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ABSTRACT: Rhodopsin is a photoactive G-protein-coupled receptor (GPCR)
that converts dim light into a signal for the brain, leading to eyesight. Full
activation of this GPCR is achieved after passing through several steps of the
protein’s photoactivation pathway. Key events of rhodopsin activation are the
initial cis—trans photoisomerization of the covalently bound retinal moiety
followed by conformational rearrangements and deprotonation of the
chromophore’s protonated Schiff base (PSB), which ultimately lead to full
activation in the meta II state. PSB deprotonation is crucial for achieving full
activation of rhodopsin; however, the specific structural rearrangements that
have to take place to induce this pK, shift are not well understood. Classical
molecular dynamics (MD) simulations were employed to identify intermediate
states after the cis—trans isomerization of rhodopsin’s retinal moiety. In order to
select the intermediate state in which PSB deprotonation is experimentally
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known to occur, the validity of the intermediate configurations was checked through an evaluation of the optical properties in
comparison with experiment. Subsequently, the selected state was used to investigate the molecular factors that enable PSB
deprotonation at body temperature to obtain a better understanding of the difference between the protonated and the
deprotonated state of the chromophore. To this end, the deprotonation reaction has been investigated by applying QM/MM
MD simulations in combination with thermodynamic integration. The study shows that, compared to the inactive 11-cis-retinal
case, trans-retinal rhodopsin is able to undergo PSB deprotonation due to a change in the conformation of the retinal and a
consequent alteration in the hydrogen-bond (HB) network in which PSB and the counterion Glul13 are embedded. Besides the
retinal moiety and Glul13, also two water molecules as well as Thr94 and Gly90 that are related to congenital night blindness are

part of this essential HB network.

1. INTRODUCTION

In vertebrates’ eyes, rod cells are activated when only dim light
is available. The protein that is able to convert these photons
into a signal for the brain is rhodopsin. Rhodopsin is a protein
with seven trans-membrane domains (TMs) and is part of class
A in the G-protein-coupled receptor (GPCR) family. For
several decades rhodopsin has been intensely studied as a
prototype system to understand the activation process of
GPCRs. Besides being viewed as an example protein for other
GPCRs in class A, rhodopsin bears also other properties of
interest, such as low basal activity and a high yield of around
65% for the photoconversion of its inactive 11-cis-retinal state
(Figure 1) to its trans configuration.” However, rhodopsin’s
activation pathway can be perturbed via mutations in the active
site, such as Thr94Ile and Gly90Asp. These mutations lead to a
constitutively active form of the GPCR, causing congenital
stationary night blindness (CSNB).*~’

The photoactivation of rhodopsin has been studied
extensively over the years,” '" and several intermediates with
distinct optical properties have been identified. In addition, X-
ray data collected at low temperatures have provided the 3D
structures of some of these intermediate configurations such as
the batho'' and lumi'? forms. However, different experimental
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studies have not always provided fully consolidated views about
the details of the activation process, and data collected at low
temperatures seem to suggest a different activation pathway
than room temperature measurements. For example, depending
on the temperature of the system, the deprotonation of the
protonated Schiff base (PSB) is shifted to an earlier
(metarhodopsin I) or later step (metarhodopsin II) in the
photoactivation pathway (Figure 1b)."”"* Besides the change
in PSB deprotonation, the blue-shifted intermediate (BSI) is
absent at low temperatures, while at room temperature, BSI is
in equilibrium with the batho state (Figure 1b).”'* In view of
the fact that in nature rhodopsin functions at body temperature
and the observed temperature dependence of the activation
path, the actual intermediates under physiological conditions
might differ from the configurations found via X-ray
crystallography on cold samples.

At body temperature as well as at low temperatures,
rhodopsin’s activation pathway starts with inactive, dark state,
thodopsin in which Glull3 forms a salt bridge with the
protonated Schiff base. After photon exposure, relaxation of the
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Figure 1. Rhodopsin’s photoactivation pathway. (a) Structure and numbering scheme of the retinal moiety in the 11-cis configuration covalently
linked to the protonated Schiff base (Lys296). The number of the methyl groups is depicted in orange, while the number of the nitrogen is shown in
yellow. The numbers of the residual carbons of the retinal moiety are represented in green. (b) Schematic representation of the photoactivation
pathway of rhodopsin at low (between 10 K and 273 K) and room temperature.' ™

retinal moiety and deprotonation of the chromophore, the salt
bridge is broken and remains broken in the long-lived later
intermediates such as meta II (Figure 1b)."> During the
deprotonation step, a proton is transferred from the protonated
Schiff base, formed by the retinal and the covalently bound
Lys296, to Glul13, the counterion.'®'” What causes this pK,
shift is not clear, but it is known that PSB’s pK,, which is
estimated to be greater than 15 in dark state bovine
rhodopsin,"*"? can be decreased to 6 by mutating Glul13 to
a glutamine residue,” which is close to PSB’s pK, of 7.5 + 0.1
in solution.”" The effect of the Glul13Gln mutation can thus
trigger deprotonation of the Schiff base and shows that the
change from a charged residue to a polar one near the PSB can
drastically affect the chromophore’s protonation state.'®*"**

As temperature dependence plays a significant role, the
available low-temperature X-ray structures of the early
intermediates might not be a good starting point for a
molecular dynamics study of the deprotonation reaction.'”'* A
feature of the active site that can be affected by a temperature
increase, for example, is the sampling of different type of
configurations during the relaxation of the trans retinal
configuration.”'* The positioning and the number of water
molecules is a second important factor that can be altered by
the temperature of the system as well as by the crystallization
process.

Therefore, in order to investigate PSB deprotonation at body
temperature, a dark state X-ray structure of rhodopsin was used
to build an initial homodimer structure to minimize temper-
ature and crystallization effects on the activation mechanism of
the protein. This is because dark state rhodopsin is not a
metastable state like the short-lived intermediates and can thus
be equilibrated at body temperature over longer periods of time
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than configurations that are sampled just after cis—trans
isomerization. A homodimeric form of rhodopsin was
employed in the classical MD simulations in order to mimic
the native environment of rhodopsin in the retina.”* Besides in
retina, homodimerization has also been observed for rhodops-
in:G-protein complexes for which a stoichiometry of 2:1 could
be determined.””** After classical MD simulations, QM/MM
MD simulations were used to follow the relaxation process
during the early intermediates (batho, BSI, lumi) as well as to
investigate the deprotonation reaction in the lumi state via
thermodynamic integration (TI) along a suitably chosen
reaction coordinate. The validity of the configurations of the
early intermediates was checked through the comparison of
their calculated vertical excitation energies with the correspond-
ing experimental absorption maxima. This comparison showed
that the found configurations were in good agreement with
experiment.

To anticipate our results, the QM/MM MD at body
temperature shows that in the early intermediates the relaxation
of the retinal conformation mainly takes place close to the PSB
where space in the active site is present for methyl relocation.
The comparison of PSB deprotonation in the dark and the lumi
state suggests that besides the orientation of the retinal moiety
also the hydrogen-bond network around the PSB is important
for the feasibility of the reaction. At body temperature, water
molecules in the lumi state appear to impact this HB network
severely by changing the salt bridge between PSB and Glul13
to a bridged water form thereby decreasing Glul13’s hydrogen-
bond accepting interactions from four to three. After the
deprotonation reaction, Glull3’s hydrogen bonds are even
decreased to two, for one of which Glul13 acts as donor and in
the other as acceptor. This investigation suggests that the
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retinal orientation within the active-site pocket as well as the
rearrangement of the HB network that takes place during the
relaxation of the retinal moiety are important to favor PSB
deprotonation. The simulation results also show the role Gly90
and Thr94 play in the deprotonation mechanism of the
chromophore, which could provide an explanation for their
involvement in CSNB after mutation.

2. METHODS

2.1. Classical Molecular Dynamics. The periodically
repeated simulation box has a size of approximately 120 X 115
X 126 A 3, which includes around 40 000 water molecules, 400
lipids, and four Na* ions to neutralize the rhodopsin dimer
system (Figure S1). The lipids are 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphoethanolamines (POPEs) for which the force
field parameters of Jambeck et al. were used.”® The rhodopsin
homodimer system was simulated at 310 K and at a pressure of
1 bar using a Nosé—Hoover thermostat and a semiisotropic
Parrinello—Rahman barostat, respectively. The initial structure
of the rhodogsin monomer was taken from the protein data
bank (PDB),”” PDB code 1U19,° while the missing residues
214—246 were taken from PDB code 1GZM.” The intradimeric
TM4/TMS interface was used for the homodimer, extracted
from PDB code IN3M.>* Default protonation states were used
for the residues in the monomers, except for Asp83 and Glul22
that were protonated.”® A disulfide bond was formed between
Cys110 and Cys187. Two palmitate groups, for which force
field parameters were taken from the literature,””*® are bound
to each monomer via Cys322 and Cys323. The force field
parameters for the retinal and Lys296 used in this study were
obtained by Saam et al.”'

The force fields used for the rest of the protein dimer and the
water molecules are AMBER99SB™* and TIP3P,* respectively.
All MD runs were performed using GROMACS 4.5.5.”*
Electrostatic interactions were calculated with the Ewald’s
particle mesh method with a real space cutoff of 12 A. Bonds
involving hydrogen atoms were constrained using the LINCS
algorithm. The integration time step was set to 2 fs.

The production run of the rhodopsin dimer system in the
dark state was performed for 700 ns after 10 ns of equilibration.
Subsequently, the classical MD simulation of the dark state
dimer was used to initiate cis—trans isomerization of a single
retinal. The use of classical MD simulations to perform the
restrained conversion from cis to trans was previously validated
by Rohrig et al.*>* and shows that excited state calculations
lead to a very similar configuration of the isomerized retinal as
restrained classical MD simulations. The cis—trans isomer-
ization was performed in one monomer by putting restraints on
the C10—C11-C12—C13 and C11-C12—C13—C14 dihedrals
to secure the desired trans configuration (Figure 1a). After the
isomerization has taken place in around 200 fs, the restraints
were released, and snapshots were taken that were used as
initial structures for the QM/MM simulations.

2.2. Quantum Mechanics/Molecular Mechanics Mo-
lecular Dynamics. The QM part of the QM/MM MD
simulations for the spectra calculations included the retinal
moiety, Lys296, Glull3, and two nearby water molecules
(Figure S2). The CPMD 3.15 package’” was employed to
perform the QM/MM MD simulations with Car—Parrinello
molecular dynamics (CPMD) using the BLYP functional and a
plane wave energy cutoff for the wave function of 70 Ry.
Martins-Troullier pseudopotentials were used for the QM
atoms. In order to cut the QM residues from the rest of the

4526

protein, monovalent pseudopotentials®® were employed. QM/
MM simulations were performed at an average temperature of
310 K using a Nosé—Hoover thermostat. A time step of 0.12 fs
and a fictitious electronic mass of the CP Lagrangian of 700 au
were used. The AMBER force field was used to account for
interactions among the atoms of the MM region. In case of the
simulations performed for thermodynamic integration, the QM
region was extended, compared to the QM/MM MD for the
spectra calculations, by the incorporation of the backbone of
Glull3, Thr94, and the backbone of Cys187 (Figure S2).
These residues were added to the QM region as Thr94 and
Cys187 are hydrogen bonded to Glull3. The backbone of
Glull3 was included because it interacts with the water
molecules in the QM region (Figure 4c).

In the TT simulations, the constrained distance in the dark
state was defined as the distance between the proton of the
protonated Schiff base and the oxygen of Glul13 that forms a
salt bridge with the proton (Figure 4a). In the lumi state the
constrained distance was described by the distance between a
hydrogen of a water molecule that bridges the PSB and Glul13
and the oxygen of Glul13 that forms a hydrogen bond with the
bridging water molecule (Figure 4c). The interval in the
constraint distance between each window was 0.1 A for the
dark and lumi state except for three windows, 1, 1.0S, and 1.15
A, in which an interval of 0.05 A was applied. Each constraint
window for both dark and lumi states was sampled for a
minimum length of 2.4 ps, unless stated otherwise in the
Supporting Information.

2.3. pK, Calculations. pK, values for Glul13, Asp83, and
Glul22 were calculated via the H++ Web server.”” *' The
input file for the pK, calculations contained a dark, lumi, or
premeta-I configuration of the rhodopsin monomer that was
isomerized and included water molecules within a 7 A radius
around the retinal moiety of the rhodopsin monomer. All
aspartates and glutamates were not protonated. The retinal
moiety was not included in the pK, calculations as it could not
be taken into account by the H++ server. In the performed
calculations, the salinity was kept at 0.15 M, and the external
dielectric was set to 80. Values for the interior dielectric were
varied from 4, 6, 8, 10, to 20.

2.4. Spectra Calculations. The ZINDO/S method
implemented in Gaussian 09" was used to calculate the
vertical excitation energies for the dark state rhodopsin,
bathorhodopsin, BSI, lumirhodopsin, and premetarhodopsin I
configurations. One hundred configurations were used per
intermediate with a time interval of 12 fs, except for BSI which
included 44 configurations.

Previously obtained vertical excitation energies via ZINDO/S
of retinal and related polyenals have been shown to be in line
with experiments.*” The four lowest roots were taken into
account together with their corresponding oscillator strengths
in order to obtain the absorption spectra. The QM cluster
model that was used to calculate the vertical excitation energies
included the retinal moiety and residues within a distance of 7
A from the retinal group. The sufficiency of a S A radius has
been previously determined by Campomanes et al.** In
addition, the backbone of each residue was removed in the
model, and the position of the Ca carbons was substituted for a
hydrogen atom to saturate the system.

2.5. Correlation Feature Selection and Causality
Inference Analysis. Similar to our previous study,** a
machine learning analysis was performed to identify the
relevant features influencing shifts in the optical properties of
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the early intermediates. In particular, a two-step protocol was
employed to identify the set of electronic and geometrical
features responsible for the shifts in the batho, lumi, and
premeta-I absorption spectra with respect to the dark
conformation. To perform an unbiased analysis, the initial set
of features was composed of the bond length alternation
(BLA)* as well as all intramolecular and intermolecular
distances, angles, and dihedrals in and around the retinal moiety
with a distance cutoff of 7 A. The BLA is defined as the
difference between the sum of all the single-bond lengths minus
the sum of all the double-bond lengths along the
chromophore’s conjugated polyene chain, from CS5 to the
N16 atom of the protonated Schiff base (Figure 1a). Within the
selected region all atoms were taken into account except for the
hydrogen atoms and the protein backbone. For each photo-
intermediate, the 100 snapshots used in the ZINDO/S
calculations were included and resulted in an initial set of
over 48 * 10° features. To identify which ones of these millions
of features had significant impact on the optical properties, the
dimensionality of the initial set of descriptors has to be reduced
to a smaller subset of features, which is still indispensable and
sufficient to describe the target parameter, the spectral shift.
The spectral shift is defined as the maximum of the calculated
vertical absorption spectra of the excitation energy of the
intermediate in each snapshot minus the one of the dark state
(ZINDO value 2.39 eV) (Table 1). Once the dimensionality
problem is sufficiently reduced, causality between the features
in the reduced set and the spectral shift can be inferred.

Table 1. Absorption Spectra Obtained via ZINDO/S for
Dark State Rhodopsin, Bathorhodopsin, BSI,
Lumirhodopsin, and Premetarhodopsin I

absorption maxima (eV)

intermediates ZINDO/S* exp 2 difference
dark state rhodopsin 2.39 + 0.15 2.48 0.09
bathorhodopsin 2.17 £ 0.16 2.34 0.17
blue-shifted intermediate 2.46 + 0.12 2.60 0.14
lumirhodopsin 2.34 + 0.15 2.54 0.20
premetarhodopsin I 2.94 + 0.19 n/a n/a
metarhodopsin I n/a 3.29 n/a

“One hundred configurations were used with a time interval of 12 fs to
calculate the absorption spectra for dark, batho, lumi, and
premetarhodopsin 1. Forty-four frames with a time interval of 12 fs
were isolated for BSL In the vertical-excitation energy calculations
residues and water molecules closer than 7 A to the retinal moiety
were taken into account. Premetarhodopsin I represents the protein
structure after deprotonation of the lumi state via QM/MM MD with
TL “The experimental absorption spectra were obtained at room
temperature by Lewis et al.”

Hence, the first step toward performing the correlation and
causality analysis includes reducing the number of features by
removing features that are irrelevant, redundant, and noisy with
respect to the target property, the spectral shift. Two feature
selection algorithms implemented in the WEKA 3.8 machine
learning package’® were employed to perform this task.
Previously, WEKA has already been used successfully for an
analysis of the spectral features of rhodopsin® to detect
common factors that influence the spectral shifts of all
intermediates up to the lumi state. Here a similar analysis has
been applied to the individual shifts for each intermediate
including also the premeta-I configuration. The Regressional
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ReliefF (RReliefF) attribute evaluator algorithm™” together with
a ranker search method was used first to decrease the
dimensionality of the initial set of features to a reduced set.
Subsequently, the Correlation Based Feature Selection (CBFS)
algorithm,*® using the BestFirst search method, was employed
to perform a correlation analysis on the reduced feature set to
select features that are highly correlated with the spectral shift.
CBFS is a filter algorithm that evaluates the heuristic merit of a
subset of features considering the correlation to the target and
the correlation within features. Therefore, the selected subset,
showing the highest merit, contains highly correlated features
with the spectral shift, which are minimally correlated with each
other. The heuristic merit is defined as

k<rft>

Jk + k(k = 1){rg) (1)

where M is the heuristic merit of a subset s, containing k
features, (rg) is the mean feature-target correlation, and (rg) is
the mean feature—feature intercorrelation. Hence, the merit
numerator provides a measure of the predictive ability of the
subset of features to the target, whereas the denominator gives
an indication of the redundancy among the features.

After applying the CBEFS algorithm on the reduced set of
features, the PC-LINGAM algorithm,49 implemented in the
TETRAD V causal inference package,”” was used to deduce a
causal relationship between the spectral shift and the features
included in the set provided by the results of the CBES
algorithm. By combining two different approaches, the PC
(Peter-Clark) algorithm " and the LINGAM (Linear Non-
Gaussian Acyclic Model) algorithm,”” the PC-LINGAM
method accepts an arbitrary distribution, meaning that
Gaussian and non-Gaussian data sets can be used to obtain
the structural equation model (SEM). The SEM represents the
causal structure of the model in the form of linear equations
and is graphically modeled by a direct acyclic graph (DAG).>
The inference of this approach is based on conditional
independences between the variables. Conditional independ-
ences between variables were estimated via the Fisher’s z-
transform, using a significance level, @, of 0.001. Moreover, the
Markov blanket of the spectral shift was built, and the values for
the edge coefficients in the SEM were estimated using a
regression optimizer after standardization (zero mean and unit
variance) of the data set variables.

2.6. Structure Superpositions and Images. Multiprot™
and VMD"” were used to align protein structures. Images were
prepared with VMD.>

3. RESULTS AND DISCUSSION

3.1. Determination of Intermediates. In order to obtain
a configuration in which PSB deprotonation can take place, a
dark state rhodopsin dimer system was first simulated for 700
ns at body temperature to generate an initial rhodopsin
conformation in which cis—trans isomerization can be
performed. Subsequently, isomerization was induced in a single
monomer’s retinal group, followed by unrestrained relaxation of
the system for 1 us. Snapshots were taken from the
unrestrained classical MD simulations before and after cis—
trans isomerization based on the orientation of C20 in the
active site with respect to the dark state conformation (Figure
la). Next, these structures were used in unconstrained QM/
MM MD simulations to identify the dark state as well as the
short-lived intermediates batho and BSI via their structural

DOI: 10.1021/acs.jctc.7b00229
J. Chem. Theory Comput. 2017, 13, 4524—4534


http://dx.doi.org/10.1021/acs.jctc.7b00229

Journal of Chemical Theory and Computation

properties as well as the calculation of absorption spectra
(Table 1). The BSI configuration was more difficult to extract
from the QM/MM MD simulations compared to the batho and
the dark state as the conﬁ§uration is in equilibrium with
bathorhodopsin (Figure $5).”'* The spectral and structural
analyses also lead to the identification of lumirhodopsin, the
intermediate state that occurs at room temperature before PSB
deprotonation in rhodopsin’s activation pathway (Figure 1).'
The calculated excitation energies of dark, batho, BSI, and
lumirhodopsin closely reproduce the experimental data, which
suggests that the obtained structures are good representatives
of the experimentally observed intermediates at body temper-
ature (Table 1). Deprotonation of the PSB in the identified
lumirhodopsin configuration was obtained after applying TI to
the protein system (see Section 3.2), which resulted in the
formation of premetarhodopsin I, a state in which a neutral but
still strained trans-retinal moiety is present in rhodopsin’s active
site, while the majority of the protein has not yet adapted its
conformation to the new charge distribution in the active site
pocket.

Besides the calculated excitation energies, the QM/MM
structures of the simulated batho and lumi intermediates are
also in good agreement with the (low temperature) X-ray
structures of these states (Figures S3, S4). The obtained
bathorhodopsin conformation is in good agreement with
previous computational studies as well.”**® Remarkable about
the alignment of the lumi state (Figure S4) is that, while the
overlap between the lumi structures is not as good as for the
batho conformation (Figure S3), space for a bridging water
molecule, WAT1, is present in the X-ray structure, although the
water molecule itself is absent in the experimental data in
contrast to the QM/MM results. The absence of the water
molecule could be due to the crystallization techniques that
were used to obtain the lumi form.

The QM/MM results of dark, batho, BSI, and lumi also show
an interesting trend in the relaxation of retinal’s conformation.
After cis—trans isomerization,the methyl group on C13 (C20)
reorientates from a conformation that is more or less parallel to
the membrane in the dark state to one that points toward the
extracellular region in the lumi state (Figure 2). The relaxation
of the trans configuration via C20 is not surprising as the
volume for the retinal moiety in the mainly hydrophobic/
nonpolar active site is tightly fitted around the f-ionone ring

extracellular region

intracellular region

Figure 2. Overlay of rhodopsin structures in the dark (red) and three
short-lived intermediate states: bathorhodopsin (pink), BSI (orange),
lumirhodopsin (yellow). These structures were obtained via QM/MM
MD and aligned on the retinal moiety and Lys296. The carbons of the
methyl groups connected to the conjugated chain are depicted by
numbers 19 and 20. PSB’s nitrogen is labeled as well as highlighted
through a blue ball representation.
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and the methyl group on C9 (C19) (Figure 3). The only region
in the active site that shows a relatively looser fit is the region
around PSB, close to C20 (Figure 3).

Figure 3. Volume of rhodopsin’s active site showing the 11-cis
configuration of the retinal moiety. (a) View of the retinal moiety from
the extracellular region. (b) View of the retinal moiety, turned 90°
compared to image (a), with the Lys296 part located in front.

Together with the change in C20’s location, the protonated
nitrogen of Lys296 also alters its orientation in the active site
due to retinal’s change in conformation (Figure 2). From the
dark to the lumi state, the nitrogen moves from a position in
which the atom points in a direction parallel to the membrane
to a position in which it points more to the intracellular region.
In addition to alterations in PSB’s orientation, a shift in the
hydrogen-bond network around PSB occurs, which takes place
between the BSI and the lumi state. Consequently, batho and
BSI contain a similar HB arrangement as the dark state (Figure
4). The change in HB network in the lumi state implies the
breakage of the direct salt bridge between PSB and Glul13 and
the formation of an indirect hydrogen bond between Glull3
and PSB which is bridged by a water molecule (WAT1) (Figure
4). The alteration in the hydrogen-bond network also contains
a relocation of WAT?2 and a decrease of hydrogen bonds from
three to two for Glul13’s O1 (Figure 4). The changes in the
hydrogen-bond network of premeta-I in comparison to
lumirhodopsin are shown in Figure 7 and are addressed in
detail in Section 3.2.

Although some structural rearrangements have already taken
place in the premeta-I conformation and the optical properties
have undergone a significant shift toward the meta-I form, the
chromophore and the protein surrounding are not yet fully
relaxed (Table 1). While retinal’s carbon chain has straightened
compared to the lumi structure on the picosecond time scale,
the p-ionone ring is still in the same location in the
deprotonated trans conformation as prior to deprotonation
(Figure S). This location of the f-ionone ring is not in line with
experimental studies that show that the ring alters its location
slightly in the meta-I state due to a fully straightened
conjugated chain compared to retinal’s conformation in the
early intermediates.®”

The conformational changes of the active site across the
different intermediates are clearly evident (Figure 4). However,
the interplay between the structural changes and the
accompanying changes in the optical properties is not obvious.
To identify the factors that are responsible for the spectral shifts
of batho, lumi, and premeta-l, a correlation and causality
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Figure 4. Difference in the hydrogen-bond network around the protonated
hydrogen-bond network in the BSI state is the same as in bathorhodopsin.

c

Schiff's base between the dark (a), batho (b), and lumi state (c). The

Figure 5. Overlay of the chromophore structures in the lumi state
(yellow) and premeta-I configuration (cyan) viewed from the
extracellular region. These snapshots were extracted from uncon-
strained runs obtained before TI and as a result of T1I.

inference analysis has been performed, similar to the study of
Campomanes et al."* This former study investigated the
common factors that determine all shifts for the early

intermediates up to lumirhodopsin by performing a single
causality inference analysis over all snapshots. Here, factors that
influence individual shifts of the intermediates before
deprotonation are studied as well as the premeta-I form. The
BSI state was not taken into account because this state is in
equilibrium with the batho state (Figure SS), and therefore only
relatively few configurations can be unambiguously assigned to
this intermediate.

The input for the correlation analysis of batho, lumi, and
premeta-I included 48 * 10° geometrical features per
intermediate, which were composed of distances, angles,
dihedrals, and the BLA. The correlation profiles show that
the 48 * 10° features can be decreased to roughly 20 or 30
features having the highest heuristic merit by using Correlation-
Based Feature Selection®® (Figure S6). Remarkable is the fact

I y(C17-SDMet44-CBPhe208-OE1GIu181) I

| Y¥(C18-CG2Thr118-CBTyr268-CGMet288) I I ¥(CD1Leu125-C8-C9-C13)

| | V(CE2Tyr191-C13-C19-C12) [

I ¥(CDGIu113-CE1Phe208-CD2Tyr268-CZPhe208)

d(C11-C12)

Absorption
Maximum Shift

batho

-0.17
y = /
1.-0.37 A -0.41

{ il

0.52

d(C9-C10) d(C11-C12)

Absorption
Maximum Shift

lumi

[ Y(CBMet207-C9-C10-C17) I

| V(SGCys167-CG2lle189-CBTrp265-CGTyr268) I

-0.11

d(Ce-C10)

Absorption

pre-meta

Maximum Shift

d(C12-C13)

Figure 6. Markov blankets of the spectral shifts for the batho (a), lumi (b), and premeta-I (c) configurations. The edge strength indicates the relative
magnitude of the dependency between two variables, given the other inter-relationships.

4529

DOI: 10.1021/acs.jctc.7b00229
J. Chem. Theory Comput. 2017, 13, 4524—4534


http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.7b00229/suppl_file/ct7b00229_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.7b00229/suppl_file/ct7b00229_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.7b00229

Journal of Chemical Theory and Computation

Cys187
}\JJ\Cys187
H )
. O//w\,
7N
By HN, Thro4

Ly5296 HN%

a

% Cys187
Glu1130}J{H HN;;M Cys187
=0
H o
WAT2 o\H\ /,H 02\ Gly90
o WAT1 W v P
M ROSEO
r= I /N\‘
‘ HN
pre-meta | \ o T;r94
Lys296 HNz

b

Figure 7. Conformational and configurational changes in the lumi state during and after deprotonation of retinal’s positively charged nitrogen. (a)
Deprotonation mechanism that takes place during the TI simulations (Figure 8). The red rectangle depicts the distance constraint between
H(WAT1) and O1(Glul13) that was used during the TI simulations of the lumi state. (b) Change in the hydrogen-bond network after
deprotonation of the protonated Schiff base in the lumi state in the last window constraint distance (1.00 A) of the TI QM/MM MD simulations

and the unconstrained QM/MM MD simulation.

free energy (kcal/mol)

9
8
7
6
5
4
3
2
1

Ly [ ] T o L e e

0

|

=—a dark deprotonation
e—e lumi deprotonation

riddl |=ineal ] e SR il e o) el I

(SRS E T

|
1.2

L l 1 | 1
b 1 T

el

13
H[WATI or PSB]-O1[Glul13] distance (A)

1.4

115 1.6 1.7

[\S]

Figure 8. Free energy profile of the deprotonation of the chromophore in rhodopsin in the dark and lumi state. For the thermodynamic integration
of the lumi state, the distance between one hydrogen of WAT1 and an oxygen of Glul13, O1, was used to perform the deprotonation reaction (see
the red rectangle in image Figure 7a). In the dark state, the distance between the hydrogen on the nitrogen of the PSB, H(PSB), and Glul13’s O1

oxygen was used as the reaction coordinate.

that the shifts for batho and lumi are defined by around 30
features, while the premeta-I conformation (Figure 7) only
includes 19. The BLA is the number one correlated feature in
all configurations (Figure S6). Distance d(C9—C10) is also
present in all top ten features of each intermediate but can vary
its position. The correlation of these two descriptors with the
spectral shift has also been found in our previous spectral
analysis performed over the conjoint data set of intermediates
up to the lumi conﬁguration.44 Distance d(C11—-C12), the
bond around which the cis—trans isomerization takes place,
appears to be correlated with the spectral shift in batho and
lumi, but is replaced in the premeta-I state by d(C12—Cl13)
(Figure S6). Dihedrals are the most represented in the
correlation profiles of the three intermediates, but they are
not the same for different intermediates. Residues included in
the dihedrals that describe the spectral shifts of batho, lumi, and
premeta-I are, for example, Trp265 and Tyr268, which are both
located in close proximity to d(C11—C12). Hence, Tyr268 and
Trp265, which have been reported to ?lay an important role in
rhodopsin’s activation mechanism®*>® are sensitive to the
location of the retinal in the active site (Figure S6).
Investigating the inference of the causal relationship between
features and the spectral shift provides a way to understand
which features directly affect the spectral shift and which
features only influence other features with a direct impact. The
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results for the three intermediates show that all intermediates
are highly influenced by the BLA, premeta-I > batho > lumi, as
well as d(C9—C10), lumi > premeta-I > batho (Figure 6 and
Figures S6, S7). Similar to the correlation profiles, d(C11—
C12) is substituted in the causality profile by d(C12—C13)
when moving from lumi to premeta-I. The causality between
the spectral shift and the dihedrals is remarkable as well
because, although specific dihedrals have a similar impact on
the spectral shifts for each intermediate as the distances, the
dihedral selection per intermediate is unique (Figure 6). This
could be due to the fact that the dihedrals are more sensitive to
the orientation of the retinal and the conformation of the active
site than the BLA and the distances. Hence, according to the
Markov blankets of the spectral shifts, all shifts can be described
with a handful of parameters, including the BLA, two C—C
bonds, and 2-3 dihedral features. However, significant
environmental alterations that take place from dark to
premetarhodopsin I, such as the change in counterion distance
or the rearrangement of water molecules in the active site, do
not appear in the causality analysis or the correlation profiles
(Figure 6 and Figure S6).

Overall, the causality and correlation results appear to
suggest that the descriptors with the most impact on the
spectral shifts are intramolecular parameters such as the BLA
and distances in the conjugated retinal chain. In addition,
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Table 2. pK, Calculations of Glul13 in Different Rhodopsin Intermediates®

dark lumi premeta-I

model E113 D83 E122 E113 D83 E122 E113 D83 E122
all 4.7 10.9 8.9 4.8 10.7 8.7 8.5 11.2 7.8
no G90 4.5 11.0 8.9 4.8 10.8 8.7 8.1 11.3 8.1
no T94 5.7 10.9 8.9 5.8 10.7 8.7 8.4 11.2 8.0
no WAT1 S.5 10.8 8.9 5.9 10.6 8.7 7.5 112 8.2
no WAT1, WAT2 5.6 10.8 8.8 6.4 10.6 8.7 8.0 11.1 8.1
no T94, waters 6.5 10.8 8.9 74 10.6 8.6 7.7 11.1 8.2
no G90, T94, waters 6.3 11.0 8.9 7.3 10.8 8.7 7.3 112 8.3
shift 1.6 0.1 0.0 2.5 0.1 0.0 -12 0.0 0.5

“The pK, values for Asp83 and Glul22 are shown as reference values since these residues are believed to be protonated all throughout rhodopsin’s
activation..”® pK, calculations were performed with internal dielectrics of 8, an external dielectric of 80, and a salinity of 0.15 M. The calculated shift is
the total difference between the full (all) and the minimal (no Gly90, Thr94, WAT1, WAT2) model system, called no G90, T94, waters. Each time a
molecule or residue is removed, the charges of the group are set to zero, but the radii are maintained. The full model includes rhodopsin without the

chromophore and all water molecules present in the active site.

unique sets of dihedrals that characterize the chromophore’s
orientation in the active site pocket influence the optical
properties of each intermediate.

3.2. Deprotonation Pathway of the Chromophore’s
Protonated Schiff Base. During rhodopsin’s activation
pathway, chromophore deprotonation is crucial for conforma-
tional changes in the protein that take place before reaching the
metarhodopsin II state, a conformation of rhodopsin that is
able to activate G proteins on the intracellular side through
protein—protein interaction. However, it remains unclear which
changes in the active site pocket induce PSB deprotonation
after cis—trans isomerization has occurred.

The equilibrated QM/MM lumi configuration described in
Section 3.1 (Figure 4) was used as the starting structure to
investigate PSB deprotonation via thermodynamic integration.
For the sake of comparison, analogous calculations were
performed for the dark state. In both configurations, the
distance between Glul13’s O1, which is part of the salt bridge
with PSB in the dark state (Figure 4), and the hydrogen to
which it is hydrogen bonded was used as a reaction coordinate.
Hence, in the lumi state the distance between H(WAT1) and
O1(Glul13) was used as a constraint, while for the dark state
O1(Glul13) and the hydrogen on the nitrogen of the PSB,
H(PSB), were used (Figure 4 and Figure 7a). During the
thermodynamic integration in the lumi state, the protonation of
Glull3 via the proton of WAT1 results in the spontaneous
deprotonation of retinal’s PSB and reprotonation of WAT1
(Figure 7 and Figures S7, S10, S11), which suggests that the
used reaction coordinate is a valid one.

Figure 8 shows that a significant difference can be found in
the free energy barrier of the two states (Figure S9). While the
lumi state reaches a plateau after deprotonation and its
conformation is stable in unconstrained MD simulations
following TI (Figure S7), the dark state does not reach a
minimum after deprotonation, and the Schiff base is
spontaneously reprotonated after the constraint is released
(Figure 8 and Figures S8, S12, S13). When the conformational
rearrangements upon deprotonation are compared between the
dark and lumi state, it becomes apparent that in the dark state,
the three hydrogen bonds, present between O1(Glull3) and
the active-site environment (Figure 4a), do not change during
the TI simulations or in the subsequent unconstrained
simulation (Figures S8, S12, S13). In the lumi state, however,
the initial number of HBs of Glul13’s O1 with the protein
environment is two (Figure 4), due to the presence of a
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bridging water (WAT1), which is decreased by one in the
deprotonated lumi state or premeta-l configuration (Figure 4
and Figure 7). The premeta-I state is a configuration obtained
after 6 ps of unconstrained QM/MM MD after deprotonation
of the chromophore. The decrease in the number of HBs
between the lumi and the premeta-I state is due to the
reorientation of Thr94, which is initially interacting with
Glul13, but forms a HB with the backbone oxygen of Gly90,
Obb(Gly90), in the deprotonated form (Figure 7, Figures S7,
S10, S11).

Although the deprotonated retinal is stable in the lumi state
(Figure S7), the protonated Schiff base still has a lower free
energy compared to the deprotonated form (Figure 8).
Therefore, thermodynamically, the deprotonated structure
would still appear to be much less populated than the
protonated chromophore. However, long-time scale rearrange-
ments that occur upon proton transfer, which are not captured
in the picosecond time scale QM/MM MD simulations, could
further stabilize the deprotonated form and even make the
deprotonation irreversible by increasing the activation barrier
for back reaction. Notwithstanding the fact that later rearrange-
ments can lead to additional stabilization of the deprotonated
form, the simulations already indicate that the pK, of the dark
state chromophore has already significantly changed in the lumi
configurations. In fact, the calculated change in free energy of
ca. 4 kcal/mol (Figure 8) corresponds to a lowering of the pK,
by ca. 3 units at body temperature.

To elucidate which molecular factors are responsible for this
shift, we performed a semiquantitative analysis of the pK, shift
using pK, estimates calculated with the H++ server. The effect
of the change in electrostatics of the active site upon
deprotonation of the chromophore was studied by using the
pK, value of the counterion Glul13. This choice was motivated
by the fact that the charge state of Glul13 can highly affect the
pK, of the nearby retinal moiety”” and constitutes therefore a
sensitive probe for the changes in the electrostatic environment
that favor/accompany the deprotonation reaction.

The pK, value of Glull3 has been calculated with several
internal dielectric constants (Table 2 and Table S2) for several
protein conformations and distributions of charge in the active
site to provide a qualitative evaluation of the changes in the
electrostatic environment when changing from the dark to the
premeta-I conformation. In order to investigate the direct effect
of the environment on Glull3, the presence/absence of the
charge of all moieties that are hydrogen bonded to Glul13’s O1
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— the oxygen that is protonated during the chromophore’s
deprotonation — are taken into account (Figure 4 and Figure
7). Also the effect of Gly90 was studied because the backbone
carbonyl group of this residue substitutes Thr94’s hydrogen-
bond donor Glull3 and stabilizes Thr94’s change in
orientation after deprotonation of the chromophore (Figure 7).

The results in Table 2 suggest that although the pK, of
Glul13 does not change significantly when moving from the
dark state to the lumi conformation, the environmental
dependence increases. In the dark state, Glul13’s pK, value is
lowered by two units by the immediate HB environment
(mainly due to Thr94 and WAT1), while lumirhodopsin is
lowered by three units (ca. one unit for Thr94, WAT1, and
WAT?2). Gly90 is not directly hydrogen bonded to Glul13 or a
group in Glull3’s HB network in the dark and lumi
conformation and does not seem to have a significant effect
on Glull3’s pK, value. However, in premeta-I, Gly90 appears
to have an impact on the pK, value of Glul13, due to the fact
that upon deprotonation of the nitrogen of the PSB the
carbonyl oxygen of Gly90 is able to stabilize Thr94’s change in
orientation via forming a hydrogen bond with the hydroxyl
moiety of Thr94, leading to the removal of a hydrogen-bond
donor from Glul13’s HB network (Figure 7).

While the change in the conformation of the active site from
dark to lumirhodopsin is not reflected in the pK, value of
Glul13 in the largest (all) model (Table 2), the nearby
environment appears to have a strong effect on tuning the
Glul13’s pK, value when moving from the dark to the premeta-
I state as the pK, value is increased by four units in premeta-I
compared to the dark form. When removing charge from
nearby moieties of Glull3, premeta-I appears to be less
affected than the dark state because premeta-I is only increased
by ca. one unit, mainly due to WAT1 and Gly90, slightly
compensated by WAT?2.

Hence, these pK, calculations appear to suggest that the
protein environment has a significant effect on Glull3’s
protonation state. Moreover, after deprotonation, the HB
network around Glull3 seems to cause Glull3’s pK, to
increase drastically, leading to values that favor a protonated
form of Glull3 (Table 2, Table S2).

4. CONCLUSIONS

The protonation/deprotonation equilibrium of rhodopsin’s
protonated Schiff base at body temperature is influenced by the
conformational change of retinal after cis—trans isomerization as
well as the induced active site alterations, in particular the
presence/absence of water molecules and accompanying
rearrangements of the HB network. The first step in the
relaxation pathway of the trans retinal group is governed by the
anchoring of the S-ionone ring in the hydrophobic/nonpolar
pocket, the only available additional volume around C20 and
the salt bridge between Glull3 and the chromophore. This
step includes a clockwise rotation of the C13—C14 bond, which
induces the formation of the batho and BSI state, resulting in a
C20 oriented toward the extracellular region together with a
hydrogen-bond rearrangement near the PSB, leading to the
lumi state. This HB rearrangement includes a water molecule
that starts disrupting the salt bridge between Glull3 and the
PSB in the lumi state as well as a decrease in hydrogen-bond
donors for Glull3. Besides the structural changes that are
observed upon relaxation of the chromophore after cis—trans
isomerization, the spectral shifts of batho, BSI, lumi, and
premetarhodopsin I are mainly influenced by 5—6 factors: the
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BLA, two C—C bonds of retinal’s conjugated chain as well as
2—3 specific dihedrals that characterize the orientation of the
chromophore with respect to the active site pocket.
Deprotonation in the lumi state results in a stable
deprotonated form of the Schiff base, which neutralizes the
active site. As an effect of the proton transfer, further changes in
the hydrogen-bond network take place that lead to a state in
which the proton is stabilized on Glul13. Groups that appear
to play a particularly important role in the deprotonation of
PSB are two water molecules, WAT1 and WAT2, Gly90 and
Thr94. The influence of the conformational rearrangements in
the active site that occur during the transition from the dark to
the premeta-I state is reflected by pK, estimates of Glul13.
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