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Abstract— This paper focuses on the problem of controlling
an ensemble of heterogeneous resources connected to an elec-
trical grid at the same point of common coupling (PCC). The
controller receives an aggregate power setpoint for the ensemble
in real time and tracks this setpoint by issuing individual
optimal setpoints to the resources. The resources can have
continuous or discrete nature (e.g., heating systems consisting of
a finite number of heaters that each can be either switched on
or off) and/or can be highly uncertain (e.g., photovoltaic (PV)
systems or residential loads). A naı̈ve approach would lead to a
stochastic mixed-integer optimization problem to be solved at
the controller at each time step, which might be infeasible in
real time. Instead, we allow the controller to solve a continuous
convex optimization problem and compensate for the errors at
the resource level by using a variant of the well-known error
diffusion algorithm. We give conditions guaranteeing that our
algorithm tracks the power setpoint at the PCC on average
while issuing optimal setpoints to individual resources. We
illustrate the approach numerically by controlling a collection
of batteries, PV systems, and discrete loads.

I. INTRODUCTION

The problem of aggregating and disaggregating heteroge-
neous resources connected to a portion of an electrical grid
has recently become a major research interest because of
high penetration of dispersed energy resources (DERs) at
the distribution level, and it is closely related to the concept
of a virtual power plant. Aggregation entails representing the
collection of resources as a single resource to the upper-level
grid; disaggregation amounts to dispatching individual power
setpoints to the different resources such that the power flow
at the point of common coupling (PCC) equals the aggregate
power setpoint dispatched from the higher-level grid.

In the literature, one encounters two basic approaches to
solve this problem. The first is a model-based approach,
where typically a limited number of resource models are
defined (each modeling a family of homogeneous resources),
and the parameters of those models are estimated off-line.
Examples of this line of research include [1]–[8]. The other
approach is non-parametric; the behavior of the devices is
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learned online, from the interaction between the devices and
the aggregator, e.g., [9], [10].

Most works focus on aggregation processes for electricity
balancing markets in the context of demand-side manage-
ment and demand response, i.e., aggregation time scales
varying from several hours to a few minutes (e.g., [2], [4],
[11]–[13]). The aggregation and disaggregation of hetero-
geneous resources on the second or subsecond timescale
was recently proposed in [14]–[16]. Note, however, that
the latter papers do not give theoretical guarantees on the
tracking properties of the proposed controller. Finally, a
disaggregation method in the context of real-time control
using an online and decentralized optimization algorithm was
proposed in [17]; however the methodology can be applied
only to deterministic resources with feasible sets that are
convex.

In this paper, we consider the problem of controlling
an ensemble of heterogeneous resources connected to an
electrical grid at the same PCC, having continuous or discrete
nature (e.g., heating systems consisting of a finite number of
heaters that each can be either switched on or off) and/or
are highly uncertain (e.g., photovoltaic (PV) systems or
residential loads). We focus on the problem of real-time
disaggregation, and we propose a controller design that al-
lows tracking the aggregate power setpoint for the ensemble
in real time while issuing individual optimal setpoints to
the resources. The design is based on formulating a convex
deterministic optimization problem for computing the power
setpoints while compensating for the errors at the resource
level by using a variant of the well-known error-diffusion
algorithm [18]–[20]. We provide conditions guaranteeing that
our algorithm tracks the aggregate power setpoint at the PCC
on average. Finally, we complement the theoretical analysis
with an illustrative simulation.

II. PROBLEM FORMULATION

Consider a generic distribution network and a given bus
of that network. The bus can represent, e.g., the primary
side of a distribution transformer. Assume that there are N
resources connected at this bus, and suppose that we can
aggregate the power injections of these resources as a sum
of the individual power injections. For brevity, in this paper,
we focus only on controlling the active power injections, and
we ignore the network structure behind the considered bus;
however, our approach can be easily extended to joint control
of the active and reactive power (see Remark 3 below) and
to explicit consideration of the network topology connecting
the N resources as in [14], [15], [17].

Preview of paper accepted for presentation at the 56th IEEE Conference
on Decision and Control,  Melbourne, Australia, December 12-15, 2017. 



Let k = 1, 2, · · · denote the discrete time-step index
and i ∈ {1, · · · , N} := I denote the resource index.
At each time step k, resource i is characterized by its
performance cost function, C(k)

i : R → R, and the set of
feasible power setpoints of that resource, Y(k)

i ⊆ R. We find
this representation useful as it conveniently decomposes the
shape of the function (given by C

(k)
i ) from its domain of

definition (given by Y(k)
i ). This decomposition stems from

the following practical considerations:

• The shape of the function typically represents soft and
slowly time-varying constraints of the resource, such as
the state-of-charge of the battery or the temperature of
a room.

• The domain of definition typically represents hard and
fast time-varying constraints, such as the maximum
power we can get from a PV or the switching frequency
constraint of an ON-OFF device.

We make the following assumption.

Assumption 1. For each i and k, the function C(k)
i : R→ R

is convex, and the set Y(k)
i is compact.

Note that we are not assuming that the feasible sets
Y(k)
i are convex. Moreover, in Section V, we will explicitly

consider certain nonconvex sets, such as finite discrete sets.
We assume that the aggregator knows the collection1

{C(k)
i }Ni=1 at each time step. The collection {Y(k)

i }Ni=1

can vary significantly with time, and in particular those
variations might be on a shorter timescale than the typical
communication and computation delays. Hence, we assume
that the aggregator has access only to a delayed version of the
feasibility sets, namely to {Y(k−1)

i }Ni=1. Both collections can
be communicated to the aggregator by the resources as in,
e.g., [14]. Finally, the aggregator also receives the aggregate
power setpoint P (k)

PCC from a higher-level optimization and
control algorithm.

In this setting, the aggregator has two tasks to perform:

(i) Aggregation: Represent the collection of resources as
a single resource to the higher-level control algorithm.

(ii) Disaggregation: Compute the vector of power set-
points p(k) := (P

(k)
i )Ni=1 based on the available infor-

mation with the following twofold goal: (i) optimize
the individual costs C

(k)
i ; and (ii) keep the setpoint

at the PCC as close as possible to P
(k)
PCC, namely

minimize ‖
∑N
i=1 P

(k)
i − P (k)

PCC‖. The individual power
setpoints P (k)

i are then communicated to the resources
that implement feasible setpoints P̂ (k)

i ∈ Y(k)
i .

The aggregation task typically amounts to computing an
approximate feasible set for the entire collection by approxi-
mating the Minkowski sum Y(k)

PCC =
∑N
i=1 Y

(k)
i and by com-

puting an approximation to the aggregated cost function; see,

1In this paper, we consider the centralized aggregation problem for
brevity. Alternatively, decentralized schemes can be considered, as in [17],
which do not require knowledge of {C(k)

i }Ni=1 and {Y(k)
i }Ni=1 at the

aggregator (see Remark 2 below).

e.g., [14], [16]. In this paper, we focus on the disaggregation
task, and we consider controllers of the form

p(k) = f (k)
(
{C(k)

i }
N
i=1, {Y

(k−1)
i }Ni=1, P

(k)
PCC

)
(1a)

P̂
(k)
i = g

(k)
i

(
P

(k)
i ,Y(k)

i

)
, i = 1, · · · , N, (1b)

where (1a) represents the control function of the aggre-
gator, whereas (1b) represents the implementation method
employed at each resource. In the following two sections,
we propose the design of the functions f (k) and g(k)i .

III. AGGREGATOR DESIGN

In this section, we propose an aggregator design that
is based on formulating the corresponding optimization
problem to compute the setpoints. We first consider the
prototypical (“ideal”) optimization problem:

(P0) min
p(k)

N∑
i=1

C
(k)
i (P

(k)
i ) (2a)

subject to

P
(k)
i ∈ Y(k)

i , i = 1, · · · , N (2b)
N∑
i=1

P
(k)
i = P

(k)
PCC. (2c)

However, (P0) is practically infeasible for our application
because of the following reasons. First, note that the set Y(k)

i

in (2b) is not yet available at time step k. Second, the sets
{Y(k)

i } might be nonconvex or even discrete, thus leading to
a nonconvex (or mixed-integer) optimization problem that is
hard to solve in real time. Finally, the constraints (2b)-(2c)
might not be feasible at every time step k.

To tackle these difficulties, we propose using a convex
(and always feasible) version of (P0) in the aggregator and
compensating for the introduced errors at the resource level
by designing an appropriate function g

(k)
i (see Section IV

for details). In particular, we make the following approxima-
tions:
• We replace the feasible sets in (2b) by the convex hull

of the delayed versions thereof, chY(k−1)
i .

• We relax the constraint (2c) by using P
(k)
PCC − ε ≤∑N

i=1 P
(k)
i ≤ P (k)

PCC + ε, and we penalize the value of ε
in the objective function.

To summarize, the following convex optimization problem
is solved at the aggregator at each time step k:

(P1) min
p(k),ε

N∑
i=1

C
(k)
i (P

(k)
i ) + µε (3a)

subject to

P
(k)
i ∈ chY(k−1)

i , i = 1, · · · , N (3b)

P
(k)
PCC − ε ≤

N∑
i=1

P
(k)
i ≤ P (k)

PCC + ε, (3c)

ε ≥ 0 (3d)

where µ > 0 is a weight parameter that influences the choice
of the size of the tracking deviation ε. The larger µ is, the



more accurate the tracking will be, possibly on the expense
of the optimality of the individual DERs.

Remark 1. Observe that (P1) is a time-varying optimization
problem. Therefore, instead of solving (P1) exactly at each
time step, one can use online optimization methods to track
the solution of (P1) in real time, as in [14], [17], [21]. The
development and analysis of such online methods in the
context of aggregation is a subject of an ongoing work.

Remark 2. As mentioned, the centralized approach proposed
here requires two-way communication between the resources
and the aggregator. However, the convex optimization prob-
lem (P1) can be solved by using distributed optimization
methods, such as the primal-dual decomposition method, as
in [17], or the alternating direction method of multipliers
(ADMM) as in, e.g., [22]. In such cases, only one-way
communication is required, and the information that is passed
to each resource is embedded in the Lagrange multiplier
related to the coupling constraint (3c).

IV. SETPOINT IMPLEMENTATION: THE
ERROR-DIFFUSION ALGORITHM

In this section, we propose a design of the control func-
tions g(k)i in (1) that compensates for the errors introduced
by the aggregator (P1). As the main goal of the aggregator
is to track the power setpoint at the PCC, we propose here
a method that provably tracks a given setpoint on average.
Tracking on average makes sense in our application because
the average power setpoint at a given time interval represents
the energy produced/consumed during this interval.

Our approach is based on an error-feedback technique
that is known as error diffusion in image processing (and
a specific variant is called Floyd–Steinberg dithering [19]).
A similar technique is used in signal processing for sigma-
delta modulation [18], [20] and some stability properties of
this technique have been analyzed in that context [23], [24].

To start, we first introduce the concept of total accumu-
lated error. Let e(0)i := 0, and, for k = 1, 2, ..., define

e
(k)
i :=

k∑
`=1

(P̂
(`)
i − P

(`)
i ) = e

(k−1)
i + P̂

(k)
i − P (k)

i . (4)

Recall that the power setpoint P (k)
i lies in chY(k−1)

i ; cf. (P1).
We implement this setpoint using the following rule:

P̂
(k)
i = g

(k)
i (P

(k)
i ,Y(k)

i ) := ProjY(k)
i

(
P

(k)
i − e(k−1)i

)
, (5)

where ProjY(·) is the closest-point operator, namely
ProjY(x) ∈ arg miny∈Y |x − y| and the ties can be broken
arbitrarily.

We next analyze the tracking properties of (5). To that
end, we introduce the following definitions. First, let

Di := ch

( ∞⋃
k=0

chY(k)
i

)
(6)

denote the minimal convex set (interval) that contains the
sequence {Y(k)

i }∞k=1. Also, let

∆
(k)
i = max

x∈chY(k)
i

∣∣∣ProjY(k)
i

(x)− x
∣∣∣ (7)

denote the maximum approximation error introduced by
using the convex hull of the feasible set, and define

∆max
i := sup

k≥1
∆

(k)
i . (8)

Finally, let
Si := Di + [−∆max

i ,∆max
i ] (9)

denote the inflation of Di by a ball with radius ∆max
i

centered at the origin; + denotes the Minkowski sum.

Theorem 1. Suppose that the set Si is compact. Then, under
algorithm (5), the total accumulated error is bounded for all
k. Specifically, ∣∣∣e(k)i

∣∣∣ ≤ diamSi, k = 1, 2, · · · (10)

where diamS is the diameter of a set S. Consequently, the
average tracking error converges to zero:

lim
k→∞

∣∣∣∣∣1k
k∑
`=1

P̂
(`)
i −

1

k

k∑
`=1

P
(`)
i

∣∣∣∣∣ = 0 (11)

Corollary 1. Suppose that for every resource i = 1, · · · , N ,
the sets Si are compact. Let

P̂
(k)
PCC =

N∑
i=1

P̂
(k)
i

denote the implemented setpoint at the PCC at time step k.
Then, the proposed disaggregation method defined by (P1)
and (5) guarantees

lim sup
k→∞

∣∣∣∣∣1k
k∑
`=1

P̂
(`)
PCC −

1

k

k∑
`=1

P
(`)
PCC

∣∣∣∣∣ ≤ lim sup
k→∞

1

k

k∑
`=1

ε(`),

(12)
where ε(`) is the optimal value of the tracking deviation ε in
(P1) at time step `.

To prove the above results, we need the following auxiliary
results. We assume that Di and Si are compact throughout.

Lemma 1. For any x ∈ chY(k)
i and y ∈ Si, we have that

x+ y − ProjY(k)
i

(y) ∈ Si.

The proof of Lemma 1 follows by straightforward verifi-
cation and appears in the appendix.

Lemma 2. For all i and k, we have that P (k)
i −e

(k−1)
i ∈ Si.

Proof. Let i ∈ {1, · · · , N}. Define x(k) := P
(k)
i − e(k−1)i .

We prove by induction on k that x(k) ∈ Si for all k. First,
trivially, x(1) = P

(1)
i ∈ chY(0)

i ⊆ Di ⊆ Si. Assume that
x(k) ∈ Si. We have that

x(k+1) := P
(k+1)
i − e(k)i

= P
(k+1)
i − e(k−1)i − P̂ (k)

i + P
(k)
i

= P
(k+1)
i + x(k) − ProjY(k)

i

(
x(k)

)
, (13)

where the second equality follows by the error recursion
(4), and the last equality follows by (5). Note that in (13),



P
(k+1)
i ∈ chY(k)

i (see (3b)) and x(k) ∈ Si by the induction
assumption. Therefore, by Lemma 1, x(k+1) ∈ Si as well,
which completes the proof.

We are now ready to prove Theorem 1 and Corollary 1.

Proof of Theorem 1. Note that e(k)i = ProjY(k)
i

(
x(k)

)
−x(k),

where x(k) := P
(k)
i − e(k−1)i ∈ Si for all k by Lemma 2.

Now, as ProjY(k)
i

(
x(k)

)
∈ Y(k)

i ⊆ Si, we have that |e(k)i | ≤
diamSi for all k as required. Finally, (11) follows by the
definition of e(k)i in (4). In particular,∣∣∣∣∣1k

k∑
`=1

P̂
(`)
i −

1

k

k∑
`=1

P
(`)
i

∣∣∣∣∣ =
|e(k)i |
k
≤ diamSi

k
.

This completes the proof of the theorem.

Proof of Corollary 1. The proof follows by using Theorem 1
for individual resources and applying triangle inequality.

Remark 3. Compared to the existing literature on error
diffusion, we analyzed the general nonconvex and delayed
case, hence our results are new in this context. Moreover,
our focus on the one-dimensional error-diffusion algorithm
is for brevity only. Indeed, the approach can be extended to
a multidimensional case using methods similar to [25], [26]
(see more details in our extended paper on generalized error
diffusion for control applications [27]).

V. APPLICATION EXAMPLE

In this section, we illustrate numerically the proposed
aggregation method. To this end, consider a collection of
three prototypical resources2: (i) a PV system; (ii) a heating,
ventilating, and air-conditioning (HVAC) system; and (iii)
a battery. These three types of devices cover most modern
DERs. Indeed, the PV system represents a volatile renewable
power generator, the HVAC system represents a nonconvex
(discrete) controllable load, and the battery represents a
bidirectional energy-storage resource. This collection will
allow us to illustrate how different exogenous variables (such
as solar irradiance variation and the switching frequency con-
straint of the HVAC system) influence the decision making
of the aggregator and its ability to track the aggregate power
setpoint. Note that we consider here a small collection of
heterogeneous resources as it is the most interesting case
for real-time aggregation. Indeed, increasing the number of
resources of the same type makes the aggregation smoother
and hence tracking easier.

For a PV system with an available active power P (k)
i,av at

time step k, the feasible set is given by the interval Y(k)
i =

[0, P
(k)
i,av ]. We assume that the PV system always wants to

maximize its power production, hence the cost function is
given by C

(k)
i (P ) = −cPVP for some cPV > 0, and it is

independent of k.
For an HVAC system, we assume that it can be in M

discrete states, depending on the settings of the system

2For simulation experiments on a realistic microgrid benchmark, see our
extended paper [27].

(motor speed, heating setting, etc). When at state m ∈
{1, · · · ,M}, it consumes Pi,m active power, with 0 :=
Pi,1 < Pi,2 < · · · < Pi,M := Pi,max. Moreover, the system
can be “locked” in one of the states due to, e.g, switching
frequency constraint or because the user manually locked
the system. Let `(k)i ∈ {0, 1} denote a binary state variable
that equals 1 if the system is locked at time step k. In the
simulation experiments below, we lock the system after each
change of the setpoint for a predefined number of time steps,
Ti,lock. The feasible set is then given by

Y(k)
i =

{
{−Pi,M ,−Pi,M−1, · · · ,−Pi,1}, if `(k)i = 0,

{−P̂ (k−1)
i }, if `(k)i = 1.

Now, the cost of being in one of the M states is system-
dependent and reflects, for example, the current temperature
and its distance from the desired setting. In the simulation
experiments, we fixed the cost as a quadratic function that
is minimized at a given optimal operating point P (k)

i,opt, that
is C(k)

i (P ) = cHVAC(P − P (k)
i,opt)

2 for some cHVAC > 0.
Finally, consider a battery with state-of-charge at time step

k given by SoC(k)
i ∈ [0, 1]. Let P (k)

i,min and P
(k)
i,max denote,

respectively, the lower and upper bounds on the active power
production. These are time-varying quantities that depend on
operating conditions of the battery, such as SoC(k)

i and the
DC voltage; see, e.g., [15]. Then, the feasible set is given by
Y(k)
i = [P

(k)
i,min, P

(k)
i,max]. The associated cost function can be

designed based on the current state-of-charge and the desired
value for the state-of-charge, SoC∗i (e.g., SoC∗i = 0.5). In our
experiments, we use

C
(k)
i (P ) =

{
cB(P − P (k)

i,min)2, if SoC(k)
i ≥ SoC∗i ,

cB(P − P (k)
i,max)2, otherwise

for some cB > 0.
For the purpose of simulation, we consider a time step in

the subsecond order. As shown in [14], [17], the available
power from a PV system, P (k)

i,av , might vary significantly
within one second, hence we consider here an extreme
scenario where P (k)

i,av is uniformly distributed between 0 and
30 kW, which is the rated power of the PV system. As for
the HVAC system, we assume a rated power of 70 kW,
discretization step of 10 kW, and locking time Ti,lock = 5
time steps. Finally, the battery’s rated power is 50 kW, and
P

(k)
i,max = −P (k)

i,min = 50 kW during the simulation run. These
parameters are on the order of magnitude of realistic systems,
such as those used in, e.g., [14], [17].

We consider a scenario wherein the requested power at
the PCC, P (k)

PCC, has typical step and ramp changes. This
is shown in Fig. 1 (a), labeled as “PCC req”. Fig. 1 (c)
shows the maximum power available from the PV system
at every time step (labeled “PV max”). The battery starts
with the state-of-charge below the target value, hence it is
willing to consume power; at time step k = 150, the state-of-
charge goes above the target value, and therefore the battery
is willing to produce power from that time step on (labeled
“Battery opt” in Fig. 1 (b)). Finally, the optimal operating
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Fig. 1: Results with error-diffusion: instantaneous values. (a) Power
setpoint at the PCC (“PCC req”) and the implemented power at the
PCC (“PCC imp”). (b) Requested and implemented power of the
battery (“Battery req”, “Battery imp”) and the optimal power based
on state-of-charge (“Battery opt”). (c) Requested and implemented
power of the PV (“PV req”, “PV imp”) and the maximum available
power from the PV (“PV max”). (d) Requested and implemented
power of the HVAC system (“Load req”, “Load imp”) and the
optimal power of the HVAC (“Load opt”).

point of the HVAC system is at P (k)
i,opt = −10 kW, as shown

in Fig. 1 (d) (labeled “Load opt”).
Fig. 1 (a) shows that the proposed method is able to

accurately track the requested power at the PCC even in the
face of a very uncertain profile for the PV system and the
discrete nature of the HVAC system. Moreover, the resources
jointly contribute to the tracking task while operating in
their preferred region most of the time. Particularly, the
battery is mostly consuming power before k = 150, and
is producing power after that; the PV system maximizes its
power production before k = 150, whereas it is curtailed
after that because of a higher cost incurred by the battery
that needs to be discharged; finally, the HVAC system is
close to its optimal value on average, but it also contributes
to the requested changes in the PCC power, and it helps the
battery to charge itself after k = 150 by increasing its power
consumption. The corresponding average values are shown
in Fig. 2 and corroborate numerically the results of Theorem
1 and Corollary 1.

For the purpose of comparison, we also ran the same
scenario wherein instead of using the error-diffusion algo-
rithm (5), a simple projection is used at the resource level to
produce a feasible setpoint, that is: P̂ (k)

i = ProjY(k)
i

(
P

(k)
i

)
.

The results are shown in Figs. 3 and 4. Observe that the
tracking capability of the method is significantly worse, and
the average requested and implemented setpoints do not
converge to each other. Moreover, the PV system is not fully
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Fig. 2: Results with error-diffusion: average values. (a) Time-
average of the power setpoint at the PCC and the implemented
power at the PCC. (b) Time-average of the requested and imple-
mented power of the PV and the maximum available power from
the PV. (c) Time-average of the requested and implemented power
of the HVAC system. The legend is similar to that of Fig. 1.

utilized, as shown in particular in Fig. 4 (b).

VI. CONCLUSION

This paper proposed a simple method to control a collec-
tion of heterogeneous resources in real time by dispatching
approximate optimal setpoints to the resources that they track
on average. The method makes it possible to accurately track
the power setpoint at the PCC to the main grid. Several
directions for future work include: (i) employing online
and distributed optimization methods in the aggregator; (ii)
extending the methods and results to the multidimensional
setpoint control (active and reactive power, and multiphase
buses); and (iii) extending the methodology to a network-
cognizant case by explicitly considering the power-grid struc-
ture interconnecting the N resources.

APPENDIX

Proof of Lemma 1. Denote Di := [a, b] and chY(k)
i := [c, d]

with a ≤ c ≤ d ≤ b. Then, Si = [a − ∆max
i , b + ∆max

i ];
cf. (9). Assume first that y /∈ chY(k)

i . If y > d, we have that
x + y − ProjY(k)

i
(y) ≤ d + b + ∆max

i − d = b + ∆max
i and

x+y−ProjY(k)
i

(y) = x+y−d ≥ x ≥ a−∆max
i . Similarly,

if y < c, we have x+y−ProjY(k)
i

(y) = x+y−c ≤ x ≤ b+

∆max
i and x+y−ProjY(k)

i
(y) ≥ c+a−∆max

i −c = a−∆max
i .

Now, suppose that y ∈ chY(k)
i . Clearly, |y−ProjY(k)

i
(y)| ≤

∆max
i ; cf. (8). Hence x + y − ProjY(k)

i
(y) ≤ x + ∆max

i ≤
b+∆max

i and x+y−ProjY(k)
i

(y) ≥ x−∆max
i ≥ a−∆max

i .

Therefore, x+ y − ProjY(k)
i

(y) ∈ Si as required.
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