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Abstract

For many classification tasks, the ideal classifier should be invariant to geometric trans-
formations such as changing the view angle. However, this cannot be said decisively for the
state-of-the-art image classifiers, such as convolutional neural networks. Mainly, this is because
there is a lack of methods for measuring the transformation invariance in them, especially for
transformations with higher dimensions. In this project, we are proposing two algorithms to do
such measurement. The first one, Manifool, uses the structure of the image appearance mani-
fold for finding small enough transformation examples and uses these to compute the invariance
of the classifier. Second one, the iterative projection algorithm, uses adversarial perturbation
methods in neural networks to find the fooling examples in the given transformation set. We
compare these methods to similar algorithms in the areas of speed and validity, and use them
to show that transformation invariance increases with the depth of the neural networks, even in
reasonably deep networks. Overall, we believe that these two algorithms can be used for analysis
of different architectures and can help to build more robust classifiers.
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1 Introduction

In the past decade, convolutional neural networks have achieved state-of-the-art performance in
computer vision tasks such as image classification [21] [42]. However, they have been shown to be
vulnerable to certain changes in the input images. One such set of changes is geometric transfor-
mations, which are quite common as they can represent the change of the viewpoint of an image.
Humans are shown to be mostly invariant to these transformations [10], but the same cannot be
said about the classification systems. As these systems are now being used in various places such as
self driving cars, the issue of correctly identifying the surrounding objects no matter their position
are getting more and more important. Thus, one of the important areas of image classification re-
search is finding classifiers that are robust against these changes in the image. However, to correctly
identify methods that are actually robust against these transformations, a method for measuring
this invariance is required.

To answer the problem of robustness in neural networks, many approaches has been taken during
the last decades. For example, in 1991, Földiak [14] has tried to increase invariance by proposing a
learning rule. More recently, Jaderberg et al. [22] has introduced spatial transformer modules that
can be inserted into existing neural network architectures to increase their transform invariance.
Others, like Dai et al. [9] tries to increase invariance by modifying the pooling layer of the network
while Shen et al. [40] approach this by changing the convolutional layers. Other approaches in
designing transformation invariant networks include scattering networks [40] and using transformed
filter banks [23]. These methods are all trying to improve the invariance of networks, and thus their
purpose is not measuring it. In fact, in the face of this many new method to increase invariance, a
general method that can measure it becomes crucial to be able to compare their effects.

In another approach to this problem, Lenc and Vedaldi [29] and Soatto and Chiuso [43] analyze
image and visual representations to find theoretical foundations of transform invariant features,
while others such as Goodfellow et al. [17] do this analysis empirically. On the other hand, Bakry et
al. [5] uses the information about the human visual system to understand transformation invariance.
While these results show how the features that are used in convolutional neural networks should
be, they either do not give ways to measure the invariance of a network, or give methods that can
only measure the invariance in a single dimension(e.g. rotation). Similarly, some others approach
the problem by creating sets of transformed images and measuring the accuracy of the classifier
on this dataset [22], [25]. However, this is a laborious approach and does not let us effectively
compare different kind of classifiers. Finally, Manitest [13] from Fawzi and Frossard measures the
invariance of a classifier using the geodesic distances on the manifold of transformed images by
using fast marching method. However, it is not feasible for larger dimensional transformations as
its complexity increase exponentially with number of dimensions. This project can be considered a
continuation of this method, as it starts from the same point as Manitest and improves the parts it
is lacking, such as not being able to measure the invariance of complex classifiers, especially against
transformations with higher dimensions.

Thus, to answer the problem of measuring invariance, we approach it similar to Manitest,
i.e. by using the same metric to do this measurement. As this metric requires us to find small
transformations that can ‘fool’ the classifiers, we then introduce two new methods to find such
transformations. The said metric is used along with the outputs of these methods to calculate the
invariance of a classifier. Our idea is to make a fast algorithm that can work on high dimensional
geometric transformation sets while also finding fooling transformations that are close to being
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minimal. Currently, the proposed algorithms only work for some sets of transformations, but these
sets include all common geometric transformations such as the projective transformations and its
subsets.

The paper is organized as follows: In section 2 we give an overview of geometric transformations
and structural properties of some transformation sets. We also introduce the metrics we use to mea-
sure the transformations. In section 3, we give information about convolutional neural networks
and the concept of adversarial perturbations. Then, using the information on geometric transfor-
mations and neural networks, we formulate our problem in section 4. In section 5, we propose our
first algorithm, Manifool, which can find fooling examples for certain sets of transformations called
transform Lie groups and show some of the example outputs and experimental results using this
algorithm. In section 6, we propose another approach, namely the iterative projection algorithm,
which actively uses the adversarial perturbation methods to find fooling examples for certain sets
that are not necessarily Lie groups. We conclude with section 7 and discuss possible future work.
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2 Geometric Transformations

2.1 Introduction to geometric transformations of images

In the simplest sense, a geometric transformation is a function τ : R2 → R2. In the case of 2D
images, it can be thought as a function which maps a pixel to another or in other words moves
the positions of the pixels. More formally, if we consider a mathematical model where an image
is represented as a square integrable function I : R2 → R, I ∈ L2(or in the case of color images
I : R2 → Rc with Ii ∈ L2 where c is the number of color channels) , an image transformed by τ
can be represented as Iτ , or assuming the transformation is invertible, as Iτ (x, y) = I(τ−1(x, y)).
In this work, we are interested in invertible transformations and thus generally use the second
representation. This is not a strict restriction as many common transformation examples such as
rotations, affine transformations or diffeomorphisms are all invertible.

One of the most simple transformations is rotation of an image by an angle θ. For pixel coordi-
nates (x, y), this transformation can be written as:

τx(x, y) = x cos θ − y sin θ (2.1)

τy(x, y) = x sin θ + y cos θ (2.2)

Another example of a projective transformation, which is represented as [20]:

τx(x, y) =
h11x+ h12y + h13
h31x+ h32y + 1

(2.3)

τy(x, y) =
h21x+ h22y + h23
h31x+ h32y + 1

(2.4)

Normally, this pair of coordinates, (τx, τy) are represented simply as a two dimensional vector.
However, another way to represent them is to use a three dimensional vector [a b c] and get the
coordinates as τx = a/c, τy = b/c. This notation is called the homogeneous representation of a
vector x and denoted as x̃. By using this representation, the transformation can be represented as
a matrix vector multiplication [20]:

Hx̃ =

h11 h12 h13
h21 h22 h23
h31 h32 1

xy
1

 =

x′y′
w′

 (2.5)

τx = x′/w′, τy = y′/w′ (2.6)

Thus, the whole transformation can be simply represented using the matrix H and the inverse
transform can be represented using H−1. Some of the subsets of the projective transformations
and their matrix representations are as follows:

• Rotations, which were previously mentioned, can be rewritten in matrix form as:

Rx̃ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

xy
1

 =

x′y′
1

 (2.7)

They have only one parameter: the rotation angle.
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• Translations, which shift the support of the image can be written as:

T x̃ =

0 0 tx
0 0 ty
0 0 1

xy
1

 =

x′y′
1

 (2.8)

τx = x+ tx, τy = y + ty (2.9)

They have two parameters: amount of translation in x and y axes.

• Similarity transformations, which combine rotations, translations and scaling are written as:

Sx̃ =

α cos θ −α sin θ tx
α sin θ α cos θ ty

0 0 1

xy
1

 =

x′y′
1

 (2.10)

τx = αx cos θ − αy sin θ + tx, τy = αx sin θ + αy cos θ + ty (2.11)

They have four parameters: rotation angle, two translations and scaling.

• Affine transformations, which preserve the parallelisms of lines are written as:

Ax̃ =

m11 m12 m13

m21 m22 m23

0 0 1

xy
1

 =

x′y′
1

 (2.12)

τx = m11x+m12y +m13, τy = m21x+m22y +m23 (2.13)

They have six parameters, which can be thought as translations, rotation, independent scaling
for two dimensions, and shear.

2.1.1 Discrete images and interpolation

Although we model the images as continuous functions when analyzing the properties of trans-
formations, in practice, they are in their sampled forms. A grayscale image can be though as a
w × h matrix whereas a color image will be stacks of multiple w × h matrices. They can also be
represented in their vectorized forms in Rcwh. The sampled form of images means that the image
is only defined on integer coordinates. Thus, the image transformations are not straightforward as
τ(x, y)(or conversely τ−1(x, y)) do not necessarily output integers. Because of this, the pixels of the
transformed image, Iτ (x, y), has to be interpolated using the pixels of the original image.

Let source and destination domains denote the sets of coordinates where the original and trans-
formed images are respectively defined. Then, the transformation for discrete images is done in two
steps: First, the pixels in one domain are mapped to the other one. Second, the pixel values of the
transformed image are computed using the nearby known values. When the source pixels (x, y) are
mapped to the destination domain as (u, v) = τ(x, y) and interpolation is done there, this process is
called forward mapping. This operation maps the regular grid of the source to an irregular one, and
thus the interpolation has to be done using kernel methods such as Shepherd’s method [41]. The
other option, called backward mapping, maps destination pixels to the source domain and interpo-
lates them using the regular grid of known values. The regularity of the grid means the neighboring
pixels can be found easily and thus the interpolation is simpler to implement. The computation can
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be done using any interpolation scheme for 2D grids, such as nearest neighbor, bilinear or bicubic
interpolation. The choice of interpolation depends on the preferred complexity and generated error,
as less complex methods such as nearest neighbor will have higher error. In this project, bilinear
interpolation is used for computing translations as it is both simple to implement and works well
enough, especially on high dimensional images.

2.2 Geometric Transformations as Lie Groups

Although we have defined transformations simply as functions, various sets of transformations
exhibit certain algebraic structures called Lie groups. Basically, these are groups which also have
a smooth manifold structure. In this section we will explain the properties of these transform Lie
groups and some of their connections with the transformed images. These connections will form the
basis of how we can measure and compare transformations as well as the first algorithm, Manifool,
that will be explained in Section 5.

2.2.1 Differentiable manifolds and Lie groups

Formally, a d-dimensional manifold, denoted by M is a topological space whose every point is
homeomorphic to an open subset of Rd [6]. In other words, for every point p ∈ M, we can find a
continuous bijection ϕ : U → S ⊂ Rd with a continuous inverse where U is an open neighborhood of
p. The map ϕ is called a chart and a set of charts whose domain covers the entire manifold is called
an atlas. An example for an atlas of a circle in a 2-dimensional plane is seen on Figure 1. Similar
to this case where the circle is a 1D subset of R2, a manifold can be a subset of another space,
generally of a higher dimension. For the rest of this section, we will focus on embedded manifolds,
since all of the manifolds in this project are embedded in some other vector space and restricting
ourselves on this set will ease some of the definitions we will introduce.

Figure 1: A circle is a 1-dimensional manifold embedded in R2. Here, it is represented using 2 charts which
are homeomorphisms from the top and bottom half circles to the subsets of R (line segments). The set of
these charts form an atlas as it covers the entirety of the circle.

A manifold is called differentiable if it admits an atlas where every chart in this atlas and their
transition maps(maps between the ranges of two charts whose domains overlap) are differentiable [6].
A point p on a differentiable manifold M has a tangential space TpM, which, for a manifold
embedded in a vector space, can be defined as the set of differentials of all paths on the manifold

5



passing from this point [1]. The basis of TpM can be acquired using the partial derivatives of the
inverse of the local chart as

∂iϕ
−1(0p) = lim

t→0

ϕ−1(0p + tei)− ϕ−1(0p)
t

(2.14)

where 0p = ϕ(p) and ei denotes the ith canonical vector of Rd. These partial derivatives are
guaranteed to be linearly independent, as otherwise the chart will not be a bijection. As we have
d linearly independent vectors, we can see that the tangential space also has d dimensions. The
matrix whose columns are these basis vectors is called the Jacobian matrix and denoted as Jp. Since
the tangent space is the column space of Jp, a d-dimensional vector u ∈ TpM can be mapped to
the ambient space X ⊃M as Jpu.

Lie groups are one important type of differentiable manifolds, which in addition to their manifold
structure, also have properties of a mathematical group, i.e. has an associative and invertible group
operation under which the manifold is closed. The number of dimensions for this manifold is equal
to the number of parameters of the transform. The tangential space of the identity element is called
the Lie algebra of the group and a bracket operation can be defined on it, giving it a algebraic
structure [19]. The basis of this tangential space is called the generators, which algebraically, can
be used to construct the set. Several sets of transformations can be modeled as Lie groups, with
the function composition as the group operation. This means that if a set of transformations T is
Lie group, then:

• If τ ∈ T , then τ is smooth.

• For all τi, τj ∈ T , τi ◦ τj ∈ T

• For all τi, τj , τk ∈ T , (τi ◦ τj) ◦ τk = τi ◦ (τj ◦ τk)

• For all τi ∈ T , τ−1i ∈ T

• τ(x, y) = x, y ∈ T . This is the identity element of T .

Although these are strong restrictions to add on a set of functions, they are applicable to many
types of transformations. All of the previously mentioned transformations such as rotations, affine
or projective transformations, as well as many other types such as piecewise affine transformations
are Lie groups. In fact, the matrix representations of projective transformations also form Lie
groups, where the group action is matrix multiplication and inverse action is matrix inversion.
These groups are homeomorphic to their transform group counterparts, and this means certain
operations on the transform groups can be done in the matrix versions using the better defined
linear algebraic functions.

One last thing to note is that not all transformation sets are Lie groups. For example, the set
of integer translations is not a Lie group since it is not continuous and hence not smooth, even
though it is still a group under composition. Similarly, the set of rotations between −π/2 and π/2
is smooth, but not a group since it is not closed under composition.

2.2.2 Lie group action on images

The set of transformations and transformed images are connected to each other by a function called
group action. In group theory, this action of a group G on a manifold M is defined as a map
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G ×M → M. For the transform Lie groups and the image space, this action is defined as the
transformation of the image, i.e. if τ ∈ T , the map is defined as (τ, I)→ Iτ (x, y). If the transform
is smooth; this map is also smooth, which is the case for all transformations represented as Lie
groups. If we consider a single element of the image space, I, the orbit of I can be defined as the
set of all images generated by the group action:

T ·I = {Iτ : τ ∈ T } (2.15)

This set of transformed images also form a differentiable manifold, denoted as M(I) and called
an image appearance manifold(IAM) following the works of [46] [24]. In the transform group, the
stabilizers of I are defined as the set of transformations that do not change I:

T I = {τ ∈ T : Iτ = I} (2.16)

Lastly, using the definition of the orbit, we can define an orbit map as a function ψ(I) : T → T ·I
by

ψ(I)(τ) = Iτ (2.17)

If T I = {e}, i.e. if every transform but the identity changes the image in some way, then the orbit
map is a smooth bijection and the orbit is an immersed submanifold of L2 [28]. This means the
orbit of the image and the Lie group is diffeomorphic, and thus, the dimensionality of this manifold
is the same as the Lie group that generates it. So, the parametrized transformation can be used as
chart for M(I) and the basis of the tangential spaces can be defined as

∂Iτ(θ)(x, y)

∂θi
=
∂ψ(I)(τ(θ))

∂θi
(2.18)

where θ ∈ Rd represents the d parameters of the transform. Note that the existence of this diffeo-
morphism requires that the stabilizer of an image only includes the identity element, which might
not be true in the general case. For example, for an image of a circle under rotation, the stabilizer
is the whole Lie group and not only the identity element. However, for natural images that we
are interested in, we assume that only the identity element is a stabilizer and IAM has the same
dimensions as the transformations.

2.3 Metrics on Transformations, Exponential Maps and Retractions

To be able to measure the effect of transformations on classification results, we need a method to
compute the impact of the transformation on an image, i.e. a metric d(τ1, τ2) : T ×T → R. One
idea might be to measure the distance between the parameter vectors, but since they have very
different natures, the comparison would not be informative. As an example, in Figure 2, we can see
that comparing a rotation of π/2 with a translation of 50 pixels in y axis is meaningless because
of the different natures of the parameters. In addition, the metric should depend on the image as
well as the transformations, since we are measuring how this transformation is affecting the image
and the effect might change from one image to the next. One example of such a metric could be
the squared L2 distance between the transformed images which is defined as:

dI(τ1, τ2) = ‖Iτ1 − Iτ2‖
2
L2 =

∫∫
A
|Iτ1(x, y)− Iτ2(x, y)|2dxdy (2.19)

where A is the support of the image. For the discrete images, this metric simply becomes the
squared Euclidean metric. However, for example, on the images seen on Figure 2, the L2 distances
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Figure 2: Representation for problem of using L2 or transform parameters as metrics. τ1 is translation in y
axis by 50 pixels, while τ2 is rotation around center by π/2. Black pixels have a value of zero, an thus both
τ1 and τ2 have the same distance from τ0 if L2 metric is used. Adapted from [13]

are the same for two transformations while the rotation clearly had a greater effect on the image
compared to the small translation. Thus, this metric also is not applicable for this problem.

A useful metric can be acquired from the IAM by using the approach of [13]. Let γ(t) : [0, 1]→ T
be a differentiable curve on the Lie group T and γ′(t) ∈ Tγ(t) T be its derivative. Using the orbital
map, the curve and the derivative can be mapped to IAM as Iγ(t) and dIγ(t)/dt. Using this map
from the tangential space of γ(t) to the tangential space of Iγ(t), for v1, v2 ∈ Tτ T we can define an
inner product as

〈v1, v2〉 = 〈
dIγ1(t)

dt
,
dIγ2(t)

dt
〉 (2.20)

where γ1(t) and γ2(t) are two paths on T whose derivatives on τ are v1 and v2. The norm on the
tangential space is similarly defined as ‖v1‖T = 〈v1, v1〉. By using this, we can define the length of
the curve γ(t), L(γ), as

L(γ) =

∫ 1

0
‖γ′(t)‖T dt =

∫ 1

0

∥∥∥∥dIγ(t)dt

∥∥∥∥
L2

dt (2.21)

The inner product on equation (2.20) is called a Riemannian metric and any manifold that is
equipped with a Riemannian metric is called a Riemannian manifold. As seen above, the Riemannian
metric allows one to compute length of curves on the manifold. Let v1,v2 ∈ Tτ T which are
represented as d-dimensional vectors using a basis (such as the generators). Then, Riemannian
metric can be written as

gT (v1,v2) = vT1 J
T
τ Jτv2 = vT1 Gτv2 (2.22)

where Jτ is the Jacobian matrix of T at τ . Using the matrix Gτ , the norm on the tangential space
of τ is denoted as ‖v‖Gτ

.

Using this metric, one can also define a minimal geodesic between two given points onM as the
curve γ(t) that minimizes L(γ). Geodesics are curves that extend the notion of lines on Euclidean
spaces to the manifolds. On T , the geodesic distance calculated using (2.20) fits our previous
requests as it is both determined by the image and also captures the distance the transformation
has to take to arrive at the final point. Thus, this is the metric we use to measure the distance
between two transformations and hence will be referred as dI(x, y) for x, y ∈ T . In general, to
measure the effect of a transform, we will use the distance between itself and the identity element
e. Transformations on different images can then be compared by normalizing this distance by the
L2 norm of the image

d̃I(e, τ) =
dI(e, τ)

‖I‖L2

(2.23)
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This will be our general metric to compare transformations if they can be represented as Lie groups.
However, we also note that this is not always the case. If the set of transformations is not a Lie
group, then the transformed images will not form a manifold and thus a geodesic distance cannot
be measured1. In these cases, L2 metric can be used as there is no simple alternative.

2.3.1 Exponential map

One aspect of Riemannian manifolds is the exponential map exp(·) : TpM → M which connects
the tangential spaces of a manifold to itself. For any point p ∈ M and v ∈ TpM where M is a
Riemannian manifold, there exists a unique geodesic γv with initial point γv(0) = p and derivative
γ′v(0) = v [45]. Using this geodesic, if γv(1) is defined, the exponential map is simply defined as

expp(v) = γv(1) (2.24)

Since γ′v(0) = v and γ is a geodesic, the distance traveled in unit movement is equal to ‖v‖Gp .
Then, the geodesic distance between p and the mapped point can be stated as

d(p, expp(v)) = ‖v‖Gp (2.25)

This means that by using exponential maps, we can guarantee that the movement on the tangential
plane is equal to the movement on the manifold. Note that the existence of exponential map requires
γv(1) to be defined and thus it does not always exist. Its existence is guaranteed for an open ball
B(0, ε) ⊂ TpM where ε > 0 is a real number [45] but outside this ball, a different mapping must
be used.

A Lie group G also holds a similar but different notion of an exponential map. In this case, the
exponential map is defined for the entire Lie algebra g, and for a point X ∈ g, it is defined as

exp(X) = cX(1) (2.26)

where cX is a one-parameter subgroup generated by X [28]. If G is a matrix Lie group, then this
map is equivalent to the matrix exponential

exp(X) =
∞∑
k=0

Xk

k!
= I + X +

1

2
X2 +

1

6
X3 + . . . (2.27)

which can be approximated using numerical algorithms such as [2].

Remark The exponential map in the Lie group sense is not same with the exponential map in
the Riemannian sense. This is only the case if the Riemannian metric on the Lie group manifold
is bi-invariant [45]. Unfortunately, it does not hold for matrix Lie groups we are interested in. For
example, for SE(2) group which combines translations and rotations, the non-existence of such a
Riemannian metric can be proved [4].

1One exception, if possible, would be to measure the geodesic distance on a Lie group superset of the requested
set of transformations, but depending on the problem, this might not be a good metric
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2.3.2 Retractions

Riemannian exponential map is only a member of a larger set of smooth mappings from the tangen-
tial space to the manifold called retractions. A retraction, denoted for p ∈ M as Rp : TpM→M,
has following properties [1]:

• Rp(0p) = p where 0p denotes the zero element of TpM.

• With the identification that T0pTpM' TpM, Rp satisfies

DRp(0p) = idTpM (2.28)

where idTpM is the identity mapping on TpM and DRp(0p) is the differential of the mapping.
In other words, the derivative of a curve γ(t) on TpM at 0p must be equal to the derivative
of the mapped curve Rp(γ(t)) at point p.

Although the definition is very general, the retractions form the basis of line search (gradient descent
like) methods on manifolds [1] and will be one of the key parts of Manifool.

2.3.3 Measuring geodesic distance

Although the geodesic distance is a good metric to compare different transformations, its com-
putation is not straightforward. In fact, most methods find an approximate distance rather than
computing it exactly. Two methods to measure this distance is examined.

Fast Marching Method The first method to examine uses the notion of a geodesic distance
map to calculate the distance. For a fixed point p ∈ T , the distance map is defined as a function
Up(τ) : T → R which outputs the geodesic distance of τ to the point p, i.e. Up(τ) = d(p, τ). If
τ → Gτ is a continuous, the geodesic distance map Up(τ) is the unique viscosity solution to the
Eikonal equation [34]

∀τ ∈ T , ‖∇Up(τ)‖G−1
τ

= 1 (2.29)

Up(p) = 0 (2.30)

Fast Marching Method(FMM) [38], numerically solves this equation by discretizing the manifold.
It simulates a wavefront propagation to find this solution and as a dynamic programming successive
approximation method it can be considered a continuous version of the Dijkstra’s algorithm [11].
The algorithm initializes with Ûp(p) = 0 and Ûp(x) =∞ for x 6= p where p is the point to whom the
distances are computed and Ûp is the estimation of the distance map Up. Then, it starts to iterate
with q being the point considered in each iteration, it does three things:

1. Chooses q as arg minx/∈K Ûp(x), i.e. the point with the minimum estimated distance at this
point.

2. Denotes q as a known point and adds it to set of known points K.

3. Updates Ûp(x) for x ∈ Nq/K using the points in K, where Nq denotes the neighbors of q

10



Figure 3: Schematic representation of a discretized manifold T with red circle showing the starting point of
the algorithm and green circle showing the stopping point whose distance is being calculated. Assume the
blue points are part of a 1D manifold which is embedded in a 2D manifold, shown here by yellow points.
Also assume the distances between two neighboring nodes are the same for the 2D manifold. FMM must do
at least 3 iterations for the 1D manifold and 9 iterations for 2D.

If the geodesic distance between (p, τ) ∈ T is being calculated, the algorithm will stop when τ is
chosen and will output Ûp(τ) as the distance. Further information on the algorithm can be found
in [39] [34].

One drawback of using this algorithm is that it does not scale well with the dimensionality of
the manifold. An illustration for an example of this is shown on Figure 3 where a 1D manifold,
that is using a blue/yellow nodes, is embedded in a 2D manifold that is shown using yellow nodes.
Assume the distances between two nodes are the same for all neighboring nodes. Let us try to
measure the distance between the green and red nodes by starting FMM from the red node. If we
run the algorithm only on the 1D manifold, we need to iterate 3 or 4 times before we reach the
green point, depending on which of the two points with same distance the algorithm choses first.
However, on the 2D manifold, it would take 9-12 iterations to compute the same distance, since
we need to compute the distances for all nodes in the center square because they all have smaller
distances than the green node. If the 2D manifold is embedded in a 3D one, then the number of
iterations increase to be at least 27 as we need to iterate over the central cube before reaching
the final node. Furthermore, in each iteration,the surrounding simplices of neighboring nodes that
also include the current node must be found to update their distances. In 1D, there is only one
simplex that include the neighbor and the current node, while in 2D there are two of them and 3D
there are four. Hence, the number of simplices surrounding one node also increase exponentially
with dimension. Thus, as this example illustrates, the complexity of the algorithm (per iteration
and in total) increases exponentially with the dimension of the manifold and thus while still being
accurate, it is not very efficient in such circumstances.

Direct Distance Another, faster method is used which we call direct distance method whose
idea lies in exponential maps. As stated in (2.25), the norm of the vector on the tangential space is
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p

τ

Figure 4: Illustration of the direct distance method on a 1D manifold(green curve). After vτ is computed,
the geodesic distance is estimated by mapping vτ to the manifold part by part and summing the distances
between these points. The length of the red curve is d(p, τ) from (2.33).

equal to the geodesic distance of the mapped point. So, given p, τ ∈ T , if one can compute

vτ = exp−1p (τ) = logp(τ), (2.31)

then the geodesic distance can be calculated as ‖vτ‖Gp . If the exponential map and its inverse are
not readily available, a retraction can be used as an approximation of the exponential map. In this
case, for the same p, τ , vτ can be estimated as

v̂τ = R−1p (τ). (2.32)

However, unlike the case with vτ , ‖v̂τ‖Gp is not equal to the geodesic distance. Nevertheless, an

approximation of the geodesic distance can be done by estimating the length of the curve γ(t) =

R(tv̂τ ). For a chosen step-size λ, the vector can be divided into N =

⌈
‖vτ‖Gp

λ

⌉
parts with each part

having norm λ̂ =
‖vτ‖Ge
N . Then, the estimation of the distance is

d(p, τ) =

N∑
t=1

‖Iexp (tλ) − Iexp ((t−1)λ)‖L2 (2.33)

which is the sum of L2 distances between the mapped points. An illustration of this is seen on
Figure 4.
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3 Convolutional Neural Networks and Their Vulnerabilities

3.1 Short Introduction to Convolutional Neural Networks

Neural networks(NNs) are powerful machine learning models which currently achieve state-of-the-art
performance in various areas such as bioinformatics [7] [30], machine translation [47], recommender
systems [8] and computer vision [21] [42]. Informally, they are networks composed of many nodes
called neurons which are connected to each other in a layer by layer fashion. In a feed-forward
network, the computation starts at the input layer and propagates forward until it reaches to the
last layer, the output. These output neurons can represent different classes, probability distributions
or extracted features of the input. This whole network can be represented as a single function
f : Rn → Rm, where n is the number of input nodes and m is the number of output nodes. If the
network is used as a classifier, the chosen label can be found as the output with the largest value as

k(x) = arg max
i∈[1,m]

f(x) (3.1)

which will be our notation for rest of the thesis.

One important type of feed-forward networks is convolutional neural networks (CNNs) which in-
clude all of the current state-of-the-art image classification networks such as ResNet [21] or VGG [42].
In general, they are composed of three types of layers (see Figure 5): Convolutional, Pooling and
ReLU. Convolutional layers, which gives the network its name, are constructed by a set of learnable
filters whose outputs are stacked in a third dimension called depth. The filtering action is similar to
performing a convolution on the previous layer. Pooling layers perform a downsampling operation
along the spatial dimensions of the previous layer to reduce the number of parameters. This layer
is usually implement using max pooling, which keeps the neuron with the maximum output and
discards the rest, but other pooling functions such as average pooling exist [37]. The third type of
layer, ReLU, applies an elementwise activation function. It gets its name from the current popular
activation function, the Rectified Linear Unit (φ(x) = max(0, x)), but other activation functions
also exist. Overall a number of such layers are stacked together to construct the network. Further
information on CNNs and neural networks in general can be found in [16].

Lastly, as with any other machine learning model, a NN must be trained before it is able to

Figure 5: A convolutional neural network. The convolution and pooling layers are shown explicitly, while
ReLU layers should follow the pooling layers. Image taken from [27].
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Figure 6: An image and its transformed version. A CNN (Resnet-50 in this case) can label the image on the
left as a dog while labeling the image on the right as a cat, while the object in the image does not actually
change.

do the required classification tasks. The training of a NN can be done using any of the major
learning paradigms (supervised, unsupervised and reinforcement) [21] [12] [31]. In the pattern
recognition applications which we are interested in, the training is mainly done in a supervised
fashion. This method uses pre-labeled input examples to get correct values of network parameters
(weights and biases) by minimizing a cost function which outputs high values for misclassifications.
Mean squared error and cross entropy are two widely used examples of such cost functions. The
minimization is generally done using stochastic gradient descent (SGD) where the gradients for
SGD can be computed efficiently thanks to the backpropagation algorithm [35] which uses chain
rule to compute the gradients starting from the output layer and moving backwards to the input
layer. When the network is considered as a function f : Rn → Rm, this algorithm can also be used
for computing ∇xfi(x), the gradient of the ith output of f with respect to the input.

3.2 Effect of Transformations in NNs

As discussed in Section 2.1, a geometric transformation will change the positions of the pixels on an
image and thus the image itself. Therefore, the output values and perhaps the output label of any
CNN which was fed by this image can also change when it is transformed. These transformations
however, will not generally change the objects on an image. For example, as seen on Figure 6, an
image transformed by a similarity transformation has still the same object and thus the output class
should also not change. Human visual system possesses this invariance to geometric transformations
to some extent and will perceive the same object for the transformed versions of an image [10], but
the same claim cannot be made easily about CNNs or other classification systems. Thus, there
have been numerous studies about invariance to geometric transformations on CNNs. Some, such
as [40] [22] change parts of the network to improve the geometric transformations, while others,
such as [29] and [43] do empirical or theoretical analysis to understand and promote invariance in
classifiers. Some of these studies, like [17], do this analysis by proposing methods to measure this
invariance property.

One of those methods is Manitest [13]. Given an input image x, a set of transformations T , and a
classifier k, the algorithm tries to measure the invariance of k to transformation of x as the minimum
geodesic distance between a transformation τ ∈ T and the identity transformation. It does this by
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Figure 7: Examples of adversarial perturbations. First row, the original image classified as ’whale’. Second
row, the perturbed versions of the image (using Deepfool in top, FGS in bottom) both classified as ’turtle’.
Third row, the perturbations generated by Deepfool and FGS. The image taken from [32]

using fast marching method(FMM - explained in Section 2.3.3) with simple changes. Starting from
the identity transformation, FMM is run on the IAM and k(xq) is computed after choosing the
minimum distance point xq (i.e. after step 1 of FMM). However, unlike the case in Section 2.3.3,
there is no predetermined stopping node and the iterations are stopped if k(xq) 6= k(x), where
k(x) is the label of the input image. As FMM chooses the point with minimum distance in each
iteration, the stopping point is guaranteed to be the transformation that minimizes the geodesic
distance. Thus, it outputs the distance of the stopping point, Ûe(xq∗) as the invariance score of k
for image x.

3.3 Adversarial Perturbations

Another type of vulnerability of neural networks is adversarial perturbations, which were first
discovered by Szegedy et al. [44]. These are small additive perturbations on correctly classified
images which are imperceptible to the human eye but still change the result of the classification.
They are called adversarial, because these perturbations are created specifically by methods that
actively seek the misclassification of a given input by the neural network. Two examples of such
methods are as follows:

Fast Gradient Sign(FGS) The first method, fast gradient sign [18], is a fast and simple method
for finding an adversarial example. They take a linear view of adversarial examples, which state
the linear behavior of neural networks as the cause of these perturbations and show that given the
network parameters θ, the input x, the original label y and the cost function that was used for
training the network C(θ, x, y), an adversarial perturbation can be found as

r = ε sign(∇xC (θ,x, y)) (3.2)
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where ε is a variable that determines the magnitude of the perturbation. Computation of the gradi-
ent only requires a single backpropagation and thus the perturbation can be computed very quickly.
It is however not guaranteed to change the label of the image and as expected, the misclassifica-
tion percentage of the perturbed images is heavily related to ε and increases with it. Overall, the
method is useful when the speed of the computation is more important than the magnitude of the
perturbation. An example of this perturbation can be seen on Figure 7

Deepfool Deepfool [32] is an iterative algorithm (seen on Algorithm 1), which, unlike FGS, guar-
antees to find a small and misclassifying perturbation of the input image. At each iteration tarting
from the input image, Deepfool acts as if the classifier is linear and moves towards the decision
boundary. For a classifier f : Rn → Rm, its linearized version can be written as

f̂(x) = W Tx + b (3.3)

where W is n×m matrix whose ith column is the gradients of the output value that corresponds to
label i, i.e. wi = ∇fi(x). The original label of the image is lx = k(x) where k is the classification
function defined in (3.1). In this linearized case, the label with the nearest boundary can be found
as

ln = arg min
i 6=lx

|fi(x)− flx(x)|
‖wi −wlx‖2

(3.4)

The objective function of the minimization can be thought as the duration it would take to move
to the boundary, fk(x) = flx(x), with a speed of ‖wi −wlx‖2, which is the norm of the gradient
vector for fk(x)− flx(x). Using ln, the minimum perturbation to change the label of the linearized
classifier can be found as

r∗(x) =
|fln(x)− flx(x)|
‖wln −wlx‖

2
2

(wln −wlx) (3.5)

Since it is found only for a linearized version of f , this perturbation does not necessarily cause
misclassification. Therefore, starting from the original image, the algorithm iterates where in each
iteration it linearizes the classifier around the perturbed image, xi = xi−1+r∗(xi−1), and computes
a new perturbation for this image, r∗(xi). If xi+1 = xi +r∗(xi) is misclassified, than the algorithm
returns the total perturbation,

∑
i r
∗(xi). If it is not misclassified, then it continues iterating. It

Algorithm 1 Deepfool [32]

1: Initialize with x0 ← x, i← 0.
2: while k(xi) = k(x0) do:
3: for j 6= k̂(x0) do
4: wj ← ∇fi(xi)−∇flx(xi)
5: f ′j ← fj(xi)− flx(xi)
6: end for
7: ln ← arg minj 6=k(x0)

|f ′j |
‖wj‖

8: ri ←
|f ′ln |
‖wln‖

2wln

9: xi+1 ← xi + ri
10: i← i+ 1
11: end while
12: return r∗ =

∑
i ri
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can be seen from this description that there is a significant difference in complexity of FGS and
Deepfool. Even with this case, the algorithm generally ends in a few iterations and on high end
GPUs, it takes less than a second to compute adversarial examples for deep neural networks [32].
An example of this perturbation can be seen on Figure 7

As adversarial perturbations are additive noises, the perturbed image x+r can be any point on
the image space and it is not limited by the values of x. A geometrically transformed image however,
can only take values from the IAM. Thus, the adversarial perturbations are less limited and signif-
icantly different than the geometric transformations that this project focuses on. Nevertheless, the
algorithms for finding either of them have similar methods since these algorithms both actively seek
the misclassifying perturbed or transformed examples. In addition, the adversarial perturbations
can be actively used in the algorithms for finding fooling transformations. Thus, although they
are looking for different type of examples, the algorithms for finding misclassifying transformations
have strong similarities with algorithms for finding adversarial perturbations, which can be seen in
Sections 5 and 6
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4 Problem Formulation

As outlined in Section 3.2, finding classifiers that are robust against geometric transformations is an
important problem. To answer this problem, one has to compare different classifiers to understand
which approaches are better in increasing the robustness against these transformations. Thus,
we need a method to measure the invariance of a classifier to a given set of transformations T .
Similar to [13], we approach this problem by defining an invariance score ∆T (I, k) that captures
the invariance of the classifier k against the transformations of the image I. We then propose an
algorithm that can measure ∆T (I, k) given k, I and T . Afterwards, we use this metric to compute
the global invariance score of the classifier k to the transformations in T .

Formally, our approach can be stated as follows: Let k be the given classifier, I be an image
and T the set of transformations we are interested in. As with [13], we define the invariance metric
as the minimal normalized distance from the identity transformation to a misclassifying one, which
is denoted as

∆T (I, k) = min
τ∈T

d̃(e, τ) subject to k(I) 6= k(Iτ ), (4.1)

where d̃ is the normalized geodesic distance metric defined in (2.23). Unlike [13] however, our focus
is to find a quick algorithm that can find a small enough transformation that changes the output
label instead of finding the actual minimum.

Finally, for a probability distribution µ on the set of images, the global invariance score of the
classifier k to transformations in T is defined as

ρT (k) = EI∼µ∆T (I, k). (4.2)

In practice, the underlying probability distribution is generally unknown. Because of this, the
expectation is calculated using the empirical average over a set of training points:

ρ̂T (k) =
1

m

m∑
j=1

∆T (Ij , k). (4.3)

In our case, this score is estimated using the output τ̂ of the constructed algorithm,

ρ̂T (k) =
1

m

m∑
j=1

d̃Ij (e, τ̂). (4.4)

In the following sections, we will describe two algorithms to find τ̂ : First one, which we call
Manifool, works on transformation Lie groups and uses the manifold structure to find τ̂ . The second
one, called iterative projection algorithm, uses the adversarially perturbed images to find a fooling
transform.
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5 Manifool

We propose an algorithm inspired from Deepfool in which we incorporate the manifold structure of
the transformed images if the transformation is a Lie group. In our implementation, a convolutional
neural network is used as a classifier whose inputs are defined as vectors in Rn. As such, the discrete
version of the image(from Section 2.1.1), denoted as x, is used instead of the continuous version I.

5.1 Intuition

In the beginning of the algorithm, the input image lies on the IAM, M(x), which was defined in
Section 2.2.2, as can be seen on Figure 5. Since we want to find a point xτ with k(xτ ) 6= k(x), we
need to move past the decision boundary(the green curve on the figure). Normally, as in the case
of Deepfool algorithm(Section 3.3), the direction of this boundary can be found using the gradient
of the classifier ∇f(x). However, we need to stay on the manifold M(x) and thus our movement
directions are limited to the tangential space. So, the gradient is projected on the tangential
space(as the red vector u in the figure) to find a direction which the image can move and which
also gets us closer to the decision boundary. After this, the vector u on the tangential space is
mapped on toM(x) to remain on the manifold. If the mapped point has passed the boundary, the
algorithm can stop and return the transformation that corresponds to this point. If not, the same
process with projecting the gradient onto the tangential space and afterwards mapping it onto the
manifold is repeated until the algorithm passes the decision surface. A more formal examination of
the algorithm will be done in next section.

Figure 8: An illustration of the Manifool algorithm with a binary classifier on a 2D space. The manifold is
shown in blue while the decision boundary (f(x) = 0 in binary case) is shown in green. The algorithm uses
the gradient of the classifier to find the direction of the boundary and moves in this direction by projecting
the gradient to TxiM and mapping it to the manifold. This process repeats until the algorithm passes the
decision boundary.
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5.2 Description

Formally, the algorithm starts by setting the initial image as x0 = x where x denotes the input
image. The label of this image is lx = k(x), according to (3.1). The algorithm then begins iterating,
starting with i = 0.

The iteration i starts with finding the movement direction for this step. In the case of Deepfool,
this was done by using the gradients of the classifier for different labels with respect to the image
xi [32]. In our case, we are not interested in the function in the ambient space, and thus we restrict
the classifier on the manifold as f|M and use its gradients for determining the movement direction.
These can be acquired simply by projecting the gradient onto the tangential space of the current
point [1].

Therefore, formally, each iteration starts by calculating the basis of the tangential space, i.e.
the columns of the Jacobian matrix Jxi

as

(Jxi)j =
∂ψ(xi)(τ(θ))

∂θi
, (5.1)

where ψ is the orbit map defined in (2.17). The columns of Jxi
are assumed to be linearly indepen-

dent, but they are not orthonormal or even orthogonal. Thus, the the projection is done by solving
the least squares problem arg minu∈Rd‖Jxiu−wj‖. Here, similar to the Deepfool algorithm, wj is
defined as wj = ∇fj(xi) − ∇flx(xi) which are the directions that maximally increase fj(xi) and
maximally decrease flx(xi), thus getting us closest to the decision boundary fj(xi) = flx(xi). The
least squares problem can be solved using the pseudoinverse of the Jacobian as

uj = J+
xiwj = (JTxiJxi)

−1JTxiwj . (5.2)

The label with the nearest boundary can be found as

ln = arg min
j 6=lx

|fj(xi)− flx(xi)|
‖uj‖Gxi

. (5.3)

Note that since u is in the tangential space of the manifold, we are using the Riemannian metric from
(2.22) instead of the Euclidean one. Before the mapping step, the movement vector on tangential
space is scaled as

u = λi
uln
‖uln‖

(5.4)

where λi is a step size parameter that is chosen to maximize the decrease in fj(R(u))− flx(R(u))
to get as close as possible to the decision boundary.

The second step in the iteration is the mapping of uln ∈ TxiM(x) onto M(x). This step
depends heavily on the transformation set. As we want to minimize the geodesic distance, the
natural choice of mapping would be to use exponential map. If an exponential map is readily
available for M and does not have high computational complexity, it can be used. However, for
most transformation sets, this does not hold and a retraction is used instead. Here, we will talk
about one such retraction for the set of projective transformations and its subsets.

The retraction in our implementation is done using the exponential map of the matrix Lie group
counterparts of projective transformations, i.e. matrix exponentials of the respective Lie algebras.

20



Let us define as h : T m → T the map between the matrix Lie group T m and its transformation
group counterpart T . Also let y ∈ M(x), u ∈ TyM(x) and Gi be the generators of t, the Lie
algebra of the matrix Lie group T m. Then, the retraction at the point y, Ry : TyM→M can be
written as

Ry(u) = ψ
(y)
T

(
exp

(∑
i

uiGi

))
(5.5)

where ψT = ψ ◦ h represents the orbit map from the matrix Lie group T m to M(x). This means
that the chosen vector uln , is first mapped to the Lie algebra t using the generators, then it is
mapped to the matrix Lie group T using the exponential map and lastly, back to the manifold
using the orbit map from this group to the image. The image for the next iteration is thus written
as

xi+1 = Rxi(u) (5.6)

Along the way, the transformation used for generating this image can also be found as

τi = h

(
exp

(∑
i

uiGi

))
(5.7)

Lastly, the label of the generated image is checked. If k(xi+1) = lx, the algorithm continues
with the next iteration, this time using xi+1. If k(xi+1) 6= lx, then the algorithm has finished
successfully and the transformation that generated this image

τ = τ0 ◦ τ1 ◦ . . . τi (5.8)

is returned. If the intermediate transformations has not been found along with the retraction, the
output transformation can be found using the inverse orbit map as

τ = (ψ(x))−1(xi+1) (5.9)

The algorithm is summarized on Algorithm 2. Overall, it should be noted that our algorithm
is closely related to manifold optimization techniques, particularly to line-search methods. The
convergence analysis such methods can be found for example in [1].

5.3 Implementation

In this section, the various issues about the implementation of the algorithm is discussed. Our
implementation is done in Python using PyTorch [33] for CNN implementations. As the imple-
mentation is very similar to an optimization algorithm,|fj(xi)− flx(xi)| is labeled as the objective
function throughout this section.

First issue is the step size parameter λi, which was not explained in the section. During the
implementation, it has been seen that a constant step size does not perform well. If large, a constant
step size can cause an increase in the objective function in some steps, i.e. it gets further away
from the boundary. However, if the step size is low, then it causes the algorithm to iterate for a
longer time. Because of this, in the current implementation, direct line-search is used for finding λi.
This is done by computing ut for a range of values λt where t ∈ 0, 1, ...N , computing xt = Rxi(ut)
for each of them and feeding them altogether to the network to get |fj(xt)− flx(xt)|. The λt that
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Algorithm 2 Multiclass Manifool Algorithm

1: Initialize with x0 ← x, i← 0.
2: while k̂(xi) = k̂(x0) do
3: J ← Jxi

4: for j 6= k̂(x0) do
5: wj ← ∇fj(xi)−∇flx(xi)
6: f ′k ← fk(xi)− fk̂(x0)(xi)
7: uj ← J+wj

8: end for
9: ln ← arg minj 6=lx

|fj(xi)−flx (xi)|
‖u‖Gxi

10: u← λi
uln
‖uln‖

11: xi+1 ← Rxi(u)
12: i← i+ 1
13: end while
14: return τ = (ψ(x))−1(xi+1)

minimizes this function is chosen as the step size and xi+1 is set as xt that was computed using λt.
The result is a consistent and smooth output for the algorithm.

Another issue is that |fj(xt)−flx(xt)| is not a convex function. Because of this, the algorithm can
get stuck in a local minimum without ever finding a ’fooling’ transformation. A similar phenomenon
is caused by the step in 5.3 (step 9 on Algorithm 2), where the two different gradients with opposite
directions can be chosen in consecutive steps. This can cause the algorithm to oscillate between
two different labels without moving and thus never finding a transformation. As can be seen on
Table 2, the issues with getting stuck on certain points are more apparent in very low dimensional
transformations such as translations.

Third issue is the computational complexity of the algorithm. In general, for reasonably deep
networks, the complexity of one iteration is dominated by the first step, i.e. choosing the movement
direction. Let m be the number of outputs (labels) of the network. Then, the complexity of this
step is mtbp where tbp is the complexity of the backpropagation for the network that is used for
computing the gradient ∇fj(xi). If, instead of trying all m candidates, only nc more probable labels
are chosen, the duration for this step can be reduced to nctbp. Since ln is chosen as

ln = arg min
j 6=lx

|fj(xi)− flx(xi)|
‖uj‖Gxi

. (5.10)

without knowing uj , the labels with lower |fj(xt) − flx(xt)| values are expected to be the more
probable than labels with higher values. Thus, the nc labels with lowest |fj(xt) − flx(xt)| values
are chosen as the most probable and only the gradients for these labels are calculated. Thus, the
complexity of the algorithm can be reduced from mtbp to nctbp.

For a constant classifier, as d, the dimensionality of the transformation set is increased, the
complexity of one iteration dominated by step 7 of Algorithm 2, where wj is projected on to the
manifold by computing J+

xiwj . As Jxi is a matrix of size n× d, the psuedoinverse requires O(nd2)
operations [15]. Thus, for a constant classifier with set input size, the complexity of a single iteration
increases quadratically with number of dimensions of the transformation.
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Last issue is about interpolation. In the mapping step of the algorithm(step 11 in Algorithm 2),
Rxi might include transformation of the image xi. As explained in Section 2.1.1, transformation of
a discrete image requires interpolation to realize. This effect distorts the image alongside the effect
of transformation. As such, if xi+1 = Rxi(u) is computed by transforming the image xi, which
in turn is a transformed version of image xi−1, the distortion from generating xi will propagate
to xi+1 and added to the distortion transforming xi. It can be seen that if Rxi is calculated this
way, error caused by interpolation will propagate between images and increase the total distortion
in each step. Thus, if R(x) requires transformation to be computed, this transformation should
always be done using the input image x to prevent this propagation of the distortion caused by
interpolation.

5.4 Experiments

We now test the Manifool algorithm on convolutional neural network architectures for MNIST
[26] and ImageNet (ILSVRC 2012) [36] image classification datasets. We consider the projective
transformations group and its subsets of translations, similarity and affine transformations. Output
examples for these transformations using the images from these two datasets can be found on Figures
10 and 12 respectively. In all cases, the transformed images have the same size as the original one.
Bilinear interpolation with zero-padding boundary conditions is used for transformations.

5.4.1 Validity of direct distance as a metric

As our first experiment, we wanted to be sure that direct distance method from Section 2.3.3, can be
used as a metric in our experiments. To this end, this method is compared with FMM, again from
Section 2.3.3, by calculating the normalized geodesic distance between the identity transformation
e and 3 randomly generated translations in 200 different images in the MNIST dataset [26]. The

Figure 9: Comparison of distances found using FMM and direct distance method. Although some differences
exist between two methods, the outputs show high correlation. The negative bias on the direct distance output
is also visible as the samples are not exactly on the identity line
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Mean Value Standard Dev. Max. Value Min. Value

dFMM 2.5209 1.0408 5.7437 0.1591

dDD − dFMM -0.1144 0.0530 0.1720 -0.3723

dDD−dFMM

dFMM
0.0555 0.0404 0.0514 -0.4072

Table 1: The statics for the comparison of geodesic distances calculated using fast marching method(denoted
as dFMM ) and distance calculated using the direct distance method(denoted as dDD)

translations in x and y directions are generated independently using a discrete uniform distribution
between [−6, 6] with 0.1 steps . For FMM, the manifold is discretized with 0.1 steps as well.

The resulting statistics can be seen on Table 1. The error has a negative bias which is expected
as L2 distance underestimates the length of the path between two points. The large minimum
percent error(40%) is mainly caused by this bias at one of the low distance points. The bias of the
estimation is not important to us because the ultimate goal of this metric is to compare different
transformations. If d̃(e, τ1) < d̃(e, tau2), then for a fixed bias b, d̃(e, τ1)− b < d̃(e, tau2)− b, i.e. the
comparison between them are the same even if the metric is biased. As such, the standard deviation
of the error is more important when evaluating the performance of the metric and 0.053 deviation
in score or 4% deviation in percentage is low enough. Also, the correlation coefficient between
FMM and this method is 0.9988, which shows they are highly correlated regardless of the error.
This high correlation can be better seen on Figure 9 as the distance found using direct distance is
basically linear with respect to the distance found using FMM. As it is quite accurate in addition
to being fast, we will use this algorithm to calculate the geodesic distance when using it as a metric
is possible.

5.4.2 Handwritten digits dataset

As the second experiment, we compare the proposed Manifool algorithm to the Manitest method
that was introduced in 3.2. By using FMM, Manitest guarantees to find the transformation with
(discretized) minimal distance and outputs the distance it has find thorough FMM. However, instead
of using the output score of Manitest, we compute the distance introduced in (2.23) that uses direct
distance. As it was validated in the previous experiment, we prefer using it as this metric for both
methods since it is faster than using FMM for Manifool.

The comparison is done using a simple CNN architecture with two hidden convolutional layers
with 5× 5 filters and 32 and 64 feature maps respectively. ReLU is used as the nonlinear activation
function with 2×2 max pooling with a stride of 2 to do subsampling. This is the exact same network
used in the Manitest paper along with the parameters. The experiment is done using 1000 random
images from the MNIST dataset, where the scores and the running time for both methods are only
recorded if the Manifool method is successful. For low dimensional transformations (d ≤ 4), the
output has been computed both for Manifool and Manitest. However, only the score from Manifool
is computed for affine and projective groups, since for these transformations, the average running
time for Manitest becomes higher than what is feasible.

Table 2 reports these invariance scores ρ̂τ (f) for both methods, as well as the success percentage
of Manifool and the computation duration for both methods. On average, as expected, Manitest
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(a) Original image (b) Translation(d̃(e, τ) = 1.757) (c) Similarity(d̃(e, τ) = 1.697)

(d) Affine(d̃(e, τ) = 1.444) (e) Projective(d̃(e, τ) = 1.139)

Figure 10: Examples of fooling transformations for an image from MNIST dataset. The numbers on the
top of the images show the output of the classifier, k(xτ ) for these images while the transformation set and
corresponding score are written below the digits.

outputs a transformation with a lower score, as it guarantees to output the minimal transformation.
As such, for low dimensional transformations such as translations, Manitest is inarguably better as it
is both reasonably fast and successful, while Manifool has a tendency to get stuck in local minimums,
as explained in 5.3, which causes it to have a low success percentage. On the other hand, it gets
better as dimension is increased and the duration it requires does not change significantly.

In both cases, the invariance score is decreasing with the dimensionality of the transformation
since the lower dimensional transformations are the subsets of the higher dimensional transforma-
tions. For example, the minimal distance for the similarity set(T sim) cannot be higher than the
minimal distance for translations(T tr), because at its maximum, the minimal transformation for
similarity must be the same with the translations since T tr ⊂ T sim i.e. every transformation in T tr
is also in T sim.

As Manitest uses FMM, its complexity increases exponentially with the dimension of the trans-
formation group, as explained in Section 2.3.3. However, as shown in Section 5.3, the per iteration
complexity of Manifool is only quadratic with respect to the dimension. This is clearly seen on Table
2, where the running time of the algorithm increases drastically for Manitest, while it remains low
for Manifool.
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Manifool Manitest

Transformation Fooling
Percentage

Avg. Norm.
Direct
Distance

Avg. Run
Time per
Image

Avg. Norm.
Direct
Distance

Avg. Run
Time per
Image

Translation 60.7% 1.633 337 ms 1.377 2.52 s

Similarity 96% 1.536 218 ms 1.228 27.5 s

Affine 99.1% 1.374 166 ms - -

Projective 99.2% 1.135 188 ms - -

Table 2: Results for using Manifool with various transformation sets and its comparison with Manitest.

Lastly, the scores on Table 2 are on average and there are cases where Manifool finds a point
with lower distance than Manitest. Generally this is caused by the grid structure Manitest uses as
a fooling point is missed if it is not on the grid. However, Manifool does not have such restrictions
and sometimes can find these points and thus output a lower score. Manitest would require a tighter
grid and thus a longer duration to find these points, which, depending on the increase in duration,
might not be feasible.

5.4.3 Natural images

For the last experiment, ImageNet dataset is used for computing the invariance scores of three
pre-trained networks: ResNet-18, ResNet-34 and ResNet-50 [21]. All of these networks have similar
architectures and the numbers represent the depth of these networks. They accept 224×224 images,
and thus before feeding the images into the network, the input images are resized to have 256 pixels
on the shorter side and the center 224× 224 is cropped. The transformations during the algorithm
are done on the resized image to limit boundary issues and the same crop is applied afterwards. For
this cropping method, top-1 error percentages for these networks are 30.24%, 26.7% and 23.85%
respectively.

The experiment is done using 1000 random images from the ILSVRC2012 validation set. Only
invariance scores for similarity, affine and projective transformations are computed, as the previous
experiment has showed that the algorithm does not work well on low dimensional manifolds.

The results can be seen in Figure 11. The output scores show the increasing nature of the
invariance with number of layers of the network against these three groups of transformations. This
result is in agreement with the previous empirical studies such as [17], and the results from the
Manitest paper [13]. These results however, either measure the invariance in one dimensional trans-
formation groups (e.g. rotation or dilation) or can only be applied on low dimensional manifolds.
Using Manifool, we have shown that these results can be reproduced for reasonably deep networks
as well. Also, similar to the previous experiment, we observe that the invariance scores decrease
as the dimension of the transformation set increases. This has the same reason with the previous
experiment, i.e. the lower dimensional transformations are subsets of higher dimensional ones.
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(a) Similarity (b) Affine

(c) Projective

Figure 11: Invariance scores of CNNs with different depths on similarity, affine and projective
transformation groups for ImageNet dataset.

5.5 Conclusion

As we have shown, the Manifool method is an interesting algorithm for quickly measuring the
invariance of a neural network to geometric transformations with a Lie group structure. When
compared to Manitest, although it does not necessarily find the minimal transformation, it can
still find small enough transformation examples from a set of transformations with d ≥ 4. It can
also compute these invariance scores for reasonably deep networks in a reasonable amount of time.
These results are accurate enough to confirm our previous beliefs on the relation of invariance and
number of layer, even for deep neural networks. However, it also has certain drawbacks:

• The algorithm only works for Lie groups and even for them, it requires a retraction to be
computed in an efficient fashion. This means there are many sets of transformations (e.g.
integer translations) that the Manifool cannot be used efficiently.

• The algorithm does not work efficiently on very low dimensional transformation sets such as
translations. The low degrees of freedom and the non-convexity of the score difference can
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sometimes cause the output to get stuck in local minima. For these sets of transformations,
Manitest might be a better choice to compute invariance score than Manifool as it is both
more accurate and has a higher chance of finding a transformation.

In the next section, we propose another algorithm which can solve the first issue.

(a) Original image

(b) Similarity(d̃(e, τ) = 4.737) (c) Affine(d̃(e, τ) = 4.426) (d) Projective(d̃(e, τ) = 4.212)

Figure 12: Examples of fooling transformations for an image from ImageNet dataset. The labels on the
top of the images show the output of the classifier, k(xτ ) for these images, while the transformation set and
corresponding score are written below the digits.
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6 Iterative Projection Algorithm

In this section, we propose another algorithm that can work on sets of transformations that are not
necessarily Lie groups. Similar to the previous algorithm, the classifier is a neural network, denoted
as f : Rn → Rm and the discrete version of the image x is used instead of the function I. The
transformations are defined using a finite number of parameters denoted as θ ∈ Rd .

6.1 Intuition

The existence of adversarial perturbation methods mean that for a neural network, one can find an
image x̂ that is close to its original version x but also on the other side of the decision boundary,
or at least, closer to the boundary than the original one. By projecting this point onto the set
of transformed images, an example that is closer to the decision boundary can be found. If this
transformed image fools the classifier, then we have our transformation as the one which generated
this image. If not, we can do the same process over again, until we reach the other side of the decision
boundary. Thus, the algorithm is composed of two alternating steps: finding an adversarial example
and finding the transformation that creates the point closest to this example. An illustration of
these two steps are seen on Figure 13.

6.2 Description

Formally, similar to Manifool, the algorithm starts by setting the initial image as x0 = x and finding
the label of the original image lx = k(x). Then the algorithm begins iterating, starting with i = 0.

Figure 13: An illustration of the Iterative Projection algorithm with a binary classifier on a 2D space. The
set of transformed images form a manifold that is shown in blue while the decision boundary (f(x) = 0 in
binary case) is shown in green. An adversarial example is found on the tangential space of the manifold
to prevent the original point to be the closest to the adversarial example. Then, the closest point on the
manifold to this example is found. This process repeats until the algorithm gets a point on the other side of
the decision boundary.
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The iteration i starts by finding an adversarial example using xi. This can be done using any
adversarial perturbation method on neural networks, such as Deepfool or fast gradient sign(FGS)
method. The perturbation is denoted as ri and the perturbed example is written as

x̂ = xi + ri. (6.1)

As the next step finds the closest point to this adversarial example, if possible, the method should
be modified in a way that prevents xi to be the closest point in the set to x̂. For example, if the
set transformed images form a manifold, Deepfool can be used while restricting the classifier to the
tangential space of the current point. This way, ri is found on the tangential space, which means
xi cannot be the closest point to x̂, as the perturbation must be perpendicular to the tangent space
for xi to be the closest.

The second step of the iteration is finding the minimizing transformation. Formally, this problem
can be written as

τi+1 = arg min
τ∈T

1

2
‖xτ − x̂‖22. (6.2)

Or, equivalently,

θi+1 = arg min
θ∈X

1

2
‖xτ(θ) − x̂‖22, (6.3)

where θ are the parameters of the transformation τ .

This step is crucial to be solved efficiently in order to have a working algorithm. In our im-
plementation, gradient descent is used for finding a local minimum to this problem. This means
the transformation must be differentiable, as we need the gradient of the image with respect to the
transformation. The descent is initialized with θ(0) = θi to start from the current transformation
and the iterations start from j = 0. The parameters at iteration j is denoted as θ(j). For this, the
gradient of the objective function C can be written as

∇C(θ(j)) = (Jx
τ(θ(j))

)T (xτ(θ(j)) − x) (6.4)

where J (xτ(θ)) is the Jacobian matrix. The update state is then written simply as

θ(j+1) = θ(j) − λj
∇C(θ(j))

‖∇C(θ(j))‖
(6.5)

where λj is the step size of the gradient that is found by backtracking line search [3]. The gradient
descent is terminated when the amount of decrease is lower than threshold.

Furthermore, one can regularize the objective function to get an output with certain desirable
features. For example, adding the term η‖θ‖22 to the objective function in (6.3) gives us an output
with smaller parameters, or a quadratic term ηθTLθ where L is a Laplacian matrix can be added
to get a smoother output. In both cases, η term is the regularization parameter, which would
determine how much the regularization will affect the output. The effect of these regularizers can
be seen in Figure 14.

Similar to the previous algorithm, the algorithm terminates k(xi+1) 6= lx. τ(θi+1) is then
returned as the fooling transformation.

The algorithm including regularization is summarized in Algorithm 3.
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Algorithm 3 Iterative Projection Algorithm

1: Initialize with x0 ← x, i← 0.
2: while k̂(xi) = k̂(x0) do
3: ri ← ADVPERTURB(xi)
4: x̂← xi + ri
5: θi ← arg minθ∈X

{
1
2‖xτ(θ) − x̂‖2 + ηReg(θ)

}
6: xi+1 ← xτ(θi)
7: i← i+ 1
8: end while
9: return τ = τ(θi)

6.3 Experiments

We now test the second algorithm on MNIST and ImageNet datasets. This time, in addition to the
projective transformations and its subsets, we also consider the set of ’general transformations’. We
define this transformations by giving an independent movement vector to every pixel, i.e. for every
(x, y) in the support of the image, there exists θx, θy such that the transformation is defined as

τ(x, y) = (x+ θx, y + θy) (6.6)

For grayscale images, this set of transformations has higher number of dimensions than the image
itself and thus IAM is not embedded in the discrete images space. Thus, Manifool cannot be applied
in this case. However, iterative projection algorithm allows us to compute fooling transformations
in this set. Examples of such transformations can be found in Figure 14 and 19 respectively. In all
cases, similar to the previous experiments, the transformed images have the same size as the original
one. Bilinear interpolation with zero-padding boundary conditions is used for transformations.

6.3.1 Effect of different adversarial perturbations on the algorithm

In the first experiment, the effect of the chosen adversarial example on the algorithm is examined
by comparing two possible choices: fast gradient sign and Deepfool. This test is done on ImageNet
dataset using the previously defined set of ’general transformations’ and ResNet-50 as our classifier.
Because this transformation set is not an embedded manifold, we cannot use our previous metric.
Thus, we have to use the L2 metric stated in (2.19) to compute the invariance score, which becomes
the Euclidean distance between the transformed and original image for discrete images. The distance
is normalized, similar to (2.23).

As explained in Section 3.3, although both Deepfool and FGS are trying to find an adversarial
example, there are some differences. Deepfool tries to minimize the Euclidean distance between
the perturbed example and the original image, while FGS uses a single step of gradient to generate
the perturbation. Because of this, the output of Deepfool, rdf has a lower norm than its FGS
counterpart, and it is more localized as can be seen on Figure 7. When these methods are used
in the algorithm, their properties pass onto the output. Thus, using Deepfool will return a more
localized transformation with a small norm while using FGS will return a transformation with a
higher norm. The examples of this can be seen on Figure 15.
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(a) Original image
.

(b) Image generated using FGS
(Normalized L2 metric : 0.248)

(c) Image generated using Deepfool
(Normalized L2 metric : 0.185)

(d) Image generated using FGS and
l2 regularization

(Normalized L2 metric : 0.249)

(e) Image generated using FGS and
smoothing regularization

(Normalized L2 metric : 0.287)

Figure 14: Examples for fooling ’general transformations’ for an image from MNIST database. It can be seen
that image generated using FGS is distorted more than the image generated using Deepfool. The movement
vectors for these transformations can be seen on Figure 15 and 16.
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(a) Movement parameters of the image generated using FGS

(b) Movement parameters of the image generated using Deepfool

Figure 15: Movement vectors of the transformations in Figure 14. It can be seen that, compared to FGS,
using Deepfool generates much more localized vectors.
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(a) Movement parameters of the image generated using FGS and l2
regularization

(b) Movement parameters of the image generated using FGS and
smoothing regularization

Figure 16: Movement vectors of the regularized transformations in Figure 14. The effects of regularization
can be seen clearly where l2 regularization decreases the norms of the movement in general while smoothing
regularization outputs a smoother transformation
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In addition to using different perturbation methods, changing the parameters of these methods
can also affect the output. For example, FGS method has the parameter ε which determines the
l∞ norm of the returned perturbation. To see the effect of this parameter on our algorithm, we
computed the score of the classifier for 1000 images from the ImageNet dataset for different values
of epsilon. The resulting graph can be seen on Figure 17. It can be seen that the time it takes
to compute the transformation decreases as the parameter is increased; while the resulting score
increases approximately linearly. So, if the speed is more important than the accuracy of the
invariance score, a larger ε can be used. In our tests, if FGS is used, we use ε = 0.014 as a good
compromise between duration and accuracy.

For the case of Deepfool, we realized that the algorithm starts to have numerical issues as it gets
closer and closer to the boundary and thus as transformations in each step gets smaller and smaller.
To combat this issue, instead of using the output of Deepfool directly as x̂ = xi+rdf , we can use an
overshoot factor α and get a further point as x̂ = xi + (1 + α)rdf . This overshoot factor is another
parameter and the same test with ε is done for it as well. The resulting graph is seen in Figure 18.
Similar to the previous case, the duration is decreasing while the score is increasing semi-linearly.
Again, if the speed is more important than the accuracy of the invariance score, a larger α can be
used to compute the transformation. In our tests, to limit the duration of the computation, we used
α = 1 when we used Deepfool in the algorithm.

6.3.2 Comparison with Manifool

In this section, we compare the performance of the two proposed algorithms, i.e. Manifool and
iterative projection. Deepfool is chosen as the adversarial perturbation method for the iterative
projection algorithm. The invariance scores are computed using the metric from (2.23), which was
previously used in the experiments for Manifool. Each score is calculated using 1000 random images

Figure 17: The average normalized L2 distance between the transformed and original image and the com-
putation time with respect to ε when FGS is used for creating the adversarial example in the algorithm.
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Manifool Iterative Projection

Transform. Fooling
Percentage

Avg. Norm.
Direct
Distance

Avg. Dura-
tion

Fooling
Percentage

Avg. Norm.
Direct
Distance

Avg. Dura-
tion

Translation 60.7% 1.633 337 ms 99.9% 2.049 762 ms

Rotation
and Trans-
lation

92.6% 1.651 400 ms 82.2% 1.632 888 ms

Similarity 96% 1.536 218 ms 83% 1.669 785 ms

Table 3: Results for comparison of Manifool and Iterative Projection Algorithm. The results for Iterative
Projection is found using Deepfool with α = 1.

from MNIST dataset, which is used alongside with the CNN that was explained in Section 5.4.2.

It can be seen that the invariance scores are generally higher for the iterative projection algo-
rithm. This result is expected as it does not actively try to minimize the geodesic distance, but
in a way minimizes the Euclidean distance to the fooled transformed image instead. However, it
is more successful in finding a fooling transformation for translations compared to Manifool as it
does not have the local minima problem Manifool has. This is because iterative projection does
not try to minimize |fj(xt) − flx(xt)|, but only the distance to a single point. On the other had,
it can be seen that the success percentage is lower on similarity and rotation+translation groups.
This is caused by the minimization step of the iterations, in particular because of the gradient
descent. In these transformations, change induced by one of the parameters (rotation or scaling)
is higher than the others. Thus, one of the rows of Jxτ(θ) has a greater norm then the rest and on

average, the gradient (Jxτ(θ))
T (xτ(θ) − x) has a greater value for this parameter. This reflects on

Figure 18: The average normalized L2 distance between the transformed and original image and the compu-
tation time with respect to α when (1+α)rdf is used for generating the adversarial example in the algorithm.
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the update step on (6.5), and causes the greatest change to happen in this parameter. In the end,
the output transformation will be dominated by this parameter, and sometimes it even stops the
algorithm from converging. Thus, gradient descent should only be used for the minimization only
if the transformation parameters change the image equivalently. For translation group, the changes
are generally equivalent and thus the algorithm converges most of the time.

6.3.3 Invariance score for general transformations

In the last experiment, ImageNet dataset is used to measure the invariance score of four pre-trained
networks (ResNet-16, ResNet-34, ResNet-50 and ResNet-101) to the set of ’general transformations’
that was defined in (6.6). Again, similar to Section 6.3.1, the L2 metric from (2.19) is used for
computing the invariance score and the distance is normalized as well, similar to (2.23) . To reduce
the computation time, we use FGS in step 3 of algorithm 3.

The results of the experiment are seen on Table 4. It shows that the invariance of the networks
to this set of transformations also increase with the depth of the network like the other lower di-
mensional transformation sets. We also note that, the invariance scores tend to follow the Deepfool
scores of the network, even while FGS is used for generating the transformations. As these transfor-
mations are generated using adversarial methods, the invariance score might be closely related to
the adversarial perturbation invariance of the network. Thus, a further study on this can be made
by measuring the change in the invariance score of a network fine-tuned using Deepfool examples,
as this has been shown to increase the invariance of networks to adversarial perturbations [32].

6.4 Conclusion

In this section, the iterative projection algorithm is introduced, which can compute invariance scores
for a wide range of transformations. Its complexity and running time depends on the methods that
are used for the finding adversarial perturbation and finding the closest point, however in the
inspected cases, it can find a small fooling transformation in less than a minute, even for a manifold
with 100352 dimensions(general transformations for ImageNet). However, it has some important
drawbacks as well. These can be listed as follows:

• Finding the minimizing transformation requires a minimization scheme to be readily available
for the transformation set. Thus, the algorithm is not applicable for all sets of transformations.

Network Avg. Normalized L2 Distance
for Output Transform.

Avg. Normalized Deepfool Out-
put Norm

ResNet-18 8.855× 10−3 1.594× 10−3

ResNet-34 1.001× 10−2 1.894× 10−3

ResNet-50 1.033× 10−2 1.829× 10−3

ResNet-101 1.073× 10−2 1.963× 10−3

Table 4: Invariance scores of ResNet networks to general transformation set and Deepfool perturbation. The
general transformation examples are found using FGS with ε = 0.014.
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• If a parameter has induces greater change on the image compared to the rest, it might cause
the minimization step to focus mostly on this parameter and in some cases stop the algorithm
from converging.

• The regularization parameter heavily depends on the image. A bad choice of η can prevent
the convergence of the algorithm.

Nevertheless, the algorithm is a good choice for quickly finding perturbing examples in a set of
transformations, even if the number of parameters of these transformations is high.
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(a) Original image
.

(b) Image generated using FGS
(Normalized L2 metric : 1.57× 10−2)

(c) Image generated using Deepfool
(Normalized L2 metric : 6.46× 10−3)

Figure 19: Examples for fooling ’general transformations’ for an image from ImageNet database. In both
cases, similar to adversarial perturbations, the change in the image is too low to see the change. However, it
is enough to change the output of the network. The movement vectors for these transformations can be seen
on Figure 20.
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(a) Movement parameters of the image generated using FGS

(b) Movement parameters of the image generated using Deepfool

Figure 20: Movement vectors of the transformations in Figure 19. It can be seen that, compared to FGS,
using Deepfool generates much more localized vectors.
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7 Conclusion and Future Work

In this work, we have introduced two algorithms to find examples in a chosen set of geometric
transformations that change the output label of state-of-the-art classifiers. These methods are then
used for computing the invariance scores of these classifiers to these chosen transformation sets. First
algorithm, Manifool, uses the manifold structure of certain transformation sets along with linearizing
the classifier restricted on this manifold to iteratively find the requested example. It is compared
with Manitest method to show its validity and it is also shown that it can perform on problems
that it cannot feasibly work on. Using Manifool, we have also quantified the relation between
transformation invariance and depth of the network. The second algorithm, iterative projection,
has less restrictions on the transformation sets it can work on and uses a combination of adversarial
perturbations and Euclidean projection to compute the transformations. It has been shown that it
can find a fooling examples from a set of transformations with very high dimensionality. Overall,
we believe that these two algorithms can be used for analysis of different architectures and can also
help to build more robust classifiers.

One of the areas we have not examined is the effect of using the outputs of these algorithms to
fine tune the classifiers that they had worked on. The test error of these classifiers as well as the
invariance scores should be tested if this fine tuning had made the classifier more robust to the set
of transformations and more accurate in general. If this is the case, then the algorithms can easily
be used to make better classifiers simply by using them for training.
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