
ted

AGENDA

- 1. OVERVIEW
 - Context
 - Objectives
 - Research methodology
- 2. ARCHITECTURAL DESIGN
 - Two case studies
 - Design scenarios implementation (identification of active surfaces potential)
 - Energy use balance (iterative process design vs energy simulation)
- 3. ENERGY USE SCENARIOS
 - 100 % active surfaces
 - Selecting active surfaces
 - Using batteries
- 4. RESULTS
 - LCA Life-cycle analysis
 - Special highlights
- 5. WORK IN PROGRESS
- 6. OPEN QUESTIONS

CONTEXT | Switzerland

[1. Overview	2. Architectural design	3. Energy use scenarios	4. Results	5. Work in progress	6. Open questions

CONTEXT | Switzerland

Current practices and existing regulations* are far from Swiss objectives

₽

Architectural design could accelerate the process of linking BIPV with renovation of residential building stock

• (SIA 3801, 2016)

IDEAS Lunch | 28.06.2017

View from Microcity building roof | Neuchâtel

1. Overview

2. Architectural design 3. Energy use scenarios 4.

5. Work in progress 6. Open questions

OBJECTIVES | Expected research outcomes

- Development of convincing reference design examples of renovation projects with BIPV using real buildings
- Detailed multi-criteria assessment of proposed BIPV solutions :
 - quantitative (energy, environment, thermal and visual comfort, global costs, LCA)
 - qualitative (acceptance) workshop with experts and non-experts

View from Ch. de Belleroche | Neuchâtel

IDEAS Lunch | 28.06.2017

6. Open questions

1. Overview 2. Architectural design 3. Energy use scenarios

Results 5. Work in progres

METHODOLOGY | Four main phases

Phase 1 Phase 2 Phase 3 Phase 4 Identification of > Case study > Design scenarios with Multi-criteria selection **BIPV** solutions archetypes assessment (residential buildings) $(\mathbf{\psi})$ E0 Energy and emissions Current status BIPV conservation LCA Life Cycle Analysis Photovoltaic installation Baseline **BIPV** renovation 1 Indoor comfort 00 **BIPV** transformation Cost-effectiveness

CASE STUDIES | Current status

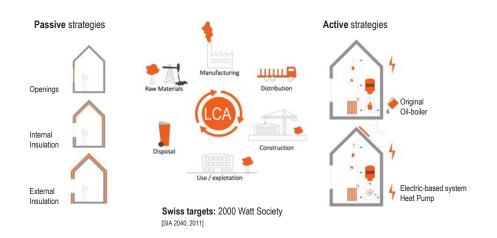
Archetype 1 – built in 1919

Rue du Beauregard 1 (Neuchâtel)

- 4 stories (8 apartments)
- Level of protection: II common
- Heating system: central heating (Oil boiler)
- Energy reference surface: 788 m²

Archetype 4 - built in 1972-73

Rue Troncs 12 and 14 (Neuchâtel)

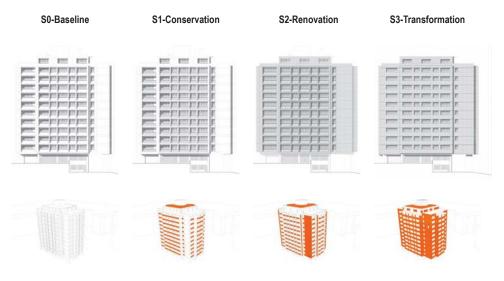

4. Results

- 10 stories + 1 attic (52 apartments)
- Level of protection: II common
- Heating system: central heating (Oil boiler)
- Energy reference surface: 5'263 m²

IDEAS Lunch | 28.06.2017

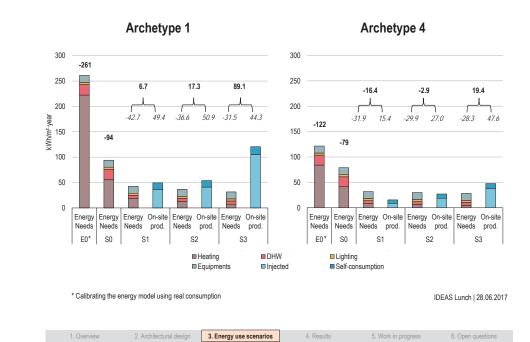
 1. Overview
 2. Architectural design
 3. Energy use scenarios
 4. Results
 5. Work in progress
 6. Open questions

DESIGN SCENARIOS IMPLEMENTATION | Renovation strategies

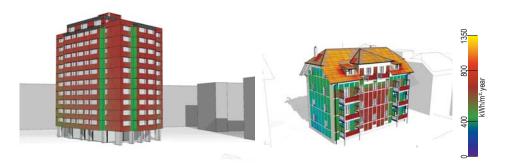

DESIGN SCENARIOS IMPLEMENTATION | Archetype 1

2. Architectural design

S0-Baseline	S1-Conservation	S2-Renovation	S3-Transformation
S. Aguacil Moreno, S. Lufkin and E. R study from the 1900s in Neuchâtel (Sw	ey. ACTIVE INTERFACES. Holistic design s iitzerland).15. Nationale Photovoltaik-Tagun	trategies for renovation projects with building g 2017, Lausanne, Switzerland, 2017.	g-integrated photovoltaics (BIPV): case IDEAS Lunch 28.06.2017


1. Overview	2. Architectural design	3. Energy use scenarios	4. Results	5. Work in progress	6. Open questions

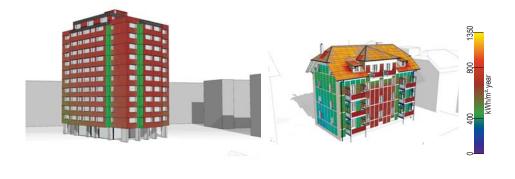
DESIGN SCENARIOS IMPLEMENTATION | Archetype 4


S. Aguacil Moreno, S. Lufkin and E. Rey. Towards integrated design strategies for implementing BIPV systems into urban renewal processes: first case study in Neuchâtel (Switzerland). Sustainable Built Environment (SBE) regional conference, Zurich, Switzerland, 2016.

DESIGN SCENARIOS IMPLEMENTATION | Checking the energy performance

ACTIVE SURFACES POTENTIAL | Energy balance

From the **design phase**, we have identified all possible active surfaces using standard and custom-size PV panels.



2. Architectural design 3. Energy use scenarios

5. Work in progress 6. Open questions

From the **design phase**, we have identified all possible active surfaces using standard and custom-size PV panels.

Does the energy assessment have to take into account 100% of identified active surfaces for renovation projects ?

IDEAS Lunch | 28.06.2017

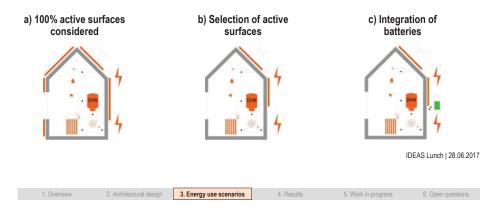
1. Overview 2. Architectural design 3. Energy use scenarios 4. Results 5. Work in progress 6. Open questions						
	1. Overview	2. Architectural design	3. Energy use scenarios	4. Results	5. Work in progress	6. Open questions

BAPV APPROACH | Exclusively feed-in-tariff approach with non-integrated PV

Equipment Lighting DHW Heating Energy needs 10 ct/kWh On-site PV production 10 ct/kWh 25 ct/kWh

Sizing criteria:

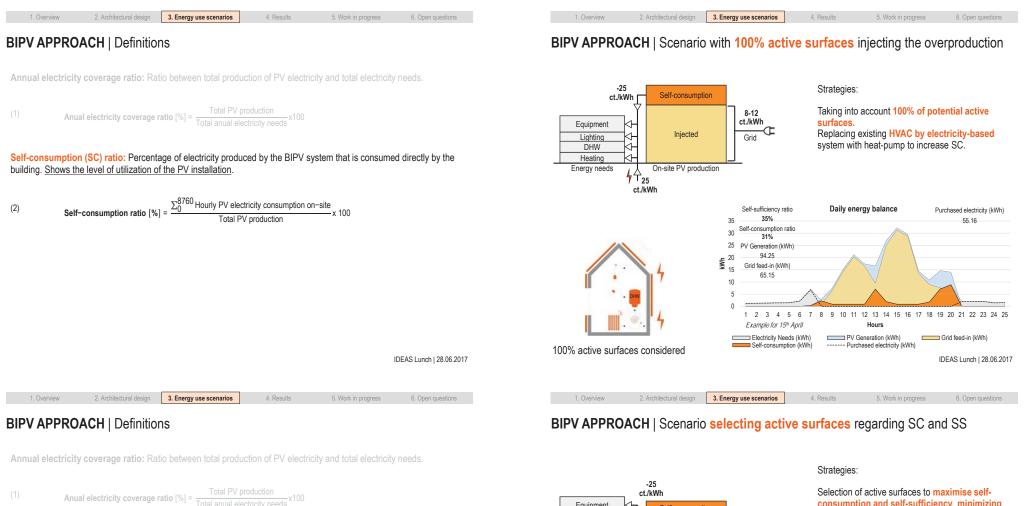
- Independent from the building demand
- PV installation as big as possible to maximise injection using BAPV (buildingattached photovoltaics) instead of BIPV
- Best orientation of PV panels using building
 as a support
- Based on financial aspects (fast return on investment energy service company)



SEAT Manufacture in Martorell (Barcelone)

BIPV APPROACH | Renovation of existing buildings in urban areas

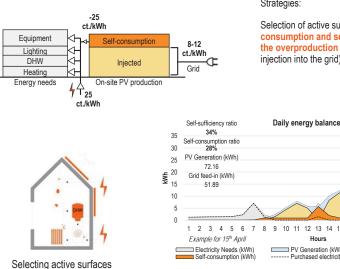
- Linking the BIPV installation to the needs of the building, as a symbiosis relationship:


 Building offers a support to the active elements
 BIPV panels offers protection (façade element) and electricity produced on-site
- Based on life-cycle analysis and cost, taking into account whole renovation process, starting from design phase to ensure the architectural quality
- · Comparing results with 2000 Watt society targets

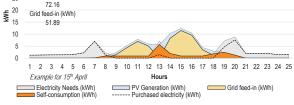
BIPV APPROACH | Definitions

Annual electricity coverage ratio: Ratio between total production of PV electricity and total electricity needs.

(1) Anual electricity coverage ratio [%] = Total PV production Total anual electricity needs x100



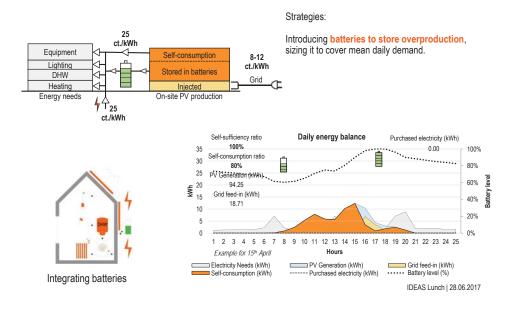
(2) Self-consumption ratio [%] =
$$\frac{\Sigma_0^{8760} \text{ Hourly PV electricity consumption on-site}}{\text{Total PV production}} \times 100$$


Self-sufficiency (SS) ratio: Ratio between the PV electricity consumed on-site and the total electricity needs. Shows the real coverage of the demand for electricity on the basis of self-consumption, equivalent to the level of energy independence of the building.

(3) **Self-sufficiency ratio** [%] =
$$\frac{\sum_{0}^{8760} \text{Hourly PV electricity consumption on-site}}{\text{Total electricity needs}} \times 100$$

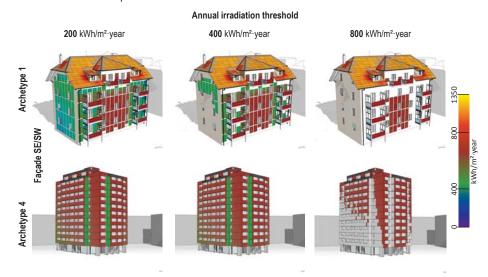
IDEAS Lunch | 28.06.2017

Selection of active surfaces to maximise selfconsumption and self-sufficiency, minimizing the overproduction (avoiding excessive electricity injection into the grid).


IDEAS Lunch | 28.06.2017

Purchased electricity (kWh)

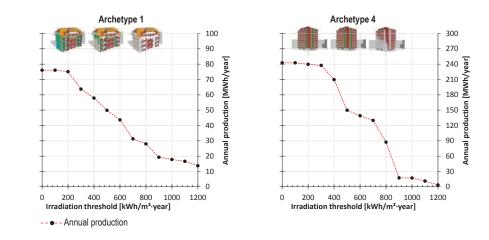
39.92


2. Architectural design

5. Work in progress 6. Open questions

BIPV APPROACH	Selection of active surfaces

3. Energy use scenarios

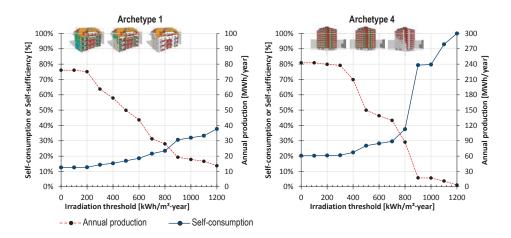


S. Aguacil Moreno, S. Lufkin and E. Rey. Inlegrated design strategies for renovation projects with Building-Integrated Photovoltaics towards Low-Carbon Buildings: Two comparative case studies in Neuchâtel (Switzerland). PLEA 2017 Edinburgh - Design to Thrive, Edinburgh, UK, 2017.

6. Open questions

1. Overview

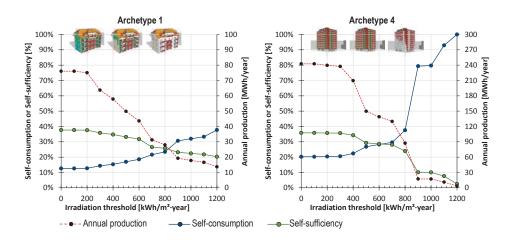
BIPV APPROACH | Selection of active surfaces


S. Aguacil Moreno, S. Lufkin and E. Rey. Integrated design strategies for renovation projects with Building-Integrated Photovoltaics towards Low-Carbon Buildings: Two comparative case studies in Neuchâtel (Switzerland). PLEA 2017 Edinburgh - Design to Thrive, Edinburgh, UK, 2017.

IDEAS Lunch | 28.06.2017

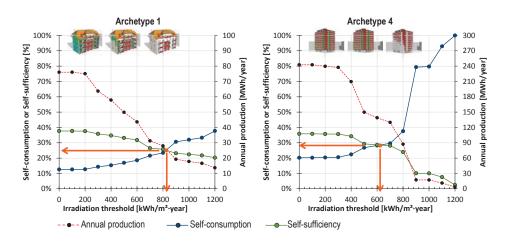
6. Open questions

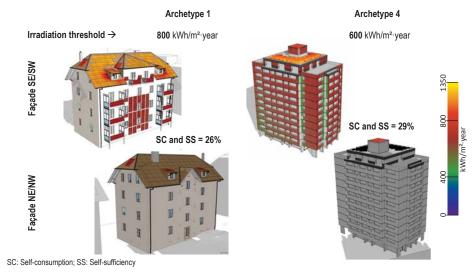
1. Overview	Architectural design	3. Energy use scenarios	Results	Work in progress	6. Open questions


BIPV APPROACH | Selection of active surfaces

S. Aguacil Moreno, S. Lufkin and E. Rey. Integrated design strategies for renovation projects with Building-Integrated Photovoltaics towards Low-Carbon Buildings: Two comparative case studies in Neuchätel (Switzerland). PLEA 2017 Edinburgh - Design to Thrive, Edinburgh, UK, 2017. 5. Work in progress 6. Open questions

BIPV APPROACH | Selection of active surfaces

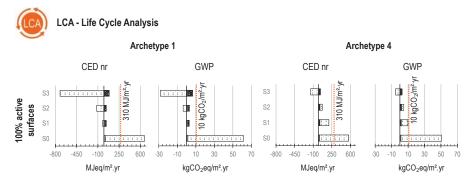

2. Architectural design


S. Aguacil Moreno, S. Lufkin and E. Rey. Integrated design strategies for renovation projects with Building-Integrated Photovoltaics Iowards Low-Carbon Buildings: Two comparative case studies in Neuchâtel (Switzerland). PLEA 2017 Edinburgh - Design to Thrive, Edinburgh, UK, 2017. IDEAS Lunch | 28.06.2017

1. Overview 2. Architectural design 3. Energy use scenarios 4. Results 5. Work in progress 6. Open questions						
	1. Overview	2. Architectural design	3. Energy use scenarios	4. Results	5. Work in progress	6. Open questions

BIPV APPROACH | Selection of active surfaces

BIPV APPROACH | Selection of active surfaces

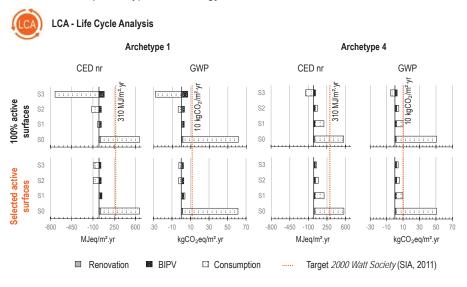


S. Aguacil Moreno, S. Lufkin and E. Rey. Integrated design strategies for renovation projects with Building-Integrated Photovoltaics towards Low-Carbon Buildings: Two comparative case studies in Neuchâtel (Switzerland). PLEA 2017 Edinburgh - Design to Thrive, Edinburgh, UK, 2017.

IDEAS Lunch | 28.06.2017

COMPARISON | archetypes and energy use scenarios

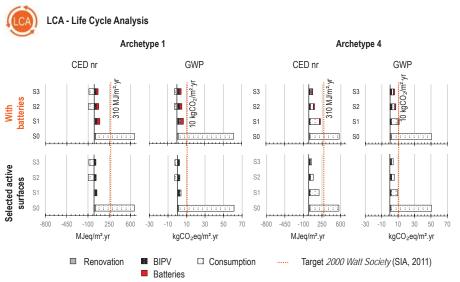
CEDnr: non-renewable cumulative energy demand GWP: global warming potential


Renovation BIPV Consumption ---- Target 2000 Watt Society (SIA, 2011)

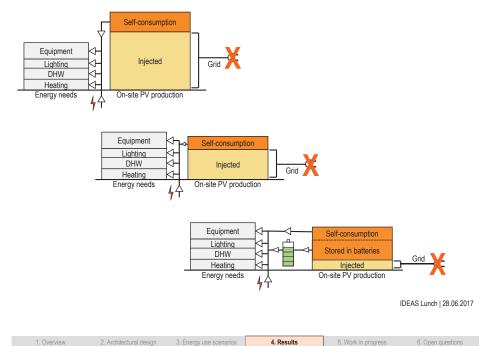
S. Aguacil Moreno, S. Lufkin and E. Rey. Integrated design strategies for renovation projects with Building-Integrated Photovoltaics towards Low-Carbon Buildings: S. Aguacil Moreno, S. Lufkin and E. Rey. Integrated design two comparative case studies in Neuchâtel (Switzerland). PLEA 2017 Edinburgh - Design to Thrive, Edinburgh, UK, 2017. Two comparative case studies in Neuchâtel (Switzerland).

S. Aguacil Moreno, S. Lufkin and E. Rey. Integrated design strategies for renovation projects with Building-Integrated Photovoltaics lowards Low-Carbon Buildings: Two comparative case studies in Neuchâtel (Switzerland). PLEA 2017 Edinburgh - Design to Thrive, Edinburgh, UK, 2017. 4. Results

5. Work in progress

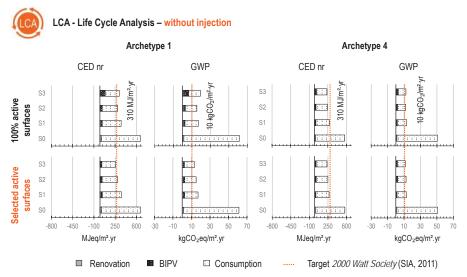

COMPARISON | archetypes and energy use scenarios

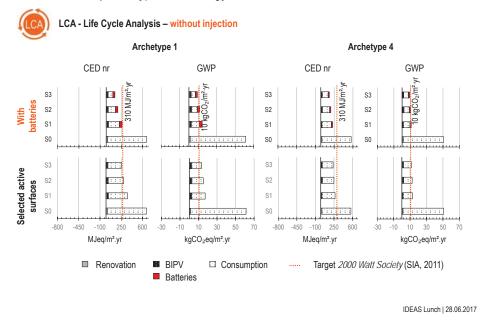
S. Aquacil Moreno, S. Lufkin and E. Rey. Integrated design strategies for renovation projects with Building-Integrated Photovoltaics towards Low-Carbon Buildings: Two comparative case studies in Neuchâtel (Switzerland). PLEA 2017 Edinburgh - Design to Thrive, Edinburgh, UK, 2017. IDEAS Lunch | 28.06.2017


		_			
1. Overview 2. A	Architectural design 3	. Energy use scenarios	4. Results	5. Work in progress	6. Open questions

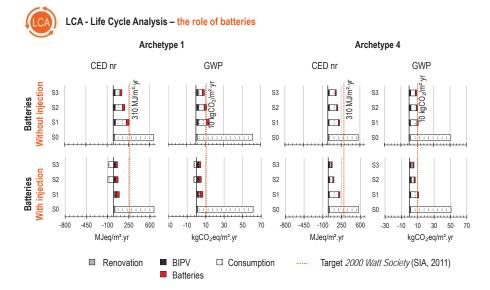
COMPARISON | archetypes and energy use scenarios

S. Aguacil Moreno, S. Lufkin and E. Rey. Integrated design strategies for renovation projects with Building-Integrated Photovoltaics towards Low-Carbon Buildings. Two comparative case studies in Neuchâtel (Switzerland). PLEA 2017 Edinburgh - Design to Thrive, Edinburgh, UK, 2017.


COMPARISON | archetypes and energy use scenarios


4. Results

2. Architectural design 3. Energy use scenarios 4. Results


COMPARISON | archetypes and energy use scenarios

4. Results

1. Overview	2. Architectural design	3. Energy use scenarios	4. Results	5. Work in progress	6. Open questions

COMPARISON | archetypes and energy use scenarios

SPECIAL HIGHLIGHTS | Preliminary findings

 Energy renovation projects without PV integration are no longer an option if we want to achieve long-term carbon and energy targets.

4. Results

- Results of the two case studies highlight the importance of selecting the active surfaces to achieve carbon neutrality.
- These elements allow us to achieve the performance objectives in a more rational way by sizing the PV installation to minimize the grid-injected energy. This in turn allows avoiding the intrinsic problem linked to decreasing prices of injected electricity and the incompatibilities with the existing grid.
- Batteries could have a key role to achieve the Swiss targets if the injection into the grid is not possible.

```
IDEAS Lunch | 28.06.2017
```

6. Open questions

1. Overview	2. Architectural design	Energy use scenarios	4. Results	5. Work in progress

WORK IN PROGRESS | Next steps and milestones

- Finalization of the two first case studies
 - Realization of expressive 3D visualizations
- Three other case studies (activities conducted in parallel)
 - Detailed design scenarios for each case study
 - Optimization and detailed assessment of design scenarios
 - Realization of expressive 3D visualizations
- In-depth comparative analysis of financial parameters
- Cross comparison of modeling scenarios (e.g. weather, vegetation)
- Workshop with experts / workshop with non-experts (qualitative assessment of the level of acceptance of the design propositions)