
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. A. Argyraki, présidente du jury
Prof. P. Ienne, directeur de thèse

Prof. V. Betz, rapporteur
Dr J. Greene, rapporteur

Prof. Y. Leblebici, rapporteur

Leading the Blind:
Automated Transistor-Level Modeling

for FPGA Architects

THÈSE NO 7928 (2017)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 4 AOÛT 2017
À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE D'ARCHITECTURE DES PROCESSEURS
PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2017

PAR

Grace ZGHEIB

Sometimes it is the very people

who no one imagines anything of

who do the things no one can imagine.

— Christopher Morcom

Acknowledgments
We often need such big milestones in our lives to force us to stop and look back. It is not about

searching for memories, as much as it is about assessing the journey with its every curve,

crossroad, and mountain top; and with every traveler whose path crossed ours along that long

winding road. Some we recognize as passersby that we once exchanged traveling stories with,

while others still have their footsteps marked alongside ours, for as far back as we can see.

It goes without saying that the most influential presence throughout this journey was that of

my supervisor, Prof. Paolo Ienne. I have always considered myself lucky to get the chance to

not only work with Paolo, but also to learn from him. His invaluable input helped me to, as he

called it on our first meeting, find my path through the foggy world of research.

I also got the chance to work alongside many great minds, such as Dr. Hadi Parandeh-Afshar

who was the first to show me what lies under the hood of FPGAs, Dr. David Novo whose insight

and help were truly vital, as well as Dr. Madhura Purnaprajna and Dr. Muhsen Owaida.

But of course, it is more than just about work. It is also about the friends I made along

the way, especially the current and former LAP members, namely Ali, Ana, André, Andrew,

Chantal, Lana, Giulia, Mikhail, Nithin, René, Robert, Sahand, Stefan, and Thomas. With special

mentions to Dr. Ana Petkovska, with whom I shared not only an always-flourishing office

but also special moments of both struggle and success, in the past 6 years; to Lana Josipovic,

whose spontaneous hugs and our long hours of chatting about anything and everything will

certainly be missed; and, to LAP’s super-secretary Chantal Schneeberger, who became my

go-to person, capable of always finding the most convenient solutions.

I am blessed beyond measures to have a lifelong friend, Dr. David Kozhaya, with whom I

walked the last thirteen years of my life. Having such a strong reliable support is a gift to which

I will always be grateful. Even if our paths get separated, I know that he will always be there

for me. Special acknowledgments go to those who stood by me through the years, sometimes

even through long distances, especially Ghassan Stefan, Mirella Abboud and Dr. Serj Haddad.

Finally, there could be no stronger support system than that of the family: my mother and

father, my sister Josiane, and Ziad, who keep on offering, every step of the way, their uncondi-

tional love and crucial support.

You have all left your marks, some deeper than others, each in his way, and for that I am

grateful to each and every one of you!

Lausanne, July 7th, 2017 G. Z.

i

Abstract
The design and development of innovative FPGA architectures hinge on the flexibility of

its toolchain. Retargetable toolchains, like the Verilog-to-Routing (VTR) flow, have been

developed to enable the testing of new FPGAs by mapping circuits onto easily-described and

possibly theoretical architectures. However, in reality, the difficulty extends beyond having

CAD tools that support the architectural changes: it is equally important for FPGA architects to

be able to produce reliable delay and area models for these tools. In addition to having acute

architectural intuitions, designing and optimizing the circuit at the transistor-level requires

architects to have, as well, a particular set of electrical engineering skills and expertise. The

process is also painstaking and time-consuming, rendering the comparison of a variety of

architectures or the exploration of a wide design space quite complicated and even impossible

in practice.

In this work, we present a novel approach to model the delay and area of FPGA architectures

with various structures and characteristics, quickly and with acceptable accuracy. Abstracting

from the user the transistor-level design and optimization that normally accompany the model-

ing process, this approach, called FPRESSO, can be used by any architect without prerequisites.

We take inspiration from the way a standard-cell flow performs large-scale transistor-size

optimization and apply the same concepts to FPGAs, only at a coarser granularity. Skilled

designers prepare for FPRESSO a set of locally optimized libraries of basic parameterizable

components with a variety of drive strengths. Then, inexperienced users specify arbitrary

FPGA architectures as interconnects of these basic components. The architecture is globally

optimized, within minutes, through a standard logic synthesis tool, by choosing the most

fitting version of each cell and adding buffers wherever appropriate. The resulting delay and

area characteristics are automatically returned, in a format suitable for the VTR flow.

A correct modeling of any architecture requires not only an optimization of the logic compo-

nents, but also a proper modeling of the wires connecting these components. This does not

only include measuring the length of the wires to determine their respective resistance and

capacitance, but also, minimizing their length to reduce the wireload effect on the overall per-

formance. To that end, FPRESSO features an automatic and generic wire modeling approach

based on a simulated annealing floorplanning algorithm, to estimate the wires between the

different components of the FPGA architecture.

To evaluate the results of FPRESSO and confirm the validity of its modeled architectures, we use

it to explore a wide range of FPGA architectures. First, we repeat a known study that helped set

the standards on the optimal Look-Up-Table (LUT) and cluster size for conventional FPGAs.

iii

Abstract

We show, by comparing with the results of the study, that modeling in FPRESSO preserves the

very same trends and conclusions, with significantly less effort. We then extend the search

space to cover fracturable LUTs and sparse crossbars, and show how FPRESSO makes the

exploration of a huge search space not only possible but easy, efficient, and affordable, for any

class of VTR users.

Key words: Field Programmable Gate Array, FPGA, architecture design, architecture modeling,

transistor design, architectural exploration, FPRESSO, wireload modeling, CAD tools.

iv

Résumé
La conception et le développement d’architectures de FPGA innovantes dépendent de la

flexibilité de la chaîne d’outils. Des chaînes d’outils ciblées, comme le Verilog-to-Routing

(VTR), ont été développées pour permettre de tester de nouvelles FPGAs en implémentant des

circuits sur des architectures faciles à décrire et potentiellement théoriques. La difficulté pour

les architectes de FPGA n’est pas seulement d’avoir des outils CAD flexibles qui supportent

les changements d’architecture, mais également d’être capables de produire des modèles de

délai (delay) et de surface (area) pour ces outils. De bonnes intuitions architecturales ne sont

cependant pas suffisantes, en effet la conception et l’optimisation des circuits au niveau des

transistors nécessitent également un ensemble de compétences et spécialisations d’ingénierie

électrique particulières. Le processus est méticuleux et long, ce qui rend la comparaison

d’une grande variété d’architectures et l’exploration d’un large espace de conception plutôt

compliqué et même impossible en pratique. Dans ce travail, nous présentons une nouvelle

approche pour modeler, rapidement et avec une précision acceptable, le délai et la surface

des architectures de FPGA ayant des structures et caractéristiques diverses. En masquant

à l’utilisateur la conception au niveau des transistors et l’optimisation qui accompagnent

normalement le processus de modélisation, cette approche appelée FPRESSO peut être utilisée

par tout architecte sans conditions préalables. Nous nous inspirons de la façon dont un flux

de cellules standard (standard-cell flow) effectue des optimisations à grande échelle de tailles

des transistors et nous appliquons les mêmes concepts aux FPGAs, mais avec une plus grande

granularité. Des designers qualifiés préparent et optimisent localement des librairies de

composants de base paramétrables ayant une variété de drive strengths. Puis, des utilisateurs

inexpérimentés spécifient des architectures arbitraires de FPGA en utilisant ces composants

de base interconnectés. L’architecture est globalement optimisée, en quelques minutes, par

un outil de synthèse logique standard qui choisit la version la plus appropriée de chaque

composant et ajoute des buffers si nécessaire. Les caractéristiques de délai et surface qui en

résultent sont automatiquement retournées dans un format approprié pour le flux VTR.

Une modélisation correcte de toute architecture exige, non seulement une optimisation

des composants logiques, mais aussi une modélisation appropriée des fils qui connectent

ces composants. Cela ne comprend pas seulement la mesure de la longueur des fils pour

déterminer leur résistance et capacité relatives, mais aussi la minimisation de cette longueur

pour réduire l’effet de la capacité des fils (wireload effect) sur la performance globale. À cet

effet, FPRESSO dispose d’une approche automatique et générique de modélisation de fils (wire

modeling) basée sur un simulated annealing algorithme de floorplanning, pour modéliser

v

Abstract

correctement les fils connectant les différents composants de l’architecture de FPGA.

Afin d’évaluer les résultats d’FPRESSO et de confirmer la validité de ses architectures modéli-

sées, on l’utilise pour explorer une large gamme d’architectures de FPGA. Premièrement, nous

reproduisons une étude bien connue qui a aidé à établir les normes existantes de la taille opti-

male du Look-Up-Table (LUT) et du cluster des FPGAs conventionnelles. Nous démontrons, en

comparant les résultats d’FPRESSO avec ceux de l’étude, que notre modélisation conserve les

mêmes tendances et conclusions, et ceci beaucoup plus rapidement et avec beaucoup moins

d’effort. Nous augmentons ensuite l’espace de recherche pour inclure des fracturable LUTs et

des sparse crossbars, et démontrons comment FPRESSO rend l’exploration d’un vaste espace

de recherche non seulement possible mais également facile, efficace et abordable, pour toute

classe d’utilisateurs de VTR.

Mots clefs : Field Programmable Gate Array, FPGA, conception d’architecture, modélisation

d’architecture, conception de transistors, exploration architecturale, FPRESSO, modélisation

de la capacité des fils, outils de CAD.

vi

Contents
Acknowledgments i

Abstract (English/Français) iii

List of figures xi

List of tables xiii

1 The Challenges of FPGA Architectural Exploration 1

1.1 Modeling Challenges . 2

1.2 Existing solutions and their limitations . 3

1.3 Our Approach . 4

2 Background Information 9

2.1 FPGA Architecture . 9

2.1.1 General Cluster Architecture . 9

2.1.2 Fracturable LUTs . 11

2.1.3 Depopulated Crossbars . 11

2.2 FPGA CAD Flow . 14

2.3 Experimental Setup and Benchmarks . 15

3 Library Generation of Macrocells with Different Drive Strengths 17

3.1 Leveraging State-of-the-Art Transistor-Sizing Tools 17

3.1.1 COFFE’s Architectural Structure and Optimization Strategies 18

3.1.2 Modifying COFFE to Size Individual Cells 20

3.2 Generating Variety of Cells . 21

3.2.1 Variety Through Output Loads . 21

3.2.2 Variety Through Optimization Objectives 22

3.3 Cell Characterization . 22

3.4 Challenges in Characterizing Complex Cells . 25

3.4.1 LUT Characterization . 26

3.4.2 Two-Level Multiplexer Characterization 26

3.4.3 Switch/Connection Block Characterization 28

3.5 Discussion . 29

vii

Contents

4 Automatic Wire Modeling of FPGA Architectures 31

4.1 The Wire Modeling Problem . 32

4.2 B*-Tree Representation . 33

4.3 Floorplanning Algorithm . 34

4.3.1 Initial Solution . 36

4.3.2 Perturbation . 36

4.3.3 Cost Function . 38

4.3.4 Temperature . 39

4.4 Integration in FPRESSO’s General Flow . 39

4.5 Experiments . 40

4.5.1 Comparison Within FPRESSO . 41

4.5.2 Modeling Comparison with COFFE . 44

4.6 Discussion . 46

5 Architecture Optimization and Flow Automation 47

5.1 Architecture Optimization . 47

5.2 Optimization Challenges . 49

5.2.1 Timing Loops . 49

5.2.2 Identification of Timing Paths . 50

5.3 Automating FPRESSO . 51

5.3.1 Input Architecture . 51

5.3.2 Modeling Global Routing . 52

5.3.3 General Flow and Model Extraction . 52

5.4 Fracturable LUTs . 54

5.5 FPRESSO’s Performance . 56

5.5.1 Runtime . 56

5.5.2 Modeling Accuracy . 57

5.5.3 Delay and Area Tradeoff . 60

5.6 Modeling or Designing . 60

5.7 Discussion . 61

6 Architecture Exploration Using the Automated Modeling Technique 63

6.1 Architecture Modeling . 63

6.1.1 Cluster Architecture and Parameters . 64

6.1.2 General Modeling . 64

6.2 Experimental Methodology . 65

6.2.1 General Flow . 66

6.2.2 Benchmark Selection . 66

6.3 Revisiting Existing Studies . 67

6.4 Expanding the Exploration Space . 69

6.4.1 Evaluating Large Clusters . 73

6.4.2 Evaluating Crossbar Density . 73

6.4.3 Evaluating Fracturable LUTs . 75

viii

Contents

6.5 Discussion . 76

7 Conclusion 79

7.1 Computer Architecture Analogy . 79

7.2 Bringing the Concept to FPGAs . 80

7.3 Meeting Industrial Standards . 80

7.4 A Stepping Stone . 81

Bibliography 88

Curriculum Vitae

ix

List of Figures
1.1 The two main parts of FPRESSO’s tool flow . 5

2.1 The island-style FPGA architecture. 10

2.2 The general structure of the FPGA’s cluster architecture and its design parameters

(K , N , etc.). 11

2.3 An example of a fracturable 6-LUT in a BLE with 8 inputs and 2 outputs. 12

2.4 n ×m crossbars having n input wires and m output wires 13

2.5 The FPGA CAD flow. 14

2.6 The different steps of the experimental setup. 15

3.1 The library generation flow. 18

3.2 The FPGA tile architecture supported by COFFE [Chiasson and Betz, 2013]. . . 19

3.3 Analysis of the output driver size for different cells, optimization criteria and

output loads. 23

3.4 The characterization delay template . 24

3.5 The area of each cell, as added to the characterization scripts. 25

3.6 The transistor design of a 3-input LUT . 27

3.7 The transistor design and configuration of a 2-level multiplexer 28

4.1 An admissible floorplan, compact on the lower left corner, and its equivalent

B*-Tree. 33

4.2 The horizontal contour before and after adding module b11 to the floorplan. . . 34

4.3 Deleting a node from the B*-Tree in the cases where the node is (b) a leaf node,

(c) a node with only one child, or (d) a node with two children. 37

4.4 Inserting a node into the B*-Tree of Figure 4.1 in the cases where the parent is (a)

a leaf node or (b) a node with existing children. 37

4.5 The Rectilinear Steiner Minimal Tree (RSMT) connecting 5 nodes by adding 3

new Steiner nodes. 38

4.6 A standard FPGA cluster with N BLEs, K -input LUTs, I cluster inputs, and an

input crossbar. 41

4.7 The effect of wire modeling on FPRESSO’s results 42

4.8 Methodology comparison between COFFE and FPRESSO 45

5.1 The main flow of FPRESSO . 48

xi

List of Figures

5.2 The timing loops within the logic cluster. 49

5.3 An example of the timing paths identification problem 50

5.4 An example of the user’s architecture description file for the design of Figure 5.5 51

5.5 The general structure of the FPGA tile architecture and its design parameters. . 53

5.6 The modes of operation of a BLE with a fracturable K -LUT. 54

5.7 The hardware implementation of a BLE with a fracturable K -LUT 55

5.8 Runtime distribution for two architectures with different sizes 58

5.9 The delay and area of the main paths of an FPGA, modeled in FPRESSO with

respect to COFFE, for multiple architectural parameters 59

5.10 The delay and area Pareto fronts of multiple optimizations performed by FPRESSO

and COFFE, for a single architecture (K = 5, N = 6, and I = 30). 61

6.1 The general structure of the FPGA tile architecture and its design parameters (K ,

N , etc.). 64

6.2 The different steps of the experimental methodology. 65

6.3 Comparison of the delay-area product for the MCNC and VTR benchmark suites,

over multiple K and N . 67

6.4 Total area with respect to the LUT size (K), for small cluster sizes, as measured

in both the reference study and our experiments. 68

6.5 Total area of the MCNC benchmarks with respect to the LUT size (K), for rel-

atively large cluster sizes, as measured in both the reference study and our

experiments. 70

6.6 Total delay (in ns) with respect to the LUT size K , (a) as reported by the reference

study and (b) as measured from our experiments. 71

6.7 The number of BLEs on the critical path decreases as the LUT size (K) increases,

both in the reference study and in our results . 72

6.8 The measured delay and area as the cluster size (N) varies, for different LUT sizes

(K) . 73

6.9 The effect of sparse crossbars with different density Fcl ocal on the delay and area,

for multiple LUT inputs (K), averaged over all cluster sizes (N) 74

6.10 Delay and area for architectures with fracturable K-LUTs and up to 3 shared

inputs (S) . 75

6.11 Analysis of the mapping and packing results for a fracturable 5-LUT architecture

with N = 10. 76

xii

List of Tables
2.1 The FPGA architecture parameters. 10

3.1 The library’s delay matrix . 24

4.1 The area correction after the second and third iterations of the floorplanning

algorithm. 43

5.1 FPRESSO’s runtime improvement, when compared to COFFE, for a range of

architectures. 57

xiii

1 The Challenges of FPGA Architectural
Exploration

The Field Programmable Gate Arrays (FPGAs) market has been expanding fast, bringing the

many benefits of reconfigurable computing to new domains such as cloud and mobile com-

puting. With this increased interest in FPGAs comes a stronger demand to further bridge the

existing efficiency gap between FPGAs and dedicated circuits, coupled with strong energy-

efficiency requirements.

Intuitively, these demands need to be addressed at the hardware level, by improving the

architecture of the FPGAs. The improvements can come from minor modifications to the

existing logic and routing, or through completely new and unconventional architectures. Given

the intrinsic difficulty in having a single FPGA architecture that realistically satisfies most

requirements, it is common to have a spectrum of architectures, each targeting a particular

application or niche.

A software flow able to synthesize circuits onto a wide range of different FPGA architectures

is clearly essential in enabling proper architectural explorations. Fortunately, the Verilog-to-

Routing (VTR) project [Rose et al., 2012] already provides such a retargetable flow supporting

a wide variety of easily-described hypothetical FPGA architectures. Since its introduction

in 2012, hundreds of research projects have relied on VTR to evaluate new applications

or architectural modifications. More so, precursors of VTR have been successfully used in

industrially plausible FPGA architectures to explore optimal logic block sizes [Ahmed and Rose,

2004] and to show area and delay tradeoffs [Kuon and Rose, 2011]. Its latest official release,

VTR 7.0 [Luu et al., 2014a], added hard adders and carry chain support, enabling a detailed

exploration of efficient architectures for applications with heavy arithmetic operations [Luu

et al., 2014b]. Furthermore, VTR has also been used to explore radically new architectures

such as those based on And-Inverter Cones (AICs) [Parandeh-Afshar et al., 2012, 2013; Zgheib

et al., 2014]. In such cases where a new logic block is introduced, the earlier stages of the

tool flow, typically the technology mapper, might require modifications to support the new

logic. However, the flow is modular enough to easily incorporate new algorithms like the

depth-constrained technology mapper for AICs [Jiang et al., 2015]. The later stages of the flow,

like the packer, are generic and can deal with any hypothetical architecture, as long as it can

1

Chapter 1. The Challenges of FPGA Architectural Exploration

be described in what is known as an architecture file.

The caveat, however, is that VTR architecture files need reasonably accurate area and delay

models if the results are to be meaningful and the comparison between architectures reliable.

1.1 Modeling Challenges

Creating a good model of a hypothetical FPGA architecture is challenging, due to the difficulty

in predicting the effect of transistor-level optimizations on the circuit. Two elements change

dramatically the area and delay characteristics of an architecture: appropriate transistor sizing

and correct signal buffering. Even if the design of the logic itself remains generally the same

in the FPGA, both these elements critically depend on the used technology node and on the

architecture being explored. They are directly affected by the architectural changes, no matter

how minor they might seem, such as the number or size of the Look-Up Tables (LUTs), the

number of cluster inputs or crossbar switches, etc.

Implementing the required transistor-level optimizations to obtain reliable estimates of area

and delay is a significant challenge due to the sizes of the circuits at hand and the particular

set of electrical engineering expertise it requires. This has a direct impact on the feasibility of

wide search-space architectural explorations. For instance, the latest studies on the optimal

architecture parameters (mainly LUT and cluster size) for delay and area [Ahmed and Rose,

2000, 2004], limited their explorations to about 60 architectures due to time and feasibility

constraints. Manually sizing the design and running SPICE simulations for every modeled

circuit is a time-consuming process that is highly restrictive for any architectural exploration,

not to mention the consistency and reproducibility issues it can cause.

However, one can argue that, for standard architectures that have already been studied exten-

sively [Kaptanoglu et al., 1999; Rose et al., 1990; Singh et al., 1992], the designer might have

already a good starting point through existing references that help narrow the search space

and probably predict the outcome of minor changes in this kind of standard architectures.

The problem becomes more critical in the cases where a totally new and unconventional logic

block is introduced. Designing a completely revamped architecture around this new logic can

be a major challenge. Designers do not have any guidelines that can help narrow the search

for the optimal parameters: logic block and cluster size, routing density and connectivity, etc.

We experienced this, first hand, when attempting to improve the design of the And-Inverter

Cones, for example, and realized the difficulties and complexity coupled with the search for the

optimal architecture that suits these logic blocks [Zgheib et al., 2014]. An experienced engineer,

specialized in transistor-level circuits, designed and manually optimized each architecture,

using SPICE simulations to evaluate it. This rendered the search highly inefficient and limited

it to a handful of architectures.

There is no denying that manual sizing and optimization of the transistor-level circuits can

lead to well-targeted and potentially optimal results, far better than any automatic modeling

2

1.2. Existing solutions and their limitations

approach. Nevertheless, the lengthy process of manual sizing and simulations, as well as the

particular skill-set it requires—and that not all FPGA architects have—makes it impractical for

a fast evaluation of new architectures. Thus, with this overwhelming evidence of the difficulty

architects face in evaluating new architectures, and its direct impact on potential architectural

explorations, it has become increasingly critical to find an easy and fast way to model FPGAs.

The objectives are clear: to allow architects who do not necessarily have any transistor-level

expertise to quickly model the delay and area of any hypothetical or wildly unconventional

FPGA architecture, with reasonable accuracy.

1.2 Existing solutions and their limitations

Evidently, these modeling challenges are not new and researchers have already tried to address

the problem through different attempts and approaches.

An intuitive approach would be to use a semicustom design flow, based on standard cells,

to design the FPGA from a register-transfer level description. The results of such a semicus-

tom flow can be used as conservative estimates of what good designers could conceive at

transistor-level. Actually, designers have discovered over the years that for many complex com-

ponents (e.g., fast arithmetic components) semicustom approaches are today even superior

to hand-crafted circuits [Eriksson et al., 2003]—and thus represent perfect estimates of what

is achievable. Unfortunately, for FPGAs, Kim and Anderson [2015] have recently shown that

FPGA architectures designed with standard cells still incur severe area and delay overheads

when compared to commercial full-custom FPGAs. Furthermore, these overheads have large

variations across FPGA components rendering the models hardly faithful and thus unusable

to drive realistic FPGA architecture explorations.

There have been several attempts to automate the transistor sizing problem for custom circuits

by formulating it as an optimization problem with a specific objective function which generally

tends to be the minimization of the delay and/or area. It goes back to more than 30 years ago

when TILOS [Fishburn and Dunlop, 1985] was introduced as an automatic transistor sizing

tool for custom circuits. TILOS’ heuristic iteratively identifies the critical path of the circuit

and increases the sizes of the transistors along that path until the optimization objectives are

met. The authors show that the transistor sizing problem can be transformed into a convex

optimization problem by modeling the transistors as a linear set of resistors and capacitances,

while using the Elmore [Elmore, 1948] and Penfield-Rubinstein [Rubinstein et al., 1983] models

to calculate the delay. However, despite its convexity, the resulting optimization can end up

being suboptimal, while the used linear models and the Elmore delay have been shown to

be inaccurate [Kasamsetty et al., 2000; Ousterhout, 1984]. Thus, to increase the modeling

accuracy, new algorithms tried to use time-domain simulations to estimate the delay, but at a

high computational complexity cost [Conn et al., 1998, 1999]. However, there are fundamental

differences between the transistor-level optimization of custom non-configurable integrated

circuits and reconfigurable circuits, like FPGAs, which present unique optimization challenges.

3

Chapter 1. The Challenges of FPGA Architectural Exploration

Kuon and Rose [2011] address these challenges in a two-phased algorithm that still uses linear

models (similar to TILOS) in the first phase through an exploratory transistor-sizing heuristic,

but then the second phase corrects the inaccuracy of these linear models by fine tuning the

previously sized transistors using SPICE simulations. Nevertheless, the process remains time

consuming, relies mainly on the inaccurate linear models, and is not publicly available for the

research community.

The most recent automatic transistor sizing tool specific for FPGAs, COFFE [Chiasson and

Betz, 2013], addresses the limitations of its predecessors by phasing out the linear models

and relying entirely on SPICE simulations, while improving the area and wireload models. It

focuses on reducing the complexity of the transistor-size optimization in an FPGA by exploiting

the structure of the circuit and by implementing ad hoc but efficient optimization strategies.

The result is a fixed, yet parameterizable, architecture built at transistor level and a set of

scripts implementing programmatically the required optimization for specific parameters,

using appropriate SPICE simulations for measurement. Although this works quite well for

the given standard parametric architecture supported by COFFE, the optimization process

is quite slow (in the order of hours). More importantly, there is no support for other quite

different architectures researchers might want to experiment with: the optimization strategy

is built into the scripts that constitute COFFE and, although in principle adaptable, porting it

to wildly different architectures might essentially mean rewriting the tool from scratch, albeit

with an excellent starting point. It would also require a certain level of transistor design and

optimization expertise that the FPGA architects do not necessarily have.

1.3 Our Approach

In this work, we address the FPGA modeling problem by proposing a novel approach that

facilitates correct and quick modeling of complete FPGA architectures for users who are not

necessarily transistor-level circuit designers. Our approach, called FPRESSO1, is able to model

with an acceptable accuracy the delay and area of a wide range of largely different FPGA

architectures without requiring the users to understand the issues of transistor sizing. For

most users, all that is required is a topological description of the cluster of an FPGA and the

automatic results are VTR architecture files annotated with area and timing estimations.

Our approach to making sound optimizations of complete FPGA architectures is somehow

modeled on the well-known divide and conquer approach used in semicustom design: Firstly,

transistor-level designers construct highly-optimized libraries of standard building blocks

(the standard cells). Libraries do not only limit the functionality of the cells to a set of basic

classes, but contain several replicas of the same cell spanning a wide variety of transistor

sizes. Secondly, once a library is available in a given technology, the cells are characterized,

measuring in detail their area and delay characteristics. Finally, logic synthesizers, besides

logically restructuring the target design and implementing it using the available standard cells,

1FPGA express modeling technique

4

1.3. Our Approach

Process
Models

Library	of	Macrocells

Transistor	Sizing	
and	Op�miza�on

Cell	Characteriza�on

Modified	COFFE

Cadence	Liberate

Variety	Generator

Cells Loads

(a) Library generation flow.

Verilog	Genera�on

Delay	&	Area	Extrac�on

Architecture	File	Genera�on

Library
File

Architecture	Descrip�on

Annotated	VTR	Architecture	File

Wire	Modeling

Circuit	Op�miza�on

Design	Compiler

Repeat
Once

(b) Main flow.

Figure 1.1 – The two main parts of FPRESSO’s tool flow. (a) The library generation flow where ex-
perienced designers build, offline, a library of precharacterized components required in the main
flow; (b) the main flow where inexperienced users provide an arbitrary description of the architec-
ture and FPRESSO models its timing behavior using the library of components, before returning a
VTR-compatible architecture file complete with all required area values and timing arcs.

choose the most appropriate yet functionally equivalent cells and add the required buffers

to meet detailed high-level delay or area constraints. From the optimization point of view,

the key of the semicustom design process is in locally optimizing transistors within the cells

to display a variety of potentially useful timing behaviors (a process that is performed by

transistor-level experts, once per technology node), and then in optimizing the overall circuit

at a much higher abstraction than individual transistors and SPICE simulations (a process

performed by every digital designer, for every designed circuit).

FPRESSO does exactly the same, conceptually, but avoids the unacceptable modeling errors

of using standard cells by changing the granularity of the process. Instead of using standard

cells to construct the circuit, FPRESSO relies on libraries of macrocells which consist of typical

components that can be found in common FPGA architectures. Actually, our procedure resem-

bles so much the classic standard-cell design flow that, in our experimental implementation,

we strive to use wherever possible widely available off-the-shelf tools. Yet, the fact that our

granularity is quite different (LUTs instead of NAND gates, so to speak) creates challenges in

every step of our conceptually simple flow.

The flow can be split into two main, yet independent phases, as depicted in Figure 1.1. In the

first phase, namely the library generation phase, expert designers construct at transistor-level

all the components typically found in FPGA architectures, such as LUTs, crossbars, multiplex-

ers, flip-flop assemblies, etc. An automated procedure generates a variety of implementations

5

Chapter 1. The Challenges of FPGA Architectural Exploration

in terms of transistor sizes (e.g., drive strengths) and optimizes all versions of the components.

The state-of-the-art academic FPGA transistor-sizing tool, COFFE, is customized to automate

this process and interface with the next stage of the library generation flow, as shown in

Figure 1.1a. Then, in the cell characterization step, SPICE-like simulations extract the delay

and area characteristics of the cells to build a library of macrocells. Both the optimization

and characterization steps are slow and time-consuming procedures that require a level of

expertise not every user has, but, as long as no new functional blocks are introduced, the

library is built only once per technology node, offline and reused as many times as needed in

the main flow of FPRESSO. Chapter 3 explains the details of the library generation phase with

its cell optimization and characterization steps, as well as the challenges faced in adapting

industry-standard methodologies for standard-cell characterization to operate correctly at the

level of granularity of our macrocells.

The second phase of FPRESSO consists of the main flow that is actually exposed to the users.

A completely automated process takes from inexperienced users a topological description

of the FPGA architecture and optimizes it to generate reliable models of the achievable area

and delay. The architecture is essentially a circuit, typically composed of a few hundreds

of predefined cells, so the optimization simply selects from the library of cells (generated

in the first phase) the ones with the appropriate drive strengths and adds buffers wherever

needed. Once the architecture is optimized, static timing analysis is performed to extract all

the relevant timing details. The result is a VTR-compatible architecture file, annotated with

the respective delay and area measurements. It is important to realize that this second phase,

shown in Figure 1.1b and detailed in Chapter 5, demands no more transistor-level knowledge

than specifying the cluster topology for VTR and yet is not limited to particular, predefined

architectures. The process is extremely fast (in the order of minutes) and entirely automated,

completely abstracting any complexity from the user.

A correct architecture modeling does not only include the modeling of the logic and routing

components that compose the FPGA architecture, but also the modeling of the wires that

connect these components. To that end, FPRESSO uses a simulated-annealing floorplanning

algorithm to minimize the total wire length. When the floorplan is optimized, it estimates the

resistance and capacitance of each wire and adds it to the architecture optimization phase.

Chapter 4 explains the different steps of the wire modeling and floorplanning algorithm.

Finally, to evaluate the accuracy of our modeling approach and showcase its efficiency in

large-scale architectural explorations, we use FPRESSO to repeat and extend the latest study

on the optimal FPGA architecture. The expanded search space includes sparse crossbars

and fracturable LUTs. The results, depicted in Chapter 6, show that explorations where

architectures are modeled either manually or with FPRESSO reach exactly the same conclusions,

which validates the correctness of our modeling approach.

However, before elaborating more on the details of the different parts of FPRESSO, we first

present a brief introduction, in Chapter 2, of the FPGA architecture and parameters, its CAD

6

1.3. Our Approach

flow, and the experimental setup used in all our architecture explorations.

7

2 Background Information

Before going over the details of our architecture modeling approach, we will first cover some

fundamental characteristics of the FPGA architecture, its CAD flow, and the experimental

setup used in our architecture explorations.

2.1 FPGA Architecture

State-of-the-art FPGAs adopt an island-style architecture that consists of a grid of logic clusters

connected though vertical and horizontal routing channels [Betz et al., 1999; Kuon et al., 2008],

as shown in Figure 2.1. In this section, we overview the main characteristics of the logic cluster

and the parameters that define it. We also discuss two key features of the FPGA architecture,

namely the fracturable LUTs and the depopulated crossbars, which will be used and explored

in the subsequent chapters.

2.1.1 General Cluster Architecture

Our modeling approach does not target a specific FPGA architecture but is generic and can

support any logic cluster, as long as it is composed of elements that exist in its library. How-

ever, over the next few chapters, we will base our experiments and explorations on an FPGA

architecture with a structure similar to that of the Altera Stratix FPGAs [Lewis et al., 2005]. This

is mainly due to the fact that the existing studies on optimal architecture parameters and the

tools that we can compare to are based on this type of FPGA.

Figure 2.2 shows the general structure of the logic cluster (also referred to as Complex Logic

Block (CLB)) along with the different parameters that can define a particular architecture.

Each cluster consists of N Basic Logic Elements (BLEs) and has I inputs and N outputs. Each

BLE has a K -input LUT, a register and two multiplexers to select between the registered and

unregistered LUT output, before sending it either to the cluster output or as a local feedback.

The I inputs, along with the N feedback signals, feed the input crossbar which then distributes

them to the BLEs (and hence the LUTs). As such, the crossbar has (I +N) inputs, (N ×K)

9

Chapter 2. Background Information

Ver�cal	and	horizontal
rou�ng	channels

Programmable
switch

Connec�on
block

Logic	cluster

Switch
block

Figure 2.1 – The island-style FPGA architecture.

outputs, and a density Fclocal which indicates the fraction of the inputs connected to each

crossbar output.

The inputs and outputs of the cluster are connected to the global routing through Connection

Blocks (CBs) and Switch Blocks (SBs), respectively. The fraction of routing channels connected

to each of the cluster’s inputs and outputs is defined by the parameters Fci n and Fcout , respec-

tively; while the total number of routing tracks on either side of the cluster is determined by

W .

Table 2.1 summarizes all these parameters that can be used to define a specific architecture or

determine the search space of architectural explorations.

Table 2.1 – The FPGA architecture parameters.

Parameter Description
K LUT size
N Cluster size
I Number of cluster inputs
Fcl ocal Input crossbar density
Fci n Cluster input connection flexibility
Fcout Cluster output connection flexibility
W Routing channel width

10

2.1. FPGA Architecture

K-LUT

I

N
Out0

Out1

OutN-1

Crossbar(Fclocal)

SB

CB

W	Channel
Tracks

Logic	Cluster

BLE0

BLE1

BLEN-1

W	Channel
Tracks

Figure 2.2 – The general structure of the FPGA’s cluster architecture and its design parameters (K , N ,
etc.).

2.1.2 Fracturable LUTs

Fracturable LUTs are a key feature in modern FPGA architectures [Lewis et al., 2005] [Xilinx]

that leverages the advantages of small-sized LUTs in architectures built with relatively large

LUTs.

In general, a fracturable K -LUT is designed using two (K −1)-LUTs and additional multiplexers.

Figure 2.3 shows an example of how a fracturable 6-LUT is built in a BLE with 8 inputs and

two outputs. This fracturable LUT can operate either as (i) a single LUT with six inputs or (ii)

two LUTs with five inputs each. Since the BLE has only 8 inputs, when operating in the two

5-LUTs mode, the LUTs have to share two of their inputs. By construction, to form a 6-LUT,

the two 5-LUTs need to have the same inputs. So, the non-shared pins are assigned, by the

routing, the same signals in both LUTs. Then the output multiplexer selects, depending on the

value of the 6th input, the output of either of the two 5-LUTs. To free one of the BLE inputs to

deliver the 6th signal, an additional multiplexer is added at the inputs. It provides the option

of hard-wiring a third shared input between the LUTs.

The CAD tools are not usually exposed to the details of the design and the hardware imple-

mentation of the fracturable LUTs. All they require is sufficient information on its modes of

operation and input/output connections. However, when actually modeling the architecture

at the hardware level, all the implementation specifics are needed to correctly account for any

overhead introduced by the additional multiplexers.

2.1.3 Depopulated Crossbars

The crossbar is one of the main routing elements in the cluster; it connects the cluster inputs

(I) and the local feedback signals (N) to the LUTs. It also helps reduce the global routing effort

11

Chapter 2. Background Information

5-LUT1

5-LUT2

In0
In1
In2
In3
In4

In5
In6
In7

S

6-LUT	
Output

Out0

Out1

Figure 2.3 – An example of a fracturable 6-LUT in a BLE with 8 inputs and 2 outputs.

and congestion by handling the signal distribution within the cluster.

In general, an n ×m crossbar is used to connect n inputs to m outputs as shown in Figure 2.4,

where typically n ≥ m. A programmable switch known as a crosspoint is used to connect an

input wire to an output wire. The number of crosspoints in a specific crossbar determines its

population p, while its capacity c is specified by the number of signals being routed through

that crossbar. Crossbars are typically implemented as a set of m multiplexers where, again,

m is the number of crossbar outputs. The size of the multiplexer depends on the number of

connected inputs (i.e., crosspoints) per output. In the case of the architecture of Figure 2.2,

the crossbar consists of N ×K multiplexers where the size of each multiplexer is determined

by the density of the crossbar (Fcl ocal) along with I and N .

As the clusters get bigger, the area cost of the crossbar can become very expensive. Thus, when

the area of the architecture is critical, highly routable yet sparsely populated crossbars are

preferred [Lemieux et al., 2000; Lemieux and Lewis, 2001].

Three main types of crossbars can be highlighted.

Full crossbar

A full crossbar has a programmable switch at the intersection of every input wire with every

output wire, which allows it to connect any input to any output giving it full flexibility. Full

crossbars are also know as fully-populated crossbars since their population p is maximal,

which is equivalent to an Fclocal = 1.

12

2.1. FPGA Architecture

n	Inputs
m
	O
ut
pu

ts

(a) Full crossbar

n	Inputs

m
	O
ut
pu

ts

n	Inputs

m
	O
ut
pu

ts

(b) Minimal crossbars

Figure 2.4 – n ×m crossbars having n input wires and m output wires. (a) The full crossbar has a
programmable switch at every intersection of the input and output wires, supporting all possible
connections. (b) Minimal crossbars (two examples) allow any set of m inputs to be connected to all
outputs but without any control on which input is connected to which output.

Full-capacity minimal crossbar

A full-capacity minimal crossbar (also known as minimal crossbar) has less flexibility than a

full crossbar since it uses fewer switches. However, the minimal crossbars maintain the full-

capacity property of the full crossbars since they can connect as many signals as the number

of outputs in that crossbar. This means that any set of m inputs (out of n) can be connected

to all m output wires. The main behavioral difference, when compared to full crossbars,

is that minimal crossbars cannot always connect a specific input wire to a specific output

wire. They do not provide full flexibility in the permutation of inputs/outputs, since some

specific connections would not be feasible. A minimal crossbar always uses p = (n −m +1) ·m
switches. Removing any additional switch forces the crossbar to lose its full-capacity property.

Both full and minimal crossbars are referred to as perfect crossbars since they maintain full

capacity.

Sparse crossbar

A sparsely populated crossbar is referred to as a sparse crossbar. Although there is no common

convention on the degree of sparsity required to build a sparse crossbar, Lemieux et al. [2000]

assume that a crossbar is sparse if it contains fewer switches than the minimal crossbar (i.e.,

p ≤ (n −m +1) ·m). This means that a sparse crossbar can never be perfect (i.e. can never

achieve full capacity).

13

Chapter 2. Background Information

CLB1

CLB2

CLB3

CLB1 CLB2

CLB3CLB3

s27_outn_n40L_inn_n41L_in n_n42L_in

s27_in_3_ n_n41L n_n42Ls27_in_2_s27_in_1_ s27_in_0_n_n40L

LUT9 LUT8 LUT7 LUT6

LUT5LUT4LUT3

LUT2 LUT1 LUT0

CLB1

CLB2

CLB3

s27_outn_n40L_inn_n41L_in n_n42L_in

s27_in_3_ n_n41L n_n42Ls27_in_2_s27_in_1_ s27_in_0_n_n40L

LUT9 LUT8 LUT7 LUT6

LUT5LUT4LUT3

LUT2 LUT1 LUT0

s27_outn_n40L_in n_n41L_inn_n42L_in

2040 4344

19

n_n41L

24 39 42

s27_in_3_

16 1823

s27_in_2_

33 38 41

26

n_n42L

1721 22 3237

s27_in_1_ s27_in_0_ n_n40L

29 31 36

28 30 3435

2527

Logic	Synthesis

Technology	Mapping

Packing

Placement

Rou�ng

Bitstream

Circuit	Descrip�on Logic	Synthesis

Technology	Mapping

Packing

Placement	&	Rou�ng

Figure 2.5 – The FPGA CAD flow.

Commercial FPGAs based on the Altera Stratix family use 50% sparse crossbars [Lewis et al.,

2003] in their clusters, while Microsemi has FPGAs with multi-level crossbars, some of which

are highly depopulated, reaching a 25% density [Greene et al., 2011]. It was also observed

through academic research that low-density crossbars are beneficial for some specific archi-

tectures (e.g., K = N = 6) [Lemieux and Lewis, 2001].

2.2 FPGA CAD Flow

To implement any particular application on the FPGA architecture, the circuit has to go

through the different phases of the FPGA CAD flow, shown in Figure 2.5.

Reading in a description of the circuit, usually in an HDL language, the flow starts first by

synthesizing the circuit and converting it to a specific internal representation. The state-

of-the-art academic tools, like the synthesis and verification tool ABC [ABC], synthesize the

circuit into an And-Inverter Graph (AIG), which consists of a network of 2-input AND gates

and inversions, before optimizing it, usually for delay.

The technology mapping phase then (i) identifies subgraphs of the network that can be

implemented by the basic logic element of the FPGA (typically an LUT), and selects a particular

set of subgraphs that can cover the entire circuit while minimizing some metric of interest,

such as the critical path delay or the number of logic elements used.

At the end of the technology mapping, the circuit becomes a network of logic cells ready to be

14

2.3. Experimental Setup and Benchmarks

Logic	Synthesis
(ABC)

Technology	Mapping
(ABC)

Packing,	Placement
&	Rou�ng
(VPR)

Compute	W'	=	1.3*W

Average	over
3	seeds

Repeat	Placement	&	Rou�ng	
with	seed	2	&	W'

(VPR)

Extract	Area	
&	Delay

Extract	Area	
&	Delay

Extract	Area	
&	Delay

Repeat	Placement	&	Rou�ng	
with	seed	3	&	W'

(VPR)

Repeat	Rou�ng	
with	W'
(VPR)

Architecture	
Descrip�on

Figure 2.6 – The different steps of the experimental setup.

packed into the logic clusters. The packing algorithm decides on the logic cells that should be

grouped together to form a cluster, typically guided by some metrics that vary, depending on

the packing algorithm and optimization objectives.

The packed clusters are finally placed within the FPGA grid and all the routing channels and

connections used to connect these clusters are determined by the router. Knowing exactly

where the logic cells are, which functions they implement, and how they are connected, allows

us, at the end of the CAD flow, to extract all the configurations of the SRAM cells and generate

the respective bitstream, which will then be used to configure the FPGA and implement

that particular circuit. Academic CAD tools, including the VTR flow, do not usually generate

the bitstream but, instead, they simulate the overall architecture performance for the given

benchmark.

2.3 Experimental Setup and Benchmarks

To evaluate the modeled architectures, we use the Verilog-to-Routing (VTR) project [Rose et al.,

2012] which consists of a collection of tools and algorithms that handle the different phases of

the CAD flow.

15

Chapter 2. Background Information

In all our experiments, we use the latest release of the tool, VTR 7.0 [Luu et al., 2014a], and

provide it with a description of the modeled architecture in the XML format. As shown in

Figure 2.6, for every benchmark, ABC [ABC] synthesizes and maps the circuit (previously

elaborated using ODIN II) on K -LUTs, where K depends on the given architecture. Then,

the mapped network is packed, placed and routed using VPR, with unlimited global routing

resources. Knowing the minimum channel width (W) required to route the benchmark, we

repeat the routing step but with a fixed channel width, set to 30% bigger than the detected

minimum (W ′ = 1.3×W). The placement and routing stages are also repeated for three

different placement seeds and the results are averaged over these seeds, in order to reduce

the placement and routing noise. In the different stages of the CAD flow, the tools are set to

optimize for the critical path delay.

We test our architectures on two sets of benchmarks: (i) the Big20 set of the MCNC bench-

mark suite [Yang, 1991] and (ii) the VTR benchmark suite [Rose et al., 2012]. The selected

MCNC benchmarks consist of 20 large combinational and sequential circuits. However, the

VTR benchmarks were more recently introduced as bigger circuits that can represent real

applications and use memory and DSP blocks. We will, in Chapter 6, evaluate the effect of the

benchmark selection on the conclusions of our architecture explorations.

16

3 Library Generation of Macrocells with
Different Drive Strengths

The main objective of FPRESSO is to model FPGA architectures while abstracting the complexity

of the transistor-level optimizations from the user by splitting the process into two different

and completely separate phases: a library generation phase and a circuit optimization phase.

The approach relies on a library of all the macrocells that can be used to build an FPGA

architecture, prepared during the library generation phase. This library contains the tim-

ing and area characteristics of multiple instances of every cell, each with a different drive

strength. Built only once per technology, offline, this library is used, at runtime in the circuit

optimization phase, to model the user-defined architectures. The user is only exposed to

the architecture optimization phase, which is managed entirely by automated scripts and a

standard-cell optimization tool, thus, requiring no particular user expertise.

This chapter focuses on the library generation phase and the different stages of the process,

shown in Figure 3.1, as well as the challenges faced in building the flow using existing, off-

the-shelf tools. Although the concept is inspired from standard-cell design, the notion of cell,

in this context, is rather different from what is usually encountered in standard-cell libraries.

Instead of dealing with gates and relatively small-sized cells, the library is built of intuitively-

defined logic and routing elements that can be found in an FPGA architecture. These can range

from small-sized cells that can be found in standard-cell libraries like inverters, flip-flops, and

multiplexers, to relatively large elements like look-up tables and two-level multiplexers. The

challenges of building our library come from its two main steps: (1) automatically size each

cell and create a variety of versions with different drive strengths, and (2) characterize each of

these cells to build a primed and comprehensive library.

3.1 Leveraging State-of-the-Art Transistor-Sizing Tools

For simple components such as standard cells, the sizing problem is not a terribly complex

optimization problem as most cells are composed of just a handful of transistors. However,

for complex components such as LUTs with tens of transistors to size, it becomes quite

17

Chapter 3. Library Generation of Macrocells with Different Drive Strengths

Process
Models

Library	of	Macrocells

Transistor	Sizing	
and	Op�miza�on

Cell	Characteriza�on

Modified	COFFE

Cadence	Liberate

Variety	Generator

Cells Loads

Figure 3.1 – The library generation flow.

challenging, even for an expert circuit designer, to decide the optimal transistor sizes and

automation of the process is essential.

Luckily, as mentioned in the Introduction, automatic transistor-sizing tools for semicustom

designs have been ported to reconfigurable circuits and FPGA architectures, in particular.

Thus, instead of building our own transistor-sizing tool, we decide to leverage the state-of-the-

art automatic FPGA transistor sizing tool, COFFE [Chiasson and Betz, 2013], and customize it

to automatically size the cells and interface with our library generation flow.

In this section, we will first discuss COFFE’s key features and approach to address the transistor

sizing problem. We will then highlight the modifications we made to the tool so that it sizes

individual cells and interfaces correctly with our library generation flow.

3.1.1 COFFE’s Architectural Structure and Optimization Strategies

COFFE [Chiasson and Betz, 2013] is designed to automatically optimize the transistor sizes of

a parametrized standard FPGA architecture. Figure 3.2 shows the tile architecture supported

by COFFE and the parameters through which the user can customize the architecture to be

modeled.

COFFE uses SPICE simulations to iteratively search a range of transistor sizes and to find

the optimal combination for a given optimization criteria. An exhaustive exploration of all

transistor sizing combinations is not feasible given the very large search space and the need

for time-consuming SPICE simulations. So, COFFE reduces the complexity of the transistor

18

3.1. Leveraging State-of-the-Art Transistor-Sizing Tools

K-LUT FF

BLE with internal
details shown

A
B C

D

Logic
Cluster

BLE

BLE

Total of
N BLEs

Switch
block
MUX

Vertical routing
channel

N•Ofb local
feedback
wires

I cluster
input wires

K local
routing
MUXes
per
BLE

Connection
block MUX

Ofb

Or

Horizontal routing
channel

Figure 3.2 – The FPGA tile architecture supported by COFFE [Chiasson and Betz, 2013].

sizing problem by exploiting the reconfigurable nature of the FPGA. It tries to exploit the

abundant symmetries in the transistor netlist of each cell to reduce the number of transistors

to be sized. For example, all the paths from one SRAM cell to the output of an LUT are

identical and will have the same transistor sizes, hence, only the transistors of a single path are

sized. To further speed up the sizing process, the sizable set of transistors is split into several

groups of a controlled number of transistors (usually about 5 or 6 transistors). Using this

divide-and-conquer approach, the number of transistor sizing combinations to be explored is

further reduced. And to compensate for any side effect of this transistor clustering approach,

COFFE iteratively sizes the transistor groups until no further improvement is obtained or after

reaching a maximum number of iterations. According to their experiments, the authors show

that COFFE usually converges to a solution after 2 to 4 iterations [Chiasson and Betz, 2013].

However, the programmability of the FPGAs means that the critical path is application de-

pendent, making it hard to determine the critical path at design time while optimizing for

delay. COFFE implements two approaches to deal with this issue. In the first approach, COFFE

constructs a representative critical path that includes one instance of each cell and computes

the delay as a weighted sum of the delays of these cells, where the weights are determined

based on the frequency of occurrence of each cell on the critical paths of known benchmarks.

The second approach to deal with the lack of a clear critical path is to simply optimize each

cell individually.

19

Chapter 3. Library Generation of Macrocells with Different Drive Strengths

To evaluate and rank a particular combination of transistor sizes, COFFE uses a weighted

area-delay product as a cost function, in the form of

Cost = ar eaa ·del ayd , (3.1)

where a and d are user-defined parameters that prioritize area over delay, or vice-versa. The

circuit delay for a transistor sizing combination is estimated using SPICE simulations. The

area, however, is calculated by component-dependent formulas that are programmatically

encoded in the tool. At the end of the optimization process, the transistor sizing combination

that achieves a minimum cost is selected.

COFFE models not only the long wires like the local interconnects between the cluster blocks,

but even the short metal that connects two transistors within a single component. The authors

emphasize the importance of modeling all wires, even the shortest connections, and its impact

on the overall delay and area.

With all these characteristics, COFFE happens to be very suitable for the transistor sizing

step needed in our library generation phase. Its level of automation and its parameterizable

FPGA architecture provide us with a reliable infrastructure that can be used, with some

modifications as detailed in Section 3.1.2, to build a customized transistor-sizing tool that

satisfies the requirements of our approach.

3.1.2 Modifying COFFE to Size Individual Cells

As an automatic transistor sizing tool, COFFE happens to have all the features needed to

size our macrocells. The tile architecture that COFFE supports (shown in Figure 3.2), is an

excellent starting point, since it already contains all the cells required to build a standard,

state-of-the-art FPGA.

However, COFFE is designed to size and model the entire FPGA architecture, while we are

interested in individual cells out of that architecture. Thus, we modify COFFE to isolate and

size each component separately. These components, which will form the cells of our library,

are: the K -LUTs, two-input multiplexers, variable-input two-level multiplexers, and flip-flops

(although COFFE does not actually size the flip-flops). Since each component is originally

sized within the context of the architecture that is generally being modeled, the load at the

output of that component is naturally and automatically determined, for each architecture,

by the circuit it is driving. However, when the component is isolated, it is sized separately

without any circuit to drive. In other terms, at the time when the component is sized, we do

not know in which architecture it will be used and, by that, what circuit and load it will be

driving. So, one of the main modifications imposed on COFFE is to take as input a capacitance

to be used as an output load during the transistor-sizing process. This allows it to correctly

size the components and to generate a variety of cells with different drive strengths, as will be

discussed in Section 3.2.1.

20

3.2. Generating Variety of Cells

By optimizing a single component at a time, the critical path of that circuit is easily identified,

making the second optimization approach of COFFE—the one that optimizes each circuit

individually—highly convenient for our objectives. We also keep the same weighted area-delay

product cost function of Equation 3.1 to evaluate the different solutions. As mentioned in

Section 3.1.1, COFFE models the wire loads even for the smallest connections between the

transistors. This implies that the wires within our cells are inherently automatically modeled

during the transistor sizing process.

The modifications to the scripts of COFFE also include extensions to support components

with larger number of inputs. For instance, the biggest LUT it originally supported was a

6-input LUT with the netlist generation of each K -LUT hard coded, individually, in the scripts.

So, we extend the scripts to support LUTs with an exceedingly large number of inputs, and

generalize the process to automatically generate the SPICE netlist and insert the internal

buffers. Although we currently limit the cells of our library to the components that can be

extracted from COFFE, new components can be easily added. Once we know the transistor

design on the component to be added, it can be coded into COFFE to (1) generate automatically

its SPICE netlist, (2) determine the path(s) and transistors to be sized, and (3) break these

transistors into groups that can be iteratively sized. In general, once the final transistor sizes

of a component are determined, we add a step into COFFE to generate the complete SPICE

netlist by duplicating the path that has been sized, depending on the symmetries of each

component.

3.2 Generating Variety of Cells

In a standard-cell based ASIC design, a rich library with a wide range of drive strengths is

essential to approach full-custom design efficiency [Chinnery and Keutzer, 2002]. Similarly,

for our library of cells we provide a wide range of different sizes, sweeping from very small

components optimized for small loads, up to significantly large ones dimensioned to drive

heavy loads.

3.2.1 Variety Through Output Loads

In our modified version of COFFE, we isolate each component from its surroundings and

size it for a certain load capacitance CL . To generate multiple drive strengths per component,

we vary the load capacitance over a representative range of values. We use an exponential

distribution of the form

CL(n) =CInv ·2
n
2 , (3.2)

where CInv corresponds to the input capacitance of a minimum-width inverter and n the

load index, with n = 0,1,2, ...N and the maximum load index defined by N . Accordingly,

CL(n) ranges from a minimum value equivalent to the input capacitance of a minimum-

width inverter, in the selected technology, to a limited maximum value for which the load is

21

Chapter 3. Library Generation of Macrocells with Different Drive Strengths

considered exceedingly large. This maximum value is equivalent to a load for which the sized

component will never be used by the synthesis tool during the architecture optimization phase.

With this, we hope to provide a representative set of drive strengths for every component.

However, we realize that changing only the output load does not provide a sufficient variety of

cells, as will be shown in Section 3.2.2.

3.2.2 Variety Through Optimization Objectives

We understand that a rich library should include a large variety of drive strengths for each cell.

This variety should be evident from the cell’s output driver, whose size must vary significantly

from a minimal size (≈ 1×) to significantly larger sizes (> 100×). This is due to the fact that

the output driver is mainly responsible for restoring the output signal and delivering enough

drive strength for the output load.

Experimenting with different weight values (a and b) in the optimization cost function (Equa-

tion 3.1), we realize that a single combination of weights (e.g., a = 1, d = 1) is not enough to

create the type of variety we want in our library. However, generating a large set of transistor

sizings with different optimization weights coupled with a later pruning can create the desired

variety.

Figure 3.3 shows the size of the output driver of several cells, for different loads. A balanced

optimization (a = 1, d = 1) does not generate enough variety, and in some cases it stops

increasing the size of the output driver way too early. This happens when the area increases by

a factor that is larger than the delay reduction. Accordingly, an optimization that favors delay

but that does not completely ignore area (e.g., a = 1, d = 2) will generate larger drive strengths.

At the same time, an optimization that gives more weight to area (e.g., a = 2, d = 1) will not

generate large drive strengths but components that may still be useful to optimize the area in

non critical paths of the FPGA architecture.

Hence, we use the modified version of COFFE to automatically size the different cells needed

to build the FPGA architecture, and rely on these two approaches to generate the required

drive-strength variety for each cell.

3.3 Cell Characterization

Having the transistor sizing and optimization step automated and all the cells of interest

optimized, with different drive strengths, the next step is to provide measurements (e.g.,

input-to-output delay) for each cell, under various conditions. The process is known as cell

characterization and the conditions are either specified by the designer or constrained by the

used technology.

Cell characterization is a very well understood process: conceptually, SPICE-like simulations

are run within some simple testbenches with varying driving slopes and load capacitances.

22

3.3. Cell Characterization

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

1	 4	 8	 11	 16	 23	 32	 45	 64	 91	 128	 147	 181	 256	 362	

Dr
iv
er
	 S
iz
e	
(X
	 m

in
	 si
ze
)	

Output	 Load	 (fF)	

LUT	 	 Output	 Driver	 Size	 vs.	 Load	

a=1,d=1	 a=1,d=2	 a=2,d=1	

(a) 5-LUT output driver size.

0	

20	

40	

60	

80	

100	

120	

140	

1	 4	 8	 11	 16	 23	 32	 45	 64	 91	 128	 181	 256	 362	

Dr
iv
er
	 si
ze
	 (X

	 m
in
	 si
ze
)	

Output	 Load	 (fF)	

Crossbar	 Output	 Driver	 Size	 vs.	 Load	

a=1,d=1	 a=1,d=2	 a=2,d=1	

(b) 25:1 2-level multiplexer output driver size.

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

1	 4	 8	 11	 16	 23	 32	 45	 64	 91	 128	 181	 256	 362	

Dr
iv
er
	 si
ze
	 (X

	 m
in
	 si
ze
)	

Output	 load	 (fF)	

MUX	 Output	 Driver	 Size	 vs.	 Load	

a=1,	 d=1	 a=1,	 d=2	 a=2,	 d=1	

(c) 2:1 multiplexer output driver size.

Figure 3.3 – Analysis of the output driver size for different cells, optimization criteria and output loads.

23

Chapter 3. Library Generation of Macrocells with Different Drive Strengths

define_template	-type	delay	\
								-index_1								{T1						T2					T3					T4					T5					T6					...					TM}	\
								-index_2								{C1					C2					C3					C4					C5					C6					...					CN}	\
								delay_template_MxN

Input	Net	Transis�on

Total	Output	Net	Capacitance

Figure 3.4 – The characterization delay template. To characterize a cell, a delay template is defined
with a list of values for each of the two metrics that influence any input-to-output delay: (1) the input
net transition and (2) the total output net capacitance.

Table 3.1 – The library’s delay matrix. The measurements of every input-to-output rise/fall delays are
stored in a two-dimensional matrix, indexed by the characterization metrics (namely, the input net
transition and the total output net capacitance).

Total Output Net Capacitance

C1 C2 C3 ... CN

In
p

u
t N

et
Tr

an
si

ti
o

n T1 Delay11 Delay12 Delay13 ... Delay1N

T2 Delay21

T3 Delay31

...

TM DelayM1 DelayM2 DelayM3 ... DelayMN

Process corner, temperature, and voltage can also be added as variables but this is outside

the scope of our goals. EDA tools that perform the task in a completely automated way exist

and, of course, they interface very well with other parts of the semicustom toolchain. To

characterize our cells and build our library, we decide to use Cadence Virtuoso Liberate: an

advanced library characterization tool that creates electrical views, such as timing and power,

in standard formats like the Synopsys Liberty format (.lib).

To characterize a cell, Liberate takes as input the SPICE netlist of the cell along with the foundry

device models. In our case, we take the SPICE netlist generated by the modified version of

COFFE as explained in Section 3.1. We also generate characterization scripts for Liberate in

which we specify the characterization conditions and parameters. They span from operating

conditions, such as the exact temperature and voltage, to specific tuning parameters. We also

provide Liberate with a delay template, as shown in Figure 3.4, that lists the values of the two

metrics for which the cell is to be characterized: input net transition (also known as input

slew) and total output net capacitance. Liberates assigns a value from each list to the input

24

3.4. Challenges in Characterizing Complex Cells

add_cell_a�ribute	{cell_name}	{
						area	:	A;
}

Figure 3.5 – The area of each cell, as added to the characterization scripts.

transition time and output capacitance of the cell in question, respectively, and then measures

every input-to-output rise/fall delay. This is repeated for all the combinations of these two

metrics and stored in the library. Table 3.1 shows how these measured delays are stored in the

library and indexed by the two metrics, assuming N values for the total output net capacitance

and M values for the input net transition metric. Thus, the library consists of such matrices,

that detail the rise and fall delay from every input to every output of the characterized cell. In

addition to the input-to-output delays, Liberate also computes and stores in the library the

output net transition times, which will be used during the circuit synthesis and optimization

phase to estimate the input net transition times of connected cells.

The areas of the cells are actually determined once they are sized and they are provided as

one of the outputs of the modified COFFE version. But to include all cell characteristics in

the same library, we need to provide Liberate with these areas. Figure 3.5 shows how the area

of every cell is added to the characterization scripts so that it is included in the final library

file. Although we might be interested in the future in modeling, on top of the delay and area,

the power of each cell, we currently disable the power and leakage features in Liberate. Using

these features with our cells’ level of granularity and complexity presents a major challenge

to Liberate, to a point where it does not even terminate in reasonable time. Thus, we disable

this feature for now, but, if we want to include power characteristics in the future, we need

to find ways to reduce the complexity for the characterization tool. We actually face similar

complexity problems even in measuring the delay and determining the cell functionality, but

we were able to leverage the FPGA’s symmetries and reconfigurability to circumvent these

challenges, as detailed in Section 3.4.

3.4 Challenges in Characterizing Complex Cells

Our components are qualitatively similar to standard cells and, in some cases, are practically

identical, such as flip-flops and 2-to-1 multiplexers. Unfortunately though, many of the critical

components, such as LUTs and large two-level multiplexers, are much bigger than the biggest

typical standard cells, in terms of both transistor count and number of inputs. This implies

that, for understandable scalability issues, a tool like Liberate naturally fails to characterize

some necessary components. We will discuss in this section how we use the cell symmetries

and reconfigurability to circumvent these problems.

25

Chapter 3. Library Generation of Macrocells with Different Drive Strengths

3.4.1 LUT Characterization

Liberate is capable of characterizing small size LUTs, such as LUTs with 2 or 3 inputs. However,

as the number of inputs increases, the number of SRAMs grows exponentially, making the

LUT characterization a major challenge for Liberate. Having a complex functionality and a

high number of variables to track, Liberate fails to characterize the cell.

In order to overcome the problem and simplify the task for the characterization tool, we

reduce the complexity of the LUT by exploiting the symmetries in its transistor design. As

seen in Figure 3.6, a signal can travel from an input (e.g., inA) to the output through what

seems to be different paths. In practice, however, these paths include transistors of identical

sizes because each transistor belonging to a level of the binary tree has the same size. The

only actual difference is whether the input inverter is used or not. Thus, it is sufficient to

pick a limited number of representative paths during the characterization to cover all the

different input-to-output timing arcs, and this can be done by fixing the configurations of

the SRAMs (i.e., setting them to ‘1’ or ‘0’). These representative paths must be selected in a

way that guaranties the characterization of both inverted and non-inverted input-to-output

paths. Furthermore, these paths must enable all possible signal transitions (i.e., rise-fall,

rise-rise, fall-fall and fall-rise) between the inputs and the output. For that purpose, we set

the configuration bits S0 and S7 in the example of Figure 3.6 to ‘1’ and the remaining ones

to ‘0’. By configuring the 3-LUT in this way, all the input-to-output timing paths, along with

their respective rise and fall delays, will exist in the generated library. To configure the LUT,

the SRAM cells are connected directly to VDD and GND, reducing the number of variables

visible to Liberate.

Once the LUT is characterized for the representative paths, the SRAMs are then added back

as input variables and the library is corrected with the respective Boolean function. It is

important to bring back the complete LUT interface into the library so that it can be directly

associated with its circuit description when read into the later stages of FPRESSO. Also, the

synthesis and optimization tool used in these stages identifies the different sizes of the same

cell (i.e., with different drive strengths) only if they have the same logic function and if it uses

all input variables.

3.4.2 Two-Level Multiplexer Characterization

FPGA crossbars are generally designed as 2-level multiplexers [Lewis et al., 2005], as shown in

Figure 3.7. Each multiplexer is usually connected to all or to a fraction of the crossbar inputs,

depending on the desired sparsity. As mentioned in Section 2.1.3, the crossbar of the Stratix-IV

FPGA, for instance, has 72 inputs and is half populated [Lewis et al., 2005], [Lewis et al., 2009],

which means that each 2-level multiplexer has 36 inputs and 12 SRAMs.

Hence, similar to the LUTs, these multiplexers can have a large number of inputs, making it

impossible for Liberate to characterize. However, to ensure the multiplexer functionality, only

26

3.4. Challenges in Characterizing Complex Cells

inA:0 1 inB:1 inC:1

out:0 1

1

0

0

0

0

0

0

1

out:1 0

1

0

0

0

0

0

0

1

inB:0 inC:0inA:0 1

Figure 3.6 – The transistor design of a 3-input LUT. Representative paths that ensure all signal transi-
tions between the inputs and the output are selected to simplify the characterization of an LUT.

27

Chapter 3. Library Generation of Macrocells with Different Drive Strengths

level 1 level 2

i0 i1 i2

i3 i4 i5

i6 i7 i8

S0:1 S1:0 S2:0

S3:1

S4:0

S5:0

2-stage buffer

out

Figure 3.7 – The transistor design and configuration of a 2-level multiplexer. This multiplexer has 9
inputs and is called a 3×3 mux since it has 3 SRAMs in each level.

two SRAMs are set during one configuration (one SRAM in the first level and one in the second)

to connect a single input to the output. This property is used to simplify the characterization

of the 2-level multiplexers by characterizing configured versions of the multiplexers, limiting

the number of transistors and reducing the complexity of the process. For each input, the

multiplexer is configured to enable the path from that particular input to the output by

connecting the two related SRAMs to VDD and the remaining ones to GND. Figure 3.7 shows

the general structure of a 9-input 2-level multiplexer, where, to connect input i0 to the output,

S0 and S3 are set to ‘1’ while the remaining configuration bits are set to ‘0’. Once an input-

to-output path is enabled, the remaining inputs are no longer relevant and can be forced to

a logic value (‘1’ in this case). The multiplexer input is then characterized and the process

is repeated for all inputs, which generates multiple library files. Thus, in a final step, all the

generated libraries are merged back into one, the SRAMs are reintroduced as input variables

and the logic function is corrected.

3.4.3 Switch/Connection Block Characterization

Within the FPGA tile, the switch Blocks (SBs) and Connection Blocks (CBs) are basically

multiplexers used to connect the cluster outputs and inputs to the global routing. Since they

have a large number of inputs, the SBs/CBs are designed as 2-level multiplexers, similar to the

multiplexers of the crossbars.

Figure 2.2 shows the SB/CB connections to the cluster’s outputs/inputs and to the routing

channel. Given a single cluster, the inputs of the SBs/CBs are hard to identify since they

could be outputs of other clusters, for example. Therefore, when modeling one single cluster,

connecting all the inputs of the SBs/CBs is not feasible. And since the optimization tool used in

FPRESSO requires all the inputs to be connected, the 2-level multiplexers created in Section 3.7

cannot be used.

28

3.5. Discussion

Instead, we create a new set of 2-level multiplexers where only one input is available and can

be connected to the output. This can be done by selecting and characterizing a single path

from one input to the output. The process is similar to the one used in Section 3.4.2 where

the single path is selected by setting two particular SRAMs to ‘1’ and the remaining ones to

‘0’. The first input of the multiplexer (i0) is chosen in this case, as highlighted in Figure 3.7.

The multiplexers are characterized with only this configuration and the timing information

between i0 and the output is added to the library. To differentiate this special type of 2-level

multiplexers, they are given a function with only i0 and the selected two SRAMs (S0 and S3 in

the case of the 3×3 multiplexer of Figure 3.7) as variables. Having a different number of inputs

and a different function, this type of multiplexers will be used, in the optimization phase of

FPRESSO, only for SBs and CBs.

3.5 Discussion

The tasks described in this chapter are essential to the preparation of the library of cells, used in

the later stages of FPRESSO to model the FPGA architecture. As with standard cells, the library

development is an elaborate and lengthy process, performed offline by fairly experienced

designers. In case of porting the library from one technology node to another, the process

is almost automatic, but the expertise of a transistor-level designer is required if one is to

add new components to the library (for instance, non-LUT logic blocks). Once the library

is available, architects can model new FPGA architectures by composing the circuits using

the predefined functional blocks, as will be discussed in details in Chapter 5. They simply

define, functionally, the architecture of the FPGA while completely ignoring electric and timing

issues. FPRESSO automatically models and optimizes the described architecture, using the

cell characteristics stored in the library, and returns, in the end, the same architecture fully

annotated with the required delay and area estimations.

To explain and illustrate the library generation process, we use, throughout this chapter,

specific designs and implementations of the FPGA cells. By relying on COFFE to automatically

size the cells, we are inheriting the same design decisions adopted in COFFE. However, our

approach itself is generic and can support any transistor-level design of the cells. Furthermore,

being able to define and identify individual cells, FPRESSO can support multiple designs of the

same cells, allowing for a wider variety of implementations. For example, the LUT design of

Figure 3.6 is not a unique way of implementing the LUT, thus, various implementations can

be added as different cells and used to build the FPGA, depending on the user’s specifications.

An important stage of FPRESSO’s modeling is to account for the wires within the architecture.

As stated in Section 3.1, since COFFE already models the wires that connect the different

transistors within the cell and takes their parasitics into account while sizing the cell, all

the wires within our library cells are inherently modeled as well. However, we still need to

model the wires that connect the cells to each other, in the architecture. Since our task is to

simply model the delay and area of the architecture, we do not have any notion of how the

29

Chapter 3. Library Generation of Macrocells with Different Drive Strengths

circuit layout might be, making it hard for us to determine, at this stage, the length of those

wires. To address this problem, FPRESSO relies on a floorplanning algorithm that optimizes

the placement of the cells to reduce the total wire length and to model the wires connecting

them. So, we will first explain, in Chapter 4, this wire modeling approach before covering, in

Chapter 5, the remaining stages of FPRESSO’s main flow. .

30

4 Automatic Wire Modeling of FPGA
Architectures

Modeling the wireloads is an essential step towards a correct and comprehensive modeling

of an FPGA architecture. COFFE, for instance, emphasizes on the importance of accounting

for all the wires within the modeled circuit, even the smallest ones connecting individual

transistors [Chiasson and Betz, 2013]. The authors study and highlight the impact of wireloads

on the modeled area and, most importantly, delay of the architecture, where the optimized

cluster path almost doubles in delay after including the wireloads.

In FPRESSO, a part of the wire modeling is already performed, albeit indirectly, in the library

generation phase. By sizing our library cells using the customized version of COFFE, we are

automatically modeling the wires that connect the different transistors within those cells. We

still need, however, to account for the longer wires used connect the cells and which, arguably,

have a bigger impact on the overall model.

The difficulty of the wire modeling problem is in determining the length of the wires at this

early stage of the flow. Ideally, a complete circuit layout determines the relative placement of

the different blocks of the architecture and, hence, the length of the wires connecting them.

However, with the level of abstraction and efficiency required from the modeling tools, a quick

and easy estimation of the wireload effect is essential. COFFE leverages the fixed structure

of the architecture it supports and uses a simple topological order to place its blocks and

estimate the length of the wires. This approach though cannot be applied to FPRESSO since

the architectures to be modeled are only known at runtime and can have different structure

and characteristics.

In this chapter, we present a method to automatically determine the length of the intercon-

nects within the FPGA cluster, generically, and irrespective of its structure or the components

used [Zgheib and Ienne, 2016]. The approach itself is modular and can be incorporated into

modeling tools or used independently. However, in our case, we use it as a fundamental step

in FPRESSO, to estimate the wireload effect while modeling the FPGA architecture.

Researchers have looked into the wire modeling problem in the past, whether for generic

31

Chapter 4. Automatic Wire Modeling of FPGA Architectures

circuits [Stoobandt, 2001] or analytical models for FPGA architecture [Smith et al., 2009].

Perhaps the most related research to our work is GILES [Padalia et al., 2003], a tool that

generates transistor-level schematics and presents a place and route algorithm to obtain a

compact layout of the architecture. However, our goals are fundamentally different since

we do not plan on generating layouts from our design, but we target a fast modeling and

estimation of the delay/area of an FPGA architecture, while taking into account the parasitics

of the wires within that architecture.

4.1 The Wire Modeling Problem

To model the wires and measure their length, the dimensions of the different cluster com-

ponents must be known as well as their placement within the cluster. And, to minimize the

wireload, all the components connected through the same net must be placed as closely as

possible to reduce the length of that net. So, the architecture can be seen as a network of com-

ponents that must be placed within the cluster, as densely as possible. And by that, the wire

modeling problem can be transformed into a floorplanning problem with the optimization

objective of minimizing the wirelength.

Floorplanning is a well studied problem in VLSI design [Sherwani, 1995] and usually optimizes

the placement for area and/or wirelength. There exist many floorplanning optimization algo-

rithms, the most common of which are based on the simulated annealing heuristic [Kirkpatrick

et al., 1983]. Generally, the algorithms start by representing the circuit using a graph or a tree

of nodes before performing graph manipulation and optimization. Some of the earliest algo-

rithms use normalized Polish Expressions [Wong and Liu, 1986], sequence pair [Murata et al.,

1995] or O-Tree representations [Guo et al., 2001, 1999]. However, a more recent representation,

the B*-Tree, was introduced as an easier-to-manipulate alternative representation [Chang

et al., 2000; Wu et al., 2003].

Our approach starts first by converting the cluster architecture, with all its components

(referred to as modules in the floorplan) and connections (wires or nets) into a B*-Tree rep-

resentation. Then a simulated annealing based algorithm is implemented to floorplan the

tree and optimize the placement of each module in order to minimize the overall wirelength.

Once the floorplan is optimized, the best solution is chosen as the final placement of all the

cluster components and the length of each net is computed to derive its respective load and

resistance.

Before explaining the details of the floorplanning algorithm in Section 4.3, we first introduce

the B*-Tree representation and its characteristics, used to determine the location of the

architecture blocks in the optimizes floorplan.

32

4.2. B*-Tree Representation

b1

b7

b2

b4

b5

b3

b9

b8
b6

b12

b11b10

n1

n7

n2

n4

n3 n9

n8

n5 n6 n12

n11

n10

Figure 4.1 – An admissible floorplan, compact on the lower left corner, and its equivalent B*-Tree.

4.2 B*-Tree Representation

A B*-Tree is a representation in the form of a binary tree that was introduced to overcome the

limitations of existing floorplanning representations [Chang et al., 2000; Wu et al., 2003]. A

B*-Tree depicts the floorplan through a set of predefined geometric relationships. Each node

(ni) of the tree corresponds to a placed module (bi) where the root of the tree is the module

placed at the lowest left corner of the floorplan. The placement of each node is relative to

the placement of its parent. If node n j is the left child of node ni , then b j is placed on the

right-hand side of bi , directly adjacent to it. In this case, the x-coordinate of b j is determined

by x j = xi +wi where xi is the x-coordinate of bi and wi its width. If n j is the right child of

node ni , then b j is placed immediately above bi so that x j = xi . Figure 4.1 shows a B*-Tree

and its equivalent floorplan, generated following the geometric relationships of the B*-Tree

nodes.

To convert a B*-Tree to a floorplan, the tree is traversed in a way similar to the Depth-First

Search by placing the root first at the lower left corner and then recursively tracing and placing

its left subtree first then the right one. Similarly, an existing placement can be transformed

into a B*-Tree if it is admissible, meaning that it is compact on the lower left corner in such

a way that no module can be further moved left or down. The floorplan of Figure 4.1 is an

example of an admissible placement. The B*-Tree is derived by starting from the module

in the lower left corner (b1), setting it as root to the tree and then recursively traversing the

modules on its right, building the left subtree of the B*-Tree before visiting the module above

it, building, also recursively, the right subtree.

Although the x-coordinates of the B*-Tree nodes are easily derived, the y-coordinates must

be computed during its conversion to a floorplan. When placing a module bi at xi , it must

not overlap with the existing modules, so its y-coordinate is determined by the maximum

33

Chapter 4. Automatic Wire Modeling of FPGA Architectures

b1

b7

b2

b4

b5

b3

b9

b8
b6

b11b10

Old	Contour

New	Contour

Figure 4.2 – The horizontal contour before and after adding module b11 to the floorplan.

height of the current floorplan between xi and xi +wi . For that purpose, a horizontal contour

of the existing floorplan is saved, keeping track of the maximum height of the modules already

placed [Chang et al., 2000; Guo et al., 1999]. Figure 4.2 shows the horizontal contour before

and after placing module b11. It was shown that, using the contour, the y-coordinate of a

newly inserted module is computed in O(1) time [Guo et al., 1999].

4.3 Floorplanning Algorithm

Simulated annealing [Kirkpatrick et al., 1983] is commonly used to optimize the placement

of floorplans in VLSI design [Sechen and Sangiovanni-Vincentelli, 1986a,b] and variations

of the algorithm have been developed over the years to improve the runtime through paral-

lelization [Chandy and Banerjee, 1996; Fang et al., 2009], modify the cooling process [Chen

and Chang, 2006; Sechen and Sangiovanni-Vincentelli, 1986b], or change the cost function to

target specific objectives [Adya and Markov, 2003].

In our wire modeling and floorplanning problem, our objective of minimizing the wirelength

is simple and the number of modules to place is not exceedingly large, so a basic version of

the simulated annealing algorithm should achieve the desired optimization.

The adopted algorithm starts by taking a randomly generated solution in the form of a B*-Tree.

Each node of the tree is equivalent to a module in the floorplan or a component in the cluster

architecture (e.g., K -LUT, 2:1 multiplexer, etc.). Having the node at a particular location in the

tree is like specifying its (x, y) coordinates in the floorplan, as explained in Section 4.2.

As shown in Algorithm 1, starting with an initially high temperature T , the tree is perturbed M

times, where each time the cost of the new tree is computed. If the new solution is better than

the existing one, it is selected for the next iteration. However, if the new tree has a higher cost,

34

4.3. Floorplanning Algorithm

Algorithm 1 Simulated annealing algorithm

1: BT = GenerateInitialRandomBTree()
2: T = ComputeInitialTemperature()
3: n = 0
4: repeat
5: m = 0
6: repeat
7: newBT = Perturb_BTree()
8: ∆cost = cost(newBT)−cost(BT)
9: p_uphill = e

−∆cost
T

10: if (∆cost ≤ 0) or (random < p_uphill) then
11: BT = newBT
12: if (cost(BT) < Cost(best_BT) then
13: best_BT = BT
14: end if
15: end if
16: m ++
17: until (m ≥ M)
18: n ++
19: T =λnT
20: until T < ε

the probability of accepting worse solutions, referred to as p_uphill, is computed and the new

tree is accepted with a probability p_uphill. The uphill probability is defined by

p_uphill = e
−∆cost

T , (4.1)

where ∆cost is the difference in cost between the new solution and the current one, and

T is the current temperature. Since, initially, T is much larger than ∆cost (as explained in

Section 4.3.4), the probability of accepting a worse solution is very high, allowing for the search

to escape local minima. As the temperature T decreases, p_uphill gets smaller so that it is less

likely to choose a worse solution and becomes negligible as T tends to its final limit ε. p_uphill

also depends on the value of ∆cost in such a way that solutions with a larger cost difference

are less likely to be chosen than the ones with a smaller cost difference.

After a certain number of iterations M , the temperature is decreased and the entire process is

repeated but, consequently, with a smaller uphill probability. The best solution of all iterations

is saved and returned as the final solution after the system freezes.

We will now elaborate on the main aspects and key features of the algorithm, namely the

initial solution with which the optimization starts, the perturbation of the B*-tree to create

new solutions, the cost function used to evaluate them, and the temperature that emulates

the annealing behavior.

35

Chapter 4. Automatic Wire Modeling of FPGA Architectures

4.3.1 Initial Solution

The described simulated annealing algorithm takes an initial solution and iterates by per-

turbing it, in the search for the optimal one. This initial solution is a randomly generated

B*-Tree.

The tree is built by first choosing a node (which represents a component in the architecture),

at random, as the root of the tree, and then adding more randomly-selected nodes to the

tree until it includes all nodes. Whenever a node n j needs to be added, one of the existing

tree nodes is selected at random to become its parent. If the parent node ni is a leaf (i.e. a

node without any children), n j is randomly added as its left or right child. But if the parent ni

has only one child then n j is added as its other child. Naturally, parents having already both

children are not considered.

4.3.2 Perturbation

The perturbation of the existing solution is performed in two steps: (i) first, a node is selected at

random and removed from the tree; then, (ii) the removed node is reinserted at a new random

location in the tree. Once the tree is perturbed, its new cost is computed by converting it into

a floorplan and measuring the total wirelength. However, deleting and inserting a node can

affect the other nodes in the tree.

Deletion

The process of deleting a node from the tree varies depending on the type of node: (1) a leaf

node with no children, (2) a node with only one child, and (3) a node with both children.

Figure 4.3 shows examples on how to delete the node in each of these three cases. Deleting a

leaf node simply removes the node without affecting the rest of the tree. If the node has only

one child, then it is removed, its child is moved up to replace it and the child’s subtree is moved

with it. However, in the case where the node has both children, one child is randomly chosen

to replace the deleted node. Then, the subtree on that branch is rearranged, recursively, by

randomly moving one child up to fill the gap.

Insertion

To insert a node n j into the tree, a node ni from the tree is randomly chosen to become its

parent. One of the two branches of ni is selected at random and n j is added on that branch. If

the parent does not already have a child on that branch, the node is directly added without

any further consequences. However, if the parent ni has already a child on that branch, then

when n j is inserted, it becomes the new parent of that child. With this approach, the inserted

node will have one child at most. Figure 4.4 illustrates the insertion process with examples

that cover the two different cases.

36

4.3. Floorplanning Algorithm

n1

n7

n2

n4

n3 n9

n8

n5 n6 n12

n11

n10

(a) Initial B*-tree.

n1

n7

n2

n4

n3 n9

n8

n5

n6 n12

n11

n10

(b) Deleting a leaf node (n5).

n1

n7

n2

n4

n3 n9

n8

n5 n6

n12

n11

n10

(c) Deleting a node with one child (n10).

n8

n7

n2

n4

n3 n9

n10

n5 n6

n1

n12

n11

(d) Deleting a node with two children (n1).

Figure 4.3 – Deleting a node from the B*-Tree in the cases where the node is (b) a leaf node, (c) a node
with only one child, or (d) a node with two children.

n1

n7

n2

n4

n3 n9

n8

n5 n6 n12

n10

n11

n13

(a) Inserting a new node (n13) after a leaf node
(n11).

n1

n7

n2

n4

n3

n9

n8

n5 n6 n12

n10

n11

n13

(b) Inserting a new node (n13) after a non-leaf
node (n8).

Figure 4.4 – Inserting a node into the B*-Tree of Figure 4.1 in the cases where the parent is (a) a leaf
node or (b) a node with existing children.

37

Chapter 4. Automatic Wire Modeling of FPGA Architectures

Steiner	nodes

Figure 4.5 – The Rectilinear Steiner Minimal Tree (RSMT) connecting 5 nodes by adding 3 new Steiner
nodes.

4.3.3 Cost Function

The goal of the floorplan is to reduce the wireload effect by minimizing the length of the

different interconnects. So the total wirelength is used as a measure of the floorplan’s cost,

guiding the optimization algorithm in the search for an optimal solution.

One of the most common techniques used to minimize the wirelength in the floorplanning of

VLSI designs is the Rectilinear Steiner Minimal Tree (RSMT) [Hwang et al., 1992]. It determines

the tree that connects a set of nodes using the minimum wirelength, measured in Manhattan

distance. To build this tree, new nodes, called Steiner nodes, can be added. Figure 4.5 shows

the RSMT that connects 5 nodes while adding 3 Steiner nodes.

There exist several algorithms to solve the RSMT problem [Hwang et al., 1992], and one of

the fastest approaches is a lookup table based RSMT algorithm known as FLUTE [Chu and

Wong, 2008]. FLUTE relies on precomputed RSMTs for low degree nets (up to 9 nodes per net),

stored in look-up tables. It then uses a net-breaking technique to convert high degree nets

into sets of low degree nets whose RSMTs can be found in the look-up tables. This technique

can determine the net’s tree and its length very fast and accurately for any number of nodes.

We use FLUTE to compute the rectilinear Steiner minimal tree and its length for each net.

Then the cost used by the simulated annealing algorithm is the sum of the lengths of all the

nets in the architecture.

Having the wirelength as the only metric in the cost function can result in final clusters of

irregular dimensions, if they lead to shorter wirelength. So, although not considered here, the

final aspect ratio of the cluster can be added to the cost function, increasing the cost of any

solution that is far from the desired aspect ratio.

38

4.4. Integration in FPRESSO’s General Flow

4.3.4 Temperature

The temperature T is used to control the simulated annealing search, allowing for a wider

search space at the beginning of the algorithm but then a convergence to an optimal (or near

optimal) solution towards the end. The algorithm needs to determine first the value of the

initial (high) temperature for a better control of the uphill probability.

To compute the initial temperature T0, a random B*-Tree is perturbed and, if the new tree

has a worse cost than the previous one, the difference in cost ∆cost = cost(new)−cost(old),

which is the uphill cost, is saved. This process is repeated over multiple randomly generate

B*-Trees perturbed several times and the average uphill cost ∆av g is computed. The initial

temperature should be set much higher than the average uphill cost, so it is computed using

T0 = ∆av g

α
, (4.2)

where α is a tuning parameter of the algorithm.

The temperature is gradually decreased, in a controlled way, so that worse solutions are less

likely to be selected as the algorithm advances, leading to an eventual freezing of the system

around the best seen solution. As shown in Algorithm 1, the new temperature is determined

by

T =λnT, (4.3)

where n is the number of times the temperature is decreased and λ is a variable used to control

the speed with which the temperature drops.

4.4 Integration in FPRESSO’s General Flow

This wire modeling approach with its floorplanning algorithm of Section 4.3 are integrated into

the general flow of FPRESSO. Although the flow itself will be discussed in details in Chapter 5,

we will briefly overview the way the algorithm interfaces with the remaining parts of the flow.

As previously mentioned, FPRESSO takes a description of the architecture, written in XML

format, and identifies the different blocks and interconnects within the cluster. Aiming at

modeling the wires first, FPRESSO starts by converting the architecture into a network of

modules ready to be placed, and creating the B*-Tree in such a way that each module is

associated with a node in the tree.

The width and height of each module is required before running the algorithm, to be able to

correctly place the modules and abide by the geometric relationships of the B*-Tree. But since

the cluster has not been modeled yet, we do not know at this stage the area of its components.

39

Chapter 4. Automatic Wire Modeling of FPGA Architectures

Thus, we use the average area of each component over its different sizings (i.e., the multiple

instances of the cell, each with a different drive strength). This data is easily derived, since

the different components with all their characteristics and sizes are stored in the library of

FPRESSO. It is assumed, for simplicity, that each component has a square shape (aspect ratio

of 1), although the aspect ratio is added as a parameter and can be easily modified. Doing this

floorplanning during the modeling process, we have no information on the final layout of the

architecture or the pin locations of the floorplan modules, so we assume that a wire starts/ends

at the centroid of each module. Once the cluster is floorplanned and the placement optimized,

the length of the nets is computed along with their respective capacitance and resistance.

Then the FPRESSO design is annotated with this information before optimization.

Once optimized, the actual area of each architectural block is known and, as such, its correct

dimensions are calculated, so the floorplan can be corrected accordingly. The cluster is then

floorplanned again using, this time, the exact area derived from the previously optimized

circuit. Similar to the first iteration, the best solution is determined by the algorithm and

the circuit is again annotated with the wires’ parasitics, for another round of optimization

in FPRESSO, before returning the final results to the user. Floorplanning the architecture

again, while using accurate area measures, helps minimize the noise added by the initial

area assumptions. Having only two floorplanning iterations is enough to achieve the desired

results, as will be shown in the experiments of Section 4.5.

This wire modeling approach relies on several assumptions like, for instance, that the wires

are connected through the centroids of the components. This assumption, for example, is

needed to determine the beginning/end of wires especially since the design components

are only modeled and the actual layout is unknown, so there is no indication on where the

pins of each component are placed. This assumption can be easily modified in the algorithm,

but we believe that it does not have a major consequence since we are simply modeling the

architecture (components and wires) and not providing a final layout of the design. Another

assumption is that the SRAM configuration bits are spread across the different components

in which they are used, while, in reality, they are grouped into columns that span the FPGA.

We realize that this is probably an important aspect of the FPGA floorplanning, but we focus

mainly on having a quick and automatic estimation of the intercomponent wireloads, as part

of our FPGA modeling approach.

4.5 Experiments

Although we do not present the complete flow of FPRESSO till Chapter 5, we will anticipate

some results relevant to the wire modeling approach, to evaluate its effect on the performance

of FPRESSO, in general. The overall modeling of FPRESSO itself will be extensively evaluated in

the subsequent chapters.

Once the simulated annealing algorithm is well tuned, by varying the different parameters of

the heuristic (such as λ and M), the efficiency of the floorplanner is evaluated and tested it on

40

4.5. Experiments

K-LUT

BLE0

BLE1

BLEN-1

I

N

NCrossbar	(Fclocal)

MF

MO
FF

XbK-1

Xb1

Xb0

Out0

Out1

OutN-1

Direct	IO	path
Feedback	path

Figure 4.6 – A standard FPGA cluster with N BLEs, K -input LUTs, I cluster inputs, and an input crossbar.

a set of FPGA architectures. We split the evaluation into two sets of comparisons: (i) FPRESSO

with and without wire modeling, and (ii) our wire modeling approach with the one used in

COFFE.

4.5.1 Comparison Within FPRESSO

To evaluate the effect of wire modeling on the results of FPRESSO, we model a set of architec-

tures in (1) FPRESSO without wire modeling and (2) FPRESSO running with the wire modeling

approach, as explained in Section 4.4. Figure 4.6 shows the general structure of the tested

architectures. Similar to the Altera Stratix FPGAs, the architectures are composed of N BLEs

where each BLE contains a K -LUT, a flip-flop, and two multiplexers, one for local feedback

(MF) and one for global output (MO). The cluster also contains a fully populated input cross-

bar (Fclocal), designed as a set of multiplexers (Xb0, Xb1, etc.) connecting the I cluster inputs

and the N local feedback signals to the inputs of the LUTs.

Figure 4.7a shows the relative delay and area of the direct input-output path, for a set of

architectures, measured using FPRESSO with wire modeling, with respect to a version of

FPRESSO that does not include the wire modeling iterations. The direct input-output path

starts from a cluster input to a cluster output, going through the input crossbar, LUT, flip-flop,

and output multiplexer, as shown in Figure 4.6. The results show that considering the wireload

effect during the modeling process increases the delay by about 20% to 60%, depending on the

size of the architecture and the optimization,while maintaining almost the same area. This

increase in delay is mainly due to the wire delays and loads that are not accounted for without

41

Chapter 4. Automatic Wire Modeling of FPGA Architectures

-60% -40% -20% 0% 20% 40% 60%

Relative Area

-20%

0%

20%

40%

60%

80%

100%
R

el
at

iv
e

D
el

ay
Architecture

K4_N8_I18
K4_N10_I22
K5_N8_I22
K5_N10_I27
K6_N8_I27
K6_N10_I33

(a) Direct input-output path

-60% -40% -20% 0% 20% 40% 60%

Relative Area

-20%

0%

20%

40%

60%

80%

100%

R
el

at
iv

e
D

el
ay

Architecture
K4_N8_I18
K4_N10_I22
K5_N8_I22
K5_N10_I27
K6_N8_I27
K6_N10_I33

(b) Feedback path

Figure 4.7 – The effect of wire modeling on FPRESSO’s results. The relative delay and area of two
representative paths of an FPGA architecture, modeled in FPRESSO with wire modeling and compared
to a version of FPRESSO without wire modeling.

42

4.5. Experiments

Table 4.1 – The area correction after the second and third iterations of the floorplanning algorithm.

Architecture Area Correction
K N I 2nd Iteration 3rd Iteration
4 6 14 3.36% 0.88%
4 8 18 8.07% 4.17%
4 10 22 3.30% 1.46%
5 6 17 10.42% 3.71%
5 8 22 2.69% 0.91%
5 10 27 8.73% 6.66%
6 6 21 5.23% 3.59%
6 8 27 1.75% 1.83%
6 10 33 3.05% 3.78%

Average 5.18% 3.00%

the wire modeling algorithm.

Moreover, we observe a similar behavior in results between the direct input-output path and

the feedback path which starts from the output of the flip-flop to its input, going though

the feedback multiplexer, input crossbar and LUT (also shown in Figure 4.6). Despite an

increase in the relative delay by about 25%, on average, for the feedback path with respect to

the direct one. The feedback path is usually assumed to be a long wire connecting the output

multiplexer to the input crossbar; however, our algorithm does not only measure the length

of the wires but also floorplans the FPGA cluster in order to minimize the total wirelength.

This means that the floorplanner tries to place connected components as closely as possible

to reduce the delay of that connection. As such, the feedback multiplexer could be placed

near the multiplexers of the input crossbar, reducing the feedback delay. Figure 4.8a shows

the floorplan of a simplified cluster with one BLE using our floorplanning algorithm. It clearly

shows how the feedback multiplexer is placed close to (1) the input crossbar multiplexers and

(2) the LUT and flip-flop, reducing the feedback delay.

As explained in Section 4.4, our algorithm iterates twice: in the first iteration it uses an average

area of the components to floorplan; but, once the architecture is optimized (as part of

FPRESSO’s general flow), we identify the actual areas of the used components and run the

algorithm again with the correct measurements. Table 4.1 shows the difference between

the average areas used in the initial iteration and the ones obtained after the optimization,

and used in the second iteration of the algorithm. There is, on average, about 5% less total

area than what was initially approximated, indicating that FPRESSO’s library has slightly

bigger components than what is generally used during the optimization of these architectures.

However, this difference is so minimal that it can even fall within our modeling margin of error.

Table 4.1 shows also the area correction if a third iteration is added to the flow. The difference

in area decreases to a negligible 3%; but with such a minimal improvement, the runtime cost

of a third iteration is not justified, thus we keep only two iterations of optimizations.

43

Chapter 4. Automatic Wire Modeling of FPGA Architectures

Although we limit our experiments to a conventional FPGA structure, this floorplanning-based

modeling approach operates at the same level of architectural flexibility as FPRESSO since it

applies automatically to all architectures, even unconventional ones, and is limited only to the

components that FPRESSO supports. These limitations also include the carry chain support.

Since FPRESSO does not currently support carry chains, they are not considered in the wire

modeling approach. However, the algorithm can be easily adapted to support this kind of

dedicated, fast connections, by adding weights to the routing elements, allowing the simulated

annealing to prioritize the carry chains over the other standard routing connections.

4.5.2 Modeling Comparison with COFFE

There are fundamental differences between our wire modeling technique and COFFE’s. These

differences can be classified into two main categories: (i) the floorplanning of the cluster and

(ii) the wirelength computation.

First, COFFE assumes a fixed floorplan of the cluster irrespective of the size of the components.

Since COFFE optimizes only a single representative path of the architecture, its floorplan

consists of a simple linear ordering of the components as generally described in architecture

files and as shown in Figure 4.8b for a single BLE. However, the placement generated by our

floorplanner changes depending on the architecture and the sizes of the components. For

example, floorplanning the same components of Figure 4.8b results in the placement shown

in Figure 4.8a, where the modules are rearranged to minimize the total wirelength. So, for

example, in COFFE, the length of the wire connecting the LUT to the feedback multiplexer

depends on the width of the flip-flop. However, this dependency cannot be applied to our

floorplan since it varies from one architecture to the other, and, as shown in Figure 4.8a, the

flip-flop might not be placed between the LUT and feedback multiplexer.

The second major difference resides in the way the length of the nets is computed. We compute

the wirelength using the rectilinear Steiner minimal tree and Figure 4.8a shows the nets used to

connect the different components of the tree (not showing the input/output wires to/from the

cluster). COFFE, on the other hand, ignores the height of the nets, as if all the components were

stacked and measures the length along the x-axis (horizontally) only, as shown in Figure 4.8b.

For example, the length of the wire connecting the output of the multiplexer Xb0 to the LUT is

measured by Net(Xbi-LUT) which is equivalent to half the width of Xb0 and half that of the LUT.

However, if the rectilinear Steiner minimal tree were to be used, the wire goes through Xb1 as

well, making its length equivalent to twice the width of Xb0 plus half the width of the LUT. This

results in a significant difference in wirelength, especially for architectures with bigger clusters.

In reality, COFFE does not start/end the wires from/at the centroids of the components the

way we do; however, in order to have a relatively-correct comparison and be able to highlight

the fundamental differences between the two approaches, we try to filter out any other source

of difference. The comparison remains true, despite the modified assumptions.

Thus, it is clear that COFFE uses a fairly simplistic floorplanning and net representation to

44

4.5. Experiments

FFMF MO

Xb3 Xb1

Xb2

Xb0

LUT

Net(Xb0-LUT)

Net(feedback)

Net(Xb2-LUT)

Net(FF-MF-MO)

Net(LUT-FF-
												MF-MO)

Net(Xb1-LUT)

Net(Xb3-LUT)

(a)

FF

MF

MO

Xb1

Xb3

Xb2

Xb0

LUT

Net(Xbi-LUT) Net(FF-M)

Net(feedback)	=	sqrt(Cluster_area)

Net(LUT-FF-M)

(b)

Figure 4.8 – Methodology comparison between COFFE and FPRESSO. The difference in the floorplan-
ning and the wirelength measurement, for the architecture of Figure 4.6 but with only 1 BLE and a
4-LUT, using (a) our approach and (b) COFFE.

45

Chapter 4. Automatic Wire Modeling of FPGA Architectures

compute the wireloads and, by that, does not correctly account for its effect on the critical

path delay. While on the other hand, our floorplanning algorithm is generic and the resulting

wireload effects vary, depending on the modeled architecture.

4.6 Discussion

In this chapter, we elaborate on the details of a single, yet important, step of the general flow

of our modeling approach. We present the wire modeling method used to account for the

wire parasitics while modeling the FPGA architecture. It is based on a simulated annealing

algorithm that floorplans the different components of the FPGA cluster while minimizing the

total wirelength, before estimating the length, capacitance, and resistance of all the cluster

wires. We show, in the process, that wireloads have a substantial effect on the delays of the

FPGA architectures.

We do not ignore that many other factors can influence the floorplanning of FPGA components

(e.g., SRAM placement), we believe that this approach introduces a more realistic methodology

to assess automatically and quickly the parasitics between components. We think that this is

an essential foundation to study new FPGA architectures whose clusters significantly depart

from the classic multiple parallel LUT structure. We realize that with the different assumptions

and approximations, this approach simply models the wires of the cluster and cannot be used

directly in designing FPGAs. However, we are providing a generic method to improve wire

modeling in FPRESSO, in order to have a better and fast evaluation of novel FPGAs in a vast

search space of possible architectures.

Although we expanded the explanation of one part of the general flow of our modeling method,

in this chapter, we will revisit the entire flow, in the next chapter, to elaborate on its various

stages and key features before evaluating the approach’s overall performance.

46

5 Architecture Optimization and Flow
Automation

Perhaps one of the most important aspects of our modeling approach [Zgheib et al., 2016] is the

level of abstraction it offers FPGA designers from all the modeling complexities. Being FPGA

architects ourselves, who just want to quickly evaluate new ideas and architecture features,

we realize the importance of a simple and fast approach that models any architecture we

conceive. The technique we present is not necessarily simple, as we will see shortly; however,

a complete automation of the process hidden behind a simple and convenient interface is the

key to making architecture modeling seem easy for FPGA architects.

In this chapter, we focus on this automation and on the procedure followed from the moment

a modeling request is made till the extraction of the modeled delay and area of the architecture.

Having already built the library of cells, the general flow shown in Figure 5.1 is executed for

every architecture that needs modeling.

5.1 Architecture Optimization

To obtain an area or timing model of the architecture, it is necessary to take the netlist and

optimize it for some specific constraints (such as minimizing the delay along some path) in

two senses: (i) every functional block can be replaced with another of equal functionality but

different characteristics and (ii) buffers can be added wherever it makes sense to. Although

this is only a small part of what a logic synthesizer for a semicustom flow does, it does it

remarkably well and it is readily available. We thus decide to use Synopsys Design Compiler for

the global architecture optimization phase—that is, for the optimization that needs to be run

for every specific architecture a researcher is interested in exploring.

The architecture is read into the flow in a textual format that specifies the logic blocks within

the FPGA cluster and their respective connections, as will be explained in detail in Section 5.3.1.

This input description is then converted into a Verilog circuit, to be used for the optimization.

Design Compiler is actually not used within its typical flow as a logic synthesizer but mainly

as a drive-strength optimization tool. Reading in the circuit and the library of cells built in

47

Chapter 5. Architecture Optimization and Flow Automation

Verilog	Genera�on

Delay	&	Area	Extrac�on

Architecture	File	Genera�on

Library
File

Architecture	Descrip�on

Annotated	VTR	Architecture	File

Wire	Modeling

Circuit	Op�miza�on

Design	Compiler

Repeat
Once

Figure 5.1 – The main flow of FPRESSO. FPGA architects provide an arbitrary description of the ar-
chitecture and FPRESSO models and optimized it using the library of components, before returning a
VTR-compatible architecture file complete with all the required area and timing arcs.

Chapter 3, Design Compiler optimizes the circuit by reconstructing it using cells with appropri-

ate drive strengths and adding buffers wherever necessary. To enable this optimization-only

option, we annotate each component of the circuit with the set_size_only attribute clearly

indicating that they must be only sized and not synthesized. In order to correctly optimize

the different paths of the cluster, the circuit is constrained from the inputs to the outputs, i.e.

from the input of the connection block to the output of the switch block. The feedback path is

also constrained from the outputs of the registers to their inputs.

The total number of buffers inserted, as well as their sizes, depend mainly on the characteristics

of the architecture being optimized. Although they vary from one architecture to the other,

one general trend has been observed: Design Compiler usually adds buffer on multiple and

high fanout connections such as the output of a BLE that is fed back to all the multiplexers of

a fully populated crossbar, for example. Design Compiler has advanced buffering techniques

that automatically construct chains of inverters and determine the sizes of those chains, their

optimal placements (on the different branches of the fanout tree) and the sizes of the inverters

used.

The duration of this architecture optimization phase depends mainly on the number of logic

and routing elements in that architecture and the number of paths that must be optimized. In

general though, Design Compiler takes between tens of seconds to a few minutes, maximum,

to converge to a solution, making it even more convenient for the task. Being called for every

48

5.2. Optimization Challenges

K-LUT

BLE0

BLE1

BLEN-1

I

N

N
Crossbar

Figure 5.2 – The timing loops within the logic cluster.

architecture a researcher wants to model makes a fast optimization highly essential for an

express modeling and evaluation of FPGA architectures.

However, getting a semicustom logic synthesizer to optimize a reconfigurable circuit like the

FPGA architecture turns out to be a challenging task, as we will demonstrate in Section 5.2.

5.2 Optimization Challenges

The architecture optimization part of the flow seems relatively straight forward since it is

entirely handled by the synthesis tool, once correctly parameterized and constrained. However,

in reality, the reconfigurable nature of the FPGA architecture introduces new complications

that static timing analyzers cannot anticipate. In this section, we highlight the main challenges

faced when using the semicustom flow to optimize the FPGA architecture and explain the

solutions we adopt to circumvent these problems.

5.2.1 Timing Loops

As a reconfigurable circuit, the FPGA cluster architecture contains, by construction, multiple

combinatorial loops. This is not usually a problem since the FPGA is only used after it is

configured and the configuration automatically breaks these loops. However, in our modeling

flow, we consider the architecture as is, before being configured. And static timing analyzers,

in general, have no notion of the reconfigurability of the FPGA, thus, they identify feedbacks

as timing loops. For instance, Figure 5.2 shows one of these timing loops that starts at the

feedback multiplexer and continues through the crossbar, the LUT and then back into the

feedback multiplexer. This combinatorial loop does not occur in configured FPGAs, but the

static timing analyzer of Design Compiler fails to identify this from the design. Luckily, it

49

Chapter 5. Architecture Optimization and Flow Automation

K-LUT

BLE0

K-LUT

A

B

Xb0
Xb1

Xbk

Figure 5.3 – An example of the timing paths identification problem. Measuring the delay between
points A and B, Design Compiler measures by default the maximum delay by taking the long path (in
blue) that goes through Xb0, the LUT, the feedback multiplexer, and Xbk, instead of the direct path (in
red).

can signal the existence of timing loops and enumerate them. Leveraging this option, we

specifically tell the optimizer that the loops do not exist, by breaking the timing paths. We do

this systematically until all the loops are broken.

Even SRAMs can be seen as a loop of two inverters which is then interpreted by the static

timing analyzer as a timing loop. However, since there is no interest in sizing the SRAMs,

Design Compiler is instructed to ignore them (by assigning the set_dont_touch attribute to

those inverters) so that it does not try to optimize this part of the circuit.

5.2.2 Identification of Timing Paths

In the delay and area extraction phase, we request the delay of every input-to-output path for

all the components of the architecture, as will be detailed in Section 5.3.3. Although it seems

to be a very straight forward task, the delays returned during the static timing analysis of our

initial experiments quite often turned out to be much larger than what was to be expected,

sometimes even by an order of magnitude.

When requesting the point-to-point delay between two pins, we expect to get the delay of the

most direct path that connects these two points; however, static timing analysis, by default,

looks for the longest possible path between the pins. Figure 5.3 shows an example of how

this can occur in a typical FPGA architecture. For instance, when measuring the delay of the

crossbar multiplexer Xbk by requesting the delay between points A and B, the expected path is

the one highlighted in red, that goes only through Xbk. However, instead, Design Compiler

returns the delay of the path highlighted in blue, which still connects point A to B, but through

50

5.3. Automating FPRESSO

Cluster	declara�on

Declara�on	of	logic	
blocks	&	interconnects
within	the	container

Container	declara�on
<pb_type name="clb" num_pb="1" num_in="7" num_out="4">
 <pb_type name="lb" num_pb="4" num_in="3" num_out="2">
 <pb_type name="lut" num_pb= "1" num_in="3" num_out="1"/>
 <pb_type name="ff" num_pb= "1" num_in="1" num_out="1" clock="clk"/>
 <mux name="combseqfdb" input="ff.Q lut.out" output="lb.out[0]"/>
 <mux name="combseqout" input="ff.Q lut.out" output="lb.out[1]"/>
 <direct name="lutin" input="lb.in" output="lut.in"/>
 <direct name="ffin" input="lut.out" output="ff.D"/>
 </pb_type>
 <crossbar type="sparse_0.50" name="inputxbar" input="clb.in lb.out[0]" output="lb.in"/>
 <direct name="lbout" input="lb.out[1]" output="clb.out"/>
</pb_type>

Figure 5.4 – An example of the user’s architecture description file for the design of Figure 5.5. The
architecture uses 3-input LUTs, 7 cluster inputs, 4 logic blocks per cluster, and a half-populated crossbar
(i.e., I = 7, N = 4, K = 3, and Fclocal = 0.5).

crossbar multiplexer Xb0, the LUT, feedback multiplexer, and then Xbk.

To circumvent the problem and help the static timing analyzer identify the exact and most

direct path between any two points, we need to specifically request the minimum path delay

for every timing report. However, with this option, Design Compiler does not only report

the shortest path but also the minimum between the rise and fall delays, which could be an

underestimation of the path delay. Thus, we measure each timing path twice: requesting first

the minimum rise delay then the minimum fall delay, we eventually pick the maximum of the

two as the final delay of the path in question.

5.3 Automating FPRESSO

The main flow of FPRESSO uses the offline-generated library to model any user-defined ar-

chitecture. With the optimization covered by a standard-cell synthesis tool, as described in

Section 5.1, and the wires modeled using the floorplanning algorithm of Chapter 4, this section

explains how the different parts of FPRESSO’s main flow are automated.

5.3.1 Input Architecture

To abstract the modeling complexity from the user, FPRESSO takes as input a description of the

architecture in XML format. The input file specifies the cluster interface, the logic components

in it along with their interconnects. As shown in Figure 5.4, the architecture description is a

simplified version of the one used in the VPR architecture file. In this example, the cluster has

the same structure as the one shown in Figure 5.5 with 7 inputs and four 3-input LUTs (i.e.,

I = 7, N = 4, and K = 3).

In general, the architecture is described hierarchically with the help of containers, like lb

in the example of Figure 5.4, to simplify its structure. Within the containers, the functional

components, whether logic or routing elements, are declared using a set of predefined XML

tags.

51

Chapter 5. Architecture Optimization and Flow Automation

FPRESSO automatically identifies the structural and functional components while parsing

the input file and converting the architecture into a Verilog circuit but still maintaining its

hierarchy. The crossbars, for instance, are defined by the users, by specifying their inputs,

outputs, and density. However, when read into FPRESSO, each crossbar is converted into a

set of 2-level multiplexers with the correct inputs depending on the density and the input

specification. If the crossbar is sparse, FPRESSO distributes, by default, its inputs uniformly

among the created crossbar multiplexers.

FPRESSO is also designed to support fracturable LUTs which are described in the input archi-

tecture file as modes of operation. Each mode specifies a way in which the LUT can operate.

For example, as explained in Section 2.1.2, a 6-LUT can operate as two 5-LUTs so, in the de-

scription file, two modes must be specified: (i) the 6-LUT mode and (ii) the two 5-LUT mode,

along with their respective connections. FPRESSO automatically converts the description of

the modes into a hardware architecture with additional reconfigurable elements, in order to

enable switching between the different modes, as will be explained in details in Section 5.4.

5.3.2 Modeling Global Routing

In addition to the input description of the cluster architecture, FPRESSO needs some user-

defined global routing specifications to model the switch blocks and connection blocks.

Although VPR, by default, specifies dynamically the width of the global routing channel, the

architecture itself has to be modeled with a specific channel width (W). Additional parameters

must also be provided, such as the fraction of routing channels connected to each cluster

input (Fci n) and output (Fcout), the density of the routing (Fs), the type of the switch block, and

the wire segment length.

The switch and connection blocks are designed as 2-level multiplexers as explained in Sec-

tion 3.4.3. The size of each SB/CB multiplexer is computed using the user-defined parameters,

as shown in Figure 5.5. These multiplexers are added to the circuit generated from the input

description and sized during the optimization phase along with the other components of the

architecture. The output architecture file is annotated with the delay and sizing results of the

SBs/CBs along with the routing parameters, as required by VPR.

5.3.3 General Flow and Model Extraction

One of the key features of FPRESSO is its fully automated flow that abstracts all the imple-

mentation and optimization details from the user. This flow consists of multiple steps, as

shown in Figure 5.3.3, the most important of which have already been explained in details, like

the wire modeling approach and the architecture optimization. The flow is automated using

scripts that handle the entire process from reading in a user-defined architecture description

file, until the detailed output architecture file, annotated with the modeled delay and area, is

generated.

52

5.3. Automating FPRESSO

K-LUT

BLE0

BLE1

BLEN-1

I

N

N

W	Channel
Tracks

W	Channel
Tracks

Crossbar	(Fclocal)

SB

CB

Figure 5.5 – The general structure of the FPGA tile architecture and its design parameters.

Reading in the user-specified architecture, described using the input format detailed in Sec-

tion 5.3.1, FPRESSO identifies the different routing and logic elements and converts the archi-

tecture into a Verilog circuit. It then loads the circuit into the synthesis tool, Design Compiler,

to locate all the timing loops and recursively break them until none remains.

Before optimizing the architecture, FPRESSO models the wires between the different compo-

nents, by floorplanning the cluster, as explained in Chapter 4. Once floorplanned, the length

of each wire is measured and its respective resistance and capacitance are added to Design

Compiler’s script as back annotation. Two rounds of floorplanning are performed: (i) starting

first with an initial floorplan that estimates the component areas, the architecture is optimized

in Design Compiler, and the exact area of each component is determined, so (ii) the floorplan

is repeated with these new areas and the circuit is re-annotated with the parasitics, for a final

round of circuit optimization.

For each of these optimizations, scripts are automatically generated to read the circuit into the

synthesis tool and assign to the cells their respective attributes and to the wires their resistances

and capacitances. By default, FPRESSO optimizes the architecture for delay. Starting first by

setting a hard constraint of a maximum delay of zero, that cannot be met, the optimizer returns

the minimum achievable delay (i.e. the critical path) so Design compiler is called for a second

iteration, this time with a 10% relaxed target delay. In this iteration, the timing constraint will

be met and the slack is used to reduce the optimization effect on the overall area.

Having all the needed information, the delay of every input-to-output timing arc for every

logic and routing element is requested back from the static timing analysis, as well as the

overall area of the cluster. Then, finally, FPRESSO generates the output architecture file, fully

annotated with the delay and area, in the XML format required by the VTR flow.

53

Chapter 5. Architecture Optimization and Flow Automation

K-LUT

BLEN/Mode1

BLEN/Mode2

Feedback1

Output1

Feedback1

Output1

Feedback2

Output2

[(K-1)-LUT]
LUT1

[(K-1)-LUT]
LUT2

Shared	(S)

In1
In2
In3

InK

In(K-1)

In(2K-2-S)

In1In2In3

InK

Figure 5.6 – The modes of operation of a BLE with a fracturable K -LUT.

5.4 Fracturable LUTs

There is a fundamental difference between the way CAD tools perceive fracturable LUTs and

the way they are actually implemented at the hardware level. From one side, CAD tools such

as VTR require a rather abstract representation of the fracturable notion, in a sense that they

only require to know the modes in which the fracturable LUT can operate. For instance, a

fracturable 6-LUT can operate either as (i) a single LUT with six inputs or (ii) two LUTs with

five inputs each.

Figure 5.6 shows the two modes of operation of a BLE with fracturable K -LUT. In the first

mode, mode1, the BLE has a single K -LUT. The first K inputs of the BLE are directly connected

to the LUT. In the second mode, mode2, the fracturable LUT operates as two (K -1)-LUTs with

S shared inputs. The BLE, in this mode, has a total of (2K −2−S) inputs, distributed among

the LUTs as shown in Figure 5.6.

However, from the other side, to support the two modes and have the flexibility to switch

between them, the fracturable LUT has to be designed with a high degree of reconfigurability.

Since FPRESSO has to model the architecture by designing it at the hardware level while

maintaining its output interface with VTR, additional reconfigurable logic for fracturable LUTs

is added to translate the input modes description into a functional reconfigurable logic. This

logic is then modeled and optimized, before converting it back into modes for the output

architecture file. Figure 5.7 shows the hardware implementation of a fracturable K -LUT with

54

5.4. Fracturable LUTs

Feedback1

Output1

[(K-1)-LUT]
LUT1

[(K-1)-LUT]
LUT2

In1In2In3

In(K-1)

InK

In(2K-2-S)

S=2

Feedback2

Output2

6-LUT	
Output

Figure 5.7 – The hardware implementation of a BLE with a fracturable K -LUT. The smallest size LUTs
are used with additional output multiplexers to build the K -LUT and select the correct BLE outputs.
Optional input multiplexers can also be added to ensure a correct functionality, in case of input routing
constraints.

all the additional multiplexers required to support the different modes of Figure 5.6.

The implementation of a fracturable K -LUT can be divided into three phases. First, the

smallest size LUT is identified and used as a logic element. In the modes of Figure 5.6, for

instance, the K -LUT can be used as two (K -1)-LUTs and, as such, the smallest LUT of size K -1

is used as the basic logic element. Then, the second step consists of building the K -LUT out

of the two (K -1)-LUTs by adding an output multiplexer with the K th BLE input as its select.

Logically, this builds a K -LUT when the inputs of the (K -1)-LUTs are identical, which will

be handled in the third phase. Furthermore, in Figure 5.6, for example, the first feedback

and direct BLE outputs (feedback1 and output1) can come from the K -LUT, if in mode1, or

from the first (K -1)-LUT, if in mode2. So, to satisfy the output specifications of the BLE, an

extra output multiplexer is added. These specifications may vary depending on the user-

described architecture, so these output multiplexers and their connectivities are automatically

determined from the described modes of operation.

The final phase consists of distributing the BLE inputs among the two LUTs, while enabling

the two modes. Starting from the input connectivity of mode2, the two LUTs share S inputs

while the remaining BLE inputs are distributed among them. However, as mentioned earlier,

for the two LUTs to operate as a single K -LUT, they must have the same K -1 inputs while the

K th BLE input is the select of the multiplexer. Ideally, the routing, which is handled by the

crossbar in this case, should be able to assign the same signals to the non-shared inputs of

the LUTs. However, doing that leaves no BLE inputs to connect the select of the multiplexer.

Thus, an input multiplexer is needed to disconnect the K th input of the BLE from the LUT

inputs, by providing the option of an additional hard-wired input sharing between the two

LUTs. Similarly, optional input multiplexers can also be added in the cases where the input

55

Chapter 5. Architecture Optimization and Flow Automation

routing (again crossbar in this case) is not flexible enough to guarantee connecting the same

signals to the inputs of the two LUTs when in mode2.

This process is generalized to support any architectural constraints specified by the user,

including various input/output connectivities and even nested modes, where, for example,

the (K -1)-LUTs of Figure 5.7 could be fracturable as well.

5.5 FPRESSO’s Performance

FPRESSO can read in an architecture description file to understand the FPGA cluster design it

is modeling, and can thus be used on any architecture topology, as explained earlier. However,

in order to benchmark its performance, we restrict our experimental setup to the architectures

supported by COFFE, the state-of-the-art modeling tool for FPGAs.

COFFE’s architectural exploration is limited to a given FPGA topology customizable through

some parameters. Figure 5.5 shows the cluster architecture supported by COFFE and used

in our experiments, along with its three main parameters K , N , and I which represent the

number of LUT inputs, total number of LUTs (or BLEs) in a cluster, and number of cluster

inputs, respectively. Accordingly, we generate different FPGA clusters by varying K , N , and I

and optimize the corresponding architecture using the two modeling approaches: FPRESSO

and COFFE. To limit the variance in the comparison, all local register feedbacks are disabled

in COFFE (and not included in FPRESSO), the crossbar is fully populated and the LUTs are not

fracturable. A 65nm UMC technology is used in a typical corner in both flows.

FPRESSO is designed to optimize the circuit for delay, by default. So, for a correct comparison,

we optimize for delay as well in COFFE by doubling the delay-to-area ratio of the cost function

(i.e., setting d = 2 and a = 1).

5.5.1 Runtime

One of the main objectives of our modeling approach is to enable express architecture ex-

plorations, especially over a wide search space. FPRESSO can model an architecture within

minutes, although its runtime depends mainly on the size of the architecture it is model-

ing. To evaluate the modeling’s runtime efficiency, we compare FPRESSO’s runtime to that of

COFFE over a large set of architectures, as shown in Table 5.1. On average, FPRESSO is about

200 times faster than COFFE. This is a game-changing difference that can enable far more

comprehensive architectural explorations, as will be shown in Chapter 6.

Naturally, the observed speedup varies with the modeled architecture. However, one can

notice a general trend in the variations: the speedup decreases as K , N , I , or a combination

of those parameters increases, generally indicating a relative increase in FPRESSO’s runtime.

To further understand this behavior, we measure the runtime distribution of every step in

FPRESSO’s general flow for a small architecture (K = 4, N = 6, I = 14) and a relatively larger one

56

5.5. FPRESSO’s Performance

Table 5.1 – FPRESSO’s runtime improvement, when compared to COFFE, for a range of architectures.

Architecture Speedup
over COFFE#LUT inputs

(K)
Cluster size

(N)
#Cluster inputs

(I)
4 6 19 274
4 6 30 180
4 6 43 162
5 6 19 313
5 6 30 279
5 6 43 239
5 8 28 206
5 8 41 146
5 10 26 124
5 10 39 121
6 6 19 263
6 6 30 266
6 6 43 177
6 8 28 166
6 8 41 110
6 10 39 92

Average 195

(K = 6, N = 10, I = 33). The results, shown in Figure 5.8, indicate that, for smaller architectures,

most of the runtime is spent in the architecture optimization step; however, as the architecture

size increases, the runtime gets dominated by the wire modeling phase. That is mainly due to

the floorplanning algorithm used to model the wires. As the architecture parameters K , N , and

I increase, the number of modules to floorplan increases and, more importantly, the number

and length of the wires increase, slowing down the wire modeling process. Nevertheless,

despite this major shift in runtime distribution, the overall approach remains highly efficient

and orders of magnitude faster than the existing tools.

5.5.2 Modeling Accuracy

To evaluate the accuracy of our modeling, we compare the delay and area estimated using both

COFFE and FPRESSO, over multiple architectures, When measuring the delay, we differentiate

between two delay paths: (i) the feedback path and (ii) the direct input-to-output path (called

direct IO path, in short). Using Figure 5.5 as reference, the feedback path starts at the output of

the flip-flop and goes through the feedback multiplexer, the crossbar and the LUT, back to the

input of the flip-flop. The direct IO path starts from the cluster inputs and passes through the

crossbar, the LUT and the output multiplexer, into the cluster output. Figures 5.9a and 5.9b

show the relative delay and area measured in FPRESSO with respect to COFFE for the two paths,

respectively.

57

Chapter 5. Architecture Optimization and Flow Automation

5.98%
Processing & Loop Breaking

60.26%
Optimization (DC)

33.76%
Floorplaning

(a) Relatively small architecture (K = 4, N = 6, I = 14).

2.25%
Processing & Loop Breaking

26.41%
Optimization (DC)

71.34%
Floorplaning

(b) Relatively large architecture (K = 6, N = 10, I = 33).

Figure 5.8 – Runtime distribution for two architectures with different sizes. As the architecture size
increases, the floorplanning algorithm becomes the most time imposing step of the flow.

58

5.5. FPRESSO’s Performance

-40% -20% 0% 20% 40%

Relative Area

-40%

-20%

0%

20%

40%
R

el
at

iv
e

D
el

ay
Architecture

K4_N6_I19
K4_N6_I30
K4_N6_I43
K5_N6_I19
K5_N6_I30
K5_N6_I43
K5_N8_I28
K5_N8_I41
K5_N10_I26
K5_N10_I39
K6_N6_I19
K6_N6_I30
K6_N8_I28
K6_N10_I26

(a) Feedback path: from flip-flop to flip-flop.

-40% -20% 0% 20% 40%

Relative Area

-40%

-20%

0%

20%

40%

R
el

at
iv

e
D

el
ay

Architecture
K4_N6_I19
K4_N6_I30
K4_N6_I43
K5_N6_I19
K5_N6_I30
K5_N6_I43
K5_N8_I28
K5_N8_I41
K5_N10_I26
K5_N10_I39
K6_N6_I19
K6_N6_I30
K6_N8_I28
K6_N10_I26

(b) Direct IO path: from cluster inputs to cluster outputs.

Figure 5.9 – The delay and area of the main paths of an FPGA, modeled in FPRESSO with respect to
COFFE, for multiple architectural parameters. Figure 5.9a shows the results for the feedback path,
which goes from the feedback multiplexer through the crossbar and the LUT. Figure 5.9b shows the
same results but for the path going from the cluster inputs through the crossbar, LUT, and output
multiplexer.

59

Chapter 5. Architecture Optimization and Flow Automation

We observe that the differences between COFFE and FPRESSO tend to be up to 10% in area

and less than 30% in delay—mostly though in the 20% range. In general, these results are

quite encouraging, since these differences account for the modeling margin of error, the

fundamental differences in the wire modeling between COFFE and FPRESSO (as explained in

Chapter 4), and differences in the optimization procedure—Design Compiler optimizes for a

cost function that is certainly different than the one used in COFFE. Our results are mostly

in the third quadrant, and slightly Pareto dominate the results of COFFE. There is a concrete

possibility that our designs are marginally superior, since they benefit from the advanced

optimization and buffering capabilities of Design Compiler. It is very difficult though to

conceive experiments that help separate the contribution of the various differences between

the two methodologies but the results are sufficiently close to be deemed satisfactory.

5.5.3 Delay and Area Tradeoff

In a different experiment, we select a single architecture (i.e., K = 5, N = 6, and I = 30) and try

to trade off delay for area, and vice versa: For COFFE, the different data points are obtained by

re-optimizing the architecture, each time using new area and delay weights in the cost function

(Equation 3.1). For FPRESSO, we obtain the tradeoff by gradually relaxing the constraints in the

architecture optimization phase. Figure 5.10 shows the resulting Area-Delay Pareto front of

the architecture, modeled in both COFFE and FPRESSO.

Clearly, both modeling approaches offer a meaningful set of solutions. None of the two

approaches is consistently Pareto dominant: COFFE performs better on area constrained

optimizations, while FPRESSO can generate faster circuits. On one hand, the quality of the

circuits modeled with FPRESSO depends on how rich and comprehensive the library of cells

is. We suspect that FPRESSO might not be able to find more area-favored models due to

the limited availability of area-optimized cells in the library (which could be the result of

library pruning). On another hand, FPRESSO leverages the advanced buffering capabilities of

Design Compiler allowing it to perform better signal buffering than COFFE. Nevertheless, the

results seem encouraging since they indicate that both methodologies possess the ability of

exploring, nontrivially, the design space. And, despite the substantial differences between the

two methodologies, the results seem sufficiently consistent and reliable.

5.6 Modeling or Designing

It would be tempting to believe that our tool designs optimized transistor-level architectures,

instead of simply modeling them. Although this is a tempting claim, we do not think it is a

granted one. The reason is that standard cells and a classic semicustom design flow have

a number of built-in electrical safeguards to guarantee functionality under any constraint;

our flow, purposely, does not. For instance, standard cells never expose pass transistors to

the external pins of the cell and this is one of the reasons why standard cell designs cannot

match in many practical cases perfectly crafted manual designs. In our case, although on

60

5.7. Discussion

1400 1600 1800 2000 2200 2400

Area (um2)

80

120

160

200

240

280

320

D
el

ay
 (

p
s)

COFFE
FPRESSO

Figure 5.10 – The delay and area Pareto fronts of multiple optimizations performed by FPRESSO and
COFFE, for a single architecture (K = 5, N = 6, and I = 30).

the outputs we always have buffers, we omit input buffers to mimic the way a hand-crafted

transistor-level circuit would be built. We have studied some of the circuits resulting from

our flow and, within the range of fairly conventional architectures reported here, we have

not observed any electrical error; yet, our methodology is such that we do not guarantee

functionality for every possible conceivable circuit. At best, we can affirm that our flow helps

fast and sound modeling (our prime goal) and actively suggests architectural solutions in

the buffering structure which designers may want to study in case they want to produce a

production transistor-level implementation. One should note that FPRESSO benefits from the

advanced buffer optimization strategies of Design Compiler which largely exceed the resizing

capabilities of COFFE, for instance: Design Compiler cannot only build multistage optimal

buffers when required, but can also add buffers after fanout points when the load is divided

unevenly across different circuit branches.

5.7 Discussion

With this chapter, we complete the explanation of the different aspects of our FPGA architec-

ture modeling approach. The process is entirely automated and operates at the same level

of generality of VTR, the state-of-the-art academic FPGA CAD flow. It can be used to model

FPGA architectures quickly, with minimum effort, and without any prerequisite knowledge in

transistor-level design.

61

Chapter 5. Architecture Optimization and Flow Automation

Having such an automatic architecture modeling technique that can be easily integrated

into the FPGA CAD flow makes architecture explorations quite simple and almost effortless,

even on a very large search space. Thus, it seems only natural that we dedicate the next

chapter to architectural explorations using our automatic modeling flow. With such a fast and

easy modeling method we evaluate over a thousand architectures with tens of thousands of

benchmark simulations.

62

6 Architecture Exploration Using the
Automated Modeling Technique

Perhaps the best way to evaluate our architecture modeling approach would be in its abil-

ity to reach the exact purpose it was designed for: enabling fast and accurate architecture

explorations.

The latest study on FPGA architectures dates from thirteen years ago when Ahmed and

Rose [2004] searched for the optimal LUT and cluster size. Having to model each archi-

tecture manually, the search space was limited to about 60 architectures. We have already

established, in Chapter 5, that we are able to model an FPGA architecture within minutes, i.e.,

about 200× faster, on average, than the state-of-the-art architecture modeling tool. So, the

60 architectures can be modeled within hours enabling a much wider search space that can

cover bigger ranges of architectural parameters or even the evaluation of the effect of other

FPGA features.

Thus, to validate the correctness of our architecture modeling, we first repeat the Ahmed and

Rose study [2004] by limiting our exploration to the almost-exact architectures explored in

2004 and then compare our results and conclusions to the ones reported in the study. Then,

we gradually extend our exploration to a much larger search space, and focus on evaluating

the effect of the crossbar density and fracturable LUTs on the FPGA [Zgheib and Ienne, 2017].

6.1 Architecture Modeling

One of the main challenges in architecture explorations is to have correct delay and area mod-

eling of the targeted architectures. Any minor modification to the cluster requires redesigning

it at the transistor level, sizing the different transistors and running SPICE simulations to mea-

sure the pin-to-pin delays of every element of the cluster. In prior explorations [Ahmed and

Rose, 2000, 2004], this modeling had to be done manually, which imposed severe constraints

on the feasible search space. We will show how these explorations and studies became simple,

perhaps almost trivial even, with FPRESSO. We will use this section to define the explored

cluster and its parameters and then overview the modeling process used in our exploration.

63

Chapter 6. Architecture Exploration Using the Automated Modeling Technique

K-LUT

I

BLE0

BLE1

BLEN-1

N
Out0

Out1

OutN-1

Crossbar(Fclocal)

SB

CB

Logic	Cluster

W	Channel
Tracks

W	Channel
Tracks

Figure 6.1 – The general structure of the FPGA tile architecture and its design parameters (K , N , etc.).

6.1.1 Cluster Architecture and Parameters

The general FPGA structure and the tile architecture have already been introduced in Sec-

tion 2.1.1, however, we will highlight its key features, essential to our exploration.

We base our exploration on an FPGA architecture with the general cluster structure shown in

Figure 6.1, and its different architectural parameters. Each cluster consists of N Basic Logic

Elements (BLEs), and has I inputs and N outputs. Each BLE has a K -input LUT, a register

and two multiplexers to select between the registered and non-registered LUT output, before

sending it either to the cluster output or as a local feedback. The I inputs, along with the N

feedback signals, feed the input crossbar which then distributes them to the BLEs (and hence

the LUTs). As such, the crossbar has (I +N) inputs, (N ×K) outputs and a density Fcl ocal which

indicates the fraction of the inputs connected to each output.

The inputs and outputs of the cluster are connected to the global routing through Connection

Blocks (CBs) and Switch Blocks (SBs). The fraction of routing channels connected to each of

the cluster’s input/output is defined by the parameters Fci n and Fcout , respectively.

6.1.2 General Modeling

We use our automatic modeling approach, FPRESSO1, to model the explored architectures. As

detailed in Chapter 5, it automatically models the FPGA by taking as input a description of the

cluster architecture, in a simplified XML format and returns the modeled architecture, fully

annotated with the area and delay of every element. The output file generated by FPRESSO

follows the exact XML format requirements of the packer of VTR, which makes it highly

convenient and allows it to be easily integrated in the CAD flow.

1Available online at fpresso.epfl.ch

64

6.2. Experimental Methodology

Logic	Synthesis
(ABC)

Technology	Mapping
(ABC)

Architecture	
Modeling
(FPRESSO)

Selec�on	of
Architecture	Parameters

Packing,	Placement
&	Rou�ng
(VPR)

Compute	W'	=	1.3*W

Average	over
3	seeds

Repeat	Placement	&	Rou�ng	
with	seed	2	&	W'

(VPR)

Extract	Area	
&	Delay

Extract	Area	
&	Delay

Extract	Area	
&	Delay

XML	file

K

Repeat	Placement	&	Rou�ng	
with	seed	3	&	W'

(VPR)

Repeat	Rou�ng	
with	W'
(VPR)

Figure 6.2 – The different steps of the experimental methodology.

Given that the prior work does not specify the routing density, we choose the default values of

Fci n and Fcout (0.15 and 0.10 respectively) used in the architecture files provided with the VTR

flow, with a Wilton switch box and a segment length of 4. We model the architectures using

FPRESSO in a 65 nm UMC technology (typical corner).

To model global routing, Ahmed and Rose [2004] assume that the routing buffers scale pro-

portionally with the length of the tile, while basing it on a certain assumed size for the small

architecture of K = N = 4. To maintain consistency and properly compare with that study,

we scale the routing buffers the same way; however, instead of assuming the size of the base

architecture, we model it along with all the routing multiplexers and use the sizes reported by

FPRESSO.

6.2 Experimental Methodology

To facilitate the exploration of a very wide search space, the entire experimental process is

fully automated. In this study, we model and explore over 1,200 architectures, as opposed to

the 60 architectures tested by Ahmed and Rose [2004], and run more than 41,000 benchmark

simulations. Such an extensive exploration could not have been possible if the experimental

setup was not fully automated.

65

Chapter 6. Architecture Exploration Using the Automated Modeling Technique

6.2.1 General Flow

The experimental flow consists mainly of two phases: (1) architecture modeling and generation

of architecture description files, and (2) running all selected benchmarks on each modeled

architecture. The different steps of these phases are shown in Figure 6.2.

In the first phase, architectures are automatically modeled using FPRESSO: We only have

to create a template of the desired architecture and vary the cluster parameters shown in

Figure 6.1 before sending to FPRESSO a description of the cluster-to-be-modeled, using its

input architecture format. The resulting output is an architecture description file, in XML

format, as required by the packer.

The second phase handles the benchmark simulations on the modeled architectures. Each

pre-elaborated benchmark is first synthesized and technology mapped, knowing the size of

the LUT (K) in the architecture, using the synthesis and verification tool ABC [ABC]. In all

our experiments, we use the default ABC version that comes with VTR 7.0 [Luu et al., 2014a].

Having FPRESSO generate the architecture description file, the benchmark is packed, placed,

and routed using VTR 7.0, with unlimited routing constraints. Then, knowing the minimum

channel width (W) required to route the benchmark, the channel width is increased by 30%

and the routing step is repeated but now with a fixed channel width (W ′ = 1.3×W). Placement

and routing is also repeated, for three different placement seeds, and the extracted delay and

area results are averaged (over these seeds), to filter out the placement noise.

6.2.2 Benchmark Selection

There seems to be a growing consensus in the FPGA research that the MCNC benchmarks [Yang,

1991] are a rather outdated benchmark suite that does not represent realistic circuits on which

the FPGA might be used. Even the big 20 MCNC circuits are often criticized for being small

with some purely combinatorial designs and no heterogeneous circuits (memory and DSP

blocks) [Murray et al., 2013]. This encouraged introducing new benchmark suites, such as the

VTR benchmarks, in the VTR project [Rose et al., 2012], and the Titan benchmarks [Murray

et al., 2013], as better alternatives to the MCNC benchmarks.

We set out to verify whether the MCNC circuits can be relied on in such architectural explo-

rations. So, we design an experiment to compare the MCNC and VTR benchmarks over the

same set of architectures, modeled in FPRESSO so that the exact cluster delays and areas are

used in both cases, even if the VTR benchmarks require additional RAM and multiplier blocks.

Since FPRESSO does not model RAM and DSP blocks, we use the delays and areas provided in

the VTR 7.0 architectures, scaled to the correct technology node. We test the benchmarks of

each suite on 60 different architectures with a large range of K and N , and a fully populated

crossbar.

Figure 6.3 shows a comparison between the delay-area products obtained for each of the

benchmark suites. Clearly, the scatter follows a linear trend indicating that the conclusions

66

6.3. Revisiting Existing Studies

80M 90M 100M 110M
Delay * Area (VTR)

22M

24M

26M

28M

30M

32M

D
el

ay
 *

 A
re

a
(M

C
N

C
)

K
3
4
5
6
7

N
4
5
6
7
8
9
10

Figure 6.3 – Comparison of the delay-area product for the MCNC and VTR benchmark suites, over
multiple K and N . The results of the two benchmark suites have a very similar behavior.

derived in such architectural explorations are valid using either of the two benchmark suites.

There is no denying that the VTR benchmarks are bigger and have longer critical paths,

resulting in about 3× more delay-area product. However, this increase in size barely causes

any deviation in the results since this ratio is maintained with very minor variations over the

large set of architectures. This shows that the MCNC benchmarks can still be representative

of the performance of an FPGA architecture and we would even claim that they are more

advantageous in architectural explorations since they can lead to similar conclusions for

a shorter experimental runtime. Hence, we decide to use the MCNC benchmarks in our

experiments. We realize though that, if carry chains were to be added to the architecture, these

conclusions might need to be re-evaluated since the VTR benchmarks might benefit from the

hard adders and fast chains more than the MCNC benchmarks.

6.3 Revisiting Existing Studies

We start first by re-evaluating the latest studies on the effect of the different cluster parameters

onto the FPGA performance. So, we limit our initial experiments to the search space of the

these studies, with some minor differences. There are, in fact, several unspecified variables

in the Ahmed and Rose papers [2000; 2004], like the fraction of routing channels connected

to each cluster input/output, Fci n and Fcout , for example. As mentioned in Section 6.2.1, we

use the default Fci n and Fcout values given in the VTR architecture files, and this forces us to

limit the cluster size to a minimum of 4, otherwise some cluster inputs would not be able to

67

Chapter 6. Architecture Exploration Using the Automated Modeling Technique

(a) Total area with respect to the LUT size (K), for small cluster sizes, from the reference study [Ahmed
and Rose, 2004].

2 3 4 5 6 7
LUT Size (K)

5M

6M

7M

8M

T
o

ta
l A

re
a

(M
in

W
T

ra
n

)

Cluster Size (N)
4
5
6

(b) Total area with respect to the LUT size (K), for small clusters of sizes (N) 4 to 6, measured using our
methodology.

Figure 6.4 – Total area with respect to the LUT size (K), for small cluster sizes, as measured in both the
reference study and our experiments.

68

6.4. Expanding the Exploration Space

reach any routing channel. Additional limitations are introduced by the CAD tools where, for

example, ABC does not map on only 2-LUTs.

Taking all these constraints into consideration, the range of the exploration space is deter-

mined by the following parameters:

• 3 ≤ K ≤ 7,

• 4 ≤ N ≤ 10,

• I = K
2 × (N +1), as used in the reference study [Ahmed and Rose, 2004], and

• Fclocal = 1 (i.e., a fully populated crossbar).

We test these architectures on the big 20 MCNC benchmarks and represent the results, reported

using the geometric mean over all benchmarks, in the same format as in the original study.

Figures 6.4 and 6.5 show the total area, measured in minimum width transistors (MinWTran)

as the LUT size varies from 3 to 7, for cluster sizes between 4 and 10. The results from Ahmed

and Rose’s study [2004], for the same parameters are also added for comparison. Figure 6.6

shows the total delay for the same architectures and compares the reference results to ours.

When compared with the prior work, one can clearly see the same behavior of the area and

delay curves as K and N vary. Certainly, the range of the area/delay values changes due to the

differences in technology; however, the same trends are generally preserved.

Figure 6.7b shows the number of BLEs on the critical path for every combination of K and N

and compares to the only curve available from the reference study in Figure 6.7a. The curves

decrease at the same rate. We also show that, in general, the number of BLEs on the critical

path decreases as well with the size of the cluster (N).

Having similar area and delay curves comes as a validation of the conclusions of the previous

study on parameterizable clusters. According to our results, the architectures that lead to the

best area have (K , N) values of (4, 6) and (4, 9), while the best delay was observed for (K , N)

values of (7, 5), (7, 8), (7, 7), (6, 5) and (6, 7), which concurs with the findings of Ahmed and

Rose [2004].

More importantly though, it is also a confirmation of the consistency and validity of FPRESSO’s

modeling. We were able to reach, with our automatic modeling approach, the very same

conclusions of an architecture exploration with manually modeled circuits. With almost no

effort and within a few hours, we were able to model all the architectures considered in this

exploration.

6.4 Expanding the Exploration Space

With such a simple-to-use and fast architecture modeling technique that interfaces well with

the FPGA CAD tools, wide-space explorations are now feasible for all FPGA architects. We

demonstrate in this section how the boundaries of the previous explorations can be easily

69

Chapter 6. Architecture Exploration Using the Automated Modeling Technique

(a) Total area with respect to the LUT size (K), for large cluster sizes, from the reference study [Ahmed
and Rose, 2004].

2 3 4 5 6 7
LUT Size (K)

5M

6M

7M

8M

T
o

ta
l A

re
a

(M
in

W
T

ra
n

)

Cluster Size (N)
7
8
9
10

(b) Total area with respect to the LUT size (K), for large clusters of sizes (N) 7 to 10, measured using our
methodology.

Figure 6.5 – Total area of the MCNC benchmarks with respect to the LUT size (K), for relatively large
cluster sizes, as measured in both the reference study and our experiments.

70

6.4. Expanding the Exploration Space

(a) The total delay (in ns) as reported by the reference study [Ahmed and Rose, 2004].

2 3 4 5 6 7
LUT Size (K)

3

4

5

6

7

T
o

ta
l C

ri
ti

ca
l P

at
h

 D
el

ay
 (

n
s)

Cluster Size (N)
4
5
6
7
8
9
10

(b) The total delay (in ns) measured using our experimental methodology.

Figure 6.6 – Total delay (in ns) with respect to the LUT size K , (a) as reported by the reference study
and (b) as measured from our experiments.

71

Chapter 6. Architecture Exploration Using the Automated Modeling Technique

(a) The number of BLEs on the critical path as reported by the reference study [Ahmed and Rose, 2004].

2 3 4 5 6 7
LUT Size (K)

5

6

7

8

9

10

11

12

13

B

L
E

s
o

n
 C

P

Cluster Size (N)
4
5
6
7
8
9
10

(b) The number of BLEs on the critical path measured using our experimental methodology, for different
cluster sizes (N).

Figure 6.7 – The number of BLEs on the critical path decreases as the LUT size (K) increases, both in
the reference study and in our results. We also show that it generally decreases as well, as N increases.

72

6.4. Expanding the Exploration Space

N
4 5 6 10 11 12 13 14 15

3 4 5 6 7
K

3 4 5 6 7
K

3 4 5 6 7
K

3 4 5 6 7
K

3 4 5 6 7
K

3 4 5 6 7
K

3 4 5 6 7
K

3 4 5 6 7
K

3 4 5 6 7
K

5M

6M

7M

8M

T
ot

al
 A

re
a

(M
in

W
T

r)

4

5

T
ot

al
 D

el
ay

 (
ns

)

MinimumMinimum

MinimumMinimum

Figure 6.8 – The measured delay and area as the cluster size (N) varies, for different LUT sizes (K). In
general, no clear trend emerges to favor large cluster sizes.

expanded to evaluate more and potentially new features in FPGA architectures: we explore the

effect of larger cluster sizes, depopulated crossbars, and fracturable LUTs on the performance

and area of the FPGAs.

6.4.1 Evaluating Large Clusters

Setting the maximum cluster size to 10 can be a limitation to the search space, especially

since bigger clusters may seem promising: having more logic within the cluster can favor local

feedbacks and reduce the use of global routing. Thus, we extend the experiments to a cluster

size of 15.

Figure 6.8 shows the change in area and delay as N increases, for all K . In general, larger

values of N are not particularly advantageous, neither in area nor in delay. However, there

are some particular cases for which some area and/or delay improvement is observed. Thus,

increasing the cluster size is not necessarily advantageous to all architectures but may present

some improvement for particular cases.

6.4.2 Evaluating Crossbar Density

As the clusters get bigger, the crossbars can become very expensive in terms of both area

and delay, as discussed in Section 2.1.3. Sparse crossbars were introduced as a compromise

between the flexibility of the routing and the cost of the full density [Lemieux et al., 2000;

Lemieux and Lewis, 2001]. By depopulating a crossbar, each of the crossbar’s outputs can be

connected to only a fraction (Fclocal) of its inputs. Therefore, using a sparse crossbar translates

to smaller multiplexers that reduce the routing flexibility of the LUT inputs but, at the same

73

Chapter 6. Architecture Exploration Using the Automated Modeling Technique

Fc local
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3 4 5 6 7
K

3 4 5 6 7
K

3 4 5 6 7
K

3 4 5 6 7
K

3 4 5 6 7
K

3 4 5 6 7
K

3 4 5 6 7
K

3 4 5 6 7
K

3 4 5 6 7
K

5M

6M

7M

T
ot

al
 A

re
a

(M
in

W
T

r)

3

4

5

T
ot

al
 D

el
ay

 (
ns

)

MinimumMinimum

MinimumMinimum

Figure 6.9 – The effect of sparse crossbars with different density Fclocal on the delay and area, for
multiple LUT inputs (K), averaged over all cluster sizes (N). This figure shows that the best results are
achieved for the crossbar with 30% density.

time, reduce the area and critical path delay of the cluster.

With the new optimization algorithms in CAD tools (possibly able to better route under

restricted resources) and at smaller technology nodes (affecting the delay cost of long wires

and large fanout nodes versus the delay of LUTs), the effect of the crossbars and of their

sparsity on the FPGA performance might change dramatically.

To study these effects, we evaluate the crossbar sparsity on a wide range of architectures by

varying Fclocal between 0.2 (i.e., each output can connect to 20% of the inputs) and 1 (i.e., a fully

populated crossbar) for K between 3 and 7, and N between 4 and 10. FPRESSO is designed in a

way that, given a certain number of inputs/output, if the crossbar density cannot be achieved,

this density is increased until all inputs can be connected. So, although a 20% crossbar is

considered in these experiments, in several cases, the effective density is slightly higher than

20% (by a few percentages). Furthermore, FPRESSO distributes, by default, the inputs of the

sparse crossbars uniformly among the created multiplexers.

Figure 6.9 shows how the delay and area change with the density of the crossbar for the

different K , averaged over N . The first observation is that, even after varying the density, our

previous conclusions of Section 6.3 on the optimal LUT sizes for area (4 and 5) and delay (6

and 7) still clearly hold for most Fcl ocal . However, more importantly, as Fclocal decreases, area

also decreases, until it reaches its optimum at 30% density, before increasing back at 20%.

Interestingly enough, the best delay is also observed at around 20% and 30% density, making

this an architectural sweet spot. Hence, the best compromise between the size of the crossbar

and the routing flexibility is generally achieved, for most architectures, at the low density

of around 30%. It benefits from the small-sized multiplexers to improve the delay and area

contribution of the crossbar while maintaining enough flexibility not to introduce excessive

routing overhead.

74

6.4. Expanding the Exploration Space

5 6 7

Non fract. 1 2 3 Non fract. 1 2 3 Non fract. 1 2 3

4
5
6

D
el

ay
 (

ns
)

4M

6M

8M
10M

A
re

a
(M

in
W

T
ra

n)

Minimum
Minimum Minimum

Minimum Minimum

Minimum

N
4
5
6
7
8
9
10

K

S S S

Figure 6.10 – Delay and area for architectures with fracturable K-LUTs and up to 3 shared inputs (S).
The results for non-fracturable K-LUTs are also added for comparison.

6.4.3 Evaluating Fracturable LUTs

To evaluate the effect of the fracturable LUTs on the FPGA performance, we run experiments

for LUTs of sizes 5, 6, and 7, where each LUT can be fractured into two smaller ones, of sizes 4,

5, and 6, respectively, with shared inputs. The number of shared inputs S is also added as a

parameter and varied between 1 and 3. The architectures were generated for clusters of sizes

N ≤ 10 and with full crossbars to filter out the effect of sparse crossbars on the results. It is

important to mention that we use, in these experiments, the default ABC version that comes

with VTR 7.0, and map using the if command with the wiremap option enabled.

Figure 6.10 shows the delay and area for architectures with fracturable K-LUT, over multiple

cluster sizes and for up to three shared inputs. The same results for non-fracturable K-LUT

are also added for comparison. The results vary, depending on the selected parameters

but, in general, one can observe a clear trend irrespective of the LUT or cluster size. When

compared to the results of the non-fracturable architecture, fracturable LUTs do not bring any

improvement. A slight increase in area and delay was to be expected: the BLE has more inputs

in the fracturable architecture, which results in bigger and slightly slower crossbars, and the

LUTs are also slower to support the fracturability. However, one would have thought that the

additional flexibility of fracturable LUTs should have largely overcome this overhead—alas,

this appears not to be the case.

To better understand the reasons behind this behavior, we evaluate the effect of the CAD

tools on the results, by analyzing the outputs of the mapping, packing and routing stages as

shows in Figure 6.11. Although this applies to any fracturable architecture, we take a cluster of

size 10 with fracturable 5-LUTs (K = 5, N = 10). Any advantage the fractuable 5-LUT should

bring is highly influenced by the number of 4-LUTs (and less) generated by the technology

mapper and by their shared inputs that can create opportunities to efficiently utilize the 5-LUT.

However, only about 18% of the total LUTs have four inputs which limits considerably these

opportunities. Clearly, ABC is not aware that LUTs can be fractured and, as such, does not

try to optimize its mapping accordingly. Furthermore, the packer is adding more damage

by under-utilizing the available resources: almost half of the 5-LUTs are fractured into two

75

Chapter 6. Architecture Exploration Using the Automated Modeling Technique

0 10 20 30 40 50 60 70 80 90 100
Average%

Mapping
Statistics

Used Modes of
Operation

LUT Usage in
Fractured Mode

Total BLE
Increase

Average
Increase of BLEs

on Critical Path
Average

Increase of
Wirelength

24%

10%

30%

34%
Unused

41%
wire

25%

Logic

48%
Non-fractured

52%
Fractured

6%10%
LUT3

18%
LUT4

66%
LUT5 LUT2

Figure 6.11 – Analysis of the mapping and packing results for a fracturable 5-LUT architecture with
N = 10.

4-LUTs, and out of these 4-LUTs only 25% are used for logic, while 41% are used as wires and

about 34% are completely unused. Using only 25% of the fractured LUTs is a major waste of

resources and causes this overhead, mainly since it increases the total number of BLEs by 30%

(compared to the non-fracturable architecture), the number of BLEs on the critical path by

about 10% and the average wirelength by 24%. All this added together gives an idea of the

reasons behind the deterioration of the results for fracturable LUTs and is an indication that

the existing academic CAD tools are not properly equipped or designed, yet, to support this

feature. It is not clear to us at this point how the commercial tools handle the fracturable

LUTs and if they result in a better utilization of the available resources, but we plan on further

investigating that in the future.

6.5 Discussion

After exploring over 1,200 FPGA architectures and running more than 41,000 benchmark

simulations, we show that (i) the observations and conclusions of Ahmed and Rose’s classic

study of 2004 remain valid with our automatic architecture modeling approach, and that (ii)

extremely large search spaces are now easily explorable with minimal effort and without any

specific knowledge in transistor design.

Reaching the same conclusions as a well-established and industrially-plausible study validates

the correctness of our approach and the relative accuracy of its modeled architectures.

In the process, we demonstrate that the MCNC benchmarks remain useful in such architectural

explorations and have, in this context, similar behavior as the more complex VTR benchmarks.

76

6.5. Discussion

We also show that a 30% density crossbar systematically achieves better results for most

architectures, offering the best compromise between routing flexibility and cost. Additionally,

we observe that, when using the academic CAD tools, the overhead of the fracturable LUTs

overcomes any advantage they theoretically bring. We show, through an analysis at the

different stages of the CAD flow, that the current tools do not fully leverage the potentials of

the fracturable LUTs.

It would have been almost impossible to explore that many architectures, evaluate these

several features, and reach these conclusions if the architecture modeling was not entirely

automated, fast, and simple to use.

77

7 Conclusion

Retargetable toolchains are one of the keystones of architectural research. Supporting a

wide range of easily-described and arbitrary architectures, these tools, like the VTR flow, are

essential to any evaluation of the performance of new architectures on a set of applications.

However, to achieve sound architecture evaluations, FPGA CAD tools require reliable delay

and area estimations of the routing and logic elements within the architecture. And, providing

the tools with such estimations means generally designing, optimizing, and simulating the

architecture at the transistor level. The caveat, however, is that typical FPGA architects do not

necessarily have the required skill set nor the time to perform such a tedious and impractical

task for hundreds of architectures. This major difficulty set some serious limitations on the

FPGA architectural explorations and slowed down the research in that area.

7.1 Computer Architecture Analogy

Looking at other disciplines, one can notice, for instance, in computer architecture, the

abundance of tools that support the researchers in their search and design of customized

architectures. Architects have access to a variety of fairly accurate architectural simulators,

customizable in many aspects [Burger and Sivasubramaniam, 2004]. Yet, such tools depend,

much as VTR in the FPGA world, on users providing assumptions (typically on latency and cost)

of each and every component they introduce or modify when they explore new architectural

ideas.

A few years back, researchers noticed how difficult it was for most architects to predict the effect

of some architectural changes, most notably in the memory hierarchy, on its area and latency:

understanding most of the implications requires a deep knowledge of the transistor-level

implementation options of leading-edge memories, which is clearly outside of the classic skill

set of an architect. CACTI [Wilton and Jouppi, 1994] was born out of that need: an easy-to-use

and sound model for caches and other memory hierarchy elements. Over a couple of decades,

six major revisions [Muralimanohar et al., 2009], and continuous new extensions [Jouppi et al.,

79

Chapter 7. Conclusion

2015], CACTI has helped literally hundreds of research groups in their scientific quest.

It has become increasingly obvious that FPGA architectural research suffers today from the

same syndrome that afflicted in the early nineties the computer architectural community:

namely, the difficulty of combining in the same researcher or even in the same research group

acute architectural intuition and leading-edge transistor-level design skills.

7.2 Bringing the Concept to FPGAs

More modestly compared to the CACTI endeavor, we have shown a new path towards quick

and efficient modeling of arbitrary FPGA architectures: we can generate within minutes

optimized VTR models with reasonably faithful delay and area estimations.

Inspired from the semicustom flow, we prepare libraries of the basic building blocks for

FPGA architectures, each with different drive strengths. The library will, for example, contain

different transistor sizings of every K -LUT and variable-input multiplexers. Then, whenever

an architecture is to be modeled, a classic optimizer constructs the circuit using cells from

the library, with optimal drive strengths, and adds buffers wherever needed. By splitting the

flow—performing all the transistor sizing and simulations offline, and only optimizing the

architecture at runtime— we are able to achieve fast architecture modeling and enable express

architectural explorations, with acceptable accuracy.

We show, by repeating a well known architecture exploration study, that the manual archi-

tecture optimization and our modeling approach can reach the same conclusions, although

we do it with significantly less effort. Then, by extending the search space, we demonstrate

how FPRESSO is capable of evaluating, quickly and easily, the effect of other features like

depopulated crossbars and fracturable LUTs on the overall FPGA performance.

7.3 Meeting Industrial Standards

The work we present in this thesis addresses a pressing problem in FPGA architectural research

by modeling arbitrary FPGA architectures, quickly and with reasonable accuracy, to enable

sound and consistent architectural explorations.

Our work fills a substantial gap in the CAD flow for academic FPGA research and offers

architects and all classes of FPGA users the means to easily and quickly evaluate new architec-

tures. Naturally though, our work cannot compete with commercial FPGAs since, targeting

mainly academic research, it does not yet meet the industrial standards. The architectures of

these commercial FPGAs have evolved beyond simple reconfigurable logic to more complex

structures with hard logic, DSP, and memory blocks. Thus, if we wish to model industrially

competitive architectures, we need to extend our palette of supported logic.

Implementing arithmetic circuits on commercial FPGAs, for example, benefits from the ex-

80

7.4. A Stepping Stone

isting hard adders and dedicated carry chains [Altera, 2014; Xilinx, 2014]. These chains allow

for a fast propagation of the carry signals without having to go through the global routing of

the FPGA fabric, offering major speedup of arithmetic operations. In general, our modeling

approach is highly modular and can easy support hard logic elements, within the cluster, as

long as they are included in the library. However, the challenge of adding carry chains to

the modeled architecture resides in floorplanning the cluster in a way that prioritizes the

minimization of these dedicated wires, to make sure that they are as fast as possible. In theory,

this can be done by assigning weights to the wires so that the cost function of the floorplanning

algorithm increases substantially with longer carry chain wires. Support for carry chains is

probably one of the most pressing features that can be added to our modeling technique.

Furthermore, the most recent benchmark suites like the VTR [Rose et al., 2012] and Titan [Mur-

ray et al., 2013] benchmarks were introduced to emulate real applications that can target FP-

GAs. These circuits are generally bigger than the traditionally-used MCNC benchmarks [Yang,

1991] and include memory and DSP blocks. FPRESSO does not currently model DSP and

memory blocks, but this is one of the features that we plan on adding, in the future, to our

modeling technique. The most recent version of COFFE [Yazdanshenas et al., 2017] added the

possibility of automatically generating and optimizing Block RAMs (BRAMs) for both SRAM

and Magnetic Tunneling Junction technologies. Although this needs careful investigation, we

believe that we can leverage these new features in COFFE to optimize memory blocks for our

library of cells.

Perhaps one of the strongest motivations we had in finding a solution to the architecture

modeling problem was to be able to explore wildly unconventional architectures and to

specifically identify the optimal FPGA architecture with the And-Inverter Cones as basic logic

elements [Zgheib et al., 2015, 2014]. So it is only logical that our next step would be to include

the AICs into our library of macrocells. This requires adding AIC support into the customized

version of COFFE to automatically generate a variety of cells for the characterization and

integration in the library. However, being a multi-output logic element, we suspect that the

AICs will introduce a particular and new set of challenges to our library generation flow; but

this will be carefully studied in the future.

7.4 A Stepping Stone

FPGAs have gone from a minimalistic market in the eighties to a multi-billion business in

which the top semiconductor vendors seem to place hopes for the future of computing. Yet,

their fundamental architecture has not changed much in decades. It is high time for academics

to look afresh at the FPGA architecture and this thesis lays a small stone to help researchers

perform new and adventurous explorations.

81

Bibliography

ABC (n.d.). ABC: A System for Sequential Synthesis and Verification. Berkeley Logic Synthesis

and Verification Group, Berkeley, Calif. http://www.eecs.berkeley.edu/~alanmi/abc/.

Adya, S. N. and Markov, I. L. (2003). Fixed-outline floorplanning: enabling hierarchical design.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 11(6):1120–1135.

Ahmed, E. and Rose, J. (2000). The effect of LUT and cluster size on deep-submicron FPGA per-

formance and density. In Proceedings of the 2000 ACM/SIGDA 8th International Symposium

on Field Programmable Gate Arrays, pages 3–12, Monterey, Calif.

Ahmed, E. and Rose, J. (2004). The effect of LUT and cluster size on deep-submicron FPGA per-

formance and density. IEEE Transactions on Very Large Scale Integration Systems, 12(3):288–

298.

Altera (2014). Stratix V Device Handbook, vols. 1 and 2. Altera Corporation.

http://www.altera.com/literature/.

Betz, V., Rose, J., and Marquardt, A. (1999). Architecture and CAD for deep-submicron FPGAs.

Kluwer Academic, Boston, Mass.

Burger, D. and Sivasubramaniam, A. (2004). Tools for computer architecture research. SIG-

METRICS Performance Evaluation Review, 31(4):2–3.

Chandy, J. A. and Banerjee, P. (1996). Parallel simulated annealing strategies for VLSI cell

placement. In Proceedings of the 9th International Conference on VLSI Design: VLSI in

Mobile Communication, pages 37–42.

Chang, Y., Chang, Y., Wu, G., and Wu, S. (2000). B*-Trees: a new representation for non-slicing

floorplans. In Proceedings of the 37th ACM/IEEE Design Automation Conference, pages

458–463.

Chen, T. and Chang, Y. (2006). Modern Floorplanning Based on B*-Tree and Fast Simulated

Annealing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

25(4):637–650.

83

http://www.eecs.berkeley.edu/~alanmi/abc/

Bibliography

Chiasson, C. and Betz, V. (2013). COFFE: Fully-automated transistor sizing for FPGAs. In

Proceedings of the IEEE International Conference on Field Programmable Technology, pages

34–41.

Chinnery, D. and Keutzer, K. (2002). Closing the Gap Between ASIC & Custom: Tools and

Techniques for High-Performance ASIC Design. Springer US, New York, NY.

Chu, C. and Wong, Y. C. (2008). FLUTE: Fast Lookup Table Based Rectilinear Steiner Minimal

Tree Algorithm for VLSI Design. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 27(1):70–83.

Conn, A. R., Coulman, P. K., Haring, R. A., Morrill, G. L., Visweswariah, C., and Wu, C. W.

(1998). JiffyTune: circuit optimization using time-domain sensitivities. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 17(12):1292–1309.

Conn, A. R., Elfadel, I. M., Molzen, W. W., O’Brien, P. R., Strenski, P. N., Visweswariah, C., and

Whan, C. B. (1999). Gradient-based optimization of custom circuits using a static-timing

formulation. In Proceedings of the 1999 Design Automation Conference, pages 452–459.

Elmore, W. C. (1948). The Transient Response of Damped Linear Networks with Particular

Regard to Wideband Amplifiers. Journal of Applied Physics, 19(1):55–63.

Eriksson, H., Larsson-Edefors, P., Henriksson, T., and Svensson, C. (2003). Full-custom vs.

standard-cell design flow: an adder case study. In Proceedings of the Asia and South Pacific

Design Automation Conference, pages 507–510.

Fang, J., Chang, Y., Chen, C., Liang, W., Hsieh, T., Satria, M. T., and Han, C. (2009). A parallel sim-

ulated annealing approach for floorplanning in VLSI. In Proceedings of the 9th International

Conference on Algorithms and Architectures for Parallel Processing, pages 291–302.

Fishburn, J. P. and Dunlop, A. E. (1985). TILOS: A posynomial programming approach to

transistor sizing. In Proceedings of the International Conference on Computer Aided Design,

pages 326–328.

Greene, J., Kaptanoglu, S., Feng, W., Hecht, V., Landry, J., Li, F., Krouglyanskiy, A., Morosan, M.,

and Pevzner, V. (2011). A 65nm flash-based FPGA fabric optimized for low cost and power.

In Proceedings of the 19th ACM/SIGDA International Symposium on Field Programmable

Gate Arrays, pages 87–96.

Guo, P., Takahashi, T., Cheng, C., and Yoshimura, T. (2001). Floorplanning using a tree repre-

sentation. IEEE Trans. on CAD of Integrated Circuits and Systems, 20(2):281–289.

Guo, P.-N., Cheng, C.-K., and Yoshimura, T. (1999). An O-tree Representation of Non-slicing

Floorplan and its Applications. In Proceedings of the 36th Annual ACM/IEEE Design Automa-

tion Conference, pages 268–273.

Hwang, F., Richards, D., and Winter, P. (1992). The Steiner Tree Problem. Annals of Discrete

Mathematics. Elsevier Science.

84

Bibliography

Jiang, Z., Zgheib, G., Yu Lin, C., Novo, D., Yang, L., Huang, Z., Yang, H., and Ienne, P. (2015). A

technology mapper for depth-constrained FPGA logic cells. In Proceedings of the 25th Inter-

national Conference on Field-Programmable Logic and Applications, pages 1–8, London.

Jouppi, N. P., Kahng, A. B., Muralimanohar, N., and Srinivas, V. (2015). CACTI-IO: CACTI with

OFF-chip power-area-timing models. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, VLSI-23(7):1254–67.

Kaptanoglu, S., Bakker, G., Kundu, A., Corneillet, I., and Ting, B. (1999). A new high density and

very low cost reprogrammable FPGA architecture. In Proceedings of the 1999 ACM/SIGDA

Seventh International Symposium on Field Programmable Gate Arrays, pages 3–12.

Kasamsetty, K., Ketkar, M., and Sapatnekar, S. S. (2000). A new class of convex functions for

delay modeling and its application to the transistor sizing problem [CMOS gates]. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 19(7):779–788.

Kim, J. H. and Anderson, J. H. (2015). Synthesizable FPGA fabrics targetable by the Verilog-

to-Routing (VTR) CAD flow. In Proceedings of the 25th International Conference on Field-

Programmable Logic and Applications, pages 1–8.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing.

Science, 220(4598):671–680.

Kuon, I. and Rose, J. (2011). Exploring area and delay tradeoffs in FPGAs with architecture

and automated transistor design. IEEE Transactions on Very Large Scale Integration Systems,

19(1):71–84.

Kuon, I., Tessier, R., and Rose, J. (2008). FPGA Architecture: Survey and Challenges. Now, Delft,

The Netherlands.

Lemieux, G., Leventis, P., and Lewis, D. (2000). Generating highly-routable sparse cross-

bars for PLDs. In Proceedings of the 8th ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, pages 155–64, Monterey, Calif.

Lemieux, G. and Lewis, D. (2001). Using sparse crossbars within LUT clusters. In Proceedings

of the 2001 ACM/SIGDA Ninth International Symposium on Field Programmable Gate Arrays,

pages 59–68, Monterey, California, USA.

Lewis, D., Ahmed, E., Cashman, D., Vanderhoek, T., Lane, C., Lee, A., and Pan, P. (2009). Archi-

tectural enhancements in Stratix-III™and Stratix-IV™. In Proceedings of the ACM/SIGDA

International Symposium on Field Programmable Gate Arrays, pages 33–42, New York, NY.

Lewis, D., Betz, V., Jefferson, D., Lee, A., Lane, C., Leventis, P., Marquardt, S., McClintock, C.,

Pedersen, B., Powell, G., Reddy, S., Wysocki, C., Cliff, R., and Rose, J. (2003). The stratix

routing and logic architecture. In Proceedings of the 2003 ACM/SIGDA Eleventh International

Symposium on Field Programmable Gate Arrays, pages 12–20, Monterey, Calif.

85

Bibliography

Lewis, D. et al. (2005). The Stratix II logic and routing architecture. In Proceedings of the 13th

ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pages 14–20,

Monterey, Calif.

Luu, J., Goeders, J., Wainberg, M., Somerville, A., Yu, T., Nasartschuk, K., Nasr, M., Wang, S.,

Liu, T., Ahmed, N., Kent, K. B., Anderson, J., Rose, J., and Betz, V. (2014a). VTR 7.0: Next

generation architecture and CAD system for FPGAs. ACM Transactions on Reconfigurable

Technology and Systems (TRETS), 7(2):6:1–6:30.

Luu, J., McCullough, C., Wang, S., Huda, S., Yan, B., Chiasson, C., Kent, K. B., Anderson, J., Rose,

J., and Betz, V. (2014b). On hard adders and carry chains in FPGAs. In Proceedings of the

22nd IEEE Symposium on Field-Programmable Custom Computing Machines, pages 52–9,

Boston, Mass.

Muralimanohar, N., Balasubramonian, R., and Jouppi, N. P. (2009). CACTI 6.0: A tool to model

large caches. Technical Report HPL-2009-85, Hewlett-Packard Development Company, Palo

Alto, Calif.

Murata, H., Fujiyoshi, K., Nakatake, S., and Kajitani, Y. (1995). Rectangle-packing-based

Module Placement. In Proceedings of the 1995 IEEE/ACM International Conference on

Computer-aided Design, pages 472–479.

Murray, K. E., Whitty, S., Liu, S., Luu, J., and Betz, V. (2013). Titan: Enabling large and complex

benchmarks in academic CAD. In Proceedings of the 23rd International Conference on

Field-Programmable Logic and Applications, pages 1–8.

Ousterhout, J. K. (1984). Switch-level delay models for digital MOS VLSI. In Proceedings of the

21st Design Automation Conference, pages 542–548.

Padalia, K., Fung, R., Bourgeault, M., Egier, A., and Rose, J. (2003). Automatic transistor and

physical design of FPGA tiles from an architectural specification. In Proceedings of the

ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pages 164–172.

Parandeh-Afshar, H., Benbihi, H., Novo, D., and Ienne, P. (2012). Rethinking FPGAs: Elude the

flexibility excess of LUTs with And-Inverter Cones. In Proceedings of the 20th ACM/SIGDA

International Symposium on Field Programmable Gate Arrays, pages 119–28, Monterey,

Calif.

Parandeh-Afshar, H., Zgheib, G., Novo, D., Purnaprajna, M., and Ienne, P. (2013). Shadow And-

Inverter Cones. In Proceedings of the 23rd International Conference on Field-Programmable

Logic and Applications, pages 1–4, Porto, Portugal.

Rose, J., Francis, R. J., Lewis, D., and Chow, P. (1990). Architecture of field-programmable gate

arrays: the effect of logic block functionality on area efficiency. IEEE Journal of Solid-State

Circuits, 25(5):1217–1225.

86

Bibliography

Rose, J., Luu, J., Yu, C. W., Densmore, O., Goeders, J., Somerville, A., Kent, K. B., Jamieson,

P., and Anderson, J. (2012). The VTR project: architecture and CAD for FPGAs from Ver-

ilog to routing. In Proceedings of the 20th ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, pages 77–86.

Rubinstein, J., Penfield, P., and Horowitz, M. A. (1983). Signal Delay in RC Tree Networks. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2(3):202–211.

Sechen, C. and Sangiovanni-Vincentelli, A. (1986a). The timberwolf placement and routing

package. IEEE Journal for Solid State Circuits, SC-20:510–522.

Sechen, C. and Sangiovanni-Vincentelli, A. (1986b). Timberwolf3.2: A new standard cell place-

ment and global routing package. In Proceedings of the 23rd ACM/IEEE Design Automation

Conference, pages 432–439.

Sherwani, N. A. (1995). Algorithms for VLSI Physical Design Automation. Kluwer Academic

Publishers, Norwell, MA, 2nd edition.

Singh, S., Rose, J., Chow, P., and Lewis, D. (1992). The effect of logic block architecture on FPGA

performance. IEEE Journal of Solid-State Circuits, 27(3):281–287.

Smith, A. M., Wilton, S. J., and Das, J. (2009). Wirelength modeling for homogeneous and

heterogeneous FPGA architectural development. In Proceedings of the ACM/SIGDA Interna-

tional Symposium on Field Programmable Gate Arrays, FPGA ’09, pages 181–190.

Stoobandt, D. (2001). Multi-terminal nets do change conventional wire length distribution

models. In Proceedings of the 2001 International Workshop on System-level Interconnect

Prediction, SLIP ’01, pages 41–48.

Wilton, S. J. and Jouppi, N. P. (1994). An enhanced access and cycle time model for on-chip

caches. Technical Report WRL-93-5, Digital Equipment Corporation, Palo Alto, Calif.

Wong, D. F. and Liu, C. L. (1986). A New Algorithm for Floorplan Design. In Proceedings of the

23rd ACM/IEEE Design Automation Conference, pages 101–107.

Wu, G., Chang, Y., and Chang, Y. (2003). Rectilinear block placement using B*-Trees. ACM

Transactions on Design Automation of Electronic Systems, 8(2):188–202.

Xilinx (2014). 7 Series FPGAs Configurable Logic Block. Xilinx Inc. Version 1.7,

http://www.xilinx.com/.

Xilinx (n.d.). Virtex-5 User Guide. Xilinx Inc. http://www.xilinx.com/.

Yang, S. (1991). Logic synthesis and optimization benchmarks user guide, version 3.0. Techni-

cal report, Microelectronics Center of North Carolina, Research Triangle Park, N.C.

87

Bibliography

Yazdanshenas, S., Tatsumura, K., and Betz, V. (2017). Don’t Forget the Memory: Automatic

Block RAM Modelling, Optimization, and Architecture Exploration. In Proceedings of the

2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages

115–124.

Zgheib, G. and Ienne, P. (2016). Automatic wire modeling to explore novel FPGA architectures.

In Proceedings of the IEEE International Conference on Field Programmable Technology,

pages 181–184.

Zgheib, G. and Ienne, P. (2017). Evaluating FPGA clusters under wide ranges of design parame-

ters. In Proceedings of the 27th International Conference on Field-Programmable Logic and

Applications, Belgium.

Zgheib, G., Lortkipanidze, M., Owaida, M., Novo, D., and Ienne, P. (2016). FPRESSO: En-

abling express transistor-level exploration of FPGA architectures. In Proceedings of the 24th

ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pages 80–89,

Monterey, Calif.

Zgheib, G., Parandeh-Afshar, H., Novo, D., and Ienne, P. (2015). And-inverter cones. In Gail-

lardon, P.-E., editor, Reconfigurable Logic: Architecture, Tools, and Applications, chapter 5,

pages 127–48. CRC.

Zgheib, G., Yang, L., Huang, Z., Novo Bruna, D., Parandeh-Afshar, H., Yang, H., and Ienne, P.

(2014). Revisiting And-Inverter Cones. In Proceedings of the 22nd ACM/SIGDA International

Symposium on Field Programmable Gate Arrays, pages 45–54, Monterey, Calif.

88

Curriculum Vitae

RESEARCH INTERESTS

FPGA architecture, CAD tools, architecture modeling and design.

EDUCATION

2011–2017 Ph.D. in Computer Science

School of Computer and Communication Sciences

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Thesis: Leading the Blind: Automated Transistor-Level Modeling for FPGA

Architects

Supervisor: Prof. Paolo Ienne

2009–2011 Masters of Science in Computer Engineering

Department of Electrical and Computer Engineering, School of Engineering

Lebanese American University, Byblos, Lebanon

2004–2009 Bachelor of Engineering in Computer Engineering

Department of Electrical and Computer Engineering, School of Engineering

Lebanese American University, Byblos, Lebanon

PUBLICATIONS

CONFERENCE PAPERS

Grace Zgheib and Paolo Ienne. “Evaluating FPGA clusters under wide ranges of design param-

eters”. In: Proceedings of the 27th International Conference on Field-Programmable Logic

and Applications. Ghent, Belgium, Sept. 2017.

Zhufei Chu, Xifan Tang, Mathias Soeken, Ana Petkovska, Grace Zgheib, Luca Amarù, Yinshui

Xia, Paolo Ienne, Giovanni De Micheli, and Pierre-Emmanuel Gaillardon. “Improving

circuit mapping performance through MIG-based synthesis for carry chains”. In: Proceed-

Curriculum Vitae

ings of the 27th ACM Great Lakes Symposium on VLSI. Banff, Alberta, Canada, May 2017,

pp. 131–36.

Zhihong Huang, Xing Wei, Grace Zgheib, Wei Li, Yu Lin, Zhenghong Jiang, Kaihui Tu, Paolo

Ienne, and Haigang Yang. “Nand-nor: A compact, fast, and delay balanced FPGA logic

element”. In: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays. FPGA ’17. Monterey, Calif., 2017, pp. 135–140.

Grace Zgheib and Paolo Ienne. “Automatic wire modeling to explore novel FPGA architectures.”

In: Proceedings of the IEEE International Conference on Field Programmable Technology.

Dec. 2016, pp. 181–184.

Grace Zgheib, Manana Lortkipanidze, Muhsen Owaida, David Novo, and Paolo Ienne. “Fpresso:

Enabling express transistor-level exploration of FPGA architectures”. In: Proceedings of

the 24th ACM/SIGDA International Symposium on Field Programmable Gate Arrays. Best

Paper Award. Monterey, Calif., Feb. 2016, pp. 80–89.

Ana Petkovska, Grace Zgheib, David Novo, Muhsen Owaida, Alan Mishchenko, and Paolo

Ienne. “Improved carry-chain mapping for the VTR flow”. In: Proceedings of the 2015

International Conference on Field Programmable Technology. Queenstown, New Zealand,

Dec. 2015, pp. 80–87.

Zhenghong Jiang, Grace Zgheib, Colin Yu Lin, David Novo, Liqun Yang, Zhihong Huang,

Haigang Yang, and Paolo Ienne. “A technology mapper for depth-constrained FPGA logic

cells”. In: Proceedings of the 25th International Conference on Field-Programmable Logic

and Applications. London, Sept. 2015, pp. 1–8.

H. Harmanani, Danielle Azar, Grace Zgheib, and David Kozhaya. “An ant colony optimization

heuristic to optimize prediction of stability of object-oriented components”. In: Proceed-

ings of the 2015 IEEE International Conference on Information Reuse and Integration. Aug.

2015, pp. 225–228.

Grace Zgheib, Liqun Yang, Zhihong Huang, David Novo Bruna, Hadi Parandeh-Afshar, Haigang

Yang, and Paolo Ienne. “Revisiting And-Inverter Cones”. In: Proceedings of the 22nd

ACM/SIGDA International Symposium on Field Programmable Gate Arrays. Monterey,

Calif., Feb. 2014, pp. 45–54.

Hadi Parandeh-Afshar, Grace Zgheib, David Novo, Madhura Purnaprajna, and Paolo Ienne.

“Shadow And-Inverter Cones”. In: Proceedings of the 23rd International Conference on

Field-Programmable Logic and Applications. Porto, Portugal, Sept. 2013, pp. 1–4.

Hadi Parandeh-Afshar, Grace Zgheib, Philip Brisk, and Paolo Ienne. “Reducing the pressure

on routing resources of FPGAs with generic logic chains”. In: Proceedings of the 19th

ACM/SIGDA International Symposium on Field Programmable Gate Arrays. Monterey,

Calif., Feb. 2011, pp. 237–46.

Curriculum Vitae

JOURNALS

Grace Zgheib and Iyad Ouaiss. “Enhanced technology mapping for FPGAs with exploration of

cell configurations”. In: Journal of Circuits, Systems and Computers 24.3 (Mar. 2015).

BOOK CHAPTERS

Grace Zgheib, Hadi Parandeh-Afshar, David Novo, and Paolo Ienne. “And-Inverter Cones”.

In: Reconfigurable Logic: Architecture, Tools, and Applications. Ed. by Pierre-Emmanuel

Gaillardon. CRC, 2015. Chap. 5, pp. 127–48.

PATENTS

Hadi Parandeh-Afshar, David Novo Bruna, Paolo Ienne Lopez, and Grace Zgheib. Non-LUT

Field-Programmable Gate Arrays. US Patent US9,231,594. Jan. 2016.

