2.32p)
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ui t P min
i ≤ Pi t +ΔP U

i tω−ΔP D
i tω+ r U

i tω− r D
i tω ≤ ui t P max

i ,∀i ,∀ω,∀t (2.32q)

r U
i tω ≤ RU,max

i ,∀i ,∀ω,∀t (2.32r)

r D
i tω ≤ RD,max

i ,∀i ,∀ω,∀t (2.32s)

Lshed
j tω ≤ L j t ,∀ j ,∀ω,∀t (2.32t)

wspill
qtω ≤W RT

qtω,∀q,∀ω,∀t (2.32u)

− f max
nr ≤ Bnr (θs3

ntω−θ
s3
r tω) ≤ f max

nr ,∀n,∀r ∈Λn ,∀ω,∀t (2.32v)

RDi ≤
(
Pi t +ΔP U

i tω−ΔP D
i tω+ r U

i tω− r D
i tω

)
− (

Pi ,t−1 +ΔP U
i ,t−1,ω−ΔP D

i ,t−1,ω+ r U
i ,t−1,ω− r D

i ,t−1,ω

)≤ RUi ,∀i ,∀ω,∀t (2.32w)

θ
s3
1tω = 0,∀ω,∀t (2.32x)

Non-anticipativity constraints:

ΔP U
i tω =ΔP U

i tω̂,ΔP D
i tω =ΔP D

i tω̂,∀i ,∀ω,ω̂|ω= ω̂,∀t

ΔW U
qtω =ΔW U

qtω̂,ΔW D
qω =ΔW D

qω̂,∀q,∀ω,ω̂|ω= ω̂,∀t

θ
s2
ntω = θ

s2
ntω̂,∀n,∀ω,ω̂|ω= ω̂,∀t (2.32y)

Variable declarations:

0 ≤ Pi t ,C SU
i t ,∀i ,∀t

0 ≤Wqt ,∀q,∀t

0 ≤ΔP U
i tω,ΔP D

i tω,r U
i tω,r D

i tω,∀i ,∀ω,∀t

0 ≤ΔW U
qtω,ΔW D

qtω, w spill
qtω ,∀q,∀ω,∀t

0 ≤ Lshed
j tω ,∀ j ,∀ω,∀t (2.32z)

The problem (2.32) minimizes the expected operation cost (2.32a) considering day-ahead

market constraints (2.32b)-(2.32h), intra-day market constraints (2.32i)-(2.32o), real-time

operation constraints (2.32p)-(2.32x), non-anticipativity constraints (2.32y), and constraints

(2.32z) expressing variable declarations.

Problem (2.32) models the realizations of wind power output through a finite number of

scenario paths ω. A scenario path establishes how the wind power output evolves from its

day-ahead forecast, W DA
qt , and the intra-day forecast, W ID

qtω, to its realization denoted by W RT
qtω.

We should note that through the power balance equations (2.32b), (2.32i), and (2.32p), the

production limit constraints (2.32j), (2.32k), and (2.32q), and the ramping limit equations

(2.32n) and (2.32w), the day-ahead decisions are coupled to the intra-day decisions, and the

intra-day decisions are linked to the operation decisions made in real time. These constraints

are called linking constraints or coupling constraints in stochastic programming framework,
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as they couple the first-stage, second-stage, and third-stage decisions.

2.4.2 Two-stage Stochastic Clearing Model

A common two-stage model involves the day-ahead market and real-time operation without

the intra-day market. Thus, the three-stage model (2.32) can be easily recast as a two-stage one

by eliminating all variables and constraints pertaining to the intra-day market. The decision-

making problem is, thus, to take day-ahead decisions taking into account uncertain wind

power output in real-time operation. That is, the day-ahead decisions and constraints remain

the same as those of the three-stage model. To avoid repeating the detailed description of

the market, but to mathematically clarify the two-stage model, we briefly describe variables,

objective function, and constraints of the two-stage model in the sequel.

Variables

We categorize the decisions into two groups: decisions pertaining to the day-ahead market,

and decisions related to real-time operation.

• The first-stage variables pertain to the day-ahead market, similar to those in the three-

stage model. They are decided before any realization of wind power output, and hence,

these variables are here-and-now decisions and include:

– On/off commitment of each unit in each period (ui t , binary) and its related cost

(C SU
i t , $).

– Scheduled power output (production level) for each conventional unit at the day-

ahead market in period t (Pi t , [MW]).

– Scheduled power output for each wind unit at the day-ahead market in each period

(Wqt , [MW]).

– Angle of each node at the day-ahead market in each period (θnt , [rad]).

• The second-stage variables pertain to the realization of wind power production in real-

time operation. These decisions compensate for actual wind power output, and thus,

defined for each single scenario. The operation decisions are wait-and-see decisions

and involve:

– Deployed up reserve by each conventional unit in each scenario and each period

in real-time operation (r U
i tω, [MW]).

– Deployed down reserve by each conventional unit in each scenario and each period

in real-time operation (r D
i tω, [MW]).
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– Angle of each node in each scenario and each period in real-time operation (θntω,

[rad]).

– Wind power spillage of each wind unit in each scenario and each period in real-

time operation (wspill
qtω , [MW]).

– Involuntarily load shedding of each load in each scenario and each period in

real-time operation (Lshed
j tω , [MW]).

We should note here that in the three-stage model, variables of two stages (i.e., second and

third stages) are defined per scenario. Thus, superscripts s2 and s3 are used for the clarity of

formulation. In the two-stage model, there is only one stage whose variables are defined per

scenario, and thus, we do use any extra superscript.

Objective Function

The objective function consists of two components representing the cost in the day-ahead

market, which is the same as the day-ahead cost in the three-stage model expressed in (2.1),

and the expected balancing cost pertaining to real-time operation stated in (2.33).

NT∑
t=1

NΩ∑
ω=1

πω

( NG∑
i=1

Ci (r U
i tω− r D

i tω)+
NQ∑

q=1
Cq (W RT

qtω−Wq −wspill
qtω )+

NL∑
j=1

V LOL
j t Lshed

j tω

)
(2.33)

Thus, the objective function of the two-stage clearing model is:

NT∑
t=1

[
NG∑
i=1

C SU
i t +

NΩ∑
ω=1

πω

[ NG∑
i=1

Ci (Pi t + r U
i tω− r D

i tω)+
NQ∑

q=1
Cq (W RT

qtω−wspill
qtω )+

NL∑
j=1

V LOL
j t Lshed

j tω

]]

(2.34)

The minimization is over the set of variablesΞ= {C SU
i t ,ui t ,Pi t ,∀i ,∀t ;Wqt ,∀q,∀t ;θnt ,∀n,∀t ;r U

i tω,

r D
i tω,∀i ,∀t ,∀ω; wspill

qtω ,∀q,∀t ,∀ω;θntω,∀n,∀t ,∀ω;Lshed
j tω ∀ j ,∀t ,∀ω}, as described in Section 2.4.2.

Constraints

First-Stage Constraints (Day-ahead Market Constraints):

The first-stage constraints of the two-stage model remain the same as those representing the

day-ahead market in the three-stage model. Detailed descriptions of these constraints are

provided by equations (2.5)-(2.12).

Second-Stage Constraints (Real-Time Operation Constraints):
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The second-stage constraints pertain to real-time operation, where uncertain wind power

output is modeled through scenarios, and hence, the corresponding constraints are defined

per scenario.

After the actual wind power output is realized in real time, the system energy balance must be

preserved. This is done through second-stage decisions involving upward reserve deployment

r U
i tω, downward reserve deployment r D

i tω, wind spillage wspill
qtω , and as the last resort, load

shedding Lshed
j tω . Constraint (2.35) enforces the power balance in each node, each scenario and

each time period:

∑
i∈M G

n

(r U
i tω− r D

i tω)+ ∑
q∈M Q

n

(W RT
qtω−Wqt −wspill

qtω )+ ∑
r∈Λn

Bnr (θnt −θntω−θr t +θr tω)

+ ∑
j∈M L

n

Lshed
j tω = 0,∀n,∀t ,∀ω (2.35)

Equation (2.36) enforces the power flow to be within the thermal limits of lines:

− f max
nr ≤ Bnr (θntω−θr tω) ≤ f max

nr ,∀n,∀r ∈Λn ,∀t ,∀ω (2.36)

The final power output of each unit Pi t + r U
i tω− r D

i tω is enforced to be within the generation

capacity limits:

ui t P min
i ≤ Pi t + r U

i tω− r D
i tω ≤ ui t P max

i ,∀i ,∀t ,∀ω (2.37)

Additionally, the final power output of each unit is enforced to meet its ramping limits:

RDi ≤
(
Pi t + r U

i tω− r D
i tω

)− (
Pi ,t−1 − r U

i ,t−1,ω+ r D
i ,t−1,ω

)≤ RUi ,∀i ,∀t ,∀ω (2.38)

The up/down deployed reserves are limited between zero and the corresponding up/down

reserve offers:

0 ≤ r U
i tω ≤ RU,max

i t ,∀i ,∀t ,∀ω (2.39)

0 ≤ r D
i tω ≤ RD,max

i t ,∀i ,∀t ,∀ω (2.40)

The load can be shed within zero and the actual load L j t :

0 ≤ Lshed
j tω ≤ L j t ,∀ j ,∀t ,∀ω (2.41)
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Additionally, the wind power output can be spilled within zero and its actual value:

0 ≤ w spill
qtω ≤W RT

qtω,∀q,∀t ,∀ω (2.42)

Finally, node 1 is set to be the reference node:

θ1tω = 0,∀t ,∀ω (2.43)

Complete Formulation of Two-Stage Model

The complete formulation of the two-stage clearing model is as follows:

Minimize
Ξ

NT∑
t=1

[
NG∑
i=1

C SU
i t +

NΩ∑
ω=1

πω

[ NG∑
i=1

Ci (Pi t + r U
i tω− r D

i tω)+
NQ∑

q=1
Cq (W RT

qtω−wspill
qtω )+

NL∑
j=1

V LOL
j t Lshed

j tω

]]

(2.44a)

subject to

First-stage constraints:∑
i∈M G

n

Pi t +
∑

q∈M Q
n

Wqt −
∑

j∈M L
n

L j t −
∑

r∈Λn

Bnr (θnt −θr t ) = 0,∀n,∀t (2.44b)

ui t P min
i ≤ Pi t ≤ ui t P max

i ,∀i ,∀t (2.44c)

αWDs1W DA
qt ≤Wqt ≤αWUs1W DA

qt ,∀q,∀t (2.44d)

K SU
i (ui t −ui ,t−1) ≤C SU

i t ,∀i ,∀t (2.44e)

ui t ∈ {0,1},∀i ,∀t (2.44f)

RDi ≤ Pi t −Pi ,t−1 ≤ RUi ,∀i ,∀t (2.44g)

θ1t = 0,∀t (2.44h)

Second-stage constraints:∑
q∈M Q

n

(W RT
qtω−Wqt −wspill

qtω )+ ∑
i∈M G

n

(r U
i tω− r D

i tω)− ∑
r∈Λn

Bnr (θntω−θr tω−θnt +θr t )

+ ∑
j∈M L

n

Lshed
j tω = 0,∀n,∀ω,∀t (2.44i)

ui t P min
i ≤ Pi t + r U

i tω− r D
i tω ≤ ui t P max

i ,∀i ,∀ω,∀t (2.44j)

r U
i tω ≤ RU,max

i ,∀i ,∀ω,∀t (2.44k)

r D
i tω ≤ RD,max

i ,∀i ,∀ω,∀t (2.44l)
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Lshed
j tω ≤ L j t ,∀ j ,∀ω,∀t (2.44m)

wspill
qtω ≤W RT

qtω,∀q,∀ω,∀t (2.44n)

− f max
nr ≤ Bnr (θntω−θr tω) ≤ f max

nr ,∀n,∀r ∈Λn ,∀ω,∀t (2.44o)

RDi ≤
(
Pi t + r U

i tω− r D
i tω

)− (
Pi ,t−1 + r U

i ,t−1,ω− r D
i ,t−1,ω

)≤ RUi ,∀i ,∀ω,∀t (2.44p)

θ1tω = 0,∀ω,∀t (2.44q)

Variable declarations:

0 ≤ Pi t ,C SU
i t ,∀i ,∀t

0 ≤Wqt ,∀q,∀t

0 ≤ r U
i tω,r D

i tω,∀i ,∀ω,∀t

0 ≤ w spill
qtω ,∀q,∀ω,∀t

0 ≤ Lshed
j tω ,∀ j ,∀ω,∀t (2.44r)

The problem (2.44) minimizes the expected operation cost (2.44a) subject to day-ahead con-

straints (2.44b)-(2.44h), real-time operation constraints (2.44i)-(2.44q), and constraints (2.44r)

expressing variable declarations. The linking constraints coupling the first-stage and second-

stage variables are the power balance equation (2.44i), generation capacity constraint (2.44j),

and generation ramping constraint (2.44p) in real-time operation.

2.4.3 Metrics for Performance Evaluation

Using a stochastic model requires complexity and high computational burden, as compared

with using a deterministic model, where the random parameters are replaced by their deter-

ministic average values. To justify the use of a stochastic model over a deterministic one, the

notion of Value of the Stochastic Solution (VSS) is relevant [22].

Computing the VSS for a two-stage stochastic model is straightforward: first, the uncertain

parameters are replaced by their mean value, and a deterministic problem without recourse

is solved. We call this problem MV model (standing for Mean-Value) and the corresponding

solution to first-stage variables xMV. Next, the first-stage variables in the stochastic problem

are fixed at xMV, and the resulting problem is solved for the set of scenarios. The optimal

value of the objective function of this problem (zD ) minus the optimal value of the objective

function of the stochastic problem (z∗) results in the VSS:

VSS = zD −z∗ (2.45)
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The VSS can be also expressed as a percentage of the optimal value of the stochastic problem:

VSS = zD −z∗

z∗
(2.46)

A small VSS means that the deterministic MV model is a good approximation of the stochastic

one. In other words, the uncertain parameters can be approximated by their expected value

and the resulting deterministic problem can be then solved instead of a stochastic problem.

In a multi-stage problem, there is not a unique VSS as variables can be fixed to the solution of

the MV model in different stages. In a multi-stage problem with sN stages, the VSSsn is defined

for stage sn as follows. The decisions of stages s1 to sn−1 are fixed at the solution of the MV

model corresponding to stages s1 to sn−1. The resulting problem is solved for each scenario

and the expected optimal value of objective function is computed over the set of scenarios.

In other words, the optimal solution of this problem is obtained using the MV solution up to

stage sn−1. Denoting it by zD,sn , the VSSsn is:

VSSsn = zD,sn −z∗, ∀n > 1 (2.47)

and as a percentage of the optimal value of stochastic problem:

VSSsn% = zD,sn −z∗

z∗
, ∀n > 1 (2.48)

The mathematical details of computing the VSS for a multi-stage stochastic problem is pro-

vided in Appendix A.2.

Since our focus is to obtain the day-ahead informed decisions, the VSSs2 is used. Note that the

optimal solution zD,s2 is obtained by fixing the day-ahead variables at the corresponding MV

solution. This makes this VSS calculation consistent for three-stage and two-stage models.

2.4.4 Economic Aspect: Pricing Scheme, Cost-Recovery Conditions & Notion of

Uplift

Below, we describe the pricing approach used in this chapter.

Marginal (clearing) prices are obtained from the dual problem of the market-clearing model if

it is convex. The marginal prices are the dual variables of the power balance equations as they

represent the sensitivity of objective function (i.e., expected cost) to the right hand side of the

power balance equation (i.e., load). However, market model (2.32) is a MILP problem. Clearing

prices cannot be obtained from a MILP problem as its dual problem cannot mathematically
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defined.

As a solution, [46] proposes to fix the integer variable at their optimal values obtained from the

MILP model, and to derive prices from the dual problem of the resulting continuous problem.

However, obtaining prices from a relaxed continuous version of the original mixed-integer

clearing problem may yield situations where some producers cannot recover their costs, and

consequently, they may leave the market. The reason is that such pricing approaches do not

fully reflect costs pertaining to integer decisions, such as the start-up cost of a unit. To avoid

this, a side-payment called uplift is paid to each unit incurring losses under these prices. Note

that the uplift makes the losses of these units zero without extra profit.

Given the power outputs and prices from the three-stage model, the day-ahead profit and the

expected profit are formulated by equations (2.49) and (2.50), respectively, for individual unit

i located in node n.

ProfitDA
i =∑

t

[
Pi t (λnt −Ci )−C SU

i t

]
, ∀i (2.49)

where λnt is the day-ahead marginal price at node n and time t . Since unit i is located at node

n, λnt is the price that this unit receives for its power output Pi t .

Profitexp
i =∑

t

[
Pi t (λnt −Ci )−C SU

i t

+∑
ω
πω

[
(ΔP U

i tω−ΔP D
i tω)(λs2

ntω/πω−Ci )+ (r U
i tω− r D

i tω)(λs3
ntω/πω−Ci )

]]
, ∀i (2.50)

where λ
s2
ntω and λ

s3
ntω are, respectively, probability-affected intra-day prices and probability-

affected balancing prices at node n, scenario ω and time t . Note that the expected intra-day

cost (2.2) and the expected operation cost (2.3) have the probability term πω, and hence, the

corresponding prices are probability-affected. To have them in the same order of magni-

tude of the day-ahead prices, we consider the probability-removed intra-day prices
λ

s2
ntω
πω

and

probability-removed balancing prices
λ

s3
ntω
πω

.

Note that λ
s2
ntω and λ

s3
ntω are not actual intra-day and balancing prices. Rather, they can

be translated as forecast prices given wind power scenarios. If any wind power scenario

considered will realized in real-time operation, these forecast prices will be correspondingly

actualized.

We should note that the uplift is calculated based on day-ahead losses and formulated as:

Uplifti = max{0,
∑

t
(Pi t (Ci −λnt )+C SU

i t )}, ∀i (2.51)
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A detailed description of the issues related to the pricing scheme for a MILP problem is

provided in Chapter 3, where pricing schemes are considered.

2.5 Illustrative Example

To illustrate the advantages of the clearing model (2.32), we apply it to a small example, and

provide the corresponding market outcomes in this section.

2.5.1 Data

The example considered is based on a three-node system, as depicted in Fig. 2.4. The planning

horizon spans two time periods.

The system includes three conventional units and one wind unit. The data of the conventional

units are provided in Table 2.1. The maximum reserves RU,max
i and RD,max

i are assumed to be

equal to P max
i for all units. These units can be therefore scheduled for both energy and reserve.

The load L3, located at node 3, is 230 MW and 320 MW at periods t1 and t2, respectively. A

value of lost load equal to $2000/MWh is considered in real-time operation.

Table 2.1 – Data of generating units.

Unit K SU
i ($) Ci ($/MWh) P max

i (MW) P min
i (MW) RU,max

i (MW) RD,max
i (MW)

U1 10.01 3.03 102.00 10.00 102.00 102.00

U2 10.20 4.01 101.00 10.00 101.00 101.00

U3 50.06 5.09 100.00 10.00 100.00 100.00

WP
𝑈 𝑈

𝑈 𝐿

𝐿𝑖𝑛𝑒 1

Figure 2.4 – Test system

The wind unit is located at node 2. A small production cost of $0.3/MWh is assumed for

this unit. We consider two scenarios, high and low, to characterize wind production in the
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intra-day market, and for each second-stage scenario, three scenarios, namely, high, medium

and low, are considered in real-time operation. There are in total six scenarios at each time

period, as presented in Table 2.2. Also, we assume that these are equi-probable scenarios. The

other assumption is that at the day-ahead market, the wind power output can be scheduled

within ±20% of its best available forecast W DA
qt , which are 58 MW and 87 MW at periods t1

and t2, respectively (αWUs1 = 1.2, αWDs1 = 0.8). On the other hand, the intra-day up and down

adjustments of power schedules of conventional units and wind production are assumed to

be limited to 25% of the maximum power outputs and wind installed capacity, respectively

(αΔP =αΔW = 25%).

Table 2.2 – Wind scenarios [MW] over time periods t1 and t2

period t1 period t2

scenario ID stage RT stage ID stage RT stage

ω1 :(High, High) 60 91 89 99

ω2 :(High, Medium) 60 71 89 85

ω3 :(High, Low) 60 49 89 21

ω4 :(Low, High) 35 67 46 91

ω5 :(Low, Medium) 35 37 46 48

ω6 :(Low, Low) 35 9 46 11

Finally, line reactances and capacities are all equal to 0.13 p.u. and 500 MW, respectively. A

line capacity of 500 MW is high enough to avoid congestion in any of the scenarios considered.

Thus, prices do not change across nodes.

2.5.2 Outcomes of the Three-Stage Model

Figs. 2.5 and 2.6 show the scheduled quantities, the adjustments, and the deployed reserves

for periods t1 and t2, respectively, at the day-ahead market, intra-day market, and real-time

operation.

To get insight into the decision-making process, we focus on period t1 and scenario ω1, where

the realization of wind power output is 91 MW. The wind unit is scheduled to produce 53 MW

in the day-ahead market considering that the wind power output may increase to 60 MW, for

which a downward wind schedule adjustment of 5 MW is decided by the three-stage model. As

a consequent, the day-ahead scheduled power output of the wind unit is adjusted to produce

48 MW in the intra-day market. The difference of 12 MW between a wind power output of

60 MW and a wind scheduled production of 48 MW is compensated by adjusting unit U2 in

the downward direction. After the realization of 91 MW of wind power output in real-time
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Day-ahead 
Market

Intra-day 
Market

Real-time 
Operation

= 102= 75= 0= 53

∆ = −12∆ = −5

∆ = −7∆ = −25

= −43= −23= −1= −39= −9= 19

Figure 2.5 – Scheduled power productions, power adjustments, and deployed reserves in
period t1

Day-ahead 
Market

Intra-day 
Market

Real-time 
Operation

= 102= 48.4= 100= 69.6

∆ = −18.05∆ = 25.25∆ = −25∆ = 1.6

∆ = 23.6∆ = −25∆ = −25

= 18.05, = 19.15,= −65= 18.05, = 27.35,= −59.2= 18.05, = 27.35= 4.8= 18.6, = −65= 29, = −32.4= 29, = 4.6

Figure 2.6 – Scheduled power productions, power adjustments, and deployed reserves in
period t2

operation, reserves must be deployed downward for an amount of 43 MW (91 MW - 48 MW) in

order to accommodate the total 91 MW of wind power output in the system without spillage

and load shedding. This is done by decreasing the production level of unit U 2 by 43 MW.
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The other extreme point regarding wind power output occurs in scenario ω6, where the

realization of wind power production is 9 MW. The day-ahead power scheduled for the wind

unit is 53 MW, which is reduced to 28 MW in the intra-day market if the wind power forecast

of 35 MW occurs. In real-time operation, if the wind power output realizes to be 9 MW, there

is a supply deficit of 19 MW (9 MW - 28 MW), which is compensated by an upward reserve

deployment by unit U2.

The total expected cost is $1515.1.

Table 2.3 provides the day-ahead, intra-day, and balancing prices, denoted by λnt , λs2
ntω,

and λ
s3
ntω, respectively. The day-ahead prices in period t2 are higher than those in period t1

resulting from a higher load in period t2. This trend is also observed in the intra-day market,

as well as in real-time operation, except for period t2 and scenario high, where balancing price

λ
s3
t2ω1

is $4.01/MWh. The reason is that the marginal unit from which clearing prices are driven

is unit U2 in this scenario; however, the marginal unit is unit U3 in scenarios medium and low.

Table 2.3 – Day-ahead, intra-day, and balancing clearing prices [$/MWh]

λ
s2
nω/πω λ

s3
nω/πω

λn High Low High Medium Low

period t1 4.01 4.01 4.01 4.01 4.01 4.01

period t2 4.73 4.73 4.73 4.01 5.09 5.09

Given these scheduled power outputs and prices, Table 2.4 provides the day-ahead profit,

stated in (2.49), and the expected profit, expressed in (2.50).

Focusing on the day-ahead market and unit U3, this unit earns 4.73×100 = $473, while its

total start-up and production cost is 5.09×100+50.06 = $559.06. Therefore, unit U3 incurs a

loss of $86.06 at the day-ahead market. At the intra-day stage, the profit of unit U3 increases

by (4.73−5.09)× (−25) = $9 if either scenarios high or low realizes. In real-time operation, the

profit of unit U3 increases only under scenarios ω1 and ω4. However, none of these increases

in profit can cover the loss of $86.06 at day-ahead market. Therefore, unit U3 suffers a loss on

average as well as under any scenario.

To avoid this loss, an uplift of $86.06 is paid by the load to unit U3. As previously mentioned,

an uplift is a side-payment paid only to those units incurring losses at the day-ahead market

with the purpose of making the losses of these units zero.

Without uplift, the payment of load L3 at the day-ahead market is 4.01×230 = $922.3 and

4.73×320 = $1513.6 at periods t1 and t2, respectively. The total payment over the two periods

($2435.9) is equal to the summation of total day-ahead profit of all units ($706.9) and the
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Table 2.4 – Day-ahead and Expected profits [$]

unit U1 unit U2 unit U3 wind Total

DA profit 263.40 24.60 -86.06 504.90 706.90

Total expected profit 263.40 62.50 -53.70 397.50 669.70

day-ahead cost ($1729). Considering the uplift of $86.06, L3 finally pays $2521.96. Table 2.5

provides these outcomes in details.

Table 2.5 – Consumer payment with and without uplift [$]

Day-ahead cost Day-ahead profit Uplift Cons. pay. with uplift Cons. pay. without uplift

1729.00 706.90 86.06 2521.96 2435.9

2.5.3 Performance of the Three-Stage Model vs. the Two-Stage One

In this section, we provide a comparison between the outcomes of the three-stage model

(2.32) and those from the two-stage model (2.44).

The scenarios representing real-time operation for the two-stage model are the same as those

modeling real-time operation of the three-stage model (RT stage in Table 2.2).

The production schedules for the two-stage model are shown in Figs. 2.7 and 2.8 for periods t1

and t2, respectively.

We first elaborate on the day-ahead scheduled power outputs obtained from the two-stage

model, and compare them to those obtained from the three-stage model, previously shown in

Figs. 2.5 and 2.6.

The wind unit is scheduled to produce 46.4 MW in period t1 which turns out to be 91 MW

in scenario ω1. Therefore, the system requires a total reserve deployments of 44.6 MW in

the downward direction. We recall that the day-ahead power scheduled for the wind unit is

53 MW from the three-stage model which can be adjusted to be 48 MW in intra-day market.

This eventually results in a smaller amount of deployed reserves as compared to that from

the two-stage one (43 MW vs. 44.6 MW in scenario ω1). In period t2, the two-stage model

allocates a production of 104.4 MW to the wind unit, which is higher than the day-ahead

power scheduled for the wind unit by the three-stage model (69.9 MW). Consequently, a

higher amount of reserves is deployed using the two-stage model, as compared to the amount

of deployed reserves using the three-stage one.
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Table 2.6 provides the day-ahead and balancing prices obtained from the two-stage model.

The day-ahead prices at period t2 obtained from the two-stage model are higher than those of

the three-stage model. Depending on scenarios, the balancing prices of the two-stage model

are equal to or higher than those obtained from the three-stage model. This is the result of the

reduced wind scenario information in the two-stage model.

Table 2.6 – Clearing prices obtained from two-stage model [$/MWh]

λn λnω1 λnω2 λnω3 λnω4 λnω5 λnω6

period t1 4.01 4.01 4.01 4.01 4.01 4.01 4.01

period t2 5.09 5.09 5.09 5.09 5.09 5.09 5.09

Day-ahead 
Market 

Operation 
Stage 

𝑃 = 102𝑃 = 10𝑃 = 71.6𝑊 = 46.4
𝑟 = 17 , 𝑟 = −61.6𝑟 = −24.6𝑟 = −2.6𝑟 = −20.6𝑟 = 4.4𝑟 = 21.4

Figure 2.7 – Scheduled productions and deployed reserves result from two-stage model in
period t1.

The day-ahead cost expressed in equation (2.1), the expected intra-day cost stated in equation

(2.2), and the expected balancing cost formulated in equation (2.3) are provided in Table 2.7

for both models. The three-stage model results in a higher day-ahead cost than that of the

two-stage model, but a lower balancing cost, which finally results in a lower total expected cost.

The main reason to have a lower day-ahead cost in the two-stage model is scheduled wind

power. The total wind power scheduled is 150.8 MW over the two periods in the two-stage

model, which is higher than 122.6 MW scheduled wind production in the three-stage model.

This, however, results in a higher amount of deployed reserves. That is why the balancing cost

is higher in the two-stage model than that of the three-stage model.

Table 2.8 provides the profit of the units (conventional units and wind unit) at each stage and

in total for both models without uplifts. The total expected profit of producers is lower in

the three-stage model than that in the two-stage model. This observation does not reverse
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Day-ahead 
Market 

Operation 
Stage 

𝑃 = 102𝑃 = 13.6𝑃 = 100𝑊 = 104.4
𝑟 = 5.4 , 𝑟 = −82𝑟 = 87.4, 𝑟 = −68𝑟 = 87.4, 𝑟 = −4𝑟 = 13.4𝑟 = 50.4𝑟 = 83.4

Figure 2.8 – Scheduled productions and deployed reserves result from two-stage model in
period t2.

Table 2.7 – costs [$]; three-stage model vs. two-stage model

Three-stage model Two-stage model

Day-ahead market 1729.00 1540.80

Intra-day market -102.80 –

Real-time Operation -111.10 162.70

Total expected cost 1515.10 1703.50

after adding the uplift, that is $60.86 for the two-stage model and $80.06 for the three-stage

model. Note that the unit profits in real-time operation are zero under the two-stage model;

the reason is that unit U2 and unit U3 are deployed under balancing prices equal to their

marginal costs.

Table 2.8 – Producers profit[$]; three-stage model vs. two-stage model and no uplift

Three-stage model unit U1 unit U2 unit U3 wind all units

Day-ahead 263.40 24.60 -86.00 504.90 706.90

Intra-day -15.30 17.60 9.00 -107.50 -96.20

Real-time operation 15.30 20.30 23.40 0.00 59.00

Total exp. profit 263.40 62.50 -53.70 397.50 669.70

Two-stage model unit U1 unit U2 unit U3 wind all units

Day-ahead 300.07 98.88 -60.86 672.20 1010.30

Real-time operation 0.00 0.00 0.00 0.00 0.00

Total exp. profit 300.07 98.88 -60.86 672.20 1010.30

The consumer payment is the summation of day-ahead cost and day-ahead profit. Given the
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day-ahead costs and day-ahead unit profits, the consumer payment without uplift is $2551.1

for the two-stage model and $2435.9 for the three-stage model. That is, the consumer payment

from the two-stage model is higher than that from the three-stage model. Uplift does not

change this result, as it increases the consumer payment to $2611.9 ($2551.1+ uplift of $60.86)

and $2521.9 ($2435.9+ uplift of $80.06) for the two-stage model and the three stage model,

respectively.

2.6 Case Studies

We first present the outcomes of a base case study involving a single load profile. Next, in order

to gain insight on the performance of the three-stage model, we consider different bounds for

the system constraints using the same load profile and explore how these bounds influence

the results. Finally, different load profiles and different bounds are considered.

These case studies aim to appraise the performance of three-stage model by comparing its

outcomes to those from a two-stage model.

2.6.1 Data

We use a 24-node system based on the single-area IEEE Reliability Test System (RTS).

To facilitate the analysis of the results, we have modified some of the original characteristics of

this test system. We consider that the system has 34 lines, 9 conventional generating units,

and 1 wind power unit. The data of conventional generating units are provided in Table 2.9.

We assume that hydro units 2, 4, and 8 (i.e., U50) offer its energy production at zero price.

Table 2.10 provides the total demand over the 24 periods, while the demand locations and the

corresponding shares are provided in Table 2.11.

Table 2.9 – Characteristics of the Generating Units

Type U90 U50 U155 U76 U197 U400

Unit i 1 2,4,8 3,6 5 7 9

Node 2 7,15,22 10,18 16 21 23

P max
i (MW) 90.00 50.00 155.00 76.00 197.00 400.00

P min
i (MW) 25.00 15.00 55.00 15.20 69.00 100.00

kSU
i ($) 300.00 100.00 320.00 400.00 300.00 1000.00

Ci ($/MW) 19.67 0.00 10.68 11.89 11.09 5.53

The wind power unit is located at node 7. We assume that the wind unit has an installed
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Table 2.10 – Total demand in [MW] from period t1 to period t24

period t1 t2 t3 t4 t5 t6 t7 t8

demand 828.10 831.00 842.00 923.00 943.00 1103.60 1185.30 1139.00

period t9 t10 t11 t12 t13 t14 t15 t16

demand 1137.50 1121.00 1123.00 1099.00 1088.00 1100.00 1103.00 1119.00

period t17 t18 t19 t20 t21 t22 t23 t24

demand 1125.00 1143.00 1115.00 1109.00 1101.20 1080.10 1037.00 800.00

Table 2.11 – Demand location and share

demand L1 L2 L3 L4 L5 L6 L7 L8

location 1 2 3 4 5 6 7 8

share [%] 21.5 16.4 11.7 3.5 5.1 4.8 4.3 4.8

demand L9 L10 L11 L12 L13 L14 L15 L16 L17

location 9 10 13 14 15 16 18 19 20

share [%] 4.1 2 2.4 2.8 2.5 2.6 4.3 3.4 3.8

capacity is 600 MW. To generate wind power scenarios, we use wind speed historical data

from Austin, Texas, which are available in the System Advisor Model (SAM) [2]. To obtain

hourly wind power scenarios for 24 time periods, we apply the power curve of a 2-MW Vestas

V80/2000 wind turbine with a hub height of 80 m. The power curve of this turbine model can

be found in [16].

We should note that we built up the scenarios employing historical data without applying

scenario generation/reduction techniques.

2.6.2 Scenarios

The following process is used for scenario generation. We generate NΩ1 scenarios prior to the

day-ahead gate closure, using all the historical data available up to this time. Each scenario

involves 24 values for the output of the wind power unit pertaining to the 24 time periods of

day d. Then, conditioned to the actual values of each scenario during the hours between the

day-ahead gate closure and the intra-day gate closure, we generate NΩ2 new scenarios for each

one of the original NΩ1 scenarios, resulting in a total number of NΩ scenarios, where NΩ =
NΩ1 ×NΩ2 . The decision-making tree is shown in Figure 2.9. For the case study, we consider

10 scenarios at the intra-day market, and corresponding to each second-stage scenario 15

scenarios in real-time operation; therefore, there are in total 150 equi-probable scenarios at

each time period for the three-stage model. The corresponding two-stage model is assumed
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Stage 1:
Day-ahead 

Market

Stage 2:
Intra-day 

Market

Stage 3:
Real-time 
Operation

Adjustment 
decisions for 

periods 𝑡 ,…, 𝑡 Deployed reserve decisions for 
periods 𝑡 ,…, 𝑡 in scenario 𝜔Scheduling 

decisions for 
periods 𝑡 ,…, 𝑡

Deployed reserve decisions for 
periods 𝑡 ,…, 𝑡 in scenario 𝜔
Deployed reserve decisions for 

periods 𝑡 ,…, 𝑡 in scenario 𝜔

Deployed reserve decisions for 
periods 𝑡 ,…, 𝑡 in scenario 𝜔

Deployed reserve decisions for 
periods 𝑡 ,…, 𝑡 in scenario 𝜔

Deployed reserve decisions for 
periods 𝑡 ,…, 𝑡 in scenario 𝜔

Adjustment 
decisions for 

periods 𝑡 ,…, 𝑡

Figure 2.9 – Scenario tree for the three stages of day-ahead market, intra-day market, and
real-time operation. Each scenario involves 24 values for the wind power output of wind unit.

to have the same 150 equi-probable scenarios in real-time operation.

2.6.3 Base Case

The base case maintains the assumptions used in the example in Section 2.5, namely αWUs1 =
αWUs2 = 1.2, αWDs1 =αWDs2 = .8, αΔW = 0.25%, αΔP = 0.25%, and the limit of reserve capacity

is equal to the production capacity of each conventional unit.

Table 2.12 provides details regarding day-ahead profit, expected profit, day-ahead cost, ex-

pected cost, and consumer payment resulting from both models.

Under both models, U90 and U76 incur losses at the day-ahead market, but only U90 has a

negative expected profit. The total day-ahead producer profit is higher in the three-stage

model than in the two-stage model, whereas the total expected profit from the three-stage

model is lower than that of the two-stage model. The main reason is that scheduled power of

the wind unit has a higher value in the three-stage model than in the two-stage one (1471.3

MW vs 1265.5 MW) that translates to a high profit (as its cost is small). This is the result of
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Table 2.12 – Base Case

3-stage Model 2-stage Model

Unit DA Exp. DA Exp.
i Profit ($) Profit ($) Profit ($) Profit ($)

1 -8489.42 -4581.29 -10998.97 -3696.75

2 13471.36 13818.44 4575.19 14043.00

3 2175.66 3174.24 3622.79 3896.70

4 13042.15 13400.31 6332.85 14043.00

5 -612.19 282.04 -34.44 136.41

6 2109.44 3269.33 3664.89 3896.70

7 2064.74 2173.20 3435.12 3540.08

8 12954.63 13531.14 4142.90 14043.00

9 42299.73 51345.17 55651.98 59056.00

Wind 16627.21 21358.15 11626.71 11626.71

Total 95643.31 117770.74 82019.03 120584.85

DA Cost ($) Exp. Cost ($) DA Cost ($) Exp. Cost ($)
192507.85 174401.51 217498.08 190554.00

Cons. pay. ($) Uplift ($) Cons. pay. ($) Uplift ($)
288151.16 9101.61 299517.11 11033.41

information asymmetry on wind production. Also, the day-ahead losses of units U90 and U76

are higher under the two-stage model that make the total day-ahead profit smaller than that

of the three-stage model.

The three-stage model also results in lower day-ahead cost, expected cost, and consumer

payment than those from the two-stage model. The savings in expected cost and consumer

payment obtained in the three-stage model as a percentage of the corresponding values in the

two-stage model are 8.48% and 3.79%, respectively.

For the purpose of comparing day-ahead prices, Fig. 2.10 shows the day-ahead prices obtained

from the three-stage and two-stage models. At period t7 (morning peak), the two-stage model

results in a higher price than that of the three-stage model. Also, at period t24 (when the

lowest load occurs) the price from the three-stage model is considerably lower than that of the

two-stage model.

Despite the higher prices obtained from the two-stage model over several periods, an uplift of

$11,033.41 is still required, and this uplift is higher than the uplift of the three-stage model

($9101.00). As mentioned above, units U90 and U76 incur losses in the day-ahead market under

both models, and thus, they are paid an uplift. Unit U90 is paid an uplift of $8489.42 under

the three-stage model, and $10998.97 under the two-stage model, while Unit U76 receives an
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uplift of $612.19 under the three-stage model, and $34.44 under the two-stage model.
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Figure 2.10 – Day-ahead clearing prices from the three-stage model and the two-stage model
over all periods.

2.6.4 Analyses of Flexibility of Units for Reserve Provision and Different Adjust-

ment Bounds

The objective of this section is to gain insight on the performance of the three-stage model.

For this purpose, we investigate the impact of the availability of reserves and of diverse limits

on the intra-day power adjustments considering the following cases:

• Case 1 (not limited):

– All conventional units provide reserves: RU,max
i = RD,max

i = P max
i ,∀i .

– Wind production at the day-ahead market is limited by the wind installed capacity.

That is, the limit of the wind unit is 0 ≤Wqt ≤W max
q in the day-ahead market (con-

straint (2.7)). Also, for consistency, 0 ≤Wqt +ΔW U
qtω−ΔW D

qtω ≤W max
q (constraint

(2.17)).

– The up/down wind adjustments are limited by the wind installed capacity at the

intra-day market. That is, ΔW U
qtω ≤ W max

q and ΔW D
qtω ≤ W max

q (i.e., αΔW = 1 in

constraint (2.18)).

– Up/down adjustments of conventional units are up to their maximum power

output. That is, αΔP = 1 in constraint (2.15), and thus, ΔP U
i tω ≤ P max

i and ΔP D
i tω ≤

P max
i .

• Case 2 (partly limited):
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Table 2.13 – Savings in the expected cost and consumer payment for the different cases

Saving in Saving in
expected cost (%) consumer payment (%)

Case 1 81.54 63.91

Case 2 8.48 3.79

Case 3 8.19 5.61

– All conventional units provide reserves: RU,max
i = RD,max

i = P max
i ,∀i .

– Wind production at the day-ahead market is limited at ±20% of the best avail-

able wind production forecast. That is, αWDs1 = 0.8 and αWUs1 = 1.2, and thus,

0.8W DA
qt ≤Wqt ≤ 1.2W DA

qt (constraint (2.7)).

– The up/down power adjustments of units at the intra-day stage are limited by 25%

of installed capacity. That is, αΔP =αΔW = 0.25, and thus, ΔP U
i tω ≤ 0.25P max

i and

ΔP D
i tω ≤ 0.25P max

i , and ΔW U
qtω ≤ 0.25W max

q and ΔW D
qtω ≤ 0.25W max

q .

• Case 3 (highly limited):

– Nuclear and hydro units (U400 and U50) do not provide reserves.

– Wind production at the day-ahead market is limited at ±20% of the best avail-

able wind production forecast. That is, αWDs1 = 0.8 and αWUs1 = 1.2, and thus,

0.8W DA
qt ≤Wqt ≤ 1.2W DA

qt (constraint (2.7)).

– The up/down power adjustments of units at the intra-day stage are limited by 25%

of installed capacity. That is, αΔP =αΔW = 0.25, and thus, ΔP U
i tω ≤ 0.25P max

i and

ΔP D
i tω ≤ 0.25P max

i , and ΔW U
qtω ≤ 0.25W max

q and ΔW D
qtω ≤ 0.25W max

q .

Fig. 2.11 shows that the total expected profit, the expected cost, and the consumer payment

obtained from the two-stage model are higher than those of the three-stage model. The savings

in expected cost and consumer payment obtained in the three-stage model as a percentage of

the corresponding values in the two-stage model are provided in Table 2.13. The difference

between these outcomes is larger for case 1 (less restricted), and smaller for the more restricted

cases 2 and 3. Therefore, irrespective of the limits imposed on reserves and intra-day unit

adjustments, we conclude that the three-stage model has a better performance from the

consumer point of view.

The uplift, however, follows a different trend (bottom plot in Fig. 2.11). The three-stage model

results in a larger uplift for case 1, while a smaller uplift for case 2 and case 3 than those of the

two-stage model. The uplift from the two-stage model is similar in all cases; however the uplift
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from the three-stage model decreases along with the increase in the restrictions. Note that the

uplift amount is small and does not reverse the fact that the consumer payment obtained from

the three-stage model is smaller. Understanding this is easy by observing the day-ahead prices

in Fig. 2.12. The prices from the three-stage model are lower in case 1 than those in cases 2

and 3. This results in smaller uplifts in cases 2 and 3. Also, these prices are of the same order

of magnitude as the day-ahead prices from the two-stage model, and hence, the consumer

payments are of the same order of magnitude in case 2 and case 3. In addition, the day-ahead

prices from the three-stage model and those from the two-stage model get closer to each other

as cases become increasingly restricted.
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Figure 2.11 – Expected profit, expected cost, consumer payment, and uplift for different cases.
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Figure 2.12 – Day-ahead clearing prices for different cases

We also simulate these models on different load profiles (shown in Fig. 2.13) and observe

similar outcomes.
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Fig. 2.14 shows that a higher expected cost is obtained by using the two-stage model than that

of the three-stage model irrespective of the limiting bounds for five different load profiles and

the different cases. Note that the large difference between expected costs of the three stage

model and the two stage model for case 1 is due to the wide (and rather unrealistic) bounds

assumed for the intra-day power adjustments of the wind unit as well as conventional units.

The expected costs of the three-stage model get closer to those from the two-stage model

when bounds become tighter, as in case 2 and case 3.
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Figure 2.13 – Different load profiles
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Figure 2.14 – Expected costs for different load profiles and different limited cases

Table 2.14 provides the savings in expected cost and consumer payment obtained in the

three-stage model as a percentage of the corresponding values in the second-stage model.

The savings in case 1 are large due to the wide bounds assumed for the intra-day power

adjustments of the wind unit as well as the conventional units.
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Table 2.14 – Savings in expected cost and consumer payment for the different load profiles [%]

Savings in Exp. Cost Savings in Consumer Pay.

Load profile case 1 case 2 case 3 case 1 case 2 case 3

1 86.80 9.72 9.07 75.78 6.29 11.85

2 86.85 9.75 9.16 74.60 6.34 11.94

3 87.07 9.79 9.20 73.75 6.71 12.63

4 83.36 7.66 7.28 66.22 3.18 5.42

5 83.42 8.71 7.93 67.44 7.57 8.75

In addition to the expected value, another metric to evaluate the performance of stochastic

optimization problems is the standard deviation. It is desirable to have a cost with both small

expected value and small variance, since this means that the operation cost is expected to be

small with a low probability of obtaining a cost very different from the expected cost.

The standard deviations for the different load profiles considered and the different cases

analyzed are provided in Table 2.15.

The standard deviations of both models are of the same order of magnitude for case 1 (all

load profiles). For case 2, the standard deviations from the two-stage model are smaller than

those from the three-stage model. This observation is, however, reversed for case 3. Therefore,

a general conclusion regarding the standard deviation of cost from these instances cannot

be obtained. In other words, none of these models guarantee a smaller variability of cost

as compared to the other one. That is, the three-stage model improves the cost in term of

expectation, but the variability of the cost around the expected value is similar to that of the

two-stage model.

Table 2.15 – Standard deviations from the three-stage model and the two-stage model for the
different load profiles [$]

Case 1 Case 2 Case 3

Load 3-stage 2-stage 3-stage 2-stage 3-stage 2-stage

profile model model model model model model

1 1.10×104 3.61×104 3.08×104 7.45×103 7.58×103 1.32×104

2 1.05×104 3.53×104 3.04×104 6.71×103 9.20×103 1.18×104

3 9.30×103 4.33×104 2.95×104 7.84×103 6.28×103 1.21×104

4 1.09×104 4.52×104 3.57×104 6.76×103 1.02×104 1.34×104

5 1.19×104 4.04×104 3.28×104 1.44×104 7.34×103 8.74×103

Finally, the VSS calculated for the three-stage model is compared with that of the two-stage
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model. The results are provided in Table 2.16.

The three-stage model has a better performance than the two-stage model (i.e, higher VSS) for

all case studies except for those pertaining to load profile 4. In this case, the use of the optimal

first-stage solution of the deterministic model without recourse, denoted by xMV in Section

2.4.3, causes load-shedding in real-time operation, where the wind power output is realized

under the two-stage model. This results in a high cost, and consequently, a large difference

between the optimal value of the two-stage model and that of the deterministic model.

Table 2.16 – The VSS [%]

Three-stage model Two-stage model

Load profile case 1 case 2 case 3 case 1 case 2 case 3

1 4.94 0.32 0.31 0.01 0.01 0.01

2 4.96 0.12 0.11 0.01 0.01 0.01

3 5.06 0.23 0.22 0.01 0.01 0.01

4 3.79 1.31 1.30 6.19 6.19 6.19

5 3.71 0.22 0.22 1.41 1.41 1.41

2.6.5 Computation Time

In this section, we elaborate on the computational aspect of the proposed model by consider-

ing different number of scenarios and different number of units.

For the simulations, we use CPLEX 12.5.0 under MATLAB on a computer with two Intel(R)

Core(TM) processors clocking at 2.7 GHz and 8 GB of RAM. The sizes of the proposed models

in terms of numbers of variables and constraints, and computation time for the base case are

provided in Table 2.17.

Table 2.17 – Dimension of the three-stage and two-stage models (base case)

3-stage Model 2-stage Model

No. of binary variables 216 216

No. of continuous variables 375432 217232

No. of total variables 375648 217248

No. of constraints 786744 409320

Computation time (s) 123 48

We should note that the computation times reported are an indication of the tractability of a

three-stage model, and that using industry-grade computers and parallelization should allow
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achieving the required solution times.

First, we fix the number of scenarios to 15 in the third stage and consider different numbers of

scenarios in the second stage. The corresponding computation time and the expected cost are

provided in Table 2.18.

The computation time increases with the problem size. However, it remains within an accept-

able range (e.g., less than 8 minute for a problem size larger than 0.7 million variables and 1.5

million constraints). The increases in the total number of scenarios (from 150 to 225 and from

150 to 300) result in the same expected cost, which is slightly higher than the expected cost

obtained in the case with 150 scenarios. In other words, the sensitivity of the expected cost

decreases as the number of second-stage scenarios increases.

Table 2.18 – Computation time for different number of scenarios in the second stage (10 units,
24 buses, 15 scenarios in the third stage)

No. of scenarios in the second stage 10 15 20

No. of scenarios in the third stage 15 15 15

Total No. of scenarios 150 225 300

Total No. of constraints 786,744 1,179,264 1,571,784

Total No. of decision variables 375,648 562,848 750,048

Expected cost ($) 1.74×105 1.77×105 1.77×105

Computation time (s) 123 235 445

Table 2.19 provides the computation time for different number of the scenarios in the third

stage if the number of the second-stage scenarios is fixed to 10. The computation time does

not change significantly from 150 scenarios to 250 scenarios, while it increases to 491 s if

considering 350 scenarios, for which the size of the problem is significantly larger (i.e., 0.9

million variables and 1.8 million constraints). The increases in the total number of scenarios

(from 150 to 250 and from 150 to 350) result in the same expected cost, which is slightly higher

than the expected cost obtained in the case with 150 scenarios. In other words, the sensitivity

of the expected cost decreases as the number of third-stage scenarios increases.

Given Tables 2.19 and 2.18, we infer that the sensitivity of the expected cost decreases as the

total number of scenarios increases.

In short, an increase in the number of scenarios involves a better uncertainty description, and

hence, a possible change in expected cost. However, this is valid up to a certain number of

scenarios (in the case study, 225). Once this number of scenarios is reached, the uncertainty

description is accurate enough and the expected cost remains unaltered. If this number of
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Table 2.19 – Computation time for different number of scenarios in the third stage (10 units,
24 buses, 10 scenarios in the second stage)

No. of scenarios in the second stage 10 10 10

No. of scenarios in the third stage 15 25 35

Total No. of scenarios 150 250 350

Total No. of constraints 786,744 1,317,144 1,847,544

Total No. of decision variables 375,648 562,848 750,048

Expected cost ($) 1.74×105 1.77×105 1.77×105

Computation time (s) 123 147 491

scenarios is increased, the expected cost remains the same, whereas the computation time

increases.

Table 2.20 – Computation time for the different number of generators (24 buses, 150 scenarios)

No. of units 10 15 20

No. of binary variables 216 336 456

Total No. of decision variables 375,648 448,008 520,368

Total No. of constraints 786,744 964,944 1,143,144

Expected cost ($) 1.74×105 1.75×105 1.75×105

Computation time (s) 123 182 590

Finally, Table 2.20 provides computation times for different number of units if 150 scenarios

are considered. With the increase in the number of units, the size of the problem and the

number of binary commitment variables increase, and hence, the computation time increases

as well.

2.6.6 Case Study Conclusion

We present a three-stage stochastic model to clear the day-ahead market, which explicitly

represents an intra-day market and real-time operation. We then compare the outcomes of

this model with results from a two-stage model, which includes a prognosis solely of real-time

operation.

The simulation outcomes show that the proposed three-stage model has a better performance

than the two-stage one as a result of more informed decisions at the day-ahead market. That

is, the three-stage model results in lower day-ahead cost, expected cost, total expected profit,

and consumer payment than those from the two-stage model.
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Additionally, the day-ahead peak prices obtained from the three-stage model are lower than

those from a two-stage model. This results from the use of information about evolving wind

power forecast across market stages in the three-stage model, and therefore, more efficient

“positioning” of the units in term of day-ahead power production schedules, as well as intra-day

power adjustments and deployed reserves.

The VSS also confirms that the use of three-stage model is beneficial to a system with a large

amount of uncertain wind production over a two-stage one.

Regarding computation time, our analyses show that although the computation time increases

with the problem size, it remains still within an acceptable range. The sensitivity of the

expected cost decreases as the number of the scenarios increases. An increase in the number

of scenarios involves a better uncertainty description (and consequently a possible change in

the expected cost), but up to a certain number of scenarios. Once this number is reached, the

uncertainty description cannot improve additionally and the expected cost remains the same,

whereas the computation time increases. The computation times reported are an indication

of the tractability of a three-stage model. Using industry-grade computers and parallelization

techniques should help achieving the required solution times.

The remarks above are concluded by applying the three-stage model to different load profiles,

and by considering different limits on adjustment bounds and flexibility of units to provide

reserves. Our simulation results indicate that the outcomes from the three-stage model and

the two-stage one get closer as restrictions get tighter. The small bounds are translated into

less energy trading in the intra-day market, and hence, the results of the three-stage model get

closer to those from two-stage one.

These outcomes suggest that replacing a deterministic model with a three-stage model, not a

two-stage one, has clear advantages. In other words, if the industry decides to move toward

using a a stochastic clearing algorithm (and if it has sufficient computational resources to do

so), such a clearing algorithm should be a three-stage one, not a two-stage one.

2.7 Summary and Conclusion of the Chapter

The evolving market conditions, including an increasing number of intra-day markets (from

the energy trading point of view) and the growth of renewable generation (from the technology

point of view), call for a revise in market-clearing models.

With the aim of obtaining better informed day-ahead decisions, we propose a multi-stage

stochastic clearing model. In other words, we argue that if the use of a stochastic clearing
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model is adopted in systems with a large amount of renewable production, it should be a

multi-stage stochastic model, and not a two-stage one.

In a multi-stage clearing model, not only different realizations of renewable power output are

considered, but also how these realizations evolve from day-ahead forecasts into real-time

values are taken into account. A multi-stage model allocates flexibility for the contribution

of renewable production in both the day-ahead and intra-day markets in form of scheduled

productions and their adjustments. In other words, the information on how uncertain re-

newable production develops across the market floors, as well as, allowing flexibility for the

contribution of renewable generation in both the day-ahead and intra-day markets improve

the market outcomes and integration of renewable generation.
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3 Pricing Schemes Pertaining to A

Stochastic Non-Convex Market-

Clearing Model
3.1 Introduction

When it comes to electricity markets, an accurate modeling of the underlying physics of power

systems is important to obtain right market outcomes. Market outcomes include scheduled

power productions that must respect the non-continuous operating nature (non-convexities)

of power system elements, in particular generating units.

To precisely model non-convexities pertaining to the technical characteristics and operation

conditions of power system elements, integer variables are the key. For instance, to model

physical conditions of generating units such as the start-up and shut-down sequences, binary

variables are used. Therefore, the corresponding clearing problem is formulated as a Mixed-

Integer Linear Programming problem (MILP). Although the MILP problem allows to obtain

production schedules consistent with the operation conditions of the power system, it results

in a number of challenges pertinent to economic aspects of the market.

To trade the electric energy, marginal prices are recognized to provide the right market signals

in competitive markets, as they are appropriate prices to achieve short-term economic effi-

ciency and long-term cost recovery [53]. Among other relevant properties of marginal prices,

reaching market equilibrium is a distinguished feature. In an equilibrium, market prices are

such that all participants are better off to follow market outcomes. That is, no agent incurs

losses under these prices and no agent earns a higher profit by deviating from the schedule

assigned. This implies that market players have no incentive to submit inaccurate information.

In other words, marginal pricing promotes truth-telling in the market [61]. Marginal prices

can be obtained as dual variables of power balance equations for convex market-clearing

problems. This connection is, however, missing in MILP problems due to the inherent non-

convex structure, which often leads to a non-zero duality gap between the primal and dual
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counterparts.

In the presence of non-convexities, different pricing approaches are proposed to tackle this

problem in practice. As a solution, [46] proposes to fix the integer decisions at their optimal

values obtained from sloving the MILP model, and to derive prices from the dual problem of

the resulting continuous primal problem. The clearing prices obtained from this approach are

the closest valid prices that can be defined for the corresponding non-convex clearing problem.

This approach seems to be satisfactory in practice, as PJM follows a similar implementation

[46] . However, obtaining prices from the dual problem of a relaxed continuous version of the

original MILP clearing problem may yield situations where some producers cannot recover

their costs. The reason is that such pricing approaches do not fully reflect costs pertaining to

discrete decisions, such as the start-up cost of a unit. In other words, the prices obtained do not

encompass cost-recovery of discontinuous costs. Such marginal prices may lead to situations

where financial losses occur to an extent that the corresponding producers may leave the

market. This may eventually lead to a financial loss of welfare and market inefficiency.

To mitigate this problem, a common practice is to compensate each producer incurring losses

through a side-payment called uplift. A simple example is as follows. Suppose that a thermal

unit is scheduled to generate a certain power under a marginal price which is equal to its

marginal production cost. Therefore, the unit cannot recover its start-up cost. This fixed cost

is, thus, compensated using an uplift, which is paid by all demands to this thermal unit. In

such a situation, the owner of the unit may try to suggest a higher start-up cost than its real

one to earn more money by being paid a higher uplift than the actual cost.

This example shows that uplift is not economically a neat concept. Uplifts do not promote

truth-telling in the market, rather they encourage strategic pay-as-bid behavior. The uplifts are

discriminatory, and their implementation requires a detailed regulation. Hence, alternative

pricing methods in non-convex electricity markets are of interest of the electricity market

community.

Thus far, we have described the existing pricing issue in deterministic markets. As presented in

the previous chapter, a high penetration of renewable generation calls for the use of stochastic

market-clearing models, where the system power balance results in a significant connec-

tion between power production schedules in the day-ahead market, power adjustments in

intra-day markets, and deployed reserves in real-time operation. These connections in the

quantities of different market stages result in links between the prices obtained from the

corresponding market stages. Therefore, moving toward the use of stochastic market-clearing

models increases the degree of complexity of the pricing problem.
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In short, in a system with a large amount of renewable generation, day-ahead prices are

effected by non-convexities due to operational conditions, as well as by uncertainty associated

with renewable generation. In this context, we strive to derive a new pricing scheme with

the aim of obtaining a set of uniform day-ahead prices with cost-recovery properties at the

crossroads of stochasticity and non-convexity.

3.2 A New Pricing Mechanism with Cost Recovery

We, first, elaborate on the desired properties that a pricing scheme is expected to meet.

Our focus is to obtain a set of day-ahead prices in a market environment with stochastic renew-

able generation. A desired property of these prices is to reflect the uncertainty associated to

renewable generation. Therefore, these prices must be obtained from a model which appropri-

ately considers stochastic renewable generation. Referring to Chapter 2, to optimally integrate

renewable generation, the power production outputs of conventional units (e.g., thermal and

hydro units) are scheduled in the day-ahead market considering all possible realizations of

renewable generation at real-time operation. Therefore, the day-ahead scheduled produc-

tions are affected by stochastic generation, and the day-ahead prices as well. In other words,

uncertain renewable generation transfers its impact on day-ahead prices through day-ahead

scheduled productions. Furthermore, realizations of renewable production require reserve

deployments in real-time operation, and consequently, result in balancing prices which are

linked to the day-ahead prices. That is, uncertain renewable generation has additionally an

impact on day-ahead prices through balancing prices.

Therefore, explicitly modeling the sequence of decision-making process is important. This

entails the day-ahead market, a number of intra-day markets, and real-time operation, and

implies the use of a multi-stage stochastic clearing model, similar to the one proposed in

Chapter 2.

The marginal prices obtained using the conventional pricing approach do not embody cost-

recovery features. This motivates a new pricing mechanism, where day-ahead prices guarantee

cost-recovery conditions to producers. The cost-recovery conditions need to be defined in

the presence of high renewable production, and then, considered as market constraints in a

clearing model. Such a clearing model results in marginal prices with cost-recovery features

that eliminate a need for uplifts.

We should note here that two types of uplift are identified by economists: make-whole pay-

ments and lost opportunity profits.
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Make-whole payments ensure that each unit can recover its incurred cost by producing the

energy at the level assigned to it in the market. This type of uplift does, therefore, focus on the

production cost of the unit (marginal production cost and fixed cost). On the other hand, the

uplift related to lost opportunity profits ensures that each online unit receives its maximum

possible profit under the existing market prices. Some units may be willing to produce more

under the final prices, but fulfilling such a wish may not be possible as it may cause that the

market would not be in equilibrium. A solution to encourage units to still follow the assigned

productions is to pay them their lost opportunity profits through a side-payment.

Our focus is to remove the need for uplift in term of make-whole payments. Therefore, the

final day-ahead prices provided by the methodology proposed may cause some units to

experience lost opportunity profits. That is, considering the final prices some units are willing

to produce more, but this is not possible for the market to be in equilibrium. Uplifts (of

reduced magnitude) can be used to remedy this side effect and to cover the lost opportunity

revenue. These uplifts are then socialized among consumers. For the sake of simplicity, we do

not consider the lost opportunity profits.

Finally, the new day-ahead prices obtained shall deviate in the least possible manner from

conventional marginal prices. This implies that social welfare deviates the least from its

maximum value.

Regarding the desired properties above and inspired by the approach in [59], we provide a

pricing scheme for a non-convex stochastic clearing model such that the producers do not

incur losses.

The proposed approach is as follows:

1. We formulate a stochastic market-clearing model with binary unit-commitment vari-

ables, which results in a MILP problem.

2. The binary variables are relaxed to be continuous to obtain a relaxed linear primal

problem.

3. The dual of the relaxed linear primal problem is then obtained.

4. Next, we formulate a primal-dual minimization problem whose objective function is

the duality gap and that is subject to primal and dual constraints. Since the integrity

constraints of the primal problem are also included, the primal-dual problem is a

MILP. The quantities and prices are output of this model. It is important to note that

minimizing the duality gap is tantamount of getting as close as possible to maximum

welfare, but ensuring cost recovery.
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5. To guarantee cost recovery for producers, we incorporate cost-recovery equations as

extra constraints in the primal-dual problem.

In the presence of stochasticity, the definition of cost-recovery conditions for producers is not

unique. In this sense, three views can be expressed:

1. Cost-recovery conditions in the day-ahead market: To satisfy cost-recovery conditions

in the day-ahead market, the day-ahead prices must ensure that the day-ahead profit of

each unit is not negative. That is, the day-ahead revenues minus the day-ahead costs

(including marginal production costs and fixed costs) must be either zero or a positive

value.

2. Cost-recovery conditions in expectation: In the same vein, cost-recovery conditions in

expectation are imposed. That is, average cost recovery of each unit over all realizations

of stochastic generation is guaranteed, i.e., the expected revenue minus the expected

cost of each unit is required to be non-negative.

3. Cost-recovery conditions per scenario: The most conservative interpretation of cost-

recovery conditions indicates that for each individual realization of stochastic genera-

tion the per scenario profit of each unit is required to be non-negative.

3.3 Assumptions

We consider the following assumptions to formulate the proposed pricing optimization model.

Many of these assumptions are similar to those stated in Section 2.3.

• The uncertain renewable resource is wind power generation. Wind generation leads

renewable production in term of installed capacity and technological development

[31]. Considering other stochastic resources does not change the nature of the model

proposed.

• The production of wind units depends on the uncertain wind power realization. Wind

power production is represented using scenarios. These scenarios are built using his-

torical wind production data as samples without applying any scenario generation and

scenario reduction techniques.

• The wind producers are assumed to offer their production at zero cost. This is in line

with the actual market practice of wind production in some countries, where as much

wind generation as possible shall be absorbed.
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• We assume that loads are deterministic. This assumption allows focusing on wind

uncertainty. Note that in systems with imperfect wind power production, load variability

is generally small in comparison with wind uncertainty.

• Loads are assumed to be inelastic. This assumption can easily be removed from the

model without modeling or computational complications.

• Generation cost functions are assumed to be linear for simplicity. However, note that

quadratic cost functions can be accurately approximated using piecewise linear func-

tions. Also, all generating units are required to offer their energy at marginal costs.

• The costs of the deployed reserves is assumed to be equal to the cost of producing

energy. Other criteria about the cost of the deployed reserves could be straightforwardly

considered in the proposed formulation.

• The stochastic clearing model co-optimizes energy and reserve deployment without ex-

plicit reserve offers in the day-ahead market. Units and flexible demands can specify the

reserve levels that they are willing to provide, and hence, we given them the opportunity

of reserve deployment for a profit.

• A linear representation of the transmission network is considered through a dc load flow

model where losses are neglected.

• We do not consider security criteria, such as n-1, to focus on the analyses of wind

uncertainty, and also, to avoid an increase in the size of the model which consequently

leads to an increase in computation time.

• The non-convexities considered are solely those due to non-zero minimum power

outputs of conventional units, start-up costs, and binary unit-commitment variables.

Taking into account other source of non-convexities, such as shut-down costs and

minimum up/down time constraints, is straightforward.

These assumptions are made for convenience, simplicity, and the sake of computational

tractability.

3.4 Decision-Making Process

The decision-making process is based on the multi-stage stochastic clearing model described

in Section 2.2. To reduce complexity but still satisfying the need for a stochastic clearing model

in the presence of uncertainty, we consider the two-stage model (2.44) in this chapter. Note
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that the principles of the proposed pricing approach are fully applicable to any multi-stage

stochastic clearing model, and the use of two-stage model is for the sack of simplicity.

The decision-making sequence involves day-ahead market and real-time operation. The day-

ahead outcomes, including scheduled power outputs and prices, are here-and-now decisions

as they are made before uncertain parameters are realized, while in real time deployed reserves

(balancing actions) and balancing prices represent wait-and-see decisions which are recourse

actions taken after uncertainty realizes.

3.5 Model Description

In this section, we provide the mathematical description of the proposed pricing scheme. For

this purpose, we first present the primal two-stage clearing model in Section 3.5.1. Next, We

formulate the corresponding dual problem in Section 3.5.2, and the corresponding primal-dual

problem in Section 3.5.3. Section 3.5.4 provides mathematical descriptions of cost-recovery

conditions for units. Next, the linearization of cost-recovery conditions is presented in Section

3.5.5. Finally, we provide the complete linear mixed-integer model in Section 3.5.6.

3.5.1 Primal Problem: Two-Stage Clearing Model

The first step of the proposed pricing approach is to formulate a two-stage clearing model. We

take the two-stage model (2.44) and skip to elaborate on the details as this model is described

in details in Section 2.4. We just slightly modify the two-stage model (2.44) according to the

simplifying assumptions indicated in Section 3.3. These modifications are related to wind

production as follow.

The wind producers are assumed to offer their production at zero cost. That is, Cq is zero in the

cost function (2.34). Therefore, the objective function includes the following two components:

• The day-ahead cost involving the start-up costs and production costs of conventional

units over all periods of the market horizon:

NT∑
t=1

NG∑
i=1

(C SU
i t +Ci Pi t ) (3.1)

• The expected balancing cost involving the cost of deployed reserves and involuntary
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load shedding:

NΩ∑
ω=1

πω

[ NT∑
t=1

( NG∑
i=1

Ci (r U
i tω− r D

i tω)+
NL∑
j=1

V LOL
j t Lshed

j tω

)]
(3.2)

Additionally, we assume that wind power output can be scheduled within a range of zero and

the installed capacity in the day-ahead market. Therefore, constraint (2.7) changes to:

0 ≤Wqt ≤W max
q (3.3)

The formulation of the two-stage MILP clearing model is provided in the following. We should

note that the corresponding dual variables are listed in front of the constraints that are used

when formulating the dual problem.

Minimize
Ξp

NT∑
t=1

NG∑
i=1

C SU
i t +

NΩ∑
ω=1

πω

[ NT∑
t=1

( NG∑
i=1

Ci (Pi t + r U
i tω− r D

i tω)+
NL∑
j=1

V LOL
j t Lshed

j tω

)]
(3.4a)

subject to

Day-ahead constraints:∑
i∈M G

n

Pi t +
∑

q∈M Q
n

Wqt −
∑

j∈M L
n

L j t −
∑

r∈Λn

Bnr (θnt −θr t ) = 0 : (λnt ),∀n,∀t (3.4b)

− f max
nr ≤ Bnr (θnt −θr t ) ≤ f max

nr : (ε−max
nr t ,εmax

nr t ),∀n,∀r ∈Λn ,∀t (3.4c)

ui t P min
i ≤ Pi t ≤ ui t P max

i : (φmin
i t ,φmax

i t ),∀i ,∀t (3.4d)

Wqt ≤W max
q : (ρW

qt ),∀q,∀t (3.4e)

K SU
i (ui t −ui ,t−1) ≤C SU

i t : (βi t ),∀i ,∀t (3.4f)

RDi ≤ Pi t −Pi ,t−1 ≤ RUi : (ψmin
i t ,ψmax

i t ),∀i ,∀t (3.4g)

θ1t = 0 : (σ1t ),∀t (3.4h)

ui t ∈ {0,1},∀i ,∀t (3.4i)

Real-time operation constraints:∑
i∈M G

n

(r U
i tω− r D

i tω)+ ∑
q∈M Q

n

(W RT
qtω−Wqt −w spill

qtω )

+ ∑
r∈Λn

Bnr (θnt −θntω−θr t +θr tω)+ ∑
j∈M L

n

Lshed
j tω = 0 : (λntω),∀n,∀t ,∀ω (3.4j)

− f max
nr ≤ Bnr (θntω−θr tω) ≤ f max

nr : (ε−max
nrωt ,εmax

nrωt ),∀n,∀r ∈Λn ,∀t ,∀ω (3.4k)

Pi t + r U
i tω− r D

i tω ≤ ui t P max
i : (φmax

i tω ),∀i ,∀t ,∀ω (3.4l)
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−Pi t − r U
i tω+ r D

i tω ≤−ui t P min
i : (φmin

i tω ),∀i ,∀t ,∀ω (3.4m)

RDi ≤
(
Pi t + r U

i tω− r D
i tω

)− (
Pi ,t−1 + r U

i ,t−1,ω− r D
i ,t−1,ω

)≤ RUi :

(ψmin
i tω ,ψmax

i tω ),∀i ,∀t ,∀ω (3.4n)

r U
i tω ≤ RU,max

i t : (αU
i tω),∀i ,∀t ,∀ω (3.4o)

r D
i tω ≤ RD,max

i t : (αD
i tω),∀i ,∀t ,∀ω (3.4p)

Łshed
j tω ≤ L j t : (μ j tω),∀ j ,∀t ,∀ω (3.4q)

w spill
qtω ≤W RT

qtω : (γqtω),∀q,∀t ,∀ω (3.4r)

θ1tω = 0 : (σ1tω),∀t ,∀ω (3.4s)

Variable declarations:

0 ≤ Pi t ,C SU
i t ,∀i ,∀t

0 ≤Wqt ,∀q,∀t

0 ≤ r U
i tω,r D

i tω,∀i ,∀t ,∀ω
0 ≤ w spill

qtω ,∀q,∀t ,∀ω
0 ≤ Lshed

j tω ,∀ j ,∀t ,∀ω (3.4t)

The problem (3.4) minimizes the expected operation cost (3.4a) considering day-ahead schedul-

ing constraints (3.4b)-(3.4i), real-time operation constraints (3.4j)-(3.4s), and variable declara-

tions (3.4t). The minimization is over the set of primal variablesΞp = {C SU
i t ,ui t ,Pi t ,∀i ,∀t ;Wqt ,

∀q,∀t ;θnt ,∀n,∀t ;r U
i tω,r D

i tω,∀i ,∀t ,∀ω; wspill
qtω ,∀q,∀t ,∀ω;θntω,∀n,∀t ,∀ω;Lshed

j tω ,∀ j ,∀t ,∀ω; }, as

described in Chapter 2.

3.5.2 Dual Problem of Two-stage Clearing Model

The second step of the proposed approach is to obtain a dual formulation of the primal

clearing model (3.4). For this purpose, the integrity constraint (3.4i) in problem (3.4) is relaxed

to be:

0 ≤ ui t ≤ 1,∀i ,∀t : (υmin
i t ,υmax

i t ) (3.5)

where υmin
i t and υmax

i t are the corresponding dual variables.

This relaxed problem is a simple linear program whose dual problem is straightforward to be

obtained.

As a reminder, the dual problem of the LP problem in general from (3.6) is formulated in (3.7)
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[36].

Minimize
x≥0

cTx (3.6a)

subject to:

Ax ≥ b, (μ) (3.6b)

C x = d, (λ) (3.6c)

where x ∈Rn , c ∈Rn , A ∈Rm×n , b ∈Rm, C ∈Rq×n , and d ∈Rq .

Maximize
μ≥0,λ

bTμ+d Tλ (3.7a)

subject to: ATμ+C Tλ≤ c (3.7b)

where μ ∈Rm and λ ∈Rq .

In the same vein, the dual formulation of relaxed primal problem (3.4) is:

Maximize
Ξd∑

t

[− ∑
n, j∈M L

n

λnt L j t −
∑

n,r∈Λn

( f max
nr εmax

nr t − f max
nr ε−max

nr t )+∑
i

(−υmax
i t −ψmax

i t RUi +ψmin
i t RDi )

+∑
ω

(
−∑

q
γqtωW RT

qtω−∑
j
μ j tωL j t −

∑
i
ψmax

i tω RUi +
∑

i
ψmin

i tω RDi

−∑
i
αU

i tωRU,max
i t −∑

i
αD

i tωRD,max
i t − ∑

n,r∈Λn

( f max
nr εmax

nr tω− f max
nr ε−max

nr tω )
)]

(3.8a)

subject to

Ci +λnt +ρi t +ψmax
i t +ψmin

i t +ψmax
i tω −ψmin

i tω +φmax
i tω −φmin

i tω ≥ 0,∀i ∈ M G
n ,∀n,∀ω,∀t

(3.8b)

λnt +λntω+ρW
qt ≥ 0,∀q ∈ M L

n ,∀n,∀ω,∀t (3.8c)

1−βi t ≥ 0,∀i ,∀t (3.8d)

πωCi +λntω+ψmax
i tω −ψmin

i tω +αU
i tω+φmax

i tω −φmin
i tω ≥ 0,∀i ∈ M G

n ,∀n,∀ω,∀t (3.8e)

−πωCi −λntω−ψmax
i tω +ψmin

i tω −αD
i tω−φmax

i tω +φmin
i tω ≥ 0,∀i ∈ M G

n ,∀n,∀ω,∀t (3.8f)

σ1t|n=1
+ ∑

r∈Λn

Bnr (εmax
nr t −ε−max

nr t )− ∑
r∈Λn

Bnr

(
λnt −λr t +λntω−λr tω

)
= 0,∀n,∀ω,∀t

(3.8g)

σ1tω|n=1
+ ∑

r∈Λn

Bnr (εmax
nr t −ε−max

nr t )+ ∑
r∈Λn

Bnr (λntω−λr tω) = 0,∀n,∀ω,∀t (3.8h)
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βi t K SU
i −φmax

i t P max
i +φmin

i t P min
i −φmax

i tω P max
i +φmin

i tω P min
i +υmax

i t ≥ 0,∀i ,∀ω,∀t (3.8i)

πωV LOL
j t +λntω+μ j tω ≥ 0,∀ j ∈ M L

n ,∀n,∀ω,∀t (3.8j)

λntω+γqtω ≥ 0,∀q ∈ M Q
n ,∀ω,∀t (3.8k)

εmax
nr t ,ε−max

nr t ≥ 0,∀n,∀r ∈Λn ,∀t (3.8l)

εmax
nr tω,ε−max

nr tω ≥ 0,∀n,∀r ∈Λn ,∀ω,∀t (3.8m)

υmax
i t ,βi t ,φmax

i t ,φmin
i t ,ψmax

i t ,ψmin
i t ≥ 0,∀i ,∀t (3.8n)

ρW
qt ≥ 0,∀q,∀t (3.8o)

φmax
i tω ,φmin

i tω ,ψmax
i tω ,ψmin

i tω ,αU
i tω,αD

i tω ≥ 0,∀i ,∀ω,∀t (3.8p)

μ j tω ≥ 0,∀ j ,∀ω,∀t , γqtω ≥ 0,∀q,∀ω,∀t (3.8q)

where Ξd = {λnt ,∀n,∀t ;λntω,∀n,∀t ,∀ω;εmax
nr t ,ε−max

nr t ,∀n,∀r ∈ Λn ,∀t ;εmax
nr tω,ε−max

nr tω ,∀n,∀r ∈
Λn ,∀t ,∀ω;φmax

i t ,φmin
i t ,υmax

i t ,βi t ,ψmax
i t ,ψmin

i t ,∀i ,∀t ;ρW
qt ,∀q,∀t ;φmax

i tω ,φmin
i tω ,ψmax

i tω ,ψmin
i tω ,αU

i tω,

αD
i tω,∀i ,∀t ,∀ω;μ j tω,∀ j ,∀t ,∀ω;γqtω∀q,∀t ,∀ω} are the variables of the dual problem.

Among them and of utmost importance are λnt and λntω
πω

which are the day-ahead prices and

probability-removed balancing prices, respectively.

3.5.3 Primal-Dual Problem

The next step is to formulate the primal-dual form of problem (3.4). The advantage of the

primal-dual problem is to allow simultaneously controlling primal variables, i.e., quantities,

and dual variables, i.e., prices.

To obtain the primal-dual formulation, we proceed as follows. We first provide the primal-dual

formulation in general form using the LP problem (3.6) and its dual problem (3.7). We next

apply this mathematical framework to the problem (3.4) and its dual problem (3.8).

Since primal problem (3.6) is convex, its Karush-Kuhn-Tucker (KKT) optimality conditions are

necessary and sufficient, and can be formulated as [36]:

Complementarity of primal problem (3.6):

Ax ≥ b (3.9a)

C x = d (3.9b)

μT(Ax−b) = 0 (3.9c)

λT(C x−d) = 0 (3.9d)

μ≥ 0 (3.9e)
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Complementarity of dual problem (3.7):

ATμ+C Tλ≤ c (3.9f)

xT(c−ATμ−CTλ) = 0 (3.9g)

x ≥ 0 (3.9h)

Primal-dual formulation is [59]:

Minimize
x,μ,λ

cTx−bTμ−dTλ (3.10a)

subject to

Ax ≥ b (3.10b)

C x = d (3.10c)

ATμ+C Tλ≤ c (3.10d)

x ≥ 0, μ≥ 0 (3.10e)

The objective function in problem (3.10) is the duality gap, cTx−bTμ−dTλ. Problem (3.10)

minimizes this gap subject to primal constraints (3.10b) and (3.10c), the dual constraint

(3.10d), and the variable declaration (3.10e). If the optimal value of the objective function

(3.10a) is zero (i.e., the duality gap is therefore zero), strong duality hold. That is, the primal

problem and dual problem have the same optimal value of objective function, and problems

(3.9) and (3.10) are, thus, equivalent.

The advantage of problem (3.10) is to provide the possibility of including additional constraints

at the cost of deviating from a zero duality gap. Therefore, the cost recovery conditions of

producers can be added to the primal-dual form of the problem as extra constraints. Before

elaborating on it, we provide the primal-dual formulation of the two-stage clearing problem:

Minimize
Ξp ,Ξd

NT∑
t=1

NG∑
i=1

C SU
i t +

NΩ∑
ω=1

πω

[ NT∑
t=1

( NG∑
i=1

Ci (Pi t + r U
i tω− r D

i tω)+
NL∑
j=1

V LOL
j t Lshed

j tω

)]

−∑
t

[
− ∑

n, j∈M L
n

λnt L j t −
∑

n,r∈Λn

( f max
nr εmax

nr t − f max
nr ε−max

nr t )−∑
i
υmax

i t

−∑
i
ψmax

i t RUi +
∑

i
ψmin

i t RDi +
∑
ω

(
−∑

q
γqtωW RT

qtω−∑
j
μ j tωL j t

−∑
i
ψmax

i tω RUi +
∑

i
ψmin

i tω RDi −
∑

i
αU

i tωRU,max
i t −∑

i
αD

i tωRD,max
i t

− ∑
n,r∈Λn

( f max
nr εmax

nrωt − f max
nr ε−max

nrωt )
)]

(3.11a)
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subject to

Primal constraints:∑
i∈M G

n

Pi t +
∑

q∈M Q
n

Wqt −
∑

j∈M L
n

L j t −
∑

r∈Λn

Bnr (θnt −θr t ) = 0,∀n,∀t (3.11b)

− f max
nr ≤ Bnr (θnt −θr t ) ≤ f max

nr ,∀n,∀r ∈Λn ,∀t (3.11c)

ui t P min
i ≤ Pi t ≤ ui t P max

i ,∀i ,∀t (3.11d)

Wqt ≤W max
q ,∀q,∀t (3.11e)

K SU
i (ui t −ui ,t−1) ≤C SU

i t ,∀i ,∀t (3.11f)

RDi ≤ Pi t −Pi ,t−1 ≤ RUi ,∀i ,∀t (3.11g)

θ1t = 0,∀t (3.11h)

ui t ∈ {0,1},∀i ,∀t (3.11i)∑
i∈M G

n

(r U
i tω− r D

i tω)+ ∑
q∈M Q

n

(W RT
qtω−Wqt −wspill

qtω )+ ∑
r∈Λn

Bnr (θnt −θntω

−θr t +θr tω)+ ∑
j∈M L

n

Lshed
j tω = 0,∀n,∀t ,∀ω (3.11j)

− f max
nr ≤ Bnr (θntω−θr tω) ≤ f max

nr ,∀n,∀r ∈Λn ,∀t ,∀ω (3.11k)

Pi t + r U
i tω− r D

i tω ≤ ui t P max
i ,∀i ,∀t ,∀ω (3.11l)

−Pi t − r U
i tω+ r D

i tω ≤−ui t P min
i ,∀i ,∀t ,∀ω (3.11m)

RDi ≤
(
Pi t + r U

i tω− r D
i tω

)− (
Pi ,t−1 + r U

i ,t−1,ω− r D
i ,t−1,ω

)≤ RUi ,∀i ,∀t ,∀ω
(3.11n)

r U
i tω ≤ RU,max

i t ,∀i ,∀t ,∀ω (3.11o)

r D
i tω ≤ RD,max

i t ,∀i ,∀t ,∀ω (3.11p)

Lshed
j tω ≤ L j t ,∀ j ,∀t ,∀ω (3.11q)

wspill
qtω ≤W RT

qtω,∀q,∀t ,∀ω (3.11r)

θ1tω = 0,∀t ,∀ω (3.11s)

0 ≤ Pi t ,C SU
i t ,∀i ,∀t

0 ≤Wqt ,∀q,∀t

0 ≤ r U
i tω,r D

i tω,∀i ,∀t ,∀ω
0 ≤ wspill

qtω ,∀q,∀t ,∀ω
0 ≤ Lshed

j tω ,∀ j ,∀t ,∀ω (3.11t)

Dual constraints:

Ci +λnt +ρi t +ψmax
i t +ψmin

i t +ψmax
i tω −ψmin

i tω

+φmax
i tω −φmin

i tω ≥ 0,∀i ∈ M G
n ,∀n,∀ω,∀t (3.11u)
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λnt +λntω+ρW
qt ≥ 0,∀q ∈ M L

n ,∀n,∀ω,∀t (3.11v)

1−βi t ≥ 0,∀i ,∀t (3.11w)

πωCi +λntω+ψmax
i tω −ψmin

i tω +αU
i tω

+φmax
i tω −φmin

i tω ≥ 0,∀i ∈ M G
n ,∀n,∀ω,∀t (3.11x)

−πωCi −λntω−ψmax
i tω +ψmin

i tω −αD
i tω

−φmax
i tω +φmin

i tω ≥ 0,∀i ∈ M G
n ,∀n,∀ω,∀t (3.11y)

σ1t|n=1
+ ∑

r∈Λn

Bnr (εmax
nr t −ε−max

nr t )

− ∑
r∈Λn

Bnr

(
λnt −λr t +λntω−λr tω

)
= 0,∀n,∀ω,∀t (3.11z)

σ1tω|n=1
+ ∑

r∈Λn

Bnr (εmax
nr t −ε−max

nr t )

+
∑

r∈Λn

Bnr (λntω−λr tω) = 0,∀n,∀ω,∀t (3.11aa)

βi t K SU
i −φmax

i t P max
i +φmin

i t P min
i

−φmax
i tω P max

i +φmin
i tω P min

i +υmax
i t ≥ 0,∀i ,∀ω,∀t (3.11ab)

πωV LOL
j t +λntω+μ j tω ≥ 0,∀ j ∈ M L

n ,∀n,∀ω,∀t (3.11ac)

λntω+γqtω ≥ 0,∀q ∈ M Q
n ,∀ω,∀t (3.11ad)

εmax
nr t ,ε−max

nr t ≥ 0,∀n,∀r ∈Λn ,∀t (3.11ae)

εmax
nrωt ,ε−max

nrωt ≥ 0,∀n,∀r ∈Λn ,∀ω,∀t (3.11af)

υmax
i t ,βi t ,φmax

i t ,φmin
i t ,ψmax

i t ,ψmin
i t ≥ 0,∀i ,∀t (3.11ag)

ρW
qt ≥ 0,∀q,∀t (3.11ah)

φmax
i tω ,φmin

i tω ,ψmax
i tω ,ψmin

i tω ,αU
i tω,αD

i tω ≥ 0,∀i ,∀ω,∀t (3.11ai)

μ j tω ≥ 0,∀ j ,∀ω,∀t , γqtω ≥ 0,∀q,∀ω,∀t · (3.11aj)

Problem (3.11) minimizes a social welfare gap since the objective function (3.11a) is the

difference of the primal objective function, which is the expected social welfare, and the

dual objective function, which is the expected social welfare as well. In other words, the

gap in equation (3.11a) is zero if no integrality or other constraints are imposed. Note that

problem (3.11) with relaxed integrality constraints (equation (3.11i)) is fully equivalent to

either the primal problem (3.4) with relaxed integrality constraints or the dual problem (3.8),

but embodies both primal and dual variables.

As stated above, the advantage of problem (3.11) is to allow controlling simultaneously quan-

tities and prices and to provide the possibility of introducing additional constraints to the

problem.
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Additionally, it should be noted that minimizing the duality gap is a proxy for deviating the

least from maximum social welfare.

The remaining steps of the proposed pricing model are to formulate cost-recovery conditions

of producers and to incorporate them in problem (3.11).

3.5.4 Cost Recovery Conditions

To incorporate cost-recovery conditions in problem (3.11), we consider the following three

variants:

• Cost-recovery at the day-ahead market (CR case):

Day-ahead cost-recovery conditions guarantee that no producer incurs losses following

day-ahead scheduled productions Pi t under day-ahead prices λnt . That is, under day-

ahead prices λnt , unit i , located at node n, has a revenue of
∑

t λnt Pi t and a cost of∑
t Ci Pi t +C SU

i t . Through the cost-recovery constraints at the day-ahead market, the

day-ahead profit of each producer is enforced to be non-negative:

∑
t

(
(λnt −Ci )Pi t −C SU

i t

)≥ 0 ∀i ∈ M G
n · (3.12)

• Cost-recovery in expectation (AR case):

Cost-recovery conditions in expectation (or average cost-recovery conditions) guarantee

a non-negative expected profit for producers. The expected profit of unit i , located at

node n, includes the day-ahead profit
∑

t
(
(λnt −Ci )Pi t )−C SU

i t

)
and the average profit∑

t
∑

ωπω(λntω/πω−Ci )(r U
i tω− r D

i tω) pertaining to real-time operation:

∑
t

[
(λnt −Ci )Pi t −C SU

i t +∑
ω
πω(λntω/πω−Ci )(r U

i tω− r D
i tω)

]≥ 0,∀i ∈ M G
n · (3.13)

As previously mentioned, λntω are the probability-affected balancing prices (linked to

the term πωCi in the objective function) that need to be divided by πω to make the

balancing prices comparable with the day-ahead prices. It is important to note that if

no integrality or cost-recovery constraint is imposed, then λnt =∑
ωπω(λntω/πω).

• Cost-recovery per scenario (SR case):

Although the expected profit of each producer is guaranteed to be non-negative under

cost-recovery conditions in expectation, it can still happen that a unit incurs losses

in one of the scenarios [38]. Cost-recovery conditions per scenario ensure the actual

cost recovery if that scenario is a good approximation of real-time operation. The cost
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recovery condition of unit i enforced in each scenario is:

∑
t

[
(λnt −Ci )Pi t −C SU

i t + (λntω/πω−Ci )(r U
i tω− r D

i tω)
]≥ 0,∀ω,∀i ∈ M G

n · (3.14)

3.5.5 Linearization of Cost-Recovery Conditions

The cost-recovery constraints, formulated in equations (3.12)-(3.14), contain products of

quantities (primal variables) and prices (dual variables). That is, the producer revenues from

the day-ahead market are calculated using the product of day-ahead quantities and day-ahead

prices (λnt Pi t ), and their revenues from real-time operation are obtained by the product of

the deployed quantities and the probability-removed balancing prices (λntω
πω

(r U
i tω− r D

i tω)). In

short, the cost-recovery constraints contain bi-linear terms.

Optimization problems with bi-linear terms in their constraints are categorized into non-

linear optimization problems that are in general hard to solve and no state-of-the-art solver

is available to guarantee the convergence or optimality of these problems. Hence, for com-

putational tractability, bi-linear terms are usually linearized. To linearize bi-linear equations

(3.12)-(3.14), a binary expansion is used as follows [59].

• Linearization of cost-recovery constraints at the day-ahead market:

The day-ahead cost-recovery constraints include the bi-linear term Pi tλnt . To linearize

this term, equations (3.15) are used:

Pi t =
∑
k

yi tk p̂i tk ,
∑
k

yi tk = 1, ∀i ,∀t (3.15a)

0 ≤λnt − zi tk ≤G(1− yi tk ), ∀k,∀i ∈ M G
n ,∀t (3.15b)

0 ≤ zi tk ≤G yi tk , ∀k,∀i ,∀t (3.15c)

0 ≤∑
t

∑
k

(zi tk p̂i tk )−Ci Pi t −C SU
i t , ∀i (3.15d)

yi tk ∈ {0,1}, ∀k,∀i ,∀t · (3.15e)

In equation (3.15a), the continuous production Pi t is replaced by
∑

k yi tk p̂i tk , which

discretely approximates Pi t . Index k denotes discretization index running from 1 to K

and p̂i tk denotes the discretization step. Since the variables yi tk are binary, as stated

in equation (3.15e),
∑K

k=1 yi tk = 1 ensures that Pi t is approximated by only one discrete

value. Replacing λnt Pi t by λnt
∑

k yi tk p̂i tk needs a further linearization step. For this

purpose, equations (3.15b) and (3.15c) are included, where zi tk denotes a continuous

variable representing day-ahead price and G denotes a sufficiently large positive con-
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stant. The value of G must be chosen such that equations (3.15b) and (3.15c) are not

binding at the solution, for example, the value of G can be ten times the value of the max-

imum price offer. Finally, the day-ahead cost-recovery constraint (3.12) is approximated

by equation (3.15d).

As an example, if at k = k ′, yi tk ′ = 1 (i.e., yi t1 = yi t2 = ·· · = yi tk ′−1 = 0, yi tk ′ = 1, yi tk ′+1 =
·· · = yi tK = 0 ), then Pi t = p̂i tk ′ (obtained from equation (3.15a)) and 0 ≤ λnt − zi tk ′ ≤
G(1−1) (obtained from equation (3.15b)) that results inλnt = zi tk ′ . Then, 0 ≤∑

t zi tk ′ p̂i tk ′−
Ci Pi t −C SU

i t that is equal to equation (3.12) if λnt Pi t is replaced by zi tk ′ p̂i tk ′ .

• Linearization of cost-recovery constraints in expectation:

In the same vein, we linearize the product of deployed reserves and balancing prices.

Therefore, the expected cost-recovery constraint (3.13) is recast as:

Pi t =
∑
k

yi tk p̂i tk ,
∑
k

yi tk = 1, ∀i ,∀t (3.16a)

0 ≤λnt − zi tk ≤G(1− yi tk ), ∀k,∀i ∈ M G
n ,∀t (3.16b)

0 ≤ zi tk ≤G yi tk , ∀k,∀i ,∀t (3.16c)

yi tk ∈ {0,1}, ∀k,∀i ,∀t (3.16d)

r U
i tω =∑

m
yU

i tωmr̂ U
i tωm , ∀i ,∀ω,∀t (3.16e)

r D
i tω =∑

m
yD

i tωmr̂ D
i tωm , ∀i ,∀ω,∀t (3.16f)

∑
m

yU
i tωm = 1, ∀i ,∀ω,∀t (3.16g)

∑
m

yD
i tωm = 1, ∀i ,∀ω,∀t (3.16h)

0 ≤λnωt − zU
i tωm ≤G(1− yU

i tωm), ∀m,∀i ∈ M G
n ,∀ω,∀t (3.16i)

0 ≤λnωt − zD
i tωm ≤G(1− yD

i tωm), ∀m,∀i ∈ M G
n ,∀ω,∀t (3.16j)

0 ≤ zU
i tωm ≤G yU

i tωm , ∀m,∀i ,∀t ,∀ω (3.16k)

0 ≤ zD
i tωm ≤G yD

i tωm , ∀m,∀i ,∀t ,∀ω (3.16l)

0 ≤∑
t

(
−Ci Pi t −C SU

i t +∑
k

zi tk p̂i tk+ (3.16m)

∑
ω
πω

[∑
m

(zU
i tωmr̂ U

i tωm − zD
i tωmr̂ D

i tωm)/πω−Ci (r U
i tω− r D

i tω)
])

, ∀i

yU
i tωm , yD

i tωm ∈ {0,1}, ∀m,∀i ,∀ω,∀t · (3.16n)

In equations (3.16a), (3.16e), and (3.16f), the scheduled production Pi t , upward de-

ployed reserve r U
i tω, and downward deployed reserve r D

i tω are replaced by the discrete
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approximations of
∑

k yi tk p̂i tk ,
∑

m yU
i tωmr̂ U

i tωm and
∑

m yD
i tωmr̂ U

i tωm , respectively. As

stated above, index k denotes discretization index running from 1 to K and p̂i tk denotes

the discretization step pertaining to scheduled production Pi t . In the same vein, index

m denotes discretization index pertaining to deployed reserves that runs from 1 to M ,

and r̂ U
i tωm and r̂ D

i tωm denote the discretization steps related to upward and downward

deployed reserves, r U
i tω and r D

i tω.

The variables yi tk , yU
i tωm , and yD

i tωm are binary as stated in equations (3.16a) and (3.16n),

respectively. Therefore,
∑K

k=1 yi tk = 1 ensures that Pi t is approximated by only one

discrete value,
∑

m yU
i tωm = 1 guarantees that one discrete value (r̂ U

i tωm) approximates

r U
i tω, and finally,

∑
m yD

i tωm = 1 imposes that r U
i tω is approximated by only one discrete

value (r̂ D
i tωm).

To replace λnt Pi t by λnt
∑

k yi tk p̂i tk , λntωr U
i tω by λntω

∑
m yU

i tωmr̂ U
i tωm , and λntωr D

i tω by

λntω
∑

m yD
i tωmr̂ D

i tωm , equations (3.16b), (3.16c), (3.16i)-(3.16l) are included. In these

equations, zi tk , zU
i tωm , and zD

i tωm denote continuous variables representing day-ahead

price, probability-affected balancing price associated to upward deployed reserves, and

probability-affected balancing price associated to downward deployed reserves. As

stated above, G denotes a sufficiently large positive constant. Finally, the expected

cost-recovery constraint (3.13) is approximated by equation (3.16m).

• Linearization of cost-recovery constraints per scenario:

Cost-recovery constraint per scenario (3.14) is linearized by (3.17).

The description of the variables and constraints needed for approximating and lineariz-

ing are similar to those related to equations (3.16a)-(3.16n), described above, but the

expected cost recovery equation (3.16m) is replaced by equation (3.17m) expressing

cost recovery per scenario:

Pi t =
∑
k

yi tk p̂i tk ,
∑
k

yi tk = 1, ∀i ,∀t (3.17a)

0 ≤λnt − zi tk ≤G(1− yi tk ), ∀k,∀i ∈ M G
n ,∀t (3.17b)

0 ≤ zi tk ≤G yi tk , ∀k,∀i ,∀t (3.17c)

yi tk ∈ {0,1}, ∀k,∀i ,∀t (3.17d)

r U
i tω =∑

m
yU

i tωmr̂ U
i tωm , ∀i ,∀ω,∀t (3.17e)

r D
i tω =∑

m
yD

i tωmr̂ D
i tωm , ∀i ,∀ω,∀t (3.17f)

∑
m

yU
i tωm = 1, ∀i ,∀ω,∀t (3.17g)

∑
m

yD
i tωm = 1, ∀i ,∀ω,∀t (3.17h)
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0 ≤λnωt − zU
i tωm ≤G(1− yU

i tωm), ∀m,∀i ∈ M G
n ,∀ω,∀t (3.17i)

0 ≤λnωt − zD
i tωm ≤G(1− yD

i tωm), ∀m,∀i ∈ M G
n ,∀ω,∀t (3.17j)

0 ≤ zU
i tωm ≤G yU

i tωm , ∀m,∀i ,∀t ,∀ω (3.17k)

0 ≤ zD
i tωm ≤G yD

i tωm , ∀m,∀i ,∀t ,∀ω (3.17l)

0 ≤
∑

t

(
−Ci Pi t −C SU

i t +∑
k

zi tk p̂i tk+ (3.17m)

∑
m

(zU
i tωmr̂ U

i tωm − zD
i tωmr̂ D

i tωm)/πω−Ci t (r U
i tω− r D

i tω)

)
, ∀i ,∀ω

yU
i tωm , yD

i tωm ∈ {0,1}, ∀m,∀i ,∀ω,∀t · (3.17n)

3.5.6 Complete Model

To summarize, primal-dual problem (3.11) with equations (3.15a)-(3.15e) results in prices

guaranteeing cost-recovery conditions at the day-ahead market, problem (3.11) with con-

straints (3.16a)-(3.16n) materializes prices ensuring cost-recovery conditions in expectation,

and finally this model with equations (3.17a)-(3.17n) achieves prices with the feature of cost-

recovery conditions per scenario.

We should note that the primal-dual problem (3.11) with cost-recovery constraints optimizes

over the primal variables (in set Ξp ) and the dual variables (in set Ξd ), as well as additional vari-

ables introduced in this section for linearization, i.e., Ξl = {zi tk , yi tk ,∀i ,∀t ,∀k; zU
i tωm , yU

i tωm ,

zD
i tωm , yD

i tωm ,∀i ,∀t ,∀ω,∀m}.

3.6 Illustrative Example

For the sake of illustration, in this section, we apply the proposed pricing approaches to a

simple system, and compare the market outcomes obtained from these approaches to those

from the conventional pricing method with uplift.

We reiterate that the prices from the conventional method are obtained by freezing binary

variables at their optimal value, which result from solving the primal problem (3.4), and

computing prices as dual variables of the corresponding LP problem [46].

3.6.1 Data

We consider a three-node system over a two-period time horizon. The system is shown in Fig.

3.1.
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The system includes three conventional units and a wind power unit. The data of generating

units are provided in Table 3.1. The maximum reserves RU,max
i and RD,max

i are assumed to

be equal to P max
i . Therefore, all units are flexible and can be dispatched for both energy and

reserve purposes. The start-up costs and marginal production costs of the units are chosen

with the purpose of highlighting unit U3 as expensive.

The load is considered to be 110 MW and 280 MW in periods t1 and t2, respectively. The load

is chosen so that expensive unit U3 must be dispatched in period t2. This allows analyzing

the cost recovery for unit U3 under the different approaches. A value of lost load equal to

$2000/MWh is considered in real-time operation.

The wind unit is located at node 2 and has an installed capacity of 120 MW. The uncertain

power output of this wind unit is modeled using two scenarios, high (with a probability of 0.6)

and low (with a probability of 0.4), for each time period as presented in Table 3.2.

Table 3.1 – Data of generating units.

Unit K SU
i [$] Ci [$/MWh] P max

i [MW] P min
i [MW] RU,min

i [MW] RD,max
i [MW]

U1 101.1 20.03 95 10 95 95

U2 103.2 50.06 100 10 100 100

U3 2001.06 100.01 105 10 105 105

WP
𝑈 𝑈

𝑈 𝐿

𝐿𝑖𝑛𝑒 1

Figure 3.1 – Test system

Table 3.2 – Wind scenarios [MW]

Period High Low

t1 59 13

t2 111 17
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Finally, line reactances and capacities are all equal to 0.13 p.u. and 500 MW, respectively. This

line capacity is sufficiently high to avoid congestion in any of the scenarios considered in order

to analyze solely the impact of uncertain wind production in this example.

3.6.2 Market Outcomes

We start discussing the results by providing quantities including the day-ahead scheduled

productions and the deployed reserves in real-time operation, as shown in Fig. 3.2.
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Figure 3.2 – Scheduled productions and deployed reserves obtained from the conventional
method and the proposed pricing approaches.

Focusing on period t1, the different approaches result in similar day-ahead scheduled produc-

tions for all units. That is, all approaches allocate 41 MW to unit U1, 10 MW to unit U2 and 59

MW to wind unit, which is the wind power output in scenario High. If scenario High occurs in

real-time operation, there is no need to deploy reserves, and if scenario Low occurs, where the

wind power output is 13 MW, unit U1 is deployed 46 MW.

In period t2, the scheduled productions of unit U3 (the expensive unit) and wind unit differ

under the different approaches. The approach with day-ahead cost-recovery conditions

schedules unit U3 to produce up to its capacity generation, i.e., 105 MW, while allocating 16

MW to wind unit. In other words, this approach allocates the highest production to unit U3

and the lowest to wind unit comparing to the corresponding production levels from the other

approaches. To assess these differences, we look at their impacts on the prices obtained from

the different approaches.

Table 3.3 provides the day-ahead prices from the proposed approaches and from the conven-

tional approach. Since there is no congestion in any of the two scenarios considered, prices
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do not change across nodes.

The day-ahead prices are higher in period t2 than in period t1 due to a higher load in this

period (110 MW and 280 MW, respectively).

The approach with the day-ahead cost-recovery constraints results in the highest day-ahead

price, which is $119.06/MWh in period t2.

In the following, we elaborate on the impact of these prices on the unit profits.

Table 3.3 – Day-ahead prices [$/MWh]

method λt1 λt2

U 20.03 70.04

CR 33.84 119.06

AR 33.84 103.87

SR 33.84 103.47

Fig. 3.3 depicts the producer profits at the day-ahead market,
∑

t

[
Pi t (λnt −Ci )−C SU

i t

]
,∀i ,

and in expectation,
∑

t

[
Pi t (λnt −Ci )−C SU

i t +∑
ωπω

(
(r U

i tω−r D
i tω)(λntω/πω−Ci )

)]
,∀i , under the

different pricing approaches considered.

We should note that the profits obtained from the conventional method with uplift (black

bars) and without uplift (white bars) differ only for units incurring losses in the day-ahead

market, as uplift is paid only to these units.

Focusing on the performance of the conventional method in the day-ahead market and unit

U3, this unit earns 10×70.04 = $700.4 ($70.04/MWh is the marginal price at period t2) while

its total cost, including production and start-up costs, is 10×100.01+2001.06 = $3001.16.

Therefore, the profit of unit U3 resulting from the day-ahead market is $-2300.7. To prevent

unit U3 from incurring losses, the conventional method proposes to pay an uplift. We reiterate

that uplifts are paid only to those units incurring losses as a side-payment with the purpose of

reducing these losses to zero, and not to provide an extra profit. Since uplift takes actual losses

into account, it is computed based on the day-ahead scheduled productions and prices as

follows: |max{0,
∑

t (ci −λnt )Pi t +C SU
i t }| = |max{0,(100.01−70.04)10+2001.06}| = 2300.7. As

depicted at the top plot in Fig. 3.3, the day-ahead profit of unit U3 is zero under the method

with uplift (denoted by U) and negative under the method without uplift (denoted by Con).

The profits from the method with uplift (black bars) and without uplift (white bars) are the

same for units U1 and U2 as they do not incur losses, and therefore, do not receive uplifts.
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This figure also shows that units U1 and U2 earn a higher day-ahead profit under the ap-

proaches with cost-recovery constraints than that under the method with uplift.

Focusing on unit U3, the approach with day-ahead cost-recovery constraints results in a

zero day-ahead profit. This is a better outcome in comparison to the negative day-ahead

profits resulting from the expected cost-recovery and per-scenario cost-recovery approaches.

However, the day-ahead cost-recovery approach does not prevent a negative profit in real-time

operation, as depicted at the bottom plot in Fig. 3.3.

Considering the expected profit (bottom plot in Fig. 3.3), the proposed approaches result in

higher expected profits for units U1 and U2 than those from the conventional method. We

reiterate that uplift is zero for these units, and hence, their expected profits are not affected by

uplifts, i.e., the white bars and black bars are the same for units U1 and U2. This observation

does not hold for unit U3. The approaches with average cost-recovery and per-scenario

cost-recovery constraints as well as the method with uplift result in a zero expected profit.

The total day-ahead profits (i.e., summation of the day-ahead profits of all units) obtained

from the approaches CR, AR, SR, as well as the method with uplift are $14,023.87, $9646.88,

$9707.19, and $5525.07, respectively. These outcomes are in line with the day-ahead prices

presented above: the day-ahead prices resulting from the approach with day-ahead cost

recovery are the highest, whereas those from the conventional method are the lowest.
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Figure 3.3 – Day-ahead profit and expected profit

Table 3.4 provides the expected costs and the consumer payments, as well as the duality

gaps under the different pricing schemes. The methods with cost-recovery constraints in

expectation results in the same optimal expected cost as the primal clearing problem (i.e., the

optimal expected cost of the conventional method). The approaches with day-ahead cost-

recovery constraints and with cost-recovery constraints per scenario increase the expected
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cost by about 0.04% and 0.16%, respectively.

Under the approaches with cost-recovery conditions, the consumer payments are higher than

those from the method with uplift. The increases in consumer payments obtained from the

proposed approaches as a percentage of the consumer payment from the method with uplift

are also listed in this table. We should note that these large (unrealistic) differences are due to

the fact that this example does not represent a realistic case-study. Using a realistic case-study,

these differences get smaller.

Consumer payment consists of the day-ahead cost and the day-ahead profit. Noting com-

paratively small differences in the costs from the different approaches, the higher consumer

payments from the proposed approaches result from higher day-ahead profits caused by

higher day-ahead prices obtained from the proposed approaches.

The last row of Table 3.4 provides the social welfare gaps of the proposed pricing schemes. Also,

these gaps are listed as a percentage of the optimal expected cost of $13049.23. Although it

may seem that these gaps are not small enough in comparison with the optimal expected cost

obtained from the primal problem (3.4) (i.e., $13,044.5 in this example), one should notice that

the illustrative example presented does not represent a realistic case-study. It is provided for

the sake of clarity. Social welfare gaps obtained from applying the proposed pricing scheme to

realistic cases are provided in Section 3.7.5.

Table 3.4 – Expected cost, consumer payment, and duality gap in [$]

CR AR SR U

Expected cost 13054.09 13049.23 13069.95 13049.23

Consumer payment 33158.80 19280.86 23041.54 15159.05

(118.7%) (27.2%) (51.2%) –

Gap 2061.06 (15.8%) 1524.56 (11.7%) 1530.08 (11.7%) –

3.7 Case Studies

The case studies provided in this section aim to appraise the performance of the proposed pric-

ing schemes in a larger power system. To this aim, the outcomes of the proposed approaches

are benchmarked against the outputs of the conventional method with uplift.
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3.7.1 Data

We apply the proposed approaches to a 24-node system based on the single-area IEEE Re-

liability Test System (RTS) [72]. To facilitate the analysis of the results, some of the original

characteristics of this test system are modified.

We consider the system to have 34 lines, 8 conventional generating units, 1 wind power unit,

and 5 loads.

The data of conventional generating units are provided in Table 3.5. We assume that hydro

unit U50 offers its energy at zero cost. The amount of reserve capacity that each generating

unit is willing to provide, either downward or upward, is assumed to be equal its production

capacity except from nuclear unit U400 that does not provide reserve.

The wind power unit, located at node 7, has an installed capacity of 600 MW. To generate wind

power scenarios, we use wind speed historical data from Austin, Texas, which are available

in the System Advisor Model (SAM) [2]. To obtain hourly wind power scenarios for 24 time

periods, we apply the power curve of a 2-MW Vestas V80/2000 wind turbine with a hub height

of 80 m. The power curve of this turbine model can be found in [16].

We should note that we built up the scenarios employing historical data without applying

scenario reduction techniques.

We consider 25 equi-probable scenarios for the wind power output in real-time operation.

Table 3.5 – Characteristics of the Generating Units

U76 U50 U155 U50 U197 U50 U400

Node 2 7 15, 18 15 21 22 23

P max
i [MW] 76 50 155 50 197 50 400

P min
i [MW] 15 15 55 15 69 15 100

RU,max
i [MW] 76 50 155 50 197 50 0

RD,max
i [MW] 76 50 155 50 197 50 0

C SU
i [$] 400 100 320 100 300 100 1000

Ci [$/MWh] 13.89 0 10.68 0 11.09 0 5.53

Table 3.6 provides the total demand over the 24 periods, while the demand locations and the

corresponding shares are provided in Table 3.7.
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Table 3.6 – Total demand in [MW]

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

441.1 481 482 483 490 1021.6 1132 1097 960.5 910.2 910 941.2

t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24

943 960 970 1031 1123 1130 1112 1101 998 930.1 780 440

Table 3.7 – Demand location

Demand D1 D2 D3 D4 D5

Node 1 4 13 14 20

Share % 33.5 18.9 14.9 16.2 16.5

3.7.2 Case I: No Network Congestion

In this case, the thermal limits of lines are considered to be high so that no congestion appears.

Therefore, the prices do not change across nodes

Since the driving factor of this chapter is the cost-recovery conditions of producers, we present

the market outcomes starting with producer profits.
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Figure 3.4 – Day-ahead Profit (RTS no congestion case).

Fig. 3.4 shows the day-ahead profit obtained from the different approaches. Under the

conventional approach without uplift (white bars), units U76 and U197 incur losses (negative

day-ahead profits), and therefore, two uplifts totaling $1465 are required.
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Using the proposed approaches, unit U197 has a positive day-ahead profit, and thus, does not

need uplift. However, unit U76 still incurs losses under the approaches with cost-recovery

constraints in expectation and per scenario, as these approaches do not enforce cost-recovery

conditions at the day-ahead market. The day-ahead profit of other units increases using the

proposed approaches. Among them, the day-ahead cost-recovery approach results in the

largest day-ahead profits. This is caused by the day-ahead prices, as described in the following.
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Figure 3.5 – Day-ahead prices at node 2 under different approaches (RTS no congestion case).

Fig. 3.5 depicts the day-ahead prices at node 2, where unit U76 is located, over the 24-hour

horizon. Since there is no congestion, the prices are the same at all nodes. Apart from period

t7 (morning peak) and period t18 (evening peak), the prices obtained from the approaches

with cost-recovery constraints are either equal or slightly higher than the prices obtained by

the conventional method. In period t18, the day-ahead prices obtained from the approaches

with cost-recovery constraints are the same and higher than the conventional marginal price.

However, a different behavior is observed in period t7. The approach with day-ahead cost-

recovery constraints results in a higher day-ahead price than those from the other approaches.

This consequently leads to a higher day-ahead profit from this approach, as observed in Fig.

3.4.

Fig. 3.6 shows the expected profit of the producers. In this figure, we distinguish the producer

profits with and without uplift by U and Con, respectively. One can observe that unit U76

cannot recover its expected cost under the prices obtained from the conventional method

without uplift (white bars). However, it attains a non-negative expected profit from the

approaches with cost-recovery constraints. Other units achieve higher profits under the

pricing approaches proposed than under the conventional method with uplift.
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Figure 3.6 – Expected Profit (RTS no congestion case).

Therefore, the proposed pricing approaches demonstrate the performance desired: the ap-

proach with day-ahead cost-recovery constraints guarantees non-negative day-ahead profit,

and the approaches with cost-recovery constraints in expectation and per scenario result

in non-negative expected profits. However, it is important to assess at what expenses these

outcomes are obtained. For this purpose, we provide the expected cost, consumer payment as

well as the duality gap in Table 3.8. The pricing methodologies with cost-recovery constraints

result in slightly higher expected cost than the one from the conventional method.

The approaches with cost-recovery conditions result in higher consumer payments than the

method with uplift. The increase in the consumer payments obtained from the proposed

approaches as a percentage of the consumer payment from the method with uplift is also

listed in Table 3.8. Note that consumer payment comprises day-ahead costs and day-ahead

profits. Higher day-ahead profits from the proposed approaches, described above, derive

higher consumer payments in these approaches as compared to those from the method with

uplift.

Finally, one can observe that the social welfare gaps in the last row are small in comparison

with the expected optimal social welfare from primal problem (3.4); they are of order of 0.3%

of the optimal expected cost of $127,066.

We should note that these differences are small, but also, they get smaller using a realistic

power system, as in a power system with a high penetration of renewable energy, gas units are

dominated technology among the conventional units due to their fast-ramping ability. Gas

units have small start-up costs and minimum production limits as compared to coal units.
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Table 3.8 – Expected cost, consumer payment and duality gap for the RTS system [$] (RTS no
congestion case)

CR AR SR U

Expected cost 127,066 127,169 127,153 127,066

Consumers payment 2.42×105 2.34×105 2.38×105 2.17×105

(11.5%) (7.8%) (9.7%) –

Gap 288.24 (0.2%) 384.80 (0.3%) 371.10 (0.3%) –

Therefore, we obtain a set of uniform prices under which cost-recovery conditions of producers

are guaranteed without a need of uplift at the expense of deviating about 0.3% from the optimal

social welfare.

For these simulation, we use CPLEX 12.1 under MATLAB on a computer Intel(R) Xeon(R) with

two processors clocking at 2.2 GHz and 512 GB of RAM. The sizes of the proposed models in

terms of number of variables and constraints as well as the computation time are provided in

Table 3.9. We elaborate on computation time in section 3.7.5.

Table 3.9 – Size of the proposed models

CR AR SR U

No. of continuous variables 93368 96968 96968 27600

No. of integer variables 1560 5160 5160 1176

No. of total variables 94928 102128 102128 28776

No. of constraints 95361 108561 108585 65384

Computation time (s) 22705 14231 1624 57

3.7.3 Impact of Minimum Up/Down Time Constraints

We have assumed start-up costs and minimum generation capacity as the only non-convexities

involved. However, other sources of non-convexity can be included without modeling dif-

ficulty, but different computational efforts. In this context, we investigate the impact of

minimum up/down time constraints in this section. We should note that these constraints

mostly pertain to old coal units and not to modern gas units. In a system with a large-scale

renewable penetration, it is expected that flexible gas units have a higher share of supply than

coal units. Therefore, the clearing model without these constraints represents a common

future power system, where a generation mix consists of renewable units and flexible units.
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The mathematical formulation of these constraints are provided in Appendix C.

We consider the minimum up time to be equal to the minimum down time for each con-

ventional unit, as provided in Table 3.10. A minimum up time of 3 hours is considered for

unit U76 in order to ensure that its respective minimum up time constraint is binding, and

therefore, the commitment of this unit is different from the commitment without considering

that constraint.

Table 3.11 provides the expected costs, the consumer payments, and the gaps obtained from

the different cost-recovery approaches under minimum up/down time constraints. The

increases in the consumer payments as a percentage of the consumer payment obtained from

the method with uplift are provided in Table 3.11. The gaps as a percentage of the optimal

expected cost of primal problem ($127,112) are also listed in this table.

Comparing these results to the outcomes from the formulation without minimum time con-

straints (Table 3.8), we conclude that the expected costs, the consumer payments, and the

gaps are similar. That is, the performance of the proposed approaches are not affected by

minimum up/down time constraints.

From the computational point of view, the approaches with day-ahead cost-recovery con-

straints and average cost-recovery constraints take the same computational efforts as the

simulations without minimum up/down time constraints. The computation time for the

approach with cost-recovery conditions per scenario, however, increases from 1624 s (for

the model without minimum up/down time constraints) to 4479 s (for the model with these

constraints).

Table 3.10 – Minimum Up/Down Time of Units

U76 U50 U155 U50 U197 U50 U400

Tmi n[h] 3 3 5 3 8 3 10

Table 3.11 – Expected cost, consumer payment and duality gap for the RTS system: No conges-
tion case incorporating minimum Up/Down Time Constraints [$].

CR AR SR U

Expected cost 127,112 127,218 127,252 127,112

Consumers payment 2.37×105 2.34×105 2.39×105 2.17×105

(9.2%) (7.8%) (10 %) –

Gap 275.5 (0.2%) 433.5 (0.3%) 471.3 (0.4%) –
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3.7.4 Case II: Network Congestion

The purpose of this case is to explore the impact of congestion on day-ahead prices, and

consequently, on consumer payments.

To create network congestion, transmission limits of lines between node 2 and node 4, node 2

and node 6, node 3 and node 9, and node 6 to node 10 are set to be comparatively small (i.e.,

60 MW). As examples, the day-ahead prices at periods t18 and t21 are chosen for illustration

and depicted in Fig. 3.7. The prices from other periods also show the same behavior.

In period t18, the day-ahead prices obtained from the conventional method and the ap-

proaches with cost-recovery conditions are the same over all nodes apart from node 6, where

the average cost-recovery method results in a lower price. In period t21, the prices from the

conventional method and the cost-recovery approaches are almost equal over all nodes; there

are small price differences only at nodes 2, 4 and 6.
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Figure 3.7 – LMPs at t18 (up) and t21 (down) obtained by the different approaches.

Table 3.12 provides the expected costs, the consumer payments, and the duality gaps obtained

from the different approaches. The expected costs obtained from different approaches are

of the same order of magnitude. The consumer payments from the approaches with cost-

recovery constraints are of the same order of magnitude, and generally, about 3% higher than

that from the method with uplift. Similar to the non-congested case, the social welfare gaps

are small; these gaps are of order of 0.13% of the optimal expected cost ($170257).
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Table 3.12 – Expected cost, consumer payment and duality gap for the RTS system with
congestion [$].

CR AR SR U

Expected cost 170,257 170,271 170,273 170,257

Consumers payment 2.87×105 2.85×105 2.86×105 2.77×105

(3.6%) (2.9%) (3.2%) –

Gap 211.58 (0.1%) 174.27 (0.1%) 230.91 (0.1%) –

3.7.5 Discussion on Social Welfare Gap and Computation Time

In this section, we elaborate on the computational aspects of the proposed models and the

relevance of the deviation from the expected optimal social welfare, i.e., the social welfare

gap. For this purpose, we simulate the proposed approaches using a number of different load

profiles for both no-congestion and congestion cases.

Outcomes show the same trend as those reported in Sections 3.7.2 and 3.7.4. That is, the

day-ahead prices obtained from the proposed approaches guarantee cost-recovery condi-

tions at the expense of an increase in the expected cost. The relevant metrics providing this

information are the expected cost and consumer payment, as described in the following.
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Expected Cost

%

1 2 3 4 5 6 7
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Consumer Payment

Load profile
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SR

Figure 3.8 – Cost increase in percent, and consumer payment increase in percent for different
load profiles (RTS no congested case)

Fig. 3.8 shows the increase in the expected cost using the cost-recovery approaches as a

percentage of the optimal expected cost of primal problem (3.4), and the increase in consumer

payment obtained from the cost-recovery approaches as a percentage of the payment resulting

from the method with uplift. A similar trend is observed in case of congestion, as depicted in
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Fig. 3.9. The increases in the expected cost are of order of less than 0.5%, and the increases in

the consumer payments are of order of less than 9%.
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Figure 3.9 – Cost increase in percent, and consumer payment increase in percent for different
load profiles (RTS congestion case)
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Figure 3.10 – Social welfare gaps as a percentage of the optimal expected cost obtained from
primal problem 3.4 for different load profiles

The social welfare gaps as a percentage of the optimal expected cost obtained from primal

problem (3.4) for different load profiles are shown in Fig. 3.10. The gaps obtained from the

different proposed approaches are of the same order of magnitude, and small in comparison

with the optimal expected cost.

Referring to Table 3.9, the approach with day-ahead cost-recovery constraints requires a high

computation time. This can be partly explained by the small gap obtained from this approach

for all load profiles in the non-congested case and for most of the profiles in the congested case
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(see Fig. 3.10). Note, however, that for MILP models, there is no linear relationship between

the size of the problem and the required computation time. In other words, a smaller problem

(with smaller number of variables and constraints) may take longer to solve than a larger

problem.

The average computation time considering different load profiles for models CR, AR, and SR

are, respectively, 5473 s, 4964 s, and 4479 s, which are not significantly different. Note that the

computation burden may be considerably reduced by carefully adjusting the linearization of

the cost-recovery conditions. By doing this, computation requirements are expected to be not

much higher than those of a standard stochastic clearing model. We elaborate on the impact

of linearization steps on computation time in the next section.

3.7.6 Impact of Linearization Step

The impact of linearization steps on the problem outcomes is elaborated in this section.

On one hand, a smaller linearization step approximates more precisely the problem, but on

the other hand, significantly increases the dimension of the problem and its computational

burden.

Computational burden particularly matters when considering small linearization steps for the

deployed reserves in the approach with cost-recovery constraints in expectation and the ap-

proach with cost-recovery constraints per scenario. The reason is that the number of required

decision variables (yU
i tωm , yD

i tωm , zU
i tωm , and zD

i tωm , ∀i ,∀t ,∀ω,∀m), and constraints, (con-

straints (3.16i)-(3.16l) for the approach with average cost-recovery conditions, and constraints

(3.17i)-(3.17l) for the approach with per-scenario cost-recovery conditions) significantly in-

crease.

In the simulations, thus far presented, linearization steps of 5 MW and 19 MW have been

considered, respectively, for the day-ahead scheduled productions and the deployed reserves.

We next consider a linearization step of 2 MW for both the day-ahead productions and de-

ployed reserves (a drastic reduction) and provide the outcomes in Table 3.13. Comparing

these outcomes with those provided in Table 3.8 (with linearization steps of 5 MW and 19

MW), we conclude that this smaller linearization step results in very similar expected costs

(less than 0.03% differences), but smaller gaps for all proposed approaches. It also results in

smaller consumer payments for the approach with day-ahead cost-recovery constraints (2.5%

reduction) and the approach with average cost-recovery constraints (0.4% reduction), and the

same consumer payment for the approach with cost-recovery constraints per scenario.

From a computational point of view, the smaller linearization steps of 2 MW increase the
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computation time from 14321 s to 19581 s for the approach with cost-recovery constraints in

expectation, and from 1624 s to 10983 s for the approach with cost-recovery constraints per

scenario. The computation time for the approach with day-ahead cost-recovery constraints

remains the same as the one for the linearization steps of 5 MW and 19 MW.

To summarize, a smaller linearization step leads to slightly more precise results at the expense

of higher computation time, while still the same conclusions are derived.

Table 3.13 – Expected cost, consumer payment and duality gap for the RTS system: no conges-
tion case and linearization steps of 2MW for both schedules and deployed reserves.

CR AR SR

Expected cost 127055 127122 127131

Consumers payment 2.36×105 2.33×105 2.38×105

Gap 282.8 347.6 359.9

3.7.7 Case Study Conclusion

We propose pricing approaches with cost-recovery conditions at the day-ahead, in expectation,

and per scenario for a stochastic non-convex clearing model.

Day-ahead prices obtained from the proposed approaches are higher than conventional

marginal prices in some periods. This, consequently, causes higher producer profits, and

therefore, higher consumer payments. However, the new prices eliminate the need of uplifts

and allow the market to fully rely on these new marginal prices. These conclusions are not

affected by network congestion, as well as by considering other sources of non-convexity such

as minimum up/down time constraints of units.

The increase in consumer payment varies from 3% to 9% of a payment derived from the

method with uplift considering different load profiles and network congestion.

From a social welfare point of view, the proposed approaches with cost-recovery features imply

deviating the least possible amount from the optimal value of the expected cost. The approach

with day-ahead cost-recovery constraints results in the same expected cost as the original

primal two-stage problem for the different load profiles considered. The other proposed

approaches also attain optimal expected costs close to the one of the primal problem. The

increases in expected costs are of order of 0.5% of the optimal expected cost. In the same

vein, the duality gaps are also small. Considering different load profiles, the duality gaps are of

order of 0.5% of the optimal social welfare.
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From the computational point of view, the models proposed have bi-linear terms, which need

to be linearized using integer variables. In this process, a smaller linearization step leads

to slightly more precise results at the expense of higher computation burden, but still the

same conclusions are derived. Generally, the models proposed are tractable and solvable in a

reasonable time using a MILP state-of-the-art solver.

3.8 Summary and Conclusion of the Chapter

Pricing schemes in non-convex electricity markets constitute an active area of research. Re-

cently, the growth of renewable generation and the possibility of using of stochastic clearing

models have added a new dimension to the traditional pricing problem: uncertainty.

This chapter proposes pricing methodologies in the presence of non-convexity and stochas-

ticity in electricity markets. The proposed approaches result in locational marginal prices

which guarantee cost-recovery conditions for producers, and therefore, eliminate a need for

uplifts. The prices obtained deviate in the least possible manner from conventional marginal

prices. This implies that a minimum deviation from the optimal value of social welfare is

also guaranteed. Moreover, the new prices preserve the short-term economic efficiency and

long-term cost recovery properties of marginal prices.

The proposed pricing methods may be of interest for regulators to replace the existing pricing

methods that require uplifts.
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4 Economic Impact of Flexible De-

mands

4.1 Introduction

In the previous chapters, we have focused on market-clearing models as tools facilitating a

large-scale integration of renewable generation. In this chapter, we change the view from the

role of tools to the role of market players, particularly demands.

A high penetration of renewable generation requires a system with sufficient flexibility. Flexi-

bility is the operational ability of a generating unit or a demand to be scheduled by the system

operator with some degree of freedom. The operational flexibility of demands and units allows

the system operator to adjust them in order to absorb renewable production to the largest

extent at a minimum cost. While flexibility of a generating unit is reflected in its ramping

capability, demand flexibility includes the ability to move consumption across periods, and to

change the consumption level per period. Hence, a system with a large amount of renewable

generation needs to promote demand flexibility and building fast-ramping units. This implies

that a common future power generation mix may consist of comparatively cheap renewable

units and comparatively expensive fast-ramping units.

Given that the driving factors behind marginal prices are the production costs of units, a swing

between high marginal prices (due to high production costs of fast-ramping units) and low

marginal prices (due to small production costs of renewable units) seems likely. But also, high

demand flexibility may alter energy prices such that what is known nowadays as peak and

off-peak prices may fade by demand flexibility, as it basically shifts energy consumption from

peak periods to off-peak periods.

The interaction between energy prices and flexible demands is complex. On one hand, de-

mand flexibility is recognized to be beneficial to the system as a whole since such flexibility

facilitates the integration of renewable generation with a reduced operation cost, but on the
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other hand, shifting demands from peak periods to off-peak periods may influence prices to

an extent that affects the willingness of demands to be flexible.

Therefore, in a power system with a high penetration of cheap renewable production and

expensive fast-ramping units, a legitimate question is whether being flexible is advantageous

for demands.

To address this question, this chapter analyzes the operational and economic impacts of

demand flexibility, particularly demand revenues.

Note that the contribution of demands in providing flexibility to assist the integration of

renewable generation ([44] and [1]) from the system point of view is discussed in [39], [75],

and [74]. However, analyses focusing on the economic impacts of demand flexibility are not

common in the literature, particularly the impact of different degrees of demand flexibility on

day-ahead prices.

4.2 Approach

We investigate the economic consequences resulting from flexible demand actions in a market

involving a significant amount of cheap renewable power production and expensive fast-

ramping units. To this aim, we use a two-stage stochastic clearing model, similar to the

model introduced in Chapter 2. However, this model is carefully adapted to consider demand

flexibility.

We should note that the use of a two-stage model is solely for the sake of convenience. A

multi-stage model comprising a number of intra-day markets in addition to the day-ahead

market and real-time one can be considered without difficulties. Note that this does not

change the outcome of the analyses in this chapter.

An actual system exhibiting the properties described above is the one in mainland Spain, a

system mostly based on gas and wind units. The energy prices may swing between high prices

driven by comparatively expensive gas units and low prices driven by comparatively cheap

wind units. Inspired by this system, we consider a power system with a generation mix of

wind and gas units for our analyses and investigate the impact of demand flexibility in such a

system by following the steps below:

• We consider flexible demands with a certain minimum daily energy consumption, and

the ability to move their consumptions across time periods.

• We use a two-stage model to obtain the day-ahead market outcomes including sched-
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uled power production of units, scheduled power consumptions of demands, and

day-ahead prices.

• The prices are obtained using the prevalent price scheme in industry [46] that is de-

scribed as the conventional pricing approach in Chapter 3. We should note that if pricing

schemes other than the one adopted [46] are used, e.g., a convex-hull pricing [24], the

problem of concern remains the same, and therefore, the choice of pricing scheme is

not particularly relevant.

• Next, we consider demands to be inflexible with the same daily energy consumptions as

those considered for flexible demands, and we obtain the day-ahead market outcomes.

• Finally, the results of the case with flexible demands are compared to the outcomes

obtained from inflexible demands.

4.3 Assumptions

Before elaborating on the mathematical formulation of the clearing model with flexible de-

mands, we list below the assumptions considered for the sake of simplicity and convenience.

• A generation mix of wind units and gas units are considered for our analyses. Wind

power output is considered to be the only source of uncertainty.

• Wind power output is represented by a number of scenarios. These scenarios are

built using historical wind production data as samples without applying any scenario

generation/reduction techniques.

• The wind producers are assumed to offer their production at a comparatively small cost.

• For simplicity, the cost functions of generating units and utility functions of flexible

demands are assumed to be linear.

• The cost of deploying reserve is the cost of energy production if the source for reserve

deployment is a unit, and if the source is a flexible demand, the utility of demand is the

cost of deploying reserve.

the utility of a flexible demand if the source is a demand.

• The stochastic clearing model co-optimizes energy and reserve deployment without

explicit reserve offers in the day-ahead market. Units and flexible demands can specify

the reserve limits (MW) that they are willing to provide, and hence, we give them the

opportunity of reserve deployment for a profit.
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• A linear representation of the transmission network is considered through a dc load flow

model where losses are neglected.

• We do not consider security criteria, such as n-1, to focus on the analyses of wind

uncertainty.

• The non-convexities considered are solely those due to non-zero minimum power

outputs of conventional units, start-up costs, and binary unit-commitment variables.

Taking into account other source of non-convexities, such as shut-down costs and

minimum up/down time constraints, is straightforward.

4.4 Model Description: Two-Stage Stochastic Clearing with Flexible

Demands

The decision-making sequence of the two-stage model is described in Chapter 2. Hence, we

do not repeat the description of variables and constraints. However, the two-stage model still

needs to be adapted to consider flexible demands.

In the following, we first list variables and constraints pertaining to demand flexibility, and

next, we provide the mathematical description of the two-stage model with flexible demands

followed by a brief description of the constraints.

4.4.1 Flexible Demands as Decision Variables

Similar to generating units, flexible demands are scheduled in the day-ahead market before

wind power output is realized. These flexible demands can also react to actual wind power

output in real-time operation by deploying reserves.

Therefore, the day-ahead demand schedules are first-stage variables, while flexible demands

in term of providing reserve deployments are second-stage variables. We define actual loads

as second-stage variables that result from the day-ahead demand schedules and real-time

deployments, i.e., d j tω = D j t +d D
j tω−d U

j tω.

Therefore, the following variables are considered in addition to the set of variables described in

Section 2.4.2, i.e., Ξ= {C SU
i t ,ui t ,Pi t ,∀i ,∀t ;Wqt ,∀q,∀t ;θnt ,∀n,∀t ;r U

i tω,r D
i tω,∀i ,∀t ,∀ω; wspill

qtω ,

∀q,∀t ,∀ω;θntω,∀n,∀t ,∀ω;Lshed
j tω ∀ j ,∀t ,∀ω}:

• Load scheduled for each flexible demand in each period at the day-ahead market (D j t ,

[MW]).
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• Deployed up-reserve by each flexible demand in each period and each scenario in

real-time operation (d U
j tω, [MW]).

• Deployed down-reserve by each flexible demand in each period and each scenario in

real-time operation (d D
j tω, [MW]).

• Actual load consumed by each flexible demand in each period and each scenario in

real-time operation (d j tω, [MW]).

• Final power output of each generating unit in each period and each scenario in real-time

operation (p j tω, [MW]).

Objective Function

In the presence of flexible demands, the objective function to be maximize is the expected

social welfare, and it includes the following terms:

• The day-ahead cost that includes the start-up cost and production costs of conventional

units, the production cost of wind units, and the utility of flexible demands over all

periods of the market horizon:

NT∑
t=1

( NG∑
i=1

(C SU
i t +Ci Pi t )+

NQ∑
q=1

CqWqt −
NL∑
j=1

U j t D j t
)

(4.1)

• The expected balancing cost that results from the deployed reserves by conventional

units and flexible demands, and involuntary load shedding in real-time operation:

NT∑
t=1

NΩ∑
ω=1

πω

[ NG∑
i=1

Ci (r U
i tω− r D

i tω)+
NQ∑

q=1
Cq (W RT

qtω−Wq −wspill
qtω )

+
NL∑
j=1

V LOL
j t Lshed

j tω −U j t (d D
j tω−d U

j tω)
]

(4.2)

Thus, the expected social welfare is:

NT∑
t=1

NG∑
i=1

−C SU
i t −

NΩ∑
ω=1

πω

[ NT∑
t=1

( NG∑
i=1

Ci pi tω+
NQ∑

q=1
Cq (W RT

qtω−wspill
qtω )+

NL∑
j=1

(V LOL
j t Lshed

j tω −U j t d j tω)
)]

(4.3)

where pi tω = Pi t + r U
i tω− r D

i tω and d j tω = D j t +d D
j tω−d U

j tω.

We should note that demand utilities are equivalent to bid prices, submitted by demands to
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the market, and thus, the model proposed incorporates demand bids in form of U j t d j tω, i.e.,

U j t (D j t +d D
j tω−d U

j tω).

4.4.2 Constraints pertinent to Demand Flexibility

We define demand flexibility to be the ability of demands to move their consumption across

periods, and to change their consumption level per period. That is, demands provide a

consumption range to the system operator within which they can vary according to the

preference of the operator (to benefit the system), but they have a certain energy consumption

that must be respected by the system operator.

In this context, we introduce the following new constraints pertaining to flexible demands in

the day-ahead market as well as in real-time operation:

Day-ahead Market Constraints

Considering the power balance equation in the day-ahead market expressed in (2.5), the

inflexible demand L j t changes to flexible demand D j t of which schedule is determined in the

market:

∑
i∈M G

n

Pi t +
∑

q∈M Q
n

Wqt −
∑

j∈M L
n

D j t −
∑

r∈Λn

Bnr (θnt −θr t ) = 0,∀n,∀t (4.4)

The day-ahead demand schedules are enforced to be within the minimum and maximum

limits in each period:

Dmin
j t ≤ D j t ≤ Dmax

j t ,∀ j ,∀t (4.5)

Similar to the ramping limits of units, demands have pick-up and drop-down rate limits.

The pick-up/drop-down rates represent how a flexible load can increase or decrease its con-

sumption. The day-ahead demand schedules are enforced to respect these limits in each

period:

RD j ≤ D j t −D j ,t−1 ≤ RU j ,∀ j ,∀t (4.6)

Real-time Operation Constraints

Considering the power balance equation in real-time operation expressed in (2.35), apart from
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units, flexible demands also provide deployed reserves:

∑
i∈M G

n

(r U
i tω− r D

i tω)+ ∑
q∈M Q

n

(W RT
qtω−Wqt −wspill

qtω )− ∑
j∈M L

n

(d D
j tω−d U

j tω+Lshed
j tω )

+ ∑
r∈Λn

Bnr (θnt −θntω−θr t +θr tω) = 0,∀n,∀t ,∀ω (4.7)

The actual load, resulting from the reserve deployment provided by the flexible demands, is

enforced to be within the demand limits in real-time operation for each scenario and each

time period:

Dmin
j t ≤ d j tω ≤ Dmax

j t ,∀ j ,∀t ,∀ω (4.8)

The pick-up/drop-down rate limits of flexible demand j shall be respected in real-time opera-

tion for each scenario and each time period:

RD j ≤ d j tω−d j ,t−1,ω ≤ RU j ,∀ j ,∀t ,∀ω (4.9)

The total consumption of actual demand d j tω over all periods shall respect the minimum

daily energy consumption of flexible demand j , denoted by E j . This is enforced by constraint

(4.10):

E j ≤
NT∑
t=1

d j tω,∀ j ,∀ω (4.10)

The deployed reserves are limited between zero and the available amount of reserves offered

by flexible demands:

0 ≤ d D
j tω ≤ RD,max

j t ,∀ j ,∀t ,∀ω (4.11)

0 ≤ d U
j tω ≤ RU,max

j t ,∀ j ,∀t ,∀ω (4.12)

4.4.3 Mathematical Model

The MILP market-clearing model including flexible demands is as follows:

Maximize
ΞD
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NT∑
t=1

NG∑
i=1

−C SU
i t −

NΩ∑
ω=1

πω

[ NT∑
t=1

( NG∑
i=1

Ci pi tω+
NQ∑

q=1
Cq (W RT

qtω−wspill
qtω )+

NL∑
j=1

(V LOL
j t Lshed

j tω −U j t d j tω)
)]

(4.13a)

subject to

First-stage constraints:∑
i∈M G

n

Pi t +
∑

q∈M Q
n

Wqt −
∑

j∈M L
n

D j t −
∑

r∈Λn

Bnr (θnt −θr t ) = 0,∀n,∀t (4.13b)

K SU
i (ui t −ui ,t−1) ≤C SU

i t ,∀i ,∀t (4.13c)

ui t ∈ {0,1},∀i ,∀t (4.13d)

ui t P min
i ≤ Pi t ≤ ui t P max

i ,∀i ,∀t (4.13e)

Dmin
j t ≤ D j t ≤ Dmax

j t ,∀ j ,∀t (4.13f)

Wqt ≤W max
q ,∀q,∀t (4.13g)

RDi ≤ Pi t −Pi ,t−1 ≤ RUi ,∀i ,∀t (4.13h)

RD j ≤ D j t −D j ,t−1 ≤ RU j ,∀ j ,∀t (4.13i)

θ1t = 0,∀t (4.13j)

Second-stage constraints:∑
i∈M G

n

(r U
i tω− r D

i tω)+ ∑
q∈M Q

n

(W RT
qtω−Wqt −w spill

qtω )− ∑
j∈M L

n

(d D
j tω−d U

j tω+Lshed
j tω )

+ ∑
r∈Λn

Bnr (θnt −θntω−θr t +θr tω) = 0,∀n,∀t ,∀ω (4.13k)

pi tω = Pi t + r U
i tω− r D

i tω (4.13l)

d j tω = D j t +d D
j tω−d U

j tω (4.13m)

ui t P min
i ≤ pi tω ≤ ui t P max

i ,∀i ,∀t ,∀ω (4.13n)

Dmin
j t ≤ d j tω ≤ Dmax

j t ,∀ j ,∀t ,∀ω (4.13o)

RDi ≤ pi tω−pi ,t−1,ω ≤ RUi ,∀i ,∀t ,∀ω (4.13p)

RD j ≤ d j tω−d j ,t−1,ω ≤ RU j ,∀ j ,∀t ,∀ω (4.13q)

− f max
nr ≤ Bnr (θntω−θr tω) ≤ f max

nr ,∀n,∀r ∈Λn ,∀t ,∀ω (4.13r)

E j ≤
NT∑
t=1

d j tω,∀ j ,∀ω (4.13s)

r U
i tω ≤ RU,max

i t ,∀i ,∀t ,∀ω (4.13t)

r D
i tω ≤ RD,max

i t ,∀i ,∀t ,∀ω (4.13u)

d D
j tω ≤ RD,max

j t ,∀ j ,∀t ,∀ω (4.13v)

d U
j tω ≤ RU,max

j t ,∀ j ,∀t ,∀ω (4.13w)
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Lshed
j tω ≤ d j tω,∀ j ,∀t ,∀ω (4.13x)

wspill
qtω ≤W RT

qtω,∀q,∀t ,∀ω (4.13y)

θ1tω = 0,∀t ,∀ω (4.13z)

0 ≤ Pi t ,C SU
i t ,∀i ,∀t , 0 ≤Wqt ,∀q,∀t

0 ≤ r U
i tω,r D

i tω,∀i ,∀t ,∀ω, 0 ≤ w spill
qtω ,∀q,∀t ,∀ω

0 ≤ Lshed
j tω ,d U

j tω,d D
j tω,∀ j ,∀t ,∀ω (4.13aa)

whereΞD = {C SU
i t ,Pi t ,∀i ,∀t ;Wqt ,∀q,∀t ;D j t ,∀ j ,∀t ;θnt ,∀n,∀t ; pi tω,r U

i tω,r D
i tω,∀i ,∀t ,∀ω;d j tω,

d U
j tω,d D

j tω,Lshed
j tω ,∀ j ,∀t ,∀ω; wspill

qtω ,∀q,∀t ,∀ω;θntω,∀n,∀t ,∀ω} is the set of optimization vari-

ables.

The problem (4.13) maximizes the expected social welfare (4.13a) considering the day-ahead

constraints (4.13b)-(4.13j), the real-time operation constraints (4.13k)-(4.13z), and variable

declarations expressed in (4.13aa).

A brief description of the constraints is as follows. Constraint (4.13b) represents the power

balance in the day-ahead market, where scheduled power production of units and scheduled

loads of flexible demands are determined. The start-up costs are modeled by equation (4.13c),

which depend on the on/off status of each generating unit via binary variable ui t in constraint

(4.13d). The limits of production of conventional units, flexible demands, and wind production

in the day-ahead market are represented by constraints (4.13e), (4.13f) and (4.13g), respectively.

Constraint (4.13h) enforces the ramping limits of generating units. Similarly, constraint (4.13i)

enforces the pick-up/drop-down rate limits of flexible demands in the day-ahead market.

Constraint (4.13j) establishes that node 1 is the reference node in the day-ahead market.

Constraint (4.13k) stands for power balance in real-time operation, where actual wind power

output is compensated by deploying reserves provided by conventional units and flexible

demands, as well as (in rare cases) load shedding. The power output of unit i during period

t and scenario ω is described by equation (4.13l), and the actual load for flexible demand

j in period t and scenario ω by equation (4.13m). The reserve deployment provided by the

conventional units shall respect the generation limits, and the reserve deployment provided

by the flexible demands must be within the demand limits in real-time operation. These limits

are considered in constraints (4.13n) and (4.13o), respectively. Constraint (4.13p) represents

the ramping limits of generating units, and constraint (4.13q) represents the pick-up/drop-

down rate limits of flexible demands in real-time operation. Constraint (4.13r) enforces that

the line flows stay within the transmission capacity limits at real-time operation. Note that

enforcing this constraint is not generally required in the day-ahead market. The day-ahead

schedules can violate these limits as long as actual power flows are still within the transmission
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limits in any realization of the wind scenario in real-time operation. A minimum daily energy

consumption of flexible demand j is enforced by (4.13s). Constraints (4.13t) and (4.13u),

(4.13v) and (4.13w) stand for maximum up and down reserve limits provided by conventional

units and flexible demands, respectively. The limits of load shedding and wind spillage are

provided in constraints (4.13x) and (4.13y), respectively. Constraint (4.13z) establishes node 1

as the reference node in real-time operation.

Non-negativity of scheduled productions and consumptions, start-up costs, wind productions,

deployed reserves, wind spillage, and load shedding are enforced by constraints (4.13aa).

We should note that in the case of inflexible demands, variables d U
j tω and d D

j tω are set to zero,

and consequently, constraint (4.13m) change to d j tω = D j t , where D j t is equal to the constant

L j t , representing an inflexible load pattern. Note also that, contrary to flexible demands,

inflexible demands cannot vary within a range.

4.5 Illustrative Example

For illustration purposes, we apply the clearing problem (4.13) to a simple system to show

how consumption levels are allocated differently in a flexible demand case and in an inflexible

demand case, and how this different allocation affects prices, and consequently, producer

profits and consumer payments.

4.5.1 Data

The test system is depicted in Fig. 4.1. We consider a scheduling horizon of two periods for

this analysis. The system includes three conventional units, three demands and a wind unit,

as described in the following.

The data of the conventional units are provided in Table 4.1. The maximum reserves RU,max
i

and RD,max
i provided by these units are assumed to be equal to P max

i . Hence, all units can be

dispatched for both energy and reserve. Also, no limitations are assumed for the ramping rates

of the conventional units.

We consider demand utilities to be zero. The prices are therefore driven solely by the produc-

tion costs of the units. We also assume that demands do not provide reserve and that flexibility

for demands is the ability of shifting load across time periods. We consider a minimum en-

ergy consumption (E j ) of 180 MWh, 111 MWh, and 209 MWh for demands D1, D2, and D3,

respectively. A value of lost load equal to $2000/MWh is considered in real-time operation.
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The wind power plant, at node 2, has an installed capacity of 300 MW. A small production cost

of $0.3/MWh is assumed for this unit. Two equi-probable scenarios are used to model the

wind power output uncertainty for each time period, as provided in Table 4.2. We should note

that period t1 represents a period with a high wind power production while at period t2 the

wind power output significantly decreases.

All line reactances are equal to 0.13 p.u. and all line capacities are set to be high enough to

avoid congestion.

WP𝑈 𝑈

𝑈 𝐷

𝐿𝑖𝑛𝑒 1
𝐷 𝐷

Figure 4.1 – Test system

Table 4.1 – Data of generating units.

Unit K SU
i [$] Ci [$/MWh] P max

i [MW] P min
i [MW] RU,max

i [MW] RD,max
i [MW]

U1 300.01 10.03 95 15 95 95

U2 102.2 30.02 100 10 100 100

U3 101.2 31.01 105 5 105 105

Table 4.2 – Wind scenarios (W RT
qtω)[MW]

Period scenario ω1 scenario ω2

t1 283 299

t2 10 13
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4.5.2 Market Outcomes

Below, we present the results, including day-ahead schedules and day-ahead prices, for two

cases, one with flexible demands and other with inflexible demands.

Fig. 4.2 shows the day-ahead scheduled production (upper plots) and scheduled demands

(bottom plots) for the cases described.

In the case with inflexible demands, the consumption is assumed to be fixed to 283 MW in

period t1 and to 217 MW in period t2 (total 500 MW).

In this allocation, none of the conventional units is scheduled in period t1 (the load is covered

solely by the wind unit), whereas all of them are scheduled in period t2. On the other hand,

in the case with flexibility, demand is moved from period t2 to period t1 so that a larger load

share (378 MW from 500 MW) is allocated to period t1 and a smaller one (122 MW from 500

MW) to period t2. Note that this is the outcome that we aim to obtain in order to be able to

explore the impact of flexible demands on marginal prices.
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Demands at t1

DA Scheduled
Demands at t2

Figure 4.2 – Day-ahead scheduled units and demands - illustrative example

Table 4.3 provides the day-ahead prices λt and the probability-removed balancing prices

λtω/πω per scenario. Since there is no congestion in any of the scenarios considered, electricity

prices do not change across nodes.

As mentioned in the previous chapters, these prices are obtained as dual variables of power

balance equations after setting the binary unit-commitment variables to their optimal values

[46].

In period t1, the price from the inelastic demand case is the lowest, whereas it is the highest in

period t2. This is due to the commitment decisions: since none of the conventional units is
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committed in period t1, the corresponding prices obtained are solely driven by the small cost

of the wind unit. However, in period t2 all conventional units are online and the corresponding

prices are driven by the marginal production cost of unit U3. Under flexible demands, the shift

of demands from period t2 to period t1 turns unit U1 on in period t1, which results in a higher

price ($10.03/MWh) than that of the inflexible demand case ($0.3/MWh).

Table 4.3 – Day-ahead and probability-removed balancing prices ($/MWh)

Flexible demand Inflexible demand

t1 t2 t1 t2

λ 10.03 30.02 0.3 31.01

λω1 /πω1 10.03 30.02 0.3 31.01

λω2 /πω2 10.03 30.02 0.3 31.01

Therefore, demand flexibility results in higher prices in valley and slightly lower prices in peak.

Given these schedules and prices, Table 4.4 provides the day-ahead profit, expected profit,

day-ahead cost, expected cost, consumer payment, and uplift for the different cases.

Table 4.4 – Market outcomes of three-node system

Flexible demand Inflexible demand

Unit DA Exp. DA Exp.

Profit Profit Profit Profit

($) ($) ($) ($)

U1 -0.16 1599.04 14.69 1693.09

U2 -102.20 -102.20 -92.30 -3.20

U3 0.00 0.00 -101.20 -101.20

Wind 5801.84 5801.84 5742.77 5742.77

Total 5699.48 7298.68 5563.96 7331.46

DA Exp. DA Exp.

Cost ($) 1754.30 2783.70 1250.10 4872.20

Consumer Payment ($) Consumer Payment ($)

7453.80 6814.10

Uplift ($) Uplift ($)

102.36 193.50

The inflexible demand case results in a higher expected cost and a lower day-ahead cost than

those from the case with flexibility. The comparatively lower day-ahead cost of the inflexible

demand case is due to a higher amount of wind power scheduled in the day-ahead market.

However, this requires a high expected balancing cost of deployed reserves, and eventually,
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leads to a higher total expected cost than that of the case with flexibility.

This observation confirms that demand flexibility is beneficial to the system, as it decreases

the operation cost.

Focusing on unit profits, the inflexible demand case results in a smaller total day-ahead profit

(i.e., $5563.96 vs $5699.48), but a larger total expected profit than those from the flexible

demand case. The smaller total day-ahead profit is due to the low prices (i.e., $0.3/MWh) that

are driven by the off status of the conventional units in period t1, and a larger total expected

profit results from high prices (i.e., $31/MWh) obtained in period t2.

Note that under the day-ahead prices obtained, units U1 and U2 cannot recover their produc-

tion costs in the flexible demand case, as well as units U2 and U3 in the inflexible demand

case. These losses disappear or decrease, if the respective units are deployed at the operation

stage, such as unit U1 in the flexible demand case and unit U2 in the inflexible demand case.

Adopting the common practice of uplifts, these side-payments are provided for both cases.

Finally, the consumer payment, which is the summation of the day-ahead cost and total

day-ahead profit, is smaller under the inflexible demands than that under flexible demands.

Note that the flexible demand case results in a smaller day-ahead cost, but a higher total

day-ahead profit. The latter causes a higher consumer payment under this case than that of

the inflexible demand case. In other words, demand flexibility results in prices that increase

unit profits, and consequently, the demand payments.

Therefore, although demand flexibility is beneficial to the system as a whole, it may result in

prices not beneficial for the flexible demands.

4.6 Case Studies

In this section, we present two case studies: one without network congestion and without

ramping limits of units, and another with both network congestion and ramping limits of

units.

Similar to the illustrative example and for simplicity, the utility of demands is considered to be

zero. Therefore, the marginal prices are linked to the production costs of units.

In other words, we explore a situation where demands support the system operator with a full

scale flexibility free of charge, and compare the operational and economic outcomes to the

case with inflexible demands.
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4.6.1 Data

The test system is a modified version of the 24-node system based on the single-area IEEE RTS

[72] including a generation mix of expensive fast-ramping units and one wind unit to facilitate

the analyses of the results.

The system considered has 34 lines, 8 conventional units, and 1 wind power unit. The data

of conventional units are provided in Table 4.5. Note that apart from hydro units U50, the

rest of the units have relatively high production costs as compared to the cheap wind unit.

As previously mentioned, such a generation mix is motivated by the case of mainland Spain,

whose generation mix is dominated by gas and wind units. Considering this generation mix, we

note that gas units (CCGTs) are generally not subject to minimum up/down time constraints.

Therefore, these constraints are not considered. We assume that the limit of reserve capacity

is equal to the capacity of each conventional unit.

Table 4.5 – Characteristics of the Generating Units

U90 U50 U155 U76 U197

Node 2 7,15 10,18 16 21,22

P max
i [MW] 90 50 20 76 197

P min
i [MW] 25 15 12 15.2 69

K SU
i [$] 400 100 400 400 300

Ci [$/MWh] 19.67 0.2 10.68 11.89 18.09

RU,max
i [MW] 90 50 20 76 197

RD,max
i [MW] 90 50 20 76 197

Table 4.6 provides demand data including their location and minimum energy consumption

E j .

The wind power unit, located at node 7, has an installed capacity of 1000 MW. To generate wind

power scenarios, we use wind speed historical data from Austin, Texas, which are available

in the System Advisor Model (SAM) [2]. To obtain hourly wind power scenarios for 24 time

periods, we apply the power curve of a 2-MW Vestas V80/2000 wind turbine with a hub height

of 80 m. The power curve of this turbine model can be found in [16].

We should note that we built up the scenarios employing historical data without applying

scenario reduction techniques.

We consider 30 equi-probable scenarios for the wind power output in real-time operation.
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Table 4.6 – RTS case: Demand Information

Demand D1 D2 D3 D4 D5 D6 D7 D8

Node 1 2 3 4 5 6 7 8

Minimum Energy (MWh) 775 1415 2675 1005 896 1165 1065 1505

Demand D9 D10 D11 D12 D13 D14 D15 D16

Node 9 10 13 14 15 16 18 19

Minimum Energy (MWh) 1287 1129 988 1021 1275 955 1085 1430

4.6.2 Base Case: No Congestion

For first case, we consider high enough transmission capacity so that no congestion occurs.

Therefore, prices are the same across nodes. Also, the ramping limits of units are assumed to

be equal to their capacities.

For the case with inflexible demands, demands D j t are fixed to given load value L j t , i.e.,

D j t = L j t , with off-peak values during the early morning and the late evening, and peak values

over day hours.

U90 U50 U155 U50 U76 U155 U197_21 U197_22 Wind
0

1000

2000

3000

4000

Unit

M
W

h

Total Day−ahead Production Output Scheduled over 24 Hours

Flexible Demand
Inflexible Demand

Figure 4.3 – Day-ahead production scheduled over 24 periods (RTS system)

Fig. 4.3 shows the day-ahead energy production of all units scheduled over all periods. In

the flexible demand case, the wind power output scheduled is almost twice than that in

the inflexible demand case. This observation confirms the impact of demand flexibility in

integrating wind production. Also, units U90 and U197 (the one located at node 22) stay offline

in the flexible demand case, while all conventional units, including expensive unit U90, are

scheduled in the inflexible demand case. The impact of unit U90 on the day-ahead prices is

elaborated below.

Figs. 4.4 and 4.5 show the total scheduled demand and the day-ahead prices, respectively.
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In the case with inflexible demands (blue and squares), during periods t1 − t4 demands are

relatively small and can be supplied solely by wind generation. In the mid-day hours, demand

grows while wind generation decreases. Therefore, to cover the demands, other units are

required. Focusing on the outcome from flexible demands (red and circles), demands are

shifted to periods t1 − t5 and periods t20 − t24 which are periods with cheap wind generation.

Correspondingly, the day-ahead prices have a different pattern for these cases: in the case

with inflexible demands, in periods t1 − t3 and t22 − t24 the day-ahead prices are derived from

the small production cost of wind unit, and therefore, are very low. With the load increase

starting at period t4, the prices increase until period t20, when the load decreases. In the

flexible demand case, the day-ahead prices are relatively high for all periods, however, still

smaller than the peak price of the inflexible demand case. They are overall high since demands

are shifted to low-demand periods (night hours). Increasing the demands in these periods

that now require both wind and conventional units (except from expensive unit U90) results in

overall high prices. Due to the off status of unit U90, the peak price of the case with flexible

demands is smaller than that of the inflexible demand case.
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Figure 4.4 – Demand pattern obtained from the flexible and inflexible demand cases (RTS
system)

Table 4.7 provides details regarding day-ahead profits, expected profits, day-ahead costs,

expected costs (i.e., the total of day-ahead cost and balancing cost1 ), consumer payments,

uplifts, and total day-ahead scheduled demand resulting from the two case: flexible and

inflexible demands.

For the same amount of scheduled demand (i.e., 19,671 MWh), moving from the case with

inflexible demands to the case with flexibility, a cost saving of 24% is obtained in the day-ahead

1The day-ahead cost, the expected balancing cost, and the total expected cost are formulated in (4.1), (4.2),
(4.3), respecively.
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Figure 4.5 – Day-ahead prices obtained from the flexible and inflexible demand cases (RTS
system)

market, and a reduction of 23% is achieved in the total expected cost.

The smaller day-ahead cost results from a higher day-ahead wind production in the case with

flexibility (see Fig. 4.3), as compared to the counterpart values in the case with inflexible

demands. This is possible due to the flexible demands which are able to be shifted to periods,

where the wind blows.

It is of interest to note that in both cases, the day-ahead costs are higher than the total expected

cost, implying that the clearing model allocates a high share of supply to wind unit in the

day-ahead market, and deploy reserves in the downward direction to follow the actual wind

power output. The expected balancing cost in the case with flexibility is $34,820, which is 24%

of total expected cost in this case, while the expected balancing cost of the case with inflexible

demands is $47,820 which owns a share of 25% of total expected cost.

Focusing on unit profits, only unit U197, located in node 21, cannot recover its production

cost in the case of flexibility, while both units U197 (located at nodes 21 and 22) and unit U90

incur losses under the inflexible demand case. This consequently leads to a higher uplift for

the case with inflexible demands than that of the case with demand flexibility. In the case

with flexibility, other units have higher profits, among which the profit of wind unit is the

highest, as compared to those in the case with inflexible demands. Higher day-ahead profit

of units in the flexible demand case results from overall higher day-ahead prices in this case,

as shown in Fig. 4.5. The high profit of the wind unit is a result of high day-ahead prices

and its day-ahead production schedule of about 4 GWh (see Fig. 4.3). Consequently, higher

day-ahead and expected profits result from the flexible demand case than from the case with

inflexible demands.
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Table 4.7 – Economic Outcomes (base case - RTS system)

Flexible Inflexible

demand demand

Unit DA Exp. DA Exp.

Profit Profit Profit Profit

($) ($) ($) ($)

U90 0.00 0.00 -8672.29 -2697.86

U50 17691.48 17698.02 13310.71 14015.00

U155 18744.00 19343.47 13672.96 15189.82

U50 17146.79 17698.02 13955.38 14015.00

U76 6779.69 7406.56 3388.50 6055.38

U155 17740.75 19343.46 13358.34 15282.41

U197n21 -8163.73 -2309.13 -4619.08 -1555.64

U197n22 0.00 0.00 -4179.50 -1555.64

Wind 60924.56 60924.56 7341.70 7341.70

Total 130863.54 140104.95 47556.73 66090.18

DA Exp. DA Exp.

Cost ($) 180420.00 145600.00 236780.00 188960.00

Consumer Payment ($) Consumer Payment ($)

311280.00 284340.00

Uplift ($) Uplift ($)

8163.70 17471.00

Total DA Demand Total DA Demand

(MWh) (MWh)

19671.00 19671.00

Therefore, the case with flexibility results in a smaller day-ahead cost and a smaller uplift,

but a higher total day-ahead profit which leads to 9.5% increase in consumer payment, as

compared to those from the case with inflexible demands.

This observation shows an inherent conflict in incorporating demand flexibility into an elec-

tricity market: on one hand, the system benefits from the reduced operation cost caused by

demand flexibility, but on the other hand, the resulting prices increases the demand expenses.

Thus, demands might be better off being inflexible.

4.6.3 Impact of Ramping Limits and Congestion

In this section, we consider that the ramping capability of each unit is half of its capacity. That

is, reduced flexibility is provided by the conventional units to the system as compared to the

base case, i.e., the previous case. Also, in order to create congestion, we consider reduced

transmission capacity for the lines connecting node 2 to 1, to 4, and to 6, node 4 to 9, node 5 to
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10 (i.e., line limits of 50 MW), and node 17 to 18, and to 22 (i.e., line limits of 137MW and 179

MW, respectively). With this consideration, congestion appears mainly in peak periods.
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Figure 4.6 – The day-ahead prices at node 5 over different periods (ramping limits and conges-
tion case)

As an example of the day-ahead prices obtained, Fig. 4.6 shows the prices at node 5 over the

24-hour study horizon. Similar to the trend observed in the case without congestion, the

prices from the flexible demand case are higher over the off-peak periods and lower over the

peak-periods with respect to the prices from the case with inflexible demands.
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Figure 4.7 – RTS case study with congestion: nodal day-ahead prices in period t19

As an example of the nodal prices (i.e., prices across the nodes), the day-ahead prices in period

t19 are shown in Fig. 4.7. The nodal prices from the inflexible case are higher than those

from the flexible demand case in this period. This observation is also valid for the other peak

periods, when price differentiation across nodes appears. Note that congestion does not occur
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over the off-peak periods. In other words, the case with inflexible demand results in higher

prices over the peak periods, and congestion does not generally change this trend.

Similar to the base case, economic metrics involving producer profits and operation costs,

as well as consumer payments and uplifts are provided in Table 4.8. The total consumption

remains the same at 19,671 MWh.

Table 4.8 – Economic Outcomes; RTS system including ramping limits and congestion

Flexible demand Inflexible

no reserves demand

Unit DA Exp. DA Exp.

Profit Profit Profit Profit

($) ($) ($) ($)

U90 0.00 0.00 -7361.58 -2328.60

U50 17654.27 17660.88 13949.36 14051.56

U155 18537.21 19298.32 12533.66 15202.75

U50 17700.20 17705.86 14127.06 14202.31

U76 6359.70 7419.09 3802.66 6277.80

U155 18419.18 19377.62 14644.06 15710.47

U197n21 -8004.79 -2305.46 -5179.46 -1301.82

U197n22 0.00 0.00 -4831.20 -1311.11

Wind 61744.36 61744.36 5424.60 5424.60

Total 132410.14 140900.68 47109.16 65927.95

DA Exp. DA Exp.

Cost ($) 178494.71 145601.59 239971.32 190137.53

Consumer Payment ($) Consumer Payment ($)

311789.61 289790.00

Uplift ($) Uplift ($)

8004.79 17372.00

The case with flexible demands results in a reduction of about 26% in the day-ahead cost and

23% in the total expected cost, as compared to those from the case with inflexible demands.

This is similar to the observation in the base case. In principle, demand flexibility allows

consumption shift from peak periods to off-peak periods, when cheap wind production is

available, irrespective of network congestion and unit (ramping) flexibility.

The case with inflexible demands results in a lower day-head producer profit, and a lower

expected total producer profit, and a higher uplift than those from the flexible demand case.

Finally, the comparatively high day-ahead profit from the case with flexibility (about $130,000)

leads to an increase of 7.5% in the consumer payment.
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Therefore, congestion and ramping limits of the conventional units do not change the conclu-

sions from the previous case, of which the most important one is that demands incur higher

expenses under the flexible demand case.

4.6.4 Case Study Conclusions

To get insights about the impact of demand flexibility, we compare two cases: one with highly

flexible demands in term of their ability to shift consumption across periods in the day-ahead

market without considering the demand ability of reserve provision for real-time deployment;

and the case with inflexible demands including inelastic demands following a traditional

consumption pattern with peak consumption in day hours and off-peak consumption in night

hours. The common feature of the two cases is that demands have the same total energy

consumption over the entire clearing horizon. Therefore, we are able to explore producers and

consumers expenses for the same amount of energy consumption. Based on the observations

in these case studies, we conclude the followings:

1. Demand flexibility is beneficial to the system, as it shifts consumption from day hours

to night hours, when cheap wind production is available. In other words, demand

flexibility adapts its consumption pattern to the production pattern of the wind unit.

Specifically, the scheduled production of the wind unit (i.e., the contribution of wind

production in energy supply) is almost twice in the case with flexibility. This leads to

a cost reduction of about 25%, as compared to the cost obtained from the case with

inflexible demands.

2. Due to the notable shift in consumption in the case with demand flexibility, a price

shift occurs: the prices from the flexible demand case are comparatively higher over

the off-peak periods and comparatively lower over the peak-periods with respect to the

prices from the case with inflexible demands. Network congestion and ramping limits

of the conventional units do not change these conclusions.

3. Higher off-peak prices result in a higher consumer payment in the flexible demand case

than that of the case with inflexible demands. The increase in consumer payment is 9%

in the base case and 7.5% in the case with congestion and limited ramping capability.

4. The observations from the case studies show an inherent conflict in incorporating

demand flexibility to an electricity market: on one hand, the system benefits from

the reduced operation cost caused by demand flexibility, but on the other hand, the

resulting prices increases the demand expenses. Thus, demands might be better off

being inflexible.
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4.7 Summary and Conclusion of the Chapter

This chapter is devoted to analyze the economic consequences resulting from the actions of

flexible demands in a common future market consisting of a significant amount of renew-

able power production with comparatively low marginal cost and fast-ramping units with

comparatively high marginal cost, such as combined-cycle gas turbines.

On one hand, demand flexibility (the ability of some demands to move load from peak periods

to off-peak periods) is beneficial for the system as a whole since it decreases the expected

operation cost, but on the other hand, demand flexibility can result in price increases that

in turn increase demand expenses. Therefore, demands might be better off being inflexible

in systems with a generation mix dominated by comparatively cheap renewable units and

comparatively expensive fast-ramping units.

We should note that if pricing schemes other than the one adopted [46] are used, e.g., a convex-

hull pricing [24], the conclusions derived in our study are likely to remain valid provided that

the final prices do not deviate significantly from marginal prices.

We should also note that the use of a stochastic clearing model is for the purpose of obtaining

optimal outcomes in a market with a high penetration of renewable generation, and the choice

of clearing model, i.e., a deterministic or a stochastic one, does not change the conclusion

above.

The observations in this chapter call for new settlement approaches seeking to encourage

demand flexibility.
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5 Two-Stage Stochastic Clearing Model

for the Reserve Market

5.1 Introduction

The system operator is responsible to ensure system security in power systems. A mechanism

to do so is reserve; in real-time operation, there is a need to compensate mismatches between

supply and demand in order to preserve the power balance in the system. For this purpose,

reserves are scheduled in a market prior to real time to be eventually deployed in real-time

operation. The structure of this market (e.g., gate closure, type of offers, etc.) depends on the

market organization, i.e., a centralized market organization and a decentralized one.

In a centralized market organization, such as electricity markets in the US, reserves are sched-

uled in the day-ahead market co-optimizing energy and reserves (this is similar to the clearing

models in Chapter 2), whereas in a decentralized market organization, such as electricity

markets in Europe, reserves are procured in reserve markets separately from energy markets.

In a centralized market, the system operator and market operator are generally the same entity.

However, a decentralized market separates energy transactions and system operations to a

large extent; the former is done by the market operator, whereas the latter is the responsibility

of the Transmission System Operator (TSO) [3].

The common practice in many European countries, as examples of the decentralized market

organization, is first to determine fixed amounts of reserves (of different types) using technical

(security) criteria, and then, to procure them in reserve markets. We challenge this practice as it

decouples technical criteria from market aspects, which may result in economic inefficiencies.

The particular focus of this chapter is the reserve market in Switzerland, as an example of

a decentralized market organization. We use two-stage stochastic clearing models to show

the advantages of our proposed model with respect to deterministic one, not only through

simulated case studies, but also through the outcomes of the actual implementation of the
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proposed two-stage clearing model.

The lay-out of this chapter is as follows. We first describe the Swiss reserve market in Section

5.2. Next, the decision-making process and scenarios are described in Sections 5.3 and 5.4,

respectively. Section 5.5 provides the assumptions that we use to model the reserve market.

Section 5.6 provides the mathematical descriptions of the proposed risk-neutral two-stage

stochastic model (in Section 5.6.1), of the proposed risk-averse counterpart (in Section 5.6.2),

and of a common deterministic model (in Section 5.6.3). Also, we formulate how to obtain

a perfect information solution as well as the actual cost of the two-stage model in Section

5.6.4. The proposed models are showcased through real cases from the Swiss reserve market

in Section 5.7. Finally, relevant remarks are concluded in Section 5.8.

5.2 The Swiss Reserve Market

In this section, we briefly describe the Swiss reserve market that is similar to those of other

countries in continental Europe.

5.2.1 Technical Description of Reserves in Europe

According to European Network of Transmission System Operators for Electricity (ENTSO-E)

definition, reserves are categorized as primary, secondary, and tertiary [47]. 1

Primary reserves react to frequency deviations in the interconnected Continental Europe

irrespective of the location of the contingencies. The corresponding amount is determined by

ENTSO-E and shared among all involved countries on an annual basis. Secondary reserves

automatically react to power imbalances within a time varying from a few seconds to several

minutes (e.g., load fluctuations). Finally, tertiary reserves are manually deployed to replace

secondary reserves [56, 34] if any power mismatch with a time duration more than several

minutes occurs (e.g., a constant (load) forecast error lasting more than 15 minute or an outage

of a power plant). In other words, secondary reserves compensate for spontaneous power

imbalances lasting a few to several seconds, while along with secondary reserves, tertiary

reserves are deployed to cover overall power mismatches lasting more than several minutes.

Therefore, secondary reserves are continuously in use, and hence, tertiary reserves cannot

be deployed without already-deployed secondary reserves. Fig. 5.1 illustrates the reaction

1In Guideline Electricity Balancing, reserves are called frequency containment reserves (FCR), frequency
restoration reserves (FRR) and replacement reserves (RR) [13]. Also, frequency restoration reserves are categorized
into automatic frequency restoration reserves (aFRR) and manual frequency restoration reserves (mFRR). The FCR
and aFRR stand for primary and secondary reserves, respectively, while the mFRR is interpreted to be fast tertiary
reserves and the RR is considered as slow tertiary reserves.
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5.2. The Swiss Reserve Market

time of reserves after an outage of a power plant in France. Immediately after the outage,

the frequency in the interconnected transmission system of continental Europe drops from

nominal value of 50 Hz to 49.935 Hz. Primary reserves over Europe, colored map in light pink,

immediately react to bring the frequency back to an acceptable value. However, a frequency

error still remains since primary reserves are purely proportional. This frequency error is

regulated to zero by secondary reserves in the area where the outage occurs. In this example,

the map of France is in dark pink as secondary reserves in this country react to the power

plant outage. Secondary reserves automatically react to the frequency drop a few seconds

after the outage. Finally, tertiary reserves are manually deployed to relieve secondary reserves

several minutes after the outage. Tertiary reserves are not necessarily from the location of

disturbance; in this example, two units in France and one unit in Spain (in red) are deployed.

Figure 5.1 – Reaction time of primary, secondary, and tertiary reserves to a power plant outage
in France [64]

As opposed to primary reserves, which are centrally decided by ENTSO-E, amounts of sec-

ondary and tertiary reserves are the responsibility of each system operator. The process of

determining the required amounts of reserves is called dimensioning reserves by ENTSO-E.

As previously mentioned, secondary reserves are continuously in use, and therefore, tertiary
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reserves cannot be deployed without considering already-deployed secondary reserves. There-

fore, two types of reserves are categorized for the reserve dimensioning process: secondary

and overall reserves. Overall reserves represent the total of secondary and tertiary reserves.

The system operator first determines the necessary amounts of secondary reserves and overall

reserves. The required amount of tertiary reserves is then obtained by subtracting the amount

of secondary reserves from the amount of overall reserves.

We should note that since determining the amount of primary reserves is the responsibility of

ENTSO-E, and not the TSOs, it is not consider in this chapter.

5.2.2 Reserve Dimensioning Criteria

In Switzerland, the dimensioning criteria that determine the required amount of reserves

include a probabilistic criterion and a deterministic one, as described in the following.

Probability Criterion:

The probability criterion states that the amount of reserves must be determined such that

power mismatches are regulated to zero with a probability of 99.8%. This implies that the

power balance in the system cannot be violated more than 0.2% of all hours over a year.

Therefore, the reserve amount R is determined by the 99.8% quantile of the power imbalance

distribution as expressed in inequality (5.1):

P(Δp ≤ R) ≥ 99.8% (5.1)

which is equivalent to:

P(Δp > R) ≤ 0.2% (5.2)

Inequality (5.2) describes the probability that a certain power deviation (Δp) exceeds a certain

quantity (R). This is translated to the probability that a certain amount of reserves (R) cannot

cover a certain power deviation. In other words, inequality (5.2) enforces that the probability

of the deficit of reserve (i.e., reserve deficit probability) must be equal to or smaller than 0.2%.

Given that there are two types of reserves (i.e., secondary and tertiary reserves), the probability

criterion is translated into the following. The portion of time over a year that secondary

reserves are not sufficient to cover spontaneous power mismatches and that the total of

secondary and tertiary reserves are not enough to cover power mismatches cannot exceed
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5.2. The Swiss Reserve Market

0.2%. Therefore, inequality (5.2) is recast to:

P(Δps,+ > Rs,up)+P(Δps,− > Rs,dn)+P(Δpo,+ > Ro,up)+P(Δpo,− > Ro,dn) ≤ 0.2% (5.3)

where Δps,+, Δps,−, Δpo,+, Δpo,− denote positive spontaneous power imbalance, negative

spontaneous power imbalance, positive overall power imbalance, and negative overall power

imbalance, respectively. Positive spontaneous power imbalances denote power mismatches

resulting from situations where consumption exceeds generation within durations of order of

seconds. Therefore, upward secondary reserves Rs,up are deployed to keep the system power

balance. Negative spontaneous power imbalances represent power mismatches resulting

from situations where generation exceeds consumption within durations of order of seconds.

Thus, downward secondary reserves Rs,dn are deployed to keep the system power balance.

Positive overall power imbalances represent power mismatches resulting from situations

where consumption exceeds generation within durations of order of minutes. Therefore,

upward overall reserves Ro,up are deployed to keep the system power balance. Negative overall

power imbalances denote power mismatches resulting from situations where generation

exceeds consumption within durations of order of minutes. Thus, downward overall reserves

Ro,dn are deployed to keep the system power balance.

To evaluate the deficit probability, the system operator identifies the factors driving power

imbalances and their corresponding probability functions. These factors include load oscilla-

tions, load forecast errors, forecast errors of renewable generation, outages of power plants,

etc. We should note that some of these factors drive spontaneous power imbalances such as

load oscillations, while some others have a more permanent impact, such as outages of power

plants.

The Swiss TSO, Swissgrid, does not have a database with detailed information on the indi-

vidual factors deriving power imbalances. The available data only involves measurements

of Area Control Error (ACE) [34] 2 and deployed secondary and tertiary reserves. Therefore,

spontaneous power imbalances are calculated by adding the deployed secondary reserves

to the ACE measurements, and the overall power imbalances are computed by adding the

deployed secondary and tertiary reserves to the measurements of the ACE using the historical

data over a year.

Next, these datasets are used to statistically derive the corresponding cumulative distribution

functions. The advantage of using cumulative distribution functions is that these functions

easily describe the relationship between the deficit probability and the reserves.

2ACE is defined as the difference between scheduled power production and actual power within a control area
on the power grid, taking frequency bias into account

123



Chapter 5. Two-Stage Stochastic Clearing Model for the Reserve Market

Fig. 5.2 shows the cumulative distribution functions of power imbalances in the Swiss power

system in 2013. The larger the imbalance is, the smaller its probability is. Spontaneous power

imbalances (in blue) determine the amount of secondary reserves while overall imbalances

(in red) determine the amount of overall reserves.
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Figure 5.2 – Cumulative distribution functions of spontaneous power imbalances and overall
power imbalance using data of the Swiss power system over 2013.

We should note that probability criterion does not specify how the 99.8% quantile of the power

imbalance distribution should be allocated to positive and negative imbalances, as well as to

spontaneous imbalances and overall imbalances. Therefore, any amounts of secondary and

tertiary reserves in any upward and/or downward directions that satisfy a deficit probability of

0.2% are the appropriate amounts. In other words, there is a set of solutions representing the

amounts of reserves, and not only fixed single amounts of secondary and tertiary reserves.

However, for clarity and simplicity, the TSOs prefer to have a fixed amount of each upward/-

downward secondary and tertiary reserves to be able to buy this amount in the corresponding

reserve market. For this purpose, a common practice is to equally allocate the deficit prob-

ability to positive and negative imbalances, as well as spontaneous imbalances and overall

imbalances. Therefore, instead of considering the 99.8% quantile of power imbalance distri-

bution, the common practice takes into account the 99.9% quantile of spontaneous power

imbalance distribution to determine secondary reserves and the 99.9% quantile of overall

power imbalance distribution to determine overall reserves:

P(Δps,+ > Rs,up)+P(Δps,− > Rs,dn) ≤ 0.1% (5.4)

P(Δpo,+ > Ro,up)+P(Δpo,− > Ro,dn) ≤ 0.1% (5.5)
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5.2. The Swiss Reserve Market

This is shown in Fig. 5.3, where the amounts of reserves are as follow: upward secondary

reserve is 355 MW, downward secondary reserve is 415 MW, upward tertiary reserve is 65 MW

(i.e., 420MW-355 MW), and downward tertiary reserve is 120 MW (i.e., 535MW-415 MW).
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Figure 5.3 – Amounts of reserves obtained from equally allocating the probability criterion to
power imbalances (data of 2013).

This approach ignores other possible solutions obtained from allocating differently the deficit

probability without considering their costs, which is in contradiction to the TSO obligation to

procure reserves at minimum cost. Fig. 5.4 illustrates two examples of allocating differently

the deficit probability.

In Fig. 5.4(a), the amounts of secondary reserves can be determined by the 99.85% quantile

of spontaneous power imbalance distribution, while the amounts of overall reserves are

determined by the 99.95% quantile of overall power imbalance distribution:

P(Δps,+ > Rs,up)+P(Δps,− > Rs,dn) ≤ 0.15% (5.6)

P(Δpo,+ > Ro,up)+P(Δpo,− > Ro,dn) ≤ 0.05% (5.7)

The amounts of reserves are Rs,up =325 MW, Rs,dn =−380 MW, Ro,up =490 MW, and Ro,dn =
−605 MW.

Other alternative is to asymmetrically allocate the 99.8% quantile to positive and negative

power imbalances. An example is depicted in Fig. 5.4(b), where the deficit criterion is met by:

P(Δps,+ > Rs,up)+P(Δpo,+ > Ro,up) ≤ 0.15% (5.8)

P(Δps,− > Rs,dn)+P(Δpo,− > Ro,dn) ≤ 0.05% (5.9)
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Therefore, the amounts of reserves are Rs,up =325 MW, Rs,dn =−495 MW, Ro,up =380 MW, and

Ro,dn =−605 MW.
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(a) Reserve amounts are determined by P(Δps,+ > Rs,up)+P(Δps,− > Rs,dn) ≤ 0.15 and
P(Δpo,+ > Ro,up)+P(Δpo,− > Ro,dn) ≤ 0.05
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(b) Reserve amounts are determined by P(Δps,+ > Rs,up)+P(Δpo,+ > Ro,up) ≤ 0.15% and
P(Δps,− > Rs,dn)+P(Δpo,− > Ro,dn) ≤ 0.05%

Figure 5.4 – The amounts of reserves can be determined by any allocation of the deficit
probability.

Without considering reserve procurement costs, the TSOs consider the quantities of reserves

resulting from inequalities (5.4) and (5.5), and nor those obtained from inequalities (5.8) and

(5.9), neither inequalities (5.6) and (5.7).

Deterministic Criterion:

A common approach based on the n-1 security criterion indicates that the total amount of

reserves must be able to cover the largest possible incident in the power system regardless of

its (low) probability. In Switzerland, the largest possible incidence is the outage of a power

plant with a generation capacity of 1.2 GW (nuclear unit Leibstadt).
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Additionally, there are contractual agreements between Switzerland and its neighboring coun-

tries called Mutual Emergency Ancillary Services (MEAS). According to the MEAS contracts,

the countries involved have an exchange of a certain amount of reserves in emergency situa-

tions. The MEAS contracts imply that the system operator does not have to procure reserves

to fully cover the largest possible incidence. Given a low probability of such an incidence, the

system operator can rely on the MEAS amount from the countries involved.

Currently, the most binding MEAS contract of Swissgrid is an agreement with the French

TSO, RTE, indicating the availability of 400 MW upward reserves. Therefore, the deterministic

criterion is interpreted to ensure 400 MW of upward tertiary reserves:

400 ≤ RT,up (5.10)

5.2.3 Structure of the Swiss Reserve Market

The Swiss reserve market consists of a weekly market and a daily market. Secondary reserves

are procured in the weekly market, while tertiary reserves can be procured in both weekly and

daily markets.

The weekly market has a delivery period of a week with a gate closure a week ahead of the

delivery period. That is, considering week w, the gate closure of the weekly market is at w-1

and the reserve offers accepted in this market must be available to the system operator for the

entire week w.

The daily market considered for day d has a gate closure at d-2. Reserve offers accepted in the

daily auction have a delivery period of four hours. That is, the daily market is composed of six

auctions, each standing for a four-hour interval. These auctions include the following hours

00:00-04:00, 04:00-08:00, 08:00-12:00, 12:00-16:00, 16:00-20:00, 20:00-24:00 per day. A market

agent can choose to offer reserves in a subset of these auctions (e.g., submitting offers only in

the time interval of 04:00-08:00) or all of them. Therefore, the daily market is of interest for

small market players who cannot guarantee the delivery period of one whole week (e.g., small

power units and demand side management).

The scheme of the Swiss reserve market, described above, is illustrated in Fig 5.5, where the

reserves for the entire week w are procured partly in the weekly market with a delivery period

of a week (in red) and partly in the daily market with a delivery period of four hours (in green).
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Figure 5.5 – Scheme of the weekly and daily reserve markets in Switzerland.

Offer Structure

Market participants submit their offers consisting of a quantity in MW and a price in CHF3/MW

without any information about the locations of the generating units, as the reserve market is

cleared without network constraints 4.

The offers are indivisible. That is, an offer cannot be partly accepted; it is either completely

accepted or rejected. Offers can be mutually exclusive. Such offers are a set of offers that a

market participant submits in the reserve market, while only one of them can be accepted by

the system operator. 5

Offers of secondary reserves need to be symmetric. That is, an offer of x MW represents the

ability of its unit to provide x MW of secondary reserve in the upward direction and x MW

in the downward direction. However, offers of tertiary reserves can be asymmetric; that is, a

3CHF denotes Swiss Francs
4The Swiss transmission system is a highly meshed network with a few congested operating conditions per

year. Since the system is not sensitive to the location of reserves, the reserve market is cleared without locational
information.

5As an example, if market player A submits 100 MW, 120 MW and 150 MW as mutually exclusive offers, the TSO
can accept only one of them.
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producer can offer x MW in the upward direction and y MW in the downward direction.

Remuneration

The remuneration of reserves follows the pay-as-bid scheme (not a marginal pricing scheme).

That is, the market participant whose offer is accepted is paid its price offer submitted irre-

spective of the deployment in real-time operation 6.

We should note that the focus of this chapter is on the reserve market, and not reserve deploy-

ment. Thus, topics pertaining to the reserve deployment are out of our scope.

5.2.4 Drawbacks of the Common Practice

The main drawback of the common practice is that it disregards a set of possible solutions

of reserve amounts without considering their costs. However, secondary reserves should

generally replace tertiary reserves as far as this substitution does not yield a higher reserve cost.

In other words, market aspects (economic objectives) and technical (dimensioning) criteria are

inefficiently separated in the common practice. As an example, symmetric offers of secondary

reserves imply that upward and downward secondary reserves must be represented by one

single amount. Considering the example of Fig. 5.3, where the corresponding secondary

amounts are 355 MW and −415 MW, the question is what amount the TSO should procure in

the reserve market. The current practice does not provide an optimal answer to this.

Another issue that the common practice does not optimally address is related to the allocation

of tertiary reserves in the weekly and daily markets. If the amounts of upward and downward

tertiary reserves are determined to be R̂T,up and R̂T,dn, respectively, the question is how the

system operator should allocate these amounts to the weekly and daily markets.

The common practice fixes the reserve amounts in the weekly and daily markets to predefined

values based on judgment and experience. These markets are cleared independently from

each other without considering that offers may be cheaper in one of these market than in the

other.

To summarize, the common practice of the Swiss reserve market suffers from the following

drawbacks:

• The market aspects and the technical dimensioning criteria are decoupled.

• The potential substitution of secondary and tertiary reserves are not reflected.

6The choice of renumeration scheme is a regulatory decision out of the scope of this thesis.
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• A link between the weekly and daily markets is missing.

These drawbacks call for an update of the clearing approach in the Swiss reserve market.

In this context, we propose a new clearing approach based on stochastic programming with the

purpose of actual implementation in the Swiss reserve market. This implies that major changes

in the structure and properties of the existing Swiss reserve market must be avoided. Therefore,

the new approach preserves the IT infrastructures, the structure of offers, and the gate closure

sequences of the weekly and daily markets. Additionally, a reasonable computation time is

desired.

5.3 Decision-Making Process

The TSO decides on the amounts of secondary reserves, upward and downward tertiary

reserves in the weekly market as well as in the daily market at minimum cost. There are two

points in time when the TSO makes decisions: at the gate closure of the weekly market, and

at the gate closure of the daily market. The beginning of the decision-making horizon is at

the gate closure of the weekly market, where offers of the daily market are still not available.

Unknown daily offers are translated to uncertainty, and therefore, the problem above is a

decision-making problem under uncertainty. To tackle this decision-making problem, we use

a stochastic programming model.

Therefore, we define a stage corresponding to each decision point in time. The first stage

represents the weekly market and the second stage models the daily market. The uncertain

daily offers are modeled through scenarios. Fig. 5.6 shows the scenario tree of this two-stage

clearing model for the reserve market. A two-stage stochastic optimization model clears the

weekly market with the objective of minimizing expected reserve cost subject to dimensioning

criteria and market properties (e.g., mutually exclusive and indivisible offers). In the first-stage

weekly market, the decision is on the optimal level of reserves by accepting/rejecting available

weekly offers while considering scenarios representing uncertain offers of the daily market.

In the second-stage daily market, when offers are realized, the TSO determines the amount

of tertiary reserves by accepting/rejecting available daily offers while taking into account the

outcomes of the weekly market.

5.4 Scenarios Modeling Reserve Offers in Daily Market

As previously mentioned, the source of uncertainty in this reserve clearing problem is the

unknown daily offers. The question is how to select scenarios representing daily offers.
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First Stage: 
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Scenario 𝜔 for daily offers

Scenario 𝜔 for daily offers

Figure 5.6 – Scenario tree of the two-stage Swiss reserve market

In a stochastic programming framework, scenarios are either historical samples or samples

generated by a distribution which is constructed based on the historical data. In both cases,

sufficient data is necessary.

We should note that we cannot assume a true-cost bidding behavior, as the market follows a

pay-as-bid scheme, which does not promote truth-telling. We should also note that Swissgrid

does not know true costs of generation units to estimate reserve offers. Therefore, historical

data of offers in the daily market need to be used.

The Swiss daily market was launched in February 2010, and we have data available up to

2012. At the first glance, it seems that there is sufficient data (data over two yeas). However,

a careful look indicates otherwise. The Swiss power system is a hydro-based system where

hydrological conditions play an important role in the reserve market. That is, electricity

generation is high in late spring and summer, and low in winter time and the beginning of

spring. Correspondingly, the reserve offers follow a hydrological trend. Therefore, the daily

offers in week w can be related to the previous weeks in the same month, or/and the same

week in the previous years (e.g., the offers in the daily market at week w-2 and the same year, at

week w in the previous year), and not to other weeks over that year. This implies that to model

daily offers, there are only few historical samples (and not the data of two years) available,

which are not sufficient to build-up a model.

Due to the limited data available, we invoke the experience and judgment of the operators to

select representative scenarios.

Considering the daily market in week w, the most recently-submitted offers are those of week
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w-2 (and not week w-1). The reason is as follows. The scenarios must be ready at the gate

closure of the weekly market which is at week w-1. At this time, not all daily markets in week

w-1 are closed. Therefore, considering day d1 to day d7 in week w, the best available data is

the daily offers of day d1 to day d7 in week w-2.

5.5 Practical Aspects

The proposed clearing approach is intended for an actual implementation, and hence, from a

practical point of view, drastic changes in the structure of the existing Swiss reserve market

shall be avoided in order to facilitate the acceptance of the new clearing model among market

players. Hence, the following points should be noted:

• The co-optimization of energy and reserves is not applicable to the Swiss electricity

market. As previously mentioned, the Swiss electricity market follows the principles of a

decentralized market, where energy and reserve markets are separately cleared by the

market operators and the TSO, respectively.

• A nodal market clearing model is not applicable to the Swiss reserve market, as offers do

not include locational information.

• The new approach does not alter the settlement scheme. That is, the pay-as-bid rule

remains as the settlement scheme.

• The new approach preserves the current practice of uncoupling reserve acquisition and

reserve deployment.

Therefore, we focus on an optimization model with minimum changes in communication and

rules from the viewpoint of market participants.

5.6 Model Description

In this section, we provide the mathematical descriptions of the proposed models, including a

risk-neutral two-stage model and a risk-averse one, as well as the reference model (common

practice). Next, we describe the notion of perfect information model and how to obtain the

actual cost.
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5.6.1 Risk-Neutral Model

In the following, we first describe the optimization variables, the objective function, and the

constraints. Next, we provide the mathematical description of the risk-neutral two-stage

model.

Decision Variables

We categorize the decisions into to groups:

• The first-stage variables are related to the weekly market that clears before the realization

of any scenario of daily offers. These variables are here-and-now decisions and include:

– Binary variables representing the acceptance or the rejection of each secondary

reserve offer with a quantity of ps
i r in MW and an offered price of cs

i r in CHF/MW

in the weekly market [xs
i r ∈ {0,1}]. Each secondary offer can belong to a set of

mutually exclusive Nr offers.

– Binary variables representing the acceptance or the rejection of each upward

tertiary reserve offer with a quantity of pup
j m in MW and an offered price of cup

j m

in CHF/MW in the weekly market [xup
j m ∈ {0,1}]. Each upward tertiary offer can

belong to a set of mutually exclusive Nm offers.

– Binary variables representing the acceptance or the rejection of each downward

tertiary reserve offer with a quantity of pdn
kq in MW and an offered price of cdn

kq in

CHF/MW in the weekly market [xdn
kq ∈ {0,1}]. Each downward tertiary offer can

belong to a set of mutually exclusive Nq offers.

– A continuous variable representing the contribution of upward secondary reserves

in satisfying the probabilistic criteria [εs+ ∈ [0,1]].

– A continuous variable representing the contribution of downward secondary re-

serves in satisfying the probabilistic criteria [εs− ∈ [0,1]].

– A continuous variable representing the contribution of upward overall reserves in

satisfying the probabilistic criteria [εo+ ∈ [0,1]].

– A continuous variable representing the contribution of downward overall reserves

in satisfying the probabilistic criteria [εo− ∈ [0,1]].

• The second-stage variables pertain to the daily market. They are wait-and-see decisions

as they are made after the realization of offers in the daily market and involve:

– Amount of upward tertiary reserves procured in each four-hour interval t and each

scenario ω in the daily market [yup
tω , MW].
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– Amount of downward tertiary reserves procured in each four-hour interval t and

each scenario ω in the daily market [ydn
tω , MW].

– Cost of the upward tertiary reserves procured in each four-hour interval t and each

scenario ω in the daily market [γup
tω, CHF].

– Cost of the downward tertiary reserves procured in each four-hour interval t and

each scenario ω in the daily market [γdn
tω, CHF].

Objective Function

The objective function consists of two terms pertaining to the reserve cost in the weekly

market, and the expected reserve cost in the daily market:

• The reserve cost in the weekly market consists of secondary offers (
∑NSR

i=1

Nr∑
r=1

cs
i r ps

i r xs
i r ),

upward tertiary offers (
∑N j

j=1

∑Nm
m=1 cup

j m pup
j m xup

j m), and downward tertiary offers (
∑Nk

k=1

∑Nq

q=1

cdn
kq pdn

kq xdn
kq ):

NSR∑
i=1

Nr∑
r=1

cs
i r ps

i r xs
i r +

N j∑
j=1

Nm∑
m=1

cup
j m pup

j m xup
j m +

Nk∑
k=1

Nq∑
q=1

cdn
kq pdn

kq xdn
kq (5.11)

As an example, if secondary offer i is accepted, xs
i r = 1 and in the objective function, the

term cs
i r ps

i r has a non-zero value.

• The expected reserve cost in the daily market includes the expected cost associated to

upward tertiary reserves and downward tertiary reserves:

∑
ω
πω

( Nt∑
t=1

(
γ

up
tω+γdn

tω

))
(5.12)

The summation of these cost components results in the total reserve cost. The objective of the

two-stage clearing model is to minimize this cost, as expressed by (5.13):

Minimize
ΞR

NSR∑
i=1

Nr∑
r=1

cs
i r ps

i r xs
i r +

N j∑
j=1

Nm∑
m=1

cup
j m pup

j m xup
j m +

Nk∑
k=1

Nq∑
q=1

cdn
kq pdn

kq xdn
kq

+∑
ω
πω

( Nt∑
t=1

(
γ

up
tω+γdn

tω

))
(5.13)

The minimization is over the set of variablesΞR = {xs
i r ,∀i ,∀r ; xup

j m ,∀ j ,∀m; xdn
kq ,∀k,∀q ;εs+;εs−;

εo+;εo−; yup
tω , ydn

tω ,γup
tω,γdn

tω,∀t ,∀ω}, as described in Section 5.6.1.
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Constraints

There are three groups of constraints: the first-stage constraints pertaining to the weekly

market, the second-stage constraints related to the daily market, and the linking constraints

coupling the first-stage decisions in the weekly market to the second-stage decisions in the

daily market.

First-stage Constraints (Weekly Market):

One constraint is solely related to the first-stage market. This constraint models mutually

exclusive offers in the weekly market, as described in Section 5.2.3.

Mutually Exclusive Offers:

If secondary reserve offer xs
i r along with other Nr secondary offers are in a set of mutually

exclusive offers, only one of them can be accepted. Since xs
i r is a binary variable, constraint

(5.14) enforces that at most only one offer among those in the set of mutually exclusive offers

is accepted:

Nr∑
r=1

xs
i r ≤ 1,∀i (5.14)

If secondary reserve offer xs
i r is not in a set of mutually exclusive offers (i.e., Nr = 1), constraint

(5.14) becomes xs
i 1 ≤ 1 that renders to xs

i ≤ 1, which is consistent with xs
i r being binary (i.e.,

xs
i r ∈ {0,1},∀i ,∀r ).

In the same vein, mutually exclusive upward tertiary offers and downward tertiary offers are

modeled through constraints (5.15) and (5.16), respectively:

Nm∑
m=1

xup
j m ≤ 1,∀ j (5.15)

Nq∑
q=1

xdn
kq ≤ 1,∀k (5.16)

Second-Stage Constraints (Daily Market):

One constraint pertains solely to the daily market. This constraint models offers in this market.

Similar to the weekly market, the structure of the the daily offers include indivisible offers

and mutually exclusive offers. An accurate modeling of such offers requires the use of binary

variables in the second stage, where variables and constraints are defined per scenario. An

increase in the number of scenarios results in an increase in the number of (binary) variables
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and constraints, and consequently, in the problem size. To ease the computational burden,

we avoid to use the binary variables for modeling daily offers in the second stage.

For this, we approximate indivisible offers and mutually exclusive offers by a piece-wise linear

offer curve.

Among a set of mutually exclusive offers, the one with the largest quantity offered is considered

as the representative of this set. These offers along with other indivisible offers form a Merit

Order List (MOL), where the offers are ranked based on ascending order of offer prices. A

piece-wise linear offer curve is, then, fitted to the resultant MOL, as shown in Fig 5.7.

Offer 1 Offer 2 Offer 3 Offer 4 Offer 5 Offer 6 Offer 7

MW

CH
F/

M
W

Figure 5.7 – The merit order list and its piece-wise linear curve

Considering upward tertiary offers, a linear curve consisting of l pieces at each four-hour

interval t and each scenario ω is:

γ
up
tω =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α
up
1 yup

tω +β
up
1 , ymin,up

tω ≤ yup
tω ≤ y2,up

tω

α
up
2 yup

tω +β
up
3 , y2,up

tω ≤ yup
tω ≤ y3,up

tω
...

α
up
L yup

tω +β
up
L , yL,up

tω ≤ yup
tω ≤ ymax,up

tω

(5.17)

which is equivalent to:

Minimize
yup

tω

γ
up
tω (5.18a)
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α
up
l yup

tω +β
up
l ≤ γ

up
tω,∀l ,∀ω,∀t (5.18b)

ymin,up
tω ≤ yup

tω ≤ ymax,up
tω ,∀ω,∀t (5.18c)

In the same vein, we consider a piece-wise linear curve for downward tertiary offers:

Minimize
ydn

tω

γdn
tω (5.19a)

αdn
l ydn

tω +βdn
l ≤ γdn

tω,∀l ,∀ω,∀t (5.19b)

ymin,dn
tω ≤ ydn

tω ≤ ymax,dn
tω ,∀ω,∀t (5.19c)

Linking Constraints:

The weekly and daily markets are linked through the probabilistic and deterministic criteria.

Deterministic Criterion:

According to the deterministic criterion, the total amount of upward tertiary reserves must be

at least 400 MW at each interval and each scenario:

400 ≤ ( N j∑
j=1

Nm∑
m=1

pup
j m xup

j m

)+ yT,up
tω ,∀ω,∀t (5.20)

Probabilistic Criterion:

Considering the probabilistic criterion formulated in (5.3), the amounts of upward secondary

Rs,up and downward secondary Rs,dn are the same (Rs,up = Rs,dn = Rs) due to symmetric

secondary offers. Therefore, inequality (5.3) becomes:

P(Δps,+ > Rs)+P(Δps,− > Rs)+P(Δpo,+ > Ro,up)+P(Δpo,− > Ro,dn) ≤ 0.2% (5.21)

The cumulative distribution functions of power imbalances are expressed as:

Fs+(Rs) =P(Δps,+ > Rs) (5.22)

Fs−(Rs) =P(Δps,− > Rs) (5.23)

Fo+(Rs +RT,up) =P(Δpo,+ > (Rs +RT,up)) (5.24)

Fo−(Rs +RT,dn) =P(Δpo,− > (Rs +RT,dn)) (5.25)

where Rs = ∑NSR

i=1

Nr∑
r=1

ps
i r xs

i r . Similarly, the amount of upward tertiary reserve is determined
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by the upward tertiary offers in the weekly market and the contribution of uncertain offers

from the daily market. That is, RT,up = (∑N j

j=1

∑Nm
m=1 pup

j m xup
j m

)+ yup
tω ,∀ω. In the same vein,

RT,dn = (∑Nk

k=1

∑Nq

q=1 pdn
kq xdn

kq

)+ ydn
tω ,∀ω. Therefore, constraint (5.21) is recast to:

Fs+
(NSR∑

i=1

Nr∑
r=1

ps
i r xs

i r

)
+Fs−

(NSR∑
i=1

Nr∑
r=1

ps
i r xs

i r

)
+Fo+

(NSR∑
i=1

Nr∑
r=1

ps
i r xs

i r +
N j∑
j=1

Nm∑
m=1

pup
j m xup

j m + yup
tω

)

+Fo−
(NSR∑

i=1

Nr∑
r=1

ps
i r xs

i r +
Nk∑

k=1

Nq∑
q=1

pdn
kq xdn

kq + ydn
tω

)
≤ 0.2%,∀ω,∀t (5.26)
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Figure 5.8 – Piece-wise linearization of cumulative distribution functions in dashed lines

As illustrated in Fig 5.8, the cumulative distribution functions are not linear. We use a piece-

wise linearization to represent these functions. That is, any cumulative distribution function

F(R) is represented by:

F(R) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a1R +b1, R1 ≤ R ≤ R2

a2R +b2, R2 ≤ R ≤ R3
...

aN R +bN , RN ≤ R ≤ RN+1

(5.27)

which is recast as:

Minimize
R1≤R≤RN+1

ε (5.28)

anR +bn ≤ ε,∀n

0 ≤ ε≤ 1

138



5.6. Model Description

Thus, equation (5.26) is represented by equations (5.29) below:

εs++εs−+εo++εo− ≤ 0.2% (5.29a)

as+
n

(NSR∑
i=1

Nr∑
r=1

ps
i r xs

i r

)
+bs+

n ≤ εs+,∀n (5.29b)

as−
n

(NSR∑
i=1

Nr∑
r=1

ps
i r xs

i r

)
+bs−

n ≤ εs−,∀n (5.29c)

ao+
n

(NSR∑
i=1

Nr∑
r=1

ps
i r xs

i r +
N j∑
j=1

Nm∑
m=1

pup
j m xup

j m + yup
tω

)
+bo+

n ≤ εo+,∀n,∀t ,∀ω (5.29d)

ao−
n

(NSR∑
i=1

Nr∑
r=1

ps
i r xs

i r +
Nk∑

k=1

Nq∑
q=1

pdn
kq xdn

kq + ydn
tω

)
+bo−

n ≤ εo−,∀n,∀t ,∀ω (5.29e)

εs+,εs−,εo+,εo− ∈ [0,1] (5.29f)

Complete Formulation of the Risk-Neutral Model

The complete formulation of the two-stage MILP reserve clearing model is:

Minimize
ΞR

NSR∑
i=1

Nr∑
r=1

cs
i r ps

i r xs
i r +

N j∑
j=1

Nm∑
m=1

cup
j m pup

j m xup
j m +

Nk∑
k=1

Nq∑
q=1

cdn
kq pdn

kq xdn
kq

+∑
ω
πω

( Nt∑
t=1

(
γ

up
tω+γdn

tω

))
(5.30a)

subject to

Nr∑
r=1

xs
i r ≤ 1,∀i (5.30b)

Nm∑
m=1

xup
j m ≤ 1,∀ j (5.30c)

Nq∑
q=1

xdn
kq ≤ 1,∀k (5.30d)

400 ≤ ( N j∑
j=1

Nm∑
m=1

pup
j m xup

j m

)+ yup
tω ,∀ω,∀t (5.30e)

εs++εs−+εo++εo− ≤ 0.2% (5.30f)

as+
n

(NSR∑
i=1

Nr∑
r=1

ps
i r xs

i r

)
+bs+

n ≤ εs+,∀n (5.30g)

as−
n

(NSR∑
i=1

Nr∑
r=1

ps
i r xs

i r

)
+bs−

n ≤ εs−,∀n (5.30h)
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ao+
n

(NSR∑
i=1

Nr∑
r=1

ps
i r xs

i r +
N j∑
j=1

Nm∑
m=1

pup
j m xup

j m + yup
tω

)
+bo+

n ≤ εo+,∀n,∀t ,∀ω (5.30i)

ao−
n

(NSR∑
i=1

Nr∑
r=1

ps
i r xs

i r +
Nk∑

k=1

N q∑
q=1

pdn
kq xdn

kq + ydn
tω

)
+bo−

n ≤ εo−,∀n,∀t ,∀ω (5.30j)

α
up
l yup

tω +β
up
l ≤ γ

up
tω,∀l ,∀ω,∀t (5.30k)

αdn
l ydn

tω +βdn
l ≤ γdn

tω,∀l ,∀ω,∀t (5.30l)

0 ≤ yup
tω ≤ ymax,up

tω ,∀ω,∀t (5.30m)

0 ≤ ydn
tω ≤ ymax,dn

tω ,∀ω,∀t (5.30n)

xs
i r ∈ {0,1},∀i ,∀r (5.30o)

xup
j s ∈ {0,1},∀ j ,∀s (5.30p)

xdn
kq ∈ {0,1},∀k,∀q (5.30q)

εs+,εs−,εo+,εo− ∈ [0,1] (5.30r)

5.6.2 Risk-Averse Model

In problem (5.30), the objective is to minimize the expected reserve cost. This may, however,

lead to a situation where the TSO experiences high reserve costs if expensive offers occur in

the daily market, although the corresponding scenario may have a low probability.

To avoid losses due to unfavorable scenarios, we incorporate the Conditional Value at Risk

(CVaR) [57] as a risk control measure in problem (5.30).

The CVaR at the αr confidence level is the expected value of the costs under the scenarios

that lead to the (1−αr )× 100% worst outcomes. In other words, if the Value at Risk (VaR) γ is

defined to be the largest threshold that is not exceeded by the cost with probability αr , the

CVaR is the expected value of this risk. Fig. 5.9 illustrates the Value at Risk (VaR) and the CVaR.

The mathematical description of the CVaR at the αr confidence level is expressed by equation

(5.31):

CVaR = Mi n
{
γ+ 1

1−αr
E[M ax{costω−γ,0}]

}
(5.31)

Since costω is equal to
∑NSR

i=1

Nr∑
r=1

cs
i r ps

i r xs
i r +

∑N j

j=1

∑Nm
m=1 cup

j m pup
j m xup

j m +∑Nk

k=1

∑Nq

q=1 cdn
kq pdn

kq xdn
kq +∑Nt

t=1

(
γ

up
tω+γdn

tω

)
,∀ω, using continuous non-negative variable sω, equation (5.31) is recast as:

Minimize
ΞR,γ,sω

γ+ (1−αr )−1
∑
ω
πωsω (5.32a)
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Figure 5.9 – Value at Risk (VaR) and Conditional Value at Risk (CVaR).

subject to

NSR∑
i=1

Nr∑
r=1

cs
i r ps

i r xs
i r +

N j∑
j=1

Nm∑
m=1

cup
j m pup

j m xup
j m +

Nk∑
k=1

Nq∑
q=1

cdn
kq pdn

kq xdn
kq +

Nt∑
t=1

(
γ

up
tω+γdn

tω

)−γ≤ sω,∀ω

(5.32b)

0 ≤ sω,∀ω (5.32c)

Considering a trade-off between the expected reserve cost and the CVaR, the risk-averse

formulation is:

Minimize
ΞCVaR

(1−βr )
[NSR∑

i=1

Nr∑
r=1

cs
i r ps

i r xs
i r +

N j∑
j=1

Nm∑
m=1

cup
j m pup

j m xup
j m +

Nk∑
k=1

Nq∑
q=1

cdn
kq pdn

kq xdn
kq

+∑
ω
πω

( Nt∑
t=1

(
γ

up
tω+γdn

tω

))]+βr

(
γ+ (1−αr )−1

∑
ω
πωsω

)
(5.33a)

subject to

Nr∑
r=1

xs
i r ≤ 1,∀i (5.33b)

Nm∑
m=1

xup
j m ≤ 1,∀ j (5.33c)

Nq∑
q=1

xdn
kq ≤ 1,∀k (5.33d)
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400 ≤ ( N j∑
j=1

Nm∑
m=1

pup
j m xup

j m

)+ yup
tω ,∀ω,∀t (5.33e)

εs++εs−+εo++εo− ≤ 0.2% (5.33f)

as+
n

(NSR∑
i=1

Nr∑
r=1

ps
i r xs

i r

)
+bs+

n ≤ εs+,∀n (5.33g)

as−
n

(NSR∑
i=1

Nr∑
r=1

ps
i r xs

i r

)
+bs−

n ≤ εs−,∀n (5.33h)

ao+
n

(NSR∑
i=1

Nr∑
r=1

ps
i r xs

i r +
N j∑
j=1

Nm∑
m=1

pup
j m xup

j m + yup
tω

)
+bo+

n ≤ εo+,∀n,∀t ,∀ω (5.33i)

ao−
n

(NSR∑
i=1

Nr∑
r=1

ps
i r xs

i r +
Nk∑

k=1

N q∑
q=1

pdn
kq xdn

kq + ydn
tω

)
+bo−

n ≤ εo−,∀n,∀t ,∀ω (5.33j)

α
up
l yup

tω +β
up
l ≤ γ

up
tω,∀l ,∀ω,∀t (5.33k)

αdn
l ydn

tω +βdn
l ≤ γdn

tω,∀l ,∀ω,∀t (5.33l)

NSR∑
i=1

Nr∑
r=1

cs
i r ps

i r xs
i r +

N j∑
j=1

Nm∑
m=1

cup
j m pup

j m xup
j m +

Nk∑
k=1

Nq∑
q=1

cdn
kq pdn

kq xdn
kq +

Nt∑
t=1

(
γ

up
tω+γdn

tω

)−γ≤ sω,∀ω

0 ≤ sω,∀ω (5.33m)

0 ≤ yup
tω ≤ ymax,up

tω ,∀ω,∀t (5.33n)

0 ≤ ydn
tω ≤ ymax,dn

tω ,∀ω,∀t (5.33o)

xs
i r ∈ {0,1},∀i ,∀r (5.33p)

xup
j s ∈ {0,1},∀ j ,∀s (5.33q)

xdn
kq ∈ {0,1},∀k,∀q (5.33r)

εs+,εs−,εo+,εo− ∈ [0,1] (5.33s)

The trade-off between the expected reserve cost and the CVaR is materialized by the parameter

βr ∈ (0,1). If βr = 0, the risk measure is neglected and the problem becomes the risk-neutral

problem (5.30). If βr = 1, the CVaR is minimized for the scenarios, where the reserve cost is

more than the risk γ, and hence, variable sω takes a positive value.

The minimization is over the set of variables ΞCVaR =ΞR ∪ {γ;sω∀ω}.

5.6.3 The Reference Model (Common Practice)

The reference model (common practice) separates the dimensioning process (technical com-

ponent) and the clearing process (market component). The system operator determines

that R̂s, R̂T,w,up, R̂T,w,dn are the amounts of secondary reserves, upward tertiary reserves, and
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downward tertiary reserves, respectively, in the weekly market, while R̂T,d,up and R̂T,d,dn are

the amounts of upward tertiary reserves and downward tertiary reserves, respectively, in the

daily market. These amounts are next procured in the corresponding markets.

The mathematical description of the reference model includes the clearing models of the

weekly and daily markets, which are represented by problems (5.34) and (5.35), respectively.

Minimize
xs

i r ,xup
j s ,xdn

kq

NSR∑
i=1

Nr∑
r=1

cs
i r ps

i r xs
i r +

N j∑
j=1

Nm∑
m=1

cup
j m pup

j m xup
j m +

Nk∑
k=1

Nq∑
q=1

cdn
kq pdn

kq xdn
kq (5.34a)

R̂s ≤
NSR∑
i=1

Nr∑
r=1

ps
i r xs

i r (5.34b)

R̂T,w,up ≤
N j∑
j=1

Nm∑
m=1

pup
j m xup

j m (5.34c)

R̂T,w,dn ≤
Nk∑

k=1

Nq∑
q=1

pdn
kq xdn

kq (5.34d)

Nr∑
r=1

xs
i r ≤ 1,∀i (5.34e)

Nm∑
m=1

xup
j m ≤ 1,∀ j (5.34f)

Nq∑
q=1

xdn
kq ≤ 1,∀k (5.34g)

xs
i r ∈ {0,1},∀i ,∀r (5.34h)

xup
j s ∈ {0,1},∀ j ,∀s (5.34i)

xdn
kq ∈ {0,1},∀k,∀q (5.34j)

In the weekly market, problem (5.34) minimizes the reserve cost (5.34a) over binary variables

{xs
i r ,∀i ,∀r ; xup

j s ,∀ j ,∀s; xdn
kq ,∀k,∀q}, as described in Section 5.6.1.

Constraints (5.34b)-(5.34d) satisfy the amounts of secondary, upward tertiary, and downward

tertiary reserves, respectively. Constraints (5.34e)-(5.34g) model mutually exclusive secondary

reserve offers, upward tertiary reserve offers, and downward tertiary reserve offers, respectively.

Finally, the indivisibility of offers related to secondary, upward tertiary, and downward tertiary

reserves are expressed by constraints (5.34h)-(5.34j), respectively.

In the daily market, the decision variables are:

• Binary variables representing the acceptance or the rejection of each upward tertiary

reserve offer in each four-hour interval t in the daily market [yup
j ′m′t ]. Each upward
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tertiary reserve offer may be in a set of mutually exclusive Nm′ offers.

• Binary variables representing the acceptance or the rejection of each downward tertiary

reserve offer in each four-hour interval t in the daily market [ydn
k ′q ′t ]. Each downward

tertiary reserve offer may be in a set of mutually exclusive Nq ′ offers.

The MILP clearing model of the daily market is formulated in problem (5.35) below:

Minimize
yup

j ′m′ t
,ydn

k′q′ t

Nt∑
t=1

( N j ′∑
j ′=1

Nm′∑
m′=1

cup
j ′m′t pup

j ′m′t yup
j ′m′t +

Nk′∑
k ′=1

Nq′∑
q ′=1

cdn
k ′q ′t pdn

k ′q ′t ydn
k ′q ′t

)
(5.35a)

R̂T,d,up ≤
N j ′∑
j ′=1

Nm′∑
m′=1

pup
j ′m′t yup

j ′m′t (5.35b)

R̂T,d,dn ≤
Nk′∑

k ′=1

Nq′∑
q ′=1

pdn
k ′q ′t ydn

k ′q ′t (5.35c)

N j ′∑
j ′=1

Nm′∑
m′=1

yup
j ′m′t ≤ 1,∀ j ′,∀t (5.35d)

Nk′∑
k ′=1

Nq′∑
q ′=1

ydn
k ′q ′t ≤ 1,∀k ′,∀t (5.35e)

yup
j ′m′t ∈ {0,1},∀ j ′,∀m′,∀t , (5.35f)

ydn
k ′q ′t ∈ {0,1},∀k ′,∀q ′,∀t (5.35g)

Problem (5.35) minimizes the costs of the upward and downward tertiary reserves (5.35a) in

the daily market over binary variables {yup
j ′m′t ,∀ j ′,∀m′,∀t ; ydn

k ′q ′t ,∀k ′,∀q ′,∀t }, as described

above.

Constraints (5.35b) and (5.35c) satisfy the required amounts of upward and downward ter-

tiary reserves, respectively. Constraints (5.35d) and (5.35e) model mutually exclusive upward

tertiary offers and mutually exclusive downward tertiary offers, respectively. Indivisibility of

upward and downward tertiary offers are modeled by constraints (5.35f) and (5.35g), respec-

tively.

5.6.4 Metrics: Perfect Information Model & Actual Cost

To evaluate the performance of the proposed two-stage models (i.e., the risk-neutral model

and the risk-averse model), we compute the actual reserve cost obtained from these models,

and compare it to the reserve cost obtained from the deterministic reference model (common

practice). We also compare the outcomes of the proposed models to an optimal solution

obtained from a perfect information model. In the following, We first explain how to compute
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the actual cost, and next, we elaborate on the perfect information model.

The actual reserve cost is obtained as follows:

1. We solve the proposed two-stage model.

2. The variables pertaining to the weekly market are fixed at the optimal first-stage solution

obtained (i.e., xs
i r = x∗s

i r , xup
j m = x∗up

j m and xdn
kq = x∗dn

kq ).

3. The offers are updated in the daily market.

4. The resulting problem is then solved for the actual daily offers (and not the scenarios).

5. The optimal value of objective function is the actual reserve cost.

The mathematical description of obtaining the actual cost is expressed by problem (5.36):

Minimize
yup

j ′m′ t
,ydn

k′q′ t
,εs+,εs−,εo+,εo−

NSR∑
i=1

Nr∑
r=1

cs
i r ps

i r x∗s
i r +

N j∑
j=1

Nm∑
m=1

cup
j m pup

j m x∗up
j m +

Nk∑
k=1

Nq∑
q=1

cdn
kq pdn

kq x∗dn
kq

+
( Nt∑

t=1

( N j ′∑
j ′=1

Nm′∑
m′=1

cup
j ′m′t pup

j ′m′t yup
j ′m′t +

Nk′∑
k ′=1

Nq′∑
q ′=1

cdn
k ′q ′t pdn

k ′q ′t ydn
k ′q ′t

))
(5.36a)

subject to

N j ′∑
j ′=1

Nm′∑
m′=1

yup
j ′m′t ≤ 1,∀ j ′,∀t (5.36b)

Nk′∑
k ′=1

Nq′∑
q ′=1

ydn
k ′q ′t ≤ 1,∀k ′,∀t (5.36c)

400 ≤ ( N j∑
j=1

Nm∑
m=1

pup
j m x∗up

j m

)+ ( N j ′∑
j ′=1

Nm′∑
m′=1

pup
j ′m′t yup

j ′m′t

)
,∀ω,∀t (5.36d)

εs++εs−+εo++εo− ≤ 0.2% (5.36e)

as+
n

(NSR∑
i=1

Nr∑
r=1

ps
i r x∗s

i r

)
+bs+

n ≤ εs+,∀n (5.36f)

as−
n

(NSR∑
i=1

Nr∑
r=1

ps
i r x∗s

i r

)
+bs−

n ≤ εs−,∀n (5.36g)

ao+
n

(NSR∑
i=1

Nr∑
r=1

ps
i r x∗s

i r +
N j∑
j=1

Nm∑
m=1

pup
j m x∗up

j m + ( N j ′∑
j ′=1

Nm′∑
m′=1

pup
j ′m′t yup

j ′m′t

))+bo+
n ≤ εo+,∀n,∀t

(5.36h)
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ao−
n

(NSR∑
i=1

Nr∑
r=1

ps
i r x∗s

i r +
Nk∑

k=1

Nq∑
q=1

pdn
kq x∗dn

kq + ( Nk′∑
k ′=1

Nq′∑
q ′=1

pdn
k ′q ′t ydn

k ′q ′t
))+bo−

n ≤ εo−,∀n,∀t (5.36i)

yup
j ′m′t ∈ {0,1},∀ j ′,∀m′,∀t (5.36j)

ydn
k ′q ′t ∈ {0,1},∀k ′,∀q ′,∀t (5.36k)

εs+,εs−,εo+,εo− ∈ [0,1] (5.36l)

Perfect Information Model

The perfect information solution identifies what optimal decisions would have been made

if the daily offers were available in the weekly market. This solution is obtained by solving

a deterministic model where the scenarios are replaced by actual daily offers. Note that

scenarios constitute a discrete approximation, and thus, they may deviate from the actual

offers. Therefore, this solution acts as a proxy to evaluate the accuracy of the scenarios.

We should note that this solution is different from the Expected Value of Perfect Informa-

tion (EVPI). The EVPI is the expected optimal value of the two-stage model with relaxed

non-anticipativity constraints [4]. Therefore, the EVPI still uses scenarios. However, in the

perfect information model, there is one scenario with all actual offers, and not a number of

representative scenarios.

The formulation of the perfect information model is as follows:

Minimize
ΞPI

NSR∑
i=1

Nr∑
r=1

cs
i r ps

i r xs
i r +

N j∑
j=1

Nm∑
m=1

cup
j m pup

j m xup
j m +

Nk∑
k=1

Nq∑
q=1

cdn
kq pdn

kq xdn
kq

+
( Nt∑

t=1

( N j ′∑
j ′=1

Nm′∑
m′=1

cup
j ′m′t pup

j ′m′t yup
j ′m′t +

Nk′∑
k ′=1

Nq′∑
q ′=1

cdn
k ′q ′t pdn

k ′q ′t ydn
k ′q ′t

))
(5.37a)

subject to

Nr∑
r=1

xs
i r ≤ 1,∀i (5.37b)

Nm∑
m=1

xup
j m ≤ 1,∀ j (5.37c)

Nq∑
q=1

xdn
kq ≤ 1,∀k (5.37d)

N j ′∑
j ′=1

Nm′∑
m′=1

yup
j ′m′t ≤ 1,∀ j ′,∀t (5.37e)
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Nk′∑
k ′=1

Nq′∑
q ′=1

ydn
k ′q ′t ≤ 1,∀k ′,∀t (5.37f)

400 ≤ ( N j∑
j=1

Nm∑
m=1

pup
j m xup

j m

)+ ( N j ′∑
j ′=1

Nm′∑
m′=1

pup
j ′m′t yup

j ′m′t

)
,∀ω,∀t (5.37g)

εs++εs−+εo++εo− ≤ 0.2% (5.37h)

as+
n

(NSR∑
i=1

Nr∑
r=1

ps
i r xs

i r

)
+bs+

n ≤ εs+,∀n (5.37i)

as−
n

(NSR∑
i=1

Nr∑
r=1

ps
i r xs

i r

)
+bs−

n ≤ εs−,∀n (5.37j)

ao+
n

(NSR∑
i=1

Nr∑
r=1

ps
i r xs

i r +
N j∑
j=1

Nm∑
m=1

pup
j m xup

j m + ( N j ′∑
j ′=1

Nm′∑
m′=1

pup
j ′m′t yup

j ′m′t

))+bo+
n ≤ εo+,∀n,∀t

(5.37k)

ao−
n

(NSR∑
i=1

Nr∑
r=1

ps
i r xs

i r +
Nk∑

k=1

Nq∑
q=1

pdn
kq xdn

kq + ( Nk′∑
k ′=1

Nq′∑
q ′=1

pdn
k ′q ′t ydn

k ′q ′t
))+bo−

n ≤ εo−,∀n,∀t (5.37l)

xs
i r ∈ {0,1},∀i ,∀r (5.37m)

xup
j s ∈ {0,1},∀ j ,∀s (5.37n)

xdn
kq ∈ {0,1},∀k,∀q (5.37o)

yup
j ′m′t ∈ {0,1},∀ j ′,∀m′,∀t (5.37p)

ydn
k ′q ′t ∈ {0,1},∀k ′,∀q ′,∀t (5.37q)

εs+,εs−,εo+,εo− ∈ [0,1] (5.37r)

Problem (5.37) minimizes the reserve cost (5.37a) over the set of variablesΞPI = {xs
i r ,∀i ,∀r ; xup

j m ,

∀ j ,∀m; xdn
kq ,∀k,∀q ; yup

j ′m′t ,∀ j ′,∀m′,∀t ; ydn
k ′q ′t ,∀k ′,∀q ′,∀t } considering constraints (5.37b)-(5.37f)

modeling mutually exclusive offers, constraint (5.37g) representing the deterministic criterion,

constraints (5.37h)-(5.37l) modeling the probability criterion, and constraints (5.37m)-(5.37q)

enforcing indivisibility of offers.

5.7 Case Studies

For the case studies presented in this chapter, we analyze the outcomes from the proposed

risk-neutral model, problem (5.30), and from the proposed risk-averse model, problem (5.33),

in the Swiss reserve market.
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5.7.1 Outcomes of the Risk-Neutral Model

The proposed risk-neutral two-stage model has been used to clear the Swiss reserve market

since February 2014.

In this section, we provide the outcomes obtained from the actual implementation of the risk-

neutral model (5.30) and compare them to the results of the reference model (i.e., problems

(5.34) and (5.35)), as well as the solution of the perfect information model (i.e., problem (5.37)).

Given the limited data due to the short history of the Swiss reserve market, we use the expe-

rience and judgment of the operators to select scenarios. The experience pertaining to the

offering behavior of market participants indicate that offers of daily markets do not usually

change much over two consecutive weeks. As previously mentioned, the best available offers

that represent the offers in the daily markets in week w are those in week w-2. Therefore, we

take offers from week w-2 and assume three equi-probable scenarios representing price offers

higher than, lower than, and equal to the price offers in week w-2.

We provide the clearing outcomes for week 27, 2016 (the second week of July) and week 46,

2016 (the third week of November), as two examples of the season with high precipitation, and

thus, low price offers, and of the season with low precipitation and high price offers.

−800 −600 −400 400 600 800

Perfect Info
2−Stage

Determin. Model

Week 27, 2016

−800 −600 −400 400 600 800

Perfect Info
2−Stage

Determin. Model

Amount of Reserves (MW)

Week 46, 2016

SCR
TR in the weekly market
TR in the daily market

Figure 5.10 – The amounts of reserves obtained from the perfect information model, the
risk-neutral two-stage model, and the deterministic reference model (SCR and TR denote
secondary and tertiary reserves, respectively.)

Fig 5.10 shows the amounts of reserves obtained from the perfect information model, the

risk-neutral two-stage model, and the deterministic reference model in weeks 27 and 46, 2016.

The details about the levels of reserves are provided in Tables 5.1. We should note that the SCR
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and TR denote secondary reserve and tertiary reserves, respectively.

Comparing the outcomes from the proposed two-stage model and those from the reference

model, the following observations are in order.

In week 27, the amount of secondary reserve decreases from 400 MW in the reference model to

386 MW in the two-stage approach. The total amount of upward tertiary reserve (i.e., the total

amount from the weekly and daily markets) decreases from 450 MW in the reference model

to 400 MW using the proposed two-stage approach. Also, the total amount of downward

tertiary reserve decreases from 390 MW in the reference model to 323 MW using the two-stage

approach. Therefore, the total amount of reserves (i.e., the total amount of secondary, upward

tertiary and downward tertiary) decreases from 1240 MW in the reference model to 1110 MW

in the two-stage model.

A similar observation is valid in week 46. That is, the levels of reserves decrease under the

two-stage model as compared to those from the reference model.

We also benchmark the outcomes of the risk-neutral two-stage model against those of the

perfect information model to evaluate the performance of the two-stage model.

In week 27, the amounts of secondary reserves are almost the same (differing only by 1 MW).

The total amount of upward tertiary reserve are also the same, as it is enforced by constraint

(5.20) to be at least 400 MW. Eventually, the total amount of downward tertiary reserve obtained

from the perfect information model is 16 MW smaller than that of the corresponding amount

from the two-stage model (307 MW vs. 323 MW). This is translated into the following. If actual

daily offers were available, the cheapest would be to buy 387 MW of secondary reserve and

307 MW of downward tertiary reserve. In the absence of actual offers in the daily market and

the use of scenarios in the two-stage model, these amounts are 386 MW of secondary reserve

(1 MW smaller than 387 MW) and 323 MW of downward tertiary reserve (16 MW greater than

307 MW).

Similar observations are valid in week 46. The total amount of reserves from the two-stage

model are only 7 MW greater than that of the perfect information model. The outcomes of

the prefect information model are also used to benchmark how accurate is the allocation of

tertiary reserve amounts to the weekly and daily markets.

Focusing on week 27 and downward tertiary reserves, the trend of buying a smaller share

of the total amount in the weekly market and a larger share in the daily market is similar in

the two-stage model and the perfect information model. The corresponding amounts are,

however, slightly different; the perfect information model procures 95 MW in the weekly
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market and 212 MW in the daily market, while the two-stage model procures 88 MW and 235

MW in the weekly and daily markets, respectively. This shows that the scenarios modeling

downward offers in the daily market are good representatives of actual offers and the two-stage

model has a good performance. We should also note that in the reference model a higher share

of tertiary reserves is allocated to the weekly market based on the judgment that the weekly

market would have a higher liquidity and cheaper offers than the daily market. However, this

example shows that such a judgment is not always correct.

Regarding upward tertiary reserves in week 27, the two-stage model allocates a higher share of

the total amount to the daily market. However, this is the opposite if the prefect information

model is used. Noting that in both models, 100 MW is procured in the daily market, we

conclude that upward tertiary scenarios are good representatives of the actual offers up to

100 MW; however, they are cheaper than actual offers for quantities larger than 100 MW. This

implies that a better modeling of scenarios representing upward tertiary reserves is desired.

Focusing on week 46, the trend of buying a higher share of tertiary reserves (both upward

and downward) in the weekly market is similar under both the two-stage model and perfect

information model; the amounts are, however, slightly different. That is, in the weekly market

the two-stage model procures 8 MW in addition to 282 MW of upward tertiary reserve resulting

from the perfect information model, and a 41 MW smaller than 250 MW of downward tertiary

reserve obtained from the perfect information model.

Details regarding reserve costs are provided in Table 5.2. We should note that Table 5.2 provides

the expected reserve cost (equation (5.13)) as well as the actual reserve cost (equation (5.36a) )

obtained from the two-stage model.

In week 27, the expected reserve cost from the two-stage model is CHF1.34M, and after

actualization of daily offers, the actual reserve cost is CHF1.40M. Therefore, a cost saving of

4.6% is achieved considering the cost of the reference model (CHF1.47M).

Considering the expected reserve cost of CHF1.34M and the perfect information cost of

CHF1.37M, we conclude that the reserve cost is underestimated by the scenarios in the two-

stage model. This results from the scenarios representing upward tertiary reserve offers that

are cheaper than the corresponding actual offers, as mentioned above. Note that the actual

cost from the two-stage model is only 2% higher than the cost obtained from the prefect

information model. This implies that there is still a potential of cost saving by better choosing

scenarios that represent daily offers.

In week 46, the expected reserve cost from the two-stage model is CHF5.72M, and after

actualization of daily offers, the actual reserve cost is CHF6.00M. A cost saving of 13.7% is
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Table 5.1 – Reserves [MW]

SCR Up TR Down TR Total R.
week 27 weekly daily weekly daily

Perfect Info. 387 300 100 95 212 1094

Two-stage Model 386 110 290 88 235 1109

Reference Model 400 250 200 240 150 1240

SCR Up TR Down TR Total R.
week 46 weekly daily weekly daily

Perfect Info. 389 282 118 250 36 1075

Two-stage Model 388 300 100 209 85 1082

Reference Model 400 250 200 240 150 1240

Table 5.2 – Costs of Reserves [CHF]

Weekly cost Total Total cost
week 27 SCR Up TR Down TR weekly cost Exp. Act.

Perfect Info. 1198437 91583 15643 1305663 – 1372716

Two-stage Model 1195459 30227 14341 1240027 1340186 1404820

Reference Model 1240595 73833 50302 1364730 – 1473258

week 46
Perfect Info 4850598 271091 292132 5413821 – 5668418

Two-stage Model 4835450 307975 222866 5366291 5716644 6002171

Reference Model 5018841 222417 272752 5514010 – 6956193

obtained by considering this actual cost and the cost of the reference model (CHF6.96M).

The actual cost of the two-stage model is 5.56% higher than the cost from the perfect in-

formation model. That is, there is a potential of cost saving of about 5% by improving the

scenarios.

These outcomes show that the proposed two-stage model results in a smaller reserve cost

than that of the deterministic reference model as a result of procuring a smaller amount of

reserves, as well as of procuring a considerable share of tertiary reserves in the market stage

with cheaper offers.

We should note that the reserve amounts from the reference model, determined by Swissgrid

in 2008, result in a deficit probability of 0.18% that is smaller than 0.2%. In other words, the

reference model results in reserve over-procurement. The two-stage model, however, deter-

mines an adequate level of the reserves while avoiding over-procurement, and consequently,

attains a smaller reserve cost.
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5.7.2 Discussion on the Number of Scenarios, Optimal Expected Reserve Cost

and Computation Time

In this section, we elaborate on the number of scenarios and its impact on the solution

accuracy and the computation time.

An increase in the number of scenarios may improve representation of the daily offers, and

therefore, the expected reserve cost. However, on the other hand, it may increase the required

computation time. We investigate the impact of the number of scenarios on the computation

time and the expected reserve cost in the following.

For the simulations, we use CPLEX 12.5.0 under MATLAB on a computer with two Intel(R)

Core(TM) processors clocking at 2.7 GHz and 8 GB of RAM.

Table 5.3 provides the problem size in terms of the number of variables and constraints, the

computation time and the expected cost for different numbers of scenarios. With the increase

in the number of scenarios, the problem size and the computation time increase; however,

the expected cost remains unaltered.

Table 5.3 – Number of scenarios, computation time and expected reserve cost

week 46
Number of scenarios 3 10 20

No. of binary variables 452 452 452

No. of continuous variables 762 2533 5063

No. of total variables 1214 2985 5515

No. of constraints 9017 29891 59711

Computation time (s) 28 257 445

Expected cost (CHFM) 5.67 5.67 5.67

week 27
Number of scenarios 3 10 20

No. of binary variables 357 357 357

No. of continuous variables 762 2533 5063

No. of total variables 1119 2890 5420

No. of constraints 9009 29883 59703

Computation time (s) 15 88 258

Expected cost (CHFM) 1.32 1.32 1.32

These analyses imply that an increase in the number of scenarios does not necessarily improve

the representation of the daily offers. Hence, the same expected costs are obtained using

different numbers of scenarios.
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5.7.3 Simulation Results for the Risk-Averse Model

In this section, we present outcomes from the risk-averse model (5.33) and compare them to

those from the risk-neutral two-stage model. These outcomes are also benchmarked against

the outputs from the perfect information model.

The CVaR is computed at the 0.9 confidence level; that is, the expected reserve cost pertaining

to the 10% worse scenarios is minimized.

We assume 20 equi-probable scenarios, where scenarios representing upward tertiary offers in

weeks 27 and 46 are within a range from 80% to 250% of the price offers in the daily market in

weeks 25 and 44, and those representing downward tertiary offers cover a range from 75% to

115% of the price offers in the daily market in weeks 25 and 44.

We select this number of scenarios so that it covers sufficiently probable scenarios while

avoiding high computational burden.

The results for week 27 are provided below.

The quantities of reserves including their allocations in the weekly and daily markets, as well

as the expected cost and the CVaR are provided in Table 5.4 for the risk-neutral case (βr = 0)

and the risk-averse case (βr = 1).

Using the risk-neutral model, the expected reserve cost is CHF1.34M and the CVaR is CHF1.39M.

That is, with a probability of 90%, the final reserve cost is less than or equal to CHF1.39M.

The amounts of upward and downward tertiary reserves in the weekly market are 110 MW, and

88 MW, respectively. That is, the risk-neutral model allocates a larger share of tertiary reserves

in the daily market.

Using the risk-averse model with βr = 1, the amount of upward tertiary reserve is 300 MW in

the weekly market. That is, a higher share of upward tertiary reserves is procured in the weekly

market to reduce the risk of being exposed to expensive offers in the daily market.

The expected cost of the risk-averse model is CHF1.36M, which is higher than CHF1.34M

obtained from the risk-neutral model. This higher expected cost is obtained at the benefit of a

smaller risk, i.e., the CVaR is CHF1.37M. In other words, with a probability of 90%, the final

reserve cost is less than or equal to CHF1.37M if the CVaR is minimized.

The efficient frontier is shown in Fig. 5.11. It is relevant to observe that moving from the

risk-neutral case with β= 0 to the risk-averse case with β= 0.5, there is a comparatively sharp

decrease in the risk (i.e, in the CVaR), but a slightly different expected cost, while moving from
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Table 5.4 – Reserves, expected cost and CVaR (week 27, 2016)

week 27 SCR Up TR Down TR Total R. Exp. cost CVaR
[MW] [MW] [MW] [MW] [CHF] [CHF]

weekly daily weekly daily
βr = 0 386 110 290 88 235 1109 1341931 1394645

βr = 1 386 300 100 88 235 1109 1368091 1371527

β= 0.5 to β= 1 the risk does not noticeably alter. This suggests that the risk-averse model with

β= 0.5 avoids that the TSO is exposed to expensive reserve offers in the daily market, while

still minimizing the expected cost.
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Figure 5.11 – Efficient Frontier in term of the expected reserve cost and CVaR (week 27, 2016)

Considering the risk-averse model with βr = 0.5, the per-scenario reserve cost and the optimal

value of sω are provided in Table 5.5. The CVaR is CHF1.37M and results from scenarios 19

and 20, where high reserve costs occur.

The actual costs obtained from the risk-neutral and risk-averse models with βr = 0.5 and

βr = 1, and from the perfect information model are provided in Table 5.6.

The actual costs from the risk-averse models with βr = 0.5 and βr = 1 are close to the cost of

the perfect information model. The reason is that the risk-averse model procures a higher

portion of upward tertiary reserves (300 MW from the total 400 MW) in the weekly market

in order to minimize the risk of being exposed to the expensive offers in the daily market.

Eventually, since the actual offers are expensive, the actual costs of the risk-averse cases are

smaller than that of the risk-neutral model.

Table 5.7 provides the reserves, the expected cost, and the CVaR obtained from the risk-neutral

case (βr = 0) and the risk-averse one (βr = 1) for week 46.
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Table 5.5 – Cost and sω per Scenario for βr = 0.5 (week 27, 2016)

Scenario Cost (CHF) sω (CHF) Scenario Cost (CHF) sω (CHF)

1 1322700.71 0.00 11 1349106.58 0.00
2 1325344.77 0.00 12 1351745.06 0.00
3 1327987.09 0.00 13 1354383.54 0.00
4 1330627.89 0.00 14 1357021.92 0.00
5 1333268.17 0.00 15 1359659.54 0.00
6 1335908.38 0.00 16 1362297.16 0.00
7 1338548.58 0.00 17 1364934.78 0.00
8 1341188.79 0.00 18 1367572.41 0.00
9 1343828.65 0.00 19 1370209.85 2637.44

10 1346468.10 0.00 20 1372846.66 5274.25

Table 5.6 – Actual costs (week 27, 2016)

Approach Actual cost (M CHF)

Perfect info 1372716
Risk-neutral, βr = 0 1404820
Risk-averse, βr = 0.5 1372962
Risk-averse, βr = 1 1372939
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The expected cost and the CVaR of the risk-neutral model are CHF5.85M ad CHF6.15M,

respectively, and of the risk-averse model are CHF6.09M and CHF6.13M, respectively. That is,

the risk-averse model decreases the CVaR at the expense of increasing the expected cost.

Table 5.7 – Reserves, expected cost and CVaR (week 46, 2016)

week 46 SCR Up TR Down TR Total R. Exp. cost CVaR
[MW] [MW] [MW] [MW] [CHF] [CHF]

weekly daily weekly daily
βr = 0 388 300 100 204 86 1078 5845596 6149647

βr = 1 388 300 100 214 80 1082 6089771 6131757

The efficient frontier for week 46 is shown in Fig. 5.12. Moving from β= 0 to β= 0.5, there

is a comparatively sharp decrease in the CVaR and a slight increase in the expected cost,

while moving from β= 0.5 to β= 1, the CVaR gently decreases but the expected cost sharply

increases. The difference of the CVaR between the extreme points (i.e., the case with β= 0 and

the case with β= 1) is of order of 0.3% (CHF18k).
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Figure 5.12 – Efficient Frontier in term of the expected reserve cost and the CVaR (week 46,
2016)

Considering the actual costs, provided in Table 5.8, the risk-averse model with βr = 1 results

in a cost with the smallest deviation from the cost of perfect information model, while the

actual cost of the risk-neutral model is the highest. The reason is that the risk-averse model

with βr = 1 procures 214 MW downward tertiary reserves in the weekly market in order to

minimize the risk of being exposed to the expensive offers in the daily market. Eventually,

since the actual offers are expensive, the actual costs of the risk-averse cases are smaller than

that of the risk-neutral model.
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Table 5.8 – Actual costs (week 46, 2016)

Approach Actual cost (M CHF)

Perfect info 5668418
Risk-neutral, βr = 0 6050277
Risk-averse, βr = 0.5 6002171
Risk-averse, βr = 1 5956934

5.7.4 Case Study Conclusions

We propose a risk-neutral stochastic two-stage clearing model to replace the deterministic

reference model in the Swiss reserve market.

The proposed two-stage model results in cost savings ranging from 4% to 14% over different

weeks. This is due to procuring a smaller quantity of reserves under the proposed model than

that of the reference model, as well as procuring a considerable share of tertiary reserves in

the market with cheaper offers.

The proposed model is benchmarked against a perfect information solution, which is the

optimal solution obtained from a deterministic model with actual offers. This comparison

confirms that the two-stage model generally has a good performance in term of procuring the

right amounts of reserves in the market with cheaper offers. However, the scenarios modeling

offers in the daily market can be still improved. Such improvements have potential cost savings

in the range of 2% to 5%.

From a computational point of view, the proposed two-stage model is tractable and requires a

reasonable solution time.

We also propose a risk-averse two-stage model, where the risk measure is the CVaR, to min-

imize the risk pertaining to expensive reserve offers in the daily market. If expensive offers

ocurr in the daily market, the use of the proposed risk-averse model may result in a smaller

actual cost than that of the risk-neutral model. Therefore, if Swissgrid wishes to implement a

risk-averse model, the proposed risk-averse model results in appropriate outcomes.

5.8 Summary and Conclusion of the Chapter

To cope with the drawbacks associated with the common practice of reserve provision in

Switzerland, we propose a risk-neutral two-stage stochastic clearing model, and also, a risk-

averse one.
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The decision-making problem consists of determining which amount of reserves to procure

in the weekly market and which one in the daily market. In the proposed two-stage model, the

first stage represents the weekly market and the second stage the daily market. The source

of uncertainty is the unknown offers in the daily market, which are represented by scenarios.

Additionally, to minimize the risk pertaining to expensive reserve offers in the daily market, a

risk-averse instance of this two-stage clearing model is proposed.

We compare the performance of the risk-neutral two-stage model with the common determin-

istic approach, which sacrifices optimality in favor of simplicity.

The proposed risk-neutral two-stage model results in a smaller reserve cost than that of the

deterministic approach as a result of procuring smaller reserve quantities, as well as procuring

these quantities in the market with cheaper offers.

We also compare the outcomes of the proposed models with the results of a perfect information

model, where the optimal solution is obtained from a deterministic model with actual weekly

and daily offers. This comparison shows that the two-stage model has a good performance in

term of procuring the right amounts of reserves in the market with cheaper offers. However,

that scenarios modeling offers in the daily market can still be improved.

The risk-neutral two-stage model has been clearing the Swiss reserve market since February

2014. Also, this study suggests that if Swissgrid wishes to implement a risk-averse model, the

proposed risk-averse model results in appropriate outcomes.
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6 Closure

In this concluding chapter, we provide a summary, the main conclusions and contributions of

the work developed in this dissertation. We also provide suggestions for future research work.

6.1 Summary and Conclusions

In this thesis, we analyze some of the challenges associated with the operation of electricity

market under uncertainty. To tackle such challenges, mathematical models for decision

making are proposed, illustrated and analyzed. Below, we summarize the main characteristics

of these models and provide concluding remarks.

6.1.1 Multi-Stage Stochastic Clearing Model

Power systems across the world are moving to integrate a significant amount of renewable

power production and as a result to consider a number of intra-day markets. This calls for a

revise in market-clearing approaches.

To make informed day-ahead decisions in the presence of uncertain renewable power produc-

tion, we propose a multi-stage stochastic clearing model, where the first stage represents the

day-ahead market, n additional stages model n intra-day markets, and a final stage stands for

real-time operation. As an instance of multi-stage stochastic models, we present a three-stage

one, where uncertainty stems from wind power production. The stochastic clearing process

includes the first stage representing the day-ahead market, the second stage modeling an intra-

day market, and the third stage standing for real-time operation. Therefore, the day-ahead

schedules are decided with a detailed prognosis of the future, which includes the intra-day

market and real-time operation.

159



Chapter 6. Closure

The proposed model is illustrated and analyzed through an example and larger case studies,

and benchmarked against a two-stage stochastic model. The simulation outcomes show that

the proposed three-stage model has a better performance than the two-stage one as a result

of more informed decisions at the day-ahead market. That is, the three-stage model results in

lower day-ahead cost, expected cost, total expected profit, and consumer payment than those

from the two-stage model.

Additionally, the day-ahead peak prices obtained from the three-stage model are lower than

those derived from a two-stage model. This results from the use of more precise information

on evolving wind power forecast across market stages in the three-stage model, and therefore,

more efficient positioning of the units in term of day-ahead power production schedules, as

well as intra-day power adjustments and deployed reserves. This is concluded by applying the

three-stage model to different load profiles, and by considering different values of adjustment

bounds and flexibility of units to provide reserves. Our simulation results also indicate that the

outcomes from a three-stage model and a two-stage one get closer as restrictions get tighter.

Small bounds are translated into reduced energy trading in the intra-day market, and hence,

the results of the three-stage model get closer to those from two-stage one.

Therefore, we conclude that if a stochastic clearing model is adopted in systems with a large

amount of renewable production, it should be a multi-stage stochastic model, and not a two-

stage one. The advantage of a multi-stage clearing model stems from how renewable power

output forecasts evolve from the day-ahead market to real-time operation. The information

on how uncertain renewable production develops across the market floors, as well as, allowing

flexibility for the contribution of renewable generation in both the day-ahead and intra-day

markets improve the market outcomes and the integration of renewable generation.

6.1.2 Pricing Scheme Pertaining to A Stochastic Non-Convex Market-Clearing Model

Apart from the scheduling component of the market operation discussed in Chapter 2, other

key component is pricing. While the use of non-convex clearing models might be inevitable

due to the technical operating conditions of a power system, non-convex clearing models

fail to result in linear marginal prices. On the other hand, uncertainty adds another layer of

complexity.

We approach this problem by formulating a stochastic non-convex clearing model. We de-

fine three variants of cost-recovery conditions for producers in the presence of uncertainty

including cost-recovery condition in the day-ahead market, cost-recovery condition in ex-

pectation, and cost-recovery condition per scenario. We next develop models that enforce

these cost-recovery conditions. These models minimize the duality gap of the stochastic
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non-convex model and the dual problem of a relaxed version of the non-convex model subject

to primal constraints, dual constraints, cost-recovery constraints, and integrity constraints.

The cost-recovery conditions make this model non-linear, as it includes bi-linear terms. For

computational tractability, the bi-linear terms are linearized using auxiliary integer variables

and additional constraints. Therefore, the non-linear optimization model with cost-recovery

constraints is recast as a MILP model with a higher problem size.

This model is benchmarked against the standard marginal pricing model through a simple ex-

ample as well as large case studies. Day-ahead prices obtained from the proposed approaches

are higher than conventional marginal prices in some periods. This, consequently, causes

higher producer profits, and therefore, higher consumer payments. However, the new prices

eliminate the need of uplifts and allow the market to fully rely on these “ modified” marginal

prices. Our conclusions are not affected by network congestion, as well as by considering

other sources of non-convexity such as minimum up/down time constraints of units.

From a social welfare point of view, the social welfare obtained from the proposed models

with cost-recovery features deviates the least possible amount from the optimal social welfare.

The approach with day-ahead cost-recovery constraints results in the same expected cost as

the original primal two-stage problem for the different load profiles considered. The other

proposed approaches attain optimal expected costs close to the one of the original problem.

The duality gaps are also small.

From the computational point of view, the models proposed have bi-linear terms, which need

to be linearized using integer variables. In this process, a smaller linearization step leads

to slightly more precise results at the expense of higher computation burden, but still the

same conclusions are derived. Generally, the models proposed are tractable and solvable in a

reasonable time using an MILP state-of-the-art solver.

Therefore, the proposed pricing schemes result in linear marginal prices without the need for

uplift at the expense of deviating slightly from the optimal value of social welfare.

6.1.3 Economic Impact of Flexible Demands

While the main stream research emphasizes advantages arisen from demand flexibility, we

take a closer look at the economic impacts of flexible demands and investigate economic

consequences of demand flexibility in details.

We consider a power system with significant renewable production, comparatively expensive

fast-ramping units, and flexible demands (ability of demands to move load from peak periods

to off-peak periods). In this market environment, we explore the impacts of demand flexibility
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on operation costs, prices, consumer payments, and producer profits. We compare the cases

of flexible and inflexible demands through a simple example and large case studies.

Demand flexibility is beneficial to the system, as it shifts its consumption from day hours to

night hours, when cheap renewable production is available. In other words, demand flexibility

adapts its consumption pattern to the production pattern of renewable production. This leads

to a considerable cost reduction as compared to the cost obtained from the case with inflexible

demands. Due to the notable shift in consumption in the case with demand flexibility, prices

from the flexible demand case are higher over the off-peak periods and lower over the peak-

periods with respect to the prices from the case with inflexible demands. Network congestion

and ramping limits of the conventional units do not generally change these observations.

Higher off-peak prices may result in higher consumer payments in the flexible demand case

than those in the case with inflexible demands.

On one hand, demand flexibility is beneficial for the system as a whole since it decreases

the expected operation cost, but on the other hand, demand flexibility can result in price

increases that in turn increase demand expenses. Therefore, demands might be better off being

inflexible in systems with a generation mix dominated by comparatively cheap renewable

units and comparatively expensive fast-ramping units.

6.1.4 Stochastic Clearing model for the Reserve Market

In the context of self-dispatch markets with separated energy and reserve trading, we present

a reserve scheduling problem motivated by the reserve market in Switzerland.

The Swiss reserve market consists of a weekly market and a daily market. The decision-making

problem consists of determining which amount of reserves to procure in the weekly market

and which one in the daily market.

We propose a risk-neutral two-stage stochastic clearing model to replace the common deter-

ministic clearing approach in the Swiss reserve market. In the proposed two-stage model, the

first stage represents the weekly market and the second stage the daily market. The source of

uncertainty is the unknown offers in the daily market, which are represented by scenarios. We

also introduce a risk-averse instance of this two-stage clearing model, where the risk measure

is the CVaR. In other words, we aim to minimize the risk pertaining to expensive reserve offers

in the daily market.

The proposed models are analyzed using real cases from the Swiss reserve market. We com-

pare the performance of the risk-neutral two-stage model with the common deterministic

approach, which sacrifices optimality in favor of simplicity. The proposed model results in a
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notable cost saving as compared to the deterministic approach. This is the result of procur-

ing a smaller quantity of reserves under the proposed model than that of the deterministic

approach, as well as procuring a considerable share of tertiary reserves in the market with

cheaper reserve offers.

The proposed model is also benchmarked against a perfect information solution, which is

obtained from a deterministic model with actual weekly and daily offers. This comparison

shows that the two-stage model has a good performance in term of procuring the right

amounts of reserves in the market with cheaper offers. However, the scenarios modeling offers

in the daily market can still be improved.

The risk-neutral two-stage model has been clearing the Swiss reserve market since February

2014.

Also, this study suggests that if Swissgrid wishes to implement a risk-averse model, the pro-

posed risk-averse model results in appropriate outcomes.

6.2 Contributions

The contributions of the work carried out in this dissertation are enumerated below:

1. To develop a multi-stage stochastic market-clearing model which takes into account

the day-ahead market, a number of intra-day markets and the real-time operation.

The propose model provides informed day-ahead decisions in renewable-dominated

systems.

2. To carry out a comprehensive analysis of the performance of a three-stage model and

its comparison with respect to a two-stage one.

3. To develop pricing methodologies for a stochastic non-convex market that result in

linear marginal prices guaranteeing cost-recovery for producers.

4. To mathematically formulate the cost-recovery conditions of the producers: cost re-

covery in the day-ahead market, cost recovery in expectation, and cost recovery per

scenario.

5. To carry out a comprehensive analysis to evaluate the performance of the proposed

pricing methodologies.

6. To investigate the economic impacts of flexible demands in a power system with com-

paratively expensive fast-ramping units and comparatively cheap renewable units.
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7. To develop and implement a risk-neutral two-stage stochastic market-clearing model

for the Swiss reserve market.

8. To develop a risk-averse two-stage stochastic market-clearing model for the Swiss re-

serve market.

9. To mathematically describe all technical and market constraints of the Swiss reserve

market.

10. To characterize the scenarios modeling uncertain offers in the Swiss daily reserve market.

6.3 Future Research Work

Finally, future research suggestions are provided below:

1. To consider quick-start units in intra-day markets and real-time operation in the market-

clearing model. This requires the use of integer variables in all stages (and not only in

the first stage) of the proposed multi-stage model.

2. To make the proposed clearing model more realistic by including security criteria such

as the n-1 one and an AC representation of the transmission network.

3. To consider in the clearing model topological control. The core idea is to co-optimize

topological changes such as line switching along with energy and reserves.

4. To apply appropriate decomposition algorithms for computational tractability.

5. To apply the proposed pricing methodologies to this model and evaluate their perfor-

mance in term of optimality of solutions and tractability of the problem.

6. To apply appropriate decomposition techniques to efficiently solve the proposed pricing

models.

7. To propose novel pricing schemes to encourage demand flexibility in a market with high

renewable production.

8. To consider scenarios that explicitly represent indivisible daily offers (and not an ap-

proximated piece-wise linear curve) in the reserve clearing model.
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Appendices

A Some Notions on Multi-Stage Stochastic Programming

This appendix provides the mathematical description of two topics relevant to multi-stage

stochastic programming: the general formulation of a multi-stage stochastic programming

problem and an instance of the VSS computed for this multi-stage stochastic problem.

A.1 Mathematical Description of Multi-Stage Stochastic Programming

Considering a decision-making process with s points in time to make a decision, the decision-

making sequence is as follows: First, the decisions x1 are made. Second, the stochastic

process ζ1 is realized as ζ1
ω1 . Third, the decisions x2 which depend on x1 and the realization

of ζ1 are generated (denoted by x2(x1,ω1)). Next, the stochastic process ζ2 is realized as ζ2
ω2 ,

and consequently, the decisions x3(x1,ω1, x2,ω2) are taken. It continues till stage s, where

decisions xs(x1,ω1, · · · , xs−1,ωs−1) are made after realization of the stochastic process ζs−1
ωs−1 .

Note that at each stage the decisions are made independent of future realizations of the

stochastic processes. In other words, the decisions are unique for all possible realizations of

the stochastic processes in future. Thus, the non-anticipativity of the decisions is considered

in the decision making sequence.

The formulation of the described multi-stage decision-making problem is:

Maximize
x1

f 1(x1)+Eω1

(
Maximize

x2(ω1)
f 2(x1,ω1, x2(ω1)) (1)

+Eω2|ω1

[
Maximize

x3(ω1,ω2)
f 3(x1,ω1, x2(ω1),ω2, x3(ω2))

+·· ·+Eωs|ω1,··· ,ωs−1 [ Maximize
xs(ω1,··· ,ωs−1)

f s(x1,ω1, · · · ,ωs−1, xs(ωs−1))] · · ·])
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subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g 1(x1) ≤ 0

g 2(x1,ω1, x2(ω1)) ≤ 0, ∀ω1 ∈Ω1

...

g s(x1,ω1, · · · ,ωs−1, xs(ωs−1)) ≤ 0, ∀ω1 ∈Ω1, · · · ,∀ωs−1 ∈Ωs−1

x1, x2(ω1), · · · , xs(ωs−1) ∈Rn

According to [4], if all the random variables are finitely distributed and the objective and

constraints are linear functions, the equivalent of problem (1) is:

Maximize
x1,x2(ω1),··· ,xs (ωs−1)

c1ᵀx1 + ∑
ω1∈Ω1

π(ω1)
(
c2ᵀ(ω1)x2(ω1)+ ∑

ω2∈Ω2

π(ω2)
[
c3ᵀ(ω2)x3(ω2)+·· · (2)

+ ∑
ωs−1∈Ωs−1

π(ωs−1)csᵀ(ωs−1)xs(ωs−1) · · ·])

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A11x1 ≤ 0

A21(ω1)x1 + A22(ω1)x2(ω1) ≤ 0, ∀ω1 ∈Ω1

...

As1(ω1, · · · ,ωs−1)x1 +·· ·+ Ass(ω1, · · · ,ωs−1)xs(ωs−1) ≤ 0

∀ω1 ∈Ω1 · · · ,∀ωs−1 ∈Ωs−1

x1, x2(ω1), · · · , xs(ωs−1) ∈Rn

A.2 Value of the Stochastic Solution for Multi-Stage Stochastic Programming

In a multi-stage problem with s stages, the VSSs is defined for stage s as follows. First, the

uncertain parameters are replaced by their expected value, and a deterministic problem

without recourse is solved. We call this problem MV model (standing for Mean-Value):

Maximize
x1,··· ,xs

c1ᵀx1 + c2ᵀx2 +·· ·+csᵀxs (3)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A11x1 ≤ 0,

A
21

x1 + A
22

x2 ≤ 0
...

A
s1

x1 +·· ·+ A
ss

xs ≤ 0,

x1, · · · , xs ∈Rn
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where c◦ and A
◦

are the expected value of parameters c◦ and A◦, resoectively (i.e., c◦ =E[c(ω◦)]

and A
◦ =E[A(ω◦)]).

Considering that {x∗,1, · · · , x∗,s} are optimizers of MV problem (3), the next step to compute the

VSS is to fix the decisions of stages 1 to s−1 to x∗,1 to x∗,s−1, and solve the resulting problem

for each scenario:

Maximize
xs (ωs−1)

c1ᵀx∗,1 + ∑
ω1∈Ω1

π(ω1)c2ᵀ(ω1)x∗,2 +·· ·+ ∑
ωs−1∈Ωs−1

π(ωs−1)csᵀ(ωs−1)xs(ωs−1) (4)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A11x∗,1 ≤ 0

A21(ω1)x∗,1 + A22(ω1)x∗,2 ≤ 0, ∀ω1 ∈Ω1

...

As1(ω1, · · · ,ωs−1)x∗,1 +·· ·+ Ass(ω1, · · · ,ωs−1)xs(ωs−1) ≤ 0,

∀ω1 ∈Ω1, · · · ,∀ωs−1 ∈Ωs−1

xs(ωs−1) ∈Rn

Denoting the optimal value of problem (4) by zD,s and the optimal value of multi-stage problem

(2) by z∗, VSSs is:

VSSs = zD,s −z∗, ∀n > 1 (5)

and as a percentage of the optimal value of stochastic problem:

VSSs% = zD,s −z∗

z∗
, ∀n > 1 (6)

B IEEE 24-Node System Data

This appendix provides the technical characteristics of the IEEE 24-node system considered in

the case studies of Chapters 2, 3 and 4.

The considered 24-node network is based on the single-area IEEE Reliability Test System (RTS)

[72] and is illustrated in Figure 1. Line resistances are null and thus, active power losses are

disregarded. The values of reactance and capacity of transmission lines are listed in Table 1.

We should note that line reactances are given in per unit on a 100-MVA base.

For the sake of clarity, the particular characteristics of the generating units are provided in

each case study of the corresponding chapters.
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Table 1 – 24-node system: reactance and capacity of transmission lines

From node To node Reactance (p.u.) Capacity (MW)

1 2 0.014 200
1 3 0.211 220
1 5 0.085 510
2 4 0.127 220
2 6 0.192 220
3 9 0.119 220
3 24 0.084 510
4 9 0.104 220
5 10 0.088 220
6 10 0.061 200
7 8 0.061 220
8 9 0.165 220
8 10 0.165 220
9 11 0.084 510
9 12 0.084 510

10 11 0.084 510
10 12 0.084 510
11 13 0.048 600
11 14 0.042 600
12 13 0.048 600
12 23 0.097 600
13 23 0.087 600
14 16 0.059 600
15 16 0.071 600
15 21 0.049 600
15 21 0.049 600
15 24 0.052 600
16 17 0.026 600
16 19 0.023 600
17 18 0.014 600
17 22 0.105 600
18 21 0.026 600
18 21 0.026 600
19 20 0.040 600
19 20 0.040 600
20 23 0.022 600
20 23 0.022 600
21 22 0.068 600
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Figure 1 – Schematic of 24-node system

C Minimum Up- and Down-Time Constraints

In the following, we provide the mathematical description of minimum up- and down-time

constraints.

For the sake of simplicity, we use a single-binary variable formulation [10], but recognize

that a three-binary variable formulation is more efficient [49]. The minimum up/down time
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constraints are as follow:

HU
i∑

t=1
(1−ui t ) = 0,∀i (7a)

UTi (ui t −ui ,t−1) ≤
t+UTi−1∑

k=t
ui k ,∀i ,∀t = HU

i +1, · · · , NT −UTi +1 (7b)

NT∑
k=t

(
ui k − (ui t −ui ,t−1)

)≥ 0,∀i ,∀t = NT −UTi +2, · · · , NT (7c)

HD
i∑

t=1
ui t = 0,∀i (7d)

DTi (ui ,t−1 −ui t ) ≤
t+DTi−1∑

k=t
(1−ui k ),∀i ,∀t = HD

i +1, · · · , NT −DTi +1 (7e)

NT∑
k=t

(
1−ui k − (ui ,t−1 −ui t )

)≥ 0,∀i ,∀t = NT −DTi +2, · · · , NT (7f)

where constants UTi and DTi denote minimum up-time and minimum down-time of unit i ,

respectively. Parameter HU
i is the number of initial periods that unit i must be online, and HD

i

is the number of initial periods that unit i must be off-line.

Constraints (7a) and (7d) are related to initial conditions for the units as defined by HU
i and

HD
i , respectively. Constraints (7b) and (7e) enforce that in subsequent periods (of “sizes” UTi

and DTi ) minimum up-time and minimum down-time constraints are, respectively, satisfied.

Constraints (7c) pertain to the last periods of the study horizon and enforce that started-up

unit i remains online until the end of time span if required by its minimum up-time constraint.

Similarly, constraints (7f) enforce that already-off-line unit i remains off-line until the end of

time span if required by its minimum down-time constraints.
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