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Abstract.
The EPED model has been designed to predict the pedestal height and width

from a minimal set of parameters and using the stability of the pedestal region for
global MHD peeling-ballooning (P-B) modes as well as local Kinetic Balooning
Modes (KBMs). This approach has been validated for type-I ELMy H-modes and
Quiescent H-modes (QH) but can also be used for other types of H-modes where
it usually sets an upper limit on the achievable pedestal height.

Using the recently developed EPED-like model called EPED-CH and based on
the equilibrium codes CHEASE and CAXE and the MHD stability code KINX,
we investigate in this work the effect of negative triangularity on the pedestal
structure. Our simulation results confirm the experimental results from TCV
where a reduction of the pedestal height was observed when going from positive to
negative top triangularity. This was interpreted as a degradation of the peeling-
balooning stability due to the closed access to the second stability region for
balooning modes in the case of negative triangularity. This effect is further
enhanced by the coupling to the KBM stability criterion in EPED simulations.

The novel concept of the Negative Triangularity Tokamak (a DEMO-sized
machine) is also investigated. Again a strong reduction of the pedestal height
and width is observed going from positive to negative triangularity for up-down
symmetric equilibria. The pedestal height is also reduced going to more up-down
asymmetric cases. The beneficial effect of the global β value on the pedestal
height, which is linked to the second stability access, is strongly reduced for
negative triangularity.
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1. Introduction

The heat exhaust problem becomes more and more important as tokamaks are evolving
to the reactor scale. Namely, the divertor plates must be able to withstand large heat
fluxes, especially during transient events such as Edge Localized Modes (ELMs). The
standard approach optimises first the core performance. This has led to tokamaks with
positive triangularity which maximise the pedestal height by providing good stability
properties. However higher pedestals often lead to larger ELM losses and transient
heat fluxes that require mitigation. The Negative Triangularity Tokamak (NTT) is a
reactor concept which uses another approach with the heat exhaust problem as the
primary concern [1, 2].

By moving the X-point to the low-field side (LFS) and thus to larger values of R,
the divertor wetted area is larger leading to a geometrical reduction of the peak heat
flux. In addition the magnetic field amplitude at the divertor coils is smaller allowing
for more innovative divertor concepts like the snowflake divertor which can help further
reduce the heat flux. L-mode experiments on TCV with negative triangularity have
shown an improvement by a factor of two in the electron energy confinement compared
to mirrored positive triangularity discharges in low collisionality conditions [3], the
ion energy confinement also improved and as a result the global energy confinement
time was nearly doubled. This improvement was not recovered in high collisionality
conditions such as H-mode so far. However, it was shown in TCV H-mode experiments
that ELMs are becoming more frequent and carry less energy when going from positive
to negative triangularity [4]. However this correlates with a reduction of the pedestal
height pped and global confinement. On the negative side, plasmas are found to be
more vertically unstable [5] and a new study using the GBS code has found that the
scrape-off layer width is smaller [6].

The usual figure of merit when considering ELM losses is the value of the ELM
energy loss ∆WELM normalised to the pedestal stored energy Wped = (3/2)ppedV
where V is the plasma volume. This quantity has been recognised to be similar across
devices when the plasma conditions are similar [7]. However certain experimental
studies have found that reduced ∆WELM do not necessarily translate into reduced
heat fluxes as the ELM wetted area can also be reduced in that case [8]. The EPED
model [9, 10] has been successful at predicting the pedestal structure, namely its height
pped and width ∆, for tokamaks operating in type-I ELMy H-modes and Quiescent
H-modes (QH) [11]. For other regimes, such as type-III ELMy, ELM-mitigated or
ELM-suppressed regimes, the experimental pedestal height generally lies below the
EPED prediction. The motivation for this article is to study how adopting negative
triangularity as part of the tokamak design can help reduce the transient heat loads due
to ELMs. To this end we use the EPED model to study the influence of triangularity
and other plasma parameters on pped and Wped using the NTT as the base case, and
we make the assumption that lower Wped means lower ∆WELM .

After this introduction, section 2 shortly describes the EPED model before
introducing EPED-CH, a new implementation of the EPED model (in its EPED1
version) using the SPC suite of codes in section 3. A prediction for the Negative
Triangularity Tokamak pedestal height is formulated in section 4 which then discusses
the effect of negative triangularity on the pedestal structure. Finally section 5 presents
a discussion of the results presented in this paper.
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2. The EPED Model

The EPED model [9, 10] relies on the hypothesis that the pedestal evolution is limited
by two constraints. The first constraint is the crossing of the peeling-ballooning (P-B)
limit which triggers type-I ELMs. This is a global constraint on the pedestal structure.
The second constraint is the onset of small-scale turbulence in the pedestal region,
assumed to be driven by kinetic ballooning modes (KBMs), although more local in
nature this can also be expressed as a global constraint on the pedestal structure.

The peeling-ballooning constraint is generally computed using a linear ideal MHD
code (such as ELITE for the original EPED model) which computes for a given
equilibrium the ideal MHD growth rate as a function of the toroidal mode number
n. Diamagnetic stabilisation of high-n modes is usually included using simplified
analytic theory [12] or fits to two-fluid calculations [10]. The radially integrated
KBM constraint, in the EPED1 version, calculates a scaling of the pedestal width
in normalized poloidal flux with

√
βp,ped with a coefficient, c1, of order 0.1 [9], and for

simplicity assigns a coefficient of c1 = 0.076, consistent with a set of observations on
DIII-D. EPED1.6, a later version, uses infinite-n proxy calculations, fit to an analytic
extension, to calculate c1 separately for each set of inputs [10]. Both versions find
similar levels of agreement with observations. In the following sections we will use the
form used in the EPED1 version, which we recall here:

∆ = 0.076
√
βp,ped. (1)

Equation (1) will be referred to as the KBM constraint.
Using a minimum number of input parameters (R0, a, κ, δ, Bt, Ip, βN , ne,ped,

Zeff ), a series of model equilibria with varying pedestal width ∆ and height pped
are generated. The peeling-ballooning stability curve is computed as the maximum
allowable pedestal height for each value of the pedestal width ∆. The intersection
of this curve with the one obtained from equation (1) yields the prediction for the
pedestal structure (pped, ∆). This approach has been validated on many different
tokamaks obtaining agreement with the experimental values below 15− 20 % [10]

3. The EPED-CH implementation

3.1. Structure

The basic block for an implementation of the EPED model is the generation of a model
equilibria that has a given pedestal height pped and width ∆ and the computation of
its stability (only for ideal MHD in the case of the EPED1 version). We will refer to
this as a cell.

3.1.1. Equilibrium construction As in the original EPED model and consistently
with previous studies such as [13], the equilibrium is generated by assuming that the
electron temperature Te and density ne have a tanh shape in the pedestal region (as
a function of the normalized poloidal flux ΨN ) and a polynomial shape in the core.
The ion profiles are computed using Ti = Te and with a radially flat profile for Zeff
for the computation of ni. The pressure profile is obtained from p = neTe+niTi. The
parallel current density I‖ = 〈J · B〉/〈B · ∇φ〉 in the pedestal is dominated by the
bootstrap current which is computed using the formulas found in [14, 15]. The core
I‖ profile is polynomial. An example of the profiles obtained for standard parameters
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Figure 1. Example of profiles obtained in EPED-CH for Te (left), ne (center)
and I‖ (right). For ne and Te, the separation between the different colors indicate
the value at the separatrix and at the pedestal top.

is shown in figure 1. Finally the shape of the plasma boundary is given by a discrete
set of points which can come from analytical formulas, from a simulation or from an
experimentally reconstructed equilibrium.

Using all these inputs, the equilibrium is constructed with the CHEASE code
[16]. We also use an iterative loop to update the free parameters in our model so as
to match the input parameters and to model the pedestal bootstrap current within
the required accuracy. Due to the rather complex dependencies between the different
input parameters (for example between Ip and the pedestal bootstrap current profile),
under-relaxation is often needed to avoid oscillations between iterations. We can also
save iterations by providing a good initial guess for all the free parameters (such as the
previous (∆, pped) cell). The equilibrium construction then takes less than 4 iterations
for a 1% accuracy. It is also possible to construct directly an equilibrium where the
pedestal profiles satisfy the KBM constraint (1), this can require two more iterations
if the average poloidal field at the pedestal top is used.

3.1.2. Stability evaluation In EPED-CH the KBM constraint is computed using
equation (1) as in the EPED1 version in lieu of repeating the full BCP calculations
used in EPED1.6. Hence only the peeling-balloning stability of the pedestal needs
to be computed. In EPED-CH this is done using the KINX code [17] for a set of
chosen toroidal mode numbers: n = 5, 6, 8, 10, 15, 20, 30, 40. This set is similar to
the one used in the original implementation of the EPED model and is chosen to be
representative of the global pedestal stability.

The KINX code is an ideal MHD stability code which uses finite hybrid elements
with no poloidal Fourier decomposition in the poloidal direction. This allows a
full description of the plasma separatrix including X-points. KINX uses ballooning
factor extraction [18] by applying the following formula for transforming the MHD
displacement

ξ(ψ, θ, ϕ) = ξ̃(ψ, θ) exp in

(
ϕ−

∫ θ

θ0

ν(ψ, θ) dθ

)
(2)

where ν(ψ, θ) = B · ∇ϕ/B · ∇θ is the local field-line pitch and ξ̃ will be the
actual unknown function in the eigenvalue problem. This transformation reduces
the variation of ξ̃ as a function of θ for flute-like modes where B · ∇ξ ' 0. This
helps reducing the necessary grid resolution to achieve the same accuracy for the
growthrate and eigenvector and thus saving substantial computing time. Therefore
the full ideal model is maintained and solved for both low n = 1, 2, . . . and high n
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numbers (up to 100). The code can also be run as a “δW-code” which can track
solutions as they enter the stable region where γ2 < 0 and allows to compute stability
boundaries more precisely. Figure 2 shows an example of results from the KINX code
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Figure 2. Example of results of the EPED-CH peeling-ballooning stability
analysis using KINX. The different curves correspond to different values of the
pedestal width ∆ with all other parameters kept constant. Here γ2 means−δW/K
with negative values corresponding to stable equilibria for the corresponding
toroidal mode number n.

for a series of equilibria obtained with the procedure described in the previous section
and with increasing pedestal width ∆. Before runnning KINX, we must generate
the appropriate quasi-polar grid of the equilibrium using the Grad-Shafranov solver
CAXE [19].

The effect of diamagnetic stabilisation is currently not included in the EPED-
CH implementation. However since our study concerns mostly configurations with
negative triangularity it is important to note that for these configurations the effect
of the diamagnetic stabilisation on the stability boundary is less than for standard
positive triangularity configurations [2]. Also it was showed in [20] that in JET ITER-
like wall experiments the inclusion of both effects of diamagnetic flows and plasma
rotation resulted in peeling-ballooning stability limit for high n modes similar to the
one obtained with ideal MHD, these results followed studies for analytical equilibria
[21] and JT-60U experiments [22].

3.1.3. Looking for the solution After describing the techniques to construct an
equilibrium with a given pped and ∆ and to compute its pedestal stabilty, we can
now move on to describe how the prediction is actually obtained. In the EPED-CH
implementation, this can be done in one of two ways.

First we can simply scan the (pped,∆) two-dimensional space and compute the
pedestal stability for each equilibrium. The solution is then obtained by looking for
the intersection of the curves corresponding to the KBM constraint (1) and to the
marginal pedestal stability as computed by KINX for all toroidal wavenumbers. This
method may take more time to estimate the solution but can also give additional
information such as the sensitivity to changes in the two constraints. Note that CPU
time can be saved by minimizing the changes in pped and ∆ for the choice of the next
cell during the scan, thus providing a good initial guess for the construction of the
next equilibrium (see figure 3).
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Figure 3. Cartoon illustrating how we can design a path in the (pped,∆) plane
to minimise changes between successive cells when scanning this 2D space.

Alternatively we can choose the next (pped,∆) cell based on the results of the
previous cells and their position relative to the two constraints in the model as
explained by figure 4. Since for EPED1 pped is proportional to ∆2, we can use a
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Figure 4. Direction suggested by the search algorithm based on the stability of
the current cell. The first letter correspond to the KBM constraint and the second
to the peeling-ballooning constraint (with S indicating stability and U instability).
In the case where the KBM constraint is equation (1), a simple bisection is used.

simple bisection algorithm where we evolve ∆ based on the peeling-ballooning stability
of the current equilibrium. Using this method, EPED-CH can obtain a solution with
a precision of 0.1 % of the minor radius for ∆ in about 6 to 8 iterations. Provided
that the stability calculations for all 8 toroidal mode numbers can run in parallel, the
required computing (user) time is between 10 and 15 minutes on a standard CPU.

3.2. Comparison with the original EPED results

Before beginning our analysis of the pedestal structure in negative triangularity
tokamaks, we compare the results obtained with the present EPED-CH to those
obtained and published with the original EPED1 model. We perform two simulations
based on two DIII-D discharges. We reproduce in table 1 the list of input parameters
for these two discharges found in [23]. We present in figure 5 a comparison between our
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DIII-D shot R0/m a/m κ δ Bt/T Ip/MA βN ne,ped/1019 m−3

#132003 1.7 0.58 1.8 0.2 1.62 1.16 2.1 5
#132017 1.7 0.59 1.8 0.55 2.1 0.85 2.3 4

Table 1. List of input parameters for the two DIII-D discharges considered (from
[23]).

results using EPED-CH and the original EPED1 results. We obtain a good agreement
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Figure 5. Comparison of the results of two DIII-D discharges using EPED-CH
with the original EPED1 results (see figure 5 of [23] where EPED1 is compared
with the experimental values). The level of agreement between EPED-CH and
EPED1 is comparable to the one of EPED1 with experimental values symbolised
by the error bars of 20 % [9].

between the two considering the potential differences in the model assumptions, such
as for example the specific profile and equilibrium shapes and the absence of the
diamagnetic stabilisation effect in EPED-CH. In particular, our EPED-CH simulations
are able to reproduce the large difference in pedestal structure between these two cases.

3.3. Comparison with TCV experiments

We continue our testing of EPED-CH by applying it to two similar TCV discharges.
The input parameters are shown in table 2, the main difference between these two

TCV shot R0/m a/m κ δ Bt/T Ip/MA βN ne,ped/1019 m−3

#38006 0.88 0.22 1.6 0.42 1.4 0.37 1.3 3.6
#37391 0.88 0.22 1.6 0.42 1.4 0.37 0.9 3.4

Table 2. List of input parameters for the two TCV discharges considered. The
differences are highlighted in bold.

discharges being that TCV #37391 was purely ohmically heated while TCV #38006
had X2 EC auxiliary heating. This resulted in a larger normalised beta for TCV
#38006 and also a slightly larger density at the top of the pedestal. A change in the
ELM regime was also observed where TCV #38006 had type-I ELMs whereas TCV
#37391 had type-III ELMs.

We show in figure 6 the results of the EPED-CH analysis for these two discharges.
The estimate of the experimental value for Te at the top of the pedestal Te,ped
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is also shown, we do not show an estimate of the pedestal width ∆ due to the
relative low number of measurement points inside the pedestal. For the type-I
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Figure 6. EPED-CH analysis of two TCV discharges. (a) TCV #38006 has
type-I ELMy behaviour and EPED-CH recovers well the pedestal height. (b)
TCV #37391 has type-III ELMy behaviour and EPED-CH over-estimates the
pedestal height by about 100 eV. The parameters for these two discharges can be
found in table 2. The blue crosses indicate the successive iterations of EPED-CH
when looking for the solution, they are labelled by their iteration number. The
error bars for the experimental pedestal height correspond to an uncertainty level
of 15 % which is consistent with previous analyses of similar discharges [24].

ELMy discharge TCV #38006, our EPED-CH simulation predicts a temperature at
the top of the pedestal of about 500 eV in good agreement with the experimental
one at 540 eV. However for type-III ELMy discharge TCV #37391, the simulation
largely overestimates the pedestal height predicting a value of 440 eV whereas the
experimental value is estimated at 320 eV. The small change in the simulation results
between the two discharges can be explained by the proximity of the two sets of input
parameters and the relatively small effect of βN for these weakly-shaped plasmas.
Moreover these results with the EPED1 model which aims at predicting the pedestal
structure for type-I ELMy discharges are consistent with [24] which found that type-
III ELMy discharge are further away from the peeling-ballooning limit. The pedestal
width for typical type-I ELMy discharges in TCV is estimated to 8 mm at the plasma
mid-plane [24], this corresponds to ∆ ' 0.053 in units of ΨN for the equilibria
considered here. This value is in qualitative agreement with our simulation for TCV
#38006 which predicts ∆ ' 0.037.

4. EPED-CH analysis of plasmas with negative triangularity

EPED-CH simulations are able to reproduce with good accuracy both original EPED
results and the pedestal structure in type-I ELMy H-mode TCV experiments. We will
now focus our analysis on plasmas with negative triangularity.

4.1. Analysis of a TCV upper triangularity scan

We start with a TCV discharge where the upper triangularity (δu) was varied from
positive to negative values while all other parameters were kept constant (in particular,
the lower triangularity was close to 0). We will focus on the two stationary phases
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(lasting about 150 ms) at the extreme points in the scan which correspond to δu = 0.18
at t = 0.7 s and δu = −0.19 at t = 1.8 s as shown in figure 7. The input parameters for
the two simulations are summarised in table 3. The simulation results show a drop in

TCV time R0/m a/m κ δu Bt/T Ip/MA βN ne,ped/1019 m−3

0.7 s 0.88 0.21 1.7 0.18 1.4 0.30 1.1 2.5
1.8 s 0.88 0.21 1.7 −0.19 1.4 0.28 0.8 2.5

Table 3. List of input parameters for the two time slices of TCV #43872. Note
that only the plasma upper triangularity is shown.

Te,ped of about 200 eV for δu < 0. This corresponds to a drop in pe,ped of about 40 %
which is in qualitative agreement with the experimental drop of 20 % found in [4].
Figure 7 also shows the EPED-CH predicted profiles compared with the experimental
measurements from Thomson Scattering [25, 26]. Again in this case, it was not possible
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Figure 7. (a) Boundary shapes for TCV discharge #43872 with the positive δu
in red and the negative δu in blue. (b) Electron temperature profiles predicted by
EPED-CH as solid lines compared to the Thomson Scattering measurements as
circles with error bars, the same color coding as (a) applies. A single TS pulse is
showed for both triangularities. EPED-CH recovers the qualitative experimental
result with a drop of Te,ped of about 200 eV.

to estimate the pedestal width ∆ from the experimental measurements, however the
predicted value ∆ = 0.035 is still in qualitative agreement with the values found
in [24]. It is important to note that this drop in pedestal height is only due to a
change in the plasma upper triangularity and resulting pedestal stability, all other
parameters including the line-averaged and pedestal top electron density remained
constant during the scan except for an increase of the EC X2 power. The stiff nature
of the core transport explains the concurrent drop in βN (despite the increase in X2
power) and we do not expect a large effect of this drop in βN on the pedestal stability
in return, as will be discussed below.

4.2. Predictions for the Negative Triangularity Tokamak

The Negative Triangularity Tokamak (NTT) concept considered here is a large
conceptual machine with the following parameters R0 = 9 m, a = 3 m, B0 = 5 T,
Ip = 15 MA. It has an elongation of κ = 1.8, a lower single-null configuration with
the X-point close to the outer wall with a lower triangularity of δl = −0.85 . It was
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shown that this configuration can be stable up to βN ' 3 with high (δu = −0.5) or
low (δu = 0) upper triangularity [1, 2].

We assume that the pedestal density is close to the Greenwald density which for
these parameters means ne,ped ' 5× 1019 m−3 and that the peaking factor ne,0/ne,ped
(where ne,0 is the central density) is 1.5 which is close to the value predicted for ITER.
In terms of the normalised density gradient, this means R/Lne

' 1. For comparison
purposes we will also consider a case where the shape is flipped around the R = R0

axis such as to obtain a standard Positive Triangularity Tokamak (or PTT) and all
other parameters are kept constant. Unless stated otherwise the case with low (δu = 0)
upper triangularity will be considered.

4.2.1. Pedestal structure Our EPED-CH simulation for the NTT case yields the
following prediction for the pedestal top pressure pped = 9.2 kPa and pedestal top
electron temperature Te,ped = 640 eV. If we now switch to the PTT case, we obtain
pped = 39 kPa, Te,ped = 2.7 keV. In figure 8 we show the detailed dependence of the
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Figure 8. Results of the EPED-CH analysis. The solid line indicates the
peeling-ballooning stability boundary, the dashed line the KBM constraint given
by equation (1) and the square marks the position of the EPED-CH prediction.
The blue items correspond to the NTT basic parameters, the red ones to the PTT
case where the shape is flipped around R = R0.

constraints in both cases. First the shape of the curve representing the KBM constraint
is mostly unchanged due to the fact that in this case the relationship between pped and
∆ only involve Ip and the perimeter of the plasma boundary, which are unchanged
between both cases. For the peeling-ballooning stability constraint, the maximum
pedestal height for the NTT case is smaller by a factor of two for a given pedestal
width. The coupling of the two constraints in the EPED1 model yields an even bigger
reduction as pped is reduced by a factor 4 as compared to the PTT case.

As the volume increase between positive and negative triangularity is very
moderate, only increasing by 5 % for NTT compared to PTT, the change for Wped =
(3/2)ppedV is also of a factor of 4 going from 39.1 MJ for NTT to 157 MJ for PTT. This
strong reduction in the pedestal stored energy should translate in a strong reduction
of the ELM losses if ∆WELM/Wped is similar in both cases, as has been observed in
TCV ELMy H-modes with negative triangularity. We would like to stress the fact
that the PTT case is not optimised with respect to the pedestal height: as can be
seen in figure 10 of section 4.2.4 pedestal heights of 80 kPa (more than 8 times larger
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than the standard NTT case) can be obtained by only varying the top and bottom
triangularities.

4.2.2. Core performance A smaller pedestal is beneficial regarding power handling
but this should not be at the cost of the overall performance. While, strictly speaking,
the EPED1 model does not predict profiles in the core, it does include nominal core
profiles which match the input βN , and can be used as a starting point to investigate
core physics. In our simulation for the NTT base case, good core performance was
achieved with a central Te of about 40 keV. Since the central temperature is a result
of our choice of βN close to the global stability limit (2.9 in our case [2]) and density
peaking factor, we need to check the normalised temperature gradient values in order
to assess the plausibility of such central value. If we take the average of R/LTe between
the sawtooth inversion radius (ρtor,norm = 0.3) and the pedestal top (ρtor,norm = 0.95)
we obtain a value of 14. This value can even be lowered in our simulations if we assume
nped > nGW or if we consider a larger density peaking factor. Nevertheless, this value
is still compatible with the present understanding of core turbulence. For example, in
[27] it is shown that for dominant electron heating discharges and in a broad range
of tokamaks the value of R/LTe at mid-radius is in the range of 8 to 12. In section
3.3.1 of [28] it is stated that with dominant electron heating the experimental values of
R/LTe

can exceed the turbulent threshold value (typically in the range of 3 to 5) by a
factor of 2 to 3. Another figure of merit for the core profile peaking is the ratio of the
volume-averaged pressure to the pedestal pressure 〈p〉V /pped, its value reaches around
30 for our NTT base case, well above the PTT case at 7.5 and experimental values
both on TCV and other tokamaks typically around 2 to 4. The feasability of such
values both for R/LTe

and 〈p〉V /pped will have to be confirmed using first principles
transport simulations.

4.2.3. Comparing positive and negative triangularity In order to better understand
the difference in the peeling ballooning stability for positive and negative triangularity,
we will analyse the predicted equilibria using standard pedestal stability analysis.
This standard analysis consists in generating a series of equilibria by scaling p′ and
I‖ independently in the pedestal region keeping a fixed pedestal width ∆ and then
computing the finite-n peeling-ballooning stability boundary using KINX and the
local infinite-n ballooning stability boundary [29] at each magnetic surface inside the
pedestal region.

In the case of positive triangularity there exists a second stability region for local
ballooning modes which are stable at high pedestal current (or low magnetic shear)
and high pressure gradient. The stability of medium to high n mode numbers follows
the same trend while the low n modes are unstable for large pedestal current. If we
look at the stability diagram in figure 9(a) we obtain the well-known “nose” shape
where a path to large pressure gradients is open by increasing the current density in
the pedestal.

As shown in [2] and in figure 9(b), for negative triangularity, the second stability
region for ballooning modes is absent and the nose disappears, preventing access to
the high pressure gradient region. Instead all mode numbers share essentially the
same stability boundary where the maximum stable pressure gradient decreases with
increasing pedestal current density.
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Figure 9. Comparison of the pedestal stability diagram for positive (a) and
negative (b) triangularity. The thick solid color lines indicate the stability
boundaries for the different toroidal mode numbers. The maximum growth rate
is shown as a contour plot (darker colours indicate larger growth rate). Red
crosses correspond to equilibria whose pedestals are unstable for local infinite-n
ballooning modes (the same representation was used previously in [2, 18]), the
dashed red curve separates these equilibria from those that are completely stable
for local infinite-n ballooning modes. For this figure the case with high upper
triangularity (|δu| = 0.5) was used as reference, the full list of parameters can be
found in section 4.2.

4.2.4. Sensitivity to triangularity We now perform some sensitivity studies for our
EPED-CH prediction.

As a first study we vary independently the upper and lower triangularity of the
plasma by using equations (A.1) and (A.2) as the prescribed boundary. The results
are presented in figure 10 and they show that pped (and ∆) increase when going from
negative to positive triangularity. The pedestal height is seen to depend mostly on
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Figure 10. Projection of the results of the two-dimensional scan in (δu, δl) (other
parameters are kept fixed). The pedestal height pped is plotted against the mean
triangularity δ = (δu +δl)/2. Black circles indicate up-down symmetric equilibria
where δu = δl. The color indicates deviation from up-down symmetry going from
blue to green for more asymmetry.

the average triangularity δ = (δu + δl)/2. But at constant δ, the highest pedestals are
obtained when the plasma is up-down symmetric with δu = δl. Another important
result is that below a value of δ = −0.2, the pedestal height is almost independent
of the choice of upper and lower triangularity. Therefore our results obtained for the
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low upper triangularity design (δu = 0) remain true for the large upper triangularity
design (δu = −0.5).

4.2.5. Sensitivity to the pedestal density If we now vary the density at the top of the
pedestal, we see that the pedestal pressure increases with increasing pedestal density
although the pedestal temperature decreases. We performed the same scan in the case

n
ped
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Figure 11. Pedestal height pped as a function the pedestal density ne,ped for two
ne,ped scans based on the NTT (blue) and PTT (red) cases (other parameters are
kept fixed). The overall trend is reversed for the two cases. The case with high
upper triangularity (|δu| = 0.5) was used as reference, the full list of parameters
can be found in section 4.2. For the PTT case with low upper triangularity,
the pedestal height first increases with pedestal density before decreasing for
ne,ped > 8× 1019 m−3.

of positive triangularity and we can see in figure 11 that the global trend is reversed.
This can be explained in light of the stability diagrams: both simulations lie in the
range of parameters where the increase of the density, and thus of the collisionality in
the pedestal, causes a decrease of the bootstrap current density. This means that the
solutions will have to move down in the (J‖, α) diagram and the variation in α will
result from the particular shape of the stability boundary (see the magenta arrows in
figure 12). For positive triangularity the solution moves to lower values of α (and thus
lower pedestal height) while for negative triangularity the solution moves to larger α
values.

Note that for both ne,ped scans the case with high upper triangularity (|δu| = 0.5)
was used. For low upper triangularity, the only difference concerns the positive
triangularity. In this case the EPED prediction is not at the tip of the “nose” in
the (J‖, α) diagram but rather on its upper boundary, and when ne,ped increases the
solution first moves towards the tip of the nose, meaning higher α, pped values before
coming down the lower boundary towards lower α, pped values.

4.2.6. Sensitivity to the core pressure Finally we investigate the effect of increasing
the global βN on the pedestal structure in figure 13. For positive triangularity we
observe a large increase of the pedestal height with increasing βN . This is a well-
known effect [30, 31] which is linked to an easier access the second stability region for
ballooning modes and where the nose in the stability diagram gets longer. However,
due to the closed access to the second stability region for negative triangularity, the
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Figure 12. Repetition of figure 9 where we now indicate the trend when the
pedestal density is increased. In both cases the pedestal current density decreases,
leading in a decrease of α for the PTT case and an increase of α for the NTT
case.
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Figure 13. Evolution of the pedestal height pped when the global normalised
beta βN is increased for the negative (blue) and positive (red) triangularity case
(other parameters are kept fixed). The full list of parameters can be found in
section 4.2. For positive triangularity the stability is improved allowing for higher
pedestals but also higher ELM losses, while for negative triangularity the effect
is much smaller.

pedestal height is only weakly increasing with βN for the NTT base case. Following our
initial assumption this means that going to high βN will be less detrimental regarding
ELM power loads on the divertor for NTT compared to PTT. One important caveat
in the case of NTT is the fact that as pped is almost not increasing with βN , the
gradient scale-lengths in the core will increase significantly with increasing βN and
the plausibility of such peaked profiles will have to be investigated.

5. Conclusion

We have presented in this paper a new implementation of the EPED model called
EPED-CH which uses the SPC codes CHEASE / CAXE / KINX. At this stage, It
uses a simple analytic expression for the KBM constraint as in the EPED1 version. It
also does not include any diamagnetic stabilisation for peeling-ballooning modes which
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has little effect on the stability boundary for negative triangularity configurations. The
results of EPED-CH compare well with the original EPED results. A first comparison
with TCV experiments showed good agreement for Type-I ELMy discharges and
also recovers the basic dependence of the pedestal height pped on the plasma upper
triangularity observed in TCV ELMy H-modes..

Simulations with EPED-CH show that the predicted pedestal height for the
Negative Triangularity Tokamak concept is smaller by a factor of 4 as compared to
the standard positive triangularity configuration. This can potentially reduce the
peak heat flux due to ELMs while still being compatible with high performance with
βN ' 2.9, central Te ' 40 keV and R/LT ' 14. It also makes impossible any single
large ELM event. Sensitivity studies have shown that pped depends most strongly on
the average triangularity δ and increases when δ goes from negative to positive values.
For δ ≤ −0.2 the solution is almost insensitive to δ. In contrast with standard δ > 0
configurations, pped scales favourably with ne,ped and increases only weakly with βN .

To confirm and improve the quality of these predictions, certain aspects could
be investigated. While the EPED KBM constraint has been found to vary only
weakly with triangularity, the calculations were performed so far only with zero or
positive triangularity. It would be interesting to explore possible variations at negative
triangularity. One way would be to develop the BCP technique described in [10] and
used in EPED1.6 for negative triangularity plasmas. One critical point will be to
assess the compatibility of a low pedestal with the good core performance needed in
a device such as a demonstration power plant. This could be investigated using first-
principles transport simulations. This could prove a challenging task in view of the
relatively high values for R/LT or 〈p〉V /pped. This study could also be coupled with
the ongoing effort of modelling the NTT concept with system codes [32]. Finally the
link between reduced pedestal height, reduced ELM losses and reduced peak heat flux
for δ < 0 could be addressed using non-linear MHD simulations.
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C. F. Maggi, R. Maingi, T. H. Osborne, N. Oyama, A. Pankin, S. Saarelma, G. Saibene,
J. L. Terry, H. Urano, and H. R. Wilson. Pedestal stability comparison and ITER pedestal
prediction. Nuclear Fusion, 49(8):085035, 2009.

[24] A Pitzschke, R Behn, O Sauter, B P Duval, J Marki, L Porte, L Villard, and S Yu Medvedev.



H-mode pedestals with negative triangularity 17

Electron temperature and density profile evolution during the edge-localized mode cycle
in ohmic and electron cyclotron-heated H-mode plasmas in TCV. Plasma Physics and
Controlled Fusion, 54(1):015007, 2012.

[25] R Behn, S. Franke, Z.A. Pietrzyk, M. Anton, Chr. Nieswand, H. Weisen, and B. Marletaz. The
Thomson scattering diagnostic on TCV. In 7th International Symposium on ”Laser-Aided
Plasma Diagnostics”, pages 392–7, Fukuoka, Japan, 1995.

[26] Andreas Pitzschke. Pedestal Characteristics and MHD Stability of H-Mode Plasmas in TCV.
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Appendix A. Analytical boundary with different upper and lower
triangularity

We use the following formulas for prescribing the shape of the plasma separatrix.

R(θ) = R0 +

{
a cos (θ + (arcsin δu) sin θ) if 0 ≤ θ ≤ π
a cos (θ + (arcsin δl) sin θ) if π ≤ θ ≤ 2π

(A.1)

Z(θ) = Z0 + κa sin θ (A.2)

where R0 and Z0 are the radial and vertical position of the geometric center of the
separatrix, a is the minor radius, κ is the elongation and δu (δl) is the upper (lower)
triangularity.

The form of equations (A.1,A.2) guarantee that δu matches the standard definition
for the top triangularity of the plasma boundary δu = (Ro+Ri−2Rt)/(Ro−Ri) where
Rt Ro and Ri are the major radii at the topmost, outermost and innermost points
of the plasma boundary. This holds as long as the innermost and outermost points
correspond to θ = π and θ = 0, i.e. |arcsin δu,l| ≤ 1 or |δu,l| ≤ 0.8415. In [16] the
arcsin function is dropped in equations (A.1,A.2) and therefore the correspondence
between δu and top triangularity is only valid at low δu values.
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