
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Dr D. Gillet, président du jury
Prof. A. Martinoli, directeur de thèse

Prof. P. Lima, rapporteur
Dr S. Geronimi, rapporteur

Prof. J.-Ph. Thiran, rapporteur

Cooperative Perception Algorithms for Networked
Intelligent Vehicles

THÈSE NO 7856 (2017)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 18 AOÛT 2017

 À LA FACULTÉ DE L'ENVIRONNEMENT NATUREL, ARCHITECTURAL ET CONSTRUIT
LABORATOIRE DE SYSTÈMES ET ALGORITHMES INTELLIGENTS DISTRIBUÉS

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2017

PAR

Milos VASIC

Acknowledgments

T H E accomplishment of this work would not have been possible without the help

and support of many people. First and foremost, I would like to express my grat-

itude to my advisor, Alcherio Martinoli. His vision, guidance, and constant encour-

agement have pushed me forward and without him, the work in this form would

not have been possible. It has been a great journey.

I would also like to thank my thesis committee — composed of Dr. Denis Gillet, Prof. Pedro

Lima, Dr. Stéphane Geronimi, and Prof. Jean-Philippe Thiran — for taking the time to review

this manuscript and for providing valuable feedback.

It was a true privilege to work with people from PSA Groupe — the financial and technical

sponsor of my thesis. I am grateful to Olivier Pajot, Stéphane Geronimi, Jean-François Boissou,

Franck Guillemard, and David Allard for their interactions and strategic decisions.

I have been fortunate to collaborate with a number of brilliant colleagues at the DISAL lab. The

efforts of David Mansolino, Iñaki Navarro, and Guillaume Jornod have directly contributed

to the content of this thesis. Thanks to Gael Lederrey, Jonathan Gan, and Johannes Løje, who

joined us for semester or Master’s projects, and whose work has made it into this thesis. A

special thanks also goes to Ali Marjovi, whom I had the pleasure to write papers with, for all

numerous discussions we have had over the past few years. This list would not be complete

without thanking Steven Roelofsen for his willingness to brainstorm on many occasions, Sven

Gowal, from whom I have learned the first things about intelligent vehicles, as well as Denis

Rochat and Emmanuel Droz, who have supported me in my work the on the C-ZEROs. I am

also thankful to Corinne Farquharson, who made sure the lab operations were always running

smoothly, as well as the remaining DISAL members for all the moments, either fun or busy,

that we shared together.

Operating a two-vehicle platform is not a one-man job. I would therefore like to thank Ad-

rian Arfire for his help with the deployment, as well as Petar Pjanic, Ilija Bogunovic, Stanko

Novakovic, Anwar Quraishi, and Roger Fong, who came and helped out during my experi-

mental campaigns.

i

Acknowledgments

But there is more to life than work, and friends are the the important part of it. I am particularly

grateful to my closest friends for being there for me ubiquitously; to the ones around EPFL for

making this adventure one to remember, and to the distant ones for always being there for

me. Thanks to my colleagues for making this journey more than just work, as we collaborated,

shared our thoughts, and became friends.

Last but not least, I owe a big thank you to my family: my sister Ivana, my parents Branka and

Dragomir, and my fiancée Irena, for their unconditional encouragement, support, and sincere

love.

Lausanne, 1 June 2017 Milos Vasic

ii

Abstract

T H E degree of intelligence built-in in today’s vehicles in constantly on the rise. The

vehicles are being equipped with sensors, with the goal to estimate the state of the

vehicle and the environment surrounding it. Intelligent algorithms that process the

sensory data can give their output at different levels, ranging from simple warnings,

to evasive maneuvers (such as emergency braking), to complete autonomy.

While it has been demonstrated that autonomous vehicles can rely solely on their on-board

sensors, their performance can be optimized through cooperation with other road vehicles.

Information coming from infrastructure can be fused in as well. This is where the communic-

ation between vehicles, as well as between vehicles and the infrastructure, comes into play.

The main benefits of cooperation include larger coverage and extended situational awareness

through sharing sensor data and vehicle intentions (trajectories).

In this thesis, we address the cooperative perception problem. To solve this problem efficiently,

we construct an end-to-end framework in three steps.

First, we design an experimental platform that allows for testing our cooperative perception al-

gorithms. In particular, we equip two fully electric Citroën C-ZERO cars with sensors, on-board

computers and communication equipment. At the same time, we reproduce our platform in

Webots, a high-fidelity simulation tool originally developed for mobile robots and recently

upgraded for road vehicles. We develop and calibrate vehicle and sensor models with the

goal to reproduce the real-world conditions as closely as possible, and in turn facilitate the

deployment of algorithms developed in simulation on real cars.

Second, we design two cooperative algorithms for tracking multiple objects (cars and pedestri-

ans) using laser and camera sensors. The key components of the algorithms are our cooperative

fusion methods, which allow for fusion of data obtained from a cooperative vehicle with the

data obtained from on-board sensors. The algorithms are first evaluated in simulation and

tested in specific scenarios. For instance, to showcase the power of our approach in a potential

application, we design an overtaking decision algorithm that uses our cooperative perception

algorithm as a baseline. The overtaking application proves the added-value of cooperative

iii

Abstract

perception in situations with occluded or insufficient sensory field of view.

Third, we deploy a selected algorithm on real vehicles and validate it in real time. A distributed

software framework is designed for this purpose, enabling a relatively smooth transition

from simulated to real environments. Moreover, the cooperative perception algorithm is

subsequently enhanced for operating in more complex scenarios. Furthermore, we develop

a cooperative localization method to achieve increased accuracy in cooperative vehicles’

relative localization, thus enabling our cooperative perception algorithm to work properly

when deployed on moving vehicles.

Overall, we develop an end-to-end framework for cooperative perception, which unifies many

different sensory technologies. Despite the end goal has always been that of deploying the

framework on our test vehicles, we make substantial effort to keep it as general as possible.

Our framework represents a stepping stone towards more complex, multi-vehicle automated

systems.

Keywords: cooperative perception, sensor fusion, intelligent vehicles, vehicle-to-vehicle com-

munication (V2V), vehicle-to-infrastructure communication (V2I), real vehicle deployment

iv

Résumé

L E degré d’intelligence embarqué de nos jour dans les véhicules est en constante

augmentation. Ils sont équipés de capteurs afin d’acquérir des informations sur

leur état et sur leur environnement. Les algorithmes intelligents qui traitent ces in-

formations ont un large domaine d’application, de la création de simples messages

d’alerte à l’autonomie complète du véhicule, en passant par des manœuvres d’évitement tel

que le freinage d’urgence.

Bien qu’il a été démontré que les véhicules autonomes peuvent se fier uniquement à leur

capteurs embarqués, la performance de leur autonomie peut être optimisée par la coopération

avec d’autres véhicules. De même, les informations provenant d’infrastructures peuvent

aussi être fusionnées. C’est ainsi que la communication entre véhicules, et entre véhicules et

infrastructures, vient jouer un rôle. Les intérêts principaux de cette coopération comprennent

un champ de vision augmenté et une compréhension étendue de la situation par le partage des

données des capteurs et des intentions des véhicules, par la communication des trajectoires

prévues par exemple.

Au long de cette thèse, nous nous concentrons sur le problème de la perception collaborative.

Pour résoudre ce problème de manière efficiente, nous construisons une architecture complète

en trois étapes.

Premièrement, nous concevons une plateforme expérimentale qui nous permet de tester nos

algorithmes de perception coopérative. Plus particulièrement, nous équipons deux Citroën

C-ZERO entièrement électriques avec capteurs, ordinateurs de bord et équipements de com-

munication. Simultanément, nous reproduisons ces plateformes dans Webots, un simulateur

haute-fidélité originalement développé pour les robots mobiles, récemment adapté aux véhi-

cules routiers. Nous développons et calibrons les modèles des véhicules et des capteurs afin de

reproduire les conditions du monde réel aussi précisément que possible, et en conséquence

faciliter le déploiement des algorithmes développés en simulation sur les voitures.

Deuxièmement, nous concevons deux algorithmes coopératifs pour le suivi de multiples objets

(voitures et piétons) en utilisant lasers et caméras. Les composants clefs de ces algorithmes

v

Abstract

sont nos méthodes coopératives permettant la fusion de données obtenues d’un véhicule

coopératif avec les données obtenues des capteurs embarqués. Les algorithmes sont d’abord

évalués et testés dans des scénarios spécifiques. Par exemple, afin de démontrer la portée

de notre approche au sein d’une application potentielle, nous concevons un algorithme de

décision de dépassement qui a pour fondation notre algorithme de perception coopérative.

Cette application au scénario de dépassement prouve la valeur ajoutée de la perception

coopérative dans une situation de champ de vision insuffisant ou occulté.

Troisièmement, nous déployons un algorithme choisi sur nos véhicules de test et le validons

en temps réel. Une architecture logicielle distribuée est conçue à cette fin, permettant une

transition facilitée de l’environnement simulé à l’environnement réel. Pour ce faire, l’algo-

rithme de perception coopérative est étendu afin de pouvoir fonctionner dans des scénarios

plus complexes. De plus, nous développons une méthode de localisation coopérative afin de

parvenir à une grande précision dans la localisation relative des véhicules coopératifs, ainsi

permettant notre algorithme de perception coopérative de fonctionner correctement une fois

déployé sur des véhicules en mouvement.

Dans l’ensemble, nous développons donc une architecture complète pour la perception

coopérative qui unifie différents types de capteurs. Bien que le but ultime ait toujours été le

déploiement sur nos véhicules de tests, nous consacrons un effort important à conserver le

caractère général de notre approche, autant que faire se peut. Notre architecture constitue un

tremplin vers des systèmes plus complexes de plusieurs véhicules automatisés.

Mots clefs : perception coopérative, fusion de capteurs, véhicule intelligent, communication

de véhicule à véhicule (V2V), communication de véhicule à infrastructure (V2I), déploiement

sur véhicules réels

vi

Zusammenfassung

D E R Grad der Intelligenz in heutigen Fahrzeugen nimmt stetig zu. Die Fahrzeuge

werden mit Sensoren ausgerüstet mit dem Ziel, den Zustand des Fahrzeugs so-

wie dessen Umgebung zu ermitteln. Intelligente Algorithmen zur Verarbeitung

der Sensordaten können für Aktionen auf verschiedenen Ebenen eingesetzt wer-

den, angefangen bei einfachen Warnungen, über Ausweichmanöver (wie z.B. Notbremsung),

bis zu vollständiger Autonomie.

Obwohl gezeigt wurde, dass sich autonome Fahrzeuge lediglich auf ihre vorhandenen Sensoren

verlassen können, kann ihre Leistungsfähigkeit durch Kooperation mit anderen Fahrzeugen

optimiert werden. Ebenso kann Information von intelligenter Infrastruktur mit einbezogen

werden. Hierzu spielt die Kommunikation zwischen den Fahrzeugen sowie zwischen Fahr-

zeugen und Infrastruktur eine wichtige Rolle. Die entscheidenden Vorteile einer solchen

Kooperation sind grössere Abdeckung und erweiterte situative Aufmerksamkeit durch das

Teilen der Sensordaten und Entscheidungen des Fahrzeugs (Trajektorien).

In dieser Arbeit wird das Problem der kooperativen Perzeption angegangen. Zur effizienten

Lösung dieses Problems entwickeln wir ein End-to-End-Framework in drei Schritten.

Zuerst entwerfen wir eine experimentelle Plattform für das Testen unserer Algorithmen für

kooperative Perzeption. Insbesondere statten wir zwei Elektrofahrzeuge Citroën C-ZERO

mit Sensoren, Bordrechner und Kommunikationsausrüstung aus. Zugleich bilden wir unsere

Plattform in Webots ab, einem für mobile Roboter entwickelten hochspezialisierten Simula-

tionswerkzeug, welches neulich für Strassenfahrzeuge erweitert wurde. Wir entwickeln und

kalibrieren Fahrzeug- und Sensormodelle mit dem Ziel, so gut wie möglich reale Bedingungen

zu reproduzieren, um im Gegenzug die Anwendung der mithilfe der Simulation entwickelten

Algorithmen bei realen Fahrzeugen zu erleichtern.

Im zweiten Schritt entwickeln wir zwei kooperative Algorithmen für laser- und kamerasen-

sorgestütze Verfolgung multipler Objekte (Fahrzeuge und Fussgänger). Die Schlüsselkom-

ponenten der Algorithmen sind unsere Methode der kooperativen Datenfusion, welche es

erlaubt die Daten einnes im kooperativen Verbund befindlichen Fahrzeugs mit den Daten der

Bordsensorik zu verknüpfen. Die Algorithmen werden zunächst in einer Simulation evaluiert

und anschliessend in spezifischen Szenarien getestet. Um die Leistungsfähigkeit unseres

vii

Abstract

Ansatzes in einer möglichen Anwendung zu demonstrieren, entwerfen wir beispielsweise

einen Entscheidungsalgorithmus für Überholungsmanöver, welcher auf unseren Algorithmus

für kooperative Perzeption basiert. Diese Anwendung zeigt den Mehrwert der kooperativen

Perzeption in Situationen mit einem verdeckten oder unzureichenden Sensorsichtfeld.

Schliesslich wenden wir den ausgewählten Algorithmus bei realen Fahrzeugen an und vali-

dieren ihn in Echtzeit. Für diesen Zweck wird ein verteiltes Software-Framework entworfen,

welches einen relativ reibungslosen Übergang von simulierten zu realen Umgebungen er-

möglicht. Zudem wird der Algorithmus für kooperative Perzeption ständig erweitert, um in

komplexeren Szenarien angewendet werden zu können. Des Weiteren entwickeln wir eine

Methode für kooperative Lokalisierung, um erhöhte Genauigkeit bei relativer Position der

kooperativen Fahrzeuge zu erreichen, was unserem Algorithmus für kooperative Perzeption

eine Anwendung auch bei bewegten Fahrzeugen ermöglicht.

Zusammengefasst entwickeln wir ein End-to-End-Framework für kooperative Perzeption,

welches mehrere verschiedene Sensortechnologien vereinigt. Ungeachtet dessen, dass das

Endziel immer die Anwendung des Frameworks bei unseren Testfahrzeugen war, machen

wir erhebliche Bestrebungen, um es so allgemein wie möglich zu halten. Unser Framework

stellt ein Sprungbrett in Richtung automatisierter Systeme hoher Komplexität mit multiplen

Fahrzeugen dar.

Schlüsselwörter: kooperative Perzeption, Sensor-Fusion, intelligente Fahrzeuge, Fahrzeug-

Fahrzeug-Kommunikation (V2V), Fahrzeug-Infrastruktur-Kommunikation (V2I), Anwendung

bei realen Fahrzeugen

viii

Contents

Acknowledgments i

Abstract (English/Français/Deutsch) iii

I Introduction 1

1 Intelligent Vehicles 3

1.1 Driver Assistance Systems . 3

1.2 Autonomous Vehicles . 5

2 Networked Vehicles 9

2.1 Cooperative Perception . 10

2.2 Cooperative Control . 12

3 Scope of the Thesis 15

3.1 Objectives and Outline . 15

3.2 Research Contributions . 17

II Platforms and Tools 21

4 Experimental Platform 23

4.1 Perception Sensors . 23

4.1.1 LIDARs . 23

4.1.2 Automotive Cameras . 24

4.2 Localization Sensors . 25

4.2.1 Low-End Localization System . 26

4.2.2 High-End Localization System . 27

4.3 Computational Equipment . 27

4.4 Deployment . 27

4.4.1 First Phase . 28

4.4.2 Second Phase . 29

ix

Contents

5 A High-Fidelity Simulation Tool 33

5.1 Simulation of Vehicles . 33

5.1.1 Electric Motor Model . 34

5.1.2 Libraries . 34

5.1.3 Calibration . 35

5.2 Simulation of Automotive Sensors . 37

5.2.1 LIDARs . 38

5.2.2 Mobileye Cameras . 39

6 Conclusion 41

6.1 Discussion . 41

III Cooperative Perception 43

7 Introduction 45

7.1 Background . 46

7.1.1 Multi-Object Tracking . 46

7.1.2 Cooperative Fusion . 48

7.2 Preliminaries . 49

7.2.1 Bayes Filter . 49

7.2.2 Random Finite Sets Formulation of Multi-Object Tracking 50

7.2.3 Probability Hypothesis Density Filter . 52

7.3 LIDAR Point Cloud Preprocessing . 53

7.3.1 Clustering . 54

7.3.2 Feature Extraction . 55

8 Cooperative Multi-Object Tracking Using a Gaussian Mixture Approximation 57

8.1 Multi-Object Tracking Using a GM-PHD Filter 57

8.1.1 Prediction . 58

8.1.2 Update . 58

8.1.3 Pruning and Merging . 59

8.1.4 Extraction . 59

8.2 Cooperative Fusion . 60

8.3 Cooperative Car Tracking . 63

8.3.1 Kinematic State and Motion Model . 63

8.3.2 Measurement Model . 65

8.3.3 Occlusion and FOV Model . 65

8.4 Experimental Evaluation . 66

8.4.1 Experimental Setup . 66

8.4.2 Results . 69

9 Cooperative Multi-Object Tracking Using a Sequential Monte Carlo Approximation 75

x

Contents

9.1 Multi-Object Tracking Using an SMC-PHD Filter 75

9.1.1 Prediction . 76

9.1.2 Update . 77

9.1.3 State Estimation Extraction . 77

9.1.4 Resampling . 78

9.2 Cooperative Fusion . 78

9.2.1 Fusion within the Common FOV . 79

9.2.2 Incorporating External Information . 82

9.2.3 Propagation of Localization Uncertainty 82

9.3 Experimental Evaluation . 83

9.3.1 Scenario . 84

9.3.2 Parameters . 84

9.3.3 Results . 86

10 An Overtaking Assistance System Based on Cooperative Perception 89

10.1 Background . 90

10.2 Overtaking Decision Algorithm . 91

10.2.1 State Description . 91

10.2.2 Decision Algorithm (FSM State Transitions) 92

10.2.3 Lateral Controller . 95

10.2.4 Longitudinal Controllers . 95

10.3 Experimental Evaluation . 96

10.3.1 Experimental Setup . 96

10.3.2 Tracking Parameters . 97

10.3.3 Experimental Results . 98

11 Conclusion 101

11.1 Discussion . 101

IV Algorithmic Enhancements and Validation Using Real Vehicles 103

12 Introduction 105

13 A Software Framework for Bridging the Simulation-to-Reality Gap 109

13.1 Software Architecture . 110

13.1.1 Phase 1 . 110

13.1.2 Phase 2 . 111

13.2 Communication . 114

13.2.1 Intra-Vehicle Communication . 114

13.2.2 V2X Communication . 114

14 Cooperative Tracking under Accurate Localization Conditions 117

14.1 Fusion Weight Optimization . 117

xi

Contents

14.2 Motion and Observation Models . 119

14.2.1 Motion Model . 119

14.2.2 Observation Model . 119

14.3 Experimental Evaluation . 120

14.3.1 Simulation setup . 120

14.3.2 Real-World Experimental Setup . 121

14.3.3 Localization of Real Vehicles . 121

14.3.4 Parameters . 123

14.3.5 Results . 123

15 Cooperative Localization Algorithms 129

15.1 Background . 129

15.2 Extended Kalman Filter Algorithm . 131

15.3 Relative Localization by Matching the Leading Vehicle 133

15.4 Relative Localization by Matching Tracked Objects 134

15.5 Evaluation . 136

16 Cooperative Tracking under Realistic Localization Conditions 141

16.1 Integration of Measurements from a Mobileye Camera 141

16.2 Modeling Objects . 142

16.2.1 Motion Model . 143

16.3 Experimental Evaluation . 143

16.3.1 Tracking Pedestrians . 143

16.3.2 Tracking Cars . 147

17 Conclusion 151

17.1 Discussion . 152

V Conclusion 155

18 Conclusion 157

18.1 Discussion and Outlook . 159

Glossary 163

Bibliography 167

Curriculum Vitae 181

xii

Part IIntroduction

1

1 Intelligent Vehicles

W E have been witnesses of many car accidents and fatalities arising from

them. In 2015, 35,092 people died in motor vehicle traffic crashes in the

United States, according to the U.S. Department of Transportation [1]. In the

European Union, according to [2], the number of fatalities has a descending

trend, with 26,100 fatalities in 2015, representing a 17% decrease since 2010.

Robotics and intelligent systems are getting more and more involved in the automotive in-

dustry. Vehicles are being equipped with sensors that serve to monitor the state of the vehicle

and the environment surrounding it, as well as with intelligent algorithms that process the

sensor data. The main goals are improving the safety of passengers and other people, as well

as increasing the performance of the vehicles and traffic in general. However, we need to keep

in mind that intelligent systems also introduce new types of hazards, and sometimes present a

hazard themselves. A hazard can be, for example, caused by a bug in a system or a malfunction

of a robotic system.

The development of intelligent vehicles spans over different levels of automation (see Figure 1.1

for an overview of automation levels). Much of the development is carried out in the domain

of advanced driver assistance systems, in terms of autonomy classified as Level 1 (also known

as hands on, the system controls either steering or acceleration/deceleration) and Level 2

(hands off, the system controls both steering and acceleration/deceleration) according to the

SAE standard [3]. At the same time, some approaches target full autonomy, where the goal is

to achieve Level 5 of the SAE standard.

1.1 Driver Assistance Systems

In order to reduce the number of accidents, there has been a lot of research conducted in the

field of driver assistance. Among the most investigated fields are the braking assistance and

collision avoidance. This is easily explicable based upon human behavior. More specifically,

humans easily underestimate the speed of their vehicle and the distance to the vehicle in

3

Chapter 1. Intelligent Vehicles

No Automation Driver
Assistance

Partial
Automation

Conditional
Automation

High
Automation

Full
Automation

543210

AUTOMATED DRIVING SYSTEM
MONITORS DRIVING ENVIRONMENT

HUMAN DRIVER
MONITORS DRIVING ENVIRONMENT

Figure 1.1 – SAE automation levels (as defined in [3]).

front of them. Since the vehicles operate at high speeds, and have enormous kinetic energy,

injuries arising from car accidents could be serious and even fatal. For instance, an inattentive

driver might overlook a stopped or a slowly moving vehicle ahead, or underestimate its threat

level until it is too late. Another likely scenario is one of the major causes of accidents on the

highways. In such scenario, the distance to the vehicle ahead is not very large (e.g., around 50 m

when driving at 100 km/h) at the moment when the front vehicle suddenly starts to brake. The

requirement for the driver of the rear vehicle to detect an abrupt change in relative distance

and acceleration is high and this often leads to accidents due to lack of attention, tiredness,

fatigue, etc. These are just some of the situations where the driver assistance systems are of

crucial importance.

Assistance systems at SAE Level 0 provide warnings to the driver but do not take any control

over the vehicle. One example of such systems is the AFIL technology [4] by Citroën (alerte de

franchissement involontaire de ligne / lane departure warning system), which uses infrared

sensors to detect a lane marker, and warns the driver when it is crossed without previously

activating the turn indicator. Another good example is the Citroën blind spot monitoring

system, which uses ultrasound sensors to monitor the blind spots and issues warnings to the

driver [5].

Modern vehicles are often equipped with forward-looking sensors such as radars, cameras and

ultrasound sensors, and implement some kind of braking assistance or collision avoidance

systems. These systems are typically based on (i) time metrics, such as time-to-collision [6], [7],

time headway [8], or time-to-last-second-braking [9], or (ii) distance metrics, such as projected

minimum distance during a collision avoidance process [10]. They all have a common goal,

which is to quantify the danger or threat level caused by the proximity of the leading vehicle

4

1.2. Autonomous Vehicles

objectively, and assess the urgency level for the required braking action by the rear vehicle.

Recent research takes a different approach to the same problem: Cabrera et al. proposed

in [11] a time-to-last-second-acceleration algorithm that represents a warning algorithm for

the driver of the front vehicle in a rear-end collision situation. It computes the time left before

the extreme evasive action (i.e., full throttle acceleration) needs to be performed by the driver

of the front vehicle, in order to avoid the rear-end collision. Adaptive Cruise Control (ACC)

systems go one step further and implement a controller that follows a leading vehicle at the

safe distance and brake as the leading vehicle brakes (see for example the ACC systems of

Citroën [12], Mercedes-Benz [13], or BMW [14]). For vehicles that have one of the above-

mentioned systems enabled, we may say that they belong to the SAE Level 1 of automation,

since they have an automatically controlled braking and acceleration system.

Despite the shorthand hands off, in a system belonging to the SAE automation Level 2, the

contact between a driver’s hand and the steering wheel is often mandatory. Parking assistance

systems that control both steering and speed of a car belong to this category (e.g., see remote

parking aid systems by Valeo [15]). Other examples include lane change assistance systems [16]

and intersection assistance [17], when complemented with a controller that performs steering

and acceleration/deceleration actions instead of an Human Machine Interface (HMI). Finally,

traffic jam assistance and automation systems also belong to the SAE Level 2. A good example

is a DISTRONIC PLUS Stop&Go with steering assist by Daimler for the Mercedes E- and S-

Class [18]. It basically merges the functionalities of an ACC system with a lateral lane guidance

system.

1.2 Autonomous Vehicles

Many car manufacturers, academic laboratories that are in the field of intelligent vehicles, as

well as technology companies such as Google, Uber, or Faraday Future, seek to produce totally

autonomous systems. Claims that autonomous vehicles are going to decrease the number

of accidents and eventually perform better than human drivers are common [19], [20]. For

instance, whereas humans have the ability to track only a few objects in the environment at

once, robots can do much more. In fact, the autonomous car and the software on the car are,

in the long run, potentially better than people in keeping track of a lot of elements populating

the surrounding environment of a vehicle [19].

State-of-the-art autonomous vehicles are equipped with a number of sensors, including,

among others, radars, Light Detection and Ranging (LIDAR) sensors, cameras, proximity

sensors, Global Navigation Satellite Systems (GNSSs), and inertial navigation systems (see

for example [21]–[23]). They use sensory information to localize themselves in the environ-

ment and make distinctions between drivable surfaces and obstacles. Sensors need to enable

vehicles to see far ahead (depending on the goal driving speed, usually at least 150−200 m) and

adjust their speed in accordance with the situation on the road in a timely fashion. Environ-

ments in which autonomous vehicles operate are highly dynamic. Many objects are not found

5

Chapter 1. Intelligent Vehicles

in maps and/or their mobility pattern cannot be accurately predicted from the current sensory

information. Those objects include, but are not limited to, other vehicles on the road and

pedestrians. Therefore, autonomous vehicles must have the ability to detect and determine

the location of each street sign, lamp post, curb, tree, bush, and so on, as well as every moving

object in the vicinity, including people, animals, cyclists, other vehicles, and stray soccer balls.

There are situations when not even humans can avoid accidents (cf. [1] for statistics). Some-

times there is just not enough time to brake. Take as an example a child chasing a ball into

the street. Even when assuming the robotic car was obeying all traffic rules and was actively

aware of the surroundings, upon the kid or the ball appearing from behind a fence, bush, car

or other obstruction, an accident could simply be unavoidable. However, since the human

reaction time is quite long, under identical circumstances, the child might have better chances

to avoid the collision if behind the wheel was not a human driver, but a robot. In fact, we can

expect that future robotic cars with more sensors and faster reaction times could potentially

significantly outperform a human driver.

Bicycles also present a safety issue. In the worst case situation, a cyclist can fall off his or her

bicycle and stop immediately, lying on the road. A vehicle following a bicycle has therefore

to leave enough space to assure it can stop before such an occurrence, including reaction

time. As already mentioned, reaction time should be better for robotic cars than for humans.

Moreover, a robotic car would be pro-actively more conservative than a human driver who

typically tends to leave less space behind any vehicle, a habit probably promoted by usual

tailgating behavior behind other cars. If a car hits another car at slow speeds, it is tolerable —

nobody will be seriously hurt due to well-engineered cars’ passive safety systems. However,

hitting a cyclist (or a pedestrian) at slow speeds can lead to serious injuries or even death. It is

a real challenge to find a good balance between colliding into someone and abrupt braking

because of an obstacle as small as a butterfly.

No matter how low the rate of accidents robotic cars will manage to achieve, there will always

be their opponents. Questions of liability will arise — is it the fault of the car owner, vehicle

manufacturer, or even of the researchers and programmers who worked on the software? As a

matter of fact, the cause of the accident might be easier to prove due to all the perception and

measurement equipment, which are able to record what is happening around the accident.

Future regulations might ask to have a black box installed in each autonomous vehicle, similar

to airplanes. The effectiveness and liability of safety measures for autonomous vehicles will

play a key role in their societal acceptance in the years to come. However, this and other ethical

issues are beyond the scope of this thesis.

6

1.2. Autonomous Vehicles

Summary

Nowadays, more and more vehicles are being equipped with sensors and intelligent

algorithms processing their data. Work is being carried out across different levels of auto-

mation, spanning from warning, controlling acceleration/deceleration and/or steering,

to fully autonomous vehicles. While the main goals of this initiative are to improve

the safety and performance of vehicles and traffic in general, intelligent systems also

introduce new types of hazards. Improving robustness and fault-tolerance of these

systems is still in the hands of researchers.

7

2 Networked Vehicles

T H E concept of connected vehicle enables automated links from the vehicle to all

other connected objects, including smartphones, tracking devices, traffic lights and

other motor vehicles. Developments related to connected vehicles are centered

around seven functional areas [24]:

� Autonomous driving — Operation of a vehicle without a human driver at the controls.

� Safety — Providing warnings to the driver with respect to road problems and automatic-

ally sense and prevent potential collisions.

� Entertainment — Functions that provide multimedia content to the passengers and

the driver.

� Well-being — Assistance related to driver’s health and competence, such as fatigue

monitoring.

� Vehicle management — Remote control of car features, as well as display of service and

vehicle status.

� Mobility management — Real-time traffic information displays and guidance on faster,

safer and more economical driving.

� Home integration — Links between a vehicle and buildings such as homes and offices.

Some of these functional areas rely on the car having Internet connection. In this thesis, we

will focus on the areas which can operate when only Vehicular Ad-Hoc Networks (VANETs) are

available. Local communication encompasses direct communication between two vehicles

— known as Vehicle-to-Vehicle (V2V) communication, and Vehicle-to-Infrastructure (V2I)

communication, which assumes communication between an intelligent infrastructure node

(e.g., a traffic light) and a vehicle, but also communication from the vehicle to the infrastructure.

A common term Vehicle-to-Everything (V2X) communication comprises communication

9

Chapter 2. Networked Vehicles

between vehicles, infrastructure and service providers. We refer to vehicles satisfying the

conditions above as networked vehicles, representing a sub-category of connected vehicles.

The number of vehicles having some sort of communication device is on the rise. Already, most

new cars are equipped with sensors and connected to high-speed wireless networks. One key

catalyst for this is the European Union’s mandate that all auto makers implement emergency

calling technology (eCall) in new cars by 2018 [25]. When a collision or other incident happens,

an eCall device in each car will automatically alert authorities and send data about the impact.

Although it is demonstrated that autonomous road vehicles can rely solely on their on-board

perception sensors, it is foreseen that they will greatly profit from the introduction of a V2X

communication. V2X communication can help expand situational awareness for both human

drivers and automated driving systems. Some benefits of cooperation include increased avail-

ability and reliability in cooperative relative positioning, as well as cooperative perception by

sharing sensor information and the execution of collaborative maneuvers between automated

road vehicles. In this way, a higher degree of safety is achievable without sacrificing efficiency

by driving with large safety distances and increased caution.

On the global level, V2X communication can significantly enhance safety and traffic fluidity.

Information about traffic can be collected, aggregated, and used for planning or control of

traffic. Until common communication protocols are established and the sufficient penetration

of communication-enabled vehicles to the market is achieved, benefits will mostly be reflected

in an increase of individual vehicle’s safety and performance. For example, a vehicle may

be able to optimize its trajectory and thus save time and/or energy resources. There exist

different studies and proposals from the European Commission and organizations (CAR 2

CAR Communication Consortium for instance) targeting legislation and standardization of

V2X communication. The United States Department of Transportation has recently proposed

a rule to require V2V communication technology in new cars [26].

Vehicle cooperation techniques can be split into two groups, as shown in Figure 2.1: (i) co-

operation on perception and (ii) cooperation on control. This thesis focuses on cooperative

perception.

2.1 Cooperative Perception

V2X communication shows potential for functions such as intersection assist, left-turn as-

sist, do-not-pass warning, advanced warning of a vehicle braking ahead, forward-collision

warning, and blind-spot/lane-change warning [28]. To implement these functions, a vehicle

can exchange locally available information with other vehicles in its proximity, which might

help it to make a more intelligent and safer decision about its action. An example of a car

following system based on inter-vehicular communication is given in [29]. A recent survey of

cooperative localization techniques can be found in [30]. In his PhD thesis, Li covered topics

such as cooperative localization, cooperative detection of moving objects and cooperative

10

2.1. Cooperative Perception

Figure 2.1 – Vehicle cooperation paradigm (adapted from [27]).

augmented reality [27]. As perception sensors often aid the localization process and increase

its accuracy, localization can be put in the perception group.

The focus of this thesis is on cooperative perception techniques for intelligent vehicles. Let

us consider a situation in which, due to obstructed view, the vehicle might overlook an ap-

proaching dynamic obstacle (e.g., another vehicle or a pedestrian) and in turn make an unsafe

decision. This thesis aims to show that, if the two vehicles exchange their sensor data among

themselves (raw or some processed representation of it), it is possible to gain a more complete

and accurate situational awareness through the results of a sensor data fusion process.

Works with similar ideas can be found in the literature. In [31], an infrastructure sensor network

is deployed at an intersection, and data from multiple LIDARs and cameras are gathered

and processed on a central computer. An approach based on distributed dynamic maps for

cooperative perception was presented in [32]. However, the performance evaluation was

carried out in simulation only, the level of realism of which is unclear (e.g., how sensors are

simulated). In [33], a cooperative perception algorithm for autonomous driving using V2V

communication is presented. It is based on map merging, and raw LIDAR data are shared

along with the camera image (it was experimented with raw, compressed, or processed image).

The positive effects of cooperative perception on autonomous driving in terms of decision

making and planning were demonstrated in [34]. Rauch et al. presented in [35], [36] a high-

level architecture for cooperative perception systems. In their work, they used the concept of

V2X communication being a remote sensor. They address the temporal and spatial alignment

problems, which are important subproblems of cooperative perception; however, they do

not propose any algorithm for track-to-track fusion and do not deal with the track-to-track

association problem.

Our goal is to develop a framework for cooperative perception, which integrates multiple

11

Chapter 2. Networked Vehicles

sensor modalities but only requires communicating the processed data (thus reducing the

requirements in terms of the communication bandwidth and making the approach scale

better). We aim to operate the framework on moving vehicles in real-world scenarios.

2.2 Cooperative Control

Developing cooperative strategies for groups of future intelligent vehicles is one of the main

objectives in the automotive industry aiming at improving road traffic flow and safety, reducing

CO2 emissions and enhancing driving comfort. Grouping neighboring vehicles into formations

is one possible way to achieve these objectives. The formation is called platoon if spanning

over a single lane, or convoy if spanning over multiple lanes.

Many previous research projects in this field (e.g., PATH [37], CHAUFFEUR I and II [38], and

SARTRE [39], [40]) have proven that fuel consumption could be decreased by 15% to 30% while

the road throughput on motorways can potentially be multiplied by a factor of 3 to 5 through

group control of vehicles.

In the scope of the European project AutoNet2030 to which Distributed Intelligent Systems

and Algorithms Laboratory (DISAL) participated, we developed an algorithm for distributed

control of dynamic vehicle convoys, which spread over multiple lanes [41], [42]. In this work,

local V2V communication was used, and any given vehicle needed to be aware only of other

vehicles in its vicinity. Vehicles were able to join or leave the formation, which dynamically

reconfigured. We extended this approach to allow for convoys of heterogeneous vehicles [43].

A heterogeneous convoy accepts vehicles of different type and length (e.g., cars and trucks).

This approach used curvilinear coordinates in order to reduce longitudinal formation errors

in curves.

Makarem and Gillet presented a decentralized algorithm for coordination of autonomous

vehicles at intersections [44]. This coordination prevents simultaneous deceleration of two

vehicles approaching an intersection, thus reducing energy consumption. In the paper of

Debada et al. was shown that the throughput at roundabouts can be increased by applying

distributed algorithms to coordinate autonomous vehicles [45]. A virtual vehicle approach was

used for coordination of intelligent vehicles in roundabouts in the presence of non-cooperative

vehicles [46].

12

2.2. Cooperative Control

Summary

Although it is demonstrated that autonomous road vehicles can rely solely on their on-

board perception sensors, it is foreseen that they will greatly profit from the introduction

of V2X communication. Cooperation between vehicles can be established at the level

of perception and/or control. Cooperative perception enables participating vehicles

to extend their situational awareness, by fusing information obtained from their own

sensors with the information communicated by cooperative vehicles in their vicinity.

Cooperation in terms of control means that vehicles possess more information about

states and intentions of the vehicles surrounding them. This information can be used for

optimization of trajectories and results in energy savings and traffic flow enhancement.

13

3 Scope of the Thesis

T H E purpose of this chapter is to define the thesis statement, detail our main ob-

jectives and list important challenges. Additionally, it provides the outline of the

thesis to give each part its purpose. Finally, it points out our research contributions

and related publications.

In the previous two chapters we provided an insight into developments in the areas of intel-

ligent and cooperative vehicles. We mentioned driver warning systems, collision avoidance

systems, cruise control systems, as well as distributed multi-vehicle systems at intersection

and on highways (platoons and convoys). Figure 3.1 lays down on a 2D chart different in-

telligent vehicle applications as a function of their autonomy and cooperation levels. It also

indicates the position of this thesis on the chart. The approach we take in this thesis is to ex-

ploit cooperation among intelligent vehicles for general-purpose sensing tasks. The outcomes

of our algorithms can be useful in many traffic situations, and various autonomous systems

can be built on its foundations. We demonstrate one such application. The main claim of this

thesis can be summarized as follows:

Cooperation among vehicles equipped with noisy sensors increases their coverage area

and enhances their situational awareness, thus providing ground for improving their

decision-making performance and ultimately safety.

3.1 Objectives and Outline

The main objective of this thesis is to develop the end-to-end framework for cooperative

perception. The specific objectives are defined as follows:

1. identify components relevant for an experimental platform;

2. build the experimental platform and reproduce it in simulation;

15

Chapter 3. Scope of the Thesis

This Thesis

Figure 3.1 – Intelligent vehicle applications as a function of vehicle intelligence and inter-vehicle
cooperation (adapted from [47]).

3. develop the core algorithms for cooperative perception and measure their performance;

4. deploy and operate the algorithms on real vehicles and demonstrate their effectiveness

in real-world scenarios.

To achieve the aforementioned objectives, a number of challenges needs to be addressed.

They relate to noisy sensing, occlusion and clutter, multi-measurement to multi-object and

multi-object to multi-object association, inaccurate relative localization, and integration of

work into an end-to-end framework.

This thesis is laid down in five parts:

Part I - Introduction In this part, we have briefly introduced the problems encountered in

the fields of intelligent and networked vehicles. We have shown and explained why these

fields are important for future traffic systems. Additionally, we laid out the problematics

linked to this thesis and clearly exposed our main objectives.

Part II - Tools and Platforms In the second part, we introduce our platform consisting of the

two Citroën C-ZERO vehicles equipped with automotive sensors, computation and

communication equipment. Furthermore, we introduce the simulation tool that we

rely on in this thesis: Webots, a high-fidelity robot and intelligent vehicle simulator. We

calibrate the simulator using real cars and real sensors in an attempt to provide a smooth

transition of the developed algorithms to real vehicles.

16

3.2. Research Contributions

Part III - Cooperative Perception This part lays out our main contributions. We build a frame-

work for tracking of multiple objects from a moving vehicle and fusion of multi-object

posteriors in a cooperative fashion. We evaluate the algorithms in Webots. Moreover, we

develop an overtaking assistance system based on our cooperative perception algorithm,

demonstrating one of its possible applications.

Part IV - Algorithmic Enhancements and Validation using Real Vehicles This part illustrates

what needs to be done to deploy our framework on real vehicles and how it behaves in

the real world. This part also presents the localization approach adopted and the corres-

ponding developed algorithms. In particular, it explains the steps we took to improve

the accuracy of the relative localization of our heterogeneous platforms.

Part V - Conclusion Finally, we summarize this thesis and restate the benefits and limitations

of our framework. We also describe possible promising directions for pursuing further

the research presented in the thesis.

3.2 Research Contributions

The work done in the scope of this thesis has led to several contributions and related publica-

tions.

Part I - Introduction The first contribution concerns a literature survey on safety issues in

human-robot interactions. The survey, among other topics, covers safety related to

intelligent and robotic vehicles. A part of the survey is used in this part.

� M. Vasic and A. Billard, ‘Safety issues in human-robot interactions’, in IEEE Inter-

national Conference on Robotics and Automation, 2013, pp. 197–204.

Part II - Platforms and Tools Our next contribution concerns a design of an experimental

platform that can support the evaluation of cooperative perception algorithms. We also

develop simulated models of vehicles and sensors, that we calibrate using real hardware,

as to minimize the simulation-to-reality gap. This framework enables us to develop

algorithms in controlled, simulated environments, and smoothly transfer them to real

vehicles.

� M. Vasic, G. Jornod and A. Martinoli, ‘From high fidelity simulation to real vehicles:

a flexible software framework for networked intelligent vehicles’, in preparation,

2017.

Part III - Cooperative Perception We develop two algorithms for cooperative tracking of mul-

tiple objects for intelligent vehicles. Both algorithms use a Probability Hypothesis Dens-

ity (PHD) filter as their backbone for multi-object tracking. The first algorithm exploits

a Gaussian Mixture approximation of the PHD function, while the second one uses a

Sequential Monte Carlo approximation. The novelty in our algorithms is their ability

17

Chapter 3. Scope of the Thesis

to fuse estimates originating from two intelligent vehicles whose Fields Of View (FOVs)

overlap only partially (the sensors of each vehicle cover a different region). PHD intens-

ities are communicated between cooperative vehicles and fused in a distributed fashion

using the approaches we developed. Finally, we develop an overtaking recommendation

algorithm that uses the cooperative perception algorithm. It yields safer vehicle opera-

tion and outperforms the algorithm version in which the overtaking vehicle relies on its

own sensors only.

� M. Vasic and A. Martinoli, ‘A collaborative sensor fusion algorithm for multi-object

tracking using a Gaussian mixture probability hypothesis density filter’, in IEEE

Intelligent Transportation Systems Conference, 2015, pp. 491–498.

� J. Gan, M. Vasic and A. Martinoli, ‘Cooperative multiple dynamic object tracking on

moving vehicles based on sequential Monte Carlo probability hypothesis density

filter’, in IEEE Intelligent Transportation Systems Conference, 2016, pp. 2163–2170.

� M. Vasic, G. Lederrey, I. Navarro and A. Martinoli, ‘An overtaking decision algorithm

for networked intelligent vehicles based on cooperative perception’, in IEEE Intel-

ligent Vehicles Symposium, 2016, pp. 1054–1059.

Part IV - Algorithmic Enhancements and Validation using Real Vehicles With a desire to de-

ploy and validate our algorithms on real vehicles, we carry out additional algorithmic

enhancements. More specifically, we perform an optimization of the fusion weight

with the goal to improve the algorithm performance. We develop a flexible software

architecture which enables us to deploy our algorithms on real vehicles in two phases:

(i) we first implement and test the necessary modifications in simulation, and (ii) we

replace simulated vehicles and sensors with the real ones. During the validation of our

approach, we propose two algorithms for cooperative localization and a novel method

of fusion of LIDAR and camera sensors.

� M. Vasic, D. Mansolino and A. Martinoli, ‘A system implementation and evaluation

of a cooperative fusion and tracking algorithm based on a Gaussian mixture PHD

filter’, in IEEE International Conference on Intelligent Robots and Systems, 2016,

pp. 4172–4179.

� M. Vasic, G. Jornod, J. Løje and A. Martinoli, ‘An end-to-end framework for cooper-

ative perception based on a GM-PHD filter’, in preparation, 2017.

Addressing this diverse list of topics implied a collaborative endeavor, and although I was

directly involved in all of the work presented in this thesis, I would like to give credit to my

close collaborators from the DISAL laboratory. In particular, R&D Engineer David Mansolino

led the modeling and calibration aspect of the work presented in Chapter 5. David also assisted

with experiments and data processing presented in Chapter 14. Master student Jonathan Gan

worked on the fusion algorithm presented in Chapter 9 under my supervision. A first version of

the overtaking algorithm presented in Chapter 10 was developed in the course of the semester

18

3.2. Research Contributions

project of Master student Gael Lederrey, co-supervised by Post-Doctoral fellow Iñaki Navarro

and myself, and was subsequently improved and put in the framework of the cooperative

perception algorithm. R&D Engineer Guillaume Jornod and Master student Johannes Løje

assisted with the deployment and experimental evaluation presented in Chapter 13 and

Chapter 16.

Finally, the credit goes to our industrial partner PSA Groupe for their financial and technical

support, and in particular for their interactions leading to strategic choices that were essential

for this thesis, both in terms of system design and research topics.

Summary

This thesis focuses on cooperative perception algorithms for networked intelligent

vehicles. It aims to provide a flexible framework for distributed fusion of object pos-

teriors obtained on individual vehicles using different automotive-grade sensors. A

very important ingredient for cooperative fusion is the accurate relative localization of

the participating vehicles. This thesis thus contributes to increasing the localization

accuracy as well. We develop our algorithms in a high-fidelity simulator, and only deploy

them on real vehicles in a second step. This thesis thus contributes to development of

simulation models and a flexible software framework, aiming at reducing the simulation-

to-reality gap, and therefore achieving a smoother transition from simulated to real

environments.

19

Part IIPlatforms and Tools

21

4 Experimental Platform

O U R experimental platform is composed of two Citroën C-ZERO vehicles. They

are zero-emission electrical vehicles which makes them very suitable for work

both outdoors and inside the workshop. Their range is around 90 km on one

charge which is sufficient for the whole-day operation in our experimental set-

tings. In the remainder of this section, we first present different sensor technologies considered

for achieving our research objectives and finish by showing their actual deployment on our

vehicles.

4.1 Perception Sensors

Perception sensors are exteroceptive and are used for the detection of objects in the vicinity of

the vehicle. The most commonly used sensors are LIDARs cameras, radars, and ultrasound

sensors. In our research, we use the former two.

4.1.1 LIDARs

A Light Detection and Ranging (LIDAR) sensor is a scanning measurement device which

uses a laser to transmit a coherent light pulse and a receiver to measure the reflected light.

The distance to the object is determined based on the time-of-flight principle, by recording

the time between transmitted and received pulses and multiplying it by the speed of light

to calculate the distance traveled. In this manuscript we will often use the word LIDAR for

referring to the actual device.

We own four Ibeo LUX LIDARs1. The LUX LIDAR is characterized by the maximum range of

200 m, and the maximum horizontal FOV of 110◦. The actual range depends on the reflectivity

and the size of an object, and the horizontal FOV on the selected scanning frequency. It

contains four vertical layers with a total FOV of 3.2◦; two layers are tilted towards the ground

and they cover the area below the horizon, whereas the other two layers are tilted upwards and

1https://www.ibeo-as.com

23

Chapter 4. Experimental Platform

cover the area above the horizon. For this reason, Ibeo LUX can be categorized as a 2.5D sensor.

Ibeo LUX operates at scanning frequencies of up to 50 Hz; we have configured it to work at

12.5 Hz in order to obtain the maximal horizontal FOV. The scanning schedule of all Ibeo LUX

sensors deployed on the same vehicle is synchronized with the help of a synchronization unit.

A central computer merges individual point clouds into a joint point cloud. It also flags points

reflected from the ground or from fake objects such as dirt particles or rain drops as clutter.

The merged point cloud is a set

Z =⋃
i

zi , (4.1)

where an individual point z is given by its 3D Cartesian coordinates and the clutter flag f :

z =
[

x y z f
]�

. (4.2)

According to the Ibeo specification sheet, the accuracy of a LUX sensor ray is 10 cm (one

standard deviation) in range, and is independent of the actual range. The angular resolution of

the sensor is 0.25◦, which makes the point cloud less dense as the distance of the object from

the sensor is increased. It is a very accurate sensor with relatively low noise and a few clutter

points per scan. It can be used for detecting and tracking different objects such as vehicles or

pedestrians. The classification of objects based on the LIDAR point cloud only is difficult, as

the size and shape of detected objects vary with the perspective and are subject to occlusions.

4.1.2 Automotive Cameras

There exist many cameras on the market that can be used in automotive applications. However,

processing images from cameras is a tedious job that requires a lot of time and computational

resources. A good alternative to these systems is a Mobileye camera — a monocular camera

that comes with a specialized system on chip on which the image processing is performed in

real time.

Our version of the Mobileye camera is connected to a computer over a Control Area Network

(CAN bus), the throughput of which is 500 kbps. A Mobileye camera does not provide an image.

Instead, it works like a black box which sends a list of detected objects of certain supported

classes and their poses. Supported object classes are cars, trucks, pedestrians, bicycles and

motorcycles.

Limited details about the camera system can be found in [55]. After processing each frame

using the software embedded in its chip, the camera sends the data describing objects over

the CAN bus in multiple consecutive binary-encoded messages at approximately 10 Hz. We

synchronize all messages related to a single image frame and decode them to create a set Z of

24

4.2. Localization Sensors

measurements z that relate to separate objects present in that frame:

Z =⋃
i

zi, (4.3)

where

z =
[

x y θ c
]�

(4.4)

is a measurement of a single object, and describes its center point (x, y), orientation θ and

class c (e.g., car or pedestrian). The Mobileye camera can only detect objects for which it

was trained, as mentioned above — other classes of objects or the raw camera image are not

available. It is important to mention that our version of Mobileye camera only detects cars

from the front or from the back (cars facing sideways or under a large angle are not detected).

This greatly limits the choice of a scenario when this sensor is involved.

In the absence of detailed camera specifications, the important tracking-related camera para-

meters are determined experimentally. Based on our case study, involving two cars with

Mobileye cameras and two legacy cars which drive in the opposite direction, we characterize

the camera (see Chapter 14 for the description of our case study). We compare the output of

the Mobileye camera to a point cloud obtained by an Ibeo LIDAR. We consider the point cloud

to be the ground truth, given its significantly higher accuracy as compared to the Mobileye

camera. We determine that the camera’s FOV is 45◦ (from −22.5◦ to 22.5◦). Its maximum range

is between 50 and 70 m, and depends on the size of the detected object. While the lateral

object position accuracy is relatively good, the longitudinal distance suffers from larger errors.

This is most probably due to the fact that there is only one imaging device, so the distance

has to be inferred from the object size in the picture. Since cars exist in different sizes, and

pedestrians are of different height, the accuracy in the distance measurement is limited.

Camera Calibration

During our experiments we noticed a significant bias between the camera measurements

and the ground truth. We have therefore re-calibrated the output of the two cameras for our

scenario with respect to the LIDAR ground truth data. We have determined that a second-order

polynomial function provides sufficiently good fit for the longitudinal distance, while for the

lateral distance and the orientation only an offset is applied. Although the two cameras we use

are identical, they were initially calibrated directly on vehicles using the automatic calibration

procedures, thus their calibration parameters are slightly different.

4.2 Localization Sensors

Localization of moving vehicles is very important for a number of reasons. In tracking applica-

tions, it is typical to assume some kind of motion for tracked objects (e.g., an assumption can

25

Chapter 4. Experimental Platform

be that a tracked car will continue to move straight with constant velocity). Perception sensors

are mounted on the body of the tracking (ego) vehicle and the tracking is naturally performed

in the ego vehicle’s coordinate frame. However, the motion of the ego vehicle easily invalidates

the assumed track motion model, if it is not compensated for. It is therefore very important to

be able to estimate the motion of the ego vehicle, which can naturally be obtained directly

from the vehicle’s localization solution.

In outdoor applications, global localization is usually achieved using a system of satellites,

which transmits time signals by radio to electronic receivers, allowing them to determine their

location. GNSS is a generic term for satellite navigation systems. This term includes satellite

systems managed by different regions or countries, such as for example the Global Positioning

System (GPS) (American), Galileo (European), GLONASS (Russian), and BeiDou (Chinese).

We will use the generic term GNSS whenever possible, except for when we speak about one

particular satellite receiver that can only receive GPS signals.

In cooperative applications, localization is even more important, as it provides a global ref-

erence when the data is converted from the local coordinate frame of one car to the local

coordinate frame of another car. A logical choice for the global frame in outdoor applications

is the the Universal Transverse Mercator (UTM), which is a set of projections of GNSS positions

(given in latitude and longitude) clustered to 60 zones to a set of 2D Cartesian coordinate

systems. A given zone corresponds to an area covering 6◦ of longitude in width (corresponding

to roughly 800 km). For example, Switzerland almost entirely lies in UTM zone 32, with the

exception of the western part of the Canton of Geneva which is in UTM zone 31.

4.2.1 Low-End Localization System

Our low-end localization solution consists of four different low-cost sensors, that we fuse

together as explained in Chapter 15. Below we provide details about each sensor.

U-blox 5 GPS receiver is a low-cost global localization solution. It was readily built-in in our

on-board computer and was thus a logical and cheap option. It provides global localization

accurate to about 5 m. Accuracy additionally depends on the position of the GPS satellites at

the time the data was recorded and the characteristics of the surroundings (buildings, tree

cover, valleys, etc.) as multi-path signals arriving with a small time delay at the receiver result

in inaccurately calculated position. It is accessed through a serial-to-USB protocol and it

provides measurements with a frequency of 1 Hz.

Yocto-3D is a low-cost Inertial Measurement Unit (IMU) that integrates an accelerometer,

a gyroscope and a compass in a single package. It is characterized by a substantial amount

of noise and unreliable behavior, especially when the compass is in the proximity of metal

objects. It connects to the on-board computer using the Universal Serial Bus (USB) and

provides measurements with an average frequency of 17.5 Hz.

Bosch Yaw Rate Sensor YRS 3 is a factory-installed sensor in the Citroën C-ZERO. It provides

26

4.3. Computational Equipment

its output at a frequency of 15 Hz, which is directly available on the vehicle’s CAN bus, which

can be accessed through a service On-board Diagnostics (OBD-II) port.

The vehicle’s longitudinal (forward) speed generated by a factory installed speedometer is

also available on the vehicle CAN bus. We access it in the same way as the YRS 3 sensor, albeit

at the rate of 12.5 times per second.

4.2.2 High-End Localization System

We own a high-end localization system Applanix POS LV 1202. It consists of two GNSS anten-

nas, a high-accuracy external optical wheel encoder (odometer), and a MEMS-based IMU.

All sensors are fused together in a black-box fashion, and an accurate localization solution is

available from the Applanix filter at 100 Hz. We decided to use the Applanix output at 20 Hz,

considering that the output of our fastest system does not exceed 18 Hz. Additionally, the

system supports Real Time Kinematic (RTK) corrections from a system of land-based stations.

Using RTK, the accuracy of the system when stationary reaches the centimeter level. However,

when moving, the error grows to around 0.3 m.

4.3 Computational Equipment

In the luggage compartment of our vehicles, we installed the on-board computers.

The first computer model is a FleetPC-7, a fanless PC that can be connected directly to a 12 V

battery. It is powered by an Intel Core i7 2710QE dual-core CPU running at 2.1 GHz, has 8 GB

of RAM memory and a 512 GB Solid-state Drive (SSD).

The second computer model is a FleetPC-8. Similar to the first model, it connects directly to a

12 V battery. It is powered by an Intel Core i7-3517UE dual-core CPU running at 1.7 GHz, has

8 GB of RAM and a 512 GB SSD drive.

Both PC models are rich in input-output ports, which was an important design choice for our

system given the variety of sensors running different interfaces. SSD drives and fanless cooling

technology represent a good vibration-resistant option for automotive applications.

4.4 Deployment

In order to perform cooperative tasks, at least two vehicles are needed. We have equipped

two electric Citroën C-ZERO vehicles with the previously mentioned sensors, computers and

communication equipment. Our deployment has evolved over two different phases, which we

describe subsequently.

2https://www.applanix.com/

27

Chapter 4. Experimental Platform

(a) car0 (b) car1

Figure 4.1 – The two Citroën C-ZERO vehicles used in the first deployment phase.

(a) car2 (b) LIDARs

Figure 4.2 – (a) The new Citroën C-ZERO used in the second deployment phase. (b) Two LIDARs
integrated in the front grille of the C-ZERO.

4.4.1 First Phase

The initial phase of our deployment consisted of two Citroën C-ZERO cars shown in Figure 4.1,

as described below. They were used in experiments described in Chapter 14.

We had one prototype C-ZERO car which was not allowed to have license plates. We will often

refer to this car as the yellow car or car0.

On this car we deployed four Ibeo LUX LIDARs, two of which were covering the front, and the

other two the rear of the vehicle. We additionally installed a Mobileye camera in the top-middle

region of the windshield, behind the rear-view mirror.

In terms of the localization sensors, we deployed the low-cost solution mentioned above.

However, it was never used in the first phase, so we will describe it below in the framework of

the Phase 2.

28

4.4. Deployment

Table 4.1 – Deployment of equipment on test vehicles.

Phase 1 Phase 2
Equipment car0 car1 car1 car2

FleetPC-7 � � � �

FleetPC-8 � � � �

Wi-Fi communication � � � �

Ibeo LUX LIDAR system � � � �

Mobileye camera � � � �

Applanix localization system � � � �

U-blox GPS receiver � � � �

Yocto-3d IMU � � � �

Vehicle CAN bus sensors � � � �

The other C-ZERO has a regular license for circulating on public roads; it will often be referred

to as the green car or car1. In terms of perception sensors, this car only hosted the Mobileye

camera. In terms of localization sensors, we have installed on this second car the Applanix

localization system. The two GNSS antennas have been placed on the roof at a distance of

around 2 m from each other. This separation is needed to meet the requirement for extracting

the heading from the dual GNSS setup. The IMU is mounted in the center of the vehicle’s rear

axle, facing the forward driving direction. The odometer is mounted on the rear left wheel.

The distance vectors between the IMU, odometer and the GNSS receivers had to be calculated

very accurately. For this reason, we placed reflective markers on our equipment and used a

motion capture system available at our laboratory for achieving a millimeter accuracy in the

placement of these components.

Finally, the car0 hosts one FleetPC-7 and one FleetPC-8 computer, whereas the car1 hosts a

FleetPC-8 computer. A high-speed wireless router in the luggage compartment of the car0

represents a backbone of the cars’ network, to which both computers are connected through

an Ethernet cable. The computer in car1 connects to the router over WiFi, and so does any

laptop used for accessing the car network. All the equipment is powered by two large capacity

deep-cycle external batteries, one per vehicle.

An overview of the complete deployment in Phase 1 is given in Table 4.1.

4.4.2 Second Phase

In our second (and current) phase of deployment, we replaced the car0 by a new C-ZERO

car, which has license plates and can thus circulate on public roads (see Figure 4.2a). We will

refer to this car as the white car or car2. Besides the car2, in this phase car1 is used as well.

This physical setup is used in the experiments explained in Chapter 15 and Chapter 16.

Having in total four Ibeo LIDARs and two Mobileye cameras, we made the perception system

29

Chapter 4. Experimental Platform

Figure 4.3 – The trunk of car1 in the Phase 2 of the deployment. 1) Ibeo LUX control unit. 2)
Applanix control unit and IMU. 3) FleetPC-8 computer. 4) 12V DC deep cycle battery.

homogeneous across the two cars: we have installed two Ibeo LIDARs and a Mobileye camera

on each of the vehicles. The two LIDARs were integrated in the front grille of the car, below

the bumper (see Figure 4.2b). Their joint FOV is approximately 160◦, measured from the front

center point of the vehicle. The Mobileye camera was installed in the same way as in Phase 1.

The localization sensors on car1 remained unchanged since the first development phase.

car2 got endowed with all localization sensors that were initially on car0. In particular, the

u-blox GPS receiver was installed on the roof of the car. As the accuracy of this receiver is not

very high, its exact position on the roof was not crucial. Additionally, we installed the Yocto-3d

IMU on the roof, above the rear axle of the car. This decision was made based on the desire of

limiting the influence of any electro-magnetic radiation sources, such as the vehicle battery

positioned under the trunk. The factory built-in yaw rate sensor and the odometry sensor are

accessed through a vehicle’s CAN bus, which is connected to the OBD-II port located below

the steering wheel.

The computer setup on the car1 remained unchanged, while the computers from car0 got

moved to the car2. Figure 4.3 shows the equipment installed in trunk of the car1.

An overview of the complete deployment of Phase 2 is equally given in Table 4.1.

30

4.4. Deployment

Summary

In this chapter we provided details about the perception and localization sensors we

have used in this thesis. We presented our experimental platform, which has undergone

two deployment phases, both of them leveraging two C-ZERO electric cars. In the first

phase, one of them was a factory prototype car, which we endowed with four LIDARs

and a Mobileye camera and had no license plates. The second car was a regular market

car, on which we deployed a Mobileye camera and an accurate localization system. In

the second phase, we replaced the prototype car by a second regular car. The sensor

deployment was made as uniform as possible across the two cars, which allowed for a

richer set of experiments.

31

5 A High-Fidelity Simulation Tool

T H E R E exist multiple reasons why researchers often resort to simulation tools.

Firstly, real platforms can be very expensive or unavailable in a sufficient quantity.

Secondly, real sensors provide limited accuracy, and the real world environment is

ofter very complex and noisy. It is therefore simpler to work in simulation, where

the accuracy of different sub-systems can be set independently of the rest of the system. In this

way, algorithms can be developed starting from ideal conditions, which can subsequently be

gradually made more realistic. Due to their simplicity, repeatability and reliability, simulation

tools allow for faster prototyping than when working with real hardware directly. However, it is

often important that in the simulation toolbox there is at least a tool that allows for reducing

as much as possible the simulation-to-reality gap, in order to facilitate the transition of the

developed techniques and algorithms from simulation onto real hardware.

In this work, we rely on Webots, a single but flexible high-fidelity simulation tool for mobile

robots and intelligent vehicles [56], [57]. Together with Cyberbotics Ltd. we have worked on

additionally bridging the gap between simulation of mobile robots and intelligent vehicles

[58] by developing calibrated vehicle and sensor models. The focus of our efforts is heavily

influenced by the physical hardware we have at our disposal (cf. Chapter 4).

5.1 Simulation of Vehicles

Prior to our work, building a complete vehicle model in Webots was cumbersome. A vehicle

was composed of basic components, such as a vehicle body, wheels, and joints connecting

them to the body, as well as rotational motors and sensors. Each of the motors had to be

controlled separately. For example, turning required controlling both left and right steering

motors at the same time; acceleration was achieved by applying positive torque onto drive

wheels, while for braking negative force had to be applied.

We developed a generic vehicle model based on the Ackerman steering model [59]. The model

is parametrized by vehicle’s track and wheelbase, and it accepts an arbitrary shape for the

33

Chapter 5. A High-Fidelity Simulation Tool

vehicle body, which can be composed of simple polygons or imported from a Computer-Aided

Design (CAD) file. The control of vehicles is simplified through the usage of two libraries we

developed for this purpose. Additionally, we made available in Webots the complete model of

a Citroën C-ZERO car, starting from original CAD files provided by PSA Gruope, appropriately

reduced to allow for a reasonable computational cost of the simulation.

5.1.1 Electric Motor Model

A Citroën C-ZERO has an entirely electric traction motor with 49 kW power, which can de-

velop the maximum torque of 180 Nm, while the maximum rotational speed of the motor is

8000 r/min [60]. It only has one gear which is able to drive the motor over its entire speed range.

A characteristic of electric motors is the regenerative braking or a negative torque applied by

the motor when a throttle pedal is released in order to return the excess of the energy back to

the battery.

Electric motors are characterized by a maximum torque at low motor speeds. For gener-

ating our simulation model, we have identified three different operational modes on the

performance curve. At low motor speeds, the motor torque output is limited by the total

available torque (τmax = 180 Nm). Between the rotational motor speed of vrpm = 2600 r/min

and vrpm = 8000 r/min, the motor torque is limited by total available power Pmax. Finally, the

curve is limited by the motor speed (8000 r/min). Thus, for vrpm in range from 0 to 8000 r/min,

the motor output torque τ is given by

τ= min

(
τmax,

Pmax

2π · vrpm/60

)
. (5.1)

The model is shown in Figure 5.1.

5.1.2 Libraries

Two libraries have been developed in order to facilitate the control of vehicles.

The driver library provides the usual functionalities that are available to a human driver.

The most important ones are directly related to the vehicle control, such as setting the steering

angle, pressing the throttle or brake, setting the cruising speed or the gear. These functions

come with their counterparts that return the actual steering angle, speed, gear, and state of the

throttle and brake pedals. Other functions of the library include turning on/off the indicators

and lights.

The car library provides abstraction of advanced functions that are typically not available to

a human driver. Examples of these functions include setting the indicator blinking frequency

or getting information such as wheels’ encoder counts, angles of the steering wheels or the

vehicle track (the distance between the centers of the front and rear wheels) and wheelbase

34

5.1. Simulation of Vehicles

0 1000 2000 3000 4000 5000 6000 7000 8000

Motor speed [r/min]

40

60

80

100

120

140

160

180
M

ot
or

 to
rq

ue
 [N

m
] Maximum torque

Maximum power

Maximum speed

Figure 5.1 – The Citroën C-ZERO motor model, according to the owner’s manual.

(the distance between the front and the rear axle).

5.1.3 Calibration

We calibrate our Webots model by running experiments on car1. We use the output from the

Applanix localization system as the ground truth data. Other variables are directly obtained

from the CAN bus of the C-ZERO.

The car control based on torque is implemented in the driver library as follows. First, the

rotational speed of the motor is estimated from the rotational speed of the wheels, which can

be measured by sensors available in Webots. A ratio between the motor speed and the car

speed is obtained from Figure 5.2. Second, the output torque of the motor is computed using

the rotational speed of the motor, based on Equation (5.1). The output torque is multiplied by

the state of the throttle and the gearbox coefficient. We use a linear mapping of the throttle in

the range 0−1, but using a more complex non-linear model is possible. Finally, the torque is

distributed (respecting the differential constraint) to the driven wheels (C-ZERO has rear-wheel

drive), and the Webots physics simulation takes care of the rest.

In the first experiment, we accelerate from 0 to 100 km/h at full throttle. We measure the motor

torque as a function of motor speed directly from the car’s CAN bus. We realize that we can

adjust the maximum motor power in order for the model to better reflect the measured values.

Both the data sheet and the adjusted model are shown in Figure 5.3, alongside the measured

motor torque.

We put our adjusted model to test by comparing the behaviors of the real and simulated

C-ZEROs. First, we compare the speed of the car while accelerating from 0 to 100 km/h at full

35

Chapter 5. A High-Fidelity Simulation Tool

0 5 10 15 20 25 30 35 40 45 50 55
Time [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

M
ot

or
 s

pe
ed

 [r
/m

in
]

0

5

10

15

20

25

30

35

40

C
ar

 s
pe

ed
 (C

A
N

) [
m

/s

Figure 5.2 – Car speed (obtained from the car speedometer available on the CAN bus) vs. motor
rotation speed.

0 1000 2000 4000 5000 60003000
Motor speed [r/min]

0

20

40

60

80

100

120

140

160

180

200

M
ot

or
 o

ut
pu

t t
or

qu
e

[N
m

]

real car
Simulation model using datasheet maximum power
Simulation model using adjusted maximum power

Figure 5.3 – The Citroën C-ZERO motor model (in green) calibrated using the motor speed and
torque measurements (in blue) obtained from the C-ZERO while accelerating from 0 to 100 km/h

with full throttle. The data sheet model from Figure 5.1 is shown in red.

acceleration obtained in simulation and from the real car. The result is shown in Figure 5.4a.

When the throttle is released, the car decelerates naturally due to different factors, such as

friction, air drag and regenerative braking. These effects are jointly simulated by adding a

damping factor to each of the wheel joints. A damping force F is proportional to the effective

36

5.2. Simulation of Automotive Sensors

0 2 4 6 8 10 12 14 16 18 20
Time [s]

0

5

10

15

20

25

30

35
C

ar
 s

pe
ed

 [m
/s

0

10

20

30

40

50

60

70

80

90

100

Th
ro

ttl
e

[%
]

Speed (simulation)
Speed (CAN)
Speed (GNSS)
Throttle

(a) Acceleration

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Time [s]

0

5

10

15

20

25

30

35

C
ar

 s
pe

ed
 [m

/s

0

10

20

30

40

50

60

70

80

90

100

Th
ro

ttl
e

[%
]

Speed (simulation)
Speed (CAN)
Speed (GNSS)
Throttle

(b) Deceleration

Figure 5.4 – Car speed obtained in Webots using our motor model compared with the data col-
lected with the real C-ZERO. (a) The car accelerates from 0 to 100 km/h at full throttle. (b) The car
decelerates without braking and with the throttle pedal released.

joint velocity:

F =−B v, (5.2)

where B is the damping coefficient and amounts to 1.55 Nms for the C-ZERO. B is obtained by

calibration from the real car. The results of this experiment are shown in Figure 5.4b, where

one can observe that the simulated car’s speed closely follows the measured speed of the real

car when the throttle is released.

Brakes are implemented by applying damping on the rotational joints of each of the four

wheels. Here the damping coefficient is normalized by the car speed, in order to achieve a

constant friction independent from the speed, which is a concept similar to the friction applied

by the brake pads on the brake disks on real vehicles. The position of the brake pedal is linearly

mapped to the joint damping coefficient. The maximum braking torque amounts to 580 Nm

and is obtained from the two real-car experiments, in which we apply maximum braking while

driving at the speeds of 40 and 70 km/h, respectively. The resulting behavior is visualized in

Figure 5.5.

5.2 Simulation of Automotive Sensors

Many sensors of interest for intelligent vehicles are common in mobile robotics and were

therefore readily available in Webots. The list of these sensors includes the GNSS, inertial

sensors (accelerometers and gyroscopes), compass and odometry sensors. These sensors

were normally implemented by accessing the Webots physics engine and retrieving relevant

properties of the body on which they are deployed (cars). They can therefore return perfect

measurements. Alternatively, an arbitrary amount of uncorrelated Gaussian noise can be

37

Chapter 5. A High-Fidelity Simulation Tool

0 0.5 1 1.5 2 2.5 3 3.5 4
Time [s]

0

5

10

15

C
ar

 s
pe

ed
 [m

/s

0

0.2

0.4

0.6

0.8

1

B
ra

ke
 s

ig
na

l [
on

/o
ff]

Speed (CAN)
Speed (simulation)
Brake signal

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time [s]

0

2

4

6

8

10

12

14

16

18

20

C
ar

 s
pe

ed
 [m

/s

0

0.2

0.4

0.6

0.8

1

B
ra

ke
 s

ig
na

l [
on

/o
ff]

Speed (CAN)
Speed (simulation)
Brake signal

(b)

Figure 5.5 – Real car data and Webots model braking model: maximum braking from (a) 40 km/h

and (b) 70 km/h.

added to the sensor outputs. An exception is the GNSS sensor, for which a correlated noise

option also exists.

On the other hand, the implementation of LIDARs required significant improvements to meet

the standards used in the automotive domain. Moreover, while an implementation of a general

camera existed in Webots, we needed a specific one the Mobileye camera.

5.2.1 LIDARs

A general implementation of a single layer LIDAR sensor existed in Webots prior to our work,

as LIDARs are commonly used in robotics. It was implemented using a 1-D depth camera. We

implemented the Ibeo LUX model (see Figure 5.6a), which is characterized by four vertical lay-

ers forming the vertical FOV of 3.2◦. Specifications from the sensor data sheet (FOV, resolution,

noise) were carefully transfered to simulation.

The simulated Ibeo LIDAR is implemented using OpenGL 2D depth cameras and a spherical

projection which is natively supported in Webots. The general principle is to set the FOV of a

depth camera to match the FOV of the LIDAR, and then choose a row from the depth image

that corresponds to a given LIDAR layer. While an OpenGL camera supports FOVs of up to

180◦, using a wide FOV results in distortions at the boundaries of the FOV due to the planar

projection. For that reason, for FOVs larger than 90◦ we use a spherical projection, which

yields better depth accuracy. In total, three OpenGL cameras are used for simulation of an

Ibeo LIDAR in Webots, one for the front face and one at each side, as illustrated in Figure 5.6b.

Finally, Gaussian noise is added to each LIDAR return. A small amount of random clutter is

added to each scan as well.

38

5.2. Simulation of Automotive Sensors

(a) (b)

Figure 5.6 – (a) A simulated Ibeo LUX LIDAR in Webots. (b) A spherical camera with 110◦ horizontal
FOV simulated using three cameras, one using the front, and the other two using the two side
faces. A purple face of the cube represents an active camera (in total three cameras are active).

5.2.2 Mobileye Cameras

As mentioned in the previous chapter, the Mobileye camera system does not provide users

with an image in real-time. Instead, image processing and object recognition is done on chip

in a black-box fashion. Finally, the user only gets a list of detected objects such as cars, trucks,

pedestrians, or cyclists.

Using the camera available in Webots and processing the image is a tedious job. One can

either resort to libraries such as OpenCV, or can train a machine learning algorithm for object

recognition (e.g., deep learning using a convolutional neural network). However, the model

created in such way would have different characteristics than the real Mobileye camera.

Therefore, we have decided instead to emulate the Mobileye camera in Webots at the level

of the supervisor layer. The supervisor layer has access to extra functions that are typically

not available to a regular robot (such as the true state of any robot’s component or any other

object in the world). In our specific case, the supervisor can retrieve a list of objects of a certain

category (e.g., cars or pedestrians), along with their real pose. We add noise to measurements

generated in this way in order to make them follow the same patterns we could see by collecting

data with the real camera.

Observations collected during the camera calibration (reported in Section 4.1.2) are used for

emulating the Mobileye sensor in Webots. We noticed that the noise on the longitudinal axis

is not normally distributed. Instead, for a stationary object, the camera returns a constant

distance affected by a bias. The bias is nevertheless different for different runs, which makes

its complete removal through calibration impossible. For our emulated camera we use a linear

noise model dependent on the longitudinal distance e = f (xgt), the slope of which changes

for every simulated camera in every run: the maximal bias emax is sampled at random from a

truncated normal distribution with μ= 0 and σ= 1, and the added noise is in the range ±emax

39

Chapter 5. A High-Fidelity Simulation Tool

-5 0 5 10 15 20 25 30 35 40 45 50

-2

-1

1

2

emax = 1

emax = 0.5

Figure 5.7 – Linear noise e added to the ground truth measurement xgt when simulating the
Mobileye camera. The maximal bias emax at the min/max range of the camera (the vertical lines at
xgt = 15 and xgt = 50 m, respectively) is sampled at random from a truncated normal distribution
with μ= 0 and σ= 1, and the slope of the linear model is computed accordingly. Two examples are
drawn, for emax = 0.5 and emax = 1 m.

from the ground truth value. Thus, the simulated range of the Mobileye camera is obtained

as x = xgt +e(xgt). Two examples are illustrated in Figure 5.7. A normally distributed noise is

added to the y and θ camera returns, with σy = 0.1 m and σθ = 0.01 rad.

Summary

We presented our efforts in developing a high-fidelity simulation tool for intelligent

vehicles. We created a model of a Citroën C-ZERO vehicle in simulation and we calib-

rated its parameters by performing experiments using the real car. While many sensors

of interest for automotive research were readily available in simulation, we had to

implement or upgrade some of them. We implemented an Ibeo LUX LIDAR model

and emulated a Mobileye camera, and we performed calibration of both new sensory

devices.

40

6 Conclusion

R E A L platforms are among the most exciting aspects of the work related to intel-

ligent vehicles. There exist a multitude of sensors for perception and localization

purposes. We presented our design choices and deployment of sensing, computa-

tion and communication equipment that can support our experimental campaign

targeting cooperative perception. Our deployment spanned over two phases. Two Citroën

C-ZERO electric cars represented the foundation of each of the phases. They were equipped by

perception sensors such as Ibeo LUX LIDARs and Mobileye cameras, and localization sensors

including an accurate Applanix localization system and a less-accurate but more affordable

alternative based on a GPS, a speedometer, a compass and inertial sensors.

Realistic simulators are essential tools for prototyping and developing algorithms for robotics

and intelligent vehicles. We presented our efforts towards developing a calibrated, high-fidelity

simulator for intelligent vehicles. We developed a complete Citroën C-ZERO model, starting

from the vehicle base and Ackerman steering, via the CAD model of the vehicle body and the

electric motor model, to the libraries that facilitate interfacing the models. The model was

calibrated using the data gathered with a real C-ZERO car. We further developed and calibrated

models of Ibeo LUX LIDARs and Mobileye cameras implemented in the Webots simulator,

which were necessary in order to have the same hardware in simulation and on the real cars.

6.1 Discussion

We developed our experimental platforms for the purpose of deploying and testing cooperative

perception algorithms. From the definition of cooperative perception, it is clear that we need

at least two vehicles equipped with some perception sensors and communication equipment.

Furthermore, it is obvious that cooperation cannot occur unless the platforms can leverage

an accurate solution for relative localization. While homogeneous platforms are not strictly

required by our algorithms, from the practical perspective they are welcome. Having multiple

exteroceptive modalities on a single car (i.e., a minimally rich set of sensors) was also a goal of

our work, as this setup enables performing both intra-vehicle and inter-vehicle fusion. Our

41

Chapter 6. Conclusion

experimental platforms were designed by keeping our research objectives in mind, taking into

account the interests of the sponsor (PSA Groupe), and considering budget constraints at the

same time.

The developments of appropriate simulation tools was aimed to facilitate our research on

intelligent vehicles, otherwise only achievable by using complex experimental platforms.

The flexible simulator allowed us to experiment with different settings while working on our

algorithms. We intentionally invested effort in more sophisticated, high-fidelity simulation

tools able to reduce the simulation-to-reality gap, as we knew, from our experience with

mobile robots, that such a strategic choice would have paid off when we had to port our

algorithms developed in simulation to real vehicles. Despite the fact that our goal was to

faithfully reproduce our experimental platforms in simulation, the learned good practice

principles are generalizable to other cars or sensory sets, also thanks to the flexibility of the

chosen simulator. For instance, using our baseline Ackerman model, different car models can

be easily reproduced. The many aspects of our work can be reused to implement other LIDAR

or radar sensors.

From our experience, selecting the appropriate components for the real cars is not straight-

forward. It is difficult to know upfront the requirements for a given application in terms of

accuracy, resolution, bandwidth, etc. However, designing and prototyping algorithms in a

flexible simulation tool first represents a good way to determine the hardware requirements.

42

Part IIICooperative Perception

43

7 Introduction

O N E of the key components of an intelligent vehicle is its perception system. By

having a precise representation of the environment, the intelligent vehicle can

identify hazards, assess the level of danger, give warnings and recommendations

to the driver or perform evasive actions if the driver is unable to do so in a timely

fashion. Moreover, complete and accurate information about the environment is a prerequisite

for the vehicle to drive by itself.

There often exist situations in which a vehicle does not have a complete view of the envir-

onment surrounding it. For instance, it can be due to occlusions, limited FOV, or sensor

range limitations. In these situations, information coming from other vehicles or the road

infrastructure can substantially improve the decision-making process of the intelligent vehicle.

Information sharing is usually achieved using wireless communication links. Communication

can be considered as a type of virtual sensor, such as in [61], [62]. For example, it can enable

vehicles to see behind corners, as the wireless communication does not have the same Line-Of-

Sight (LOS) constraints as most conventional sensors have. Cooperative perception considers

sharing of perception data (raw or processed) among two or more vehicles. If a cooperative

vehicle uses simpler sensors (e.g., a speed sensor whose output is available on the vehicle’s

CAN bus), it can transmit raw sensory data. However, in case of richer sensors (e.g., cameras or

LIDARs), due to data volume and communication channel constraints, sharing only processed

data (e.g., objects) and filtered data (i.e., tracks) may be the only feasible option.

In this part of the thesis we address the problem of cooperative object tracking. Specifically,

we focus on tracking of cars (and not vehicles in general, such as trucks or bicycles). Multiple

cars are equipped with sensors and track other cars that are located in their respective FOVs.

Cars have the ability to cooperate, i.e., share and fuse object estimates among each other.

The contributions of this part are as follows. In Chapter 8, we propose a complete method

for vehicle tracking based on a Gaussian Mixture PHD (GM-PHD) filter and a car detection

model that takes the car shape into account. Moreover, we present a general method for

cooperative fusion of GM-PHD intensities, in which vehicles’ FOVs do not need to overlap.

45

Chapter 7. Introduction

Our approach enables extending the FOV of a single vehicle beyond the limits of its sensors by

using communication, and decreasing uncertainty of estimation where an object is observed

by multiple vehicles. We refer to our approach as the Cooperative GM-PHD (C-GM-PHD) filter.

In Chapter 9, we move on to a Sequential Monte Carlo (SMC) implementation of the PHD filter.

We propose an integrated approach of localization with multiple object tracking, factoring

uncertainties from the localization itself into tracking. Furthermore, we also propose an im-

provement to the distributed fusion of SMC-PHD filters by generalizing it for non-overlapping

FOVs. We refer to our generalized approach, from this point forth, as the Cooperative SMC-

PHD (C-SMC-PHD) filter.

Finally, in Chapter 10 we show one possible application of cooperative perception. On top of

the C-GM-PHD filter we build an overtaking recommendation system. A car attempting to

overtake gets aided by a car being overtaken in assessing the maneuver risk, and subsequently

makes a decision whether to overtake or not.

7.1 Background

7.1.1 Multi-Object Tracking

Multi-object tracking is the process of estimating the number of objects (also called targets)

and their states from imperfect sensor measurements. The association of measurements with

appropriate objects is not known. Measurements are subject to noise, missed detections and

false alarms (clutter). The main challenge in multi-object tracking is to filter out these effects

and solve the measurement-to-track association problem, in order to get accurate estimates

of the true object states.

Multi-object tracking filters based on the Global Nearest Neighbor (GNN) algorithm [63]

and Multiple Hypothesis Tracking (MHT) filters [64] involve explicit association between

measurements and objects. Issues with such filters are related to having multiple observations

of a single object, clutter and occluded objects. Joint Probabilistic Data Association (JPDA)

filters [64] weight observations using their association probabilities, but require the number of

objects to be known a priori. In our work the number of objects is unknown and varies with

time.

Another solution for multi-object tracking is based on Random Finite Set (RFS) models, in

which a set of objects of variable cardinality is modeled as an RFS. Filters based on this theory,

such as PHD filters and Cardinalized Probability Hypothesis Density (CPHD) filters, deal with

the measurement-to-track association implicitly [65]. They can provide higher robustness

and accuracy in scenarios where the number of objects is variable and/or not known in

advance. Many different implementations of the PHD filter have been developed and used

for multi-object tracking; the most common ones are the GM-PHD [66] and the SMC-PHD

filter [67]. Typical implementations assume that, if a target is detected, it generates only one

46

7.1. Background

measurement. Moreover, in the previously mentioned literature sources [66] and [67], the

shape of the target is not taken into account.

A Bayesian approach to the multi-object tracking problem requires a measurement model to

describe how the measurements are related to underlying object states. A standard measure-

ment model, commonly called a point target model, assumes that each object produces at

most one measurement at a given time. This model holds well for some low-resolution sensors.

On the other hand, higher resolution sensors (including our LIDAR sensor) may produce

multiple measurements per object in a single scan. There exist two possibilities for dealing

with such situations:

� the first option is to preprocess the sensor data with the goal of detecting individual

objects and producing only one measurement per object;

� the second option is to use extended object measurement models, which typically model

the number of measurements generated by each object along with their spatial distribu-

tion.

Granstrom et al. have extended the GM-PHD framework to handle extended targets [68], [69].

Estimation of the target shape was also included in the GM-PHD framework. For instance, a

thin stick model was used for bicycle tracking in [70] and tracking of rectangular and elliptical

extended targets was addressed in [71]. The drawbacks of these two approaches are the

unconventional framework where the measurement model depends on the current set of

measurements, as well as a high degree of non-linearity which makes the state update using

an Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF) difficult. In [72] Swain

and Clark tracked the kinematic state of elliptical targets along with their shape parameters

by considering hierarchical point process representations of multiple extended targets. The

particle representation was used for the shape, while the Gaussian mixture formulation was

used as a representation of a kinematic state per particle. In the DISAL laboratory, Gaussian

processes in connection with the GM-PHD filter have been used to model and estimate an

arbitrary object shape [73].

SMC methods represent an alternative to Gaussian Mixture (GM) methods in approximating

the PHD filter as shown in [74], and are able to handle nonlinear models with relatively low

complexity. They typically require a large number of particles for sampling the state space, and

rely on clustering techniques to provide state estimates. Ristic et al. proposed an improved

SMC approach in [67] that is able to reliably extract state estimates without the use of an

explicit clustering algorithm. Clustering algorithms such as K -means or the ones based on

the Expectation-Maximization (EM) principle require a Gaussian assumption or an a priori

knowledge of the number of targets, and hence are counterproductive to the advantages of

the nonlinear SMC-PHD filter.

In this thesis, we have chosen the first option mentioned above because of its simplicity. Our

tracking is based on the PHD filter, and we use a detection algorithm prior to tracking to extract

47

Chapter 7. Introduction

features from the observed sensor data. These features are then used as measurements during

the PHD update. Our detection algorithm, explained in Section 7.3, is similar to the approach

presented in [63]. However, to the best of our knowledge, this approach has not been used in

the RFS framework so far.

It is important to mention that the PHD filter does not provide labels for tracked objects. Both

the GM-PHD filter and the SMC-PHD filter only provide identity-free estimates of object states

and hence no spatial association of estimates over time. Conventionally, a track denotes a

sequence of object states over time. However, it has been shown that labels for the Gaussian

components can be included into the filter in order to obtain individual target tracks, see for

example [75]. Moreover, data association and track management techniques for PHD filters

are discussed in [76].

7.1.2 Cooperative Fusion

Two major problems related to cooperative fusion are temporal and spatial alignment [36].

Temporal alignment deals with variable delays of wireless communication links. Authors

of [77] report that the typical delay of IEEE 802.11p wireless communication protocol is in

the order of 100-150 ms. Consequently, variables received through communication may not

represent faithfully the state of objects at the time they were received. Ideally, vehicle receiving

observations should help to predict the evolution of the objects’ state between the original

measurement time and that of reception. This is obviously more difficult if raw measurements

are communicated instead of tracks. Moreover, the spatial alignment considers differences

in coordinate systems of the sending and receiving vehicles. The difficulty here lies in the

uncertainty of sending and receiving vehicle locations.

Cooperative tracking is not a new problem. An approach for ball tracking by a team of robots

(i.e., single object cooperative tracking), based on a modified particle filter, is presented by

Ahmad and Lima [78]. In this approach, each robot weights its set of particles (representing

the tracked object posterior) by its localization uncertainty, and transmits it to its teammates.

In the fusion step, each particle is sampled at random from one of the cooperative robot

sets, where the sampling probability corresponds to the particle weight. The generalization

of this approach to multiple object tracking requires solving the association and clustering

problems (as will be discussed in Chapter 9). Furthermore, Ahmad et al. presented an approach

for simultaneous localization and multi-object tracking [79]. Here, poses of robots, moving

objects, and static landmarks are represented as a graph, and the problem is phrased as a

least-squares minimization problem. However, the experimental evaluation covered only one

tracked object. A decentralized particle filter for multi-object tracking was presented by Ong

et al. [80]. They used a Gaussian Mixture Model (GMM) to approximate a particle distribution

with a continuous distribution. GMMs were communicated between the flying vehicles and

fused using a Covariance Intersection (CI) algorithm.

When using a PHD filter for tracking, communicating tracks is reduced to communicating

48

7.2. Preliminaries

PHD intensities. A method for fusing PHD intensity functions is given by Clark et al. in [81].

Battistelli et al. used Exponential Mixture Density (EMD) for distributed fusion of Gaussian

Mixture CPHD (GM-CPHD) densities [82]. In both works, it has been assumed that all PHD

filters work in the same domain, i.e., that all agents share a common FOV in which targets

are sensed. This type of fusion is in literature also known as consensus fusion — because

a consensus between all sensors about the states of given objects is sought. This is a very

limiting assumption for the application of aforementioned methods in the field of (moving)

vehicles, where cooperation between vehicles aims to increase the amount of information

each vehicle has of its surroundings. If there is no unanimous agreement on some object

between all sensors, a consensus-based fusion algorithm may fail to include all object state

estimates in the fused posterior.

The distributed fusion of information from multiple instances of the Sequential Monte Carlo

CPHD (SMC-CPHD) filter was explored in [83] by using EMDs. Similarly to the two approaches

mentioned above, it assumes that all agents share a common FOV in which targets are detected.

Furthermore, applications of the SMC-PHD filter and its distributed variation have been only

experimentally verified with stationary sensors, mainly targeting defense applications.

In this thesis, our goal is to fuse PHD intensities originating from sensors whose FOVs only

partially overlap. This type of fusion is also known as complementary fusion, as the algorithm

should be able to opportunistically combine the complementary information provided by

various sensors.

7.2 Preliminaries

In this section, we introduce precise mathematical formulations for the Bayes filter, the RFSs

for multi-object tracking, and the PHD filter.

7.2.1 Bayes Filter

A Bayes filter is a general probabilistic approach for estimating an unknown Probability Density

Function (PDF) recursively over time using incoming measurements and a mathematical

process model.

The true state is assumed to be a Markov process on the state space X⊆Rnx . The probability

density of a transition to a state xk at time k given state xk−1 at time k −1 is given by

fk|k−1(·|·). (7.1)

This Markov process is partially observed in the observation space Z⊆Rnz . Given a state xk at

time k, the probability density of receiving the observation zk ∈Z is modeled by the likelihood

49

Chapter 7. Introduction

function

gk (zk |xk). (7.2)

The probability density of the state xk at time k given all observation z1:k = (z1, . . . , zk) up to

time k is called the posterior density at time k, and can be computed using the Bayes recursion

consisting of the prediction and the update step, respectively:

pk|k−1(xk |z1:k−1) =
∫

fk|k−1(xk |x)pk−1(x|z1:k−1)dx, (7.3)

pk (xk |z1:k) = gk (zk |xk)pk|k−1(xk |z1:k−1)∫
gk (zk |x)pk|k−1(x|z1:k−1)dx

. (7.4)

Computing the integral in Equation (7.3) and the multiplication in Equation (7.4) in closed

form is not feasible for most problems. There exist a number of techniques and algorithms

that are derived from the Bayes filter, relying on different assumptions regarding the meas-

urement and the state transition probabilities and the initial PDF. The most well-known

implementations are a Kalman Filter (KF) and a SMC filter (commonly called also a Particle

Filter (PF)) [84].

7.2.2 Random Finite Sets Formulation of Multi-Object Tracking

Now consider a multiple object scenario. Let M(k −1) be the number of objects at time k −1,

whose states are xk−1,1, . . . , xk−1,M(k−1) ∈ X. At time k, some of these objects may die; the

surviving objects evolve to their new states; new objects may appear. This results in M(k) new

states xk,1, . . . , xk,M(k). At the same time, N (k) measurements zk,1, . . . , zk,N (k) are received from

the sensor. Only some of the N (k) measurements originate from tracked objects, while the

others represent clutter. There exists no information about which objects generated which

measurements. Moreover, the order in which objects and measurements appear bears no

significance. Thus, the collections of objects and measurements can be naturally represented

as finite sets:

Xk = {xk,1, . . . , xk,M(k)} ∈F(X) (7.5)

Zk = {zk,1, . . . , xk,N (k)} ∈F(Z) (7.6)

whereF(X) andF(Z) are the respective collections of all finite subsets ofX andZ. The target set

Xk and the measurement set Zk represent the multi-object state and multi-object observation,

respectively. The multi-object tracking problem can then be posed as a filtering problem with

the (multi-object) state space F(X) and observation space F(Z).

In a single-object system, uncertainty is characterized by modeling the state xk and the meas-

urement zk as random vectors. Analogously, uncertainty in a multi-object system is character-

ized by modeling the multi-object state Xk and the multi-object measurement Zk as RFSs. An

50

7.2. Preliminaries

RFS X is a finite-set-valued random variable, which can be described as a discrete probability

distribution defining the cardinality of X , and a family of joint probability densities which

characterizes the joint distribution of elements of X .

For a given state xk−1 ∈ Xk−1 at time k −1, its transition to the next time step is modeled as the

RFS

Sk|k−1(xk−1) (7.7)

that can either take {xk } if the target survives with probability pS,k (xk−1), or � when the object

dies with probability 1−pS,k (xk−1). A new target at time k can arise independently from any

existing object (by birth), or be spawned from an object at time k −1. So the multi-object

state Xk at time k is given by the union of surviving objects, spawned objects and newly born

objects:

Xk =
[⋃
ξ∈Xk−1

Sk|k−1(ξ)

]
∪
[⋃
ξ∈Xk−1

Bk|k−1(ξ)

]
∪Γk , (7.8)

where Γk is a RFS of spontaneous birth at time k, and Bk|k−1(ξ) is a RFS of targets spawned at

time k from a target with previous state ξ.

The RFS measurement model accounts for detection uncertainty and clutter. A given target

xk ∈ Xk is either detected with probability pD,k (xk) or missed with probability 1−pD,k (xk).

Consequently, each state xk ∈ Xk generates an RFS at time k

Θx (xk), (7.9)

which can take on either zk when the target is detected, or � when it is not. A multi-object

measurement model Zk is formed by the union of target generated measurements and clutter

set Kk :

Zk = Kk ∪
[⋃

x∈Xk

Θk (x)

]
. (7.10)

Let pk (·|Z1:k) denote the multi-object posterior density. Then, the optimal multi-object Bayes

filter propagates the multi-object posterior in time via recursion consisting of the predict step

pk|k−1(Xk |Z1:k−1) =
∫

fk|k−1(Xk |X)pk−1(X |Z1:k−1)μs(dX) (7.11)

and the update step

pk (Xk |Z1:k) = gk (Zk |Xk)pk|k−1(Xk |Z1:k−1)∫
gk (Zk |X)pk|k−1(X |Z1:k−1)μs(dX)

. (7.12)

Similarly to the single-object case, here fk|k−1(·|·) and gk (·|·) represent the multi-object

51

Chapter 7. Introduction

transition density and the multi-object likelihood, respectively. Explicit expressions for

fk|k−1(Xk |Xk−1) and gk (Zk |Xk) can be derived using Finite Set Statistics (FISST) [65], but

they are not essential for this thesis. μs is an appropriate reference measure on F(X).

The recursion in Equations (7.11)-(7.12) involve multiple integrals over multi-object space,

which are computationally intractable.

7.2.3 Probability Hypothesis Density Filter

A PHD filter is proposed as an alleviation for the computational intractability problem of the

multi-object Bayes filter. Similarly to the constant gain KF, which propagates the first moment

(the mean) of the single-object state, the PHD filter propagates the first moment of the posterior

multi-object state. This first order moment of a RFS X with probability distribution P is a

non-negative function ν on X called intensity, such that for each region S ⊆X [66]∫
|X ∩S|P (dX) =

∫
S
ν(x)dx. (7.13)

The integral of ν over any region S gives the expected number of elements of X that are in S.

Hence, the total mass N̂ = ∫ν(x)dx gives the expected number of elements of X . The local

maxima of the intensity ν are points in X with the highest local concentration of expected

number of elements, and hence can be used to generate estimates for the elements of X . The

simplest approach is to round N̂ and choose the resulting number of highest peaks from the

intensity. The intensity is also known in the tracking literature as the PHD [66].

To present the PHD filter, we define the important variables:
γk (·) = intensity of the birth RFS Γk at time k,

βk|k−1(·|ξ) = intensity of the RFS Bk|k−1(ξ) spawned at time k by a target with

previous state ξ,

κk (·) = intensity of the clutter RFS Kk at time k.

Equations (7.11) and (7.12) can be approximated using the intensity measure, leading to the

PHD recursion:

νk|k−1(x) =
∫

pS,k (ξ) fk|k−1(x|ξ)νk−1(ξ)dξ+
∫

βk|k−1(x|ξ)νk−1(ξ)dξ+γk (x), (7.14)

νk (k) = [1−pD,k (x)]νk|k−1(x)+ ∑
z∈Zk

pD,k (x)gk (z|x)νk|k−1(x)

κk (z)+∫pD,k (ξ)gk (z|ξ)νk|k−1(ξ)dξ
. (7.15)

Since the posterior intensity is a function on the single-object state space X, the PHD recursion

requires much less computational power than the multi-object recursion defined in Equa-

tions (7.11) and (7.12). However, the PHD recursion does not admit closed forms in general.

Nevertheless, for a certain class of multi-object models — linear Gaussian multi-object models,

the PHD recursion admits a closed-form solution, in a form similar to the KF (for the exact

52

7.3. LIDAR Point Cloud Preprocessing

(a) Single-object (b) Multi-object

Figure 7.1 – A simplistic comparison between a KF for single-object tracking and a GM-PHD filter
for multi-object tracking. (a) The KF predicts the state of a single object and subsequently updates
it using a single observation. (b) The GM-PHD filter predicts and updates a set of objects using
a set of observations. It performs associations between measurements and objects, and to each
reasonable association it assigns a KF to perform the prediction and the update steps.

form, see Equations (8.2)-(8.11)).

In a nutshell, we can think of a GM-PHD filter as a set of KFs, all communicating with a central

authority deciding which KF to predict and update which target at every time step. The goal of

individual KFs is to predict and update positions properly. The goal of the central authority is

to maintain a persistent target-filter binding for each of the KFs, i.e., handle measurement-to-

target association, give birth to new targets, and eliminate targets which are likely to no longer

exist. A comparison between a single-object and a multi-object filter is shown in Figure 7.1.

7.3 LIDAR Point Cloud Preprocessing

Our LIDAR sensor typically produces multiple measurements corresponding to a single object,

depending on the distance and angle from the sensor to that object. The goal of the prepro-

cessing is to compress these point measurements to a single measurement per object, so

the point target trackers could be used. Our preprocessing algorithm is inspired by the one

presented by MacLachlan and Mertz in [63].

We start from a point cloud in which all points are given in the 3D Euclidean (x, y, z) coordinate

system. The vertical (z) dimension is due to the fact that our LIDAR contains four scanning

layers with a total vertical FOV of 3.2°. As our tracking algorithms operate in 2D, we project the

point cloud to the ground plane. For each bearing angle of the LIDAR, we select the point (i.e.,

one of the four layers) that is closest to the sensor.

53

Chapter 7. Introduction

Figure 7.2 – An illustration of the DBSCAN algorithm for minPts = 4. The ε neighborhood of each
point is drawn using a circle. All points with blue circle get added to the same cluster (e.g., A could
be the point that is randomly selected in the beginning). Point N is noise, as it is neither within the
ε neighborhood of any other point in the cluster, nor it is a core point (there are at least minPts in
its ε neighborhood).

7.3.1 Clustering

Clustering divides the scanner data points into separate sets of points corresponding to distinct

objects. We use a density-based spatial clustering algorithm called DBSCAN [85]. It has two

parameters: a neighborhood size ε — defining how far a point has to be from any cluster to not

be considered a part of that cluster — and minPts — the minimum number of points required

to form a dense region (cluster).

The algorithm starts by selecting at random a point that has not yet been visited, and if at

least minPts are contained in its ε-neighborhood, a new cluster is formed (see Figure 7.2).

Otherwise this point is labeled as noise; this point might later be found in a sufficiently sized

ε-neighborhood of another point and therefore be made part of a cluster. If a point is found

to be part of a dense cluster, its ε-neighborhood is also made part of that cluster. Hence all

the points found within the ε-neighborhood are added to the cluster, and so are the points

belonging to their ε-neighborhood when they are also dense. The process continues until the

complete density-connected cluster is found. Then, a new unvisited arbitrary point is selected

and processed, leading to the discovery of a further cluster or noise.

Since our data points are located on a plane, the ε-neighborhood is simply defined using the

Euclidean distance threshold. Due to the fixed horizontal angular resolution of our LIDAR and

the nature of scanning, the distance between two adjacent points in the point cloud increases

with their distance from the sensor. For this reason, our distance threshold dth is dynamically

computed by taking the fixed threshold e f i x , the distance between the point and the sensor

54

7.3. LIDAR Point Cloud Preprocessing

r =
√

x2 + y2 and the angular resolution of the sensor φLi D AR into account:

dth = e f i x +2r tan
φLi D AR

2
. (7.16)

7.3.2 Feature Extraction

Once a cluster of points relating to one object has been created, it is necessary to analyze it

and extract certain features related to that object. In this thesis, we are interested in detecting

cars (Parts III and IV) and pedestrians (Part IV).

A pedestrian is characterized by a cluster whose size (length and width) is not larger than a

parameter minSizePed. When a small cluster is detected, its center point is selected and

returned as a measurement. The orientation of a pedestrian cannot be reliably detected

using only a static LIDAR scan, and is therefore not extracted as a feature. For a given scan,

a measurement set containing Np detected pedestrians Z (p) = {z(p)
i }

Np

i=1, z(p)
(·) = [x(·), y(·)] is

returned by the algorithm. Uncertainty in the form of a covariance matrix is empirically

evaluated. Note that many other small objects (such as a tree trunk) are detected as a pedestrian

with this method.

For a car we assume a rectangular shape of a fixed size (L,W). Maximum two sides of a car can

be detected at any time using a LIDAR. Therefore, when a cluster larger than minSizePed

is detected, we fit one and two lines (i.e., a corner) to the cluster points and we compare the

least squares error (LSE) of the two fits. If the LSE of the corner fit is Ncor ner times smaller

than the LSE of the line fit, the corner is selected as a detected shape. Otherwise, a detected

shape is a line. The corner point for the corner fitting is selected as a point with the largest

Euclidean distance from the fitted line, as illustrated in Figure 7.3. Finally, the center point

and the orientation of the car is computed from the best fit of the assumed rectangle to the

detected line or corner. For a given scan, a measurement set containing the full 2D pose of Nc

detected cars Z (c) = {z(c)
i }Nc

i=1, z(c)
(·) = [x(·), y(·),θ(·)] is returned by the algorithm.

The measurement uncertainty of an individual LIDAR point can be expressed through the

covariance matrix

Rr,α,β =
[
σr 0 0
0 σα 0
0 0 σβ

]
(7.17)

in the spherical coordinates, where r , α, and β represent the range, the azimuth and the polar

angle, respectively. It is assumed that range, azimuth, and polar angle measurements are

mutually independent. Alongside the processed measurement relating to a pedestrian or a car,

the measurement noise (including the noise of the detection algorithm) in the observation

space ([x, y]� for a pedestrian, or [x, y,θ]� for a car) is also returned by the preprocessing

algorithm. The noise is evaluated empirically in simulation using ground truth data for the

targeted object. The process of car detection is summarized in Algorithm 7.1.

55

Chapter 7. Introduction

Algorithm 7.1: Car detection algorithm

Require: {[x(i), y (i), z(i)]�,R(i)
r,α,β}

Npt s

i=1 {set of measurement points and their uncertainty}

1: clusters = DBSCAN([x, y]�)
2: for each cluster in clusters do
3: Fit a line
4: Fit a corner (corner point is point with largest distance to the line connecting first and

last measurement point)
5: Choose the best fit (line or corner) using the RMS error
6: Fit a rectangle (with constant L,W) to a chosen line/corner
7: Extract rectangle features x, y,θ
8: Construct measurement covariance Rx,y,θ

9: end for
10: return {[x(j), y (j),θ(j)]�,R(j)

x,y,θ}
Nob j

j=1 {set of object observations}

Figure 7.3 – The corner point is the point that is the furthest away from the dashed line connecting
the first and last point LIDAR in this cluster (sorted by the bearing angle). LIDAR points are shown
in blue.

Summary

This section provided an introduction to cooperative perception problem by braking it

down into multi-object tracking and cooperative fusion problems. We gave an overview

of the literature covering these two problems. Furthermore, we introduced fundamental

concepts of multi-object tracking such as the Bayes filter, the Random Finite Set formu-

lation, and the Probability Hypothesis Density filter. Finally, we described our LIDAR

preprocessing algorithm for object detection prior to tracking.

56

8 Cooperative Multi-Object Tracking Using
a Gaussian Mixture Approximation

T O tackle the problem of cooperative multi-object tracking using the GM approxim-

ation, we propose a C-GM-PHD filter. It extends the GM-PHD filter from [66] with

the fusion block, that has the ability to fuse PHD intensities coming from other

GM-PHD or C-GM-PHD filters with its own PHD intensity, therefore increasing its

estimation confidence and extending its FOV. The concept is illustrated in Figure 8.1.

8.1 Multi-Object Tracking Using a GM-PHD Filter

Assume that the posterior intensity at time k −1 is a Gaussian mixture of Jk−1 components

with weights wk−1, means mk−1 and covariances Pk−1 of the form

νk−1(x) =
Jk−1∑
i=1

w (i)
k−1N(x;m(i)

k−1,P (i)
k−1) (8.1)

In order to compute the posterior νk (x), the C-GM-PHD filter contains five fundamental steps,

as described below. While the prediction, update, pruning and merging, and target extraction

are taken from [66], the fusion step is our contribution towards the C-GM-PHD filter.

C-GM-PHD

GM-PHD

Prediction Update Pruning and
Merging

Fusion Target
ExtractionPrediction Update Pruning and

Merging

Target
Extraction

Figure 8.1 – Block diagram of C-GM-PHD steps. It fuses the intensity received from a GM-PHD (or
C-GM-PHD) filter, if available.

57

Chapter 8. Cooperative Multi-Object Tracking Using a Gaussian Mixture Approximation

8.1.1 Prediction

The predicted intensity for time k is also a Gaussian mixture

νk|k−1(x) =
Jk−1∑
j=1

pS,k (m(j)
k|k−1)w (j)

k−1N(x;m(j)
k|k−1,P (j)

k|k−1)+γk (x) (8.2)

where γk (x) is the birth intensity with Jγ,k components given by

γk (x) =
Jγ,k∑
i=1

w (i)
γ,kN(x;m(i)

γ,k ,P (i)
γ,k) (8.3)

and pS,k (m(j)
k|k−1) is the probability of survival of Gaussian component j at time k. Note that,

for simplicity, we do not include spawning of targets in our filter implementation.

The predicted mean and covariance of estimated GM components can be computed using

any Bayesian estimator. In our work we use an UKF:

mk|k−1 =
2Λ∑
i=0

Υ(i)χ(i)
k|k−1 (8.4)

Pk|k−1 =
2Λ∑
i=0

Υ(i)[χ(i)
k|k−1 −mk|k−1][χ(i)

k|k−1 −mk|k−1]�, (8.5)

where χ(i)
k|k−1 is a sigma point computed by the Unscented Transform and Υ(i) its associated

weight. The number of state dimensions is denoted by Λ, and the total number of sigma points

used by the UKF is 2Λ+1.

8.1.2 Update

For a set of measurements Zk , the update step yields a posterior intensity given by:

νk (x) =
Jk−1∑
i=1

[1−pD,k (m(i)
k|k−1)]w (i)

k|k−1N(x;m(i)
k|k−1,P (i)

k|k−1)

+ ∑
z∈Zk

Jk|k−1∑
j=1

w (j)
k (z)N(x;m(j)

k|k (z),P (j)
k|k)

(8.6)

58

8.1. Multi-Object Tracking Using a GM-PHD Filter

where

w (j)
k (z) =

pD,k (m(j)
k|k−1)w (j)

k|k−1q (j)
k (z)

κk (z)+∑Jk|k−1

l=1 pD,k (m(l)
k|k−1)w (l)

k|k−1q (l)
k (z)

, (8.7)

q (j)
k (z) =N(z; H (j)

k m(j)
k|k−1,Rk +H (j)

k P (j)
k|k−1[H (j)

k]�), (8.8)

m(j)
k|k (z) = m(j)

k|k−1 +K (j)
k (z−Hk m(j)

k|k−1), (8.9)

P (j)
k|k = [I −K (j)

k Hk]P (j)
k|k−1, (8.10)

K (j)
k = P (j)

k|k−1H�
k (Hk P (j)

k|k−1H�
k +Rk)−1. (8.11)

The parameters used in the update step are the clutter level κk (z), the probability of detection

pD,k (m(i)
k|k−1) dependent on the mean of the Gaussian component i , the observation model

Hk and the observation noise covariance Rk .

8.1.3 Pruning and Merging

After the update step, the number of Gaussian components increases quadratically with the

number of measurements. It is therefore necessary to limit the number of Gaussians, as to keep

the problem tractable. A good approximation of the GM posterior intensity can be obtained

by truncating components with weak weights. In other words, only a set containing Gaussian

components I = {i = 1, . . . , Jk |w (i)
k > Tp } with weights higher than a certain pruning threshold

Tp are kept.

Furthermore, all Gaussian components that are close to each other can be approximated by

a single Gaussian. This is done by selecting a Gaussian component with a highest weight,

and finding all Gaussians whose mean is within the Mahalanobis distance U from the selec-

ted Gaussian. This yields a set L = {i ∈ I |(m(i)
k −m(j)

k)�(P (i)
k)−1(m(i)

k −m(j)
k) ≤U } of Gaussian

components that are merged as follows:

w̃ (l)
k =∑

i∈L
w (i)

k , (8.12)

m̃(l)
k = 1

w̃ (l)
k

∑
i∈L

w (i)
k x(i)

k , (8.13)

P̃ (l)
k = 1

w̃ (l)
k

∑
i∈L

w (i)
k (P (i)

k + (m̃(l)
k −m(i)

k)(m̃(l)
k −m(i)

k)�). (8.14)

8.1.4 Extraction

The extraction of multiple-target state estimates is straightforward from the GM representation

of the RFS intensity. According to [66], means of Gaussians that have weights greater than

some threshold Te (e.g., Te > 0.5) are extracted and represent the most likely estimates.

59

Chapter 8. Cooperative Multi-Object Tracking Using a Gaussian Mixture Approximation

8.2 Cooperative Fusion

After information (in the form of the GM-PHD intensity) has been received from the cooperat-

ive vehicle C over the communication link, it needs to be fused with the local intensity of the

ego vehicle E.

The first step is to transform the intensity from the cooperative vehicle’s coordinate frame to

the ego vehicle’s coordinate frame. However, the transformation between the two frames is

not exactly known, due to the pose uncertainty of the two vehicles. Hence, we will refer to it as

an approximate transformation. Approximate transformations [86] allow for calculating the

nominal location and associated error of any object relative to any other object. In Figure 8.2

we first describe the coordinates xW
NC

of a non-cooperative vehicle NC (target) with respect

to the world reference frame W , by carrying out transformations from W to the cooperative

vehicle frame C (xW
C

) and from the frame of C to the target (xC
NC

). If the explicit transformation

is given by a vector function

xW
NC = f (xW

C ,xCNC) (8.15)

and the vector function is approximated by a first-order Taylor series expansion about the

means of the variables, the mean value of the approximate transformation is obtained by

applying the function to variable means, i.e., x̂W
NC

= f (x̂W
C

, x̂C
NC

). The covariance matrix of this

transformation is

P3 = J

(
P1 0

0 P2

)
J� = HP1H�+K P2K �, (8.16)

where P1 and P2 are respectively covariances of transformations xW
C

and xC
NC

, and J is the

Jacobian of the transformation

J =
(
∂ f

∂xW
C

∣∣∣∣∣ ∂ f

∂xC
NC

)
= [H |K]. (8.17)

Transformation xEW (see Figure 8.2) is obtained by reversing the transformation from W to E

(xW
E

), and the covariance matrix for the reversed transformation (e.g., P ′) is estimated from

the given covariance matrix of the transformation xW
E

(e.g., matrix P) as

P ′ = R ·P ·R�, (8.18)

where R is the Jacobian of the reversed transformation equations. Finally, the transformation

from E to the target (xE
NC

) and its covariance matrix are obtained using the transformations

xEW and xW
NC

, similarly as in the case of the transformation xW
NC

being obtained from the trans-

formations xW
C

and xC
NC

.

We use the above method to perform coordinate transformations. Once the means and covari-

60

8.2. Cooperative Fusion

W

Figure 8.2 – A sequence of approximate transformations. The transformation from the world
frame W to the cooperative vehicle frame C is denoted by xW

C
. Cooperative vehicle tracks a target

NC in its own frame; the target’s position is defined by the transformation xC
NC

. The location of

the tracked target can be expressed in the world frame using the transformation xW
NC

= xW
C

+xC
NC

.

The transformation xE
NC

can be obtained as xEW +xW
NC

, where xEW =−xW
E

. Reference frames other
than W are omitted for clarity.

ances of all Gaussians are expressed in the local reference frame of the ego vehicle, they can

be fused with the local intensity produced by the C-GM-PHD filter.

Optimal (Bayesian) fusion techniques require statistically independent information, but this

assumption does not hold if multiple sources are exchanging information between each other.

If the common information across the sources is not known and cannot be canceled out,

optimal fusion would lead to over-confidence [82]. CI [87] is a conservative method for fusing

two Gaussian distributions, whose cross-correlation is unknown. CI is known to estimate

the fused uncertainty that will neither be too small (over-confidence) nor too large (under-

confidence). In [88], Mahler proposed a generalization of the CI algorithm for multi-object

functions, called Generalized Covariance Intersection (GCI). It is shown in [81] that the location

density of the two GM-PHD posteriors fused by the means of GCI becomes:

νW(x) = νW1 (x)ν1−W
2 (x)∫

νW1 (y)ν1−W
2 (y)dy

, (8.19)

where ν1 and ν2 are the two individual GM-PHD posterior intensities of the form

ν(x) =
Jk∑

j=1
w jN(x;m j ,P j), (8.20)

and 0 ≤W≤ 1 is a fusion parameter.

However, the exponential of a GM does not have a GM form. Given that the posterior intensities

61

Chapter 8. Cooperative Multi-Object Tracking Using a Gaussian Mixture Approximation

are GMMs, the following approximation of the Exponential Gaussian Mixture is proposed in

[82] in order to preserve the GM form of the location PDF after fusion:[
Jk∑

j=1
w jN(x;m j ,P j)

]W
∼=

Jk∑
j=1

[w jN(x;m j ,P j)]W. (8.21)

To solve Equation (8.21), we list a few useful identities below. The power of the Gaussian

component is a Gaussian component:

[w jN(x;m j ,P j)]W = wW
j κ(W,P j)N(x;m j ,

P j

W
), (8.22)

where

κ(W,P) = [det(2πPW−1)]
1
2

[det(2πP)]
W
2

. (8.23)

The product of two Gaussian components is a Gaussian component

w1N(x;m1,P1) ·w2N(x;m2,P2) = w12N(x,m12,P12), (8.24)

where

P12 =
(
P−1

1 +P−1
2

)−1
, (8.25)

m12 = P12(P−1
1 m1 +P−1

2 m2), (8.26)

w12 = w1w2 ·N(m1 −m2;0,P1 +P2). (8.27)

Multiplying two exponents of GMs (as suggested in Equation (8.19)) yields

νW1 (x) ·ν1−W
2 (x) =

J1∑
i=1

[w (1)
i N(x;m(1)

i ,P (1)
i)]W ·

J2∑
j=1

[w (2)
j N(x;m(2)

j ,P (2)
j)]1−W (8.28)

=
J1∑

i=1

J2∑
j=1

w (12)
i j N(x;m(12)

i j ,P (12)
i j), (8.29)

where

P (12)
i j =

[
W(P (1)

i)−1 + (1−W)(P (2)
j)−1

]−1
, (8.30)

m(12)
i j = P [W(P (1)

i)−1m(2)
j + (1−W)(P (1)

i)−1m(2)
j], (8.31)

w (12)
i j =

(
w (1)

i

)W (
w (2)

j

)1−W
κ(W,P (1)

i)κ(1−W,P (2)
j)N

⎛⎝m(1)
i −m(2)

j ;0,
P (1)

i

W
+

P (2)
j

1−W

⎞⎠ .

(8.32)

62

8.3. Cooperative Car Tracking

As demonstrated above, by using the approximation from Equation (8.21), GCI fusion reduces

to applying CI to each pair of Gaussian components from ν1 and ν2 in turn, resulting in the

total number of Jk (ν1)× Jk (ν2) components in the fused intensity.

The aforementioned approach was developed for fusion of sensors whose FOVs overlap com-

pletely, and it does not work well in the general case, when the domains over which GMs are

defined are not the same (i.e., when the FOVs of different sensors do not entirely overlap). It is

evident that GCI assigns significant weight only to components located in the common FOV

of multiple sensors.

Our fusion algorithm is given in Algorithm 8.1. We apply CI only to Gaussian components

that are close to each other (lines 5-17), while keeping the rest of Gaussian components intact

(lines 19-23). Closeness of Gaussian components is expressed through Mahalanobis distance

with the threshold UF (line 7). The cardinality of the fused set is computed as the weighted

cardinality of the two initial sets (line 18). After fusing, we merge the components that are

close to each other, similar to Section 8.1.3.

This approach enables us to have the same fusion experience in the common FOV of the two

sensors as when GCI is used, while at the same time keeping track of all the targets that are in

the FOV of only one sensor. We note that the accuracy of vehicles’ pose plays an important

role in the sensor fusion step.

8.3 Cooperative Car Tracking

Section 8.1 shows a general method that can be applied to tracking of any kind of object using

any sensor modality. In this section, we provide additional details and models that we use to

perform tracking of cars using LIDARs.

8.3.1 Kinematic State and Motion Model

Since in this chapter we focus on car tracking, we can afford to use a rectangular model for

representing targets, whose state space is a combination of kinematic and shape parametric

variables:

x =
[

x y v θ ω L W
]�

, (8.33)

where x and y are the Euclidean coordinates of the center of the rectangle, v is the speed,

θ denotes the heading angle and ω is the turn rate. Length and width of the rectangle are

denoted by L and W , respectively. For state propagation we have selected a Constant Turn

Rate and Velocity (CTRV) motion model, in literature also known as coordinated turn with

polar velocity (see for example [89]–[91]), which we have augmented with object dimensions,

63

Chapter 8. Cooperative Multi-Object Tracking Using a Gaussian Mixture Approximation

Algorithm 8.1: Fusion algorithm

Require: {m(i)
1 ,P (i)

1 , w (i)
1 }N1

i=1, {m(j)
2 ,P (j)

2 , w (j)
2 }N2

j=1,UF ,W
1: IF = JF = m =�
2: α(i)

1 = w (i)
1 /

∑
k w (k)

1 , i = {1, . . . , N1}

3: α
(j)
2 = w (j)

2 /
∑

l w (l)
2 , j = {1, . . . , N2}

4: N12 = 0
5: for i = 1 to N1 do
6: for j = 1 to N2 do

7: if (m(i)
1 −m(j)

2)�(0.5(P (i)
1 +P (j)

2))−1(m(i)
1 −m(j)

2) ≤UF } then
8: IF = IF ∪ i {save indices of fused components}
9: JF = JF ∪ j

10: α= (α(i)
1)W(α(j)

2)1−Wκ(W,P (i)
1)κ(1−W,P (j)

2)

·N(m(i)
1 −m(j)

2 ,0,P (i)
1 /W+P (j)

2 /(1−W))

where κ(W,P) = [det(2πPW−1)]
1
2 /[det(2πP)]

W
2

11: P = [W(P (i)
1)−1 + (1−W)(P (j)

2)−1]−1

12: m = P [W(P (i)
1)−1m(i)

1 + (1−W)(P (j)
2)−1m(j)

2]
13: α12 =α12 ∪α,P12 = P12 ∪P,m12 = m12 ∪m
14: N12 = N12 +1
15: end if
16: end for
17: end for

18: w (n)
12 = α(n)

12∑
k α

(k)
12

(
∑N1

i=1 w (i)
1)W(

∑N2
j=1 w (j)

2)1−W, for n = 1, . . . , N12) {Scale weights using weighted

cardinalities of the two sets}
19: for i ∈ I \ IF ∧ j ∈ J \ JF do

20: m12 = m12 ∪m(i)
1 ∪m(j)

2

21: P12 = P12 ∪P (i)
1 ∪P (j)

2

22: w12 = w12 ∪w (i)
1 ∪w (j)

2
23: end for
24: return {m(n)

12 ,P (n)
12 , w (n)

12 }N12
n=1

64

8.3. Cooperative Car Tracking

assumed to be constant. The dynamic state equation is given by

xk+1 = f (xk)+G(xk)ξk , (8.34)

where

f (x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x + (2v
ω

)
sin

(
ωt
2

)
cos

(
θ+ ωt

2

)
y + (2v

ω

)
sin

(
ωt
2

)
sin

(
θ+ ωt

2

)
v

θ+ωt

ω

L

W

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8.35)

G =
[

t 2

2 cos(θ) t 2

2 sin(θ) t 0 0 0 0

0 0 0 t 2

2 t 0 0

]�
(8.36)

ξ=
[

a α
]� =

[
d v
d t

dω
d t

]�
. (8.37)

Input noise on linear and rotation acceleration a and α are threated as uncorrelated random

variables with zero mean and standard deviations σa m/s2 and σα rad/s2, and t represents time.

8.3.2 Measurement Model

At each time step, a LIDAR returns a set of measurement points (a point cloud). Object de-

tection is accomplished in several steps explained in Section 7.3. A processed measurement

contains the center and orientation of one rectangle.

Measurements of rectangle center are directly used to update x and y variables of the state

vector x. The rectangle orientation has a π rad ambiguity (from a static LIDAR scan one cannot

determine object heading but only its orientation). Therefore, before updating the heading θx

in the state vector, we adapt the orientation measurement θz such that the difference between

the orientation measurement and the state heading is wrapped to the interval [−π
2 , π2):

δ= mod (θz −θx + π

2
,π)− π

2

θz = θx +δ
(8.38)

8.3.3 Occlusion and FOV Model

The aim of the occlusion and FOV model is to enable tracking of objects that are temporarily

occluded or are located at the boundaries of the sensing FOV. This is achieved by setting the

probability of detection pD,k (m(i)
k|k−1) to a low value for targets that are not likely to be detected

by a sensor. If this is not performed, the C-GM-PHD filter would quickly decrease weights of

65

Chapter 8. Cooperative Multi-Object Tracking Using a Gaussian Mixture Approximation

those targets and discard them.

We adapt the occlusion model of Granström et al. [92] by verifying occlusions for the two

rectangle corners (with the smallest and the largest bearing angle), and augment it with

FOV verification. Occlusions are verified against all other objects that are estimated to be

in-between the sensor and the object of interest. The decrease in probability of detection is

proportional to the weight of the estimate. One occluded corner decreases pD by maximum

0.5. Gaussian kernels are used to smooth the transition from visible to occluded area. To keep

track of targets that are outside of a sensor’s FOV (through cooperation), we place the Gaussian

kernels along the boundary of the sensor’s FOV. They decrease pD for targets that are at the

boundary or outside of the FOV. The algorithm is described in Algorithm 8.2.

8.4 Experimental Evaluation

Experimental evaluation is performed in a submicroscopic high-fidelity simulator Webots (see

Chapter 5 for description of the simulated models and their calibration). In the remainder of

this section, we explain our experimental setup and the obtained results.

8.4.1 Experimental Setup

In our scenario, we use five simulated Citroën C-ZERO cars: two cars are used for sensing

the other three represent legacy cars to be tracked. This setup allows us to reproduce a po-

tential real-world scenario in a flexible way. Figure 8.3 shows a screenshot of our simulation

environment.

Each of the two cars used for sensing is equipped with a front-facing Ibeo LUX LIDAR, a GNSS

device, a compass and a wireless communication device. Resolution, accuracy, range, and

other sensors’ characteristics are calibrated using sensors’ data sheets. The first sensing car is a

stationary ego car (E), while the second is a stationary cooperative car (C). They are positioned

in a way that their FOVs overlap partially. Two sensing cars are sufficient to showcase the

proposed method, although the method supports multiple sensing cars. The remaining three

non-cooperative cars (NCi , i ∈ {1,2,3}) move in an open space. Car C sends its PHD intensity

augmented by its own localization state to E. NC cars do not have any sensors and do not

share any information. Poses and trajectories of cars are described in Figure 8.4.

Our dataset contains the data we collected during 20 distinctive simulation runs. In each

run, NC vehicles ran an open-loop controller following pre-defined trajectories. Actuator and

sensor (e.g., LIDAR) noise contribute to the randomness of the generated sensing data.

We then run the proposed C-GM-PHD filter in Matlab, feeding it with measurements from

the dataset. We vary the localization accuracy by adding Gaussian noise with zero mean

and standard deviation (SD) of σl ∈ {0,0.5,1} to outputs of GNSS and compass devices (in

m and ◦, respectively). We also vary the communication rate relatively to the sensing rate.

66

8.4. Experimental Evaluation

Algorithm 8.2: Occlusion and FOV Model

Require: Object of interest x, set of all object estimates {x̂(i)}N
i=1 with weights w (i), sensor

range rs and FOV βs

1: Gaussian kernel: g (x;μ,σ) = 0.5exp(−((x −μ)/σ)2)
2: pD = 0,σrs = 1m,σβs = 0.25◦,σβ = 1.5◦

3: Compute range and bearing to object corners: r j ,β j , j = 1,2,3,4
4: Minimum/maximum bearings: j− = argmin j β j ; j+ = argmax j β j

5: Mean range: r+− = 0.5(r j+ + r j−)
6: Object at the boundary of the FOV:
7: if −βS/2 ≤β j− ≤βS/2 then
8: pD = pD + (0.5− g (β j− ;−βs/2,σβs)− g (β j− ;βs/2,σβs))
9: end if

10: if −βS/2 ≤β j+ ≤βS/2 then
11: pD = pD + (0.5− g (β j+ ;−βs/2,σβs)− g (β j+ ;βs/2,σβs))
12: end if
13: Enforce maximum probability of detection: pD = min{pD , pmax

D }
14: if r+− ≥ rS then
15: pD = 0
16: else
17: pD = pD −2g (r+− ;rs ,σrs)
18: end if
19: Object occluded:
20: for i = 1, . . . , N do
21: Range/bearing to corners of estimate: r̂ (i)

k , β̂(i)
k ,k = 1,2,3,4

22: Minimum/maximum bearings: k− = argmink β̂k ,k+ = argmaxk β̂k

23: Mean range: r̂+− = 0.5(r̂ (i)
k+

+ r̂ (i)
k−

)

24: if r̂+− < r+− and β̂(i)
k−

≤β j− ≤ β̂(i)
k+

then

25: pD = pD − (0.5− g (β j− ; β̂(i)
k−

,σβ)− g (β j− ; β̂(i)
k+

,σβ))
26: end if
27: if r̂+− < r+− and β̂(i)

k−
≤β j+ ≤ β̂(i)

k+
then

28: pD = pD − (0.5− g (β j+ ; β̂(i)
k−

,σβ)− g (β j+ ; β̂(i)
k+

,σβ))
29: end if
30: Enforce minimum probability of detection: pD = max{pD , pmi n

D }
31: end for
32: return Probability of detection pD for object of interest

67

Chapter 8. Cooperative Multi-Object Tracking Using a Gaussian Mixture Approximation

Figure 8.3 – A screenshot from the Webots simulator showing the experimental scenario.

−100

0

100

−100 0 100 200 300 400 500

x
po

si
tio

n
[m

]

y position [m]

t [
s]

0

20

40

60

80

E

C

NC1

NC2

NC3

Figure 8.4 – Ground truth trajectories shown in the local frame of E. Time is color coded, being
black at 0 s and orange at 80 s. Cars NC1 and NC2 move on a straight line, while NC3 moves with
rotational motion. Cars E and C and their fields of view are shown in yellow and gray, respectively.
Note: car rectangles are scaled up 3x for visibility reasons.

In particular, we consider T ∈ {1,2,5}, with a communication rate of T = n meaning that

information is exchanged between cars each n samplings of the LIDAR. The LIDAR sampling

rate is instead constant (80 ms) and corresponds to a simulation step in Webots and to the

scanning frequency of the real Ibeo (12.5 Hz). For the sake of simplicity, there is no package loss

and no communication delay in our current implementation (but dealing with communication

delays is straightforward when tracks and motion models are shared).

Parameters

The tracking parameters were the same in all runs. The maximum number of Gaussian com-

ponents per filter Jmax is limited to 30 for the execution speed reasons. The birth model for the

GM-PHD filter is a sum of eight Gaussian components with weight 0.001 located around the

68

8.4. Experimental Evaluation

sensory FOV boundary. The birth speed is 8 m/s, the heading is normal to the FOV boundary

with direction towards inside of the FOV, and the turn rate is set to 0.025 rad/s. The SD for a

birth component is 50 m for the lateral and 30 m for the longitudinal position, 6 m/s for the

speed, π rad for the heading, and 0.2 rad/s for the turn rate. A new target entering the sensing

FOV is very likely to be contained within one SD from one of the birth component means. The

SD for the noise in the motion model is set to σa = 1 m/s2 and σα = 0.1 rad/s2. The measurement

noise is determined empirically and is modeled as a Gaussian with SD σx = 2 m, σy = 2 m, and

σθ = 0.78 rad. The clutter model uses a Poisson distribution with an expected cardinality of

10 measurements per sensor surveillance area. The merging parameter U = 6 and a Gaussian

component is pruned if its weight is less than Tp = 10−5. The extraction threshold Te is set to

0.5. The fusion distance parameter UF is empirically set to 50. The Ibeo LUX LIDAR has a FOV

of 110◦ and a range of 200 m. The probability of survival in the joint FOV is set to 0.99. The

probabilities of detection are set as follows: pmax
D = 0.98 and pmi n

D = 0.02. The shape of the

object is assumed to be rectangular, with length of 3.5 m and width of 1.5 m.

The literature suggests optimization methods for choosing a good value for the CI fusion weight

W [83], as well as approximate solutions based on the fused covariance trace or determinant

minimization [93]. However, Uney et al. [94] suggest that fixing W at 0.5 produces near optimal

results on average. Therefore, the value for W is set to 0.5 in our experiments. This choice will

be further refined in Part IV.

8.4.2 Results

We evaluate the performance of the C-GM-PHD filter by comparing its output to the ground

truth data measured at the supervisor level in the high-fidelity simulator Webots. For multi-

object performance evaluation we use the Optimal Sub-Pattern Assignment (OSPA) metric

[95] defined for two arbitrary finite sets X = {x1, . . . , xm} and Y = {y1, . . . , yn} , where m,n ∈N0:

d̄ (c)
p (X ,Y)�

(
1

n

(
min
π∈Πn

m∑
i=1

d (c)(xi , yπ(i))
p +cp (n −m)

))1/p

(8.39)

if m ≤ n, and d̄ (c)
p (X ,Y)� d̄ (c)

p (Y , X) if m > n. The distance between x and y cut-off at c > 0 is

denoted by d (c)(x, y)�min(c,d(x, y)), and Πq is the set of permutations on {1,2, . . . , q} for any

q ∈N. If m = n = 0, then the OSPA is set to 0 by definition.

As can be seen from Equation (8.39), the OSPA is comprised of two components, the first

accounting for localization and the second for cardinality errors of the estimates. The OSPA is

computed using the association between the sets X and Y that yield the smallest error. We

choose the order (i.e., the sensitivity of the metric in penalizing estimated position) p = 2, and

the cut-off parameter for cardinality errors penalties c = 60. The distance metric in d(x, y) is

the Euclidean distance between estimated and ground truth position. In general, the better

performance, the lower OSPA error.

69

Chapter 8. Cooperative Multi-Object Tracking Using a Gaussian Mixture Approximation

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

t [s]

O
S

P
A

Figure 8.5 – OSPA distance versus time for a single run.

Figure 8.5 displays the OSPA error for a single run of C-GM-PHD filter, for σl = 0 and T = 1.

Figure 8.6 shows the localization and cardinality OSPA components. The target set cardinality

was correctly estimated 91% of time. Short periods of wrong cardinality estimation, as shown

in Figure 8.6, are the result of the filter delay (multiple consecutive observations of a new object

are needed for the filter to give birth to a new target), transitions between the FOV of E and C

vehicles, and occlusions. When a target goes from the FOV of only one filter to the common

FOV, the C-GM-PHD filter might lose track of it for a short moment. This is due to fusing two

Gaussian components, one with w ≈ 1 and the second one with a low weight (e.g., target in

the birth phase). For a chosen value of W= 0.5, CI gives equal weights to the two Gaussian

components, hence the weight of the fused component may get lower than the extraction

threshold Te = 0.5. While the choice of W = 0.5 may be justified for the case when sensors’

FOVs overlap fully and sensors are characterized by same noise, in our case an optimization of

W is needed to correctly tackle this issue. We thus address the weight optimization problem in

Part IV).

The occlusion and FOV model presented in Section 8.3.3 is dependent on the targets’ position

estimate error, and it happens that a detectable target is assigned low pD or vice-versa. This

can as well happen when the target is near to the boundaries of the FOV. Nevertheless, it

is important to note that all wrong cardinality estimates represent false negatives, which is

desirable when driver assistance systems are considered (this is however not the case for

autonomous vehicles, where eliminating false negatives represents a crucial step towards

achieving a save operation). The DBSCAN clustering algorithm discards all clusters with less

than two measurements. In cases when two or more clutter measurements fall next to each

other, the PHD filter successfully filters them out. Statistics over 20 runs for all combinations

of σl and T is given in Figure 8.7. As expected, OSPA error increases with localization error and

decreases with higher communication rate.

The estimated position of car NC1 is shown in Figure 8.8, together with its associated un-

70

8.4. Experimental Evaluation

0 10 20 30 40 50 60 70 80
0

5

10

15

O
SP

A
 L

oc

0 10 20 30 40 50 60 70 80
0

20

40

60

t [s]

O
SP

A
 C

ar
d

Figure 8.6 – Separate OSPA components for a single run. (Top) localization component versus
time; (Bottom) cardinality component versus time.

certainty, for σl = 1 and T = 5. Uncertainty is notably higher at around t = 10 s, when NC1

was occluded and therefore no measurement-based corrections were applied. After t = 30 s,

NC1 leaves the FOV of car E, and is thus only observable by car C. The estimated position

uncertainty is significantly higher in this region due to localization uncertainties of cars C and

E, as expected.

The performance of the C-GM-PHD filter is further compared to the performance of the non-

cooperative GM-PHD filter, and the result is shown in Figure 8.9. A fair comparison can only

be done in the FOV of E (because a non-cooperative filter does not track objects outside of this

area). Thus, the ground truth targets are considered only in this region, and the C-GM-PHD

filter is modified to perform the cooperative fusion only if targets are found in the FOV of E.

We observe that, thanks to cooperation, the C-GM-PHD filter needs less time to start tracking

the first target, C. With the exception of two peaks (moments when the C-GM-PHD briefly

loses targets around t = 22 and 25 s, respectively), the C-GM-PHD filter performs consistently

better or equal than its non-cooperative version.

The total tracking time of all objects is listed in Table 8.1. We can observe the added value of

71

Chapter 8. Cooperative Multi-Object Tracking Using a Gaussian Mixture Approximation

0

20

40

60

GP/H
CR

MP/H
CR

BP/H
CR

GP/M
CR

MP/M
CR

BP/M
CR

GP/LCR

MP/LCR

BP/LCR

O
SP

A

Figure 8.7 – OSPA statistics for 20 runs, for various values of localization (GNSS and compass)
white noise standard deviation σl , and communication rate T parameters. GP, MP, BP stand for
good, medium and bad positioning, i.e., σl = 0,0.5 and 1, respectively. HCR, MCR and LCR stand
for high, medium and low communication rate, i.e., T = 1,2 and 5, respectively.

Table 8.1 – Total tracking time per target in the union of the FOVs.

C NC1 NC2 NC3

GM-PHD 78.7 s 24.1 s 18.6 s 33.5 s
C-GM-PHD 79.9 s 37.9 s 47.3 s 53.5 s

the extended FOV and filter reactiveness that is offered by the C-GM-PHD filter.

Summary

We presented an algorithm for cooperative car tracking that we named C-GM-PHD filter.

It is based on the GM-PHD filter, which is run independently on each of the cooperative

vehicles. Additionally, the ego vehicle fuses the PHD intensity that it receives from the

cooperative vehicle. The proposed fusion algorithm is our main contribution in this

chapter. We performed evaluation in the high-fidelity simulator Webots in a scenario

that hosted a total of 5 vehicles: two sensing cars and three legacy cars.

72

8.4. Experimental Evaluation

10 20 30 40

60

65

70

75
x

10 20 30 40
−100

0

100

200

t [s]

y

Figure 8.8 – The estimated trajectory of target NC1 with associated uncertainty, for a single run
with parameters σl = 1 and T = 5. For periods in which the target is lost (e.g., at around t = 32 s),
the estimated trajectory is not drawn, whereas the uncertainty is interpolated.

10 20 30 40 50 60 70 80

−40

−20

0

20

40

Time [s]

O
S

P
A G

M
−

P
H

D
−

O
S

P
A C

−
G

M
−

P
H

D

Figure 8.9 – Difference between a non-cooperative GM-PHD filter and a C-GM-PHD filter ex-
pressed using OSPA. Red line is a marker at zero.

73

9 Cooperative Multi-Object Tracking Using
a Sequential Monte Carlo Approximation

C O M M O N implementations of the PHD filter include the GM and SMC PHD filter.

In Chapter 8, we presented an approach for tracking and fusion of information

between two cars each running an instance of the GM-PHD filter. In this chapter,

we propose an integrated approach of localization with multiple target tracking,

factoring uncertainties from the localization itself into tracking. For cooperative fusion we

propose the use of a Cooperative SMC-PHD (C-SMC-PHD) filter that builds upon the SMC-

PHD filter introduced in [67] and extends it with fusion of SMC-PHD densities. Our novel

fusion approach generalizes the EMD method introduced in [83] by dealing with information

acquired by a cooperating vehicle outside of the tracking vehicle’s FOV. In this approach,

fusion of the two SMC-PHD intensities is performed in the global frame, after factoring in the

localization uncertainty of the sensing vehicles.

The general concept of the C-SMC-PHD is a five-step process illustrated in Figure 9.1, where

the prediction, update, and target extraction steps are taken from [67] and are summarized in

Sectopn 9.1 for completeness. Our distributed fusion approach is presented in Section 9.2.

9.1 Multi-Object Tracking Using an SMC-PHD Filter

The PHD filter overcomes the impracticality of the implementation of a multi-target Bayes

nonlinear filter by propagating only the first-order moment of the multi-object posterior

density [96]. Like any recursive Bayesian filter, the PHD filter contains the prediction and

update steps, both of which are carried out by a random sample approximation using an SMC

implementation, such that the posterior of the PHD intensity at time k −1 is approximated by

a random sample set as follows:

νk−1(x) ≈
N∑

n=1
wn

k−1δxn
k−1

(x) (9.1)

where δxn
k−1

(x) = δ(x−xn
k−1) is the Dirac delta function and {(wn

k−1,xn
k−1)}N

n=1 a weighted particle

set comprising of N random samples xn
k−1 and its corresponding weights wn

k−1. Furthermore,

75

Chapter 9. Cooperative Multi-Object Tracking Using a Sequential Monte Carlo
Approximation

Figure 9.1 – The C-SMC-PHD filter illustrated. Fusion of intensities from cooperating agents is
carried out only if information is available. Otherwise, the filter of the tracking agent continues
without cooperation. The blocks in green represent our contributions while the other blocks
represent the state-of-the-art approach.

the number of targets can be extracted from the particle set by summing up the importance

weights for large values of N . Ristic et al. also proposed in [67] that particles should be spawned

around the measurement set Zk at every time step k to avoid inefficient use of particles in

estimating the posterior. The distinction between newborn and persistent particles (bearing

indices b and p, respectively) is evident through the recursive implementation of the filter.

9.1.1 Prediction

In the prediction step, ρ newborn particles of states xn
k|k−1,b are generated around each meas-

urement z ∈ Zk with a uniform weight

wn
k|k−1,b =

γb
k|k−1

ρmk
, (9.2)

where mk is the cardinality of measurements at time k and γb
k|k−1 is the expected number of

newborn targets between time k −1 and k.

Additionally, the states of persistent particles xn
k|k−1,p are propagated according to the dynam-

ics defined by the single-object transition density. Weights of persistent particles are also

revised according to the survival probability pS given by:

w n
k|k−1,p = pS(xn

k−1)wn
k−1,p . (9.3)

76

9.1. Multi-Object Tracking Using an SMC-PHD Filter

9.1.2 Update

In this step, the weights of the persistent (wn
k|k−1,p) and newborn (wn

k|k−1,b) particles repres-

enting both their respective intensities are updated as

wn
k,p =

[
1−pD (xn

k|k−1,p)
]

w n
k|k−1,p + ∑

z∈Zk

pD (xn
k|k−1,p)gk (z|xn

k|k−1,p)wn
k|k−1,p

L(z)
(9.4)

for persistent particles and

wn
k,b = ∑

z∈Zk

wn
k|k−1,b

L(z)
(9.5)

for newborn particles, where

L(z) = κk (z)+
ρmk∑
n=1

wn
k|k−1,b +

Nk−1∑
n=1

pD (xn
k|k−1,p)gk (z|xn

k|k−1,p)wn
k|k−1,p . (9.6)

pD (x) furthermore represents the detection probability of a target with state x while gk (z|x)

represents the single-target measurement likelihood at time k. Measurement-associated

clutter is also factored in with the term κk (z).

9.1.3 State Estimation Extraction

It is noted that the second term in Equation (9.4) can essentially be viewed as a sum of weights

corresponding to each measurement z ∈ Zk . If each measurement in the measurement set is

indexed Zk = {zk, j | j = 1,2, ...,mk }, an additional weight metric for each measurement of index

j where j = {0,1, ...,mk } can be defined:

wn, j
k,p =

⎧⎨⎩
[

1−pD

(
xn

k|k−1,p

)]
wn

k|k−1,p j = 0
pD (xn

k|k−1,p)gk (z|xk|k−1,p)w n
k|k−1,p

L(z) j = 1, ...,mk

. (9.7)

The index j = 0 represents the measurement-independent first term of Equation (9.4).

Therefore, each measurement index j can be given an associated weight W j
k,p =∑Nk−1

n=1 wn, j
k,p

with 0 ≤W j
k,p ≤ 1. Intuitively, W j

k,p would be high for a certain measurement if zk, j resulted in

non-zero likelihood for some particles, indicating that the measurement originated from a

target, and close to zero otherwise. The state estimate to each measurement index is then only

reported if the weight W j
k,p above a given reporting threshold Te .

Correspondingly, the state estimate x̂k, j and its associated covariance matrix Pk, j can be

77

Chapter 9. Cooperative Multi-Object Tracking Using a Sequential Monte Carlo
Approximation

obtained as:

x̂k, j =
Nk−1∑
n=1

wn, j
k,p xn

k|k−1,p

Pk, j =
Nk−1∑
n=1

wn, j
k,p

(
xn

k|k−1,p − x̂k, j

)(
xn

k|k−1,p − x̂k, j

)T
. (9.8)

9.1.4 Resampling

The resampling step represents a core component of SMC methods and ensures that the

filter contains more particles of higher weight and fewer of those with lower weights. In our

implementation, we use the low variance resampling [84] (or more recently known as the

resampling wheel). At the end of this step, the importance weights of all persisting particles

are set to 1/Nk−1 since weight-based likelihoods are replaced by frequencies when samples

are drawn by weights.

9.2 Cooperative Fusion

Given that each agent runs an instance of the SMC-PHD filter as shown in Figure 9.1, the

goal of fusion to is to obtain the fused PHD posterior intensities of both PHD posteriors. In

this case, our contribution involves providing a generalized approach to fuse PHD posterior

intensities where the FOVs of the cooperating agents are not completely overlapping. This is

achieved by using the EMD approach introduced in [83] for completely overlapping segments

of the field of view and a novel method for incorporating information from the cooperating

agent that is outside of the tracking agent’s FOV.

Upon receiving particles from the cooperating agent and transforming them to the global

reference frame, we cluster particles over the whole state space using the DBSCAN algorithm

[85] to obtain a set of R particle clusters {rl |l = 1,2, ...,R} and obtain the mean of each cluster p̄l .

Instead of a binary assignment p̄l ∈ FOVown or p̄l ∉ FOVown , we employ the logistic function

defined as:

fp (x) = 1

1+exp(−ρ ·angθsup
(x))

(9.9)

to obtain a continuous probability weighting in the immediate vicinity of FOVown . angθsup
(x)

represents the angular difference from particle x to the extreme angles θsup of the field of view.

The logistic function is hence calculated with respect to the angle of the FOV as visualized in

Figure 9.2.

A simple heuristic is used to decide whether to consider received particles as external to the

tracking vehicle’s FOV or as common to both FOVs is given in lines 1 – 14 of Algorithm 9.1. This

non-binary classification of particles ensures that transitions between fields of view occur

78

9.2. Cooperative Fusion

Figure 9.2 – The logistic function with ρ =±8 with θsup being the extreme angles of the field of
view of the LIDAR sensor.

smoothly and target estimates are not lost.

Bearing in mind that the fusion algorithm proposed in [83] requires that two FOVs intersect, we

are still left with removing particles that might be in FOVi nter nal := FOVown\FOVother . This

is achieved by determining the area defined by the intersection of two fields of view FOVown

and FOVother by representing them as convex polygons. The intersection set of two convex

polygons can be obtained in linear time [97] and is also a convex polygon itself. Lines 15 – 24

elaborate on the procedure for finding particles that belong to the common FOV.

9.2.1 Fusion within the Common FOV

Given two PHD posterior intensities of two i.i.d. cluster distributions fi and f j , the EMD of

these two cluster distributions is also an i.i.d. cluster distribution defined as

f(·)(X) = n! ·μ(·)(n)
∏

x∈X
ν(·)(x), (9.10)

79

Chapter 9. Cooperative Multi-Object Tracking Using a Sequential Monte Carlo
Approximation

Algorithm 9.1: Procedure for classifying received particles.

1: ξext ←� {ext. particle set}
2: ξcm ← [] {common particle set}
3: for rl ∈ {rl |l = 1,2, ..,R} do
4: p ← fp (p̄l)
5: if p = 0 then
6: Insert rl into ξext .
7: else
8: Penalize rl by p.
9: Insert rl into ξcm .

10: if p < 1 then
11: Insert rl into ξext .
12: end if
13: end if
14: end for
15: ξi nter sect ← []
16: Pown ← Polygon(FOVown) {Create polygon from FOV}
17: Pother ← Polygon(FOVother)
18: Pi nter sect ←Pown ∩Pother

19: for (wn ,xn) ∈ {(w n ,xn)}N
n=1 do {own particle set}

20: if xn ∈Pi nter sect then
21: Insert (wn ,xn) into ξi nter sect

22: end if
23: end for
24: ξcm ← ξcm ∪ξi nter sect

25: return ξext , ξcm

where

νW(x) =
νWi (x)ν1−W

j (x)

ZW

(
νi ,ν j

) , (9.11)

μW =μW
i ·μ1−W

j ·ZW(νi ,ν j), (9.12)

ZW

(
νi ,ν j

)=∫νi (x)Wν j (x)1−Wdx. (9.13)

In our case, we assume a Poisson distributed cardinality from both nodes given by the means

μ(·). The resulting cardinality is hence also Poisson distributed.

The parameter W ∈ [0,1] determines the relative weight assigned to each distribution and

needs to be extrinsically chosen. The optimalW can be obtained by minimizing a cost function

defined by the Rényi Divergence (RD) [98] and is given by

W∗ = ar g mi n
W∈[0,1]

(Rα(fW|| fi)−Rα(fW|| f j))2, (9.14)

80

9.2. Cooperative Fusion

where

Rα

(
fW|| fi

)= 1

α−1
log

Nmax∑
n=0

[
μα
W(n)μ(1−α)

i (n)

(
ZαW

(
νi ,ν j

)
ZW

(
νi ,ν j

)α
)n]

, (9.15)

Rα

(
fW|| f j

)= 1

α−1
log

Nmax∑
n=0

[
μα
W(n)μ(1−α)

j (n)

(
Zα(1−W)

(
νi ,ν j

)
ZW

(
νi ,ν j

)α
)n]

(9.16)

and Nmax representing the maximum number of targets that would be tracked by the filter at

any time. μx (n) represents the probability mass function of the Poisson distribution over n

with a mean λx being the cardinality of node x. Here 0 <α< 1 is a parameter which determines

how much we emphasize the tails of two distributions in the metric. By taking the limitα→ 1 or

by setting α= 0.5, the RD becomes the Kullback-Leibler divergence and the Hellinger affinity,

respectively.

Bearing in mind that both PHD posteriors are implemented with SMC methods, the continuous

approximations of the distributions have to be reconstructed from the particle sets of both

distributions. This is achieved with the Kernel Density Estimation (KDE) method [99], in which

the estimated density is obtained from the sum of kernel functions at particle points. An

explicit particle to measurement association is also created by clustering particles using the

DBSCAN [85] algorithm to construct separate KDEs over each cluster to ensure the closest

approximation of the true posterior density instead of an over-smoothed density function.

For each cluster k ∈K= {k1, ...,kK}, the covariance Pk is computed to find the density estimate

as

ν̂ (x|Z1:k) = 1

M

M∑
m=1

Kh
(
x;x(m),Pkm

)
, (9.17)

where the bandwidth h = n−1/(d+4) is calculated according to Scott’s Rule [100], with n the

number of data points and d the number of dimensions.

The union of particle sets PU from both nodes with MW = Mi +M j particles is obtained to

sample from the fused state density defined in Equation (9.11) in order to obtain estimates

ν̂i (x) and ν̂ j (x). Thereafter, the estimate given in Equation (9.13) can be expressed as:

ẐW(νi ,ν j) := ∑
x∈PU

ν̂(W)
i (x)ν̂(1−W)

j (x)

Mi ν̂i (x)+M j ν̂ j (x)
. (9.18)

The weight of the m′-th particle in PU is also estimated as:

ζ̂(m′) ∝
ν̂(W)

i

(
x(m′)

)
ν̂(1−W)

j

(
x(m′)

)
Mi ν̂i

(
x(m′)

)+M j ν̂ j
(
x(m′)

) , (9.19)

resulting in the union particle set {(ζ(m′), x(m′))}MW

m′=1.

81

Chapter 9. Cooperative Multi-Object Tracking Using a Sequential Monte Carlo
Approximation

Algorithm 9.2: Procedure for handling particles representing external targets at a time step k

1: if New information from cooperating agent available then
2: Replace external particle set with incoming information from cooperating agent.
3: end if
4: External particles are propagated according to their dynamics and their weights reduced

by the survival probability pSext , analog to (9.3).
5: In the target extraction step, an external target corresponding to an external measurement

j is only reported if W j
k,p ≥ Te .

6: Sampling of external particles is carried out over each target estimate x̂k, j and its
covariance Pk, j according to Equation (9.8).

Having obtained Equation (9.18), Equation (9.14) can be computed for a different values of W

using exhaustive search in equidistantly distributed points over the interval [0,1]. Finally, the

weights in Equation (9.19) can be obtained for the optimal W∗.

Thereafter, the particle set PU and the set of particles in FOVi nter nal are re-sampled separately.

The union of PU and the particles in FOVi nter nal is created to be used in the prediction and

update steps of the next iteration.1

9.2.2 Incorporating External Information

Unlike particles in the common FOV that can be predicted and updated according to measure-

ments, external particles can only be predicted by the transitional densities, since the tracking

agent receives no associated measurement. Algorithm 9.2 briefly explains the handling and

propagation of external particles.

9.2.3 Propagation of Localization Uncertainty

For the particular context of multiple target tracking on a moving vehicle, we propose cascading

of an UKF filter dedicated to the vehicle state estimation with a C-SMC-PHD filter as an

approach to solve the full problem of localization of the tracking vehicle and the tracking of

multiple objects. The UKF introduces a deterministic method for choosing a set of weighted

sigma points approximating the distribution with a priori mean x̄ and covariance P̄xx which

are subjected to a nonlinear transform. Thereafter, the a posteriori mean ȳ and covariance P̄y y

of the distribution can be obtained by the weighted average and weighted outer product of the

transformed points respectively.

The state and measurement are both defined by the position (x, y), orientation (ϕ) and speed

(v) of the tracking vehicle: x = z = [x, y,ϕ, v
]
, emulating GNSS data with an on-board compass

1It should be noted that the number of particles chosen in the resampling step has to be identical in both agents
when carrying out the fusion step. Otherwise, this might result in a problem due to unequal weights.

82

9.3. Experimental Evaluation

and using the following state transition function:

xk = xk−1 + v · si n(ϕk−1), (9.20)

yk = yk−1 + v · cos(ϕk−1), (9.21)

ϕk =ϕk−1, (9.22)

vk = vk−1. (9.23)

The a posteriori state estimate x̄l
k along with its error covariance P̄ l

k (where superscript l

denotes variables used in the localization filter) of the UKF is then used as input in the C-

SMC-PHD filter in order to transform tracked targets from the local coordinate frame of

the tracking vehicle into the global coordinate frame. The representation of tracked targets

in global coordinate frame is necessary as cooperating vehicles might not possess relative

positional information.

As the objects tracked by the C-SMC-PHD filter are assumed to be vehicles in this context,

they are modeled in the same way as the state of the tracking vehicle. Hence, their single state

transition model is also defined by Equations (9.20) – (9.23). As such, we also assume that

the measurement obtained contains the positional information as well as the orientation of

tracked targets by preprocessing data from the laser range sensor, as described in Section 7.3.

The likelihood model is given as a multivariate Gaussian distribution:

gk (zk |xk|k−1) = 1√
(2π)3|Σ|

exp
(−0.5(zk −xk|k−1)T Σ−1(zk −xk|k−1)

)
(9.24)

where Σ represents the measurement uncertainty.

Bearing in mind that the preprocessing of data from LIDARs to extract the pose of tracked

vehicles generally result in inaccuracies, especially at larger distances, the model provided in

Equation (9.24) has to take into account both the uncertainty in localization of the tracking

vehicle as well as uncertainty of the tracked vehicles. We hence reconsider Equation (9.24)

such that

Σ= P̄ l
k +diag(σ2

x ,σ2
y ,σ2

ϕ,σ2
v), (9.25)

where σ(·), (·) = {x, y,ϕ, v} represents the standard deviation for x-y coordinates, the vehicle

orientation in global coordinates and speed, respectively.

An illustration of this procedure is reported in Figure 9.3.

9.3 Experimental Evaluation

The experimental evaluation of the C-SMC-PHD algorithm is carried out using Webots. Simu-

lated Citroën C-ZERO cars were equipped with front-facing Ibeo LUX LIDARs, GNSS devices,

83

Chapter 9. Cooperative Multi-Object Tracking Using a Sequential Monte Carlo
Approximation

Figure 9.3 – An illustration of the cascading of an UKF and a C-SMC-PHD filter at time k.

wireless communication devices and compasses. The algorithm is implemented in Python,

and the datasets collected in Webots are post-processed.

9.3.1 Scenario

A scenario involving two moving cars (E,C), each running an instance of the state estimation

— C-SMC-PHD filter tracking up to four moving cars (NC1,NC2,NC3,NC4) in an open space

is presented. Both E and C travel at constant velocity of 10 km/h. The LIDARs in this scenario

have an effective range of 200 m, a horizontal FOV of 90◦, and operate at a scanning frequency

of 25 Hz.

The trajectories of the cars are shown in Figure 9.4. The speed of cars NCi , i = {1,2,3,4} follows

the function:

v(t) =

⎧⎪⎨⎪⎩
20 0 ≤ t ≤ 4

20−4 · (t −4) 4 < t ≤ 8

4+4 · (t −8) 8 < t ≤ 18

(9.26)

where v(t) is measured in km/h and t in seconds. This scenario aims to model a typical slow-

speed traffic scenario as close as possible while showing the general case where two vehicles

running tracking algorithms do not perceive the exact same scene: in the beginning only cars

NC1 and NC2 are found in the overlapped zone; towards the middle of the scenario, they leave

the union of the two FOVs, about the same time the cars NC3 and NC4 enter the common FOV.

9.3.2 Parameters

The UKF used for localization of the tracking vehicles was initialized with the following para-

meters intrinsic to a typical KF:

P0 = R = diag(4.02,4.02,0.012,0.012) (9.27)

Q = diag(0.005,0.005,0.01,0.01). (9.28)

84

9.3. Experimental Evaluation

-50050100150200250300

x m

-100

-80

-60

-40

-20

0

20

40

60

y
m

0

1.8

3.6

5.4

7.2

9

10.8

12.6

14.4

16.2

18

se
co
nd
s

Figure 9.4 – The vehicle trajectories in the experimental scenario. The gray and red lines denote
the FOVs of vehicles E and C, respectively.

P0 represents the initial estimate covariance, while the mean of the initial distribution was

chosen as the first measurement of the simulation for each tracking vehicle. Q represents the

covariance of the process noise. The first two entries of the observation model covariance mat-

rix R correspond to the variance in GNSS measurements while the orientation of the vehicle

was assumed to be determined by a compass with insignificant inaccuracy. An insignificant

inaccuracy in determining the speed of the vehicle was also assumed in this case. Furthermore,

the choice of sigma points was taken from [101].

For the C-SMC-PHD filter, 100 particles per persisting measurement were used while ρ = 40

particles were birthed around each new measurement at every iteration. The spawning of

newborn particles at time k around a measurement follows a Gaussian distribution with the

standard deviation of the position corresponding to the first two diagonal entries of Pk . A

Poisson distribution with λclut ter = 1 was used to simulate the occurrence of clutter resulting

from multiple LIDAR measurements at each iteration. The cooperation step of the C-SMC-PHD

was carried out every third sensing step to realistically model real world conditions where

network communications often occur at a lower rate than sensor readouts.

Additionally, we chose the second term of Equation (9.25) to be diag(1.32,1.32,0.12,0.12). The

standard deviations for the estimated position of the tracked vehicles were experimentally

obtained from a scenario where the tracking vehicles were stationary.

85

Chapter 9. Cooperative Multi-Object Tracking Using a Sequential Monte Carlo
Approximation

9.3.3 Results

We present the results of the scenario with the given parameters along with a discussion

of noteworthy observations. The dataset collected in this experiment contains 30 distinct

simulation runs where each vehicle starts at the same positions and runs an open-loop

controller. We note that the fusion of data for the cooperative component of the C-SMC-PHD

filter is done only on the vehicle E, unless otherwise mentioned. The following results are also

discussed with respect to this latter vehicle.

The OSPA metric [95] was used for multi-object performance evaluation. It comprises of two

components — one considering localization errors while the other considers the mismatch in

cardinality. For our case, an important consideration is the relative performance of the C-SMC-

PHD filter with respect to the non-cooperative variant. As no significant improvements in

cardinality is expected through cooperation, we only focus on the comparison of localization

errors. For computing the OSPA error, the sensitivity of the metric in penalizing the estimated

position p = 1 was chosen.

A comparison of the cooperative and non-cooperative filter’s OSPA localization errors averaged

over 30 runs is provided in Figure 9.5 and Figure 9.6. The right diagram of Figure 9.6 further-

more provides a comparison of the average difference in OSPA error between the cooperative

and non-cooperative variant of the multiple vehicle tracking filter. To ensure a fair comparison,

only targets in the FOV of the vehicle E are considered when computing the OSPA error, since

no targets outside of this area can be observed when the non-cooperative filter is used.

No statistically significant difference is observed in this comparison. We believe the absence

of significant improvements could be attributed to the localization uncertainty of tracking

vehicles, which correspondingly results in an uncertain transformation of the tracked vehicles

from the vehicle’s local frame to global coordinates. Furthermore, the fact that the two vehicles

observe targets from a similar position could also contribute to this result. However, it is

important to note that cooperation with a vehicle that tracks poorly due to localization error

or other factors does not degrade the sensing vehicle’s tracking accuracy.

A comparison of the cooperative and non-cooperative filter’s tracking errors per tracked vehicle

is shown in Table 9.1, as observed from both tracking vehicles. Values here are averaged over

all state estimates of a simulation run and over all simulation runs. Once again, only targets in

the internal FOV of the corresponding tracking vehicle are considered. The C-SMC-PHD filter

showed on average a slightly better accuracy than its non-cooperative counterpart.

It is furthermore worth noting that the significant tracking errors even at short distances (for

vehicles NC3 and NC4 especially) could be partially attributed to the preprocessing of raw

LIDAR data and the limited angular resolution of the LIDAR sensor, since a point cloud relating

to a vehicle can vary significantly with vehicle’s pose in the sensing FOV.

An important aspect of our approach is also to provide a reliable estimate of external tracked

86

9.3. Experimental Evaluation

Table 9.1 – A comparison of tracking accuracy of common vehicles between cooperative and
non-cooperative tracking.

Tracked
vehicles

Tracking accuracy as perceived
from vehicle (in meters):

E C

Coop No-coop Coop No-coop

NC1 2.001 2.133 1.854 1.842
NC2 1.920 2.060 1.776 1.832
NC3 0.994 1.042 1.467 1.499
NC4 1.377 1.392 1.048 1.116

Table 9.2 – A comparison of tracking accuracy of external vehicles (outside the direct FOV) between
direct and cooperative tracking. The entries in bold correspond to the external vehicle of E/C.

Tracked vehicles Tracking accuracy as perceived from vehicle:
E C

NC3 2.374 1.499
NC4 1.392 3.123

vehicles (vehicles not in the tracking vehicle’s FOV), of which we have no additionally inform-

ation except from that of cooperating vehicles. In the case of our scenario, E and C track

NC3 and NC4 exclusively for a certain amount of time and provide this information to each

other as described in Section 9.2.2. The tracking accuracy of external vehicles for E and C

is shown in Table 9.2. Although it is observed that external vehicles are tracked worse com-

pared to the tracking done with own measurements, this is only to be expected owing to the

reduced frequency of cooperation (once every three sensing steps, as noted in Section 9.3.2)

and localization uncertainty of the two tracking vehicles.

When viewed in relation to the range and FOV of LIDARs, the disparity observed is not very

significant considering that information on external vehicles could be easily more than tens of

meters away from the tracking vehicle itself.

Summary

This chapter presented an approach for cooperative multi-object tracking based on an

SMC-PHD filter. It represents an alternative to the GM approach. While the SMC-PHD

filter does not require a Gaussian assumption for process and sensor models, our co-

operative fusion does as it is based on the KDE method for continuous approximation

of i.i.d. distributions. We proposed to factor in the localization uncertainty in the likeli-

hood model of the SMC-PHD filter. Localization is implemented using an UKF which

fuses GNSS and compass data. Experimental evaluation is performed in Webots in a

slow-speed scenario involving two cooperative and four non-cooperative cars.

87

Chapter 9. Cooperative Multi-Object Tracking Using a Sequential Monte Carlo
Approximation

0 2 4 6 8 10 12 14 16 18

Time (seconds)

-5

0

5

10

15

20

25

O
S
P
A

(a) Without cooperation

0 2 4 6 8 10 12 14 16 18

Time (seconds)

-5

0

5

10

15

20

25

O
S
P
A

(b) With cooperation

Figure 9.5 – A comparison of OSPA localization errors between non-cooperative tracking (left
column) and the C-SMC-PHD filter (right column) as viewed from E. The corresponding standard
deviation is also plotted as error bars.

No-coop Coop

0

5

10

15

20

O
S
P
A

0 2 4 6 8 10 12 14 16 18
Time (seconds)

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

O
S
P
A
S
M
C
-P

H
D
−

O
S
P
A
C
-S
M
C
-P

H
D

Figure 9.6 – A comparison of the statistics (left) of the total OSPA localization errors between
non-cooperative tracking and the C-SMC-PHD filter as well as difference in OSPA error (right)
between non-cooperative and the C-SMC-PHD filter as observed from E.

88

10 An Overtaking Assistance System Based
on Cooperative Perception

I N this chapter, we showcase a possible application of cooperative perception al-

gorithms. In 2013, there was a total of 81,000 accidents while overtaking in the USA [102].

Overtaking is one of the most dangerous maneuvers on two-way roads for a couple

of reasons. Firstly, the driver’s FOV gets partially occluded by the preceding vehicle

thus impairing visibility conditions. Secondly, humans tend to make wrong judgments and

underestimate distances and relative speeds of the oncoming traffic. These factors can lead

to an accident, which often ends up with fatalities. We believe that cooperation between

the vehicle that is performing the overtaking maneuver and the vehicle being overtaken can

mitigate these effects and contribute to traffic safety.

It is well known that distances to remote objects and their relative velocities can be estimated

more accurately using sensors than by bare eyes. Vehicles’ built-in intelligence can therefore

be a useful aid to human drivers in these situations. However, there exist situations in which

individual intelligent vehicles cannot perform very well: no matter what sensor technology is

used, all sensors suffer from limited range or FOV, or from Non-Line-Of-Sight (NLOS) condi-

tions to some extent. Hence, cooperation of vehicles by the means of exchanging the sensing

data or track estimates can be advantageous.

In this chapter, we consider a sample scenario depicted in Figure 10.1. It introduces three

types of cars: the ego (E), the leading (L) and the oncoming (O) cars. The car E is an intelligent

vehicle which contains sensors enabling it to perceive the environment and estimate its state.

It processes the information and, once it encounters a slower car ahead, assesses the risk of

overtaking and makes an overtaking decision. The car L is any car that finds itself driving

in front of the car E, on the same lane at lower speed. It may be equipped with sensors and

may share its information with the car E through communication. The car O is any car that

drives on the passing lane of the car E, in the opposite direction. It possesses no senors

nor communication equipment, and it represents a potential hindrance to the overtaking

maneuver.

In this chapter we present an algorithm which assesses the overtaking risk and decides if

89

Chapter 10. An Overtaking Assistance System Based on Cooperative Perception

Before the overtaking:

E vE
L vL

OvO
d

s

After the overtaking:

E
vE

L
vL

O

vO

dexpdover

Figure 10.1 – Example of an overtaking scenario.

the car E can overtake the car L safely. The algorithm relies on information provided by the

C-GM-PHD filter presented in Chapter 8. The cars E and L run the tracking algorithm, each

using a forward-looking LIDAR. The car E additionally fuses the information received from

the car L, if available. We consider two cases: the case in which the car L cooperates with the

car E by communicating its information, and the case in which it does not.

10.1 Background

Cooperative overtaking assistance systems are readily studied in the literature. Two main

identified approaches are listed below.

� The first approach assumes that each vehicle broadcasts a beacon which includes its

position, speed and direction. Frequent broadcasting of such messages allow for de-

tection of oncoming traffic as early as possible (see for example [103]–[105]). A system

which predicts when a potential lane-change is going to be performed by the driver

of the ego-vehicle, cooperatively exchanges information with vehicles traveling in the

opposite direction via the cellular network, and provides the driver with an estimate of

the overtaking maneuver risk is presented in [106]. The requirements regarding the com-

munication (e.g., what data should be broadcast, update frequency, range of coverage,

boundaries for packet loss and propagation delay) for cooperative overtaking systems in

VANETs were studied by van Kooten in his master thesis [107]. All mentioned approaches

assume that all vehicles on the road are cooperative. An additional requirement is that

they are localized with enough accuracy. No perception sensors were used in these works.

90

10.2. Overtaking Decision Algorithm

A drawback of these methods is that non-cooperative vehicles (not sending beacons)

will not be detected. However, this would especially be the scenario in which intelligent

vehicles will have to operate in the early market penetration of V2V technology.

� The second approach relies on real-time transmission of video streams. A video stream

captured by a forward-looking camera of the front vehicle is compressed and broadcast

to the vehicles driving behind, which then show this stream to the driver on a display.

Examples of this approach can be found in [77], [108]–[110]. While such systems allow

for detection of different dangerous road situations, such as vehicles not equipped

with communication transceivers or animals, they have their drawbacks as well. First,

despite using compression algorithms, video-based algorithms still require relatively

high communication bandwidth. Second, a human driver needs to look at and analyze

the received video stream on top of the directly perceivable surrounding scene, in

particular to estimate distance and speed of vehicles traveling in the opposite direction,

which may be difficult.

An improved approach could combine the video stream and the V2V beaconing approaches

mentioned above (see for instance [111]). A cooperative overtaking assist system using an

intelligent road surface is introduced in [112]. Its disadvantage is that it requires investments

in the infrastructure.

In our approach, the overtaking assistance is based on the information obtained from on-

board sensors, which is fed to the target tracking algorithm, and finally fused with object

data received from a cooperative vehicle. Our cooperative perception algorithm is designed

to minimize the communication bandwidth requirements — instead of raw data, tracks are

communicated.

10.2 Overtaking Decision Algorithm

The behavior of the car E from Figure 10.1 is defined by a Finite State Machine (FSM) shown

in Figure 10.2. The car E drives freely on the road at its target speed until the tracking module

detects a car driving on the same lane at a lower speed (leading car L). The state of the car E is

then changed to car following, where the adaptive cruise controller is engaged. As described in

the remainder of this section, a risk for overtaking is continuously computed as a function of

the presence and position of the car O, and the decision whether to start (or eventually abort)

the overtaking is based on a threshold.

10.2.1 State Description

Four states are defined in the FSM.

Free driving The car E drives freely on the road at target speed v0 while keeping centered in

91

Chapter 10. An Overtaking Assistance System Based on Cooperative Perception

Free driving

Car following

Overtaking Abort overtaking

Leading car detected

Risk > Tabort

Behind the leading car

Ahead the leading carOvertaking finished

Risk ≤ Tstart

Figure 10.2 – An FSM defining the behavior of the ego car.

its lane.

Car following The car E follows the car L (which is driving on the same lane), maintaining a

desired distance and time headway.

Overtaking The car E has determined that it is safe to overtake the car L (the risk that there is

an oncoming car O on that lane is low enough). It changes lane and performs overtaking

at its desired speed v0.

Abort overtaking The risk that the car O occupies the overtaking lane has become significant,

thus the car E aborts the overtaking maneuver.

Controllers used in each of the states are explained in Sections 10.2.3 and 10.2.4.

10.2.2 Decision Algorithm (FSM State Transitions)

The initial FSM state is free driving. Once the car L is detected, the state is changed to car

following.

In the car following state, the overtaking risk is constantly computed. The risk is defined

between 0 and 1, and it depends on two factors: the probability that there is a car O on the

passing lane, and the comparison between the distance to overtake and the distance traveled

by the car O over the same time. The two distances are estimated using the time to overtake

and are computed by taking into account the position and the velocity of the ego, leading and

oncoming vehicle. If the risk is lower or equal to the defined threshold Tstart for at least five

consecutive simulation steps, the overtaking is initiated.

The risk is constantly computed in the overtaking state as well. If the risk exceeds the Tabort

thresholds for at least two consecutive simulation steps, the state is changed to abort overtak-

ing. Otherwise, if the overtaking is successfully finished (the car E gets ahead of the car L plus

the safety distance dsa f e), the state is changed back to free driving.

92

10.2. Overtaking Decision Algorithm

In the abort overtaking state, the positions of cars E and L are compared. If the car E is

ahead of the car L, it accelerates and changes lane back to its driving lane without taking into

consideration the safety distance. The state is then changed back to free driving. Otherwise, it

brakes and pulls behind the car L, and the state is consequently changed to car following.

The subsections that follow provide details on how the cars L and O are detected among all

tracked vehicles and how the overtaking risk is computed.

Detection of the Leading and Oncoming Vehicle

The C-GM-PHD filter feeds a list of tracked cars to the controller. In order to detect in which

lane the tracked car is driving, a temporary coordinate system is placed at the lane in which the

car E is driving (see Figure 10.3). The position of the tracked car is expressed in that coordinate

system, by taking into account the lateral position of the car E in its lane (cf. Section 10.2.3).

Then, a number of samples are taken at random from the normal distribution centered in

the position of the tracked car, with the covariance that is provided by the tracker. This set of

samples reflect the probability distribution of the position of the tracked vehicle.

The number of samples falling on one lane over the total number of samples defines the

probability that the center of the car is in that lane. However, when considering to overtake, it

is important to assess whether any part of the car is in the lane. Thus, the probability P (i , l)

of a tracked car i to be on lane l is computed by taking into account all the particles that fall

in one lane extended by half of the vehicle width on each of the sides. It is important to note

that lane occupancy probabilities defined in this way do not sum up to one (i.e., they do not

represent a probability mass function).

Finally, in order to determine the direction of travel of the tracked car, we use its velocity, as

well as the car E velocity.

Overtaking Risk Computation

We define the risk to overtake a vehicle given an oncoming vehicle i as a piecewise function

ri =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if dexp,i −dover > dmar g i n

1− dexp,i−dover

dmar g i n
if dexp,i −dover > 0

1 otherwise,

(10.1)

where dmar g i n is a margin distance, dexp,i is the expected distance between the ego and the

oncoming car i after completed overtaking, and dover is the distance to be traveled by the ego

vehicle until the overtaking completion. The expected distance is easily computed from the

tracked distance to the oncoming vehicle di and its tracked velocity vO,i , as well as the time

93

Chapter 10. An Overtaking Assistance System Based on Cooperative Perception

X

Y

extended
lane 1

extended
lane 2

extended
lane 3

Figure 10.3 – Lane occupancy probability. The center and covariance of the tracked car is shown
in black. For illustration purposes, there are 50 sample points (in green) estimating the position of
the car center point. All 50 samples are contained within the extended lane 2, 6 samples are falling
on extended lane 1, and 7 points on extended lane 3. Therefore, the respective lane occupancy
probabilities are 50

50 = 1.0, 6
50 = 0.12, and 7

50 = 0.14. The leading car is not shown for clarity reasons.

that the car E needs to complete the overtake:

dexp,i = di − vO,i · tover . (10.2)

The overtaking distance is computed as

dover = 1

2
aE · t 2

over + vE · tover . (10.3)

The time to overtake tover can be computed from the quadratic equation for the overtaking

length L in the frame of the car L:

L = 1

2
aE · t 2

over +Δv · tover , (10.4)

where Δv = vE − (vL +σvL
) considers the standard deviation of the leaders velocity, and

L = d + lL+dsa f e is composed of the distance between cars L and E, length of the car L, and

safety distance that is required between the car E and the L before the car E can return back

on its lane after overtaking.

Finally, the overtaking risk is defined considering all Ncars cars detected by the tracker and

94

10.2. Overtaking Decision Algorithm

probability of them occupying the overtaking lane lE+1:

R = max
1≤i≤Ncars

(P (i , lE+1) · ri). (10.5)

The overtaking decision is solely dependent on the risk. We define a threshold Tstart to start

overtaking if the risk is lower, as well as Tabort to abort the overtaking if the risk is higher than

the threshold.

10.2.3 Lateral Controller

To enable cars to drive on a particular lane (required in the FSM states free driving and car

following), as well as perform lane changes (states overtaking and abort overtaking), we use

pre-defined trajectories. Each lane is composed of waypoints, and a vehicle implements a

Proportional-Integral (PI) controller to compute the steering angle based on the coordinates

of itself and the next waypoint. Changing lane is achieved by simply swapping the used

trajectory. While this approach is a simplification of a potentially more realistic lane following

and changing method, it enables us to leverage a perfect positioning information of the car

in the lateral controller computations. The lateral controller is the same for each state of the

FSM.

10.2.4 Longitudinal Controllers

Different FSM states use different controllers, as described below.

In the free driving and overtaking states, the car E is driven at maximum acceleration a until

the desired speed v0 is reached, and with the constant speed afterwards.

In the abort overtaking state, we brake at half of the maximum deceleration if the car E is

positioned behind the car L (overtaking is aborted and the car E pulls behind the car L).

Otherwise, the car E accelerates at maximum acceleration and finishes the overtake ahead of

the car L (though at high risk).

The controller employed in the car following state is based on the ACC model. The ACC

provides an acceleration for a vehicle following another vehicle in the lane, taking into account

the desired velocity and time gap. It was introduced by Kesting et al. in [113] and it represents

an improvement to the Intelligent Driver Model (IDM) [114], which is known to brake too

hard in some dense traffic situations, for example due to lane changes of other cars. The

acceleration of the car given by the ACC model aACC can be computed as

aACC =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
aI DM if aI DM ≥ aC AH

(1−c)aI DM+
c[aC AH +b tanh(aI DM−aC AH

b)] otherwise,

(10.6)

95

Chapter 10. An Overtaking Assistance System Based on Cooperative Perception

Table 10.1 – Car following model parameters. For explanation and discussion regarding the values,
see [113].

Parameter Value
Desired speed v0 90 km/h

Free acceleration exponent δ 100
Desired time gap T 0.1 s
Jam distance s0 5.0 m
Maximum acceleration a 2.7 m/s2

Desired deceleration b 6.0 m/s2

Coolness factor c 0.99

where b and c are the deceleration and coolness parameters as defined in Table 10.1. aC AH is a

Constant-Acceleration Heuristic (CAH) which assumes that the velocity of the leading vehicle

will not abruptly change and is defined by

aC AH =
⎧⎨⎩

v2
E

ãL

v2
L
−2sãL

if vL(vE− vL) ≤−2sãL

ãL− (vE−vL)2Θ(vE−vL)
2s otherwise,

(10.7)

where Θ is the Heaviside step function, s is the distance to the car L, vE and vL the velocities of

cars E and L (cf. Figure 10.1), aL the maximum acceleration of the car L, and ãL = min(aL, aE)

the effective maximum acceleration. The IDM acceleration function is given by

aI DM = a

[
1−

(
vE
v0

)δ
−
(

s∗(vE,Δv)

s

)2
]

, (10.8)

s∗ = s0 + vET + vEΔv

2
�

ab
, (10.9)

where the approaching rate is Δv = vE−vL. Other parameters and their respective values used

for the E car are summarized in Table 10.1.

10.3 Experimental Evaluation

A systematic experimental evaluation has been carried out in Webots. This section describes

the experimental setup and presents the obtained results.

10.3.1 Experimental Setup

Three Citroën C-ZERO cars have been placed on an infinitely long, straight road with four lanes.

The car E is placed behind the car L, both facing one direction, whereas the car O faces the

opposite direction and finds itself on the passing lane of the car E. The longitudinal positions

of the three cars are random in each experimental run, but their configuration remains as

explained. Our algorithm could easily be adapted for curved roads by computing the distance

96

10.3. Experimental Evaluation

Table 10.2 – Characteristics of car sensors and communication devices.

Parameter Value
LIDAR range 140 m
LIDAR FOV 110◦

GNSS noise σx ,σy 0.1 m
GNSS noise σv 0.01 m/s

Compass noise (σθ,σω) (0.1◦,0.1 ◦/s)
Communication radius 100 m
Communication delay 80 ms

in the road (curvilinear) coordinate system; the added value of a remote sensor (through

communication) could be even more evident in such scenarios due to inherently reduced

FOV.

The cars E and L are traveling with target speeds v0 of 90 km/h and 50 km/h, respectively. They

are equipped with a forward-facing Ibeo LUX LIDAR, generic GNSS and compass sensors

achieving RTK performance, and a communication transceiver.

Communication is achieved by simple messages implemented in the simulator environment

using constant delay and message loss. The characteristics of integrated devices are listed

in Table 10.2. The car O travels at target speed of 30 km/h and is not equipped neither with

sensing nor communication devices. Attempting to perform an overtaking maneuver at higher

traveling speeds would require using sensors with longer range.

The vehicle model implemented in Webots uses the throttle, brake, and steering angle as

inputs. The input steering angle (provided by the lateral controller) is transferred to the wheels

using a Webots built-in Proportional-Integral-Differential (PID) controller. We use the Citroën

C-ZERO motor model (explained in Chapter 5) to map the required acceleration (provided by

the longitudinal controller) to the throttle input of the Webots car library, and we assume a

linear brake response in the case of deceleration. The simulation step is 80 ms, equivalent to

the sampling frequency of the LIDAR.

10.3.2 Tracking Parameters

In the C-GM-PHD filter, we empirically determine the sensor standard deviation to be

σz =
[
σx σy σθ

]� =
[

1 m 1 m 45◦
]�

(10.10)

(this includes the point cloud preprocessing noise). To make our filter conservative, the ego

state estimation noise needed for the Approximate Transformation is intentionally not set

exactly to the values used in the simulator (cf. Table 10.2). Instead, it equals to[
σx σy σθ σv σω

]� =
[

1 m 1m 0.5◦ 1 m/s 0.5 ◦/s

]�
. (10.11)

97

Chapter 10. An Overtaking Assistance System Based on Cooperative Perception

The clutter model is assumed to be Poisson with mean of 10 clutter measurements per sensor

surveillance area. The probability of detection and survival are respectively set to 0.98 and 0.99.

The occlusion model, as well as the values of other parameters intrinsic to the C-GM-PHD

filter are the same as used in Chapter 8.

10.3.3 Experimental Results

The experiments are conducted using six different parameter settings. While keeping the value

of Tstart at some small, positive value (we chose 0.01), we vary Tabort ∈ {0.2,0.5,0.8}. For each

value of Tabort, we launch the experiment with and without cooperative fusion. Without fusion,

the car E tracks targets using only its LIDAR, thus having shorter range and more occluded

FOV. For each of the six settings we perform 500 simulation runs with different random initial

positions to obtain statistically significant results.

An overtaking attempt is defined as an event in which the car E starts changing the lane. It can

be finished by a successful overtake, an abort or a crash.

Figure 10.4a shows the duration of overtaking maneuver, measured from the moment the first

overtaking attempt is made (excluding experiments that resulted in crashes). Long durations

represent overtaking maneuvers whose first attempts have been aborted, as in these cases

the car E had to wait for the risk to diminish before starting and successfully completing the

second overtaking attempt. It can be seen that the duration decreases with increased risk

threshold Tabort. This is due to overtakes that are less likely to be aborted, for the price of

accepting more risk. We can also see that experiments which use fusion outperform the ones

without fusion algorithm: since, when using fusion, the car E suffers less from occlusions and

can see further away, it aborts the overtaking attempt less frequently and therefore saves time.

The percentage of aborted overtakes is given in Table 10.3. Aborts are split in two categories,

the ones in which the car E brakes and pulls behind the car L, and the ones in which the car E

keeps accelerating and successfully finishes the risky maneuver. There are significantly less

aborts of the second type in the case of fusion than in the case of no fusion. Their number

also decreases with the increasing Tabort, as the car E allows for higher risk before aborting.

Due to larger sensor range in the fusion case, there are slightly more aborts of the first type

than in cases without fusion. These facts lead us to the conclusion that cooperative fusion

might contribute to road safety, as it reduces the number of occasions in which the overtaking

car enters risky situations. Figure 10.4b supports this conclusion, by showing the actual risk

at which the overtaking maneuver was aborted. It is always significantly lower in the case of

fusion, independent from the chosen value of Tabort.

Overtakes resulting in a crash between the car E and the car O are listed in Table 10.3 as

well. Data show that cooperative fusion successfully reduces the number of crashes with the

oncoming car, which is indeed its intended purpose. As expected, the highest number of

crashes are recorded for Tabort = 0.8.

98

10.3. Experimental Evaluation

Table 10.3 – Percentage of aborted and crashed overtakes.

Risk
0.2 0.5 0.8

No fuse Fuse No fuse Fuse No fuse Fuse
Abort behind L (%) 2.47 3.58 2.24 4.25 2.93 3.18
Abort in front of L (%) 16.29 0.42 9.39 0.21 7.53 0.21
Crash (%) 1.62 0.00 1.01 0.00 2.65 0.81

Summary

An application of the C-GM-PHD filter for overtaking assistant system was shown in this

chapter. We designed an algorithm which estimates the risk of the overtaking maneuver

from the perception data. The risk is associated with the probability of an oncoming

vehicle driving on the passing lane (the lane that is used by the ego car for overtaking),

as well as with the kinematic conditions such as driving speeds, the distance required

to overtake and the distance to the oncoming car. Based on the risk, a safe decision

whether to overtake or not is taken. The ego car implements a lateral controller for

lane following, and an ACC controller for safe car following. The approach is validated

in Webots; the added value of cooperative perception in the overtaking scenario was

reflected through smoother and safer vehicle operation.

99

Chapter 10. An Overtaking Assistance System Based on Cooperative Perception

(a)

(b)

Figure 10.4 – Boxplots showing for different values of Tabort (a) overtake duration from the moment
of the first overtaking attempt, (b) overtaking risk at abort (note: the risk is always higher or equal
than the abort threshold Tabort). Each box aggregates 500 runs minus the number of crashes and
represents the upper and lower quartiles, the red line in the box marks the median, the bars extend
to the most extreme data points not considered outliers, and the red crosses show outliers.

100

11 Conclusion

C O O P E R A T I V E perception brings a number of benefits to intelligent vehicles. Its

most obvious benefit is increased range and FOV, as compared to the range and

FOV obtainable by sensors installed on an individual vehicle. By using commu-

nication as a remote sensor, a vehicle can detect and track objects which are not

on its LOS, as radio waves are less likely to be absorbed by obstacles than visible and near-

infrared light. Furthermore, by using multiple independent sources of information offered by

cooperative vehicles, detection uncertainty can be decreased (and the accuracy increased).

In this part we presented two algorithms for cooperative perception. In the core of both

algorithms is a PHD filter for tracking multiple objects. The first algorithm uses a GM approx-

imation of the PHD, while the second one uses an SMC approximation. The PHD intensities

are communicated between cooperative vehicles and fused with their local PHD intensities in

a distributed way. Moreover, we built an overtaking recommendation system on top of our

cooperative perception algorithm. It demonstrates one possible application for intelligent

vehicles in which cooperative perception in beneficial.

We performed the evaluation of the algorithms in the high-fidelity simulator Webots. We

designed realistic scenarios in which the sensing cars were both stationary and moving. The

filters in Chapter 8 and Chapter 9 are implemented in Matlab and Python, respectively, and

are run offline on collected datasets. Chapter 10 features an online implementation in C++,

which is nested in the control loop and runs in Webots.

11.1 Discussion

Our proposed fusion methods are fundamentally different from those presented in [81]–[83],

in the sense that in addition to consensus fusion, they also perform complementary fusion

(i.e., they provide extended coverage when different sensors cover different regions).

In the C-GM-PHD filter, we achieve the complementary fusion by modifying the GCI algorithm

in a way that the CI fusion is only applied to Gaussian components which are sufficiently

101

Chapter 11. Conclusion

close to each other. The components received from a cooperative vehicle, that do not relate to

any object tracked by the ego vehicle, are accepted as such and are only predicted (without

performing measurement update) until the next cooperative intensity is received (or their

weights become too small). Our approach shows promising results: most of the time, a C-GM-

PHD filter yields a more accurate estimate than its non-collaborative version, with the added

value that the ego vehicle is no longer limited to tracking targets that are in its FOV. Perhaps

the largest limitation of this approach is the constant fusion weight, which gives the equal

importance to the ego and the cooperative intensity. As seen during evaluation, the equal

weight can occasionally cause wrong cardinality estimates.

The C-SMC-PHD filter uses two sets of particles, one relating to the objects located in the FOV

of the ego vehicle, and the other relating to particles outside of its FOV. A simple heuristic is

used to decide whether to consider received particles as external to the tracking vehicle’s FOV

or as common to both FOVs. In this implementation, an optimization method using the RD as

a cost function is used. Again, the C-SMC-PHD filter demonstrates performance benefits over

its non-cooperative version. One of the limitations of the SMC approach is the large number

of particles that needs to be communicated to cooperating vehicles. Exploring methods that

would reduce the number of particles to be transmitted could be necessary if such concept

were to be scalable for use in larger vehicle networks.

While we have shown that our methods accomplish the goal of providing extended visibil-

ity’ for tracking vehicles, further work remains to be done in order for significant tracking

accuracy improvements in the overlapping FOV to be observed. We attribute this lack of

accuracy improvement to the localization uncertainty of the sensing vehicles which needs

to be propagated to the sensor frame and added to the observation uncertainty, as well as

the conservative nature of the CI algorithm. CI is often used in sensor networks, because

it prevents double-counting of information. An alternative approach would be to perform

careful bookkeeping to track the origins of measurements and prevent the use of any of the

measurements more than once (as for example in [115]).

102

Part IVAlgorithmic Enhancements and
Validation Using Real Vehicles

103

12 Introduction

I N the previous part of this thesis, we have seen two algorithms for cooperative track-

ing. Their mathematical formulation has been discussed and their performance was

evaluated using high-fidelity simulation. The main goal of this thesis part is to valid-

ate our work on real vehicles. In all real-vehicle experiments, we use the C-GM-PHD

implementation (introduced in Chapter 8). Additionally, this part brings a number of enhance-

ments to the C-GM-PHD algorithm, with the common goal to improve its robustness and

performance, in particular when deployed on real vehicles.

First, in Chapter 13, we provide a detailed description of our software framework. We explain

the design of our software architecture, we provide insights in our integration effort and finally

we explain and evaluate the V2X communication channel we have been using. Our software

framework choices aim at making the transition from simulation to reality as smooth as

possible. We have chosen the Robot Operating System (ROS) as our middleware because it is

compatible both with Webots and with the real vehicles. Software based on ROS prototyped

in simulation can easily transported to the real vehicle framework. As previously shown in

Chapter 5, we have developed simulated sensor models and have calibrated them using real

devices. By implementing new sensors in Webots (LIDARs and Mobileye cameras), we are able

to fully reproduce our test vehicles in simulation.

In contrast to simulation, noise and clutter levels of real sensors cannot be controlled. Per-

ception algorithms need to cope with the artifacts produced by different elements in the un-

controlled environment (e.g., reflections from bushes or wire fences). Localization algorithms

need to overcome the difficulties arising from the GNSS signal multi-path and proprioceptive

sensor noise and biases. For these reasons, we implement a few enhancements of our original

cooperative tracking algorithm presented in Part III.

We start off gradually by making an assumption that accurate localization is available on

our two test vehicles. We achieve this in reality by making the test vehicles stationary, while

manually setting their localization parameters (by visually aligning the contours of the detec-

ted vehicle in the point cloud with the communicated location of that vehicle). Chapter 14

105

Chapter 12. Introduction

addresses one of such scenarios — we will refer to it as Scenario 1, in which the two cooperative

cars are positioned one behind another, and they track two legacy cars driving in the opposite

direction. For the first time, we integrate the Mobileye camera as perception sensor in the

tracking algorithm. As there is no ground truth position available for the legacy vehicles, our

approach is to manually extract their poses from the LIDAR point cloud (whose distance

estimates are significantly more accurate than those of the Mobileye camera). This approach

allows us to perform quantitative analysis of our tracking algorithm. As accurate localization

is available in simulation, we can afford to reproduce the boundary conditions of this scenario

even by moving the vehicles, anticipating through our simulation framework the next logical

step in reality (see below).

In order to implement the cooperative perception on moving vehicles, the accuracy of inter-

vehicle relative localization must be improved first. We address this issue using the cooperative

localization techniques described in Chapter 15.

Chapter 16 puts together the cooperative localization and cooperative perception algorithms,

allowing us to move the real vehicles. Moreover, by using both LIDAR sensors and Mobileye

cameras in the tracking algorithm, it builds on the approach shown in Chapter 14. Our ap-

proach is validated in two real-life scenarios. In the Scenario 2, one car is stationary while

the other one is moving. This resembles a V2I scenario, where a moving vehicle gets assisted

by an infrastructure sensor. In this scenario, two pedestrians are tracked in a cooperative

fashion. The Scenario 3 hosts two moving vehicles, driving behind each other, in a typical V2V

configuration. They cooperatively track two legacy oncoming cars.

Recall from Section 4.4 that we use two different real system configurations in our experiments.

Table 12.1 outlines which deployment phase is used in which experimental scenario. It also

indicates which sensors are used for object tracking.

Table 12.1 – Test scenarios and corresponding real-vehicle deployment phase.

Scenario
1 2 3

Deployment phase 1 2 2
Mobileye cameras � � �

LIDARs � � �

106

Summary

In this part of the thesis we implement and validate our cooperative perception al-

gorithms on real vehicles. The use of a calibrated, high-fidelity simulation tool and a

carefully chosen software framework compatible with both simulation and real deploy-

ment makes the transition from simulation to real hardware less bumpy. We introduce a

few algorithmic enhancements that make the method more robust and more accurate,

especially when deployed on the targeted real hardware. We explain how a Mobileye

camera can be used for tracking in the PHD filter framework, and we propose a method

for fusion of signals from LIDARs and Mobileye cameras.

107

13 A Software Framework for Bridging the
Simulation-to-Reality Gap

O U R software framework relies on ROS [116]. ROS is a flexible open-source frame-

work for writing robot software. It comprises a set of libraries and tools; we list

the ones relevant for our work. The framework is designed to support a smooth

transition from simulation to the real cars. On the one hand, it can be used with

Webots, our high-fidelity simulation tool; on the other hand, it can be used directly with real

sensors (and actuators, if available for control).

At its lowest level, ROS offers a message passing interface that provides inter-process com-

munication and acts as a middleware between the operating system and the user software.

It implements a publish/subscribe mechanism, allowing for anonymous and asynchronous

communication between distributed nodes of a robotic system. A message passing system

requires implementing clear interfaces between different nodes, thus promoting code reuse.

In a nutshell, the publish/subscribe mechanism allows a node to subscribe to topics of interest

which contain its input data, perform some computation on these data, and publish some

data on output topics. A node subscribing to some topic is agnostic with respect of the source

of the data. It only matters that the data format satisfies the requested interface.

For example, a Node A can be a GNSS sensor driver. It implements a sensor-specific protocol on

one side, retrieves the sensor data, and makes it available to the other ROS nodes by publishing

it on a topic. A Node B can be in charge of localization, therefore processing the data provided

by the Node A. Another node — Node C — can be handling the navigation task, therefore using

the data published by the Node B, and so on.

Another key feature of ROS is recording and playback of messages using the rosbag tool.

Messages are timestamped and stored in a bag file. Replaying the bag file does not require any

changes in the code of the nodes as compared to the case when data is generated in real time.

In the previous example, Node B and Node C are agnostic with respect to the source of the

GNSS data, and they operate in the same way regardless of the data coming directly from a

GNSS sensor or from a bag file.

We further make use of the tf library, which keeps track of different coordinate frames and

109

Chapter 13. A Software Framework for Bridging the Simulation-to-Reality Gap

their relations in a systematic way, and provides functions for converting data between differ-

ent frames. For visualization we use rviz, a three-dimensional tool that can visualize many

of the common data types provided in ROS, such as point clouds, camera images, coordinate

frames, as well as general purpose markers having generic shapes.

A default ROS controller is available in Webots. It enables publishing data from all standard

Webots sensors on a ROS topic. This data can subsequently be used by all other nodes running

on the same ROS system (e.g., processing or visualization nodes). In a similar fashion, all actu-

ators subscribe to the relevant topics and services, enabling their control from within the ROS

system. Together with the driver and car libraries (described in Chapter 5), we developed

the corresponding ROS controllers. They establish ROS interfaces with the simulated cars, as

well as with the simulated LIDARs and Mobileye cameras.

As already mentioned, nodes in ROS are agnostic with respect the source of the data. This

enables us to re-use the algorithms (including the complete source code) developed in sim-

ulation for the real car deployment. The first step in the simulation-to-reality transition is

to replace all nodes publishing data from simulated sensors by the nodes that interface real

sensors. The second step is to perform fine-tuning of the algorithms, in order to account

for the differences that possibly exist between the simulated and the real data, despite the

simulator calibration effort reported in Chapter 5. Finally, for the system to run in real-time,

timing and synchronization constraints need to be addressed.

13.1 Software Architecture

In this section we describe our software architecture. It is implemented using C++ and Python

in the ROS framework. We start with a simpler architecture used in the first deployment phase,

and we build on the top of it in the second deployment phase (see Section 4.4 for a refresher

on our deployment phases).

13.1.1 Phase 1

Our initial deployment was carried out on car0 and car1. Four LIDARs were deployed on

the car0, leaving the car1 only with a Mobileye camera in terms of perception sensors.

We designed a software framework to be used in the Scenario 1. Although the localization

equipment was deployed on the real cars already in Phase 1, we do not use it in the Scenario 1,

and therefore we also did not implement the corresponding nodes in this phase.

The entire software pipeline is implemented on on-board computers in the ROS framework

using C++. Sensor driver nodes publish data from the sensors to the ROS network. Tracking

filter nodes subscribe to sensor data and publish tracks in the form of PHD intensities. A

cooperative fusion and tracking node (only present in the ego vehicle) additionally subscribes

to the tracks and publishes a fused PHD intensity. Our software architecture is illustrated in

110

13.1. Software Architecture

Figure 13.1.

All nodes can be run online (in real-time) during experiments. However, as the emphasis

of our work is not on the wireless communication technology, we can afford to log all data

using rosbag and play them back for processing offline. To avoid time misalignment of

vehicle logs, the computer times are synchronized among themselves using a network time

synchronization tool before and throughout the experiments.

Figure 13.1 – Software architecture in the ROS framework deployed on the two experimental
vehicles’ computers (Phase 1 of the deployment). The ego vehicle is car0 (yellow C-ZERO), while
the cooperative vehicle is car1 (green C-ZERO).

In Webots, a software architecture very similar to the one shown in Figure 13.1 is used. Webots

publishes data from sensors as ROS topics. These topics correspond in type to the ones

published by real sensors. Therefore exactly the same implementation of the cooperative

tracking and fusion algorithm can be used. One notable difference is that the whole software

(deployed in reality on two cars) runs in simulation on a single computer, which simplifies

time synchronization between the two cooperating vehicles.

13.1.2 Phase 2

In the second deployment phase, we re-organized the software architecture in three layers,

as shown in Figure 13.2. The bottom layer is the Hardware Abstraction Layer (HAL), which

provides an abstraction of sensors to the rest of the ROS nodes. The core middle layer is

composed of nodes running processing algorithms. The top layer has two functionalities:

communication and visualization. Similarly to Phase 1, the computer times are synchronized

among themselves using a network time synchronization tool before and throughout the

experiments.

The HAL contains nodes which interface all sensors listed in Section 4.1. For compatibility and

re-usability purposes, we maximize the usage of common ROS data types, such as the point

cloud, odometry or IMU type.

111

Chapter 13. A Software Framework for Bridging the Simulation-to-Reality Gap

Figure 13.2 – Block diagram of the software architecture for the Phase 2 of the deployment. The
pure green node (Applanix driver) is deployed on car1 (green C-ZERO), the white nodes are
deployed on car2 (white C-ZERO), while white-green nodes (e.g., Ibeo driver, Object tracking)
are deployed on both cars. The bottom layer abstracts sensors and provides interface to the
middle layer. The middle layer implements algorithms. The top layer deals with visualization and
communication. All the nodes are implemented in C++, with the exception of the Object matching
node, which is implemented in Python.

The middle layer contains our algorithms, clustered in perception and localization groups.

The perception pipeline starts with object detection, a preprocessing algorithm that performs

clustering of the LIDAR point cloud, extracts various features and outputs detected objects that

resemble pedestrians or cars (cf. Section 7.3). Object detections are then fed to the tracking

node in the form of measurements. The tracking algorithm based on the GM approximation is

implemented, as detailed in Section 8.1. The fusion node also finds its place in the algorithmic

layer. It subscribes to the PHD intensity (the first moment of the posterior object density)

published by the tracking node on the ego vehicle, as well as the PHD intensity received from

the cooperative vehicle (as explained below).

The localization component contains an EKF and two matching algorithms that will be in-

troduced in Chapter 15. The first EKF estimate is the state of the ego vehicle in the odometry

frame using dead reckoning (i.e., not using any global positioning sensors). The second EKF

estimate is the state in the global frame, by additionally fusing the GPS data. Additionally, there

exists a node that converts navsat data (longitude and latitude) to a UTM frame which is a

112

13.1. Software Architecture

(a) car1

(b) car2

Figure 13.3 – A coordinate frame tree for the two cars. An arrow indicates a transform between
two given frames. A transform between any two frames in the tree is obtained by compounding
(or eventually inverting) the transforms. The transform between the UTM frame and the frame
of the second vehicle (shown in dashed line) is published by the Cooperative fusion node. /
carX_ibeo_FR and /carX_ibeo_FL are the frames of the front right and front left LIDAR,
respectively.

projection of the Earth surface to a Cartesian coordinate system, allowing us to fuse the GPS

measurements into the global estimate. Finally, the matching algorithms that aim at improving

the accuracy of the relative localization between cooperative vehicles are implemented in a

separate node. These algorithms use the localization data of the tracking vehicles, as well as

their PHD intensities containing tracked objects, and they output pose updates that are fed in

the EKF localization filter.

The visualization component of the top layer is running rviz. It subscribes to different topics,

such as the LIDAR point cloud or visualization markers from the tracking and fusion nodes.

The communication component has two parts: a transmitting and a receiving part. The trans-

mitting part is in charge of down-sampling the tracking and localization data and transmitting

it to the fusing vehicle using the User Datagram Protocol (UDP). The receiving part publishes

the received data on the ROS network of the ego vehicle, along with relevant coordinate trans-

formations which enable the usage of cooperative vehicle’s data in the coordinate frame of the

ego vehicle.

The coordinate frames present on each of our vehicles are shown in Figure 13.3a and Fig-

ure 13.3b, respectively. The transitions between different frames are achieved using the tf tool

only where these transitions do not imply uncertainty. In case of uncertain transformations

(transforming mean states and covariances), the transitions are computed by the module we

implemented.

113

Chapter 13. A Software Framework for Bridging the Simulation-to-Reality Gap

13.2 Communication

Communication is the essential component of our system. We distinguish between intra-

vehicle communication and V2X communication.

13.2.1 Intra-Vehicle Communication

As mentioned above, the ROS system manages communication between multiple nodes. Each

ROS system runs one ROS master. It is possible that one ROS master manages a system that

runs on multiple computers connected to a network. In that case, all computers communicate

with the master. Communication between nodes is still distributed, but the master keeps a

list of published topics and manages subscription requests. This kind of communication is

used between the two computers deployed on our car2, which are connected to each other

through a Gigabit Ethernet. We note that a good communication link is required, and that if

the communication would be cut between one computer and the ROS master, nodes running

on that computer would basically cease to operate until the communication with the ROS

master is not re-established.

13.2.2 V2X Communication

Two communication modes can be distinguished in the automotive domain: (i) V2V commu-

nication, and (ii) V2I communication. A common label for both modes is V2X communication.

In our experimental testbed, we only have vehicles, thus strictly speaking we only use V2V

communication. However, the difference between an infrastructure node (equipped with

sensors, computers and power supply) and a parked intelligent vehicle lies mainly in the

localization accuracy (an infrastructure node is fixed and can be localized accurately by pro-

fessional surveyors). Thus, in the remainder of this thesis, when a moving car communicates

with a manually localized stationary intelligent car, we consider this to be representative for a

V2I communication type.

In automotive industry, IEEE 802.11p technology is typically used for Wireless Local Area

Network (WLAN) communication. Recently, a first set of LTE standards that uses a radio tech-

nology different from IEEE 802.11 WLAN has been announced. There are however drawbacks

of the above-mentioned technologies: IEEE 802.11p-based equipment is expensive, and it is

often sold separately from the software stack; some standards and definitions are still subject

to change. In this thesis, the communication is established over a WLAN at 2.4 GHz based on

IEEE 802.11b/g/n specification. The maximum declared physical layer bit rate of our equip-

ment is 300 Mbit/s. The choice of the widely available communication technology enables us

to deploy it quickly and focus on the fusion algorithms. We remind the reader that the focus

of our work is not on the communication technology; for us, communication is a medium

to transmit data between vehicles. There exist many important aspects of communication

(security and privacy among others), which are out of the scope of this thesis.

114

13.2. Communication

For V2X communication we use a multi-master communication system developed by the

Fraunhofer Institute [117]. It performs discovery of other ROS systems (running ROS master)

in the network and enables selecting topics that are subsequently communicated between

different ROS systems using the UDP protocol. In this way, a ROS system is run on each car,

independently from other cars. Communication is opportunistic: if there is another vehicle

in the network (i.e., within communication range), selected data are shared. Multi-master

communication provides robustness and requires less bandwidth than running a system with

a single ROS master, where all agents need to exchange all the messages with that master.

The interested reader can refer to [118] for more details regarding the ROS multi-master

communication system.

We evaluate the performance of our V2X communication system by measuring the end-to-end

latency. The end-to-end latency accounts for the time elapsed between the moment a message

was published to a topic on car1 and the moment this message was received in a callback on

car2, hence including both communication and ROS-inherent latency.

In the two experiments below (see also Figure 13.4), we send the same information as we do

when running our cooperative fusion algorithm explained in Chapter 8, while varying the

distance between the two vehicles. In the V2I communication experiment, car1 is stationary

while car2 moves away until it gets out from the communication range. In the V2V com-

munication experiment, the two vehicles start at the limit of the communication range, and

drive towards each other with the relative speed of around 15 km/h. The average end-to-end

latency in the first experiment is 0.096±0.081s (one standard deviation, excluding the periods

when the connection is lost), while for the second experiment it is 0.040±0.027s (one standard

deviation). In our cooperative perception framework, this performance allows us to send

reliably information at the frequency of 2 Hz with a negligible impact of the communication

latency. The communication performance of tho vehicles driving behind each other in the

same direction is not explicitly evaluated; however, our experience indicates that in such

settings the communication is more reliable than in the evaluated scenarios, as the relative

distance between the vehicles does not vary much.

Our communication is connection-based (a computer in car1 connects to a wireless router

in car2). In other words, it is not possible to send or receive UDP/IP packets when the device

is not connected to a network, as the Internet Protocol (IP) layer requires the link layer to be

connected. The consequence of this protocol choice is that if a connection between the two

vehicles is lost, it can take a few seconds before it is re-established (as evident in Figure 13.4a).

In this period, no packets will be exchanged between the vehicles, even if they find themselves

within the communication range of the system.

115

Chapter 13. A Software Framework for Bridging the Simulation-to-Reality Gap

0 10 20 30 40 50 60 70
Distance [m]

0

0.5

1

1.5

2

2.5

3

3.5

4

C
om

m
un

ic
at

io
n

de
la

y
[s

]

(a) V2I scenario

0 10 20 30 40 50 60 70
Distance [m]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
om

m
un

ic
at

io
n

de
la

y
[s

]

(b) V2V scenario

Figure 13.4 – End-to-end communication delay for packets being sent from car1 to car2. The
message frequency is 2 Hz, and the communicated data are those used by the cooperative fusion
of the C-GM-PHD filter. (a) car2 slowly moving away from stationary car1; (b) car1 and car2
driving towards each other.

Summary

In this chapter we described our distributed and modular software architecture, which

has been implemented in ROS. We provided details about contents of the three software

layers present in our architecture. This architecture allows us to make a smooth trans-

ition from simulation to the real vehicles. Moreover, we reported our approach for V2X

communication and evaluated the communication latency as a function of the distance

between cars.

116

14 Cooperative Tracking under Accurate
Localization Conditions

T H E framework presented in Chapter 8 is general enough to be applied to any sensor

and any state model. So far, we have demonstrated its application to car tracking

using LIDARs. The approach has been experimentally validated in simulation,

and simulated data were processed in Matlab. In this chapter we introduce a new

sensing modality for tracking as an alternative to LIDAR sensors, namely a Mobileye camera.

Additionally, we make an important improvement to our cooperative fusion algorithm, which

consists of weight optimization.

Our analysis is based on two variants of Scenario 1. Scenario 1a is implemented in high-fidelity

simulation. As all the software is implemented in ROS as described in the previous chapter,

this represents the first step of the transition from simulation to real vehicles. In the Scenario

1b, we replace the simulated vehicles with real ones, and thus perform analysis on real-world

data.

Common for both scenario variants is the assumption that all sensing vehicles can benefit of

accurate localization. While this is easily achievable in simulation, in the real-world scenario

the available equipment is limiting the performance. Therefore, in order to fulfill the required

assumption in terms of inter-vehicle localization, we proceed as follows. First, the two vehicles

involved in the cooperative tracking operation are stationary. Second, we extract ground truth

information from LIDARs as they represent an independent and more accurate source of

information than Mobileye cameras.

14.1 Fusion Weight Optimization

Recall from Equation (8.19) that the cooperative fusion algorithm introduced in Section 8.2

requires a parameter W weighting the two object intensities that are being fused together.

In Chapter 8 we simply set W = 0.5, which gave equal importance to the two intensities.

Such parametrization choice could lead to problems in cardinality of the fused intensity, as

uncertainties of the starting intensities are not taken into account.

117

Chapter 14. Cooperative Tracking under Accurate Localization Conditions

In this chapter, we present an extension to the fusion algorithm for the the GM-PHD intensities,

which relies on the optimization of the fusion weight W. Let f1(x) and f2(x) be the Gaussian

mixtures in the form of

f(·)(x) =
J(·)∑

i=1
w (i)

(·) N(x;μ(i)
(·) ,σ(i)

(·)) (14.1)

containing selected Gaussian components from v1 and v2 which participate in fusion, and fW
the GM that is created by fusing f1 and f2 . Further, suppose that J (W) is a cost function. Then

the goal is to choose W∗ such that

W∗ = arg min
W∈[0,1]

J (W). (14.2)

The cost function can be defined as

J (W) = (D(fW|| f1)−D(fW|| f2)
)2 . (14.3)

The Kullback-Leibler and Renyi divergence have been used as distance metrics in the literature

[83], [119]. However, there exists no closed-form solution for these metrics applied to GMs. We

therefore use the L2 distance [120]:

D(f1|| f2) = d(f1, f2) =
∫

(f1(x)− f2(x))2 dx (14.4)

=
∫

f1(x) f1(x)dx−2
∫

f1(x) f2(x)dx+
∫

f2(x) f2(x)dx. (14.5)

Each of the three terms in Equation (14.5) can be written as

∫
fa(x) fb(x)dx =

Ja∑
i=1

Jb∑
j=1

w (i)
a w (j)

b

∫
N(x;μ(i)

a ,σ(i)
a)N(x;μ(j)

b ,σ(j)
b)dx : a,b ∈ {1,2}. (14.6)

Equation (14.6) is easily solved by applying the following equation:∫
N(x;μ1,σ1)N(x;μ2,σ2)dx =N(0;μ1 −μ2,σ1 +σ2). (14.7)

Therefore, the L2 distance can be computed in closed form as follows:

D(f1|| f2) =
J1∑

i=1

J1∑
j=1

w (i)
1 w (j)

1 N(0;μ(i)
1 −μ

(j)
1 ,σ(i)

1 +σ
(j)
1)

−2
J1∑

i=1

J2∑
j=1

w (i)
1 w (j)

2 N(0;μ(i)
1 −μ

(j)
2 ,σ(i)

1 +σ
(j)
2)

+
J2∑

i=1

J2∑
j=1

w (i)
2 w (j)

2 N(0;μ(i)
2 −μ

(j)
2 ,σ(i)

2 +σ
(j)
2).

(14.8)

118

14.2. Motion and Observation Models

Algorithm 14.1: Optimized cooperative fusion algorithm.

1: for 0 ≤W≤ 1 do
2: Compute νW(x) = νW1 (x)ν1−W

2 (x)∫
νW1 (y)ν1−W

2 (y)dy
for a given W according to Algorithm 8.1.

3: Compute J (W) according to Equation 14.3.
4: end for
5: return νW∗(x), where W∗ = argminW∈[0,1] J (W)

At this point, we insert Equation (14.8) into Equation (14.3) and solve Equation (14.2) by

performing an exhaustive search for different values of W equidistantly spaced by 0.1.

The optimized cooperative fusion procedure in illustrated in Algorithm 14.1.

14.2 Motion and Observation Models

This section introduces the motion and the observation model used for the car and for the

Mobileye camera, respectively.

14.2.1 Motion Model

We model a car as a rectangle with constant width and length (most cars are relatively similar in

size and this model fits them well). The state vector suitable for car tracking uses car’s position

(x, y), velocity (vx , vy), orientation θ and turn rate ω:

x =
[

x y vx vy θ ω
]�

(14.9)

The motion model predicts the evolution of the state through time. In this chapter we use a

constant velocity and constant turn-rate model, in which the input noise exists on linear and

rotational acceleration a and α.

14.2.2 Observation Model

In this chapter, we use Mobileye cameras. They are monocular systems with integrated al-

gorithms for image processing and object recognition (refer to Section 4.1 for more details).

We restate here the camera measurement model for convenience. A set Z of measurements z

that relate to separate objects present in that frame is given by

Z =⋃
i

zi (14.10)

119

Chapter 14. Cooperative Tracking under Accurate Localization Conditions

where

z =
[

x y θ c
]�

(14.11)

is a measurement of a single object, and describes its center point (x, y), orientation θ and

class c (e.g., car or pedestrian). Missed detections and clutter are unavoidable part of any

sensing system, and they are handled by the tracking algorithm.

We constrained the range of the Mobileye camera to 50 m. Beyond this distance, the Mobileye

detects objects only sporadically. As we will report below, the choice of the camera range was

further motivated by the available ground truth data (at larger distances, a very few LIDAR

points are reflected from a car which makes extracting ground truth impossible). The minimum

distance at which the camera detects objects is around 15 m.

As explained in Section 5.2, the noise in the range measurement of the camera does not follow

a Gaussian distribution. As a simplification for our filter, however, we assume that the sensor

noise is Gaussian, which allows us to use a KF for the state update.

14.3 Experimental Evaluation

This section describes our simulation and real-world experimental setup used for implement-

ing Scenario 1a and 1b, respectively. We also explain how we obtain accurate an relative

localization for the vehicles in the real-world setup.

14.3.1 Simulation setup

Scenario 1a is implemented in Webots. In our simulation set-up, we have placed two Citroën

C-ZERO vehicles equipped with sensors driving behind each other on a straight road. The

rear vehicle, which we call the ego vehicle (E), is equipped with a forward-looking Mobileye

camera. The front vehicle, which we refer to as the cooperative vehicle (C), is also equipped

with a forward-looking Mobileye camera. In addition, two legacy vehicles (O1 and O2) drive in

the opposite direction (see Figure 14.1).

As a model of the Mobileye camera was not readily available in Webots, we have created one

and calibrated it using real data (cf. Section 5.2). In addition to the simulated Mobileye camera,

we use virtual GNSS and IMU sensors, which are characterized by noise similar to the error

of the Applanix localization system. They provide sufficiently accurate localization and we

do not perform any additional filtering on the localization data. A supervisor controller is in

charge of providing ground truth data.

120

14.3. Experimental Evaluation

Figure 14.1 – Setup in the Webots simulator for Scenario 1a. The ego car (yellow) drives on a
straight road behind the cooperative car (white), while two non-cooperative cars drive in the
opposite direction.

14.3.2 Real-World Experimental Setup

Similarly to Scenario 1a, Scenario 1b leverages two real electric Citroën C-ZERO cars. They

are parked behind each other in one lane, at the relative distance of approximately 15 m. This

resembles a scenario in which two cars drive behind each other at the same speed. While

in simulation we have the accurate position and orientation sensors at our disposal and we

can afford to move the sensing vehicles, this is not the case with the real cars. In absence of

accurate localization equipment on both cars, our approach in this chapter is to park the cars

and localize them manually, as explained below.

The rear vehicle (E) is equipped with a forward-looking Mobileye camera, and two forward-

and two backward-looking Ibeo LIDAR sensors (that we use for ground truth only and not

for tracking). The front vehicle (C) is endowed as well with a forward-looking Mobileye cam-

era (see Figure 4.1). Both vehicles have on-board computers for real-time sensor processing

and logging, as well as wireless communication equipment (see Phase 1 of the deployment

described in Chapter 4.4 for more details). Our scenario includes two more legacy oncom-

ing vehicles (O1 and O2) of different type and size, which do not carry neither sensory nor

computational equipment. The experimental setup is visualized in Figure 14.2.

14.3.3 Localization of Real Vehicles

It is of great importance for the functioning of the cooperative fusion algorithm to have an

accurate relative pose of the cooperative vehicle with respect to the ego vehicle. In absence

of centimeter-level GNSS devices installed on both experimental vehicles, in Scenario 1b we

enforce vehicle stationarity and tune the poses manually, by using the LIDAR sensors mounted

at the front of our ego vehicle, and matching its point cloud to the CAD model of the Citroën

121

Chapter 14. Cooperative Tracking under Accurate Localization Conditions

Figure 14.2 – Experimental setup. Left: ego vehicle (yellow), cooperative vehicle (white), and point
cloud generated by the LIDAR mounted on the ego vehicle (legacy vehicles are easily identifiable).
Right: view from the web camera installed behind the windshield of the ego vehicle.

C-ZERO. In other words, we consider accurate localization of the vehicles to be a separate

problem and assume that it is available. The pose of the center of vehicle C in the local frame

of vehicle E is determined to be (x, y,θ) = (15.45 m,−0.25 m,−0.0175 rad). Despite the manual

localization, the notion of uncertainty is still present in the car state, as the inter-vehicle

distance obtained from the LIDAR measurements is noisy.

In our real-world experimental setup, we do not have localization equipment which could

provide ground truth for the tracked (legacy) vehicles in our scenario. Therefore, we use

LIDAR data to extract the ground truth, taking advantage of the fact that a LIDAR point is

accurate to 0.1 m (one σ) and that the experimentally determined accuracy of the Mobileye

camera is significantly worse than that. Moreover, as in this chapter only the measurements of

the Mobileye camera are used for tracking, LIDAR data represent an independent source of

information.

In order to extract the ground truth positions of the legacy vehicles from the LIDAR point cloud,

for each experimental run, we determine the contours of the legacy vehicles by visualizing

the point cloud in the ROS tool rviz. Each ground truth set contains at least 10 manually

extracted sample points, and vehicle positions in-between these sample points are linearly

interpolated.

The maximal distance of a detectable object in our setting is around 70 m (objects at larger

distances were occluded). This is another reason to limit the range of the Mobileye camera to

50 m, as the maximum range of the cooperative system amounts to around 65 m (given the

distance between vehicles E and C).

122

14.3. Experimental Evaluation

14.3.4 Parameters

The tracking parameters were the same in all runs. The maximum number of Gaussian com-

ponents per filter Jmax is limited to 100. The birth model for the GM-PHD filter consists of

only one Gaussian component. Its position is in the center of the Mobileye camera’s FOV, the

heading is set to π rad, whereas the birth velocity and the turn rate are set to zero. The Standard

Deviation (SD) of the birth component is 25 m (half of the sensor range) for its position, π rad

for the heading, 10 m/s for the speed, and 0.2 rad/s for the turn rate. The rationale behind these

values is that a new object entering the sensing FOV is very likely to be contained within one

SD from the birth component mean.

The SD for the noise in the motion model is set to 1 m/s2 for the linear acceleration and

0.1 rad/s2 for the rotational acceleration. The measurement noise is determined empirically

and is modeled as a Gaussian with SD σx = 0.5 m, σy = 0.3 m, and σθ = π
16 rad. The clut-

ter model uses a Poisson distribution with an expected cardinality of 1 measurement per

sensor return per surveillance area. The E and C coordinate frames’ uncertainty (1σ) is set to

[0.5 m,0.3 m,0.1 m/s,0.1 m/s,0.0174 rad,0.0174 rad/s]�.

The GM-PHD merging parameter is set to U = 10, and a Gaussian component is pruned if its

weight is less than Tp = 10−5. The extraction threshold Te is set to 0.5. The fusion distance

parameter UF is empirically set to 30. The probability of survival in the joint FOV is set to 0.99.

The maximal probability of detection is pmax
D = 0.9. The shape of the object (tracked vehicles)

is assumed to be rectangular, with length of 3.5 m and width of 1.5 m.

14.3.5 Results

The Scenario 1a is used to assess the performance of the cooperative perception algorithm

when the cars E and C move at 30 and 27 km/h, respectively. The two legacy cars in simulation

move at speeds of 21 and 26 km/h, respectively.

A real-world dataset consisting of 15 runs is collected with the purpose of evaluating the

cooperative perception algorithm using real cars. In each of the runs, cars E and C were

positioned at the same spot, while cars O1 and O2 were driven manually in the opposite

direction (i.e., both towards E and C) at the speed of approximately 20 km/h. For the sake of

comparison, for each run both C-GM-PHD (includes cooperative fusion) and regular PHD

filter (does not include cooperative fusion) were run on the ego vehicle.

Similarly to Part III, here we again use the OSPA metric for evaluation of the multi-object

tracking performance. We set the position sensitivity parameter p = 1, i.e., we compute the

position error using the Euclidean distance between the center of the estimated and the

ground truth object. The cut-off parameter for the cardinality error penalties is set to c = 10.

Figure 14.3 shows the OSPA metric for a simulated experiment. Given the similarity with the

results from Part III, we conclude that we have successfully implemented our algorithm in the

123

Chapter 14. Cooperative Tracking under Accurate Localization Conditions

t [s]
0 5 10 15 20

O
S

P
A

0

2

4

6

Figure 14.3 – OSPA over time for one run of the C-GM-PHD filter in the Webots simulator.

ROS framework. By looking at the results obtained in real-world experiments presented below,

we observe the similarity in tracking performance between the simulated and the real-world

experiments. The OSPA error is slightly larger in the simulated experiment. The reason for

this could lie in the error introduced by the motion of the sensing cars, or in the noise of the

simulated Mobileye camera.

Let us now look at the real-world performance (Scenario 1b). Figure 14.4 shows a trajectory of

the carO1 obtained during the first run of the real-world experiment. WhenO1 is only observed

by the car C, the estimation uncertainty is large as the uncertainty of the relative localization

between cars E and C needs to be integrated into the track estimation uncertainty. Once

the O1 enters the FOV of the car E, the uncertainty reduces progressively. Around x = 30 m

we observe that, as expected, the track estimate gets closer to the E measurements, since its

uncertainty is significantly smaller than the uncertainty of the track received from the car C

(which contains both measurement uncertainties associated to the Mobileye camera and the

localization uncertainty due to the relative positioning based on the LIDAR measurements).

In the case when no cooperative fusion is used (Figure 14.4 bottom), the track uncertainty

only depends on the motion and measurement uncertainty, as the tracking is performed in

the local frame of the car E.

The OSPA performance for the first run is shown in Figure 14.5. For the cooperative version of

the filter, the ground truth objects are considered in the union of the two vehicles’ FOVs. On

the other hand, to enable a fair comparison, for the non-cooperative filter only ground truth

objects in the FOV of the ego car are taken into account. At the beginning, only the vehicle C is

tracked by the vehicle E, until the car O1 enters the FOV. Spikes indicate cardinality penalties.

Wrong cardinality estimates can be due to delay in object birth or death, loosing track of

objects for short periods of time or counting twice the same object for short amounts of time.

In Figure 14.5, all spikes represent birth/death delays. This leaves us with an impression that

the performed fusion weight optimization allows for a more robust algorithm performance as

124

14.3. Experimental Evaluation

x [m]
0 10 20 30 40 50 60 70

y
[m

]

1

2

3

4

5

track
gt
z ego
z coop

x [m]
0 10 20 30 40 50 60 70

y
[m

]

1

2

3

4

5

track
gt
z ego

Figure 14.4 – Trajectory of the carO1 during the first run of the real-world experiment (Scenario 1b)
produced by the C-GM-PHD filter (top) and the GM-PHD filter (bottom). O1 starts from far away
(70 m) and approaches the tracking vehicles. Black crosses indicate the estimated track positions.
Vehicle rectangle including its orientation is showed every 10 filter update cycles (rectangles have
been scaled down for clarity). Ellipses in black indicate one standard deviation for (x, y) uncertainty.
Ground truth trajectory sample points are shown using green asterisks, and interpolated trajectory
is shown in green dots. Ground truth does not contain orientation information. Blue and red
arrows represent Mobileye measurements (position and orientation). Every second measurement
is shown to avoid the image being very cluttered. Note the difference between x and y spatial
scales.

t [s]
0 5 10 15 20 25

O
SP

A

0

2

4

6

C-GM-PHD
GM-PHD

O1 enters FOV

O2 enters FOV

O1 leaves FOV

O2 leaves FOV

Figure 14.5 – OSPA over time for a single run using real-world data gathered at the level of the
vehicle E. Performance of the cooperative filter is compared against LIDAR-based ground truth
in the union of FOVs of the cars E and C, while for the non-cooperative filter only ground truth
objects in the FOV of the car E are considered.

compared to Chapter 8, in a sense that the algorithm loses track of the objects less frequently.

125

Chapter 14. Cooperative Tracking under Accurate Localization Conditions

C-GM-PHD GM-PHD
0

2

4

6

8

10

Figure 14.6 – Comparison of OSPA performance accumulated during 15 experiment runs between
the cooperative and non-cooperative filter.

Statistics of tracking error aggregated over 15 runs are shown using the box plot in Figure 14.6.

We can see that a median error of the cooperative filter is slightly lower than its non-cooperative

counterpart. However, their performance is very similar. The absence of statistically signi-

ficant improvement of the cooperative filter in the intersecting FOV can be attributed to the

conservative nature of the GCI method.

It is important to note that here the comparison is performed only in the FOV of the car E, as

the non-cooperative filter cannot track objects outside of this FOV. Moreover, the localization

uncertainty plays an important role in the accuracy of the cooperative tracking algorithm, as

the uncertainty ofE andC coordinate frames gets integrated in the track estimation uncertainty.

In Figure 14.4 we can see that it takes a significant amount of time for the uncertainty to be

reduced when the cooperative fusion is employed. Consequently, it is not unexpected that

the cooperative filter tracks objects outside of the ego car’s FOV with less accuracy than the

objects in the ego FOV, thus comparing the accuracy of the two filters over the union of the

FOVs would be unfair.

126

14.3. Experimental Evaluation

Summary

This chapter presented our efforts in transition from simulation to real vehicles. We

introduced a weight optimization procedure, an important enhancement to our cooper-

ative perception algorithm. Moreover, we used Mobileye cameras as tracking sensors.

As a first step, we created a realistic simulated scenario compatible with ROS, in which

two intelligent vehicles drove one behind another and cooperatively tracked two legacy

vehicles that drove in the opposite direction. We then presented our first deployment

of the C-GM-PHD algorithm on two real cars. As we did not have accurate localiza-

tion systems on both cars, we parked them one behind another and we resolved their

mutual localization by hand based on LIDAR data. LIDAR data were also used as an

independent ground-truth system for localizing the legacy vehicles driving by.

127

15 Cooperative Localization Algorithms

A C C U R A T E localization is essential for many intelligent vehicle applications, ran-

ging from perception to planning. This is also true for cooperative perception

algorithms. While some perception tasks or advanced driver assistance systems

can be implemented in the local vehicle’s frame (hence bypassing the localization

requirement), cooperation between moving vehicles requires appropriate methods for moving

from one local coordinate frame to another. Therefore, a common (global) frame is needed

to operate among local frames of multiple intelligent vehicles willing to cooperate with each

other.

In this chapter, we present our contribution to this research area. The first algorithm we present

is a standard EKF that integrates a GNSS sensor with inertial sensors and an odometer. Then

two algorithms for relative localization refinement are presented. In essence, they operate by

matching objects tracked by the cooperating vehicles and finding the rigid transform which

minimizes the inter-vehicle object mismatch. The output of the matching algorithms is then

fed to the EKF and serves for pose refinement. The EKF provides a continuous localization

estimate regardless of availability of the matching algorithm output.

Our approach represents a logical extension of the cooperative perception algorithms, because

the data it requires as input are inherently made available to other vehicles because of the

cooperative perception algorithms. No additional data (such as LIDAR point clouds or local

maps, if available) need to be shared among the vehicles. It particularly makes sense to apply

the cooperative localization approach on a vehicle with less accurate localization (in our case

car2), which can be aided by a vehicle with a more accurate positioning system (the car1 in

our case).

15.1 Background

The probably most frequently used approach for outdoor localization of mobile robots and

intelligent vehicles is based on a KF and its variations for nonlinear problems (such as an Exten-

129

Chapter 15. Cooperative Localization Algorithms

ded KF or Sigma Point KF). They are used to fuse proprioceptive sensors (e.g., accelerometers,

gyroscopes, odometers) together with exteroceptive sensors (e.g., GNSS sensors) in order to

provide a global pose estimate. A performance comparison of KFs for vehicle localization can

be found in [121].

When the above mentioned approaches do not yield the desired performance, additional

exteroceptive sensors that seek for landmarks in the environment are often used to aid the

localization (e.g., LIDARs, cameras). If a map of the environment is known, features can

be extracted from the sensor data and potential locations on the map can be suggested.

Roumeliotis and Bekey propose an approach based on a KF to perform map-based localization

[122]. Algorithms based on KFs make restrictive assumptions on the size of the error and the

shape of the robot’s (or vehicle’s) uncertainty. Monte Carlo localization solutions relax these

assumptions but they are typically more computationally expensive [123].

If a map is not available, it can be built simultaneously with localization. The class of algorithms

in which a map is created, landmarks are identified in the map, and the pose is corrected at each

step according to the landmarks, is called Simultaneous Localization and Mapping (SLAM)

[124]. In canonical SLAM implementations, landmarks and vehicle states are represented

in a vector form and either EKF-SLAM or FastSLAM are used to update the state as seen in

[125]. EKF-SLAM is performed by using an EKF to update a vehicle position based on expected

landmark locations. The EKF-SLAM does not provide data association and therefore another

method has to be used in order to relate stored with observed landmarks. It has a quadratic

complexity and is therefore costly for a large set of landmarks. FastSLAM uses a PF to estimate

the posterior of a vehicle’s path, contrary to EKF-SLAM where the posterior pose is estimated.

It scales logarithmically with the number of particles and is faster than EKF-SLAM for larger

environments. When an already mapped area is revisited, the map loop can be closed by

loop closure as seen in [126], for example. For EKF-SLAM there are correlations between each

landmark, stored in the covariance matrix, but since this is not the case with FastSLAM the

loop closure becomes more difficult.

Multiple robots (or vehicles) can cooperate with each other with the aim to achieve a more

accurate localization. In [127], multiple heterogeneous robots, able to detect each other, collab-

orate to localize themselves faster, maintain higher accuracy, and decrease cost of individual

robots by spreading the different kinds of sensors among multiple platforms. Prorok et al. show

in [128] a solution for collaborative localization of large robot teams composed of cheap robots,

that has low computational and sensing requirements. Their solution relies on a Monte-Carlo

localization method and reciprocal sampling. In [115], [129], teams of autonomous underwater

vehicles obtain range and/or angle measurements to each other and dead-reckoning informa-

tion to help each other navigate more accurately. The problem of inconsistent (overconfident)

estimates due re-use of received measurements is addressed. An approach for cooperative

localization of groups of intelligent vehicles is presented in [130]. Each vehicle can estimate

its position using GNSS and motion sensors, and maintains an estimate of group state. This

estimate is shared with neighboring vehicles and updated with both the sensor data of the

130

15.2. Extended Kalman Filter Algorithm

ego-vehicle and the estimates sent from other vehicles using a CI filter.

Cooperative SLAM approaches have also been proposed in the literature. For instance, in

[131], the relative pose between vehicles is estimated indirectly, by maximizing the consistency

degree between the maps of the area surrounding the vehicles obtained by local SLAM al-

gorithms on individual vehicles. A genetic algorithm is employed for solving the optimization

problem. This method requires sharing local maps among vehicles.

Inspiration for further map-matching algorithms can be borrowed from the computer vision

field. Registration of point sets can be performed using the Iterative Closest Point (ICP) or

Random Sample Consensus (RANSAC) algorithm (see for example [132]–[134]), or using GMM

(see for example [120], [135]). An interesting approach for map-matching using descriptors ex-

tracted from radar maps is proposed by Rapp et al. [136]. The drawback of all these approaches

is that they require a map.

Instead of sharing and matching maps, Rauch et al. evaluate in [137] approaches for inter-

vehicle matching of tracked objects based on the ICP and GMM algorithms mentioned above.

The advantage of this approach is that, apart from data already shared for the purpose of

cooperative fusion, no additional data need to be shared to perform cooperative localization.

However, this approach can only be applied when a sufficient number of objects is tracked by

each of the cooperative vehicles (i.e., a sufficient overlap between the tracking vehicles’ FOV

is required). At other times vehicles need to localize each on its own. This is why we propose

an integrated approach based on the EKF filter for localization using Dead-Reckoning (DR)

sensors, GNSS sensors, as well as updates from a cooperative object-matching algorithm.

15.2 Extended Kalman Filter Algorithm

Standard automotive localization algorithms typically use dead reckoning in order to overcome

the limitation of GNSS technology alone. Satellite signals are unavailable in tunnels and

garages, and are often severely degraded in urban canyons and near trees due to blocked

line of sight to the satellites or multi-path propagation. Sensors used for dead-reckoning are

often already present in cars for other purposes, such as Anti-lock Braking System (ABS) or

Electronic Stability Control (ECS), and their signals can be read from the CAN bus.

The localization algorithm presented here uses an EKF to integrate the always-available sensor

data with occasionally unavailable position information from the satellite into a combined

position fix. In the same fashion, it integrates pose refinement information obtained by the

object-matching algorithms proposed later in this chapter.

Our goal is to estimate the 2D pose (x, y,θ), corresponding velocities (vx , vy ,ω) and 2D linear

acceleration (ax , ay) of a vehicle over time. The process can be described as a nonlinear

131

Chapter 15. Cooperative Localization Algorithms

dynamical system, with

xk|k−1 = f (xk−1)+wk−1 (15.1)

where

x(·) =
[

x y θ vx vy ω ax ay

]
(15.2)

is the 8-D state vector, f is a nonlinear state transition function, and wk−1 is the normally

distributed process noise. Additionally, we receive measurements

zk = h(xk|k−1)+νk (15.3)

where zk is the measurement at time k, h is a nonlinear sensor model that maps the state

into the measurement space, and νk is the measurement noise, which is also assumed to be

normally distributed.

The algorithm uses a generic omni-directional motion model [138], which works well for

a broad range of robots. More suitable models for cars exist (such as the one we used in

Chapter 8). However, we took advantage of an existing ROS implementation [139] of the EKF

with omni-directional model, and we tuned the process noise covariance to mitigate this effect.

The pose is defined in the global frame, whereas the velocities and accelerations are expressed

in the body frame of the vehicle and need to be rotated to the global frame first. The vector

prediction equation of the omni-directional model xk|k−1 = f (xk−1) can be broken down into

individual equations as follows:

xk|k−1 = xk−1 +
(
vxk−1 cosθk−1 − vyk−1 sinθk−1

)
Δt

+0.5
(
axk−1 cosθk−1 −ayk−1 sinθk−1

)
Δt 2

(15.4)

yk|k−1 = yk−1 +
(
vxk−1 sinθk−1 + vyk−1 cosθk−1

)
Δt

+0.5
(
axk−1 sinθk−1 −ayk−1 cosθk−1

)
Δt 2

(15.5)

θk|k−1 = θk−1 +ωk−1Δt (15.6)

vxk|k−1 = vxk−1 +axk−1Δt (15.7)

vyk|k−1 = vyk−1 +ayk−1Δt (15.8)

ωk|k−1 =ωk−1 (15.9)

axk|k−1 = axk−1 (15.10)

ayk|k−1 = ayk−1 . (15.11)

The Jacobian of the transfer function f (·) is computed analytically.

Furthermore, by using the state vector defined in Equation (15.2), integration of various sensors

is facilitated. Every variable that is measured by the available sensors is present in the state

vector, and thus the measurement model can be expressed as an m×8 matrix H of rank m with

132

15.3. Relative Localization by Matching the Leading Vehicle

its only nonzero values (in this case, ones) existing in the columns of the measured variables,

where m is the number of variables measured by a given sensor.

When the localization algorithm is first started, x0 is initialized to the origin of the odometry

coordinate system. Using the UTM coordinates of the first reported GNSS measurement

[xU T M0 , yU T M0] and the first reported heading in the UTM frame φ0, a transformation matrix

T from the odometry frame to UTM frame is created:

T =

⎡⎢⎣cosφ0 −si nφ0 xU T M0

si nφ0 cosφ0 yU T M0

0 0 1

⎤⎥⎦ (15.12)

Each subsequent GNSS measurement at time k is converted from the UTM frame to the

odometry frame using the equation⎡⎢⎣ xodomk

yodomk

1

⎤⎥⎦= T −1

⎡⎢⎣ xUTMk

yUTMk

1

⎤⎥⎦ , (15.13)

and the converted measurement is fused with the state estimate in the EKF.

Outputs from object matching algorithms presented in the remainder of this section are also

given in the UTM frame in the form of a 2D pose, and are fused with the EKF state estimate

after applying Equation (15.13). The orientation is simply the difference θUTM −φ0.

15.3 Relative Localization by Matching the Leading Vehicle

The previously presented approach provides global localization, but its accuracy depends

on the quality of the proprioceptive and GNSS-based sensors, as well as on the environment

in which a vehicle is driving. For cooperative perception, very accurate relative localization

between the cooperating vehicles is more important than their absolute localization accuracy.

In this section, we present a simple algorithm that enhances the accuracy of the relative

localization between the two vehicles. An assumption is that there exists a cooperative vehicle

on the same lane in front of the ego vehicle. This assumption holds in one of the typical

scenarios in which cooperative perception is beneficial (see for example the overtaking case

study presented in Chapter 10). Since the leading vehicle might not always be visible, or its

track may get lost, we intend to find a corrected pose of the ego vehicle to use as an additional

measurement in the EKF presented in Section 15.2. The EKF will additionally smooth out the

measurements, as it balances between this update and other available sensors. The concept

of using the leading car for location refinement is similar to using measurements originating

from known landmarks.

133

Chapter 15. Cooperative Localization Algorithms

The leading vehicle is detected and tracked using the forward-looking sensors of the ego

vehicle. The leading vehicle additionally communicates its pose along with the state of objects

it tracks. If multiple vehicles are tracked at time k, the correct one needs to be associated with

the received pose. This is first done in local coordinates, by bounding the lateral distance to

the current lane, and constraining the longitudinal distance to be strictly positive. The final

check is performed in the UTM frame, by confirming that the distance between the tracked

and received pose is sufficiently small.

The goal is to find the new pose of the ego vehicle, for which the distance between the pose

of the leading vehicle in the global frame obtained by its localization system xL and its pose

obtained by the tracking algorithm of the ego vehicle xT is minimized. This is performed by

looking for the optimal 2D rigid transformation (rotation and translation).

Translation and rotation in 2D have three Degrees Of Freedom (DOFs) — two for transla-

tion and one for rotation. It is thus sufficient to use two poses in 2D to determine the rigid

transformation. The angle of rotation θR can first be determined as

θR = θL −θT . (15.14)

The translation is then computed:

t =
[

xL

yL

]
−R

[
xT

yT

]
, (15.15)

where R is the 2D rotation matrix

R =
[

cosθR −sinθR

sinθR cosθR

]
. (15.16)

Finally, the measurement to be used in the EKF update is computed by applying the found

transform to the last pose of the ego vehicle. Measurement uncertainty (covariance matrix) is

the localization uncertainty of the leading vehicle, augmented by the tracking uncertainty.

15.4 Relative Localization by Matching Tracked Objects

The assumption introduced in Section 15.3 holds only in a limited number of scenarios. In this

section we present a more general approach which relaxes the aforementioned assumption.

In this thesis, we track cars (cf. Part III) and pedestrians (as will be shown in Chapter 16).

While it was reasonable to estimate the heading of tracked cars, the estimation of pedestrians’

heading using LIDARs in very unreliable. Common for tracking cars and pedestrians is that

their center position in the Cartesian coordinates is tracked. Therefore, to estimate the 2D rigid

transform between the two intelligent vehicles, at least two objects are required to be tracked

by both of the vehicles at given time. An overview of the algorithm is given in Algorithm 15.1.

134

15.4. Relative Localization by Matching Tracked Objects

Algorithm 15.1: Overview of the localization algorithm based on object matching.

Require: Latest GNSS-updated position of the ego vehicle xUTM
EGO

Require: Object sets X (1) and X (2) s.t. X (·) >= 2
1: for x(1)

i ∈ X (1) do {Define cost matrix}

2: for x(2)
j ∈ X (2) do

3: C [i , j] ← DB (x(1)
i , x(2)

j) {Bhattacharyya distance}
4: end for
5: end for
6: Threshold the cost matrix
7: Compute minimum cost assignment between x(1)

i ∈ X (1) and x(2)
j ∈ X (2) using the

Hungarian algorithm
8: Run the Singular Value Decomposition (SVD) algorithm on assigned pairs to find the rigid

transformation (R, t)
9: Compute the Mean Square Error (MSE) of the transformation

10: Apply the transformation (R, t) to the pose of the ego vehicle and create new
measurement z = [x, y,θ]

11: if |z −xUTM
EGO | < eGATE then

12: return z
13: else
14: return None
15: end if

The algorithm starts by performing association between the two object sets. A cost matrix

defining the assignment cost for each pair of objects is computed. We use the Bhattacharyya

distance [140] to compute the assignment cost:

DB = 1

8
(μ1 −μ2)T Σ−1(μ1 −μ2)+ 1

2
ln

(
detΣ√

detΣ1 detΣ2

)
, (15.17)

where μi and Σi are the means and covariances of the two objects’ state (only the first two

dimensions) transformed into the global frame, and

Σ= Σ1 +Σ2

2
. (15.18)

Given an object tracking covariance in the local (tracking) frame Σlocal
T and the localization

covariance of the tracking vehicle ΣUTM
L , the covariance of the tracked object in the global

(UTM) frame can be computed as

ΣUTM
T = J1Σ

local
T JT

1 + J2Σ
UTM
L JT

2 (15.19)

where J1 = ∂xUTM
T

∂xlocal
T

and J2 = ∂xUTM
T

∂xUTM
L

denote respectively the Jacobian of the global position with

respect to the local position and the localization position.

135

Chapter 15. Cooperative Localization Algorithms

The FOVs of the two tracking vehicles may only partially overlap, and their tracking sets

may contain objects that are detectable by one of the vehicles only. Before proceeding with

association, we threshold the cost matrix to remove the objects with high cost to all other

objects, as we do not want unrelated objects to affect the global association process. The

association is found using the Hungarian algorithm [141]. Given two object sets and the cost

matrix, the Hungarian algorithm finds the assignment of objects in one set to objects in the

other set that minimizes the cost. The assignment is complete if the cardinality of the first set

is less than or equal to the cardinality of the second set; otherwise not every object from the

first set needs to be assigned to an object in the second set. At the output of the Hungarian

algorithm, a subset of objects with their respective associations is created.

The two 2D object sets {x(1)
i } and {x(2)

i }, i = 1, . . . , N (here {x(1)
i } and {x(2)

i } are considered as 2×1

column matrices) are related to each other using the identity

x(2)
i = Rx(1)

i + t+Ni , (15.20)

where R is a 2×2 rotation matrix, t is a translation vector (2×1 column matrix), and Ni a noise

vector. The goal is to find R and t such that the following sum is minimized:

DLSE =
N∑

i=1
(x(2)

i − (Rx(1)
i + t))2. (15.21)

It was shown in [142] that this least-squares problem can be solved by using SVD to find R

which minimizes DLSE, and then find the translation as t = x̄(2) −Rx̄(1), where x̄(·) = 1
N

∑
x(·)

i .

Finally, the transformation is applied to the latest pose of the ego vehicle and a pose new

measurement in the global (UTM) frame is hence created. The measurement covariance is set

to the leading vehicle localization covariance, augmented by the RMS�
2

factor for the x and y

coordinates, where RMS is the root mean squared error of the least-squares fit, and by a small

constant for the heading coordinate. A validation gate is set up around the latest vehicle pose

which was updated using the GNSS, and all updates falling outside of the gate are rejected. This

is especially helpful at the initialization of the algorithm, when the risk of wrong association

is higher due to high initial localization uncertainty (which in turn results in large object

covariances in the global frame). The accepted measurements are fused with the vehicle state

estimate in the EKF.

15.5 Evaluation

In this section, we evaluate the performance of the localization algorithms previously de-

scribed. We gradually increase the number of sensors we fuse in the EKF. We start by DR,

where we fuse the forward speed, turning rate (rotational speed around the vertical axis), and

accelerations in the horizontal plane. We also feed a lateral speed, which we set to 0 (this is a

reasonable assumption for relatively low speeds where there is not a lot of lateral slip). The

136

15.5. Evaluation

compass is not used because it turned out to be very unreliable, with random biases and large

jumps in response to various objects in the environment. The exception is the initial heading

measurement, which is along with the initial GPS position used in Equations (15.12)-(15.13)

to establish a relationship between the global and the odometry coordinate frame. Thus, in

the DR filter, the heading is computed as an initial heading plus the integrated turning rate.

In the second algorithm, we additionally fuse the measurements from the GPS (recall that the

U-blox 5 receiver we use only works with the GPS satellites). Although the GPS measurements

do not contain orientation information, they indirectly affect the orientation as the filter needs

to update the orientation in order to move the estimate towards the GPS measurement.

Finally, in the third algorithm, we additionally fuse in the measurements from our matching

algorithm. At the same time, we gate the GPS measurements, for the reasons explained below.

Our localization algorithms run on car2. The performance of a localization system can be

analyzed qualitatively by plotting a vehicle’s trajectory on a satellite map. For quantitative

evaluation, a reference localization system is required. We use the Applanix localization system

available on car1 for that purpose, while driving the car2 behind the car1 and following its

trajectory as closely as possible. When using RTK corrections, the advertised localization error

of the Applanix system can be as low as 3 cm. In practice, we managed to achieve a localization

accuracy of 3 cm only when the car was stationary. The localization accuracy of a moving

car in good conditions was around 0.2−0.3 m. We note that this is the estimated accuracy

reported by the Applanix system — we do not have available an additional reference against

which we could validate the reported performance of this system.

In the first evaluation scenario, the two cars start driving from the beginning of a street; the

cars drive forward at approximately 30 km/h behind each other, make a U-turn at the end

of the street, drive back, make another U-turn and come to a stop at approximately their

starting position. Figure 15.1 shows the trajectory of the reference car using green color.

The trajectory obtained by DR is shown in yellow, the trajectory of DR+GPS in blue, and the

trajectory corrected using the matching algorithm in red.

The distance between the reference trajectory and the outputs of the three filters is computed

in a way similar to [143]. For each point on the car2 trajectory, the closest point on the refer-

ence trajectory is found. The distance between trajectories is the sum of Euclidean distances

between all point pairs, normalized by the number of points in the trajectory. We note that the

reference trajectory runs ahead of the car2 trajectory by a few seconds. Limiting the search

space in time helps identifying the correct point on the reference trajectory, avoiding thereby

wrong associations, e.g., association of points corresponding to the car going south-west with

the part of the reference trajectory belonging to the car going north-east. It also speeds up the

algorithm.

Table 15.1 quantifies the localization error. Recall that the reference system is not installed

on the same vehicle on which the localization algorithms run. Thus a part of the error comes

137

Chapter 15. Cooperative Localization Algorithms

6.55 6.5505 6.551 6.5515 6.552 6.5525

Longitude

46.511

46.5112

46.5114

46.5116

46.5118

46.512

46.5122

46.5124

46.5126

La
tit
ud
e

Reference DR DR + GPS DR + GPS + Matching

Figure 15.1 – Vehicle localization using different algorithms when driving around 30 km/h. Every
10th point of the reference vehicle trajectory is shown in green. The reference vehicle starts
from the south end of the street, drives towards north-east, makes a U-turn, drives back in the
south-west direction, makes another U-turn and stops at its starting position. The car2 drives
behind the reference vehicle, following approximately the same trajectory. The trajectory of car2
obtained using dead-reckoning is shown in yellow, blue corresponds to the trajectory of the filter
with dead-reckoning and GPS, whereas red depicts the trajectory obtained with our matching
algorithm.

from the real difference in the driven trajectories, especially around the U-turns.

The algorithm which only uses DR produces a very smooth trajectory but drifts to a side,

resulting in the largest error. Notably, the algorithm fusing DR and GPS produces a trajectory

with some jumps. After investigating the issue, we concluded that there exists a large delay

in the signal received from the GPS sensor (in the order of a couple of seconds). These GPS

measurements, while being global and preventing the algorithm from drifting away, constantly

pull the moving vehicle behind and slow down the speed estimate (as visible in Figure 15.1).

The performance is especially degraded in sharp turns (such as U-turns), because the old GPS

measurements affect the heading of the car in a wrong direction. It takes a significant amount

of time for the algorithm to recover the correct heading after the turn. We also note that the

performance of this algorithm reported in Table 15.1 cannot reflect the aforementioned speed

issue in the largest part of the trajectory, due to the way we compute the distance between

138

15.5. Evaluation

Table 15.1 – Comparison of mean localization errors for trajectories obtained using different
localization algorithms at the driving speed of around 30 km/h.

Algorithm DR DR+GPS Matching
Mean error 7.93 m 1.08 m 0.57 m

Minimum error 0.05 m 0.008 m 0.002 m
Maximum error 19.28 m 10.40 m 2.14 m

Table 15.2 – Comparison of mean localization errors for trajectories obtained using different
localization algorithms at the driving speed of around 6 km/h.

Algorithm DR DR+GPS Matching
Mean error 7.10 m 0.80 m 0.52 m

Minimum error 0.003 m 0.002 m 0.000 m
Maximum error 22.11 m 3.47 m 2.46 m

trajectories. Finally, our matching algorithm produces the most accurate trajectory. Gating of

GPS measurements is performed in the filter to prevent the delay in the signal from pulling

the state estimate backwards and thus degrading the localization performance.

We put our localization algorithms to another test, this time while driving at lower speeds

(approximately 6 km/h) around our garage building. At lower driving speeds, the effect of the

GPS signal delay is not very significant. The car starts at the north-west side of the building

and drives twice around the building in the clockwise direction. The obtained trajectories

are drawn in Figure 15.2. As the reference car drives around 10 m ahead of the ego car, the

tracking algorithm looses track of it in curves. Thus, the trajectory obtained by the matching

algorithm in curves is very similar to the trajectory of the DR+GPS algorithm. When the ego car

arrives behind the corner and reestablishes the track of the reference car, the update created by

the matching algorithm quickly pulls the estimate towards the real position, thereby causing

the EKF estimate to jump (see Figure 15.2d). This is due to having a significantly smaller

covariance of the matching update as compared to the GPS measurement covariance. We note

that there is also a jump in the forward direction, that compensates for the delay in the GPS

measurement mentioned above.

A quantitative analysis is performed, similarly to the higher speed case. By looking at Table 15.2

we observe that the performance is similar to the one obtained at higher speeds, with the

exception of the DR+GPS filter, which yields more accurate results in the slower scenario,

partially due to the smaller effect of the GPS signal delay at lower speeds. It is necessary to

mention that the expressed error metric does not penalize for the longitudinal error that arises

from the GPS delay. This is because our reference localization system is installed on the leading

car and we do not have the reference position of the ego car at any given time. Instead, we

need to look for the closes point on the reference trajectory within some time horizon.

In order to perform a more accurate comparison, a reference localization system should be

installed on the same vehicle as the localization system that is being evaluated. In our case, it

139

Chapter 15. Cooperative Localization Algorithms

(a) Reference trajectory (b) DR

(c) DR+GPS (d) Matching

Figure 15.2 – Localization trajectories when driving at speeds of around 6 km/h.

would mean having a reference localization system installed on each of our test vehicles.

Summary

This chapter introduces our localization framework. The backbone of the framework

is an EKF, which provides a continuous global location estimate by fusing the data

coming from proprioceptive and exteroceptive sensors. The framework includes a

cooperative localization component, which comprises two algorithms for matching

of tracked objects and aims at improving the accuracy of the ego vehicle localization

with respect to the cooperative vehicle. We perform an evaluation of our approach in

real-world scenarios using two test cars.

140

16 Cooperative Tracking under Realistic
Localization Conditions

I N Chapter 14, we demonstrated an approach for tracking of cars using Mobileye cam-

eras. As mentioned, the camera distance estimates produced by these sensors suffer

from a significant, non-uniform bias that needed to be corrected. In this chapter, we

propose an alternative approach, which fuses the measurements from Mobileye cam-

eras together with the LIDAR measurements. We perform tracking of pedestrians and cars

from the moving ego vehicle. Therefore, we additionally need to integrate the localization

approach presented in Chapter 15.

16.1 Integration of Measurements from a Mobileye Camera

Whilst doing additional experiments with the Mobileye camera, we noticed that its distance

estimates are not very accurate. This is somewhat to be expected, given that the Mobileye

device uses a single camera. We suspect that the distance is learned from the training data,

by considering the size of the detected object. It was evident during our experiments that the

camera produces different distance estimates for pedestrians of different height. In particular,

we observed how the reported distance increased as the pedestrian was assuming a squat

position, therefore appearing shorter in the camera’s FOV. A similar problem was observed

when detecting cars of different size. Moreover, the distance to partially occluded cars was

estimated wrongly.

Instead of trying to calibrate the camera for the size of specific objects we track, in this chapter

we propose to use the Mobileye camera as a complementary sensor for tracking, by exploiting

the features that are not easily or reliably observable by LIDARs. Namely, when detecting

objects in a LIDAR point cloud, one notable difficulty is discriminating pedestrians from other

similarly sized objects (e.g., tree trunks). Vision sensors are known to be better suited for this

problem. The same holds for detection of cars — while the Mobileye camera can detect cars

(and larger vehicles) from the front or the back side, every segment in the LIDAR point cloud

that has the rough dimensions of a car width or length can be classified as a car detection.

Moreover, it is impossible to distinguish the front of the car from the back by looking at the

141

Chapter 16. Cooperative Tracking under Realistic Localization Conditions

LIDAR point cloud only (at least when considering 2D and 2.5D LIDARs). On the other hand,

a LIDAR provides a much more accurate distance estimate than a monocular camera, so it

makes sense to exploit this property for tracking.

A PHD filter has a concept of birth intensity, which allows the filter to tracks objects that enter

the sensing area (see Equations (7.14) and (8.3)). We compute the birth intensity from the

Mobileye measurements set Z as a mixture of Gaussian distributions centered at the individual

measurements z (given in Cartesian coordinates):

γk (x) =
∑

z∈Z
wN(x;mz ,Pz). (16.1)

The diagonal of the covariance Pz is set to (σr ,σφ) in polar coordinates and then rotated to

Cartesian coordinates using the bearing angle of the measurement φ, to reflect the fact that

the uncertainty is larger in the measurement range than in bearing. The car birth intensity

additionally contains the orientation, which is also extracted from the Mobileye measurement.

Depending on the class of the detected object (pedestrian or car), a new component is added

to the appropriate birth intensity (as will be seen in the next section, pedestrians and cars

have different state models and are thus kept as separate RFSs). Other classes of objects (such

as for example trucks or bicycles) are ignored. The presented method is very efficient against

clutter measurements (created by the preprocessing algorithm, for instance originating from

trees or pillars).

16.2 Modeling Objects

A pedestrian is modeled using a 4D representation, whose states are position x and y , and

velocity vx and vy :

xped =
[

x y vx vy

]T
. (16.2)

A car is modeled as a rectangle of fixed size, and a 5D kinematic model is used, the states

being the center of the rectangle (x, y), car heading θ, car linear and rotational speed v and ω,

respectively:

xcar =
[

x y θ v ω
]T

. (16.3)

Given that different state models are used for different object types, they are tracked independ-

ently. There exist separate PHD filters (and intensities) for pedestrians and for cars. Objects of

different class are not merged or fused together.

142

16.3. Experimental Evaluation

16.2.1 Motion Model

To model the motion of a tracked object, Constant Velocity (CV) and CTRV models are used

(see Equation (8.35) and the paper by Schubert et al. [89]). Given a posterior object state xk−1

at time k −1, the predicted state at time k is given by

xk|k−1 = f (xk−1)+b(uk−1)+ g (xk−1)ξk−1, (16.4)

where f (·), b(·) and g (·) are nonlinear in general case. The input uk−1 relates to the movement

of the sensor relative to the tracked object. It is the change in pose of the ego vehicle from the

last measurement update to the new one, and is obtained from the localization EKF. Noise

is modeled as acceleration, ξ= [a α]� being the acceleration vector and g (·) the process

noise model that transforms the acceleration vector to the each state variable.

The orientation of a pedestrian cannot be reliably detected by any of the sensors we use.

Moreover, the movement of a pedestrian is holonomic, so it makes sense to include the full

velocity vector in its state. The motion model used for a pedestrian is a CV model.

The motion model used for a car depends on the magnitude of the angular speed due to the

division in the CTRV model:

f car =
⎧⎨⎩ f car

C T RV if ω≥ 10−4rad/s

f ped
CV otherwise

(16.5)

16.3 Experimental Evaluation

The evaluation is carried out using our two test vehicles. Two real-world scenarios are con-

sidered. In the first scenario (Scenario 2), two pedestrians are tracked from a moving vehicle,

which is aided by an infrastructure sensor. In the second scenario (Scenario 3), cars driving

in the opposite direction are tracked, while the two cooperative vehicles drive one behind

another.

16.3.1 Tracking Pedestrians

In Scenario 2, the two intelligent cars start at the distance of around 35 m facing each other.

One of the cars (the cooperative car) is parked and remains stationary throughout the experi-

ment. It basically represents a sensor station deployed in the infrastructure (e.g., at a traffic

light), endowed with two LIDARs, a Mobileye camera, and communication and computation

equipment. The other car (the ego car) drives at the approximate speed of 6 km/h.

In the scenario, there are two pedestrians, who start off in the middle of the scene, and they

walk to different sides of the road. Two two pedestrians are instructed to walk along the pre-

defined trajectories, maintaining as constant speed as possible. Their ground truth trajectories

143

Chapter 16. Cooperative Tracking under Realistic Localization Conditions

Figure 16.1 – A screenshot from rviz showing the beginning of Scenario 2a as seen from above.
The moving (ego, E) vehicle is on the left-hand side shown in white, while the stationary (cooper-
ative, C) vehicle is the green one on the right. Respective point clouds are color-coded in the same
way. The two pedestrians P1 and P2 can be seen in the middle, with the output from the ego track-
ing filter shown using blue rectangular parallelepipeds. Observe the contours of a parked car in the
top center of the image. Measurements from the ego Mobileye camera are the gray rectangles, and
their respective birth component covariance ellipses, rotated using the bearing angle as explained
in Section 16.1, are also drawn in gray. The grid size is 5 m. Note: the entire LIDAR point cloud of the
cooperative car is exceptionally communicated to the ego car for visualization purposes; in general,
it is not communicated in order to minimize the required communication bandwidth and incurred
communication delays.

are extracted from satellite maps; markings on the parking lot visible in the satellite images are

used as the anchoring points. Another car is parked on the left side of the road as seen from

the ego vehicle, representing a barrier behind which pedestrians cannot be detected without

cooperation.

A screenshot from rviz showing the scenario at time t = 0 s is given in Figure 16.1. We

distinguish two variants of Scenario 2: in Scenario 2a, car2 (the white C-ZERO with low-cost

localization system) moves, while car1 is parked; in Scenario 2b, car1 (the green C-ZERO

with high-end localization system) moves, while car2 is parked.

Let us first take a look at the cooperative tracking performance when no accurate relative local-

ization is available (Scenario 2a). As our car2 is endowed with an inexpensive and inaccurate

localization system, we move the car2 while keeping the car1 stationary. Figure 16.2 shows

a trajectory of the car2 as well as the tracks of the two pedestrians. First, we notice an offset in

the car2 localization, whose magnitude is a few meters. This results also in pedestrian tracks

being located far away from the ground truth trajectories in the global frame. Moreover, the

large error in relative localization between the two cooperative vehicles renders the cooperat-

ive fusion algorithm useless. In particular, the algorithm cannot track the occluded pedestrian

due to the large localization uncertainty. Moreover, an additional (third) target appears at two

144

16.3. Experimental Evaluation

S1
S2

E1

E2

(a)

0 2 4 6 8 10 12 14 16 18
Time [s]

0

0.5

1

1.5

2

2.5

3

N
um

be
r o

f t
ra

ck
ed

 o
bj

ec
ts

(b)

Figure 16.2 – Tracking pedestrians from the moving car2 cooperating with the stationary car1
(Scenario 2a). The car2 uses DR+GPS algorithm for localization and does not fuse in any cor-
rections based on the object matching algorithm. (a) Satellite view of the car2 trajectory (red),
tracked pedestrians (magenta) and their ground truth trajectories (blue and cyan). S1, E1, S2, and
E2 represent the start and end points on the trajectories of the first and the second pedestrian,
respectively. (b) Cardinality plot over time.

occasions (see in particular Figure 16.2b), which is the result of the GM components from the

two cars, belonging to the same pedestrian, being very far away from each other in the global

frame.

Let us now provide the conditions necessary for the cooperative fusion algorithm to work

properly.

In the first batch of 10 runs, car2 plays the ego vehicle and car1 is parked on the other

side (Scenario 2a). As seen above, the ego vehicle cannot localize itself with enough accuracy

to perform cooperative fusion. However, by augmenting its localization capabilities with

the object-matching algorithm presented in Chapter 15.4. We will demonstrate that it is

possible to achieve a satisfactory localization performance and therefore proper working of the

cooperative perception algorithm. The object-matching algorithm produces a measurement

for the EKF update only if both pedestrians are tracked by both cars (prior to cooperative

fusion). When less than two pedestrians are detectable by any of the cars, the EKF simply

produces its estimate based on the DR and GPS sensors.

In the second 10 runs, the two sensing cars switch their roles, car1 becoming the ego vehicle

(Scenario 2b). In this case, car1 can be localized very accurately globally, while the location

of the stationary car2 is manually determined in advance, the relative localization error

between the two cars is small.

Selected runs from the datasets associated with Scenario 2a and 2b are depicted in Figure 16.3.

In Scenario 2a, pedestrians are now successfully tracked. We notice that the tracks of the

145

Chapter 16. Cooperative Tracking under Realistic Localization Conditions

S1
S2

E1

E2

(a) Scenario 2a (ego vehicle is car2)

S1
S2

E1

E2

(b) Scenario 2b (ego vehicle is car1)

Figure 16.3 – Tracking pedestrians from a moving ego vehicle, while the cooperative vehicle is
parked facing the opposite direction. The trajectory of the ego vehicle is drawn with red dots. The
tracked object trajectories are shown in purple, while the ground truth trajectories of the two
pedestrians are drawn in blue and cyan color. S1, E1, S2, and E2 represent the start and end points
on the trajectories of the first and the second pedestrian, respectively.

tracked pedestrians closely resemble the ground truth trajectories. In the top right part of

the image, we see the trajectory of the occluded pedestrian. Thanks to the cooperation, it is

successfully tracked. After a sharp change in the movement direction, we see that some time

is required for the direction of the velocity vector to be correctly estimated, which results in

predictions in wrong direction. In Scenario 2b, we first notice the smooth trajectory of the ego

vehicle obtained by the Applanix localization system in Figure 16.3b. Pedestrian trajectories

are smoother than in Scenario 2a, thanks to the smoother localization of the ego car.

Figure 16.4 shows the performance of the cooperative tracking using the OSPA metric. OSPA for

a single run is given in Figure 16.4a. The first spike around t = 4 s, characterized by a duration

of around 1 s, corresponds to the cardinality mismatch when one of the two pedestrians

enters the occluded area of the ego car’s FOV. The PHD filter running on the ego car keeps

a component corresponding to a pedestrian, albeit with a low weight because it is not being

detected by its sensors. Its weight is being further reduced with each sensor update. This

low-weighted component influences the weight of the fused component. An aggravating

circumstance is that the parked car is not being tracked in this scenario, so it is impossible to

model the occlusion by it. The second spike corresponds to the cardinality mismatch when

the pedestrian re-enters the FOV of the ego car. Accidentally, in the selected two runs, the

performance of the tracking was slightly better when the car2 took the role of the ego car.

On average, the tracking error over 10 runs is lower in Scenario 2b, as shown in Figures 16.4b

and 16.4c. This is to be expected due to car1’s ability to localize more accurately. Aggregated

performance over 10 runs for each of the two batches is shown in Figure 16.4b, whereas the

Whisker’s box plots are given in Figure 16.4c. Remarkably, there is no statistically significant

146

16.3. Experimental Evaluation

0 2 4 6 8 10 12 14
Time [s]

0

1

2

3

4

5

6

O
S

P
A

Scenario 2a
Scenario 2b

(a) OSPA for one run

0 2 4 6 8 10 12 14
Time [s]

-1

0

1

2

3

4

5

6

7

O
S

P
A

Scenario 2a
Scenario 2b

(b) OSPA over 10 runs

Scenario 2a Scenario 2b

0

1

2

3

4

5

6

7

8

9

10

O
S

P
A

(c) OSPA box plot over 10 runs

Figure 16.4 – Performance of C-GM-PHD filter in the pedestrian scenario expressed using the
OSPA metric. Runs corresponding to the car2 taking the role of the ego car are shown in blue
(Scenario 2a), while in red are the runs when car1 moves (Scenario 2b).

difference between the performance of the C-GM-PHD filter when run on each of test cars, an

outcome that demonstrates the ability of our cooperative localization algorithm presented in

Chapter 15 to compensate for on-board inaccurate localization equipment.

16.3.2 Tracking Cars

In Scenario 3, the two cooperative vehicles drive one behind the other on a relatively straight

road segment of approximately 150 m in length, car2 being the rear, ego vehicle, and car1

being the front, cooperative vehicle. They start on the south end of the road. Two legacy

vehicles drive in the opposite direction, coming from the north. All four cars are human

driven, starting from a still position and accelerating to about 30 km/h. The cars start from

approximately the same positions and the rear cars try to keep the same distance to the leading

cars.

We performed 14 experimental runs. A screenshot from the ROS visualization tool rviz

147

Chapter 16. Cooperative Tracking under Realistic Localization Conditions

Figure 16.5 – A screenshot from the ROS visualization tool rviz during an experimental run.
The ego car is shown in white. A point cloud obtained by the ego vehicle’s LIDAR sensors is also
visualized in white. The pose of the cooperative car, shared through the wireless communication,
is displayed in green, and so is the point cloud belonging to the cooperative car. Objects tracked
directly by the ego car are shown in purple. External objects fused by the ego car are displayed
with red color. The trajectory of the ego car in the last few iterations is shown with red arrows. The
measurements of the Mobileye cameras are shown as gray rectangles, while gray ellipses represent
the uncertainty we used in our birth model. Note: the point cloud of the cooperative car is excep-
tionally communicated to the ego car for visualization purposes; in general, it is not communicated
in order to minimize the required communication bandwidth and incurred communication delays.

is shown in Figure 16.5. The effectiveness of our cooperative localization algorithm can be

observed from the alignment of the two point clouds (for instance, look along the right edge).

In Figure 16.6 we plot tracked trajectories of the tracked objects (two oncoming cars O1 and

O2 and the leading vehicle L) from the tracking car perspective (ego vehicle E). Figure 16.6a

shows trajectories belonging to 14 runs of the GM-PHD filter (no cooperative fusion employed)

on a satellite map. The localization of the ego vehicle is performed using DR only, and all

trajectories are rotated using the correct heading of the ego vehicle. GPS was not used because

the initial orientation (coming from the Yocto3d compass) is very unreliable, and the car needs

to travel a few tens of meters before the filter can correct the heading based on the received

GPS measurements (which contain no heading). We observe drift in the DR localization.

On the other hand, with the aid of cooperative localization, we can obtain more accurate

tracking in the global frame, proving again that cooperative localization can be regarded as a

key enabling factor for cooperative perception. Trajectories of tracked objects over 14 runs are

shown in Figure 16.6b. We also observe that objects are tracked over a longer distance. At large

distances, the oncoming cars are detected slightly too much on the side, which places them

148

16.3. Experimental Evaluation

Table 16.1 – Maximum tracking distance for oncoming cars.

μcar1 σcar1 μcar2 σcar2

GM-PHD 35.22 m 7.32 m 31.15 m 6.88 m
C-GM-PHD 58.65 m 10.18 m 52.04 m 8.59 m

off the road. We believe this is due to the too small silhouette as perceived from the LIDARs at

large distances: the center of a detected object cannot be extracted accurately based only on a

few points of laser reflection.

We do not have ground truth trajectories for this scenario as only the leading vehicle is

equipped with the Applanix system (neither the legacy oncoming cars nor the ego vehicle do

have such high-end localization system). It is therefore not possible to calculate the full OSPA

metric. Table 16.1 shows the mean μ and standard deviation σ over 14 runs of the maximum

distance at which oncoming cars are tracked. A clear added-value of the cooperative filter can

be seen. We notice that the first oncoming car can on average be tracked at larger distances

than the second car. We believe this is due to the second oncoming car being partially occluded

by the first car. Recall that a car needs to be detected by both the LIDAR and the Mobileye

camera in order for a new object to be born in the filter.

Summary

This chapter concludes our experimental effort using real vehicles. We introduced a new

method of fusing LIDAR and Mobileye sensors in the framework of the PHD filter, which

exploits the best features offered by each of the sensing modalities. By building on top

of the previously proposed cooperative localization method, we managed to deploy the

cooperative perception algorithms on moving vehicles. We validated our approach by

tracking pedestrians in a V2I scenario, and by tracking cars in a V2V scenario.

149

Chapter 16. Cooperative Tracking under Realistic Localization Conditions

(a) Without cooperation

(b) With cooperation

Figure 16.6 – Tracking cars from a moving vehicle. The leading car track is shown in red, the front
oncoming car in green and the rear oncoming car in blue. When there is no cooperation between
vehicles, the localization of the tracking vehicle is performed using the DR algorithm. In the case
of cooperation, localization is enhanced by the matching algorithm.

150

17 Conclusion

S I M U L A T E D environments only partially capture all the relevant properties of the

real world. Therefore, system validation on real-world data is of extreme importance.

There is often a significant delta incurred with transition from simulation to reality,

which requires a substantial engineering (and sometimes research) effort to be

properly addressed. Some of the issues encountered have to do with time synchronization and

delays, real-time constraints and limitations in computational speed, as well as inaccurate

sensors whose error models may not be characterized. The goal of Part IV was to perform

experimental validation of our cooperative perception algorithms using real vehicles and

automotive-grade sensors.

We started by presenting our software framework relying on ROS in Chapter 13. We made our

implementation of the C-GM-PHD filter compatible with ROS. We designed a flexible and

distributed software architecture, which allowed us to run the same filter code in Webots and

on real vehicles. We made the transition as simple as disconnecting the nodes that publish the

simulated sensory data, and connecting the nodes that interface the real sensors.

We designed three evaluation scenarios:

� In Scenario 1, the two cooperative vehicles were positioned one behind the other on a

straight road, while two legacy cars drove in the opposite direction. For the first time, we

used Mobileye cameras as perception sensors.

� Scenario 2 was a representative of a V2I scenario. While one cooperative car was moving,

the other one was stationary and had thus resembled an infrastructure sensor. Two

pedestrians were tracked in a cooperative fashion using LIDARs and Mobileye cameras.

� Scenario 3 was similar to Scenario 1, however the tracking algorithm relied on both

LIDARs and Mobileye cameras, and the sensing vehicles were moving.

In Scenario 1, we assumed that both cooperative vehicles can benefit of accurate localization.

While this was easy to achieve in simulation using accurate sensors (Scenario 1a), in real-

151

Chapter 17. Conclusion

world settings we parked the two cooperative vehicles (Scenario 1b); the vehicles were kept

stationary throughout the experiments, and their relative localization was resolved by the

means of a LIDAR point cloud. We relaxed this assumption in Scenarios 2 and 3, in which

the experiments were carried out under realistic localization conditions. In Chapter 15, we

developed a cooperative localization method that results in an increased relative localization

accuracy between the cooperative vehicles. This method enabled us to move the cooperative

vehicles in the experiments, as shown in Chapter 16. Additionally, we performed a couple of

algorithmic enhancements, that made the algorithm perform better in real-world scenarios.

Overall, in Part IV we presented algorithmic enhancements, detailed implementation choices

and performed experimental validation of our cooperative perception algorithms using real

vehicles. We showed the effectiveness of our approach in different scenarios, where pedes-

trians and cars were successfully tracked in a cooperative fashion, bypassing the limitations

otherwise imposed by limited range of individual sensors and occlusions.

17.1 Discussion

Our experimental platforms are relatively complex, and working with them brings a number

of challenges. On the level of a single vehicle, one of the challenges is to interface all sensors

and integrate them in a single framework. Once the data from real sensors are obtained, a few

interesting observations can be made. The sensors are not perfectly synchronized as it was

the case in simulation, and their delays are variable. The software framework needs to be able

to account for variable delays, and process the data in real time. Notably, more complex and

uncontrollable environments in which sensors operate represent another challenge. While

buildings, trees, or signposts are also available in Webots, some before unseen effects are

produced by, for example, wire fences or bushes. These effects represent corner cases for the

algorithms, which may need to be tuned to operate more robustly in real-world environments.

A few additional challenges emerge when working with multiple vehicles. First, the time

synchronization is absolutely critical for multi-vehicle applications. No matter if some data is

transmitted in real time, or the data is logged for post-processing — a common time reference

is required. Perhaps the most common way to synchronize time is by using the GNSS time

(the accuracy of GNSS time signal is ±10 ns), when supported by the equipment. Since we

could not access the time pulse on the U-blox 5 GPS receiver, we decided to use a network

synchronization tool for time synchronization across multiple computers. The requirement

is that all computers are connected to the network, which was fulfilled in our case. Second,

V2X communication is characterized by variable delays, and the wireless connection can drop

if the distance between the vehicles becomes too large. This can pose a limitation on the

scenario design. Third, accurate relative localization is essential for cooperative applications

such as cooperative perception. As sensors operate in their local frames, a common reference

is required for moving from one local coordinate frame to another.

Having mentioned the challenges above, we feel that having a realistic simulation tool is of

152

17.1. Discussion

uttermost importance for research and algorithm prototyping in the field of intelligent vehicles.

The effort we invested in the development and calibration of models for Webots enabled us

to approach the problem in a gradual and systematic way, as we were able to experiment in

controlled environments. Thanks to our software framework and the underlying, distributed

and flexible architecture based on ROS, we could make a smooth transition from simulation

to real cars. The algorithms developed in simulation required only a couple of enhancements

before they started working properly under real-world conditions.

153

Part VConclusion

155

18 Conclusion

O V E R the course of this thesis, we examined the problem of cooperative percep-

tion. This endeavor was motivated by the need to achieve a safer and further

optimized performance of intelligent vehicles. The ultimate goal of cooperative

perception is to deliver larger coverage of the surrounding area and better situ-

ational awareness to individual vehicles. However, achieving such an outcome presents many

scientific and technical challenges. These include questions on: (i) design and deployment

of platforms and development of simulation tools, (ii) design of core cooperative perception

algorithms, and (iii) deployment and testing of algorithms on real vehicles. In this manuscript,

we presented our work on each of these topics. Overall, we proposed an end-to-end framework

for cooperative perception. We hope to have provided enough evidence of the applicability of

our framework in both simulated and real-world scenarios.

Our work on platforms and simulation tools, detailed in Part II of this manuscript, provided

the following contributions:

� We designed our platform consisting of two vehicles, such that it successfully suppor-

ted our experimental campaign, targeted towards testing of cooperative perception

algorithms. We deployed on it a set of perception and localization sensors, computers

and communication equipment.

� We reproduced our experimental platform in the high-fidelity simulator Webots. This

included developing models of cars and sensors, and calibrating them using the real

hardware. By reducing the simulation-to-reality gap, we could develop algorithms in

controlled simulated environments and then smoothly move them to real vehicles.

Moreover, we could design the scenarios and verify their validity in simulation before

setting them up in reality.

Our work on cooperative perception used the PHD filter as a baseline for multi-object tracking.

Our contributions on this topic, detailed in Part III, are summarized as follows:

157

Chapter 18. Conclusion

� We proposed two algorithms for cooperative perception. The first one used a GM ap-

proximation of the PHD intensity, whereas the second one used an SMC approximation.

Both algorithms contain novel methods for the fusion of non-overlapping FOVs (i.e.,

the complementary fusion) — thus providing solutions for robust tracking of multiple

objects in sensing sets whose overlap is dynamically changing, because the sensors are

mounted on non-coordinated mobile vehicles.

� Building upon the contributions mentioned above, we designed an overtaking assistance

system based on cooperative perception. It serves as a proof of concept and demon-

strates the power of cooperative perception algorithms in an application with con-

strained FOV and limited sensing range.

Finally, in Part IV, we performed multiple algorithmic enhancements and carried out extensive

experimentation using real vehicles. Our contributions on this last topic are as follows:

� We designed a flexible, distributed software framework, which relies on ROS. This soft-

ware framework allowed us to use the same implementation of cooperative perception

algorithms in simulation and on real vehicles. It provides a natural and efficient way to

work with multiple vehicles, therefore natively tackling the cooperation problem.

� We carried out an optimization of fusion weight in the C-GM-PHD filter. The result was

a more robust algorithmic performance, especially in terms of estimated cardinality of

the fused PHD intensity.

� We proposed an unconventional, innovative method for the fusion of data gathered by

LIDARs and Mobileye cameras through the birth intensity of the PHD filter. In this way,

for each of the sensors, we exploited its most valuable properties (ranging for the LIDAR

and object identification for the Mobileye camera). Thanks to this improvement, we

could run our algorithm in more complex, real-world environments, as the Mobileye

camera only encouraged birthing of objects which correspond to cars and pedestrians

(and not other elements in the environment such as wall segments).

� We proposed a cooperative localization framework. The framework consisted of an

EKF localization filter for the fusion of signals from the GNSS, speedometer and inertial

sensors, as well as of two algorithms for object-matching. The algorithms exploited

objects detected by both cooperative vehicles to compute an accurate relative pose

between them. This pose was integrated in the aforementioned EKF filter in the form of

a correction.

� The end-to-end framework for cooperative perception was validated using two real

Citroën C-ZERO cars. We designed scenarios representative for V2I and V2V commu-

nication. We tested our framework while cooperatively tracking pedestrians and cars in

real time, using stationary and moving sensing vehicles.

158

18.1. Discussion and Outlook

18.1 Discussion and Outlook

While individual vehicles are becoming quite sophisticated in terms of technology and

autonomy built into them, intrinsic limitations of single vehicle perception systems (lim-

ited FOV and LOS constraints) cannot be easily overcome at the individual level. Through

cooperation, vehicles can achieve superior performance due to enhanced coverage and better

situational awareness of the area surrounding them. Hence, further progress in the area of

cooperation and coordination of vehicles is to be expected in the coming years.

The end-to-end framework for cooperative perception proposed in this thesis includes al-

gorithms and software tools. Our software toolchain, spanning from a calibrated simulator to

real vehicles, is a key enabler for working with multiple vehicles in an efficient way. While in

this thesis we only showed one possible application of our framework, its applicability spans

well beyond overtaking recommendation systems: it can be useful in any situation where

single vehicle perception is constrained, preventing accidents, contributing to higher traffic

fluidity, and reducing fuel consumption. Thus, our framework can be regarded as a stepping

stone towards more complex, multi-vehicle automated systems.

The proposed cooperative perception framework is general and agnostic about the underlying

sensing technology, as the tracking and fusion are performed at the object level. Our choice of

exteroceptive sensing modalities represents a minimally rich set of sensors that allows us to

fulfill one of our objectives: perform both intra-vehicle and inter-vehicle sensor fusion. We

want to highlight the fact that our framework easily supports deploying an additional sensor

modality on our platform, or using a different set of exteroceptive sensors. Notably, a radar

sensor is interesting for at least three reasons: (i) it is currently more affordable than a LIDAR,

(ii) it has a superior penetration capability through any type of weather condition, and (iii)

it can additionally measure the velocity of objects using the Doppler effect — a property not

directly measurable by neither a LIDAR nor a passive camera. Instant velocity information is

beneficial both in safety-critical situations, as well as for discriminating moving from stationary

objects. However, the drawbacks of radars typically used in the automotive domain are their

lower angular resolution and narrower FOV.

Our work constitutes a first step towards cooperative perception using PHD filters. While

we did not obtain any statistically significant improvement in the OSPA performance in the

overlapping FOV, mainly due to the conservative assumption introduced by the CI method,

we demonstrated clear improvements when other metrics are considered (e.g., increased

safety due to extended coverage, mitigated occlusions due to a second perspective). These

improvements could have a positive effect on the intelligent vehicles’ control systems as

well, as vehicles could plan their trajectories over a longer time horizon, or could perform

certain maneuvers at higher speeds (due to the extended coverage or less occlusions). Besides

localization, the main challenges of using cooperative information for control are related to its

correctness and liability in case of accidents. From this perspective, infrastructural sensors

are definitely appealing as a starting point. Indeed, since the authorities can constrain the

159

Chapter 18. Conclusion

physical access to them, infrastructural sensors are seemingly less prone to adversaries than

the systems installed on moving vehicles.

We can foresee any follow-up of our work that aims to further enhance the performance of

our methods. Different filters can easily be integrated in our flexible software framework. At

this point, we would like to remind the reader that the PHD filter does not yield object labels

(as detailed in Chapter 7). In other words, there is no correlation between spatial variables

of objects over time. However, both the tracking from a single vehicle and the cooperative

fusion could benefit from labels, as it would be possible to prevent merging or fusion of

objects with different labels. To this end, multi-object filters based on the multi-Bernoulli

filters could be especially effective (though at the cost of a higher computational complexity),

as they approximate the multi-object posterior using the parameters of a multi-Bernoulli

distribution. For example, a Labeled Multi-Bernoulli (LMB) filter [144] estimates for each

object its probability of existence, its state probability density, and its label. When applied

to LMB posteriors, the GCI-rule leads to separately combining the densities of Bernoulli

components (possible objects) with the same label. It therefore prevents combining the

densities of components which do not originate from the same object. In an attempt to

achieve a superior performance in the overlapped FOV than the one offered by CI, other

suboptimal fusion methods could be considered (e.g., split covariance intersection or bounded

covariance inflation [145]). Alternatively, optimal sensor fusion methods could be used, in

which careful bookkeeping and canceling out common information between the vehicles

would be necessary [146].

Integration of digital maps in our framework would be another interesting option. While

building maps in a distributed way is a research topic on its own, having additional contextual

information can be beneficial for our framework. For instance, roads or regions of interest can

be located on a map, which can in turn facilitate identifying objects of interest in complex

scenarios.

We recognize that this dissertation only performs experiments using one-way V2X communic-

ation between two vehicles. We wish to see our framework running on more than two vehicles

using bi-directional communication, where the vehicles would form a sensor network (even-

tually together with infrastructure nodes). Another open question is how far (e.g., in hops) the

information should be propagated in the sensor network, and the associated scalability issue.

A common problem with fusion of information in sensor networks is overconfidence due to

double counting of information. In theory, the CI method we use for fusion does not suffer

from overconfidence. However, it would be interesting to see how the information traveling

in cycles among vehicles affects the algorithm performance in practice. A possible solution

remedying both problems could maintain two target sets, the first obtained from ego measure-

ments, and the second containing fused information from cooperative vehicles. Vehicles could

then communicate the first set only — thus limiting the propagation of information to a single

hop and removing network loops. Once the algorithm is operational on multiple vehicles

(and hence covers a potentially much larger area), the next step in achieving a multi-vehicle

160

18.1. Discussion and Outlook

cooperative system would be to perform optimization of planned trajectories on the level of

local traffic. Thanks to our end-to-end framework, all these questions involving larger sets

of vehicles could be studied first in simulation, therefore significantly reducing the cost of

experimentation using real vehicles.

While climbing up the path of an increased vehicle autonomy, a required improvement is

to cover 360◦ around the vehicle with perception. As far as cooperative perception on roads

is considered, the ability to additionally sense behind the vehicle would be beneficial, as it

would allow the cooperative vehicles to detect each other using on-board sensors. As far as

localization sensors are concerned, it would be desirable to have an accurate localization

system on car2 as well. While lower-cost localization solutions may be preferred in the sale

phase, high-end solutions are welcome during development, at least for evaluation purposes.

Last but not least, experimental scenarios could be enriched by additional elements such as

pedestrian dummies and remote-controlled soft (balloon) cars. They would allow for safe and

repeatable experiments, and would provide ground truth trajectories for evaluation purposes,

if equipped with a differential GNSS device.

161

Glossary

ACC Adaptive Cruise Control 5, 95, 99

C-GM-PHD Cooperative GM-PHD 46, 57, 61, 65, 66, 69–73, 90, 93,

97–99, 101, 102, 105, 116, 123–

125, 127, 147, 151, 158

C-SMC-PHD Cooperative SMC-PHD 46, 75, 82–86, 88, 102

CAD Computer-Aided Design 34, 121

CAH Constant-Acceleration Heuristic 96

CAN bus Control Area Network 24, 27, 29, 30, 35, 45, 131

CI Covariance Intersection 48, 61, 63, 69, 70, 101, 102, 131,

159, 160

CPHD Cardinalized Probability Hypothesis Density 46

CTRV Constant Turn Rate and Velocity 63, 143

CV Constant Velocity 143

DISAL Distributed Intelligent Systems and Al-

gorithms Laboratory

12, 18, 47

DOF Degree Of Freedom 134

DR Dead-Reckoning 131, 136–139, 145, 148, 150

EKF Extended Kalman Filter 47, 112, 113, 129–134, 136, 139,

140, 143, 145, 158

EM Expectation-Maximization 47

EMD Exponential Mixture Density 49, 75, 78

FISST Finite Set Statistics 52

FOV Field of View 18, 23–25, 38, 39, 45, 46, 49, 53,

57, 63, 65–67, 69–72, 75, 78, 79,

82, 84–87, 89, 97, 98, 101, 102,

123–126, 131, 136, 141, 146, 158–

160

FSM Finite State Machine 91, 92, 95

GCI Generalized Covariance Intersection 61, 63, 101, 126, 160

163

Glossary

GM Gaussian Mixture 47, 57–59, 61–63, 75, 87, 101, 112,

118, 145, 158

GM-CPHD Gaussian Mixture CPHD 49

GM-PHD Gaussian Mixture PHD 45–48, 53, 57, 60, 61, 68, 71–73,

75, 118, 123, 125, 148

GMM Gaussian Mixture Model 48, 62, 131

GNN Global Nearest Neighbor 46

GNSS Global Navigation Satellite System 5, 26, 27, 29, 37, 38, 66, 72, 83, 85,

87, 97, 105, 109, 120, 121, 129–

131, 133, 135, 136, 152, 158, 161

GPS Global Positioning System 26, 29, 30, 41, 112, 113, 137–139,

145, 148, 152

HAL Hardware Abstraction Layer 111

HMI Human Machine Interface 5

ICP Iterative Closest Point 131

IDM Intelligent Driver Model 95, 96

IMU Inertial Measurement Unit 26, 27, 29, 30, 111, 120

IP Internet Protocol 115

JPDA Joint Probabilistic Data Association 46

KDE Kernel Density Estimation 81, 87

KF Kalman Filter 50, 52, 53, 84, 120, 129, 130

LIDAR Light Detection and Ranging 5, 11, 18, 23–25, 28–31, 38–42, 45,

47, 53–56, 63, 65, 66, 68, 69, 79,

83–87, 90, 97, 98, 105–107, 110,

112, 113, 117, 120–122, 125, 127,

129, 130, 134, 141–144, 148, 149,

151, 152, 158, 159

LMB Labeled Multi-Bernoulli 160

LOS Line-Of-Sight 45, 101, 159

MSE Mean Square Error 135

NLOS Non-Line-Of-Sight 89

OBD-II On-board Diagnostics 27, 30

OSPA Optimal Sub-Pattern Assignment 69, 70, 72, 73, 86, 88, 123–126,

146, 147, 159

PDF Probability Density Function 49, 50

PF Particle Filter 50, 130

PHD Probability Hypothesis Density 17, 18, 46–49, 52, 57, 70, 72, 75,

78, 79, 81, 101, 107, 110, 112, 123,

142, 146, 157–160

PI Proportional-Integral 95

PID Proportional-Integral-Differential 97

RANSAC Random Sample Consensus 131

164

Glossary

RD Rényi Divergence 80, 81, 102

RFS Random Finite Set 46, 48–52, 59, 142

ROS Robot Operating System 105, 109–111, 113–117, 124, 127,

132, 148, 151, 153, 158

RTK Real Time Kinematic 27, 137

SD Standard Deviation 123

SLAM Simultaneous Localization and Mapping 130, 131

SMC Sequential Monte Carlo 46, 47, 50, 75, 78, 81, 101, 102,

158

SMC-CPHD Sequential Monte Carlo CPHD 49

SMC-PHD Sequential Monte Carlo PHD 46–49, 75, 78, 87

SSD Solid-state Drive 27

SVD Singular Value Decomposition 135, 136

UDP User Datagram Protocol 113, 115

UKF Unscented Kalman Filter 47, 58, 82–84, 87

USB Universal Serial Bus 26

UTM Universal Transverse Mercator 26, 112, 113, 133, 135, 136

V2I Vehicle-to-Infrastructure 9, 106, 114–116, 149, 151, 158

V2V Vehicle-to-Vehicle 9–12, 91, 106, 114–116, 149, 158

V2X Vehicle-to-Everything 9–11, 13, 105, 114–116, 152, 160

VANET Vehicular Ad-Hoc Network 9, 90

WLAN Wireless Local Area Network 114

165

Bibliography

[1] U.S. Department of Transportation, ‘2015 motor vehicle crashes: overview’, National

Highway Traffic Safety Administration, Research Note DOT HS 812 318, Aug. 2016.

[Online]. Available: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/

812318 (visited on 16/05/2017) (cit. on pp. 3, 6).

[2] European Comission, ‘EU road fatalities’, Directorate General for Mobility and Trans-

port, Annual Report, Feb. 2016. [Online]. Available: http://ec.europa.eu/transport/

road_safety/sites/roadsafety/files/pdf/observatory/trends_figures.pdf (visited on

03/05/2017) (cit. on p. 3).

[3] ‘Taxonomy and definitions for terms related to on-road motor vehicle automated

driving systems’, SAE International, Standard J3016 201401, 2014 (cit. on pp. 3, 4).

[4] Citroën, Alerte de franchissement involontaire de ligne (lane departure warning system).

[Online]. Available: http://www.citroen.ch/fr/univers-citroen/technologies/afil.html

(visited on 19/05/2017) (cit. on p. 4).

[5] A. Bartels, M.-M. Meinecke and S. Steinmeyer, ‘Lane change assistance’, in Handbook of

Driver Assistance Systems: Basic Information, Components and Systems for Active Safety

and Comfort, H. Winner, S. Hakuli, F. Lotz and C. Singer, Eds. Springer International

Publishing, 2016, pp. 1235–1257. D O I: 10.1007/978-3-319-12352-3_50 (cit. on p. 4).

[6] A. R. A. Van der Horst, A time based analysis of road user behaviour in normal and

critical encounters, HS-041 255. TNO Institute for Perception, 1990 (cit. on p. 4).

[7] R. Kiefer, M. Cassar, C. Flannagan, D. LeBlanc, M. Palmer, R. Deering and M. Shulman,

‘Refining the CAMP crash alert timing approach by examining "last second"braking and

lane change maneuvers under various kinematic conditions’, Accident Investigation

Quarterly, no. 39, 2004 (cit. on p. 4).

[8] R. G. Fuller, ‘Determinants of time headway adopted by truck drivers’, Ergonomics,

vol. 24, no. 6, pp. 463–474, 1981 (cit. on p. 4).

[9] Y. Zhang, E. Antonsson and K. Grote, ‘A new threat assessment measure for colli-

sion avoidance systems’, in IEEE Intelligent Transportation Systems Conference, 2006,

pp. 968–975. D O I: 10.1109/ITSC.2006.1706870 (cit. on p. 4).

167

Bibliography

[10] R Keifer, D LeBlanc, M Palmer, J Salinger, R Deering and M Shulman, ‘Development

and validation of functional definitions and evaluation procedures for collision warn-

ing/avoidance systems’, US Dept. Transportation, Washington, DC, USA, Final Rep.

DOT HS, vol. 808, p. 964, 1999 (cit. on p. 4).

[11] A. Cabrera, S. Gowal and A. Martinoli, ‘A new collision warning system for lead vehicles

in rear-end collisions’, in IEEE Intelligent Vehicles Symposium, 2012, pp. 674–679 (cit.

on p. 5).

[12] Citroën, Adaptive cruise control. [Online]. Available: http://www.citroen.co.uk/about-

citroen/technology/active-cruise-control (visited on 19/05/2017) (cit. on p. 5).

[13] H. Schittenhelm, ‘Advanced brake assist–real world effectiveness of current imple-

mentations and next generation enlargements by Mercedes-Benz’, in International

Technical Conference on the Enhanced Safety of Vehicles, Seoul, South Korea, 2013 (cit.

on p. 5).

[14] T. Pasenau, T. Sauer and J. Ebeling, ‘Aktive Geschwindigkeitsregelung mit Stop&Go-

Funktion: im BMW 5er und 6er (active cruise control with Stop&Go funtion in the BMW

5- and 6-series)’, ATZ - Automobiltechnische Zeitschrift, vol. 109, no. 10, pp. 900–909,

2007. D O I: 10.1007/BF03221920 (cit. on p. 5).

[15] H. Gotzig, ‘Parking assistance’, in Handbook of Driver Assistance Systems: Basic Inform-

ation, Components and Systems for Active Safety and Comfort, H. Winner, S. Hakuli,

F. Lotz and C. Singer, Eds. Springer International Publishing, 2016, pp. 1077–1092. D O I:

10.1007/978-3-319-12352-3_45 (cit. on p. 5).

[16] S. Habenicht, ‘Entwicklung und Evaluation eines manöverbasierten Fahrstreifenwech-

selassistenten (development and evaluation of a maneuver-based lane change assist-

ance)’, PhD thesis, Technical University of Darmstadt, 2012 (cit. on p. 5).

[17] M. Mages, F. Klanner and A. Stoff, ‘Intersection assistance’, in Handbook of Driver

Assistance Systems: Basic Information, Components and Systems for Active Safety and

Comfort, H. Winner, S. Hakuli, F. Lotz and C. Singer, Eds. Springer International Pub-

lishing, 2016, pp. 1259–1286. D O I: 10.1007/978-3-319-12352-3_51 (cit. on p. 5).

[18] Daimler AG, ‘The driving assistance systems: helpers in the background’, press release,

2013. [Online]. Available: http://media.daimler.com/marsMediaSite/en/instance/ko/

The-driving-assistance-systems-Helpers-in-the-background.xhtml?oid=9904305

(visited on 19/05/2017) (cit. on p. 5).

[19] D. Huttenlocher, ‘Cornell racing team and Velodyne’s lidar sensor’, Robots Podcast

Episode 1, 2008 (cit. on p. 5).

[20] S. Thrun, ‘Programming a robotic car’, Udacity CS373: Artificial Intelligence Unit 7,

Test Drive, 2012 (cit. on p. 5).

168

Bibliography

[21] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger, D. Haehnel,

T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston, S. Klumpp, D. Langer, A. Levandowski,

J. Levinson, J. Marcil, D. Orenstein, J. Paefgen, I. Penny, A. Petrovskaya, M. Pflueger,

G. Stanek, D. Stavens, A. Vogt and S. Thrun, ‘Junior: the Stanford entry in the Urban

Challenge’, Journal of Field Robotics, vol. 25, no. 9, pp. 569–597, 2008. D O I: 10.1002/

rob.20258 (cit. on p. 5).

[22] J. Wei, J. M. Snider, J. Kim, J. M. Dolan, R. Rajkumar and B. Litkouhi, ‘Towards a viable

autonomous driving research platform’, in IEEE Intelligent Vehicles Symposium, 2013,

pp. 763–770. D O I: 10.1109/IVS.2013.6629559 (cit. on p. 5).

[23] F. Kunz, D. Nuss, J. Wiest, H. Deusch, S. Reuter, F. Gritschneder, A. Scheel, M. Stübler, M.

Bach, P. Hatzelmann, C. Wild and K. Dietmayer, ‘Autonomous driving at Ulm Univer-

sity: a modular, robust, and sensor-independent fusion approach’, in IEEE Intelligent

Vehicles Symposium, 2015, pp. 666–673. D O I: 10.1109/IVS.2015.7225761 (cit. on p. 5).

[24] R. Viereckl, D. Ahlemann, A. Koster and S. Jursch, ‘Connected car study 2015’, PwC

strategy&, Tech. Rep., 2015. [Online]. Available: https://www.strategyand.pwc.com/

media/file/Connected-Car-Study-2015.pdf (visited on 14/05/2017) (cit. on p. 9).

[25] ‘Regulation (EU) 2015/758 of the European Parliament and of the Council of 29 april

2015 concerning type-approval requirements for the deployment of the eCall in-vehicle

system based on the 112 service and amending Directive 2007/46/EC’, Official Journal

of the European Union, vol. 58, no. L 123, pp. 77–89, 2015 (cit. on p. 10).

[26] U.S. Department of Transportation, ‘Federal motor vehicle safety standards; V2V com-

munications’, National Highway Traffic Safety Administration, Tech. Rep. NHTSA-2016-

0126, 2016. [Online]. Available: http://www.safercar.gov/v2v/pdf/V2V%20NPRM_

Web_Version.pdf (visited on 15/05/2017) (cit. on p. 10).

[27] H. Li, ‘Cooperative perception: application in the context of outdoor intelligent vehicle

systems’, PhD thesis, Ecole Nationale Supérieure des Mines de Paris, 2012 (cit. on

p. 11).

[28] S. Andrews, ‘Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communica-

tions and cooperative driving’, in Handbook of Intelligent Vehicles, A. Eskandarian, Ed.

London: Springer London, 2012, pp. 1121–1144. D O I: 10.1007/978-0-85729-085-4_46

(cit. on p. 10).

[29] C. W. Hsu, M. K. KO, M. H. shih and S. C. Huang, ‘An autonomous and car-following

system via dsrc communication’, SAE Int. J. Passeng. Cars - Electron. Electr. Syst., vol. 5,

pp. 257–266, Apr. 2012. D O I: 10.4271/2012-01-0741. [Online]. Available: http://doi.

org/10.4271/2012-01-0741 (cit. on p. 10).

[30] F. de Ponte Müller, ‘Survey on ranging sensors and cooperative techniques for relative

positioning of vehicles’, Sensors, vol. 17, no. 2, p. 27, 2017. D O I: 10.3390/s17020271

(cit. on p. 10).

169

Bibliography

[31] M. Goldhammer, E. Strigel, D. Meissner, U. Brunsmann, K. Doll and K. Dietmayer,

‘Cooperative multi sensor network for traffic safety applications at intersections’, in

IEEE International Conference on Intelligent Transportation Systems, 2012, pp. 1178–

1183. D O I: 10.1109/ITSC.2012.6338672 (cit. on p. 11).

[32] N. E. Zoghby, V. Cherfaoui and T. Denoeux, ‘Evidential distributed dynamic map for co-

operative perception in VANets’, in IEEE Intelligent Vehicles Symposium, 2014, pp. 1421–

1426. D O I: 10.1109/IVS.2014.6856550 (cit. on p. 11).

[33] S. W. Kim, Z. J. Chong, B. Qin, X. Shen, Z. Cheng, W. Liu and M. H. Ang, ‘Cooperative

perception for autonomous vehicle control on the road: motivation and experimental

results’, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013,

pp. 5059–5066. D O I: 10.1109/IROS.2013.6697088 (cit. on p. 11).

[34] S. W. Kim, W. Liu, M. H. Ang, E. Frazzoli and D. Rus, ‘The impact of cooperative per-

ception on decision making and planning of autonomous vehicles’, IEEE Intelligent

Transportation Systems Magazine, vol. 7, no. 3, pp. 39–50, 2015. D O I: 10.1109/MITS.

2015.2409883 (cit. on p. 11).

[35] A. Rauch, F. Klanner and K. Dietmayer, ‘Analysis of V2X communication parameters for

the development of a fusion architecture for cooperative perception systems’, in IEEE

Intelligent Vehicles Symposium, 2011, pp. 685–690. D O I: 10.1109/IVS.2011.5940479

(cit. on p. 11).

[36] A. Rauch, F. Klanner, R. Rasshofer and K. Dietmayer, ‘Car2X-based perception in a

high-level fusion architecture for cooperative perception systems’, in IEEE Intelligent

Vehicles Symposium, 2012, pp. 270–275. D O I: 10.1109/IVS.2012.6232130 (cit. on pp. 11,

48).

[37] S. E. Shladover, C. A. Desoer, J. K. Hedrick, M. Tomizuka, J. Walrand, W. B. Zhang, D. H.

McMahon, H. Peng, S. Sheikholeslam and N. McKeown, ‘Automated vehicle control de-

velopments in the PATH program’, IEEE Transactions on Vehicular Technology, vol. 40,

no. 1, pp. 114–130, 1991. D O I: 10.1109/25.69979 (cit. on p. 12).

[38] B. J. Harker, ‘Promote-chauffeur ii & 5.8 GHz vehicle to vehicle communications sys-

tem’, IET International Conference on Advanced Driver Assistance Systems, pp. 81–85,

2001 (cit. on p. 12).

[39] C. Bergenhem, Q. Huang, A. Benmimoun and T. Robinson, ‘Challenges of platooning

on public motorways’, in World Congress on Intelligent Transport Systems, Busan, Korea,

2010 (cit. on p. 12).

[40] E. Chan, P. Gilhead, P. Jelinek, P. Krejci and T. Robinson, ‘Cooperative control of SARTRE

automated platoon vehicles’, in Intelligent Transportation System World Congress, 2012

(cit. on p. 12).

[41] A. Marjovi, M. Vasic, J. Lemaitre and A. Martinoli, ‘Distributed graph-based convoy

control for networked intelligent vehicles’, in IEEE Intelligent Vehicles Symposium,

IEEE, 2015, pp. 138–143 (cit. on pp. 12, 182).

170

Bibliography

[42] M. Obst, A. Marjovi, M. Vasic, I. Navarro, A. Martinoli, A. Amditis, P. Pantazopoulos,

I. Llatser, A. de La Fortelle and X. Qian, ‘Challenges for automated cooperative driving:

the AutoNet2030 approach’, in Automated Driving: Safer and More Efficient Future Driv-

ing, D. Watzenig and M. Horn, Eds. Springer International Publishing, 2017, pp. 561–

570. D O I: 10.1007/978-3-319-31895-0_26 (cit. on pp. 12, 181).

[43] I. Navarro, F. Zimmermann, M. Vasic and A. Martinoli, ‘Distributed graph-based control

of convoys of heterogeneous vehicles using curvilinear road coordinates’, in IEEE

International Conference on Intelligent Transportation Systems, IEEE, 2016, pp. 879–886

(cit. on pp. 12, 181).

[44] L. Makarem and D. Gillet, ‘Fluent coordination of autonomous vehicles at inter-

sections’, in IEEE International Conference on Systems, Man, and Cybernetics, 2012,

pp. 2557–2562. D O I: 10.1109/ICSMC.2012.6378130 (cit. on p. 12).

[45] E. Debada, L. Makarem and D. Gillet, ‘Autonomous coordination of heterogeneous

vehicles at roundabouts’, in IEEE International Conference on Intelligent Transportation

Systems, 2016, pp. 1489–1495. D O I: 10.1109/ITSC.2016.7795754 (cit. on p. 12).

[46] E. Debada, L. Makarem and D. Gillet, ‘A virtual vehicle based coordination framework

for autonomous vehicles in heterogeneous scenarios’, in IEEE International Conference

on Vehicular Electronics and Safety, Vienna, Austria, 2017 (cit. on p. 12).

[47] G. Silberg and R. Wallace, ‘Self-driving cars: the next revolution’, KPMG, CAR, 2012

(cit. on p. 16).

[48] M. Vasic and A. Billard, ‘Safety issues in human-robot interactions’, in IEEE Interna-

tional Conference on Robotics and Automation, 2013, pp. 197–204 (cit. on pp. 17, 182).

[49] M. Vasic, G. Jornod and A. Martinoli, ‘From high fidelity simulation to real vehicles: a

flexible software framework for networked intelligent vehicles’, in preparation, 2017

(cit. on p. 17).

[50] M. Vasic and A. Martinoli, ‘A collaborative sensor fusion algorithm for multi-object

tracking using a Gaussian mixture probability hypothesis density filter’, in IEEE Intelli-

gent Transportation Systems Conference, 2015, pp. 491–498 (cit. on pp. 18, 181).

[51] J. Gan, M. Vasic and A. Martinoli, ‘Cooperative multiple dynamic object tracking on

moving vehicles based on sequential Monte Carlo probability hypothesis density filter’,

in IEEE Intelligent Transportation Systems Conference, 2016, pp. 2163–2170 (cit. on

pp. 18, 181).

[52] M. Vasic, G. Lederrey, I. Navarro and A. Martinoli, ‘An overtaking decision algorithm

for networked intelligent vehicles based on cooperative perception’, in IEEE Intelligent

Vehicles Symposium, 2016, pp. 1054–1059 (cit. on pp. 18, 181).

[53] M. Vasic, D. Mansolino and A. Martinoli, ‘A system implementation and evaluation of a

cooperative fusion and tracking algorithm based on a Gaussian mixture PHD filter’, in

IEEE International Conference on Intelligent Robots and Systems, 2016, pp. 4172–4179

(cit. on pp. 18, 181).

171

Bibliography

[54] M. Vasic, G. Jornod, J. Løje and A. Martinoli, ‘An end-to-end framework for cooperative

perception based on a GM-PHD filter’, in preparation, 2017 (cit. on p. 18).

[55] E. Dagan, O. Mano, G. Stein and A. Shashua, ‘Forward collision warning with a single

camera’, in IEEE Intelligent Vehicles Symposium, Jun. 2004, pp. 37–42. D O I: 10.1109/

IVS.2004.1336352 (cit. on p. 24).

[56] O. Michel, ‘Cyberbotics Ltd. Webots™: professional mobile robot simulation’, Inter-

national Journal of Advanced Robotic Systems, vol. 1, no. 1, pp. 39–42, 2004 (cit. on

p. 33).

[57] S. Gowal, Y. Zhang and A. Martinoli, ‘A realistic simulator for the design and evaluation

of intelligent vehicles’, in IEEE International Conference on Intelligent Transportation

Systems, 2010, pp. 1039–1044. D O I: 10.1109/ITSC.2010.5625010 (cit. on p. 33).

[58] D. Mansolino, M. Vasic, O. Michel and O. Pajot, RO2IVSim: a flexible and faithful sim-

ulator for bridging the gap between mobile robots and intelligent vehicles. [Online].

Available: disal.epfl.ch/research/RO2IVSim (visited on 04/05/2017) (cit. on p. 33).

[59] D. Soudbakhsh and A. Eskandarian, ‘Vehicle lateral and steering control’, in Handbook

of Intelligent Vehicles, Springer, 2012, pp. 209–232 (cit. on p. 33).

[60] Citroën Automobiles, ‘Citroën C-ZERO owner’s manual (in French)’, Tech. Rep.

11.C0.0011, 2011. [Online]. Available: http://service.citroen.com/ddb/modeles/

czero/czero_czero/ed02-11/fr_fr/contenu/AC-C-ZERO_02_2011_FR.pdf (visited on

05/05/2017) (cit. on p. 34).

[61] G. Thomaidis, K. Vassilis, P. Lytrivis, M. Tsogas, G. Karaseitanidis and A. Amditis, ‘Target

tracking and fusion in vehicular networks’, in IEEE Intelligent Vehicles Symposium,

2011, pp. 1080–1085. D O I: 10.1109/IVS.2011.5940535 (cit. on p. 45).

[62] M. Obst, L. Hobert and P. Reisdorf, ‘Multi-sensor data fusion for checking plausibility

of V2V communications by vision-based multiple-object tracking’, in IEEE Vehicular

Networking Conference, 2014, pp. 143–150. D O I: 10.1109/VNC.2014.7013333 (cit. on

p. 45).

[63] R. MacLachlan and C. Mertz, ‘Tracking of moving objects from a moving vehicle using

a scanning laser rangefinder’, in IEEE Intelligent Transportation Systems Conference,

Sep. 2006, pp. 301–306 (cit. on pp. 46, 48, 53).

[64] Y. Bar-Shalom, Tracking and Data Association. San Diego, CA, USA: Academic Press

Professional, Inc., 1987 (cit. on p. 46).

[65] R. P. S. Mahler, Statistical Multisource-Multitarget Information Fusion. Norwood, MA,

USA: Artech House, Inc., 2007 (cit. on pp. 46, 52).

[66] B.-N. Vo and W.-K. Ma, ‘The Gaussian mixture probability hypothesis density filter’,

IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4091–4104, Nov. 2006. D O I:

10.1109/TSP.2006.881190 (cit. on pp. 46, 47, 52, 57, 59).

172

Bibliography

[67] B. Ristic, D. Clark and B.-N. Vo, ‘Improved SMC implementation of the PHD filter’, in

13th Conference on Information Fusion, 2010. D O I: 10.1109/ICIF.2010.5711922 (cit. on

pp. 46, 47, 75, 76).

[68] K. Granström, C. Lundquist and U. Orguner, ‘A Gaussian mixture PHD filter for exten-

ded target tracking’, in International Conference on Information Fusion, 2010. D O I:

10.1109/ICIF.2010.5711885 (cit. on p. 47).

[69] K. Granström, C. Lundquist and O. Orguner, ‘Extended target tracking using a Gaussian-

mixture PHD filter’, IEEE Transactions on Aerospace and Electronic Systems, vol. 48,

no. 4, pp. 3268–3286, 2012. D O I: 10.1109/TAES.2012.6324703 (cit. on p. 47).

[70] K. Granström and C. Lundquist, ‘On the use of multiple measurement models for

extended target tracking’, in International Conference on Information Fusion, 2013,

pp. 1534–1541 (cit. on p. 47).

[71] K. Granström, C. Lundquist and U. Orguner, ‘Tracking rectangular and elliptical ex-

tended targets using laser measurements’, in International Conference on Information

Fusion, 2011, pp. 592–599 (cit. on p. 47).

[72] A. Swain and D. Clark, ‘The PHD filter for extended target tracking with estimable

extent shape parameters of varying size’, in International Conference on Information

Fusion, 2012, pp. 1111–1118 (cit. on p. 47).

[73] R. M. Desarzens, ‘Multiple extended target tracking based on PHD filter and Gaussian

processes’, École polytechnique fédérale de Lausanne, Switzerland, Master project

DISAL-MP32, 2017 (cit. on p. 47).

[74] B.-N. Vo, A. Pasha and H. D. Tuan, ‘A Gaussian mixture PHD filter for nonlinear jump

Markov models’, in IEEE Conference on Decision and Control, 2006, pp. 3162–3167

(cit. on p. 47).

[75] D. E. Clark, K. Panta and B. n. Vo, ‘The GM-PHD filter multiple target tracker’, in

International Conference on Information Fusion, 2006. D O I: 10.1109/ICIF.2006.301809

(cit. on p. 48).

[76] K. Panta, D. E. Clark and B. N. Vo, ‘Data association and track management for the

Gaussian mixture probability hypothesis density filter’, IEEE Transactions on Aerospace

and Electronic Systems, vol. 45, no. 3, pp. 1003–1016, 2009. D O I: 10.1109/TAES.2009.

5259179 (cit. on p. 48).

[77] C. Olaverri-Monreal, P. Gomes, R. Fernandes, F. Vieira and M. Ferreira, ‘The see-through

system: a VANET-enabled assistant for overtaking maneuvers’, in IEEE Intelligent

Vehicles Symposium, 2010, pp. 123–128. D O I: 10.1109/IVS.2010.5548020 (cit. on pp. 48,

91).

[78] A. Ahmad and P. U. Lima, ‘Multi-robot cooperative object tracking based on particle

filters’, in European Conference on Mobile Robots, 2011, pp. 37–42 (cit. on p. 48).

173

Bibliography

[79] A. Ahmad, G. D. Tipaldi, P. Lima and W. Burgard, ‘Cooperative robot localization and

target tracking based on least squares minimization’, in IEEE International Conference

on Robotics and Automation, 2013, pp. 5696–5701. D O I: 10.1109/ICRA.2013.6631396

(cit. on p. 48).

[80] L. l. Ong, B. Upcroft, T. Bailey, M. Ridley, S. Sukkarieh and H. Durrant-Whyte, ‘A de-

centralised particle filtering algorithm for multi-target tracking across multiple flight

vehicles’, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006,

pp. 4539–4544. D O I: 10.1109/IROS.2006.282155 (cit. on p. 48).

[81] D. Clark, S. Julier, R. Mahler and B. Ristic, ‘Robust multi-object sensor fusion with

unknown correlations’, in Sensor Signal Processing for Defence, Sep. 2010. D O I: 10.

1049/ic.2010.0233 (cit. on pp. 49, 61, 101).

[82] G. Battistelli, L. Chisci, C. Fantacci, A. Farina and A. Graziano, ‘Consensus CPHD filter

for distributed multitarget tracking’, IEEE Journal of Selected Topics in Signal Processing,

vol. 7, no. 3, pp. 508–520, Jun. 2013 (cit. on pp. 49, 61, 62, 101).

[83] M. Uney, D. Clark and S. Julier, ‘Distributed fusion of PHD filters via exponential

mixture densities’, IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 3,

pp. 521–531, Jun. 2013 (cit. on pp. 49, 69, 75, 78, 79, 101, 118).

[84] S. Thrun, W. Burgard and D. Fox, ‘Probabilistic robotics’, in. The MIT Press, 2005, ch. 4:

Nonparametric Filters (cit. on pp. 50, 78).

[85] M. Ester, H. peter Kriegel, J. Sander and X. Xu, ‘A density-based algorithm for discov-

ering clusters in large spatial databases with noise’, in International Conference on

Knowledge Discovery and Data Mining, 1996, pp. 226–231 (cit. on pp. 54, 78, 81).

[86] R. C. Smith and P. Cheeseman, ‘On the representation and estimation of spatial un-

certainty’, The International Journal of Robotics Research, vol. 5, no. 4, pp. 56–68, Dec.

1986 (cit. on p. 60).

[87] J. K. Uhlmann, ‘General data fusion for estimates with unknown cross covariances’, in

Signal Processing, Sensor Fusion, and Target Recognition V, vol. 2755, 1996, pp. 536–547

(cit. on p. 61).

[88] R. P. S. Mahler, ‘Optimal/robust distributed data fusion: a unified approach’, in Signal

Processing, Sensor Fusion, and Target Recognition IX, vol. 4052, 2000, pp. 128–138 (cit.

on p. 61).

[89] R. Schubert, E. Richter and G. Wanielik, ‘Comparison and evaluation of advanced

motion models for vehicle tracking’, in International Conference on Information Fusion,

2008. D O I: 10.1.1.476.5164 (cit. on pp. 63, 143).

[90] X. Yuan, F. Lian and C. Han, ‘Models and algorithms for tracking target with coordinated

turn motion’, Mathematical Problems in Engineering, p. 10, 2014. D O I: 10.1155/2014/

649276 (cit. on p. 63).

174

Bibliography

[91] M. Roth, G. Hendeby and F. Gustafsson, ‘EKF/UKF maneuvering target tracking using

coordinated turn models with polar/Cartesian velocity’, in International Conference

on Information Fusion, 2014 (cit. on p. 63).

[92] K. Granström, S. Reuter, D. Meissner and A. Scheel, ‘A multiple model PHD approach

to tracking of cars under an assumed rectangular shape’, in International Conference

on Information Fusion, 2014 (cit. on p. 66).

[93] D. Franken and A. Hupper, ‘Improved fast covariance intersection for distributed data

fusion’, in 8th International Conference on Information Fusion, vol. 1, Jul. 2005, pp. 154–

160 (cit. on p. 69).

[94] M. Uney, S. Julier, D. Clark and B. Ristic, ‘Monte Carlo realisation of a distributed

multi-object fusion algorithm’, in Sensor Signal Processing for Defence, Sep. 2010. D O I:

10.1049/ic.2010.0232 (cit. on p. 69).

[95] D. Schuhmacher, B.-T. Vo and B.-N. Vo, ‘A consistent metric for performance evaluation

of multi-object filters’, IEEE Transactions on Signal Processing, vol. 56, no. 8, pp. 3447–

3457, Aug. 2008 (cit. on pp. 69, 86).

[96] R. Mahler, ‘Multitarget Bayes filtering via first-order multitarget moments’, IEEE Trans-

actions on Aerospace and Electronic Systems, vol. 39, no. 4, pp. 1152–1178, 2003 (cit. on

p. 75).

[97] G. T. Toussaint, ‘A simple linear algorithm for intersecting convex polygons’, The Visual

Computer, vol. 1, no. 2, pp. 118–123, 1985 (cit. on p. 79).

[98] B. Ristic, B.-N. Vo and D. Clark, ‘A note on the reward function for PHD filters with

sensor control’, IEEE Transactions on Aerospace and Electronic Systems, vol. 47, no. 2,

pp. 1521–1529, 2011 (cit. on p. 80).

[99] A. E. R. Chris Fraley, ‘Model-based clustering, discriminant analysis, and density es-

timation’, Journal of the American Statistical Association, vol. 97, no. 458, pp. 611–631,

2002 (cit. on p. 81).

[100] D. W. Scott, ‘Scott’s rule’, Wiley Interdisciplinary Reviews: Computational Statistics,

vol. 2, no. 4, pp. 497–502, 2010 (cit. on p. 81).

[101] R. Van Der Merwe, ‘Sigma-point kalman filters for probabilistic inference in dynamic

state-space models’, PhD thesis, Oregon Graduate Institute School of Science and

Engineering, Beaverton, Oregon, 2004 (cit. on p. 85).

[102] National Highway Traffic Safety Administration (NTHSA), ‘2013 traffic safety facts

FARS/GES’, Annual Report 812139 (cit. on p. 89).

[103] A. Bohm, M. Jonsson and E. Uhlemann, ‘Adaptive cooperative awareness messaging

for enhanced overtaking assistance on rural roads’, in IEEE Vehicular Technology Con-

ference, 2011, pp. 1–5. D O I: 10.1109/VETECF.2011.6093162 (cit. on p. 90).

175

Bibliography

[104] A. Groza, B. Iancu and A. Marginean, ‘A multi-agent approach towards cooperative

overtaking in vehicular networks’, in International Conference on Web Intelligence,

Mining and Semantics, ser. WIMS ’14, Thessaloniki, Greece: ACM, 2014, 48:1–48:6. D O I:

10.1145/2611040.2611096 (cit. on p. 90).

[105] C. Cara, A. Groza, S. Zaporojan and I. Calmicov, ‘Assisting drivers during overtaking

using Car-2-Car communication and multi-agent systems’, in IEEE International Con-

ference on Intelligent Computer Communication and Processing, 2016, pp. 293–299.

D O I: 10.1109/ICCP.2016.7737162 (cit. on p. 90).

[106] R. Toledo-Moreo, J. Santa and M. A. Zamora-Izquierdo, ‘A cooperative overtaking

assistance system’, in Iros 2009 3rd Workshop: Planning, Perception and Navigation for

Intelligent Vehicles, 2009 (cit. on p. 90).

[107] V. Van Kooten, ‘Feasibility study: advanced co-operative overtaking system using

vehicular ad-hoc networks’, Master’s thesis, Faculty of Electrical Engineering, Math

and Computer Science, University of Twente, 2011 (cit. on p. 90).

[108] A. Vinel, E. Belyaev, K. Egiazarian and Y. Koucheryavy, ‘An overtaking assistance system

based on joint beaconing and real-time video transmission’, IEEE Transactions on

Vehicular Technology, vol. 61, no. 5, pp. 2319–2329, Jun. 2012. D O I: 10.1109/TVT.2012.

2192301 (cit. on p. 91).

[109] P. Gomes, C. Olaverri-Monreal and M. Ferreira, ‘Making vehicles transparent through

V2V video streaming’, IEEE Transactions on Intelligent Transportation Systems, vol. 13,

no. 2, pp. 930–938, 2012. D O I: 10.1109/TITS.2012.2188289 (cit. on p. 91).

[110] E. Belyaev, A. Vinel, K. Egiazarian and Y. Koucheryavy, ‘Power control in see-through

overtaking assistance system’, IEEE Communications Letters, vol. 17, no. 3, pp. 612–615,

2013. D O I: 10.1109/LCOMM.2013.012213.122362 (cit. on p. 91).

[111] S. Patra, J. H. Arnanz, C. T. Calafate, J.-C. Cano and P. Manzoni, ‘EYES: a novel overtaking

assistance system for vehicular networks’, in Ad-hoc, Mobile, and Wireless Networks, S.

Papavassiliou and S. Ruehrup, Eds., ser. Lecture Notes in Computer Science. Springer

International Publishing, 2015, vol. 9143, pp. 375–389. D O I: 10.1007/978-3-319-19662-

6_26 (cit. on p. 91).

[112] W. Birk, E. Osipov and J. Eliasson, ‘iRoad - cooperative road infrastructure systems for

driver support’, in 16th World Congress and Exhibition on Intelligent Transport Systems,

Stockholm, Sweden, 2009 (cit. on p. 91).

[113] A. Kesting, M. Treiber and D. Helbing, ‘Enhanced intelligent driver model to access

the impact of driving strategies on traffic capacity’, arXiv:0912.3613, vol. 368, no. 1928,

pp. 4585–4605, 18th Dec. 2009. D O I: 10.1098/rsta.2010.0084 (cit. on pp. 95, 96).

[114] M. Treiber, A. Hennecke and D. Helbing, ‘Congested traffic states in empirical observa-

tions and microscopic simulations’, Physical Review E, vol. 62, no. 2, pp. 1805–1824,

Aug. 2000. D O I: 10.1103/PhysRevE.62.1805 (cit. on p. 95).

176

Bibliography

[115] A. Bahr, M. R. Walter and J. J. Leonard, ‘Consistent cooperative localization’, in 2009

IEEE International Conference on Robotics and Automation, 2009, pp. 3415–3422. D O I:

10.1109/ROBOT.2009.5152859 (cit. on pp. 102, 130).

[116] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler and A. Y. Ng, ‘ROS:

an open-source robot operating system’, in ICRA workshop on open source software,

Kobe, vol. 3, 2009, p. 5 (cit. on p. 109).

[117] ROS multi-master FKIE. [Online]. Available: http://wiki.ros.org/multimaster_fkie

(visited on 02/05/2017) (cit. on p. 115).

[118] S. H. Juan and F. H. Cotarelo, ‘Multi-master ROS system’, Universitat Politècnica de

Catalunya, Barcelona, Spain, Tech Report IRI-TR-15-1, 2015 (cit. on p. 115).

[119] M. Hurley, ‘An information theoretic justification for covariance intersection and its

generalization’, in Proceedings of the Fifth International Conference on Information

Fusion, vol. 1, Jul. 2002, pp. 505–511. D O I: 10.1109/ICIF.2002.1021196 (cit. on p. 118).

[120] B. Jian and B. Vemuri, ‘Robust point set registration using Gaussian mixture models’,

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1633–

1645, 2011-08. D O I: 10.1109/TPAMI.2010.223 (cit. on pp. 118, 131).

[121] A. N. Ndjeng, A. Lambert, D. Gruyer and S. Glaser, ‘Experimental comparison of Kal-

man filters for vehicle localization’, in IEEE Intelligent Vehicles Symposium, Jun. 2009,

pp. 441–446. D O I: 10.1109/IVS.2009.5164318 (cit. on p. 130).

[122] S. I. Roumeliotis and G. A. Bekey, ‘Bayesian estimation and Kalman filtering: A unified

framework for mobile robot localization’, in IEEE International Conference on Robotics

and Automation, vol. 3, 2000, pp. 2985–2992 (cit. on p. 130).

[123] S. Thrun, D. Fox, W. Burgard and F. Dellaert, ‘Robust Monte Carlo localization for

mobile robots’, Artificial Intelligence, vol. 128, no. 1, pp. 99–141, 1st May 2001. D O I:

10.1016/S0004-3702(01)00069-8 (cit. on p. 130).

[124] H. Durrant-Whyte and T. Bailey, ‘Simultaneous localization and mapping: part I’, IEEE

robotics & automation magazine, vol. 13, no. 2, pp. 99–110, 2006 (cit. on p. 130).

[125] T. Bailey and H. Durrant-Whyte, ‘Simultaneous localization and mapping (SLAM): part

II’, IEEE Robotics & Automation Magazine, vol. 13, no. 3, pp. 108–117, 2006 (cit. on

p. 130).

[126] A. A. Ravankar, Y. Kobayashi and T. Emaru, ‘Clustering based loop closure technique

for 2D robot mapping based on EKF-SLAM’, in IEEE Asia Modelling Symposium, 2013,

pp. 72–77 (cit. on p. 130).

[127] D. Fox, W. Burgard, H. Kruppa and S. Thrun, ‘A probabilistic approach to collaborative

multi-robot localization’, Autonomous Robots, vol. 8, no. 3, pp. 325–344, 2000. D O I:

10.1023/A:1008937911390 (cit. on p. 130).

[128] A. Prorok, A. Bahr and A. Martinoli, ‘Low-cost collaborative localization for large-scale

multi-robot systems’, in IEEE International Conference on Robotics and Automation,

2012, pp. 4236–4241. D O I: 10.1109/ICRA.2012.6225016 (cit. on p. 130).

177

Bibliography

[129] A. Bahr, J. J. Leonard and M. F. Fallon, ‘Cooperative localization for autonomous under-

water vehicles’, The International Journal of Robotics Research, vol. 28, no. 6, pp. 714–

728, 2009. D O I: 10.1177/0278364908100561 (cit. on p. 130).

[130] H. Li and F. Nashashibi, ‘Cooperative multi-vehicle localization using split covariance

intersection filter’, IEEE Intelligent Transportation Systems Magazine, vol. 5, no. 2,

pp. 33–44, 2013. D O I: 10.1109/MITS.2012.2232967 (cit. on p. 130).

[131] ——, ‘Multi-vehicle cooperative localization using indirect vehicle-to-vehicle relative

pose estimation’, in IEEE International Conference on Vehicular Electronics and Safety,

2012, pp. 267–272. D O I: 10.1109/ICVES.2012.6294256 (cit. on p. 131).

[132] S.-W. Yang, C.-C. Wang and C.-H. Chang, ‘RANSAC matching: simultaneous registration

and segmentation’, in IEEE International Conference on Robotics and Automation, 2010-

05, pp. 1905–1912. D O I: 10.1109/ROBOT.2010.5509809 (cit. on p. 131).

[133] T. Ridene and F. Goulette, ‘Registration of fixed-and-mobile- based terrestrial laser

data sets with DSM’, in IEEE International Symposium on Computational Intelligence

in Robotics and Automation, 2009-12, pp. 375–380. D O I: 10.1109/CIRA.2009.5423176

(cit. on p. 131).

[134] Y. Guo, Y. Gu and Y. Zhang, ‘Invariant feature point based ICP with the RANSAC for 3d

registration’, Information Technology Journal, vol. 10, no. 2, pp. 276–284, 2011-02-01.

D O I: 10.3923/itj.2011.276.284 (cit. on p. 131).

[135] B. Jian and B. C. Vemuri, ‘A robust algorithm for point set registration using Mixture of

Gaussians’, in IEEE International Conference on Computer Vision, vol. 2, 2005, pp. 1246–

1251. D O I: 10.1109/ICCV.2005.17 (cit. on p. 131).

[136] M. Rapp, T. Giese, M. Hahn, J. Dickmann and K. Dietmayer, ‘A feature-based approach

for group-wise grid map registration’, in IEEE International Conference on Intelligent

Transportation Systems, 2015, pp. 511–516. D O I: 10.1109/ITSC.2015.90 (cit. on p. 131).

[137] A. Rauch, S. Maier, F. Klanner and K. Dietmayer, ‘Inter-vehicle object association for

cooperative perception systems’, in IEEE International Conference on Intelligent Trans-

portation Systems, 2013, pp. 893–898. D O I: 10.1109/ITSC.2013.6728345 (cit. on p. 131).

[138] G. Campion, G. Bastin and B. Dandrea-Novel, ‘Structural properties and classification

of kinematic and dynamic models of wheeled mobile robots’, IEEE Transactions on

Robotics and Automation, vol. 12, no. 1, pp. 47–62, 1996 (cit. on p. 132).

[139] T. Moore and D. Stouch, ‘A generalized Extended Kalman filter implementation for

the Robot Operating System’, in Proceedings of the 13th International Conference on

Intelligent Autonomous Systems, Springer, 2014 (cit. on p. 132).

[140] V. Korzhik, H. Imai, J. Shikata, G. Morales-Luna and E. Gerling, ‘On the use of Bhat-

tacharyya distance as a measure of the detectability of steganographic systems’, in

Transactions on Data Hiding and Multimedia Security III, Y. Q. Shi, Ed. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2008, pp. 23–32. D O I: 10.1007/978-3-540-69019-1_2

(cit. on p. 135).

178

Bibliography

[141] H. W. Kuhn, ‘The Hungarian method for the assignment problem’, Naval research

logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955 (cit. on p. 136).

[142] K. Arun, T. Huang and S. Blostein, ‘Least-squares fitting of two 3-d point sets’, IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 5, pp. 698–

700, Sep. 1987. D O I: 10.1109/TPAMI.1987.4767965 (cit. on p. 136).

[143] P. Laurinen, P. Siirtola and J. Röning, ‘Efficient algorithm for calculating similarity

between trajectories containing an increasing dimension.’, in Artificial Intelligence

and Applications, 2006, pp. 392–399 (cit. on p. 137).

[144] S. Reuter, B. T. Vo, B. N. Vo and K. Dietmayer, ‘The labeled multi-Bernoulli filter’, IEEE

Transactions on Signal Processing, vol. 62, no. 12, pp. 3246–3260, 2014. D O I: 10.1109/

TSP.2014.2323064 (cit. on p. 160).

[145] S. J. Julier, ‘Estimating and exploiting the degree of independent information in distrib-

uted data fusion’, in International Conference on Information Fusion, 2009, pp. 772–779

(cit. on p. 160).

[146] M. E. Liggins, C.-Y. Chong, I. Kadar, M. G. Alford, V. Vannicola and S. Thomopoulos,

‘Distributed fusion architectures and algorithms for target tracking’, Proceedings of the

IEEE, vol. 85, no. 1, pp. 95–107, 1997 (cit. on p. 160).

179

Curriculum Vitae

Milos Vasic vasmilos@gmail.com

Education

2011-2017 PhD in Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

2010-2011 MSc in Electrical and Computer Engineering

Faculty of Technical Sciences, University of Novi Sad, Serbia

2006-2010 BSc in Electrical and Computer Engineering

Faculty of Technical Sciences, University of Novi Sad, Serbia

Publications

1. M. Obst, A. Marjovi, M. Vasic, I. Navarro, A. Martinoli, A. Amditis et al., ‘Challenges for automated

cooperative driving: the AutoNet2030 approach’, in Automated Driving: Safer and More Efficient

Future Driving, D. Watzenig and M. Horn, Eds. Springer International Publishing, 2017, pp. 561–

570. D O I: 10.1007/978-3-319-31895-0_26.

2. M. Vasic, G. Lederrey, I. Navarro and A. Martinoli, ‘An overtaking decision algorithm for net-

worked intelligent vehicles based on cooperative perception’, in IEEE Intelligent Vehicles Sym-

posium, 2016, pp. 1054–1059.

3. M. Vasic, D. Mansolino and A. Martinoli, ‘A system implementation and evaluation of a cooperat-

ive fusion and tracking algorithm based on a Gaussian mixture PHD filter’, in IEEE International

Conference on Intelligent Robots and Systems, 2016, pp. 4172–4179.

4. J. Gan, M. Vasic and A. Martinoli, ‘Cooperative multiple dynamic object tracking on moving

vehicles based on sequential Monte Carlo probability hypothesis density filter’, in IEEE Intelligent

Transportation Systems Conference, 2016, pp. 2163–2170.

5. I. Navarro, F. Zimmermann, M. Vasic and A. Martinoli, ‘Distributed graph-based control of

convoys of heterogeneous vehicles using curvilinear road coordinates’, in IEEE International

Conference on Intelligent Transportation Systems, IEEE, 2016, pp. 879–886.

6. M. Vasic and A. Martinoli, ‘A collaborative sensor fusion algorithm for multi-object tracking

using a Gaussian mixture probability hypothesis density filter’, in IEEE Intelligent Transportation

Systems Conference, 2015, pp. 491–498.

181

Bibliography

7. A. Marjovi, M. Vasic, J. Lemaitre and A. Martinoli, ‘Distributed graph-based convoy control for

networked intelligent vehicles’, in IEEE Intelligent Vehicles Symposium, IEEE, 2015, pp. 138–143.

8. M. Vasic and A. Billard, ‘Safety issues in human-robot interactions’, in IEEE International Con-

ference on Robotics and Automation, 2013, pp. 197–204.

Project Supervision

1. Johannes Brakker Løje, Master’s Thesis Project (2017)

Gaussian Process Labeled Multi-Bernoulli Filter for Tracking in Dynamic Environments

2. Romain Michael Desarzens, Master’s Thesis Project (2017)

Multiple Extended Target Tracking Based on PHD Filter and Gaussian Processes

3. Jonathan Gan, Semester Project (2016)

A Collaborative Fusion and Tracking Algorithm Based on a Sequential Monte Carlo Probability

Hypothesis Density Filter

4. Raphaël Lüthi, Semester Project (2016)

Object Classification in Urban Environments by Means of Machine Learning Techniques

5. David Rivollet, Semester Project (2016)

Cooperative Localization Based on Topology Matching

6. Loïc Veyssière, Semester Project (2016)

Comparison of Centralized and Distributed Fusion Architectures in a Sensor Network

7. Gael Lederrey, Semester Project (2015)

Collaborative Sensing and Decision Making for Intelligent Vehicle Maneuvers

8. Florian Zimmermann, Semester Project (2015)

Dynamic Convoy Formation for Autonomous Vehicles

9. Titus Cieslewski, Semester Project (2014)

Feature-Based Localization for Autonomous Vehicles

10. Luca Brusatin, Semester Project (2014)

Detection and Classification Using Data from an Automotive Laser Range-Finder

11. Joseph Lemaitre, Semester Project (2014)

Dynamic Platooning for Intelligent Vehicles

Academic Service (Reviews)

1. IEEE/ASME Transactions on Mechatronics, 2017

2. IEEE International Conference on Robotics and Automation (ICRA), 2017

3. Robotics and Autonomous Systems Journal, SI on Urban Robotics, 2016

4. Sensors — Open Access Journal, 2016

5. IEEE Intelligent Vehicles Symposium (IV), 2015

182

Bibliography

Languages

Serbian native

English fluent

German fluent

French communicational

Hungarian communicational

Spanish elementary

183

