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Abstract
We live in the “inverse-privacy” world, where service providers derive insights from users’

data that the users do not even know about. This has been fueled by the advancements

in machine learning technologies, which allowed providers to go beyond the superficial

analysis of users’ transactions to the deep inspection of users’ content. Users themselves

have been facing several problems in coping with this widening information discrepancy.

Although the interfaces of apps and websites are generally equipped with privacy indicators

(e.g., permissions, policies, . . . ), this has not been enough to create the counter-effect.

We particularly identify three of the gaps that hindered the effectiveness and usability of

privacy indicators:

– Scale Adaptation: The scale at which service providers are collecting data has been

growing on multiple fronts. Storage technologies are increasingly capable and less costly.

The profitable data economy has contributed to the birth of new data collectors. Users,

on the other hand, have limited time, effort, and technological resources to cope with

this scale.

– Risk Communication: Although providers utilize privacy indicators to announce what

and (less often) why they need particular pieces of information, they rarely relay what

can be potentially inferred from this data. Users have become habituated to repetitive

dialogs that do not communicate the potential risks. Without this knowledge, users

are less equipped to make informed decisions when they sign in to a site or install an

application.

– Language Complexity: The information practices of service providers are buried in

complex, long privacy policies, which are aimed to cover the company from a legal

perspective. Generally, users do not have the time and sometimes the skills to decipher

such policies, even when they are interested in knowing particular pieces of it.

In this thesis, we approach usable privacy from a data perspective. Instead of static privacy

interfaces that are obscure, recurring, or unreadable, we develop techniques that bridge the

understanding gap between users and service providers. Towards that, we make the following

contributions:

– Crowdsourced, data-driven privacy decision-making: In an effort to combat the grow-

ing scale of data exposure, we consider the context of files uploaded to cloud services.

iii



iv ABSTRACT

We propose C3P, a framework for automatically assessing the sensitivity of files, thus

enabling realtime, fine-grained policy enforcement. C3P works on top of unstructured

data and allows privacy preserving crowdsourcing of users’ sharing decisions.

– Data-driven app privacy indicators: We introduce PrivySeal, which involves a new

paradigm of dynamic, personalized app privacy indicators that bridge the risk under-

standing gap between users and providers. Through a variety of data analysis and

visualization techniques, PrivySeal communicates risks by showing users the far-

reaching insights that can be inferred from their data. Through PrivySeal’s online

platform, we also study the emerging problem of interdependent privacy in the context

of cloud apps and provide a usable privacy indicator to mitigate it.

– Automated question answering about privacy practices: We introduce PriBot, the

first automated question-answering system for privacy policies, which allows users to

pose their questions about the privacy practices of any company with their own language.

PriBot is based on a novel deep learning architecture of classifiers that we developed.

Through a user study, we show its effectiveness at achieving high accuracy and relevance

for users, thus narrowing the complexity gap in navigating privacy policies.

A core aim of this thesis is paving the road for a future where privacy indicators are not bound

by a specific medium or pre-scripted wording. We design and develop techniques that enable

privacy to be communicated effectively in an interface that is approachable to the user. For

that, we go beyond textual interfaces to enable dynamic, visual, and personalized privacy

interfaces that are fit for the variety of emerging technologies.

Key words: privacy, machine learning, human-computer interaction, anonymity, privacy

indicators, interdependent privacy, deep learning, chatbots, privacy policies, internet of

things, decision-making



Résumé
Nous vivons dans le monde de la “confidentialité inversée”, où les fournisseurs de services

acquièrent des connaissances sur leurs utilisateurs à partir de leurs données, sans même que

ces derniers n’en soient conscients. Ce nouveau monde est possible grâce aux progrès réalisés

dans les techniques d’apprentissage automatique, qui permettent aux fournisseurs d’aller

au-delà de l’analyse superficielle des actions de leurs utilisateurs pour aboutir à une inspection

approfondie du contenu des utilisateurs. Bien que les interfaces des applications et des sites

Web soient généralement équipées d’indicateurs de confidentialité (p. Ex., Autorisations,

politiques, . . . ), cela n’est généralement pas suffisant pour contrer ces problèmes.

Nous identifions en particulier trois lacunes qui entravent l’efficacité et l’utilité des indicateurs

de confidentialité :

– Adaptation à grande échelle : L’échelle à laquelle les fournisseurs de services collectent

des données a augmenté de plusieurs façons. Les technologies de stockage ont accru

en capacité et sont devenues moins coûteuses. L’économie des données, devenue très

rentable, a contribué à la naissance de nouveaux collecteurs de données. Les utilisateurs

ont, en revanche, un temps, des efforts et des ressources technologiques limités pour

faire face à une telle échelle.

– Communication de risque : Bien que les fournisseurs utilisent des indicateurs de confi-

dentialité pour annoncer le quoi et (moins souvent) le pourquoi ils ont besoin d’infor-

mations particulières, ils relèvent rarement ce qui peut potentiellement être déduit de

ces données. Les utilisateurs sont devenus habitués à des dialogues répétitifs qui ne

communiquent pas les risques potentiels. Sans cette connaissance, les utilisateurs sont

moins équipés pour prendre des décisions éclairées lorsqu’ils se connectent à un site

ou installent une application.

– Complexité du langage : Les pratiques en matière d’informations des fournisseurs de

services sont camouflées dans des politiques de confidentialité complexes et longues qui

visent à couvrir l’entreprise d’un point de vue juridique. Généralement, les utilisateurs

n’ont ni le temps et parfois ni les compétences nécessaires pour déchiffrer de telles

politiques, même s’ils s’intéressent à des parties en particulier.

Dans cette thèse, nous abordons la confidentialité utilisable du point de vue des données.

A la place d’interfaces de confidentialité qui sont obscures, récurrentes ou illisibles, nous

développons des techniques qui permettent de combler l’écart de compréhension entre les

v
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utilisateurs et les fournisseurs de services. Pour ce faire, nous apportons les contributions

suivantes :

– Prise de décision en matière de confidentialité dépendante des données : Dans le

but de lutter contre l’augmentation de l’exposition aux données, nous considérons le

contexte des fichiers téléchargés sur les services en nuage. Nous proposons C3P, un

cadre pour évaluer automatiquement la sensibilité des fichiers, permettant ainsi une

mise en application très détaillée et en temps réel de la politique de confidentialité.

C3P fonctionne sur des données non structurées et permet de collecter les décisions de

partage des utilisateurs tout en préservant la confidentialité.

– Indicateurs de confidentialité de l’application axés sur les données : Nous introdui-

sons PrivySeal, qui propose un nouveau paradigme d’indicateurs dynamiques et

personnalisés de la confidentialité des applications, permettant de combler le fossé

entre les utilisateurs et les fournisseurs. Grâce à une variété d’analyses de données et

de techniques de visualisation, PrivySeal communique les risques en montrant aux

utilisateurs les connaissances approfondies qui peuvent être déduites de leurs données.

Grâce à la plate-forme en ligne de PrivySeal, nous étudions également le problème

émergent de la confidentialité interdépendante dans le contexte des applications en

nuage et fournissons un indicateur utilisable de confidentialité pour atténuer ce pro-

blème.

– Système de questions-réponses automatiques sur les pratiques de confidentialité :

Nous présentons PriBot, le premier système automatisé de réponses aux questions sur

les politiques de confidentialité, qui permet aux utilisateurs de poser leurs questions

avec leurs propres mots sur n’importe quelle entreprise. PriBot utilise une nouvelle

architecture de classifieurs basés sur l’apprentissage profrond. Grâce à une étude menée

sur des utilisateurs, nous montrons son efficacité à atteindre une grande précision et

une pertinence dans les réponses, réduisant ainsi l’écart de complexité dans la lecture

des politiques de confidentialité.

L’objectif principal de cette thèse est d’ouvrir la voie à un avenir où les indicateurs de confiden-

tialité ne sont pas limités à un support spécifique ou un message préétabli. Nous concevons

et développons des techniques permettant à la confidentialité d’être communiquée efficace-

ment avec une interface accessible à l’utilisateur. Pour cela, nous allons au-delà des interfaces

textes pour proposer des interfaces de confidentialité dynamiques, visuelles et mains libres

qui conviennent à la variété des technologies émergentes.

Mots clefs : vie privée, apprentissage automatique, interactions homme-machine, anonymat,

indicateurs de confidentialité, interdépendance dans la protection des données, apprentis-

sage profond, agents conversationnels, règles de confidentialité, internet des objets, prise de

décision
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1 Introduction

1.1 A Tale of Two Viewpoints

Historically, there has never been a consensus on whether privacy is an innate need for humans.

On the one hand, prominent figures, including Vint Cerf (one of the internet pioneers), claim

that privacy may be an anomaly of the 20th-century [Sha15, Fer13, Fer15]. Proponents of this

opinion argue that, for thousands of years, people have been prioritizing money, prestige,

or convenience over solitude or privacy. For instance, until 1500 A.D., most homes in the

western world did not have internal walls separating rooms. The desire for warmth lead to

the development of the brick chimney, along with the needed support beams. Only then did

walls start to spread inside homes [Fer15]. A single bed for the whole family and its guests was

also the norm in Europe until families could afford to buy multiple beds. This transition was

mainly driven by hygiene reasons and by the spread of contagious diseases [Fer15].

This standpoint has its opponents. Despite the socioeconomic factors that have contributed

to the evolution of privacy, prominent scholars, like Irwin Altman, perceive it as a universal

human characteristic [ABL15, Alt77]. It is also regarded as a necessary ingredient in guarding

human dignity [Blo64], enabling relationships’ intimacy [Ger78], and protecting personal

liberty [All11]. Moreover, ancient religious texts contained several references to privacy as a

trait to aspire to. In the Old Testament (Numbers 24:5), the biblical Israelites are praised for

not positioning their tents’ openings facing each other: “How fair are your tents, O Jacob . . . ”.

The Quran (49:12) has also tackled the right for privacy: “. . . do not spy or backbite each other.

Would one of you like to eat the flesh of his brother when dead? You would detest it.”

The activity of reading itself has seen an interesting historical evolution that illustrates how

privacy preserving options emerge. According to Nicholas Carr, in the world that predated the

commoditization of books, reading has mostly been a public, vocal activity [Car11]. Scribes

wrote books based on hearing, and they neither separated the word with spaces nor paid

attention to word order. Silent reading, as we know it today, did not become the standard until

well after the collapse of the Roman Empire. However, once people witnessed the proliferation

of books, their ability to read privately became a key factor for personal instruction and im-

1



2 CHAPTER 1. INTRODUCTION

provement. Interestingly, this could have been much more difficult without the modifications

in how text is inscribed. The inter-word spaces, the punctuation marks, and the word order

were some of these new features that enabled private reading [Car11].

Despite the differing viewpoints, this historical prologue has a few takeaways. First, privacy-

enhancing technologies of the ancient times, like the internal walls or —loosely speaking —the

inter-word spaces, were not solely motivated by privacy per se. Second, the level of privacy

has always been a result of compromises that people face in their daily life, whether related to

their purchasing power or their desire for recognition. Third, it has rarely been the case that

people voluntarily chose the privacy-invading tools or technologies as the norm for their life

despite having a choice of something else. When privacy-equipped options became affordable

(e.g., private baths or individual rooms), people generally adopted such options. Even in our

times, when an app like Whatsapp introduced end-to-end encryption to a billion users, we

did not see people fleeing away from the app. It was an additional feature that strengthened

the bond with the app for many.

1.2 An Intellectual Luxury Good?

Despite people’s tendency to go with the privacy preserving option, this is not always feasible.

In fact, privacy has frequently been described as a luxury good [McG59, Sch68]. The essayist

Phyllis McGinley puts it nicely:

“The poor might have to huddle together in cities for need’s sake, and the fron-

tiersman cling to his neighbor for the sake of protection. But in each civilization,

as it advanced, those who could afford it chose the luxury of a withdrawing place.

Egyptians planned vine-hung gardens, the Greeks had their porticos and seaside

villas, the Romans put enclosures around their patios. . . . Privacy was considered

as worth striving for as hallmarked silver or linen sheets for one’s bed” [McG59]

With time, emerging privacy solutions continued to suffer from the same issue: limited

accessibility, whether this is financial, intellectual, political, or other types of accessibility.

Even today, financial affordability cannot be neglected whenever we analyze the adoption

of privacy- or security-enhancing technologies. Access to home internet is still subject to

restrictive quota limits in a lot of developing countries. Hence, a security measure, which is as

simple as updating a computer with the latest packages, is seen as an economic burden. The

same goes for upgrading a smartphone to a newer model to be eligible for continued security

updates.

In the recent years, several important factors have exacerbated the problem of privacy accessi-

bility, going beyond the financial aspect. From the scale at which data is being collected to

the advanced machine learning models extracting insights from this data, privacy has further

emerged as an intellectual luxury good. Its affordability is limited to the few who know the
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far-reaching implications of their activities and the actual shareholders of their data.

1.3 Orwell vs. Kafka

Daniel Solove differentiates in his book “Nothing to Hide: The False Tradeoff Between Privacy

and Security” between two ways in which privacy is perceived: the Orwellian view and the

Kafkaesque view [Sol11]. In the Orwellian view (based on George Orwell’s Nineteen Eighty-

Four [Orw09]), privacy is the protection against surveillance and its associated harms, such as

inhibition and social control. The government (a.k.a. the Big Brother) is the main presumed

adversary, and people are less concerned about protecting information which they do not

mind being known, such as their demographics or the places they visit.

The Kafkaesque view, named after Franz Kafka, embodies the other aspects of privacy that

frequently go unnoticed. This view is inspired by The Trial, a novel by Kafka about a man who

is investigated and prosecuted —for reasons he does not know —by a mysterious, inaccessible

authority. According to Solove, this perspective on privacy highlights the problems due to

information processing (storage, use, or analysis) rather than information collection.

Under the Kafkaesque umbrella falls data aggregation, i.e., the ability to combine seemingly

benign data from multiple sources and to repurpose it in new contexts. For example, the

industry of data brokering has the sole purpose of linking as much data as possible through

a large set of heuristics, before selling it to interested parties. Second, user exclusion occurs

when people are not allowed to know how their information is handled, nor given a choice to

correct it. Third, the secondary use of data is another aspect where information is processed

for reasons that it has not been intended for. Fourth, personal data can suffer from distortion,

where the data depicts an incomplete and often wrong picture about individuals by reducing

them to a limited, subjective set of features [Sol11].

These practices get another name when they are viciously used to advance the benefits of the

big corporations and induce unfairness in the society. The writer Cathy O’Neil calls them the

“Weapons of Math Destruction” [O’N16]. From the models used for screening job applicants

to those used to create e-scores for people —thus deciding their loans’ interest rates and

insurance premiums —the repercussions are directly impacting lives in one way or another. In

an algorithmic world where the past of individuals and groups determines their future, users’

privacy, through minimal exposure to data hunters, becomes more and more essential.

1.4 Problems

On a high level, in this thesis, we ask the following question:

In the age of large-scale data analysis, how can we empower users to make better

privacy decisions without loading them with a huge cognitive burden?
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We consider privacy in its broad sense, which includes the Orwellian interpretation in addition

to the (often marginalized) Kafkaesque one. In fact, the majority of users understand the

presence of government as a surveillance power, which makes them aware of the Orwellian

aspect. Nevertheless, the very reasons that are molding privacy into an intellectual luxury good

make the Kafkaesque aspects of privacy more crucial than ever. Highlighting such aspects is a

core part of this thesis, and addressing them contributes towards mitigating the problem of

privacy inaccessibility itself.

In our work, we have identified and worked towards bridging the following major gaps that

users encounter in their digital environments: (i) the scale adaptation gap, (ii) the risk un-

derstanding gap, and (iii) the language complexity gap.

The Scale Adaptation Gap

The scale at which people’s data is being collected has seen orders of magnitude increase since

the beginning of the digital revolution. One reason for that is the advancement in storage

technologies, which can now comfortably hold the records of billions of users. Together with

the increasing efficiency of database technologies, hosting data and querying it are no more

the bottlenecks for data collectors.

The data collectors themselves have proliferated. Instead of solely worrying about govern-

mental surveillance or being watched by their neighbors, people have to deal with an increas-

ing number of potential adversaries. For someone who buys a smartphone, these adversaries

include the entity that sold them the device, the device manufacturer, the third party service

providers that their device supports, the advertisement providers incorporated with the apps,

etc.

The sources from which data can be analyzed have expanded too. Instead of solely depend-

ing on structured data records, providers have bolstered their analytics arsenal to target

unstructured data, which is present in documents, photos, videos, etc. They benefited from

the huge advancements in natural language processing and visual computing, which have

taken a recent boost with the deep learning era. Images are now an important source for

recognizing objects [SVI+16], activities [YNS+15], landmarks [CLLH16], faces [TYRW14], emo-

tions [CBDC14], etc. Documents are also a huge trove for deciphering opinions [Cam16],

interests [CLL+15], connections [SKV15], etc.

The increased capabilities of service providers fueled the asymmetry of their relationship with

users. On one end are the automated services with vast computing powers. On the other

end are the users with limited time and cognitive capabilities, a phenomenon that has been

termed as “bounded rationality” [Sim72]. The vast majority of users have not been able to

cope with the scale at which the data collection is happening. Although the human brain itself

has been shown to manifest plasticity properties [Car11], where it neurologically adapts to

new media, the scale and diversity of data collection has so far rendered that phenomenon
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ineffective.

The Risk Understanding Gap

In addition to the vast scale data collection, the types of insights that could be inferred from

the data have also become beyond the grasp of most users. With the emergence of machine

learning as the mainstream method of user understanding and profiling, the accessibility of

privacy has suffered a new major setback. Bathing in public, reading aloud, or publishing

an article under one’s name are activities for which the repercussions are relatively well-

understood by the users. This is not the case with granting access to an over-privileged

application or consenting to share personal information with third parties. Such activities

might seem benign to the majority of users, who might not notice their potential negative

impacts until they are personally affected.

The opacity of data analysis has escalated to the extent that it warranted itself a new term:

“Inverse Privacy”. Depicted by Gurevich et al., a piece of data is inversely private if some party

has access to it, but you do not [GHW16]. This typically results from the legitimate analysis

of data collected by banks, healthcare providers, governmental agencies, shopping malls,

employers, etc. Derived from this data are insights such as the health status or the credit score

of an individual. Such information has been so far siloed inside the institutions generating it,

due to business and privacy reasons. Gurevich et al., contrast this concept against the more

traditional “Partial Privacy”, where the user has access to the data, but a limited number of

other parties does too.

Faced with this new reality, Hubaux and Juels proposed that researchers should prepare a

post-confidentiality agenda. They suggested the development of a new category of privacy-

enhancing technologies, namely “Fair-use PETs” (F-PETS), which allow users to verify the fair

use of their information by service providers [HJ16]. One example they give is introducing

protocols into algorithmic decision making, which allow proving that the decisions taken do

not violate social norms expressed as laws, policies, or regulations. This is in comparison

to the “Confidentiality-oriented PETs” (C-PETS) that solely focus on confidentiality, such as

encrypted email, ad blockers, or location obfuscation techniques.

Nevertheless, the need for the verifiability of the decisions made by algorithms does not

preclude the need for better communicating the possibilities of such decisions. The mere

existence of such practices is obscure for the majority of users, and this obscurity is for a

reason: relaying the real possibilities with today’s data could result in discouraging users from

using certain applications.

To put this in perspective, consider the analogy between the need of data for service providers

and the need of cadavers (corpses for dissection) for medical researchers. Both data and

corpses are indispensable for the respective parties. In the early 19th century, due to the

shortage of cadavers, some resorted to the business of secretly murdering people (e.g., by
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suffocation) before selling the bodies for dissection purposes. Grave robbing was the less bad

and more common practice for achieving the same goal, to the extent that special techniques

were used to deter grave robbers (such as guards, graveyard watchtowers, or huge stone slabs

to cover the graves). It was only later that medical schools started rejecting grave robbing as a

means for anatomists to get corpses, and body donors had to provide their consent a priori.

Even today, whether that consent is an informed one is not that clear. In his book, “When

Breath Becomes Air”, the neurosurgeon, Paul Kalanithi, puts this as follows [Kal16]:

Yet the best-informed people—doctors—almost never donated their bodies. How

informed were the donors, then? As one anatomy professor put it to me, “You

wouldn’t tell a patient the gory details of a surgery if that would make them not

consent.” Even if donors were informed enough—and they might well have been,

notwithstanding one anatomy professor’s hedging—it wasn’t so much the thought

of being dissected that galled. It was the thought of your mother, your father,

your grandparents being hacked to pieces by wisecracking twenty-two-year-old

medical students.

Replacing medical students by the analysts crunching people’s data, one can get to the status

of risk communication nowadays. There are two differences though. First, data looting —a

practice that is well and alive in the unregulated part of the industry—is not regarded as

nefariously as grave robbing. Second, those analysts are mainly optimizing the benefits of

their companies, compared to the researchers advancing the medical field and saving lives.

The Language Complexity Gap

Even when the service provider aims to communicate all the potential privacy risks to the

users, the means might fall short. Language is at the core of this problem. Consider privacy

policies, the de facto standard for notice and choice online. They are intended to inform

users how companies collect, store, and manage their personal information. Such policies

are typically excessively long and hard to follow [Cat10, Fed12, GSF+16, MC08, Pre14]. In

2008, McDonald et al. estimated it would take an average user 201 hours to read all the

privacy policies encountered in a year [MC08]. Since then, we have witnessed the smartphone

revolution and the rise of the Internet of Things (IoT). Thus, in 2017, users would likely have

to spend substantially more time on reading the privacy policy of each website, app, device, or

service they interact with.

The issue is not only limited to the length and the presentation. Policies are also rife with

legal jargon that is meant to protect the provider on the legal front [MEAS13, Mei13]. Such

language is usually different from that of ordinary users, who are supposedly the intended

audience of such policies. Attempting to be informative to users and compliant with the law

at the same time, these policies have so far significantly leaned towards the latter role.

To handle this, significant works have been done towards standardization (via labels [CLM+02,
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KBCR09], icons [CGA06, HZH11], etc.). Their intuition is that standardized interfaces with

less text result in reducing the language complexity. However, these attempts have also seen

limited spread/usage. The main reason behind that was the rare adoption from the service

providers, especially with the lack of incentives and the absence of regulations. Another

reason is the difficulty of shaping a standard interface that appeals to the vast majority of users

coming from different countries and educational backgrounds.

This leads us to observe that current mechanisms for relaying privacy practices are static in

nature. Be it app permissions or privacy policies; such interfaces cannot easily capture the

growing complexity of information processing while remaining swiftly comprehensible and

skimmable by the average user. The response to having more information to say with more

text to show is clearly not the path forward. Moreover, due to this static nature, repeatedly sub-

jecting the user to similar content with each privacy decision leads to undesirable habituation

effects [SBDC15]; i.e., the effectiveness of the static notices decays with time.

This becomes even more challenging with the miniaturization trend of electronic devices that

started with mobile phones and reached its peak with the Internet of Things (IoTs) [Fed15].

The less the screen estate is, the more difficult it is to communicate via written text. Coupling

the long, complex text with a voice interface —which is a natural alternative —is a match

“made in hell”; together they result in multiplying the required cognitive load on users’ behalf.

1.5 Contributions

This thesis has culminated in the development of three main systems, each of them contribut-

ing to bridging one or more of the gaps above:

C3P: Context-Aware Crowdsourced Cloud Privacy

C3P is our answer to the growing scale of privacy decisions that users should make [HRA14]. It

is motivated by Nissenbaum’s approach to privacy through contextual integrity [Nis04]: the

sensitivity of a piece of data is dependent on the context in which the data is shared.

We developed C3P as the first automated sensitivity assessment framework for unstruc-

tured data —namely users’ files (documents, photos, etc.). C3P leverages the wisdom of the

crowd —in a privacy-preserving way —to compute a file’s sensitivity without accessing the

file itself. This is achieved by (1) modeling each unstructured file through a bag of features,

extracted from its content, metadata, and sharing environment, (2) querying the service about

sensitivity in an anonymized way, and (3) contributing privacy decisions to the service provider

through an anonymized protocol. To determine the sensitivity of files —while accounting

for variable user attitudes towards privacy —we use Item Response Theory, a psychometric

technique for modeling latent traits of people and items. We show the efficacy of C3P in the

context of privacy-preserving file sharing within cloud storage services.
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On a high level, C3P’s goal is automating privacy decisions based on the user’s context to reduce

the number of interventions the user has to take. This framework is a general one, which

naturally extends to other domains. For example, it can be easily transplanted to dynamically

adjust the level of access that smartphone apps have to users’ files.

C3P, which will be the topic of Chapter 2 has appeared in this paper [HRA14]:

C3P: Context-aware CrowdSourced Cloud Privacy.

Hamza Harkous, Rameez Rahman, and Karl Aberer.

In: Privacy Enhancing Technologies. PETS 2014.

Lecture Notes in Computer Science, vol 8555. Springer, Cham.

PrivySeal: A Personalized Privacy Assistant for Cloud Apps

The next part of the thesis is mainly focused on bridging the risk communication gap between

the users and the service providers. To further motivate this part, we note that there is a clearly

uneven power balance in the existing digital ecosystems, whether in the mobile case (e.g.,

Android and iOS), in the cloud case (e.g., Google Drive and Dropbox), or in other similar

platforms.

The Economist Magazine reported in 2014 on the current state of things [Eco14]:

“Today the IT sector looks like a very flat inverted pyramid: the bottom, where

economies of scale rule, is made up of just a few powerful platforms; the top,

where creativity and agility are at a premium, is becoming ever more fragmented.

There is not much in between.

As software eats more and more industries, they will increasingly take on this

shape, predicts Philip Evans of Boston Consulting Group. By lowering transaction

costs, IT allows big chunks of the economy to reshape themselves and turn into

what he calls “stacks”—industry-wide ecosystems that will have large platforms

at one end of their value chains and a wide variety of modes of production at

the other, from startups to social enterprises and communities to user-generated

content.”

Accordingly, from a business and growth point of view, the platforms itself are interested in

scaling their ecosystems with more apps so that they attract a wider user base and reap the

benefits of the network effect. The current status of privacy notices is directly impacted by the

fact that platforms tend to favor such a steady growth over slow, but privacy-focused steps.

This is also one reason why a lot of platforms tolerate the presence of over-privileged apps, i.e.,

those which access more data than is needed for them to function.

PrivySeal, our next contribution, looks at the possibilities of breaking this imbalance. As
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a case study, we take 3rd Party Cloud apps (shortly 3PC apps), an ecosystem which we were

the first to anatomize. By analyzing the top Google Drive apps on Chrome Store, we discovered

that around two-thirds of them are over-privileged and that 79% require full access to users’

data [HRKA16].

We divide our contributions into two parts:

– Exposing the far-reaching implications of data sharing: Our primary goal is to assess

the efficacy of the current models in deterring users from installing over-privileged

apps and to test alternative models that could improve that efficacy. We analyze three

different permission models. In experiments with 210 real users, we discover that

the most successful permission model is our novel ensemble method that we call

Far-reaching Insights. Far-reaching Insights inform the users about the data-driven

insights that apps can make about them (e.g., their topics of interest, collaboration and

activity patterns, etc.). Thus, they seek to bridge the gap between what third parties

can potentially know about users and users’ perception of their privacy leakage. The

efficacy of Far-reaching Insights in bridging this gap is demonstrated by our results, as

Far-reaching Insights prove to be, on average, twice as effective as the current model in

discouraging users from installing over-privileged apps.

In an effort to promote general privacy awareness, we deployed PrivySeal, a publicly

available, privacy-focused app store that uses Far-reaching Insights. Based on the

knowledge extracted from data of the store’s users (over 115 gigabytes of Google Drive

data from 1440 users with 662 installed apps), we also delineate the ecosystem for 3PC

apps from the standpoint of developers and cloud providers. Finally, we present several

general recommendations that can guide other future works in the area of privacy for

the cloud.

This study, which we will detail in Chapter 4 has appeared in [HRKA16]:

The Curious Case of the PDF Converter that Likes Mozart:

Dissecting and Mitigating the Privacy Risk of Personal Cloud Apps.

Hamza Harkous, Rameez Rahman, Bojan Karlas, and Karl Aberer. In

Proceedings on Privacy Enhancing Technologies (PoPETs), 2016.

– Exposing the impact of collaborators on the user’s privacy: Another risk that is rarely

evident and poorly communicated to 3PC apps’ users is that their privacy is not solely

determined by their own decisions. Whenever a user grants access to a new vendor,

she is inflicting a privacy loss on herself and on her collaborators too. We study this

issue, benefiting from PrivySeal’s platform. By analyzing a real dataset of 183 Google

Drive users and 131 third party apps, we discover that collaborators inflict a privacy loss

which is at least 39% higher than what users themselves cause. We take a step toward

minimizing this loss by introducing the concept of History-based decisions. Simply

put, users are informed at decision time about the vendors which have been previously
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granted access to their data. Thus, they can reduce their privacy loss by not installing

apps from new vendors whenever possible.

Next, we realize this concept by introducing a new privacy indicator, which can be

integrated within the cloud apps’ authorization interface. Via a web experiment with

141 participants recruited from CrowdFlower, we show that our privacy indicator can

significantly increase the user’s likelihood of choosing the app that minimizes her privacy

loss.

Finally, we explore the network effect of History-based decisions via a simulation on top

of large collaboration networks. We demonstrate that adopting such a decision-making

process is capable of reducing the growth of users’ privacy loss by 70% in a Google

Drive-based network and by 40% in an author collaboration network. This is despite the

fact that we neither assume that users cooperate nor that they exhibit altruistic behavior.

To our knowledge, our work is the first to provide quantifiable evidence of the privacy

risk that collaborators pose in cloud apps. We are also the first to mitigate this problem

via a usable privacy approach.

This work —portrayed in Chapter 5 —has been published in this paper [HA17]:

“If You Can’t Beat Them, Join Them”:

A Usability Approach to Interdependent Privacy in Cloud Apps.

Hamza Harkous and Karl Aberer. In Proceedings of the Seventh ACM on

Conference on Data and Application Security and Privacy, CODASPY ’17,

pages 127–138, New York, NY, USA, 2017. ACM.

To pave the way for these two chapters, we give an overview of the ecosystem of third party

cloud apps in Chapter 3.

PriBot: A Question Answering Chatbot for Privacy Policies

The last core component of this thesis is focused on the third major gap we identified: how to

deal with the prevalent language complexity problem in privacy notices? We turn our focus on

the flagship case of this issue: privacy policies.

We address this problem by proposing PriBot, the first question-answering (QA) system for

privacy policies. In a fully automated approach, PriBot takes a previously unseen privacy

policy and uses it to answer, in real time with high accuracy and relevance, user questions that

are posed in free form.

We make multiple contributions to overcome challenges related to the discrepancy of language

between user’s questions and policies as well as the lack of privacy-related QA datasets. In

particular, we propose two algorithms based on deep learning for extracting answers from a

privacy policy for a given question.
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Our user study, with 1,186 participants, shows that PriBot’s top three responses are relevant

answers for 91% of 120 real-world privacy questions posted on Twitter. Our best algorithm

further outperforms traditional methods by 15% regarding the accuracy of generated results.

We present a practical implementation of PriBot, which is ready for public use and discuss

real-world applications of the proposed approach.

At the time of writing of this thesis, PriBot is under submission [HFL+17]:

PriBot: Answering Free-form Questions about Privacy Policies with Deep Learning

Hamza Harkous, Kassem Fawaz, Rémi Lebret, Florian Schaub,

Kang G. Shin, and Karl Aberer. Technical report, 2017

We have outlined the vision for PriBot in [HFSA16]:

Pribots: Conversational Privacy with Chatbots.

Hamza Harkous, Kassem Fawaz, Kang G. Shin, and Karl Aberer.

In Workshop on the Future of Privacy Notices and Indicators, SOUPS 2016,

Denver, CO, USA, June 22, 2016. USENIX Association, 2016.

PriBot will be the subject of Chapter 6. We conclude this thesis in Chapter 7, by giving a

summary of our findings and an overview of potential future directions.
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2 Context-aware,
Crowdsourced Cloud Privacy

2.1 Overview

In this chapter, we embark on the task of bridging the scale adaptation gap: i.e., how to help

users manage their privacy with the expanding amount of data that is being shared and the

limited time available?. Towards that, we consider the case of cloud storage providers, provided

that they have acquired a ubiquitous presence in our digital lives. Given the pervasiveness of

useful cloud services such as storage, online document editing, media streaming, etc., data

which would normally be on the user’s local machine, now invariably lies in the cloud. As

we have seen in the previous years, these platforms are not always a safe haven, especially

with the large-scale exposure of data to governmental agencies by the big players in this

domain [GM13].

2.1.1 Motivation and Challenges

In order to inform potential solutions, we identify three major stumbling blocks towards

privacy provision in the cloud:

a) Privacy vs. Services Dilemma: To tackle privacy concerns, some cloud computing com-

panies provide the users with the option of client-side encryption to protect the data before

it leaves the users’ device, thus preventing any other entity from data decryption, including

the cloud provider itself. However, while this approach eliminates most of the data privacy

concerns, its main disadvantage is that the user cannot readily utilize existing cloud services.

For some services, attempts exist at designing alternatives that operate over encrypted data,

benefiting from the recent breakthroughs in homomorphic encryption [Gen09]. In addition

to resulting in services orders of magnitude less efficient than their counterparts, homomor-

phic encryption is provably not sufficient for constructing several essential services involving

multiple users [VDJ10]. Furthermore, resorting to homomorphic encryption as the ultimate

solution requires rewriting most of the cloud applications’ code to operate over the encrypted

data. New versions of existing LATEXcompilers, photo filters, music recommenders, etc., based

15
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on homomorphic encryption, will need to be programmed with the goal of keeping all data

private, which is evidently non-realistic.

b) Difficulty of manually assessing data privacy levels: Users cannot be expected to individ-

ually assess the sensitivity level for each item before they share it as that can require a lot

of investment in terms of time and effort, coupled with technical expertise. A recent sur-

vey [Pro13] has shown that, in one out of four organizations, the management has little or no

understanding of what constitutes sensitive data. Evidently, this fraction is expected to be

significantly higher for individual users.

c) General lack of awareness about privacy: This includes limited notions about privacy

being restricted to hiding “sensitive” content, such as personal identification numbers, credit

card details, etc. Often, the metadata associated with the data item, the location and device

from which the item is shared, the entity with whom the data is shared, etc., can be as

important as the content of the data itself.

In our solution for privacy provision in the cloud, we seek to overcome the above hurdles.

2.1.2 Approach and Contributions

How do we address the “stumbling blocks” that we identified in Section 2.1.1? First, we show

how we can use a centralized solution to facilitate crowdsourcing for privacy without requiring

the revelation of users’ preferences. We argue that to achieve this, cryptographic methods

are infeasible, and we present a novel design that allows users to reveal their preferences

to the central server privately. We show how an existing psychologically grounded method

for analyzing users’ preferences and data properties, can be rigorously used to analyze this

crowdsourced information. Users can then reap the benefits of this crowdsourced information

as the server analyzes it to provide them with sensitivity indicators when they share new data.

By crowdsourcing the solution, users are no longer isolated individuals who lack privacy

awareness. They can now be guided by the Wisdom of the Crowd. Also, they do not have to

exert manual effort to find the sensitivity associated with each item they share, as the server can

guide them automatically. Furthermore, they need not worry about getting stuck with “bad”

crowdsourced information, i.e., about the majority of users being as clueless about privacy as

them. This is because the psychometric method we use for analyzing this information, Item

Response Theory, ensures that computed parameters of data items do not only apply to a

specific sample of people. The solution would ensure, for example, that sharing compromising

photos of oneself with the public is deemed risky even when the majority of the participants

in the system are doing so. Only a few conservative users in the system are enough to keep the

system risk-averse. Finally, we validate our design with both simulation and empirical data,

thus showing the feasibility of our solution.

Specifically, we make the following main contributions in this chapter:



17

– We propose a privacy framework, called Context-aware Crowdsourced Cloud Privacy

(shortly C3P), which is specific to the cloud scenario and incorporates the nuances of

data sharing, such as the Privacy vs. Services Dilemma and Lack of Privacy Awareness

and Effort on the part of most users.

– We create a realistic vocabulary for a personal cloud, and use it to create “Human

Intelligence Tasks” on the Amazon Mechanical Turk. We measure people’s responses,

in terms of their privacy attitudes, against the Item Response Theory (IRT) and find a

good fit. We thereby demonstrate that Item Response Theory, a well-used psychometric

model for diverse purposes, can be applied fruitfully in the cloud scenario.

– Our solution depends on crowdsourcing the contexts and policies associated with shared

items. The sensitivity associated with different items is determined by grouping together

same (or similar) contexts and analyzing different policies set by people with different

privacy attitudes. However, we also have to ensure the privacy of this aggregated context

information. Towards that aim, we provide a lightweight mechanism based on K-

Anonymity [Swe02] for privately calculating the similarity between items in a centralized

way, without depending on infeasible cryptographic methods.

– We perform a set of experiments using synthetic data, with various graphs for user

activities, item distribution, and types of users (honest vs. malicious).

– Finally, we use the Enron email dataset for evaluating C3P [Nui]. This dataset gives us a

good model of users sharing activities and the diversity of data items (and their contexts).

Under both datasets, we show that our scheme bootstraps quickly and provides accurate

privacy scores in varying conditions.

2.2 System Model

2.2.1 Interacting Entities

We consider a system involving interactions between two types of entities: end-users and cloud

service providers (CSPs). The end-user can play one of two roles: data sharer or data observer

while the cloud provider can only be a data observer. A data sharer is an end-user who shares

data items she possesses. A data observer is any entity that is given access to observe the

shared items by the data sharer.

We assume that the user sends her data to a single CSP, called the intermediary that acts as the

repository for this user’s data. The user can select to give other 3rd party providers access to her

data through that CSP (e.g. when the latter has an API that the other providers can use). The

interaction between these two types of entities is in the form of data sharing operations. Each

such operation is initiated by an end-user s0 who shares a data item d (e.g. document, picture,

etc.) with a CSP or another user s1. Additionally, the data sharer intends from the sharing

operation to obtain a certain service of interest, such as music streaming, document viewing,
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file syncing, etc. The network is dynamic, in the sense that these entities can enter and leave

the network, and the user items can be shared over time, not necessarily concurrently.

2.2.2 Threat Model

We assume that the user is interested in hiding her sensitive data from the CSPs. Existing

privacy threat models, concerned with structured data, consider an adversary who attempts at

discovering quantifiable sensitive information, such as location, browsing history, credit card

information, etc. In our model, we do not set an a priori definition of sensitive information due

to the heterogeneity of the shared data items we consider. Instead, we develop a protocol that

quantifies the sensitivity of a certain sharing operation (determined by its context), based on

the protection mechanisms that people use. Furthermore, we assume that the CSP is honest

but curious, in the sense that it follows the protocol, but it can arbitrarily analyze the protocol

transcript offline to infer extra information.

2.2.3 Our Conceptual Framework

We now discuss the key concepts and components that underlie C3P, our conceptual frame-

work for privacy provision in the cloud.

Context Vocabulary In Section 2.3, we use the notion of Context vocabulary to define the

contexts of items shared in a given domain. A context accounts for the content features of

the items, the metadata associated with it, and the environment of the sharing operation (e.g.

data observers, the device used, etc.).

Sharing Policy People can share different data items with different policies, where a policy is

in the range [0, 1] and 0 signifies full transparency while 1 signifies full obscurity. We discuss

this in more detail in Section 2.3.2.

Crowd-Sourcing In C3P, after each sharing operation, the context of the item and the policy

applied are eventually aggregated at the cloud via a privacy preserving mechanism. This

aggregation is required so that the Lack of Privacy Awareness may be overcome, and individual

decisions could be guided by the Wisdom of the Crowd.

Risk Evaluation Based on the processing and analysis of the crowdsourced information, the

system can guide others about the privacy risk that is posed by sharing different items in

different contexts. Towards that aim, we use Item Response Theory (IRT) which is a well-known

psychometric function that has been widely used in psychology, education, public health, and

computerized adaptive testing.

Policy Recommendation The final component in C3P is a suite of risk mitigation applications.

By this, we mean system recommended policies that can guide the general user in minimizing

risk while still availing services. In this work, we do not focus on Policy Recommendation and
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Figure 2.1 – Sequence diagram of the system

leave it for future work.

In Figure 2.1, we show a sequence diagram summarizing the steps taken in one run of the

system. The client contacts the server with a private query about the sensitivity of the current

context (t=1), in a way that the server remains oblivious to the actual context. Upon receiving

the response with the sensitivity (t=2), the client locally computes the privacy risk of sharing the

data (t=3) and decides on the relevant protection mechanism (t=4). Next, the client sends the

data at t=5. At a later round (t=i), the client sends the context along with the used policy after it

makes sure that the server cannot associate the context with the actual sharing operation. The

server determines the similarity of this item with other items that users have crowdsourced to

it. Using psychometric functions, the server computes the sensitivity associated with the item

being shared, which is used to respond to future sensitivity queries.

2.3 Context Vocabulary and Sharing Policies

We begin by describing the fundamental C3P building blocks, which refer to the context in

which an item is shared and the policy with which the item is shared.

2.3.1 Context Vocabulary

We introduce the technical notion of “Context”, which includes the metadata associated with

a particular data item, user supplied information about the data item (such as tags), and

the environment features in which the data is being shared (such as the device information

or the relationship with the observer). Furthermore, “Context” also includes information
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Figure 2.2 – An example vocabulary for data sharing in the personal cloud

extracted through content analysis of the data item, such as topic modeling in the case of a

text document and face recognition in the case of images.

For an illustration of “Context”, consider a case where Bob shares a word document on financial

risk, authored by the sharer (i.e. Bob himself) on Bob’s laptop and shared with a colleague.

The words in italics capture the context of the data item. For a specific domain, “Context

Vocabulary” is the set of all features that can be used to represent any shared item in that

domain. Put in another way, the context vocabulary is the vocabulary that can be used to

represent all possible contexts in a given domain. We give an example of such a vocabulary in

Figure 2.2.

The general template for a context of an item would be a tuple of the general form:

(f1=value1, f2=value2,..., fm= value3)

containing m features. Thus, the context of the data item in the above example would be

(file_type=word document, topic=financial risk, sender_device=laptop,

author=sender, observer=colleague).

It should be noted that there are usually two kinds of features associated with a data item. The

first are those which are by default associated with the data item, e.g., data type, and other

metadata information, e.g., author, which are available (or can be extracted by anyone) if

the data item is shared completely transparently as in plaintext. We term these as explicit

features. The second are defined by the sharer when sharing the data item or are based on a

private knowledge base (e.g. observer or other tags associated with the item). We term these as

implicit features.

We note here that it is not necessary (or even usual) for all data items to have all context

features available. An item’s context is defined by whatever features are available. For example,

if we have a pdf file which does not have its author present, then obviously the author feature

in the file’s context would be empty.

2.3.2 Sharing Policies

When a user decides to share a data item, this is done with a policy. This policy ranges from

0 to 1, where 0 signifies full transparency while 1 signifies full obscurity. For example, if the
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user decides to encrypt a file, then this would be symbolized by a policy value of 1. On the

other hand, sharing an unencrypted file while hiding some meta-data features (e.g., author,

modified_by, etc.) would result in a policy value between 0 and 1. Between these two extremes

lie the other obfuscation methods.

2.4 Crowd-Sourcing and Risk Evaluation

As shown in Figure 2.1, a client can privately query the server about the sensitivity of a specific

sharing operation and get a response based on that. In this section, we describe these parts of

C3P in more detail. Informally speaking, the privacy guarantee that we achieve throughout is

that, at any time, the server has multiple contexts that can be associated with each sharing

operation. Accordingly, the context of each operation is never deterministically disclosed to

the server.

2.4.1 Privacy Aware Querying

Directly sending the context to the server allows it to associate the sharing operation with that

context, which we aim to avoid. Instead, we describe a scheme, where the client queries the

server about multiple dummy contexts, in a way that hides the actually requested one1.

QuerySet Formation

We denote by targetContext the context for which the client is querying. This context is

sent as part of a QuerySet, containing other contexts, which we term as homonyms. As shown

in Figure 2.3a, suppose that the targetContext is c1: (f1=x1,f2=v1,f3=w1). The client

forms a list of alternative values for each feature, e.g. L = [{x1, x2, x5}, {v1, v3, v6}, {w1, w2, w3}]

so that, in total, each feature has k possible values. Then the homonyms are formed by

producing the cartesian product of all the sets in L. This results in contexts having different

combinations of feature values. With m features per context, L has km contexts in total.

The choice of the alternative feature values is not totally at random. In order to allow

targetContexts to appear faster in multiple QuerySets, thus approaching the privacy con-

dition formalized in this section, the client keeps a Pending List (PL), containing previously

queried targetContexts. The feature values of those contexts are used in forming the set

L (cf. Figure 2.3a). In particular, we select at random a maximum of �p ×k� values2 of those

values per feature. The rest of the potential feature values are sampled at random from the

domain of each feature.

The client sends this QuerySet to the server. The server, on receiving a QuerySet, responds

1This querying step is partially similar to other obfuscation techniques (e.g., [HN09]), but its guarantees differ
due to the specifics of our context.

2p is a constant (0 < p < 1) (we take p = 2/3 in our experiments).
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with a subset of all those contexts for which it knows the sensitivity3. If the sensitivity of

the targetContext is also returned by the server, the client decides to apply a policy on the

data item based on the sensitivity value; otherwise, the client can choose to do the same

uninformed. From an implementation perspective, this sharing policy can either be applied

automatically or used to suggest settings that the user can approve. In this work, we focus

on computing the sensitivity, and we give a practical example of how it can be practically

integrated in Section 2.6. Next, the actual data item is sent to the server. Once the server

receives the actual data item, it can try to infer as much as it can from the targetContext

and the item. We distinguish between two parts of the targetContext:

– exposed part: This part consists of those explicit features as defined in Section 2.3.1,

which the client did not choose to hide.

– unexposed part: This part contains all the implicit features and the subset of the explicit

features which have been hidden by the client according to the sharing policy.

It is evident to notice that, by the construction of the QuerySet, the server is not able to

deterministically infer any feature of the unexposed part of the context. In particular, the

server has k possible values for each unexposed feature. Accordingly, assuming there are u

features in the unexposed part, we will have ku contexts that match the exposed part of the

targetContext (remember that each feature had k values in the QuerySet). We call this set of

contexts the Anonymity Subset (Ai ) of the targetContext ci , and we illustrate its contents

with an example in Figure 2.3b. With respect to the server, one of the elements of this subset is

the targetContext, but no element can be ruled out without further information.

To formulate our findings, we present the following definition:

Definition 1. We say that a context c can be validly associated with the sharing operation of

item di if c has appeared in Ai and if the server cannot assert with certainty that c exclusively

belongs to one or more Anonymity Subsets other than Ai .

For example, based on Figure 2.3, c1, c4, c5, and c6 are example contexts that can be validly
associated with the current sharing operation. Given what the server currently receives (i.e.,

the queries and the data), it cannot gain any evidence that these contexts are dummy contexts.

Hence, at this stage, we have the following guarantee:

Guarantee 1. At the querying phase, the server receives ku contexts that can be validly associated
with the current sharing operation.

3We shall discuss how the server calculates this sensitivity in Section 2.4.3.
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(a) QuerySet formation: Consider the given
targetContext. We first populate the possible
feature values from the Pending List, to get
{x1, x2}, {v1, v3}, and {w1, w2, w3}. Our goal is to
have k = 3 values per feature. Hence, we amend
these values with random feature values from
the domain (i.e., x5 and v6 in this case). The
list L contains k possible values for each feature.
The QuerySet is formed from cartesian product
of all the sets in L.

✔

✔
✖

✔

(b) Anonymity Subset definition: We start with
QuerySet that has been formed in Figure 2.3a
(we show 4 of its members). The actual value of
feature f1 has been exposed (e.g., when f1 cor-
responds to the file author, and the user did not
hide this metadata feature). Hence, the contexts
which have f1 �= x1 (e.g., c5) are excluded. There
are ku contexts still included as a result (u = 2 is
the number of unexposed features.)

Figure 2.3 – An example showing the formation of the QuerySet and of the Anonymity Subset

Crowdsourcing

Up till now, we have shown how the client privately queries the server about the sensitivity.

In order to compute this sensitivity, the server relies on crowdsourcing, through privately

collecting targetContexts along with the corresponding sharing policies (together called

the Crowdsourcing Information (C I )) from different clients. We alternatively say that a

context c is crowdsourced when C I (c) is sent to the server.

A (non-malicious) client should not send dummy information in this phase in order not to

affect the accuracy of the sensitivity computation4. Hence, the server should receive the

correct contexts and sharing policies from the client. Thus, we now present the scheme in

which client sends the C I in a way that continues to maintain Guarantee 1 for all the sharing

operations. As a result, the server will be able to know, for example, that a client Bob shared

a financial document with a colleague in a plaintext form, but it will not be able to link the

document topic or his relationship with the observer to a specific sharing operation.

One way that guarantee might be weakened is if the client sends the C I in a way that allows the

server to discover the Anonymity Subset in which the context was the targetContext. For

example, sending C I (c) directly after c has appeared in a single Anonymity Subset A1 will

reveal to the server that c corresponds to data d1. In this case, all the other homonyms in A1

4We do not discuss the case of malicious clients here, but we do study the effect of such clients in the simulations
later.
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will no more be validly associated with it. Hence, the first intuitive measure for preventing this

association is to wait until a context appears in multiple Anonymity Subsets before sending

the C I .

However, this measure is not sufficient. Consider the case of two contexts cx and cy , both only

appearing in Anonymity Subsets A4 and A6. Suppose that we require that a context appears

in at least two Anonymity Subsets before it is sent. Then, both C I (cx ) and C I (cy ) will be sent

directly after item d6 (with Anonymity Subset A6) is sent. At this point, the server is sure

that one of cx and cy is the targetContext for A4 and the other for A6. All of the other ku −2

contexts that have appeared in A4 and A6 are no more possible candidates for being the actual

targetContext from the viewpoint of the server. Hence, Guarantee 1 for these two sharing

operations is weakened as the ku −2 contexts are now deterministically excluded from A4 and

A6.

The guarantee would be weakened further if there was a third item d8 that has been subse-

quently sent, with its context c8 appearing in A4 and A8. From the server’s viewpoint, A4

is no more a valid possibility for c8 due to the mapping deduced when cx and cy were sent.

Therefore, the server can deterministically associate A8 with c8, and the actual context for d8

is revealed.

The main weakness in this naive method is that it does not account for the fact the server

can link multiple sending instances and reduce the possibility of mapping to a single case.

Our strategy to counteract that and keep Guarantee 1 is to verify that crowdsourcing the next

context preserves the property that each sent context item is still validly associated with all

the Anonymity Subsets it has appeared in.

At this point we add another definition:

Definition 2. We say that there is a valid mapping from a list of contexts to a list of Anonymity

Subsets if each context in the former can be validly associated with a distinct Anonymity

Subset from the latter.

Suppose the client has just completed the sharing operation i , and is attempting to crowd-

source the contexts that have not been sent yet, which are kept in its Pending List (PL).

We also denote by SL the Sent List, containing all contexts that have been crowdsourced

previously5, and by G the group of all client’s Anonymity Subsets up to (and including) Ai .

Towards achieving Guarantee 1, a context ĉ ∈ PL can be crowdsourced only when the following

two conditions are true:

1. c appears in at least r Anonymity Subsets

2. For each A ∈G , there exists a valid mapping from the list SL′ = SL ∪ {c} of contexts to

the list G \ A of Anonymity Subsets.

5We assume throughout that such lists of contexts contain distinct elements; i.e., each user sends one
(context,decision) tuple for each context.
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A1A2A
Figure 2.4 – Checking privacy conditions before crowdsourcing context c2

Going back to the previous example, after each of cx and cy has appeared in two Anonymity

Subsets, condition 1 is satisfied assuming r = 2. However, condition 2 is not satisfied since

excluding A4 will lead to G \ A4 = {A6}, and then we cannot map each context to a distinct

anonymity set.

Figure 2.4 illustrates with another example how the two conditions can be verified. For each

targetContext, the client maintains a list of the Anonymity Subsets it has appeared in. In

addition, it maintains two lists: U 1, containing the targetContexts that have not satisfied the

first condition yet6, and S1U 2, containing the list of items that have satisfied the first condition

but not the second. The figure shows a valid mapping that exists for each Anonymity Subset

in G when c2 is considered for crowdsourcing. It is worth noting that PL =U 1
⋃

S1U 2. Also, as

discussed in Section 2.4.1, when the contexts of PL appear in more Anonymity Subsets, the

above privacy conditions will be satisfied faster; hence, they were used in the construction of

the QuerySet.

Theorem 1. Checking conditions 1 and 2 allows preserving Guarantee 1.

Proof. Consider any context ĉ that is about to be crowdsourced. Let Z be the list of all contexts

that appeared in the elements of G . In order to preserve Guarantee 1, all the contexts in Z

should remain validly associated with the Anonymity Subsets they have appeared in. We can

write Z as Z = (SL′)∪ (Z \ SL′); i.e., it is the union of the contexts that should have been sent

after this operation and those that have not been sent yet.

Condition 2 above implies that after ĉ is sent, we can still claim that: for each A ∈G , there is a

possibility that the targetContext of A has not been sent yet. Hence, each context c ∈ SL′,
can still be validly associated with all the r subsets it appeared in.

It is evident that there is no new information being sent about the contexts in (Z \ SL′).

Therefore, all the contexts in Z can still be validly associated with the Anonymity Subsets

they appeared in. Accordingly, Guarantee 1 is preserved.

6regardless of whether the second condition is satisfied
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2.4.2 On the Privacy Guarantee

The goal of C3P is to provide a light-weight, non-cryptographic mechanism for sensitivity

querying and for delivering crowdsourced information to the central server. So far, we have

shown that the provided privacy guarantee is that the server cannot determine —with cer-

tainty —that a certain context is associated with a specific sharing operation. The server has

ku contexts that can be associated with each sharing operation, where u is the size of the

unexposed part of the context.

To give more intuition on why this guarantee makes sense in our setting, we take an example

of a user sharing an image with the following context:

(file_type=image, scene=indoor, faces=wife, location=home,

taken_with=user_camera, camera_type=smartphone, time_captured=recent,

observer=family ).

Assume that the sharing policy consists of stripping the image metadata. Hence, the unexposed

features are:

{location, taken_with, camera_type, time_captured, observer },

and the features that are exposed when the server receives the image are:

{file_type, scene, faces}.

If the user wants to only participate in the querying phase and not in the crowdsourcing phase,

then the privacy guarantee could be:

Each targetContext, for which the user requests the sensitivity, is anonymized

among ku homonyms (u = 5 in this case).

If the user participates in the crowdsourcing phase, then the contexts that reach the server

in that phase need to be accurate. Hence, the server must receive the full context along with

the user’s sharing policy. Our scheme guarantees that the server will not deterministically

associate the crowdsourced context with this sharing operation.

Without this guarantee, the server will know that the current receiver of the image is a family

member, that this sender is sharing his indoor photos with that observer, that this particular

photo has been taken at the senders’ home, etc.

With our scheme, the user has the ability to repudiate. The server cannot deterministically

associate the current receiver with the observer feature, will not know whether this photo is

indeed an indoor photo, and will not be sure of the location where the photo was taken 7.

Discussion: We note that an alternative scheme for crowdsourcing that includes encrypting

the context before sharing it would not work. In C3P, the server is required to use a similarity

7We assume that the server does not have additional background information about the user.)
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function to match the context with other ones sent by people in order to compute the context

sensitivity. Even if we encrypt the context before we send it, the server will be able to know it

by computing its similarity with all the possible contexts in the vocabulary (as the latter are

not large enough to prevent being iterated over easily). Another place where encryption might

be applied is in the querying phase, where Private Information Retrieval (PIR) techniques with

constant communication complexity might replace the QuerySet technique. However, as

the complexity gain is absent, and the privacy guarantee obtained by the querying phase is

limited by the crowdsourcing phase, we do not resort to the encryption-based method, which

is more complex to implement.

2.4.3 Sensitivity and Risk Evaluation

When the server receives the Crowdsourcing Information, it seeks to determine the sensi-

tivity associated with this item based on same or similar items shared with different policies in

the past by different users. The client, upon receiving this sensitivity, locally computes the

privacy risk of sharing. In this chapter, for computing the sensitivity, we use Item Response

Theory (IRT), a well-known psychometric function, which we describe next.

Sensitivity Computation by the Server

Item Response Theory (IRT) is a modern test theory typically used for analyzing questionnaires

to relate the examinees’ probability of answering a question correctly (or in general a correct

response probability Pi j ) to two elements: (1) the difficulty of the question (or in general a

latent threshold parameter βi of item i ) and (2) the examinees’ abilities to answer questions

(or in general a latent parameter θ j for each person j ). In contrast to Classical Test Theory

(CTT), which measures a person’s ability based on averages and summations over the items,

IRT has two distinguishing features: (1) the group invariance of calculated item parameters

(i.e. a single item’s parameters do not only apply to the current user sample, assuming the

social norms will not vary significantly) and (2) the item invariance of a person’s latent trait

(i.e. the trait is invariant with respect to the items used to determine it) [Bak01].

In this work, we apply IRT by mapping the item’s difficulty to the sensitivity, the user’s trait

to the privacy attitude (or willingness to expose the items), and the response probability to

the policy level of the item. Although this mapping has been done in the context of Facebook

profile items [LT10, QCP+12], we are the first to tailor it to multi-featured items based on

unstructured data.

We focus on the unidimensional IRT models, which make three main assumptions about the

data: (1) unidimensionality (i.e. there is a single underlying trait θ that determines the person’s

response), (2) local independence (i.e. for each underlying trait θ, there is no association

between responses to different items), and (3) model fit (i.e. the estimated item and person

parameters can be used to reproduce the observed responses) [RF05]. An IRT model is termed
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as dichotomous if the responses to the questions are binary ones (correct/incorrect) and

polytomous if there are multiple levels of the response (e.g. a five-level Likert scale with

responses: strongly disagree/disagree/neutral/agree/strongly agree).

The Rasch model, one of the most common IRT models, assumes that the probability of

correct response is a function of θ and β only and that the items are equally discriminative

for testing the underlying trait. It is particularly advantageous with smaller sample sizes, due

to its simplicity and few parameters, and, as we show in Section 2.5.1, it also fits well in the

scenario of cloud data sharing. The parameters of the dichotomous Rasch model for an item i

and a person with parameter θ are related by the following function, called the Item Response

Function (IRF): Pi = 1/(1+e−(θ−βi )).

With polytomous models, we will make the assumption that the policies chosen by the users

are on the same scale for all the items. It is similar to the case of Likert scale, where the

same set of categories are applied for each item in the test. Accordingly, the most suitable

model for us, and whose fit to the cloud scenario will be demonstrated in Section 2.5.1, is the

Rasch Rating Scale Model. For estimating the parameters of the different models, we used

Marginal Maximum Likelihood estimation, which is an expectation-maximization algorithm.

The estimation technique relies on having enough responses for multiple items by different

people. For more details about item response theory models, the reader is referred to the

following works [Bak01, RF05, NO11].

Risk Computation by the Client

The sensitivity is an indication of the magnitude of privacy loss incurred when data is lost.

The client can combine this measure with another measure of the likelihood that this event

happens, using information that is kept locally, such as the level of trust for the current

observer, the level of protection (i.e. the policy as we show do in Section 2.6), etc. The privacy

risk is then a combination of the sensitivity and the likelihood.

2.5 Evaluation and Experiments

2.5.1 Experiments for Validating IRT

Since we shall be using Item Response Theory (IRT) to calculate the sensitivity of shared items,

the first question that needs to be answered is this: Can IRT be meaningfully applied in the

cloud scenario in which people share data items in a variety of contexts? In order to investigate

this and to empirically ground our design and subsequent experiments, we validated IRT for

the cloud scenario using real people’s feedback on Amazon Mechanical Turk. Next, we explain

our methodology for this validation.
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Figure 2.5 – Bond-and-Fox Pathway Map on the mTurk data (a dot represents a context item)

Methodology

We created a realistic vocabulary for the personal cloud, and, based on it, we developed a

list of questions that we submitted as Human Intelligence Tasks (HITS) on Amazon mTurk8.

We created two separate HITs for the dichotomous and polytomous cases of IRT. For the

dichotomous case, we asked 96 questions to which we received answers from 81 people. For

the polytomous case (with 3 categories), we asked 16 questions to which we received answers

from 50 people9. Here each question represents a context item while the users’ responses

represent their policies for sharing in the given context.

We analyzed the results using the eRm Package in R [MH07]. For testing the model fit, we

used the standardized (STD) and the mean square (MSQ) infit statistics. An infit statistic is a

weighted fit statistic derived from the squared standardized residual between the observed

data and the one predicted by the model [DA09]. The STD infit indicates whether the data

fits the model perfectly and is also an approximate t-statistic. In Figure 2.5, we show the

STD infit statistic in the two cases of dichotomous and polytomous items, along with the

sensitivity value of items (threshold values in the polytomous case) in each graph, also called

the Bond-and-Fox Pathway Map. We notice that all the values in the polytomous case and

all but one in the dichotomous case lie between -2 and 2, which are the typically acceptable

bounds [DA09]. We also derived the MSQ infit which serves as an indication of whether the

data fits the model usefully, i.e. if it is productive for measurement. We found that the MSQ

infit was in the range [0.7,1.312] for dichotomous items and [0.683,1.287] for polytomous

items, which are both within the typically accepted [0.5,1.5] range [DA09].

Having shown the applicability of IRT to the cloud sharing scenario, we proceed to the evalua-

8The vocabulary and the survey are shown in Appendix A
9The numbers of respondents is generally considered a good number for testing IRT[Lin94]
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tion of C3P.

2.5.2 Synthetic Datasets

In this section we detail, our methodology for evaluating our framework with synthetic data,

followed by the experimental results and discussion.

Methodology

The context items in this dataset were generated by selecting a generic vocabulary with 5

features per context. Each feature of a context had 5 possible values for a total of 3125 possible

contexts. From these contexts, we selected 200 ones at random. There are 500 sharers (or

people) who share these items. In total, for each experiment, we allocated 30000 sharing

instances, each of which represents a data item (corresponding to the context item) shared by

a certain person with another person at a specific time. The item to share at each instance

is drawn according to a predetermined item distribution (zipf with exponent 2, or uniform,

depending on the experiment).

In our implementation, the distance (and hence similarity) between each pair of contexts is

based on considering the hamming distance over their features10. The people connections for

sending data were modeled using two types of graphs: (i) small world (using the Watts-Strogatz

model with a base degree of 2 and β= 0.5) and (ii) random (with an average degree of 4). Our

simulation is a discrete event based simulation, punctuated by sharing events.

The person who instantiates a sharing event is selected randomly from the graph, weighted by

her degree, so that people who have more neighbors share more items than those with less.

The data receiver is selected randomly from the list of neighbors of the sender. Each person

sends data at a time rate modeled by a Poisson process so that the time between her two

sharing instances is exponentially distributed with an average of 3,6, or 12 hours, depending

on the experiment.

At each sharing instance, the context item’s QuerySet is sent according to our scheme. The

server maintains clusters of contexts it receives, grouped according to a similarity parameter

(whose value of 1 implies that each cluster’s contexts differ by one feature from their cluster

center, etc.). When the server receives a new context, it either maps it to an existing cluster

or assigns it as the center of a new one. All the contexts of a certain cluster are assumed to

have the same sensitivity. The server replies with all the sensitivities it knows for the clusters

to which the contexts in the QuerySet were mapped. If the reply contains the requested item,

this is considered as a Hit.

In the crowdsourcing phase, upon receiving new Crowdsourcing Information (C I ) from a

10System designers can use any similarity measure best suited for their needs, e.g., those dealing specifically
with semantic similarity. However, that is beyond the scope of this work.
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Figure 2.6 – Synthetic dataset graphs

client, the server matches it to a cluster S and tries to compute the sensitivity for S if it is not yet

computed. To achieve an acceptable sample for IRT, we require that (1) S has a minimum of

15 contexts with their policies, (2) that there are 4 other clusters satisfying requirement 1, and

(3) that each of these 4 clusters has at least 8 C I s by people who have also sent C I s appearing

in S. The sensitivities are computed using the marginal maximum likelihood estimation

technique. In all the experiments, unless otherwise stated, the default setting is a small world

social network with zipf item distribution, six hours average sharing interval, and a similarity

parameter of 1. In addition, the value for parameter r is equal to k, which is 3 by default.

Hence, k is the anonymity parameter we use henceforth.

Results and Discussion

Figure 2.6a shows the Hit Rate of users queries over time, where Hit Rate is defined as:

Hit Rate = # of queried items with available sensitivity

total # of queried items
(2.1)

The Hit Rate is calculated per day unless otherwise specified.
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Anonymity Overhead In Figure 2.6a we can see that the Hit Rate for anonymity parameter

3 is better than the Hit Rate for 4. As discussed earlier, anonymity parameter k implies

that a targetContext for sensitivity must have appeared in k different Anonymity Subsets

and that k different values for each feature in the targetContext must be present in the

QuerySet. The above conditions suggest that the lower the anonymity parameter value, the

more targetContexts would be sent to the server for crowdsourcing, and thus the more

quickly would IRT be able to respond with sensitivity values. The anonymity parameter 1

implies no anonymity at all. We plot this curve to see the “overhead” of our K-anonymity

scheme on top of the time required by IRT. Simply put, the curve for the anonymity parameter

1 represents the time it takes IRT to provide Hit Rates when there is no anonymity scheme in

place. Thus the difference between the curves for anonymity parameters 1 and 3 represents

the overhead of our anonymity scheme in terms of reduced Hit Rate. However, we see that

the curve for 3 converges to the same Hit Rate as 1 in ten days time. This suggests that our

anonymity scheme bootstraps quickly and does not pose significant overhead11.

Sharing Interval Effect Figure 2.6b shows the Hit Rate with different sharing intervals in

hours. An interval of 3 means that all users query for the sensitivity of an item every 3 hours

on average. It can be seen from the graphs that initially, the longer the interval, the slower the

increase in the Hit Rate. This is most noticeable around the 5th day when the Hit Rate with an

interval 12 is still around 0.5 and lags significantly behind. Eventually, as the server collects

more and more items, the Hit Rates of all sharing intervals converge to similar values.

Similarity Parameter Impact Figure 2.6c shows the Hit Rate with different similarity pa-

rameters. The similarity parameter has been defined in Section 2.5.2. A similarity parameter

of 0 signifies that there is no (zero) difference between two context items while calculating

sensitivity12. Precisely, what this means is that: to calculate the sensitivity of an item, IRT

would require that other contexts, which are exactly the same as this context, be shared with

different policies. A similarity parameter 1 implies that two items that differ by a distance of 1

would be considered the same while 2 implies that items differ by a distance of 2 would be

considered the same. This, in turn, implies that IRT would be able to more quickly calculate

the sensitivity of an item (as opposed to case 0) since there would be more items which are

considered the same. Thus we can see in Figure 2.6c that Hit Rate with similarity parameter 0

is the worst since IRT does not have enough items for calculation.

Item Distribution Effect In Figure 2.6d, we investigate the effects of the “item distribution”

on the Hit Rate. By “item distribution” we mean the distribution of the context items, i.e., the

different contexts in which users share data. This is an important feature because different

11This overhead can be further reduced through bootstrapping the system with initial data collected from
surveys, thus increasing the Hit Rate at the beginning.

12This was the case for example in the experiments for validating IRT in Section 2.5.1
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Figure 2.7 – Hit rate and sensitivity difference under various conditions

organizations and different systems would naturally have different item distributions. For

our experiments, we use two different item distributions. One is the zipf distribution, which

has been shown to be most common in social networks [LKG+08]. The other is the random

distribution in which all context items are randomly distributed. A look at the Figure 2.6d

reveals that a zipf distribution “bootstraps” faster than a random distribution. The Hit Rate

with random distribution lags behind zipf by a day, i.e., it reaches the same Hit Rate a day later,

till the fifth day. We argue this is because, given a zipf distribution, users share more similar

items, and thus the crowdsourcing is more effective, and IRT is able to calculate the sensitivity

of items quickly. Given a random distribution, it takes more time for IRT to accumulate enough

similar items for the calculation of sensitivity. However, as the times goes by and more items

are accumulated, both random and zipf converge to around the same values.

Effect of Social Graph In Figure 2.7a we observe the effect of changing the underlying social

network. We use two graphs for the social network structure: small world and random. These

affect the sharing patterns of the users. We see that the effect of the underlying graphs on the

Hit Rate is not significant and both lead to similar values, with the small world doing slightly

better than the random network.

Effect of Malicious Users on Sensitivity Figures 2.7b and 2.7c show the effect of malicious

users and changing similarity parameters on the sensitivity values. For this particular set of

experiments, we begin by assigning different sensitivity values to the items and also different

attitudes to the users. As the experiment runs, the policy of the users on sharing the items is

dictated by their attitude and the item sensitivity given at the beginning. The sensitivity of the

items is then calculated by our scheme. We then measure the absolute difference between

the actual sensitivity of the items and the calculated sensitivity. Ideally, there should be no

significant difference between the actual sensitivity and the calculated sensitivity. However,

differences could arise under certain conditions. The first condition is the presence of mali-

cious users. A malicious user sends random policies for items, i.e., she does not have a fixed
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attitude but rather a random and unpredictable one13. Figure 2.7b shows the effect of such

malicious users on our scheme. The figure shows the box plots for each item’s normalized

sensitivity difference in terms of percentage. We observe that when there are no malicious

users, the difference is pretty low (in the range [2%,6%]), with most items’ calculated sensitivity

very near the actual sensitivity (the individual dots represent the outliers). This keeps getting

progressively worse as the proportion of malicious users increases. Finally, with a fraction of

0.75 malicious users, most of the items’ calculated sensitivity differs by as much as 30% from

the actual sensitivity.

Effect of Similarity Parameter on Sensitivity In Figure 2.7c, we see that the effect of dif-

ferent similarity parameters on the calculated sensitivity. We observe that, with similarity

parameters 0 and 1, the difference between actual and calculated sensitivity is very low. The

reader will recall that similarity parameter 0 means that two items would only be grouped

together if they are identical. Therefore, when IRT calculates sensitivity value of an item, it

does so on the basis of other identical items for which it has received policies from different

users. Thus the calculated sensitivity value would be in high agreement with actual sensitivity.

With increasing similarity parameter values, the system would group together items which

are not identical, therefore sacrificing accuracy in sensitivity calculation. We observe that the

difference between actual and calculated sensitivity with similarity parameter 2 is greater than

0 and 1. However, as we discussed while explaining the results of Figure 2.6c, a higher value

for the similarity parameter signifies a better Hit Ratio. Therefore, we discover that there is a

tradeoff between accuracy of calculated sensitivity and Hit Rate, as far as similarity parameter

is concerned.

Overall, the above results signify that our approach has a reasonable overhead, with varying

item distributions and social graphs, and is resistant to a considerable fraction of randomly

behaving users.

2.5.3 Enron Experiments

We want to evaluate our scheme in a realistic setting. However, as there is no dataset of users

sharing activities in the cloud that is publicly available, we use the Enron email dataset [Nui].

Sharing data of various types with certain entities in the cloud is analogous to sharing attach-

ments via emails. Specifically, what we get from this dataset, is a variety of items (hence the

variety of contexts in which real people share these items with others) and also the level of

trust that they have in each other. We explain these points as well as our data extraction and

analysis methodology below.

13We note that, strictly speaking, random choices do not always stem from having intentions to attack the system,
but we use the term “malicious” to signify inconsistencies in the users’ privacy attitudes.
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Methodology

The dataset was obtained in the form of 130 personal storage folders (pst)14. It was processed

using the PST File Format SDK15 and the MIME++ toolkit16. We only considered emails with

attachments, whose metadata was extracted using the GNU Libextractor library17. Precisely,

the main metadata we extracted from files is: (revision history, last saved by, resource type,

file type, author name, and creator). We then collected all the email addresses mentioned in

the dataset and grouped the ones corresponding to the same person, based on the patterns

of occurrence of email aliases. Next, the emails of each person were used to obtain the list

of companies she is affiliated with according to the email domain, filtering out public email

services (e.g. AOL, Yahoo). We matched all the processed metadata with a specific vocabulary

we created for the Enron Dataset.

In total, the obtained dataset contained 2510 people sharing 184 distinct contexts over 19415

sharing instances. Moreover, for each file sender, we calculated a measure of the trust associ-

ated with each receiver based on the frequency of emails exchanged with her. The trust value

T (i , j ) = F (i , j )/Max(i ), where F (i , j ) is the number of emails sent from user i to user j , and

Max(i ) is the maximum number of emails sent by user i to any receiver. In our experiments,

the policies we associate with each sending event are dictated by this degree of trust between

the sender and the receiver. We use a similar timing scale as the synthetic experiments, where

each person shares all his items in the sequence the emails were originally sent but with a rate

modeled as a Poisson process.

Results and Discussion

Anonymity Overhead Figure 2.8a shows the Hit Rate of users queries over time, where Hit

Rate is the same as defined in Equation 2.1. The graph is over a period of 10 days. We can see

that with anonymity parameter 1, i.e. with no anonymity scheme in place, the Hit Rate jumps

very quickly. However, anonymity parameter 3 and 4 eventually catch up, and all the curves

show a Hit Rate of 1 by the third day. We argue that this improvement in Hit Rate over the case

of synthetic experiments (see Figure 2.6a) is because the sharing contexts in the Enron dataset

are not diverse and more similar items are collected faster, thus leading to an increase in the

Hit Rate.

Similarity Parameter Impact In Figure 2.8b we can see that with the similarity parameter

equal to 2, the Hit Rate remains at 0 consistently. Our investigation into this reveals to us the

reason behind this strange result. We discover that the context items shared in the Enron

dataset are not very diverse. Hence, having a similarity value of 2 means that most items

14from http://info.nuix.com/Enron.html
15http://pstsdk.codeplex.com/
16http://www.hunnysoft.com/mimepp/
17http://www.gnu.org/software/libextractor/
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Figure 2.8 – Enron dataset graphs

are clustered together since most items in the Enron dataset differ from each other by at

most 2 features. As most items are clustered in very few clusters, this means that IRT is not

able to work since it does not find enough different items for sensitivity calculation. The

number of different items that IRT requires for working differs on the implementation being

used. Our implementation requires that there must be at least 5 different items for IRT to

work. In the case of similarity 2, these clusters are not available. However, with similarity 1,

enough clusters are found and this, in turn, implies that IRT would be able to more quickly

calculate the sensitivity of an item (as opposed to case 0) since there would be more items

which are considered the same. Therefore, similarity 1 shows better Hit Rate than similarity 0.

These results suggest that using IRT in a scenario where most people share similar items, the

similarity parameter should be low. However, we note that the Enron dataset, being an email

dataset, does not have the same diversity as would be available in a cloud setting.

2.6 Implementation

We have developed a prototype backend system based on C3P, in addition to two clients, a

desktop app (called PrivyShare Desktop) and a web client (called PrivyShare Web), showcasing

its potential.

2.6.1 PrivyShare Desktop App

This app, whose main screen is shown in Figure 2.9 allows users to analyze the risk associated

with files before they are uploaded to any cloud service. It also gives the option to apply

fine-grained policies instead of encryption only. This enables users to balance the privacy-

utility tradeoff and to still use certain services with their cloud files (e.g., via 3rd party cloud

applications). PrivyShare Desktop supports any cloud storage provider as long as the app for

that provider is already installed on the user’s operating system. We leverage the fact that each

cloud storage provider typically has an assigned folder on the user’s filesystem. Hence, when a
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Common Features Text-specific Image-specific

Recency (day, week, year, more) Topic Identifier Small Faces Count
Creator (social group) Medium Faces Count
Recipient (social group) Large Faces Count
Device Type (phone, tablet, camera, desktop) Location available
File Type Photo Type (drawing, design, picture)
Title available
Company available
Contributors available

Table 2.1 – Features extracted from files in PrivyShare Desktop app; some of the features are
extracted from both text files (e.g., word documents, presentations, worksheets, etc.) and
images files. Other features are specific to the filetype.

file is to be uploaded to that service, our app transfers the file to the corresponding service

folder.

A typical flow of actions for an upload goes as follows:

– A user drops the file into the icon of one of the existing cloud provider (see Figure 2.9).

The app extracts the features of the file at the client side and builds the QuerySet

according to the C3P protocol. These features are shown in Table 2.1. For feature

extraction, we used a combination of Apache Tika18, OpenCV19, and Mallet20, which

were tailored to our purposes. Then the client sends the QuerySet to the server and

receives the sensitivity result. If the sensitivity data is available, it is used to compute the

risk, which appears via the risk meter on the right side of the screen. The risk itself is

chosen to be a normalized product of the sensitivity and the policy level applied. The

policy level ranges from 0 when the file is encrypted to 1 when the file is sent in plain

text. In between, there is a range of predefined fine-grained policies (e.g., based on the

fraction of metadata removed or the auxiliary information uploaded with the file as we

describe below).

– The user has the option to see the most important metadata fields of the file, which are

visualized to make them more comprehensible (Figure 2.10). For example, the location

metadata shows the actual location of the photo on the map. In addition, the user can

hide each of the metadata fields (Figure 2.11), which is one type of the fine-grained

policies provided. For metadata hiding we used a combination of Apache POI21 and

Apache Commons Imaging22.

– Another option provided is to encrypt the file on the client side before uploading (Fig-

ure 2.12). In order to still some services on the web apps of storage services (e.g., seeing

18https://tika.apache.org/
19http://opencv.org/
20http://mallet.cs.umass.edu/
21https://poi.apache.org/
22https://commons.apache.org/proper/commons-imaging/
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Figure 2.9 – Main screen of PrivyShare Desktop app.

Figure 2.10 – Page for viewing and editing the metadata in PrivyShare Desktop app; more
metadata fields are adjustable in a secondary menu.

Figure 2.11 – Ability to toggle metadata visibility by clicking on it.
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Figure 2.12 – Encryption options page in PrivyShare Desktop. Clicking on the key are will
toggle encryption. Clicking on the thumbnail area will toggle adding a thumbnail.

Figure 2.13 – Page for editing thumbnails. Faces can be detected and blurred automatically.
The resolution is low by default but can also be adjusted along with the blur strength.

an image thumbnail or searching through text files), we give the option to attach auxil-

iary info to the encrypted file. In the case of photos, the app can add a low-resolution

thumbnail, which allows the photos to be navigable on the cloud storage web apps,

without exposing the photo itself (Figure 2.13)23. Faces in the thumbnail are detected

automatically, and the user can also manually blur additional areas. In the case of textual

files, the thumbnail of the first page/slide is also attachable. The app gives the option to

attach a textual summary to the uploaded file, which can be indexed on the server side.

– When the user confirms the upload, the file is synchronized from its original folder to

the folder of the cloud storage service. For example, in Figure 2.14, we see the image

and its thumbnail in the original folder. In Figure 2.15, we see the thumbnail with the

23We note here that, in the current web interfaces of cloud storage services, these thumbnails appear as individual
files next to the original files when sorted by name. We have plans to add support for a web interface of PrivyShare
that connects to the various cloud providers” APIs and shows these files as one file with auxiliary information.
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Figure 2.14 – Original image which is intended to be synchronized to the cloud storage service,
along with the generated thumbnail.

Figure 2.15 – Dropbox folder, to which the image is encrypted and synchronized, along with a
low-resolution thumbnail.

blurred face and the full encrypted photo in the Dropbox folder of the user. Whenever

the original file changes, the policy is reapplied, and the file is synchronized again. For

synchronizing files, including encrypted ones, we utilized JFileSync324.

The goal behind PrivyShare Desktop was to show what is possible to achieve on the client side

before uploading files to cloud storage services. Users, however, are not expected to update

the fine-grained policy for each file. Instead, they can set a predefined risk threshold they

tolerate, and the fine-grained policy is applied based on the sensitivity of the file and the risk

threshold. A natural extension of this app is to add the possibility of visualizing the risk across

and setting the policy across a larger number of files, which takes the app further towards the

goal of helping the users adapt to the scale of data collection by reducing the time spent on

configuring their privacy.

24https://github.com/mgoellnitz/JFileSync3
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2.6.2 PrivyShare Web App

One shortcoming of PrivyShare Desktop is that, despite the users having the option to set

fine-grained policies, it is not apparent to them how this reflects on the services they can still

use with their files online. Moreover, with the emergence of web apps, users are less willing to

install additional apps on their machines. In order to cope with these issues, we developed a

web app, called PrivyShare Web, which is utilized by simply going to the app’s URL in their

browser.

The web app allows users to drop multiple files, whose features are extracted on the client-side

of the browser (see Figure 2.17). This includes metadata features (e.g., location) and content

(e.g., faces, topic). Then users can apply a policy level, which allows them to encrypt files,

depending on their determined sensitivity (via the C3P protocol). The policy level ranges

from “zero” (where all files are in plain text) to “high” (where all files are encrypted). For

client-side file encryption in the browser, we used SpiderOak Crypton25. The policy level can

be automatically set based on users’ preconfigured risk threshold, as discussed earlier. It is

worth noting that, compared to PrivyShare Desktop, the policy level is fine-grained at the level

of all files and not per file (i.e., it adjusts which of the files are encrypted, rather than what

policy to apply to a specific file).

In order to educate the user about the privacy-utility tradeoff, our app requests access to the

users’ list of installed 3rd party apps (e.g., PDF converters or image editors that can import

files from cloud storage services). In the example, we show how this works with the user’s

preinstalled Google Drive apps26. The user can see the list of apps whose functionality might

be affected by the current upload (Figure 2.19). By clicking on a specific app, the user can

zoom into the actual files which are affected (Figure 2.20).

Both PrivyShare Desktop and PrivyShare Web serve as prototypes showing what is possible

with a sensitivity as a service and that fine-grained control over files uploaded to cloud storage

is possible. We believe though that there is further need for conducting usability studies for

such implementations, to assess how they are perceived by real users, which we leave for

future works. Moreover, we note that, despite the various options we illustrated, we envision

the system to be highly automated, applying the policy level based on the estimated sensitivity.

The users’ effort is simply to approve or change the recommended settings before the final

upload occurs.

25https://spideroak.com/solutions/crypton-framework
26PrivyShare Web gets access to the list of Google Drive through a separate authentication mechanism via OAuth
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Figure 2.16 – Upload area of PrivyShare Web app.

Figure 2.17 – File Analysis interface once the files are dropped into the upload area.

Figure 2.18 – Ability to set the policy level; files which are to be encrypted (based on their
sensitivity) automatically move to the right.
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Figure 2.19 – The part of PrivyShare web showing the subset of the user’s apps that can be
potentially affected by the current upload (i.e., based on the file types the apps have access to).

Figure 2.20 – Clicking on a specific app will show the specific files that will no more be usable,
due to client-side encryption.

2.7 Related Work

Context-based Privacy Modeling

The concept of contextual privacy has received attention recently. Nissenbaum’s work on

“contextual integrity” [Nis11, Nis04] was one of the notable contributions that called for articu-

lating context-based rules and expectations and for embedding some of them in law.

Context-aware systems have been applied in multiple scenarios, ranging from social networks

to ubiquitous computing. Schaub et al., showcased a model that abstracts context information

about the user, the privacy-sensitive items, and the entities involved in the environment.

They took into account information privacy aspects as well as physical aspects, which is of

particular importance in the ubiquitous computing applications, such as ambient assisted

living. Schaub et al., later developed a system for ambient calendar displays that adapts to the

people present in a room and their privacy preferences [SKL+14].

Bilogrevic et al., introduced SPISM, a system for (semi-)automatically sharing information on

mobile social networks [BHA+13]. SPISM allows subscribers (e.g. services or other users) to

request contextual information (e.g., location) of other subscribers. Access to this information

is granted at multiple granularity levels.

C3P’s differentiating factor compared to these previous works is being the first work to address

privacy modeling of unstructured data. The problem setting is also more challenging as the

system combining the context information is an honest-but-curious remote server. In the

other systems, the device determining data sensitivity is either the same as the device where

sensitive data resides or is trusted by the latter.
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Interest in context-aware data sharing continued to evolve afterward. The subsequent work

by Yuan et al., zoomed into the problem of privacy in photo sharing, with a similar ap-

proach [YTE17]. One of their main contributions is that they showed, via a user experiment

with actual photos, the efficacy of machine learning in predicting the users’ policies based

on image semantics. In the field of mobile permissions, there have been also later works on

automatically predicting the default app permissions [LAS+16] and on continuously managing

realtime permissions of Android apps [WBT+17, ODPSM+17].

Risk Estimation

One of the relevant attempts at privacy risk estimation was in the field of social networks.

Liu and Terzi [LT10] used IRT in quantifying the privacy risk of exposing user profile items

on Facebook (e.g. birthday, political affiliation, etc.). Quercia et al. [QCP+12] also modeled

the process of information disclosure in Facebook using IRT and found correlations between

disclosure scores and personality traits. In this chapter, we have shown that IRT applies in the

case of privacy aware sharing in the cloud. Our work is also distinct in that it utilizes context

extraction to work with any data file, rather than being limited to a predefined set of profile

items as on social networks.

Privacy in Cloud Storage

The concerns about the privacy of user data in the cloud were confirmed by Ion et al. [ISKC11]

through surveys highlighting the users’ beliefs about the intrinsic insecurity of the cloud. They

discovered that users are less interested in issues like data deletion, country of storage, and

storage outsourcing. On the other hand, they tend to trust their local storage for sensitive data

rather than the cloud. Users were also found to hold false assumptions, such as that the service

provider is liable in case of data loss or that it does not have the right to access or modify their

data. Users were still interested in better security options and are willing to pay for systems

providing more privacy. These findings provide a strong motivation for systems like C3P as it

can help reduce users’ concerns and expand the user base of cloud storage services.

Several systems have been proposed earlier for controlling the privacy of online information.

Könings et al., developed PrivacyJudge, a system for giving the users control on who has access

to their information and how long it is kept online [KPSW11]. They combine cryptographic

approaches for enforcing access control with privacy labels to convey how the data should

be treated. A client-centric system was also developed by Ion et al. [IBC+13], enabling users

to share text and image files on web-based platforms while keeping the data encrypted and

hiding the fact that confidential data has been exchanged from a casual observer.

From one angle, our work is complementary to theirs as we design C3P to help users decide

on what data to keep confidential. From another perspective, our work is distinct as we allow

multiple levels of protection that can be controlled by the user.
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Crowdsourcing Privacy

The work by Garg et al. [GPKC13] highlights the peer produced privacy paradigm, which treats

privacy as a community good and considers individuals who share the risk of information

sharing. The authors argue that such an approach can result in more socially optimal privacy

decisions. Agarwal and Hall [AH13] have used crowdsourcing in their work on the Protect-

MyPrivacy project to recommend adequate permissions on iOS. One of their interesting

findings is that as few as 1% of the users, classified as experts, make enough decisions that

can support the crowdsourced privacy recommendation system. Our work shares similar

motivations to these, among which are the suboptimal privacy decisions taken by average

users and the inability of users to keep track of the changing contextual factors affecting

privacy.

2.8 Summary

In this chapter, we have depicted C3P, a new framework for preserving the privacy of data

shared to the cloud. The core premise of C3P is that, by providing the users fine-grained

estimations of their files’ sensitivity, we open the door for automatically applying fine-grained

privacy protection mechanisms. We strived to do that with a system that continuously learns

from its users, with minimal extra data required. A natural extension of this work is investi-

gating the best way to handle these automated policy recommendations mechanisms and to

balance the privacy provided with the services intended by the user.
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3 A Primer on Cloud Apps Privacy

3.1 Overview

The popularity of consumer cloud storage providers (CSPs) over the previous decade has

been steadily rising. Dropbox, Google Drive, and One Drive have each amassed hundreds

of millions of users [Oom17]. In order to further appeal to their users, the CSPs have been

transitioning from being pure service providers to becoming app ecosystems. Hence, they now

offer APIs for developers to import and process users’ files stored in the cloud.

Consider, for example, a web app called PandaDoc1, which allows creating, editing, and

signing documents online. When a user uses PandaDoc from her laptop browser, she can

import files stored in her Google Drive instead of her hard drive. Such a pattern is increasingly

more prevalent with the growing number of 3rd Party Cloud apps (or 3PC apps) that are tightly

integrated with cloud storage services. Dropbox alone claims that hundreds of thousands of

apps 2 have been integrated with its platform.

Moreover, we are witnessing the rise of cloud-first devices, such as Chromebooks. With 2

million devices sold in Q1 of 2016, Chromebooks have already outsold Apple’s range of Macs

for the first time in the US market3. In cloud-first devices, users install 3rd party apps from a

web store. Such apps are hence designed to easily integrate with cloud storage services.

Even in the enterprise setting, 3rd party cloud apps are increasingly popular. This is first

because companies are officially adopting the likes of Dropbox Business, OneDrive for Business,

and Google Drive for Work. Second, it is due to employees utilizing their personal cloud

accounts to share company’s files (resulting in the rise of Shadow IT). Various reports from

cloud application security providers state that organizations use from 10 to 20 times more

cloud apps than their IT department thinks [Sky16, Ela16].

This chapter serves as an overview of the ecosystem of 3PC apps, along with the associated

1https://pandadoc.com
2https://www.dropbox.com/business/app-integrations
3http://www.theverge.com/2016/5/19/11711714/chromebooks-outsold-macs-us-idc-figures
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privacy issues. The reader will find this common ground useful for the upcoming two chapters,

where will we dive more into our efforts at mitigating the risk communication gap.

3.2 Privacy Issues in Third Party Cloud Apps

3.2.1 The Threat

While the CSPs themselves are few in number, and, at least, have clearly defined privacy

policies, users are now faced with a new kind of privacy adversary: the 3rd party app ven-

dors. With every app authorization decision that users make, they are trusting a new vendor

with their data and increasing the potential attack surface. Elastica, the cloud application

security provider, estimates that the average financial impact on a company as a result of a

cloud-storage data breach is $13.85M, including remediation costs [Ela15]. In 2015, the data

breach at Anthem, a US insurance company, has reportedly cost more than $100M, with 80M

unencrypted health records leaked. This was a result of an exfiltration exploit leveraging a

popular public cloud storage application [Ela16]. Even on the personal level, the risk extends

from breaches exposing financial information and health records to unnoticeable, continuous

profiling based on stored files.

3.2.2 Over-privileged and Full-access Apps

As observed in other 3rd party apps ecosystems, users often end up exposing more data than is

needed to unaccountable apps. For instance, a user’s favorite PDF converter is highly likely to

get access to her music library and discover her taste in Mozart or obtain her geo-tagged photos

and know where she went on the weekend. Throughout this thesis, we refer to such apps

as over-privileged apps. Giving such over-privileged apps superfluous access can potentially

result in users’ data being abused. This has recently been the case in the health apps market

where the top 20 most visited apps were found to be sharing users’ data with 70 analytics and

advertising companies [SD13]. It is also the case that a considerable percentage of 3PC apps

request full access to users’ cloud files. Even if these apps are not over-privileged, they still

place the users’ data in the hands of more and more parties, thus increasing the likelihood

of data leaks. In this thesis, we will be providing usable privacy solutions to curtail the users’

adoption of over-privileged apps (Chapter 4) and to hamper the unnecessary spread of users’

data to more parties (Chapter 5).

3.2.3 Unique Properties of the Cloud Ecosystem

Given that these problems have been also manifested in other ecosystems, such as mobile or

social networking apps, one would definitely ask whether the cloud apps ecosystem has some

unique features that warrant a particular study like ours. This is indeed the case.

Unlike studies on mobile app ecosystems, where the permissions concern the user’s list of
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contacts, current location, or photos, the cloud permissions allow the 3rd party apps to get

access to any file the user has stored in the cloud. Thus, instead of profiling the current user

context, such apps can get far-reaching insights inferred from her documents, concerning her

financial, legal, or health-related outlook for example.

This can also be done without the user noticing. While data processing on smartphones can

be detected from excessive battery usage for example, 3PC apps can perform the analysis

completely on the server side once they get access to the users’ cloud files, without consuming

resources from the users’ devices. Put simply, the scale and the quality of data that can be

collected is both a privacy nightmare for unaware users and a goldmine for advertisers.

Finally, collecting the permissions of cloud apps at scale is challenging. Unlike other ecosys-

tems where app permissions of thousands of apps can be easily mined via traditional web

crawling, each 3rd party cloud app has a unique interface that links to the service providers.

Hence, this limits the corpus of apps that one can study. Still, while our contributions are

shown in this context of 3PC apps, our various techniques, especially on the level of risk

communication, can be easily transplanted to other ecosystems.

3.3 Third-party Cloud Apps Ecosystem

3.3.1 System Model

There are four main entities that interact in the third-party cloud app system:

1. a user u who uses that app for achieving a certain service

2. a cloud storage provider (CSP) hosting the user’s data

3. a data subject to whom the files belong and whose privacy is being considered. We further

define two levels of data subject granularity:

– individual-level granularity: i.e., the user herself is interested in guarding her own data

privacy,

– team-level granularity: i.e., a group of users are interested in guarding the privacy of

team-owned data (e.g., using an enterprise version of cloud storage services)

4. a vendor v that is responsible for programming and managing a 3PC app. These vendors

register their apps with the CSPs. The apps themselves are hosted on any website the

vendors choose (i. e., not hosted by the CSP itself).

Each user has access to a set Fu of files stored at the CSP. A subset of these files is owned

exclusively by the data subject while the other subset is composed of files that are each shared

with at least one other collaborator. We denote the set of all collaborators of user u by C (u). For

simplicity reasons, we will assume throughout this thesis that the files of all data subjects, as
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Notation Explanation

u user
v vendor
C (u) Collaborators of u
Fu set of files of u
Fu,v set of files of u accessible by vendor v

Table 3.1 – Summary of notations used

well as the collaborators for each file, are all fixed from a reference step t = 0. Using the CSP’s

API, the vendor v can get access, at step t ∈N, to the subject’s data upon user authorization,

which consists of u accepting a list of permissions. We will alternatively refer to this as app

installation, and we will assume that exactly one app is installed in each step t . Permissions

are named differently across various providers, but, in general, we can categorize them into

three categories:

– per-file access: where the user has to authorize the vendor for each file access individually.

This is typically done via a file picker provided by the CSP itself.

– full-access: where the vendor gets access to all users’ data. In the interface, this is worded,

for instance, as “View the files in your Google Drive” or “access to the files and folders in

your Dropbox”.

– per-type access: where the vendor gets access to all files of a specific type. For example,

Dropbox words it as “access to images in your Dropbox”. Some platforms, like Google Drive,

do not provide app developers with such fine-grained options.

The authorization can also give v access to files shared with the collaborators of u. Similarly,

collaborators of u can install apps that expose files shared with u to new vendors. We denote

the set of files of u accessible by vendor v at step t as Fu,v (t ). Table 3.1 contains a summary of

the used notations.

3.3.2 The Case of Google Drive

In the two upcoming chapters, we will be taking Google Drive as a case study, and we anato-

mize this ecosystem in detail. Nevertheless, the solutions we develop are applicable to other

cloud platforms as well. This is because all these platforms have similar interfaces to authorize

3rd party apps and have comparable permissions schemes.

In Google Drive, any developer can register an app that accesses Google Drive API at Google

Developers Console for free. She then receives a Client ID and Client Secret that need to be

included in the app code to access Google APIs. The developer can then specify in her code a
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Get files from your Google account. 
We play nice. You just need to login.

Connect to Google Drive

We will open a new page to connect your Google Drive account.

Upload a file from Google Drive

My templates Public templates Upload 

Figure 3.1 – Example of how Pandadoc permissions’ request looks like. Notice that this window
only appears after the user decides to upload a new document and chooses the Google Drive
icon on the bottom. This interface is app-dependent.

set of Google permissions (a.k.a. scopes) she wants to obtain. The app itself can be hosted on

any website the developer chooses; i.e., it is not hosted by Google itself. The developer can

also submit a request for featuring the app on Google Chrome Web Store, which has a section

for apps that work with Google Drive. In the store, apps are presented along with screenshots

and descriptions of their functionality (provided by the developer). The store also allows users

to rate and review apps. Apps can be also submitted to other web stores hosted by Google,

such as the Add-ons Stores for Google Docs, Google Sheets, or Google Slides and the Google

Apps Marketplace for enterprises. However, there are a lot of apps that exist outside these

stores too. Unlike the mobile ecosystems where users find it cumbersome and technically

difficult to install apps from outside the official stores, the 3PC apps stores’ act as a simple

aggregator website that facilitates discoverability.

An app can request permission to access Google Drive data at any time of its operation, and

not necessarily at the beginning. For example, the user can be presented with a button in

a side menu that reads “Upload a file from Google Drive” (cf. Figure 3.1 for an example).

Clicking on that button redirects to a Google-hosted page that presents the set of permissions

requested by the app, as shown in Figure 3.2. The user has to accept all these permissions to

connect the app to her Google Drive. She cannot select a subset of them at installation time or

later. However, she may revoke the app authorization completely from her Google account

settings. As we see later, the absence of a standard location and interface for hosting apps and

triggering the permissions request is one of the reasons that makes the automated, large-scale

privacy analysis of apps infeasible.

The main permissions pertinent to Google Drive are presented in Table 3.2, along with the

Google-provided description for each. This short description is also presented to the user, and
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AllowDeny

PandaDoc would like to:

View the files in your Google Drive

By clicking Allow, you allow this app and Google to use your information in
accordance with their respective terms of service and privacy policies. You can
change this and other Account Permissions at any time.

Figure 3.2 – Example of the current permissions interface of Google Drive

�

n̂

�

�

Figure 3.3 – Google Drive file picker interface

a longer explanation is available via clicking the info button i next to each permission.

As far as files’ data is concerned, an app can request full access (DRIVE and DRIVE_READONLY

permissions) or on a per-file basis (DRIVE_FILE). In the case of full access, an app can access

any file directly via Google Drive API without the need for user intervention. For example, this

type of access enables an app to obtain all the user’s files and download them to its server.

When developers request DRIVE_FILE only, the explicit approval for each new file(s) is mediated

by an interface provided by Google. For example, the developer presents the user with a

Google-hosted file picker popup (Figure 3.3) so that she can select (and thus approve access

to) the file. Alternatively, the file can be opened from Google Drive’s interface via the “Open

with” option in the context menu of the file (cf. Figure 3.4).
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Permission Short Name

View and manage the files in your Google Drive. DRIVE

View the files in your Google Drive. DRIVE_READONLY

View metadata for files in your Google Drive. DRIVE_METADATA_READONLY

View and manage Google Drive files that you have
opened or created with this app. DRIVE_FILE

Add itself to Google Drive. ADD_DRIVE

View and manage its own configuration data in your
Google Drive. DRIVE_APPDATA

View your Google Drive apps. DRIVE_APPS_READONLY

Table 3.2 – Requested permissions with the short reference name

Figure 3.4 – Example of the interface where the app is allowed to access a single file on the
Google Drive website itself. The permission requested by apps to appear in this menu is the
ADD_DRIVE permission. For accessing the files via this interface, the apps need per-file access
(i.e., DRIVE_FILE permission).
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The developer can alternatively request access to file metadata only via DRIVE_METADATA or

DRIVE_METADATA_READONLY (allows accessing filenames, editing dates, photos’ Exif infor-

mation, etc.). Additionally, the developer can request access to the list of apps the user has

authorized before via DRIVE_APPS_READONLY. It is worth noting that the permission list is not

limited to Google Drive API and that it typically includes permissions from other Google APIs,

such as access to user’s profile information, email address, contacts list, etc.

3.4 Summary

Given this overview of the ecosystem of 3rd party cloud apps and the special case of Google

Drive, we will delve in the upcoming two chapters into two problems, both revolving around

better risk communication: (1) how to deter users from installing over-privileged apps and

(2) how to lead them to take better decisions by accounting for previous decisions by them or

by their collaborators.



4 PrivySeal: Breaking
the Knowledge Imbalance

4.1 Overview

Based on the previous chapter, it has become clear that users sacrifice some of their privacy to

get functionalities that third party cloud apps (or 3PC apps) provide. Moreover, it is apparent

that such apps might acquire more data than is needed for them to function.

In this chapter, we scrutinize such apps by taking Google Drive’s app ecosystem as a case study.

Our goal behind this is twofold:

1. First, we aim to explore this platform from a privacy angle, a task that has not been done

systematically before. More specifically, we study the ecosystem from the standpoint

of all relevant parties, namely, the users, app developers and cloud providers. We seek

to characterize (a) the spread of over-privileged apps in the ecosystem, (b) conditions

determining developers misbehavior, and (c) the steps cloud providers can take to

mitigate users’ privacy risks.

2. Second, we leverage app permissions as a medium for experimenting with various

models of risk communication. We present three different permission models namely:

(a) Delta Permissions, (b) Immediate Insights, and (c) Far-reaching Insights. The first

model, i.e., Delta Permissions, informs users about the unneeded permissions that over-

privileged apps are using. The second model, Immediate Insights presents randomly

selected examples from the user’s data such as portions of text or image files, photo

locations, etc., that over-privileged apps can get access to. The third model, Far-reaching

Insights, has been motivated by the novel concept of Inverse Privacy [GHW15]. Inverse

privacy refers to the situation when a user is not aware of the information that an external

entity has about the user. Based on this definition, Far-reaching Insights communicate

to users the inferences which can be made by the apps with superfluous permissions

using advanced text and image analysis techniques. These include but are not limited

to user collaboration and activity patterns; the top faces, locations, and concepts that

appear in users’ photos, etc.

57
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Overall, we make the following specific contributions in this chapter:

i. Far-reaching Insights sensitize users with intimate details, and promote privacy-aware

behavior: Through extensive user experiments, we discover that our first simple model, Delta

Permissions fails to deter users from installing over-privileged apps. Put bluntly, telling users

that their privacy is being infringed does not help. The second model, Immediate Insights, does

twice as well in discouraging users from installing over-privileged apps. However, the clear

winner is our novel model, Far-reaching Insights, which can be twice as effective in deterring

users from installing over-privileged apps as Immediate Insights. Overall, our analysis reveals

various factors that can deter users from installing over-privileged apps. For instance, we

discover that within Far-reaching Insights, Relational Insights (that reveal users’ relations with

other people) reduce by half the installation of over-privileged apps, as compared to Personal

Insights (that reveal information about the users themselves) (Section 4.4).

ii. PrivySeal helps us profile developer behavior and helps users safeguard their data: In

an effort to promote privacy-awareness in the general public, and to help users safeguard their

privacy, we present PrivySeal, a privacy-focused app store that uses Far-reaching Insights

to warn users about over-privileged apps. This store is available for public use and has been

used by over 1440 registered by until November 2015. A considerable fraction of these users

has prior experience of using Google Drive 3rd party apps. By automatically getting their

previously installed apps’ metadata, we anatomize current developers’ behavior, point towards

potential avenues of misbehavior, and present suggestions to deter misbehavior (Sections 4.6

and 4.7).

iii. Shared wisdom: Finally, based on our analysis we present several easy to implement

practical suggestions that can be adopted by cloud providers and by those others working in

the domain of privacy to safeguard users privacy in the cloud (Section 4.7).

The remainder of this chapter is organized as follows. In Section 4.2, we describe in detail our

app permissions review process and results. In Section 4.3, we present our three permission

models, before evaluating them in Section 4.4. Based on the privacy-focused store we have

developed (Section 4.5), we analyze app developer behavior in Section 4.6. Finally, we give our

recommendations for the community in Section 4.7.

4.2 Privacy Risk of 3rd Party Google Drive Apps

The question that comes next is: “what is the extent of risk that actual users are exposed

to?” To answer this, we examined a sample of 3rd party Google Drive apps to determine the

percentage of apps that request extra permissions1. We proceeded to Google Chrome Web

Store, which has a section for apps that work with Google Drive. The store features apps on

its main page, that change with time. At the time of this study, there were around 420 apps

on the store that are labeled as “Works with Google Drive”. We selected 100 featured apps at

1We refer the reader to Chapter 3 for a primer on the Google Drive ecosystem and the different permissions.



59

0

5

10

15

20

1e+03 1e+05 1e+07
Installations count

N
um

be
r 

of
 A

pp
s

(a) Distribution of the app
installation counts (on a
log scale) in the reviewed
dataset

0

5

10

15

20

100 10000
Ratings count

N
um

be
r 

of
 A

pp
s

(b) Distribution of the app
rating counts (on a log scale)
in the reviewed dataset

0

5

10

15

20

25

0 1 2 3 4 5
App Rating

N
um

be
r 

of
 A

pp
s

(c) Distribution of the app
rating values in the reviewed
dataset

random from the main page (during May 2015), and we manually reviewed them one by one.

Hence, our sample represents around one-fourth of the whole set of apps in the store, which

is one of the main avenues for finding Google Drive apps. As we discuss later in Section 4.6.1,

we discovered that, in our real word sample of 1440 users, around one-fourth of the installed

apps are from the Google Chrome Store.

Figure 4.1a shows the distribution of the installation counts of apps in our dataset on a log scale,

where it is clear that the apps follow closely a normal distribution (this has been individually

confirmed using q-q plots). The average number of installations was 194,600 and the median

was 29,350. Figure 4.1b shows that the number of ratings follows a similar distribution, with a

mean of 736 and a median of 181. The ratings value distribution is shown in Figure 4.1c, with

a mean of 3.66 and a median of 3.72. Overall, this shows the diversity of the apps in our APRs

dataset and that it represents a wide range of apps.

4.2.1 Permissions Review Process

We now explain the App Permissions Review (APR) methodology we followed, and we refer the

reader to Figure 4.2 for the corresponding flowchart. Our methodology is inspired by Google

Drive’s guide for choosing authentication scopes2.

Each APR aims to get: (a) set P of requested permissions, (b) set S of sufficient permissions

for the app functionality. We start each APR by going to the app’s website, linked from the

store, and testing the app manually. For each app, we first find the step where the app can

be connected to Google Drive (if this is not upon the initial sign up). Then, we record the

set P of requested permissions and authorize the app to access a test Google Drive account

created for this purpose, and we record the permissions requested. If DRIVE_FILE (i.e. minimal

per-file access) is the only Google Drive permission requested, the app review is complete

(S = {DRIVE_FILE}). Otherwise, we continue to check the app’s interface for all file pickers

2https://developers.google.com/drive/v3/web/about-auth



60 CHAPTER 4. PRIVYSEAL: BREAKING THE KNOWLEDGE IMBALANCE

Figure 4.2 – Flowchart of the APR process, inspired by Google
Drive guide for choosing authentication scopes

that allow importing files from Google Drive (in almost all the cases, there is at most one file

picker).

In the first case where the app solely uses Google’s official file picker of Figure 3.3 (e.g., an

app that allows users to convert specific files to PDF format), we set S = {DRIVE_FILE}. In the

second case where we find that there are no file pickers in the interface and that the app

functionality does not require access to any file, the app is labeled as not requiring any file

permissions (S = {}). In the case where the app includes a custom file picker, we decide that (a)

S = {DRIVE} if the app’s declared functionality necessitates files’ content (e.g., a photo collage
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Figure 4.3 – Permissions’ usage in APRs

app with custom photos browser) or (b) S = {DRIVE_METADATA} if the functionality does not

need the content (e.g., an app that visualizes who has access to a selected folder). Similarly,

if the app has no file picker, we decide that (a) S = {DRIVE} if the app’s declared functionality

necessitates file content (e.g., malware scanning apps for Google Drive that do not need a

file picker) or (b) S = {DRIVE_METADATA} if the functionality necessitates file metadata (e.g.,

an app that visualizes all collaborators with access to user’s files). Finally, we label an app

as over-privileged if either (a) the set S is empty, and P is not or (b) if the set P contains at

least one permission that is more demanding than all permissions in S (the permissions in

Figure 4.3 are listed from the most demanding on the left to the least demanding on the right).

We also determine the set of unneeded permissions U , composed of each permission in P

that is more demanding than all permissions in S. The set of needed permissions is given by

N = P \U .

4.2.2 Review Results

Analyzing the APRs, we found that 64 out of 100 apps request unneeded permissions. In

other words, the developers could have requested less invasive permissions with the current

API provided by Google. In total, 76 out of the 100 apps requested full access to all the files

in the user’s Google Drive. Moreover, the 64 over-privileged apps have all requested full

access. Accordingly, in our sample, around 84% (64/76) of apps requesting full access are

over-privileged.

As shown in Figure 4.3, the top permission that is needlessly requested is the full read and write

access to Google Drive (in 55 apps), followed by the full read access permission (in 17 apps).

This further increases the magnitude of data that can be exploited with the extra permissions.

On the other hand, the per-file access permission is the top permission that is actually needed

when requested. This happens in 41 of the apps. However, in 16 of these 41 apps, we have

found that the developer also requested full access to the user’s data. Accordingly, developers

are sometimes mixing full-access with partial access (which is a subset of the former). We note

that such mixing of permissions can either be the result of developer incompetence or aimed

at deceiving the user. Regardless, such apps pose a risk which can be potentially exploited.
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Another outcome of the APR was that DRIVE_FILE was the top alternative permission (in 48

apps) that could replace the unnecessary permissions requested. DRIVE_METADATA_READONLY

was the alternative for one app only. This indicates that, simply, the correct usage of the current

Google Drive API (which does provide per-file access), can eliminate the major part of the

privacy risk. Nevertheless, it is evident that developers are generally not following concept of

least-privilege (see the later work of Fischer et al., [FBX+17] on some of the possible causes for

this issue).

4.2.3 Automating the APR Process

Being an external party, we do not have access to the full list of Google Drive apps with their

permissions. Hence, the first task we had to do was to find the position in each app where

Google Drive permissions are requested. This is not always on the main page of the app, and

sometimes finding it requires navigating multiple menus and/or pages (cf. Figure 3.1 for an

example). Automating this task involves building an advanced web crawler that can retrieve

the permissions from a large number of such apps by smartly searching for the sign-in button.

The second task was checking the functionality of the app to see if it matches the requested

permissions. Automating the process of over-privilege detection or real-time private data leak-

age detection has been tackled in the mobile apps scenario (e.g. in [FCH+11] and [EGC+10]).

However, in the mobile scenario (or any similar architecture), the user’s device hosts the

data, the 3rd party apps, and the detection/monitoring solution. Cloud apps present a rad-

ically different scenario as the data is hosted by the CSP, the 3rd party app is served at a

developer-specified location, and any detection/monitoring app would operate from outside.

The only part of the code that the 3rd party app exposes is the client side code. Hence, all

techniques that check the app’s code (e.g., via static/dynamic analysis) or its inputs/outputs

cannot be transplanted to the cloud app case as they would evidently underestimate what

APIs/permissions the app might need3.

One automated way we perceive for over-privilege detection is to cluster apps of similar

functionality and identify the ones which request more permissions than others in the same

cluster. Even then, the data collected manually would be used as the ground truth to evaluate

the automated method. Detecting actual data leakage is much more challenging in the cloud

apps scenario as the app can send users’ data to other parties from the server side (which is

impossible to monitor via external solutions).

Faced with these limitations, manual expert reviews are the closest we can get to assessing

the apps’ needed permissions. Still, we do not claim that this method is perfectly accurate

as a developer might be working, for example, on a non-advertised feature that requires new

permissions. However, we conjecture that APRs are accurate with the vast majority of the

3In a concurrent work, Fernandes et al., faced similar issues while studying the ecosystem of smart home
applications.
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reviewed apps4.

Finally, as our main purpose in this work is to characterize the ecosystem and suggest alterna-

tive permission models, automating both the app permissions collection and the over-privilege

detection tasks falls out of the scope of this work. We note though that we are concurrently

working on the specific research problem of designing automated APRs.

4.3 New Permission Models

In the light of the risk that over-privileged apps pose, we propose in this section three alter-

natives to the existing permission model in Google Drive before evaluating their efficacy in

mitigating the risk in the next section.

4.3.1 Delta Permissions

Our first model is based on the following hypothesis: “When users are informed about the

unneeded permissions being requested by apps, they are less likely to authorize such apps.”

Hence, this model replaces the current permissions interface displayed in Figure 4.4 with a

new interface, presented in Figure 4.5. We call this permission model Delta Permissions (DP),

and it reveals to the user the distinction between permissions that are needed for the app

functionality and those others (the delta) that are unnecessarily requested.

4.3.2 Immediate Insights

The second model is based on the following hypothesis: “When users are shown samples of the

data that can be extracted from the unneeded permissions granted to apps, they are less likely to

authorize these apps.” Accordingly, we show users randomly selected data examples, directly

extracted from their Google Drive, such as excerpts of text or image files, photo locations, or

people she collaborated with. An instance of this model, which we call Immediate Insights (IM),

is given in Figure 4.6. On the left, we have the same previous DP interface. On the right, we have

the Insights Area, where we show a question that says: “What do the unneeded permissions

say about you?”, followed by an answer in the form of a visual with short explanatory text. In

this figure, the Insights Area visualizes the location where a randomly chosen user photo was

taken. In the following, we describe the design of the IM Insights:

Image: We show an image selected at random from the set of user’s image files.

Location: We randomly choose a photo from the set of user’s image files, such that it includes

a GPS location in its Exif data. Then we show that photo on a map centered at that location (as

4From our experience over one year, rarely did apps introduce new features that required new permissions.
Moreover, in Section 4.5, we discuss how to further alleviate the repercussions of inaccuracies in a real-world
deployment by allowing developers to submit rebuttals.
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Figure 4.4 – Example of the current permissions interface of Google Drive

in Figure 4.6).

Text: We show the user an excerpt from the beginning of a randomly chosen textual file.

Collaborator: We show the profile picture and the name of a randomly chosen collaborator.

4.3.3 Far-reaching Insights

The third model is based on the following hypothesis: “When the users are shown the far-

reaching information that can be inferred from the unneeded permissions granted to apps, they

are less likely to authorize these apps.” These are insights that go beyond examples and include

what can be inferred by running more involved algorithms, such as sentiments towards entities,

objects identified in photos, faces detected, etc. Hence, we denote this model by Far-reaching

Insights (or shortly FR Insights). The interface layout is the same as that of Figure 4.6, but

with the Insights Area containing an FR insight instead of an immediate insight. In this work,

we have designed six types of FR insights that can be extracted from users’ data. Below, we

will provide the details for generating each of these insights. Towards that goal, we highlight

two file categories of interest: (1) textual files, such as PDF documents, word-processing

documents, spreadsheets, presentations, text files, etc., and (2) image files, such as JPEG, PNG,

TIFF, etc. We represent the set of textual files as T F = T F1,T F2, ..,T FK and the set of image

files as I F1, I F2, ..., I FL .

Entities, Concepts, and Topics (ECT): The first type of insights we form is based on applying

various NLP techniques to extract named Entities (E), Concepts (C), and Topics (T) from users’

textual files.
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Figure 4.5 – Example of Delta Permissions interface

Figure 4.6 – Example of Immediate Insights interface; the same layout is used for Far-reaching
Insights, with the insights area content changing accordingly

i. Entities: We get the top named entities (e.g., people, places, companies, etc.) present in the

user’s textual files. Such entities are recognized using Named Entity Recognition (NER), which

is a traditional problem in natural language processing that involves locating and classifying

elements in text into predefined categories [DBE07]. For this task, we perform text extraction

on each file, and we then pass the text to a AlchemyAPI’s service. Given the text of file T F j ,

this service returns a set of entities, along with the frequency of occurrence fi , j of each entity

ei in T F j . We normalize this frequency for each entity by dividing it by f_maxj , which is the

frequency of the most recurrent entity in T F j :

f_normi , j =
fi , j

f_maxj
(4.1)
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Figure 4.7 – Visualizations for the various Far-reaching Insights

Then, we compute an overall score for entity ei across all the files in T F , by summing its

individual normalized frequencies:

scor e(ei ) =
K∑

j=1
f_normi , j (4.2)

As shown in Figure 4.7a, we visualize the entities with the highest scores as a set of circles, each

of a diameter proportional to the score of the corresponding entity. Different types of entities

(e.g., people, places, etc.) have different circle color.

ii. Concepts: We also extract concept tags from users’ documents. These concepts are high-

level abstractions, not necessarily mentioned in the text. For example, the sentence “My

favorite brands are BMW, Ferrari, and Porsche”, would be tagged by the concept “Automotive

Industry”. AlchemyAPI was again used for this task, returning, for each file T F j , a set of

concepts, each denoted as ci along with a relevance score ri , j ∈ [0,1]. We used the following

scoring method to rank the concepts across the user’s documents:

score(ci ) =
K∑

j=1
ri , j (4.3)
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Similar to the case of entities, we represent concepts by circles, each of a diameter proportional

to the score of the concept.

iii. Topics: Topics are higher level abstractions, used to classify documents into general

categories, such as technology, art, business, etc. We used AlchemyAPI, which returns a

maximum of 3 topics per file T F j (each denoted as ti ), along with a relevance score ri , j ∈ [0,1]

for each of them. A topic comes in the form of “a1/a2/ . . ./an”, representing a hierarchy among

the labels (e.g., “/hobbies and interests/astrology” or “/finance/investing/venture capital”).

To extract the top topics based on a user’s documents, we use the same scoring method as that

of concepts:

score(ti ) =
K∑

j=1
ri , j (4.4)

We represent topics by circles, similar to the case of entities, where the diameter of a circle is

proportional to the score of the topic. Topics sharing the top level label are colored similarly.

We combine these three together due to their similar goal of profiling users’ interests. When

we use the ECT insight, one of E , T or C is randomly displayed to the user in the Insights Area.

Sentiments: For each entity that occurs in T F , it is possible also to estimate whether the text

relays a positive, neutral, or negative sentiment about that entity. Towards that end, we use

the sentiment analysis service of AlchemyAPI. For each T Fi , we select the entities labeled with

positive or negative sentiments (each such entity also has a sentiment score si , j ∈ [−1,1] with

1 corresponding to the most positive sentiment and -1 to the most negative one.). We then

compute the overall sentiment score si of entity ei across all the user documents T F :

si =
K∑

j=1
si , j (4.5)

The sentiments with the highest positive and negative scores are then shown to the user, as

presented in Figure 4.7b.

Top Collaborators: The next insight we added displays the top collaborators a user has, based

on the analyzed files (Figure 4.7c). We define collaborators as people who share files with the

user, regardless of who initiates the sharing operation. These typically include close work col-

leagues, intimate friends, or people the user goes out with and shares pictures with afterward.

In the interface, this insight is visualized as a horizontal bar chart of the top collaborators with

the bar lengths representing the relative frequency of the user’s collaboration with each of

them.

Shared Interests: In this insight, we try to represent the user’s mutual topics of interests with

a group of people. Towards that end, we perform the following steps:
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– We determine the top topics as we have done in the ECT insight.

– Then we select from these topics a subset St that only includes the ones which appeared

in shared files.

– Via Google Drive API, we extract, for each topic ti , a list U (ti ) of collaborators (based on

files it appeared in).

– We select from each U (ti ) the most frequent collaborators (i.e., those appearing in most

documents with this topic).

Users then get a visualization similar to Figure 4.7d, where we show the three top topics from

St along with the top collaborators for these topics.

Faces with Context: We now come to the insights that are based on features inside the user’s

images. The first insight of this type shows a group of faces, representing the most frequent

people appearing in the user’s images, alongside the concepts that appear in the same images

(see Figure 4.7e). One can imagine that such information might be valuable, for example, to

advertisers that aim to extract the user’s interests in certain people, products, or services.

To construct this insight, we performed two steps:

i. Face clustering: It is evident that showing the user random faces detected in her photos will

not create the same effect as when these faces are actually people she cares about. Our plan to

achieve the latter case involves three steps:

– We use a face clustering algorithm in order to group together photos of the same person.

As a result, we get a list of groups G , where each group Gi ∈G is comprised of the faces

that belong to a person identified as pi . The algorithm used is by Zhu et al., [ZWS11]

implemented by the OpenBR framework. [KKK+13]

– From each group Gi , we exclude the faces with width (height) less than 1
15 of the total

image width (height).

– We exclude groups with less than 3 faces in total.

– We sort the groups by the number of faces in each of them.

ii. Image concept recognition: In order to identify the concepts inside each photo, we used a

classifier from the Caffe library [JSD+14]. The classifier uses a pre-built deep learning network,

that is based on the architecture used by Krizhevsky et al., [KSH12] that won the Imagenet

2012 contest.

Based on the above, we show the user the top groups (i.e. with most faces) along with the most

recurring concepts in these groups (as in Figure 4.7e).
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Figure 4.8 – Component diagram mapping the used analysis techniques to the generated
insights

Faces on Map: In addition to the image content itself, image metadata can also be sensitive,

especially the geographical location where the image is captured. Hence, this insight, shown

in Figure 4.7f, consists of showing the faces of people overlaid on a map, centered at the

geographical area where these faces appeared. Below the map is a list of the top concepts

that appeared in the photos taken in that area. In our actual implementation, the visual is

animated, moving between different areas to show the user the places that different photos

were taken at. To construct this visualization, we had to cluster the images into different

geographical areas. For that, we used the OPTICS algorithm (Ordering Points to Identify the

Clustering Structure) by Ankerst et al., [ABKS99]. OPTICS allows finding density-based clusters

in spatial data and is tailored for detecting meaningful clusters with data of varying density.

After getting the cluster results, the zoom level on the map is animated to show one cluster to

the user at a time.

The component diagram of Figure 4.8 summarizes the techniques used for generating each of

the FR insights.

Further Notes:

We note that the reasoning behind designing lightweight models such as DP and IM was that

we wanted to examine whether designing heavyweight insights such as FR Insights is worth

the effort for the potential adopters of our approach. If users respond equally favorably (or

badly) to both the heavy and the lightweight approaches, the FR insights need not be adopted.

We also note that, for an app that does not request unneeded permissions (even if it requests

full access), the Insights Area will simply show a text saying that the app does not require any

extra permissions. We also note that we follow Google Drive’s approach of requesting per-
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missions “At Setup” [SBDC15] (i.e., at the first time of app authorization). This is unlike other

ecosystems (e.g., iOS or Android M), which require a “Just in Time” approach (i.e., permissions

are requested only when the actual functionality is needed). This is because, in Google Drive,

many apps are supposed to work with the user’s data even when she is offline. Hence, granting

access in an interactive manner for individual permissions is not always feasible.

4.4 Evaluating the Models

4.4.1 Experimental Setup

We designed an experiment with actual users to test the hypothesis of whether the new models

can better deter the users from installing over-privileged apps as compared to the existing one

and to discover factors that influence users’ decisions.

User Recruitment:

To recruit users, we primarily used our university’s mailing list. The users were briefed about

an app that is related to protecting the privacy of their data against 3rd party apps on Google

Drive. The news about the app was also reported on the university’s website and was picked

up by several technology websites. The website described itself as an app for Google Drive

that aims at exposing what 3rd party web apps can needlessly get about users.

Via our website, the users can sign in to their Google account and then grant full Google Drive

access to our app. Next to the “sign in” button, we linked to our privacy policy, explaining what

data the app gets and what it keeps. Only those users who had at least 10 files containing text

or 20 images were allowed to continue. This is to ensure that they possess at least a minimal

level of experience with Google Drive. Figure 4.9 shows the density plot of the percentages of

users’ analyzed files that are textual. Although there is a significant fraction of users with no

image files, there are many users with a balanced fraction of textual and image files. Next, users

who agreed to participate in our experiment were randomly assigned to one of the groups

described below. As a motivation to complete the experiments, the users were enrolled in a

lucky draw, where they could win one of five gift cards to a mobile app store of their choice.

Methodology:

The first goal of the experiment is to investigate the efficacy of the three new permission

models by comparing them to the existing Google Drive permission model as well as to each

other. The second goal is to perform micro-comparisons among the different types of IM and

FR insights. Accordingly, we went for a mixed between-subject and within-subject design.

The reason for not going for a complete between-subject design was the large number of

participants needed for statistically significant results with 12 independent groups (for all

micro-comparisons). The reason for not going for a complete within-subject design was to
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Figure 4.9 – Density plot of the percentage of textual files for our experiment’s users

avoid any participants’ bias that can result from showing the existing interface they are used to

and the new interface we developed in the same experiment. Accordingly, we had four groups

in our experiment. A user is assigned to one single group, and the only permission interface

she sees during the experiment is that of its group. The groups were:

1. Baseline group (BL group): Users in this group were presented with a clone of the

original interface that Google shows upon installing the app (shown in Figure 4.4). This

group serves as the control group, and we briefly refer to it as BL

2. Delta Permissions group (DP group): Users in this group were presented with the

modified interface, previously shown in Figure 4.5.

3. Immediate Insights Group (IM group): Users in this group were presented with the

modified interface of Figure 4.6, with the Insights area containing one of the IM insights

of Section 4.3.2.

4. Far-reaching Insights Group (FR group): Users in this group were presented with the

modified interface, of Figure 4.6, with the Insights Area containing one the FR insights

described in Section 4.3.3.

A user experiment was divided into multiple tasks. In each task, the user was requested to

select an app with a specified goal. For example, the goal would read “Select the app which

allows you to extract the ZIP files on your Google Drive”, and the corresponding app would

be “ZIP Extractor”. The user would then choose this app among other apps that are listed in

the interface. We show this interface in Figure 4.10, and we note that it is similar to the actual

Google Chrome Web Store.

Moreover, only one app of those listed satisfies the given goal, and it is highlighted in the

interface. This part of the setup only serves a gamification purpose to keep the user interested.

Once the user selects the app, she is presented with a permission interface that corresponds

to its group (i.e. that of Figure 4.4 for the BL group, Figure 4.5 for the DP group, and Figure 4.6

with a randomly selected visual for the IM or FR Insights groups). The user is then presented
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Figure 4.10 – Task interface presented for the users in the experiment, where they had to select
the app satisfying the given purpose (already highlighted for them)

with a question that says: “Based on permissions below, would you be likely to install this

app?”. She can choose between “Permissions are too invasive” (accept) and “I’m OK with these

permissions” (reject). Figures 4.11 and 4.12 show screenshots of the interface for the F R and

I M experimental groups. We worded the question so that we avoid all users rejecting the

installations of all apps. We rather aimed that users would reject apps whose permissions

they consider as too invasive, thus allowing us to make within-subject comparisons. After

answering the question, the user is directed to the next task with another app, until she

completes the whole set of tasks.

The apps used in the experiment were obtained from the Google Drive section of the Chrome

Web Store. For experimental purposes, we modified the permissions requested by these apps

to be able to test various conditions. Unlike in the store, we removed elements such as ratings,

user reviews, and screenshots and kept a minimal interface, allowing the users to focus solely

on the app permissions. We also avoided using apps from popular vendors to avoid the bias

resulting from users being influenced by famous brands. These steps were taken to study

the effect that the permission model has on the user’s decisions, without the influence of

extraneous factors5.

Moreover, the apps were presented to the users in randomized order to compensate for the

effects of learning and fatigue. For reference, the permissions that each app requested are

presented in Table 4.1. A user assigned to the BL or DP groups had to install 5 apps in 5 tasks.

5Incidentally, the user might confront a scenario exactly as in the experiments if she does not find the app from
the store, but lands on a certain site that has the option of authenticating with Google Drive.
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Figure 4.11 – Example of the interface shown to users of the IM group, with the decision dialog
on top

Figure 4.12 – Example of the interface shown to users of the FR group, with the decision dialog
on top

For the IM Insights and FR groups, we added additional apps. This is because we wanted to

compare the effects of the different kinds of insights. The permissions of the additional apps

were fixed to those of (ZIP Extractor), but the insights displayed were changing. For each user,

the insights were assigned at random to each of those added apps. In total, users assigned to

the IM Insights and FR Insights groups had to complete 8 and 10 tasks respectively.
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App DRIVE DRIVE_ METADATA DRIVE_ FILE Experimental Group

ZIP Extractor R,U R,N 1,2,3,4
Xodo PDF Viewer & Editor R,U R,N 1,2,3,4
WhoHasAccess R,U R,N 1,2,3,4
Video Converter R,U 1,2,3,4
Cloud Convert R,U NR,N 1,2,3,4
HelloFax R,U R,N 3,4
Heap Note R,U R,N 3,4
Photo to Cartoon R,U R,N 3,4
PDFUnlock R,U R,N 4
HelloSign R,U R,N 4

Table 4.1 – Permissions of apps in the experiment. R: Requested, N : Needed, U : Unneeded,
NR: Not Requested

At the end of the experiments, users were presented with a survey, which consisted of a set of

multiple choice survey questions, in addition to a free form to provide feedback.

Data Protection and Ethics:

Respecting the user privacy when working with cloud data is of fundamental importance. Our

experiments were done according to a code of ethics protecting this privacy. In particular,

after generating the insights from a user’s files, these files are deleted immediately from our

apps’ servers. As per our displayed privacy policy, only the insights’ data presented to the user

is kept in the app database. Moreover, the user is given the option to delete her insights data

at any time with a single click in the app’s menu. The database dump we ran our analysis

on was isolated from the one to which the deployed web server connects. Also, we use the

https protocol so that users can securely connect to our system. Before data analysis, we

anonymized any occurrence of names and emails in the database by applying a one-way

MD5 hash on them. At all times, we refrained from manually checking the database for users’

insights. All the images used in this chapter are in the public domain, and the insights shown

do not belong to real users. For further transparency, all the libraries and frameworks used for

building the tool and data analysis were listed and linked to from the main page of the website.

Although an IRB review was not performed beforehand, this work was subsequently reviewed

by our university’s IRB, which did not object to publishing the results.

4.4.2 Results

We got 210 users in total who successfully completed this part of the experiment. Out of them,

55 were in the BL Group, 50 in the DP Group, 54 in the IM Insights group, and 51 in the FR

group. We start by interpreting the results of our user experiment and comparing the efficacy

of the various permission models. The metric we used in our evaluation is the Acceptance
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Likelihood AL, defined as:

AL = #(Accepts)

#(Accepts)+#(Rejects)
, (4.6)

where Accepts denotes the cases where users were fine with the permissions, and Rejects

denotes the cases where they found them too invasive. Accepts and Rejects are aggregated

across users and tasks for the permission model under consideration. The lower the AL, the

better the performance in deterring users from installing over-privileged apps.

In order to compare the effect of different interfaces, we plotted in Figure 4.13 the Acceptance

Likelihood for the BL and DP groups and also for each particular insight of the IM and FR

Insights groups. To evaluate the significance of the AL differences among the interface types,

we fit a generalized linear mixed model (GLMM) with the user’s decision (Accepting/Reject-

ing the app installation) as the binary response variable and the interface type as the fixed

effect. Participants’ IDs and apps’ names were fitted as random effects to control for the

potential between-participants and between-apps variabilities. The model was fit assuming a

binomial distribution and a logit link function, using the glmer function in the lme4 package

in R [BMBW15]. Visual inspection of residual plots did not reveal any obvious deviations

from homoscedasticity or normality. The significance of differences among AL values was

determined using Tukey Honest Significant Difference test with the glht function of the mult-

comp package [HBW08]. The difference between the AL of any two interfaces in Figure 4.13 is

significant if the corresponding row and column intersect at a p-value≤ 0.05 in Figure 4.14.

Inefficacy of Baseline and Delta Permissions: We first found that the Delta Permissions and

Baseline approaches performed closely (AL of 0.42 and 0.39 respectively) without a statistically

significant difference (p-values= 0.77). Hence, we found no evidence of any advantage that

the DP can introduce, which means that telling our experiment’s participants explicitly about

unneeded permissions did not help deter them from installing over-privileged apps. We also

observe that both these interfaces had a significantly higher AL (i.e. p-values≤ 0.05) than

all the insights, except for the Collaborator insight. This highlights the fact that showing

well-selected insights will result in deterring more users compared to the case of not showing

any insights.

The Power of Relational Insights: The next interesting outcome is that there is a category of

insights (Category 1) composed of {Image, Text, ECT, and Sentiments} that are all associated

with a significantly higher acceptance likelihood than the category composed of {FacesWith-

Context, TopCollaborators, and SharedInterests} (Category 2)6. Since this is a very interesting

result, we investigate further to analyze the defining characteristics of these two naturally

clustered categories. The main feature of Category 1, which includes both IM and FR insights,

is that insights in this category are restricted to characterizing the user herself, such as showing

text excerpts from her documents, topics appearing in them, or images she has in her files.

6The number of users who had location-tagged photos was low; hence, we could not obtain highly significant
results in the case of Location and FacesOnMap insights.
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Hence, we denote this category as Personal Insights. On the other hand, the defining feature

of Category 2 insights, which are all Far-reaching, is that they extend to characterizing the

relationships of the user with other people. For instance, FacesWithContext shows the most

prominent faces in user’s photos along with the items appearing with them. SharedInterests

shows the people who collaborate with the user and the type of topics they share. Also, Top-

Collaborators identifies the most frequent people the user interacts with. We denote these
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as Relational Insights. From our results, we can conclude that Relational Insights promote

greater privacy awareness in users, as such insights are more likely to dissuade them from

installing over-privileged apps.

Impact of Face Recognition: Delving deeper into more results brought forth by the compari-

son of different insights, one can notice that showing examples of user’s images (AL = 0.21) is

significantly less deterring than showing the important faces and listing the concepts in the

image (AL = 0.08) with pairwise comparison p-value< 0.01. This highlights the fact that users

are sensitive towards the output of face detection and object recognition in photos. Given

that services such as Google Photos, OneDrive, and Flickr already apply such techniques to

facilitate search, the above result highlights that they can also be used by these companies

to easily implement solutions such as ours for raising users’ privacy awareness when sharing

data.

Influence of High-Level Textual Insights: Contrary to the case of images, in the case of textual

documents, showing the high-level entities or concepts extracted from the text does not seem

to have a significant difference as compared to simply showing direct excerpts from the text

(p-value= 0.94). Only when the relationship factor is introduced does the AL significantly

decrease (as in the case of SharedInterests).

Superiority of Far-reaching Insights: By aggregating the results over all the experiments with

FR Insights, we obtained a lower AL value compared to IM Insights (AL = 0.161 and 0.226

respectively). To check the statistical significance of this difference, we followed the previous

methodology and fit a GLMM model, but with the fixed effect being the experimental group

instead of the specific interface. We confirmed that the AL difference is significant with a

pairwise comparison p-value= 0.004). We also noticed from Figure 4.14 that the best Far-

reaching insight, FacesWithContext (AL = 0.081), performed more than twice better than the

best Immediate Insight, Text insight (AL = 0.206) (ignoring the insights where the difference is

not statistically significant). Overall, these results demonstrate the superiority of our novel

approach of FR Insights. Nevertheless, IM Insights are still significantly better than the BL and

DP models. This goes in line with the findings of [HHWS14], which showed the goodness of

an approach similar to Immediate Insights in the case of Android permissions, even though

they did not have Delta Permissions as a building block.

4.4.3 Survey

In the following, we discuss the most important results based on users’ answers. Figure 4.15a

shows that although the majority of users understand what the text of the different Google

permissions means, at least one-fourth of users expressed that they do not fully understand

these permissions. Figure 4.15b allowed us to verify whether the experimental permission

interfaces were intuitive to the users. More than 90% of users answered affirmatively, indicating

that our experiments’ interface was user-friendly. Figure 4.15c showed that the users in the

FR group were the ones that expressed the most surprise at what the apps can know about
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them, which is justified given the low Acceptance Likelihood in this group. Finally, more than

90% of users (and 100% of the FR group) expressed interest in using a similar interface to the

one they saw in the experiment (Figure 4.15d). Overall, the survey results were in line with

the experimental findings. Furthermore, surveyed users expressed the interest in “adding

recommendations for whether one should install 3rd party apps”, in “implementing similar

functionalities in the Google Play Store and iOS App Store”, and in “highlighting apps that

actually misbehave rather than only the over-privileged ones”. These ideas can potentially be

realized in future works.

4.4.4 Limitations

First, our design of the experiment abstracted several other factors that users take into account

when installing apps. The interplay between ratings, app’s brand, and permissions has been

studied before ([KCS13] and [HHWS14]), and it might be worth revisiting in a future work in

the context of our new permission models. Second, our experiment’s advertisement included

a mention of privacy as we wanted participants to focus on the app permissions. Evidently,

this might have made participants more alert towards this issue. Both these points can

imply that the real values of the AL might be different in reality, where privacy might not

be the main factor. Nevertheless, even if the absolute values of AL have been impacted, the

relative advantages of new permission models still hold. Moreover, we also note that the

users in the F R and I M groups had to do more tasks than the BL and DP groups, which
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might have resulted in more user fatigue and habituation in the F R and I M groups. This

was counteracted first via task randomization at design time and second by the very nature

of insights that change at every step. For further validation, we computed the AL values

of Figure 4.13, considering only the first 5 tasks each user performed. We did not see any

major deviation from the results with all tasks included. Finally, our user recruitment strategy

was primarily targeted towards our university’s network, and our study was only for English

speakers. It would be interesting to see how the results compare in a more general sample

(linguistically, demographically and geographically).

4.5 PrivySeal: A Privacy-Focused App Store

Driven by the magnitude of the risk posed by over-privileged apps in Google Drive, we were

motivated to bring the advantages of the Far-reaching Insights interface to the user community

of this platform. One approach towards achieving that would be for Google itself to implement

a scheme similar to ours and to integrate it within the app authorization process. However, we

decided not to wait and chose an alternative approach, which is independent of the company’s

plans and is ready for user utilization immediately. We built PrivySeal, a privacy-focused

store for Google Drive apps, which is readily available at https://privyseal.epfl.ch.

PrivySeal allows users to navigate a list of apps, click on those of interest, and check whether

they are over-privileged via our FR Insights interface. Users can also search by keyword for

apps, specifying criteria such as the app being least-privileged. The component diagram

for PrivySeal is shown in Figure 4.16. Similar to the APRs we conducted, we have included

a “Review Wizard” inside PrivySeal for indicating the requested, needed and unneeded

permissions along with the alternative permissions the developer could have used. This

responsibility is currently given to a small set of expert developers and is moderated by the

store administrators. Developers who would like to object to existing APRs of their apps can

submit rebuttals.

Currently, PrivySeal has more than 100 apps and 1440 registered users, with a geometric

mean of around 50 new users per month (whose vast majority is signing up out of interest in

the app after reading article(s) about it). We finally note that PrivySeal gets access, as is the

case with other apps, to users’ data to generate insights. Hence, users are assumed to trust the

provider of such a “Privacy-as-a-Service” solution. However, this assumption of trust will hold

if a solution such as PrivySeal is hosted by the CSP itself (which already possesses the data),

or an enterprise protecting its documents from 3rd party apps. The assumption of trust is also

valid if the users choose to trust a single entity (such as PrivySeal) to protect themselves from

multiple other unaccountable over-privileged entities that they would otherwise be forced to

trust.
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Figure 4.16 – Component diagram of PrivySeal (components labeled by S are server-side
and by C are client-side)

4.6 Anatomizing Developers’ Behavior

After studying the users’ privacy decisions, we now move to investigate the developers’ land-

scape, building on the apps data that our store’s users have installed. In total, we obtained

data from 1440 registered users of our privacy store.

4.6.1 Current Developer Behavior

The “DRIVE_APPS_READONLY” permission requested by our app allowed us to get the list of

apps previously installed by users, along with the information that Google Drive API gives

about the apps7. We found 662 unique apps installed by users in our dataset. For each app, we

obtained the following:

i. Access Level: which indicates whether the app had Partial Access or Full Access to the user’s

drive on authorization time. Since an app can change the permissions it requests from future

users, our dataset had instances of the same app installed with different access levels by

different users. We denote such apps as having an access level of Both.

ii. App Location: which indicates whether the app is (1) on Google Chrome Web Store, (2) on

Google’s Other Web Stores (namely the Add-ons Stores and the Google Apps Marketplace for

enterprises), or (3) Outside Web Stores of Google. This categorization is inferred by following

the productUrl field present in the app information, which either leads to one of the stores or

is absent.

Figure 4.17 shows how the apps in our dataset were distributed over the different locations and

7For details, we refer the reader to: https://developers.google.com/drive/v2/reference/apps
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the number of apps requesting the different access levels. From this figure, one can observe

the following:

Developers Changing Behavior: The first surprising outcome from this dataset is that around

40% of apps on Chrome Web Store (63 apps) had Both as access level, signifying that many

developers have changed the requested permissions at least once. To check the current

access levels of these apps, we reviewed them one-by-one. We discovered that 59 of these

apps (i.e., 94%) have changed from requesting Partial Access in the past, to requesting Full

Access currently. Hence, we can deduce that when developers change the access level, there

is a high probability that it is associated with getting more data instead of the other way

round. Highlighting this change of access level on installation time can further serve for more

informed user decisions.

Developer Deterrence through Official Stores: Apps outside the Web Stores requested Full

Access almost twice as much as they requested Partial Access (281 full vs. 155 partial). This

was not the case in the Chrome Web Store, where we observe only a slightly higher number of

apps with Full Access (81 full vs. 76 partial - counting apps that fall under the Both access level

but which currently request Full Access). So we can see that developers with apps outside the

Web Stores are more prone to asking for Full Access. This can be explained by the conjecture

that the store acts as a medium where the apps receive more exposure. Hence, developers

there are likely to be under the pressure of being evaluated through reviews and ratings, and

thus tend to avoid abusing the permissions, while developers outside Web Stores are under no

such pressure. Although Full Access does not necessarily mean that apps are over-privileged,

our APRs have shown that 84% of apps that request Full Access are over-privileged apps. In

the case of the Other Web Stores, the number of apps that requested Partial Access is around

thrice the number that requested Full Access (16 full vs. 47 partial). This is mainly because that

these Add-ons apps are generally expected to provide functionality for Google Docs (or other

native Google file types), so deviating from this and requesting permissions for all Google

Drive files will be easily detected by the community. Similarly, the community of enterprises,

which is highly sensitive towards privacy will deter developers from requesting Full Access in



82 CHAPTER 4. PRIVYSEAL: BREAKING THE KNOWLEDGE IMBALANCE

the Google Apps Marketplace.

Deterring Developers in the Wild: The majority of apps in our sample do not come from

any Google Web Store (24% from Google Chrome Store, 10% from the Other Web Stores, and

66% from outside the Web Stores). This is also the case for 75% of the apps requesting full

data access. These can be apps on other platforms, such as mobile platforms, for example,

where there are other types of application stores. These apps can also be ones that are not

present in any store but still have Google Drive integration. Hence, we can infer that improving

the Chrome Web Store privacy indicators might not be a sufficient solution for deterring

the majority of developers. There is a need for alternative solutions, focused on Google Drive

permissions in specific, and independent of the various stores.

4.6.2 Potential Developer Misbehavior

Although it is clear that full access to users’ data can expose various far-reaching insights

about the user, it is not completely apparent what seemingly benign permissions, such as

metadata-only access can reveal about the user. In the previous section, we have shown that

the TopCollaborators insight, which can be extracted just from the metadata, has resulted in

an Acceptance Likelihood of 0.13, which is around three times lower than what the current

Google permission scheme (Baseline) attains. Hence, users are remarkably deterred by seeing

what they expose when they give access to their file metadata. Therefore, it is worthwhile to

explore the potential of information leakage through metadata-only access. In this section,

we show that metadata-only access on its own can allow developers to gather deeper insights

about the user’s topics and concepts of interest. This calls for extending the FR Insights with

such information to better inform the user about the potential risk of giving unneeded access

to metadata. Towards that, we analyze and compare insights inferred from users’ file metadata

to what can be inferred from file contents (the data).

Upon user u signing up to our app, the following operations are executed as part of the data

analysis:

i For each analyzed file, the filename is processed by removing its extension and replacing

punctuation marks by spaces.

ii The names of all the analyzed files are grouped into a comma-separated list LF N (u)

iii Topic and concept analysis are applied to LF N (u). The service used for text analysis

allowed us to extract topics in the form “a1/a2/ . . ./an”, representing a hierarchy among

the labels (e.g., “/law, government and politics/espionage and intelligence/surveil-

lance” or “/finance/investing/venture capital”). In this section, we differentiate between

General Topics where we only consider a1, and Specific Topics, where we consider an .

Accordingly, General Topics would indicate user’s interest in law, government and pol-

itics or finance for example while Specific Topics could indicate the user’s interest in
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surveillance or venture capital. At the end of this step, we filter the results to restrict our

analysis of metadata to a maximum of 3 General Topics, 3 Specific Topics, and 5 Concepts

for each user’s list LF N (u).

iv. From the user’s files’ contents, we extract the top 5 General Topics, top 10 Specific

Topics, and top 20 Concepts. These choices are motivated by the general observation

that one’s Concepts of interest are usually more in number than the Specific abstract

topics one cares about, which are in turn more than the General Topics of interest.

For each user u, we compared the list D(u) of labels (i.e., concepts/topics) extracted from

the files’ contents with the list M(u) of labels extracted from the list LF N (u) of filenames. We

selected precision as the evaluation metric as we are mainly interested in determining whether

labels extracted from metadata serve as a good approximation of labels extracted from the data.

Inspired by the multi-label classification literature [TKV10], we computed precision using the

micro-averaging method, i.e., directly across all labels. A label occurrence is considered as

true positive if it belongs to M(u)∩D(u) and a false positive if it belongs to M(u) \ D(u). t p(l )

is the number of true positives for a label l , and f p(l ) is that of false positives, both across all

users. Let LT also be the set of all labels found across user’s data and metadata. The overall

precision is thus given by the following equation:

Pmi cr o =
∑N

l∈LT t p(l )∑N
l∈LT (t p(l )+ f p(l ))

(4.7)

We used this method instead of macro-averaging (i.e., computing the precision per label and

then taking the average) because we are interested in estimating the users’ interests more

than the ability to predict each and every label. For this experiment, we only considered who

signed in to our app and had at least 10 textual files with associated concepts/topics. Hence,

our sample contained 200 users. Interestingly, the results for General Topics indicate that 0.78

of the metadata labels across users match with their top 5 topics of interest. In the case of

Specific Topics, on average, nearly two of the three extracted metadata labels also appear in

the top 10 Specific Topics extracted from data (Pmi cr o = 0.61). Finally, the fraction of metadata

Concepts that also appear in the data is around one-third (Pmi cr o = 0.31). However, this does

not necessarily imply that the other two-thirds of concepts appearing in the metadata are not

relevant to the user. In fact, we have noticed that a lot of these metadata labels are semantically

similar to those in the data.

In sum, we have observed that metadata on its own can be considerably accurate in revealing

part of users’ interests. It can be easily abused by sophisticated adversaries who conceal their

misbehavior through only requesting seemingly benign permissions (for metadata access).

Therefore, this calls for extending the FR insights in the case of metadata-only access to match

the developer’s potential. For instance, SharedInterests, which was shown earlier to convey

inferences from content, can also be used as an insight based on the collaborators and the

potential mutual topics inferred exclusively from the files’ metadata.
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4.7 Recommended Best Practices

In addition to PrivySeal, there are several steps that can serve to mitigate the potential of

misbehavior in Google Drive and similar services. These solutions serve to help the user both

before and after installing the apps.

Fine-Grained APIs: The availability of finer grained permissions (such as access to a specific

file type) evidently reduces the amount of data in the hands of the developer and is in line with

the principle of least privilege. One disadvantage of such detailed permissions is that they

become more difficult for users to comprehend in a short amount of time. However, providing

developers with the means to request such fine-grained controls should not necessarily result

in a more complicated interface. This can be achieved via multi-layered interfaces [SBDC15].

For example, instead of the app indicating that it needs to “View the files in your Google Drive”,

it can indicate that it needs to “View files of specific types in your Google Drive”. Users that are

interested in knowing these file types can then click on an additional button (such as the info

button i in the current interface of Figure 4.4).

Transparency Dashboard: A post-installation technique which can potentially deter devel-

opers from actually abusing the users’ data is for the cloud platform to provide what we call

“Transparency Dashboards”. These dashboards allow the user to see which files have been

downloaded by each 3rd party app and when such operations took place. Such a monitoring

solution for all apps can only be achieved by the platform itself.

Insights Based on Used Data: Unlike external solutions (e.g., ours) that can only determine

what data can be potentially accessed, the cloud platform can provide users with insights

based on the data that developers have previously downloaded. Such an interface will help

users better pinpoint adversarial apps that needlessly retrieve files outside the scope of their

functionality.

A Privacy Preserving API Layer: It is not uncommon nowadays to find APIs that work as an

additional layer on top of one or more existing cloud APIs (e.g., Cloud Elements Documents

Hub). Hence, one solution to build a privacy-preserving API is to create it as a layer on top of

one or multiple existing platforms’ APIs. This new API can provide finer-grained access control,

allow permissions reviews from the community, and implement transparency dashboards. By

building this layer on top of existing cloud APIs that already offer various services, one can

circumvent the problem of attracting developers who might otherwise loathe using a solution

that only serves to protect privacy.
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4.8 Related Work

4.8.1 Privacy in Other App Ecosystems

To our knowledge, this work was the first that studied the problem of user privacy in the

context of 3rd party apps on top of cloud storage providers. In the case of other ecosystems,

there are related works that have studied the current state of privacy notices (e.g. [CYA12,

HMSW13, FGW11, PXY+13]).

Felt et al., [FGW11] performed a study on permissions in the Chrome Extensions and Android

ecosystems. They found that only 14 out of 1000 extensions request the most dangerous

permissions and that the average Android app asks for fewer than 4 of the 56 dangerous

permissions. Interestingly, they discovered that users are shown at least one dangerous

permission during installation of almost each extension and Android app. Moreover, 5 out of

50 extensions they inspected manually were over-privileged. In another work, Felt et al., built

Stowaway, an automated tool for over-privilege detection in compiled Android apps [FCH+11].

Stowaway works by comparing the API calls used to the permissions requested. One-third of

the 940 analyzed apps were shown to be over-privileged. One of the justifications proposed

was the insufficient documentation available for developers, which leads them to request a

few extra permissions. In this dataset we studied in this work, we have seen that 3rd party

Google Drive apps are, on average, almost twice as likely to be over-privileged. Moreover, the

implications of the extra permissions are mostly full-access to the users’ files, which makes

the problem highly significant.

Chia et al., conducted a large-scale analysis of Facebook apps, Chrome extensions, and An-

droid apps to study the effectiveness of user-consent permissions systems [CYA12]. They

observed that the community ratings are not reliable indicators of app privacy in these ecosys-

tems and showed evidence of attempts at misleading users into granting permissions via

free apps or apps with mature content. Huber et al., developed AppInspect, a framework for

automating the detection of malpractices in 3rd party apps within Facebook’s ecosystem and

used network traffic analysis to spot web trackers and identify leaks of sensitive information

to other third parties [HMSW13].

On a higher level, the case of 3rd party apps in Google Drive differs from these platforms in

that it is not possible to perform large-scale analysis, firstly due to the absence of a standard

application format and secondly due to the difficulty of automatically finding the triggering

button for permission requests in different apps. Aside from the above, client-side traffic

analysis is not sufficient to detect all cloud data leaks as the apps can send data to third parties

after it arrives at the server side, to which outsiders do not have access.
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4.8.2 Nudging Privacy

Our work on improving the privacy notices can be classified under the general umbrella of

privacy nudges. In their book [TS08], Thaler and Sunstein use the term nudge to signify “any

aspect of the choice architecture that alters people’s behavior in a predictable way without

forbidding any options or significantly changing their economic incentive”. In that sense, they

defined nudges as interventions that are cheap to avoid, rather than being mandates that force

the user to take a specific action. Acquisti later proposed to transplant this approach of soft

paternalism from behavioral economics to the context of privacy, and termed it as privacy

nudges [Acq09].

Although there has been a significant division around the approach of nudging in general

([SW11, Sun12]), debating its relation to freedom of choice and human anxiety, Acquisti et al.,

argue in their recent survey on privacy and security nudges that every design choice made is

itself a nudge [AAB+17]. Success stories in A/B testing tell us that minor changes in a certain

button or a photo on a website can result in a significant modification in user engagement.

Hence, they state that the question is not about the ethics of nudging in the first place, but

whether the inevitable nudges are themselves ethical. Another argument they make is that

notices should strike a balance between greater transparency and overwhelming information.

In our approach of Far-reaching Insights, we tried to achieve that balance in two ways. First,

the insights themselves are aggregated to reveal high-level abstractions from users’ data.

Second, we do not pack all the relevant information for a specific insight in the interface at

the same time. For example, each time, we display a subset of the most important people

and photos in the corresponding insights. We believe that this also serves for reduced user

habituation.

There have also been several previous works that also fall under the category of privacy nudges.

Particularly relevant is the investigation of improvements to the existing permissions schemes.

In the case of the Android ecosystem, Kelley et al., argued that the privacy information should

be a part of the app decision-making process and should not be left till after the user makes her

decision [KCS13]. Hence, they appended a list of “Privacy Facts” to the app description screen,

textually indicating that the app, for example, collects contacts, location, photos, credit card

details, etc., and found that it assisted users in choosing apps that request fewer permissions.

Harbach et al., proposed to integrate personal examples from the user’s data in the permissions

request screen to expose the data apps can get access to [HHWS14]. This involved showing

random pictures, call logs, location, and contacts from user’s data that correspond to each

permission. They showed that this created more awareness among their study’s participants

and instilled a negative effect, making them more alert when installing apps.

Another work of interest was that by Tan et al., who investigated the effect of explanations

given by developers when requesting permissions on iOS [TNT+14]. They found that the mere

presence of the explanation lead to a higher approval rate of the permission and that the

content of the explanation did not make a noticeable difference. In the context of Facebook,
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Wang et al. [WLS+13] introduced privacy nudges to aid users while posting statuses to Face-

book through showing random profile pictures of friends who can see the post, introducing

a time interval before the actual post is sent, or showing the post sentiment. Personalizing

warning notices has been studied before in the context of LED signs [WRKS94] and was shown

to significantly increase compliance when compared to impersonal signs.

In this work, we go further, and we show that well-crafted visuals showing far-reaching insights

extracted from users’ data can be more effective than randomly selected data. We also show

through pairwise comparisons among the insights themselves that the choice of the displayed

insight highly affects the interface’s effectiveness, which was not proven in the case of textual

explanations for example ([TNT+14]). It is also worth mentioning that, in our experiments,

the number of users who were involved with their personal accounts in the experiment was

more than five times the number of users in [HHWS14] and [KCS13]. Furthermore, we also

provide a readily available solution for the public in the form of a privacy-focused app store.

Moreover, our work is in line with the best practices recommended by the recent work of

Schaub et al., who developed a design space for privacy notices to assist researchers in increas-

ing the impact of their schemes [SBDC15]. For instance, we implemented the multi-layered

notice concept by showing data of textual and visual modalities. We also developed various

visuals to ensure that the permissions dialog is polymorphic, which was also shown recently

to have an effect on reducing the habituation effect in the user’s brain [AKJ+15]. We further

hypothesize that our interfaces go beyond reducing habituation to making the user curious

about the content of the Far-reaching insights as these are not readily imagined by the users

as is the case of random examples (e.g., [HHWS14]).

4.9 Summary

In this chapter, we characterized the various factors that have an impact on user privacy in the

ecosystem of 3rd party apps for the cloud. We considered Google Drive as an example case

study and comprehensively anatomized the ecosystem from the viewpoint of users, developers,

and the cloud provider. For users, we carefully devised a set of experiments and tested existing

and novel risk communication models to analyze the factors that influence users’ decisions

in app installation. Our results provide interesting insights into how user privacy can be

improved and how CSPs can develop better risk indicators. We also presented a privacy-aware

store for cloud apps, which already has over 1440 registered users. From our store users and

people who took part in our experiments, we had the unique and unprecedented opportunity

to first-hand study real users cloud data. Based on this data, we were able to characterize

the current behavior of 3rd party app developers and also point out avenues for developer

misbehavior. Finally, based on our analysis, we provided several suggestions for CSPs that

can help in safeguarding users’ privacy and protecting their data from needless leakage and

exploitation.





5 A Usability Approach
to Interdependent Privacy

5.1 Overview

In the previous chapter, we have shown our approach for better risk communication in the

context of over-privileged third party apps. However, users’ privacy is not solely determined by

these apps. For instance, the mere fact that users are granting more apps full access to their

cloud accounts is itself increasing the shareholding parties of their files, and subsequently the

likelihood of data exposure to unintended parties.

An additional intricacy is that when users grant access to a 3rd party cloud app, they are not

only sharing their personal data but also others’ data. This is because cloud storage providers

are inherently collaborative platforms where users share and cooperate on shared files. Hence,

protecting these files is not solely in the hands of the user.

Skyhigh Networks, a Cloud Access Security Broker (CASB), reports that 37.2% of documents

(across 23 million users) are shared with at least one other user. In organizations, documents

are shared, on average, with accounts from 849 external domains [Sky15]. Moreover, around

23% of cloud documents were found by Elastica (another CASB) to be “broadly shared”, which

means that they are shared (a) among all employees, (b) with external partners and clients,

or (c) with the public [Ela16]. Interestingly, 12% of those documents contained compliance-

related or confidential data.

This further highlights what has been termed as the interdependent privacy problem [BC13],

where the decisions of friends can affect the user’s privacy and vice-versa. This concept was

initially proposed in the context of third-party social networking apps, such as Facebook.

However, while 1.92% of Facebook apps request friends’ personal information, this is much

more pronounced in 3rd party cloud apps, where all apps accessing one’s files get access to the

part which is shared too. Moreover, unlike Facebook apps, due to the collaborative nature of

cloud apps, the CSPs do not provide an option for users to control whether their collaborators’

apps can get access to data they own.
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Research Questions

In this chapter, we aim to lead the users to reduce the total exposure of their data to third

party shareholders (i.e., apps’ vendors) by better communicating to them the existence of

those shareholders. We go beyond over-privileged apps, and we tackle this issue in all apps

that are granted blanket access to users’ files (i.e., excluding the per-file access apps where

the user gives consent for each sharing operation). We are driven by the rationale that users

will inevitably continue to install apps to achieve various services. Hence, instead of stopping

them, we aim to lead them to select apps from vendors in a way that minimizes their privacy

risk.

We achieve this by leading users to take what we term as History-based decisions. Such

decisions account for the vendors who previously obtained access to the user’s data, whether

directly (with her consent) or via her collaborators. Our strategy consists of introducing

privacy indicators to the current permissions interfaces that help users minimize the number

of vendors with access to their data. Our “usable privacy” approach is guided via a data-driven

study and is evaluated via a data-driven simulation.

In essence, we tackle the following research questions:

– From a practical perspective, are the collaborators’ decisions significant enough to be

accounted for in users’ app adoption decisions?

– Do users already account for entities with access to their data? If not, to what extent can the

usage of privacy indicators lead to users taking History-based decisions?

– How significant is the effect of adopting these privacy indicators in the case of large networks

of users and teams?

Contributions

Towards addressing these questions, we continue to take Google Drive as our case study. We

make the following contributions:

– In Section 5.3, we analyze a real-world dataset of Google Drive users, and we show that the

median privacy loss that collaborators cause by installing apps can be much higher than

that inflicted by the user’s own app adoption decisions (39% higher with 5% of shared files

and 523% higher with 60% of shared files). To our knowledge, this is the first usage of a

real-world dataset to give a concrete evaluation of interdependent privacy in any ecosystem.

– Driven by the significant impact of collaborators, we design new privacy indicators for

helping users mitigate the privacy risk via History-based decisions (cf. Section 5.4). We

assess these indicators via a web experiment with 141 users. We show that they significantly

increase the likelihood that users choose the option with minimal privacy loss, even if not
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all of these users are motivated by privacy per se. To the best of our knowledge, this is

also the first work to investigate a usable-privacy approach to mitigating the problem of

interdependent privacy. The few studies on this issue have mainly approached it from a

theoretical perspective, such as developing game-theoretic or economic models [BC13,

PG14] or from a behavioral perspective, such as studying the factors affecting real users’

monetary valuation of others’ privacy [PG15, PG16].

– We explore the potential of History-based decisions by performing a simulation on two

large user networks. We show that the network-effects of our approach result in curtailing

the growth privacy loss by 70% in a synthetic Google Drive-based collaboration network and

by 40% in a real author collaboration network. We also simulate the effect of such decisions

in a teams’ network. We demonstrate that teams can reduce the privacy loss by up to 45%

by solely accounting for team members’ decisions (cf. Section 5.5).

5.2 Models and Preliminaries

In Chapter 3, we gave an overview of the various interacting parties in the ecosystem of third

party cloud apps: the user, the cloud storage provider (CSP), the data subject whose privacy is

being considered (i.e., the individual or the team), and the third party cloud app vendor. In

this section, we further add the specific details related to the problem we tackle in this chapter.

5.2.1 User Model

A user is further assumed to be self-interested, i. e., only caring about optimizing the privacy of

the data subject (a.k.a., privacy egoist), and non-cooperative, i. e., does not coordinate her deci-

sions with others. We do not assume that the risks of installing each app are known to the users

or calculated a priori. In fact, unlike other 3rd party app ecosystems, the risk of each cloud

app cannot be automatically estimated based on techniques such as taint tracking [EGC+10]

or code analysis [FCH+11] because the main app’s functionality is typically implemented on

the server side (which cannot be accessed by external entities). Such assumptions constitute

the worst case in the scenarios we consider, and further privacy optimizations can be obtained

by relaxing them.

We also assume that the mental model for privacy-concerned users matches the possible

permission granularities they are given. Accordingly, privacy-concerned users can have one of

the following privacy-goal granularities1:

– per-type privacy goal: where users aim to optimize the data subject’s privacy independently

for different file types. For example, in an ecosystem like Dropbox, where per-type access

1We list here the mental models that match the status of app permissions nowadays. It is possible to add other
variants, such as caring for the privacy of a certain set of files for example, but this is not achievable with the
existing models. We also note that per-file access already achieves the least privilege possible; hence we do not
consider a corresponding privacy mental model.
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is an option, users might follow the separation-of-concerns principle. Hence, they might

install photo-related apps from a set of vendors that is different from the set authorized for

document processing.

– all-files privacy goal: where users aim to reduce the privacy risk for their entire set of files.

This can be in the case of ecosystems which do not have the option of per-type access, like

Google Drive. It can also be the case that a user of Dropbox has this goal in mind despite

being presented with finer-grained app permissions.

5.2.2 Threat Model

We consider the 3rd party app vendors as the adversary (and not the CSP). The privacy indicator

we introduce is best implemented by the CSP, which already has access to the users’ and

collaborators’ data. Alternatively, this can be a feature within Cloud Access Security Brokers

(e.g., SkyHigh Networks, Netskope, etc.), which are already trusted by thousands of enterprises

to protect their cloud data against other 3rd parties. Moreover, we consider the protection

against over-privileged apps as an orthogonal problem, which we have considered in Chapter 4.

We rather focus on the interdependent privacy problem, which covers all vendors with full

access and is an issue in least-privileged apps too.

Furthermore, in this chapter, we will focus on content-related permissions. In the case of

Google Drive, there are two such two access levels: (1) full access, which can be achieved

with the DRIVE_READONLY or DRIVE permissions and (2) per-file access via the DRIVE_FILE

permission. Google Drive does not offer the per-type permissions option.

5.2.3 Privacy Loss Metrics

In order to quantify the privacy loss that a user incurs with time, we introduce now the Vendors

File Coverage (VFC) metric2. Consider a user u and a set V of vendors at a certain time step.

For notation simplicity, we will omit the time step henceforth. VFCu(V ) is computed as the

summation of the files’ fractions shared with each of these vendors:

VFCu(V ) = ∑
v∈V

|Fu,v |
|Fu |

(5.1)

Intuitively, VFCu(V ) increases as vendors in V get access to more files of u. It has the range

[0, |V |]. 3

If we consider the set Vu of vendors explicitly authorized by user u, we can define the Self-

2Table 5.1 summarizes the notation employed in this chapter
3We do not normalize VFCu (V ) by |V |. Our rationale is that multiple vendors with access to all the user’s files

induce a higher privacy loss than one vendor with such access.
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Notation Explanation

u user
v vendor
C (u) Collaborators of u
Vu set of vendors authorized by u
Vc(u) set of vendors authorized by collaborators of u
VFCu (V ) file coverage due to the vendors in set V
Fu set of files of u
Fu,v set of files of u accessible by vendor v

Table 5.1 – Summary of the notations used

Vendors File Coverage as:

Self-VFCu = VFCu(Vu) (5.2)

Similarly, if we consider the set VC (u) of vendors authorized by the collaborators C (u) of u, we

can define the Collaborators-Vendors File Coverage as:

Collaborators-VFCu = VFCu(VC (u)) (5.3)

Finally, the Aggregate VFCu for a user u is that due to all vendors authorized by u or its

collaborators:

Aggregate-VFCu = VFCu(Vu ∪VC (u)) (5.4)

Throughout this work, we will use the terms privacy loss and VFC interchangeably. As will

become evident in Section 5.4, this metric choice allows relaying a message that is simple

enough for users to grasp, yet powerful enough to capture a significant part of the privacy loss.

Obviously, one can resort to a deeper inspection of content or metadata sensitivity (as we did

in Chapter 2) had the purpose been finding the best privacy model in general. However, our

rationale to not do so is the following: for instigating a behavioral change, telling users that a

company has 30% of their files is more concrete than a black-box description informing them

that the calculated loss is 30% and constitutes less information-overload than presenting them

with detailed loss metrics.

5.3 Collaborators’ Impact

At this point, we are in a position to handle the first research question on the extent of

collaborators’ contribution to a user’s privacy loss. Hence, we want to test the following

hypothesis:
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H1: The collaborators’ app adoption decisions have a significant impact on the user’s privacy

loss.

If this hypothesis is valid in practice, it provides a strong motivation for designing privacy

notices that aid users in accounting for their collaborators’ decisions, which is what we will

study in Section 5.4. Towards that, we will be dissecting the privacy loss, quantified by VFC,

that users incur in a realistic 3rd party cloud apps dataset.

5.3.1 Dataset

One of the main challenges when studying the privacy loss in 3rd party cloud apps is the

absence of public datasets with realistic file distributions, collaborator distributions, sharing

patterns, 3rd party app installations, etc. We benefit in this section from an anonymized

dataset that we have constructed via the PrivySeal4 service in Chapter 4. We build our

analysis on it to evaluate the VFC of users in a realistic context.

Out of the database of registered users in PrivySeal, we selected those which had a mini-

mum of N f i les_mi n = 10 files in total, at least Pmi n_shar ed = 5% of files that are shared, and a

minimum of Napps_mi n = 1 third party app installed. The dataset, henceforth referred to as

the PrivySeal Dataset, was anonymized and contained metadata-only information. It con-

sisted of a subset of the files’ metadata of 183 PrivySeal users in addition to the Google Drive

apps installed by those users prior to authorizing PrivySeal’s app (the DRIVE_APPS_READONLY

permission was requested by PrivySeal). The dataset specifically contained:

– list of user IDs (anonymized via a one-way hash function);

– IDs of files in each user’s Google Drive,

– list of anonymized collaborators’ IDs for each file ID;

– list of apps with full access installed by each user;

– the vendor of each app.

In total, the number of users in addition to collaborators was 3422. Overall, these users had

installed 131 distinct Google Drive apps from 99 distinct vendors. Figure 5.1 characterizes the

PrivySeal Dataset. Particularly, it displays 4 distributions in this dataset, which realistically

model the system under study:

– number of files per user, which follows a skewed distribution with a median of 67 files

– sharing pattern: percentage of shared files out of all user files, which also follows a skewed

distribution with a median around 18%
4https://privyseal.epfl.ch
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– number of collaborators across all user files (a.k.a., the degree of the user node in the

collaboration network): where 75% of the users had less than 23 collaborators

– number of vendors authorized per user: also follows a skewed distribution with a median of

1 vendor per user

5.3.2 Results

We computed the Self-VFC, the Collaborators-VFC, and the Aggregate-VFC (as defined in

Section 5.2.3) for users in the PrivySeal Dataset5. As we did not have the actual number of

apps for each collaborator of users in the dataset, we assigned to these collaborators a set of

apps from a random user of the dataset. We show in Figure 5.2 how these metrics evolve as we

gradually consider populations that collaborate more frequently. With Pmi n_shar ed = 5%, we

had a median of 1.39 for Collaborators-VFC, which was 39% higher than a median of 1.00 for

Self-VFC. The significance of the median difference is evidenced by the non-overlapping box-

plot notches. This difference became much larger when we considered users that share more

files. We had a 100% median difference at Pmi n_shar ed = 10% and 523% median difference at

Pmi n_shar ed = 60%. Such results indicate that:

– The collaborators’ app adoption decisions contribute a core component to the user’s privacy

loss, thus confirming our hypothesis H1.

– The higher the number of collaborators is, the higher the magnitude of loss these collabora-

tors can potentially inflict.

Both conclusions motivate the need for taking collaborators’ decisions into account when

designing privacy indicators for cloud apps, which is what we will embark on next.

5To avoid double counting, we considered the vendors authorized by both the user and her collaborators in
computing Self-VFC but not in computing Collaborators-VFC.
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Figure 5.1 – Density plots for vari-
ous parameters, computed per user
(Pshar ed_mi n = 5). Median line is shown,
and the light orange area represents the
range between the 25% to 75% quantiles.
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Figure 5.2 – Evolution of metrics with popu-
lations that share more files (N f i les_mi n = 10,
Napps_mi n = 1). The numeric labels denote the
corresponding number of users in the dataset.

5.4 User Study

Up till now, we have confirmed that, if users want to minimize their privacy loss, they are

better off not ignoring the app installation decisions of collaborators. In this section, we tackle

the next research question, where we investigate the potential of privacy indicators in leading

users to minimize their exposure to 3PC app vendors. We show first our design methodology

for the privacy indicators, and we follow that by a web experiment that investigates the efficacy

of these indicators in realistic scenarios.

5.4.1 History-based Privacy Indicators

We call our proposed privacy indicators “History-based Insights” (HB Insights) as they allow

users to account for the previous decisions taken by them or by their collaborators. We

continue to consider Google Drive as a case study, and we show this indicator in the context of

Google Drive apps’ permissions in Figure 5.3b. Compared to the current interface provided

by Google (Figure 5.3a), we added a new part to highlight the percentage of user files readily

accessible by the vendor (computed based on VFCu({v}) for each vendor v).

As we prove in the next section, selecting the vendor that already has the largest percentage

of user files is the optimal strategy to minimize the privacy loss in our context. We denote

this strategy as “History-based decisions”. Following the best practices in privacy indicators’

design [SBDC15], our indicator was multilayered, with both textual and visual components.

The wording of the main textual part was brief and general enough to hold for both the data
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percentage exposed by friends and that exposed by the user. We used a percentage value

rather than a qualitative measure to facilitate making comparisons among apps based on

this value. The visual part showed the percentage as a progress bar with a neutral violet color.

The bottom textual part was added in a smaller font to provide further explanation for those

interested. We used the term “company” in our interface instead of “vendor” as it is more

commonly understood by the general audience.

5.4.2 Proof of Optimal User Strategy

Before proceeding to our user study, we provide in this section a proof of the optimal user

strategy for minimizing the privacy risk, given our assumptions. We follow the notation

summarized in Table 5.1. Let us consider that each 3PC app vendor has probability p of

exposing users’ data. As we do not assume that users are provided with a per-vendor risk

estimation utility, we set this probability to be the same for all vendors. In general, at a time

t , a user u would have exposed her data to a set V of vendors, such that each vendor v has

access to a fraction fu,v (t) = |Fu,v (t )|
|Fu | of the files. Without loss of generality, we will consider

henceforth that the user has an all-files privacy goal (cf. Section 5.2.1). However, the same

reasoning applies in the case of a per-type privacy goal. In that case, we simply replace “files”

by “files of a specific type” (e.g. photos, documents). We will also be assuming that the users

themselves are the data subjects (i. e., we consider individual-level subjects).

For a vendor v , we quantify the user’s privacy risk magnitude as p ∗ fu,v (t ), i. e., the fraction of

user files possessed by the vendor multiplied by the probability that the vendor exposes the

user’s files. This vendor could have obtained access due to app installations by the user herself

or by her collaborators. A user’s privacy risk magnitude at time t can thus be defined as the

sum of the risk magnitude across vendors in V : Risk(t ) =∑
v∈V p ∗ fu,v (t ).

When a user installs an app from a vendor v̂ at time t +1, the vendor gets access to the whole

set of user’s files. Hence, the risk magnitude is increased by p ∗ (1− fu,v̂ (t)). Given that p is

constant, the risk magnitude can be minimized by choosing v̂ , such that v̂ = argmaxv fu,v (t )

(which can also be written as v̂ = argmaxv VFCu({v}, t )). Hence, the optimal, greedy strategy

to minimize the risk is to select the vendor that already has the largest fraction of user files,

thus minimizing p ∗ (1− fu,v̂ (t )). We call this strategy: “History-based decisions”.

5.4.3 Methodology

To evaluate the new permissions interface, we performed an online web experiment (rather

than a lab study) as we were mainly motivated by obtaining a large sample of users that is also

geographically and culturally diverse. The hypothesis we wanted to test is:

H2: Introducing the new privacy indicator significantly increases the probability that users take

History-based decisions.
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(a) Current permissions interface of Google Drive

(b) Proposed “History-based insights” interface, with the
buttons from the user study in the bottom

Figure 5.3 – Comparison figures showing the original permissions interface
of Google Drive and the “History-based insights” interface
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Figure 5.4 – Example app displayed in the list of apps

In addition, the study allowed us to build a realistic user decision model based on the choices

taken by participants in different conditions. We will utilize this model in Section 5.5 to

simulate the app choices in a large user network and to study the effect on the overall VFC in

the network. We structured our study to have (1) an Introductory Survey, (2) a series of App

Installation Tasks, and (3) a Concluding Survey.

User Recruitment: We recruited users via CrowdFlower’s crowdsourcing platform. In our

study, we restricted participation, via the platform’s filtering system, to the highest quality

contributors (Performance Level 3). We also geographically targeted countries where English

is a main language as our interface was only in English. To further guarantee quality responses,

each user was rewarded a small amount of $0.5 for merely completing the study and an

additional amount of $1.25 that was manually bonused for those who did not enter irrelevant

text in the free-text fields.

Instructions: Participants were first presented with introductory instructions that explained

the context of the study (i. e., cloud storage services and 3rd party apps that can be connected

to them). They were asked to only continue if they had good familiarity with cloud storage

services (e. g., Google Drive, Dropbox, etc.). We did not explicitly require that participants

have experience with 3rd party cloud apps. However, we educated them about such apps

throughout the instructions, particularly showing them two examples of 3rd party apps in

action (PandaDoc for signing documents and iLoveIMG for cropping photos). These apps were

displayed via animated GIFs that play automatically and do not rely on the user clicking. We

used limited deception by neither mentioning the focus of the study on participants’ privacy

nor giving hints about selecting apps based on the installation history. The advertised purpose

was to “check how people make decisions when they install 3rd party apps.”

Introductory Survey: After checking the instructions, users were presented with an introduc-

tory survey, where they first entered general demographic information. This survey was also

front-loaded with questions about cloud storage services (several of which required free-text

input) to discourage users who had not used these services from continuing to the actual

study.
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5.4.4 Study Overview

Next, users could proceed to the study page. We used a split-plot design in the study. Partici-

pants were randomly assigned to one of two groups:

1. Baseline Group (BL): where the permissions interface used is that currently provided by

Google Drive (Figure 5.3a).

2. History-based Group (HB): where the History-based Insights permissions interface (Fig-

ure 5.3b) is used.

In each group, the study consisted of 3 modules, which cover the main conditions that can

occur when users desire to install a cloud app. On a high level, the modules investigate the

following questions:

1. Module 1: are users likely to select apps from the same vendor they installed from

before?

2. Module 2: are users likely to select apps from vendors that her collaborators have used

before?

3. Module 3: do users consider the differences in access levels obtained by vendors that

collaborators installed?

In all modules, whenever the user was asked to choose an app, she was presented with a list of

12 apps (Figure 5.4 shows an example app). Only two of these apps were relevant to the task

purpose, and they were placed on top of the list (randomly positioned as first or second). With

this setup, we wanted to mimic the realistic setup of app browsing while not squandering the

user’s effort on finding apps. All apps had the same full access permissions too (namely DRIVE

permission). Unlike in Chrome Store, we removed elements such as ratings, user reviews,

and screenshots and kept a minimal interface. This is all in order to reduce the distractions

from factors outside the study. We refer the reader to the work of Kelley et al., [KCS13] who

investigated the effects of those elements on users’ decisions for Android apps.

To account for fatigue and learning effects, modules 1, 2, and 3 were presented in a random

order for users. We piloted our experimental setup in two stages: with colleagues and with

online users from the CrowdFlower community itself. For reviewing the online pilot testers

work, we embedded a Javascript code for session recording in our study’s web page, which

allowed us to view the user’s mouse and keyboard actions on our side.

Demographics

We had 157 users who completed the study. Based on manually reviewing the users’ inputs,

we removed 16 users who were inputting irrelevant free-text in the survey in the study. We
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Age 18-62 (median 31 years)

Gender 35.5% Female
64.5% Male

Occupation 59.6% full-time employees
14.2% student
6.4% part-time worker
8.5% self-employed
5.0% homemaker
6.4% Unemployed/retired

IT Experience 41.8% Have worked or studied in IT

Degree 19.1% High school
7.1% Trade/tech./vocational training
51.1% Associate or Bachelor’s degree
22.7% Post Graduate Degree

Countries 35.0% USA
37.5% IND
7.5% GBR
6.9% DEU
6.9% CAN
7.4% AUS+IRL+ NLD + PAK

Table 5.2 – Demographics in our user study; N = 141

thus report the results of 141 users, 72 of which were in the BL group and 69 in the HB group.

In Table 5.2, we describe the participants’ demographics based on the introductory survey. Of

these participants, 66.4% were males and 33.6% were females. They were between 18 and 62

years old, with a median of 31. Moreover, 42.3% of the participants had worked or studied in

IT before. Participants were mostly from India (37%), USA (35%), Britain (7%), Germany (7%),

and Canada (7%).

CrowdFlower presents the users with an optional satisfaction survey after completing the

study, and 49 users took this survey. On average, the study received 4.2/5 for instructions

clarity, 3.8/5 for questions’ fairness, 3.8/5 for ease of job, 3.6/5 for pay sufficiency (before the

bonus was rewarded). This ensures that participants’ behavior has not been affected by either

a lack of time to complete the task or the task design in general.

5.4.5 Study Details and Results

We now move to the detailed description of the modules and the results obtained. These

modules are summarized in Figure 5.5, to which we refer henceforth. We also show sample

screenshots from the online study in Figure 5.6. For a more elaborate documentation of the

study steps, we refer the reader to Appendix B. The results are also presented in Table 5.3.
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Figure 5.5 – Summary of the experiment modules; a sample of the questions corresponding to
each step are available in Figure 5.6.
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(a) Instructions presented to users at the beginning of a module

As explained, we now start from scratch. Consider that this is the rst app you will install. Please install any

application from the company: thetimetube.com. (Only one such app exists, and you can click

on the app to view its info.)

(b) Module 1; Task a : Vendor Familiarity

You now need an app that allows scanning your Google Drive les for viruses. 

Two such apps exist below. Check them both by clicking on them. Then choose the one that you prefer to
install.  
Be prepared to give a reason for that choice.

(c) Module 1; Task b: App Selection

Google Drive allows you to share les with friends. You decided to share all your photos on

Google Drive with your friend John . Up till now, who is the friend who has access to your data?

 John 
 Lisa 

(d) Module 2; Task a: Collaborator Awareness

Task:  

Your friend John  has installed an application called Photo Editor and has given its company

access to all his les (including shared les). Write below the name of the company that owns this application. 
(You can click on the app to view its info.)

(e) Module 2; Task b: Vendor Familiarity

Assume that you have shared all your photos with John . Additionally, you have shared with Lisa

 some of your photos. Who has more les from you in their Google Drive?

 John 
 Lisa 

(f) Module 3; Task a: Collaborator Awareness

Figure 5.6 – Screenshots from the user study
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Module 1 (Self-History Scenario)

This module tests whether the user is more likely to select an app from the same vendor she

has just installed from before. In step (a), the user is made aware the she installed an app from

a specific vendor v (Figure 5.6b). In step (b), she is asked to install6 an app that satisfies the

given purpose (Figure 5.6c) among a list of apps. Two of the listed apps were relevant, and one

of them was from vendor v itself.

Despite the participants being informed one step earlier that they installed an app from

“thetimetube.com”, that did not make a difference in the BL case: half of the users still chose

the app from the new vendor “nitrosafe.org” (cf. Table 5.3. In the absence of traditional signals

that users follow for deciding on apps (reviews, ratings, permissions), participants apparently

made decisions that canceled out, making the two apps equally favored across participants.

The vast majority of users were not approaching the installation from the angle of keeping

their data with fewer shareholders. Based on their provided justifications, they rather looked

for other cues, such as selecting the app that, in their opinion, has a more comprehensive

description, a more professional logo, a better sounding name, or a more trustable URL.

Still, 12 users have explicitly mentioned in their text input that they chose an app because it

is from the same vendor they have dealt with earlier. Even then, neither of them has alluded

to a privacy motivation behind the choice. These 12 participants mainly provided cross-app

compatibility, interface familiarity, and satisfaction with the previous vendor as justifications.

For example, one participant wrote: “I favored Malware Scanner due to the fact that the name

‘thetimetube.com’ was in the last app installed, and I tend to install apps from the same company

due to cross-app compatibility usually found in apps by the same company.”

Interestingly, two users justified their installation of the app from the new vendor (nitrosafe.org)

by writing that they had just installed an app from the same company before. This indicates

that even when users try to account for previous decisions, they might find it difficult to

remember the previous app vendors. Given that our study had a short time span separating

the current from the previous installation, we expect that such mistakes would be even more

common in real scenarios when app installation instances are separated by longer time spans.

The HB group witnessed a much larger proportion of users who favored the option with less

privacy loss. 72.2% of the participants selected the app from the “thetimetube.com” (the

vendor which already has access). The difference of 22.8% compared to the BL group is

statistically significant (Fisher’s exact test, p-value = 0.005). Many of the participants who

chose the app from “thetimetube.com” reported that they were motivated by the 100% access

that the app already has. We counted around 40 such users (i. e., 57% of the HB group). Some

of them went further and explicitly mentioned that their selection was motivated by giving

data to fewer data owners (i. e., more privacy). For example, one user wrote: “This company

has access to all my files, so I would choose them as I don’t want to have 2 companies with full

6Users were informed that this is a role-playing study, and no apps were actually installed.
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Scenario
BL HB group Δ p-value

VwA NV VwA NV

Self History 50.0% 50.0% 75.4% 24.6% 25.4% 0.003

Collaborator’s app 52.8% 47.2% 88.4% 11.6% 35.6% < 0.001

Collaborator’s vendor 58.3% 41.7% 82.6% 17.4% 24.3% 0.002

Multiple collaborators 44.4% 55.6% 82.6% 17.4% 38.2% <0.001

Table 5.3 – App selection statistics in the study; VwA: vendor with access; NV : new vendor.
The comparisons in each experimental group were planned contrasts, and the p-values of
difference between the percentages of users who selected each app type were computed using
Fisher’s exact test

access to my files”.

In a nutshell, we were able to verify our hypothesis in this scenario: the new privacy indicator

leads users to more frequently choose the app from a vendor they already authorized. Fur-

thermore, we have discovered that the HB Insights interface has indirectly made users think

about various positive effects brought by using apps from the same vendor. This eventually

lead them to make more privacy-preserving decisions.

Module 2.1 (Collaborator’s App Scenario)

This module tests the likelihood that the participant selects the same app that her collaborator

had used. In step (a), the participant is made aware that she had shared all her photos with

a friend f (Figure 5.6d). For more familiarity, we also added a picture for each of the two

fictitious friends throughout the study. In step (b), the user is made aware that her friend

f has installed an app a0 (Figure 5.6e) from vendor v . She is asked to type the name of the

app’s vendor (“paste” option was disabled in the input field to further ensure the participant

is aware of the vendor). In step (c), the user is asked to install an app with a certain purpose

(similar to Figure 5.6c). One of the two matching apps is app a0.

Similar to the previous module, the BL group witnessed an almost even split between “Online

Player”, installed previously by the friend, and “Enjoy Music Player”, from a new vendor

(cf. Table 5.3. We also noticed that 20 participants in this group justified their decision by

mentioning that their friend has used the app. Still, neither of them alluded at privacy reasons

in their justifications. Instead, the two most prevalent motivations were (1) considering the

friend’s use of the app as a recommendation or (2) achieving compatibility with their friends’

app, which facilitates data sharing within the app itself. Quoting one user: “This is the same

app my friend is using so it should be quite compatible for us to both share.”

In addition to having a significant 35.6% difference in the case of the HB group, we noticed that
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32 users mentioned the existing data access as a reason for choosing the app “Online Player”.

Also, 26 users referred to the fact that the friend has installed this app before (including those

who mentioned both of the previous reasons). Unlike the BL group’s justifications though,

where the friend’s recommendation and the app’s compatibility prevailed, the privacy issue

was explicitly brought up by at least 10 users. One participant put it as follows: “Thanks to

John, they have already access to 70% of my data. Sharing the last 30% isn’t as bad as sharing

100% of my data with driveplayer.com.”

Module 2.2 (Collaborator’s Vendor Scenario)

We proceed in steps (d) and (e) as in the previous scenario’s steps (b) and (c), with the difference

that a new app from v is included among the options in step (e) instead of the exact same

app a0. One interesting insight from this scenario is that the line between the company and

the app is blurred in the minds of several users who used the two entities interchangeably.

In fact, 3 users in the BL group and 7 participants in the HB group justified their choices

by mentioning that their friend installed the same app before, which was not the case. For

example, one user wrote: “this app already has access to my files, and I don’t want to install any

new app.”

Module 3 (Multiple Collaborators Scenario)

Given collaborators fmor e and fless , where the user shares much more data with fmor e , this

scenario checks the likelihood of the participant authorizing an app that fmor e has installed.

In step (a), the participant is made aware that fmor e has access to more data than fless (Fig-

ure 5.6f). In steps (b) and (c), the participant is made familiar with the apps each of the friends

installed (similar to Figure 5.6e). In step (d), the user is asked to select an app with a specific

purpose. The two friends’ apps are the only ones matching, and the choice is to be made

between them (similar to Figure 5.6c).

In the BL group, we had 44.4% of the participants choosing the app installed by fmor e . Still, this

percentage is relatively close to an equal split between the two apps. Out of this percentage,

13 users justified their choice by mentioning that they were encouraged to follow the choice of

friend fmor e . Even though they did not mention privacy, the larger number of files shared with

fmor e was often used as a justification. For example, one participant wrote: “This is the app

that John already uses, and he has access to all of my files. The PDF Mergy app is used by Lisa,

but she only has access to part of my files.”

In the HB group, around 82.6% chose the app previously installed by the friend fmor e , which is

significantly more than those in the BL case (Fisher’s exact test, p-value < 0.001). Looking at

the justifications, around 37 users explicitly mentioned the higher access level that this app

already possesses as a reason for their choice. Privacy was additionally mentioned by 8 of

these users. Quoting one of them: “PDF Mergy already has access to 70% of my files. Using
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PDF Files Merger would unnecessarily increase third party app access to my files.” However, we

still had 2 users who went for the app with less existing access, with one of them saying he

favors the app that only “had accessed 30% of files before installation”. What was interesting

though is that almost all users who mentioned friends were making a comparison between

the two friends’ existing access level, regardless of their final choice.

5.4.6 Concluding Survey

At the end of the user study, users were presented with a final set of questions. We asked them

whether they would like to be notified when a friend installs an app that gets access to their

shared files. Around 92% of users in the BL group and 90% of users in the HB group agreed.

We further asked the participants whether they are fine with a collaborator being notified

when they install applications that access files shared with that collaborator. The percentage

of people who agreed dropped to 75% in the BL and 78% in the HB group. The relatively small

difference between the answers to these two questions highlights that only a minority of

users is not willing to make the trade-off of contributing to the overall system. Such users

can be given the option to not use privacy indicators based on their friends’ decisions.

Next, users were asked the following question “Assume you have installed an application called

YouMusic from a company called Musicana and gave it access to all your files on Google Drive.

Now you are considering installing an application called YouVideo from the same company.

How do you think that this application will affect your privacy:”. Only 11% of each group

replied by “negatively”. The vast majority in both groups either perceived the avoidance of a

new vendor as a positive outcome or considered that the privacy loss will remain the same.

Interestingly, the users in the BL showed a similar reasoning in justifying their choices as the

HB group although the latter were primed about these aspects via the privacy indicators. This

indicates that the privacy indicators match the first intuition for a large fraction of users.

5.4.7 Discussion and Limitations

Overall, we found out that, in the three modules, participants in the HB group were significantly

more likely to install the app with less privacy loss (i. e., the app from the vendor with the

largest share of the user’s files) than those in the BL group. Despite showing the efficacy of

History-based Insights, our study still has its limitations. To get a large, diverse sample size,

we resorted to a web experiment based on role-playing with hypothetical data. It would be

interesting to see how such results extrapolate to the case where users’ own data is in question

and the users are in immediate need of installing an app. On the one hand, the users might be

more alerted towards their own data privacy. On the other hand, users are typically seeking

an app to satisfy an immediate need. A longitudinal study with actual users’ data is also

well-suited to study the effect of our new privacy indicators over time.

Moreover, in our design, we have abstracted several factors (e.g., ratings and reviews), which
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have been previously studied in similar ecosystems [KCS13], in order to focus on one factor.

These factors might have diluted the effect of the privacy indicator. Still, we conjecture that,

although the absolute values of our findings might not strictly apply, the differences between

the two groups will still be practically significant.

Additionally, in this chapter, we have investigated only one type of history-based privacy

indicators. Evidently, such indicators can be integrated at different stages of the app installa-

tion process. For example, they can be part of the recommendation strategy for suggesting

alternative apps. They can also be included in the apps’ search interface. Apps can also be

labeled as “privacy preserving” in the web store based on this metric. It is also possible that

the privacy indicator is only shown when the vendor has existing access to the user’s data. This

might serve to reduce the habituation effect and the information overload. The best choice

among these deployment scenarios needs further investigation.

Furthermore, it is important to note that, although our experimental interface mentions the

collaborators’ name in the explanation under the progress bar, this does not have to be the

case in actual deployments. We hypothesize that removing the name will not have a significant

impact on the results as it was not highlighted in the interface. This allows the CSP to relay

such information to the users without exposing sensitive data about particular collaborators.

The CSP can resort to more sophisticated anonymization methodologies, such as showing a

non-exact percentage that can be mapped to multiple collaborators. Exploring the impact of

these techniques is left for future work. Moreover, we note that this anonymization might not

be needed at all in the enterprise settings, where apps installed by team members are supposed

to be visible for the administrators. As we show in Section 5.5.3, a significant reduction in

privacy loss can be achieved without even accounting for decisions by users external to the

team.

Finally, the privacy indicator in our study has addressed two granularity levels: full and per-file

access. However, the same indicator can be extrapolated to the case of per-type access. For

example, the interface can say: “The app’s company already has access to 70% of your photos”

(instead of files).

5.5 Large Networks’ Simulations

In the previous section, we showed the significant change that our privacy indicator can

effect through encouraging users to make History-based decisions. We will tackle the next

research question, where we investigate the impact of adopting such privacy indicators on

the privacy risk in realistic scenarios with large user networks. As we are not in the position

of the CSP to study an actual implementation of the HB Insights interface over time, we will

perform a simulation of potential users’ installation behavior. We will base this on both the

crowdsourced decision model inferred from the user study and on new collaboration networks

that we construct.
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5.5.1 Simulation Data

Collaboration Networks

For the purposes of this simulation, we constructed the following three networks. The first

network is an inflated version of the PrivySeal Dataset. The second is a large collaboration

network with a more realistic degree distribution. The third network allows us to study the

case of collaboration within teams.

– Inflated Google Drive Network: We used the standard degree-driven approach for net-

work topology generation to construct a larger Google Drive network based on the one

in the PrivySeal Dataset of Section 5.3.1 [MV02]. Based on an input user degrees’ distri-

bution from that dataset, we particularly used the Configuration Model as described by

Newman [New03] and implemented by the library NetworkX [SS08] for inflating the graph.

This model generates a random pseudograph (a graph with parallel edges and self-loops) by

randomly assigning edges to match an input degree sequence. We removed the self-loops

and parallel edges a posteriori from the generated graph. In the end, we had a collaboration

graph with 18,000 users and 138,440 edges. This graph is, by construction, a connected

graph, with an average node degree of 15.

– Paper Collaboration Network: In an effort to have a realistic, large collaboration network

without resorting to graph inflation, we relied on the Microsoft Academic Graph, which

consists of records of scientific papers along with the authors and their affiliations [SSS+15].

We used a snapshot of 50,000 papers, and we constructed the collaboration graph based

on it. We ended up with 41,000 collaborators and 199,980 edges. The graph itself is not a

connected graph but is rather constructed of around 1700 connected components. The

average node degree is 4. Our rationale is that this graph captures a realistic scenario of

users collaborating on authoring documents, which is, in fact, an activity achieved via cloud

services nowadays. Hence, it is fit for showing the efficacy of our privacy indicators.

– Team Collaboration Network: We used the same academic graph to construct a network

of teams. A team is defined as a frequently collaborating group of people. Motivated by

research around community detection [MV13], we use Strongly Connected Components

(SCCs) to label teams in our graph. We ended up with 16,400 users split over 1700 teams.

Unlike the previous two networks where users themselves are the data subjects (whose

privacy is to be optimized), members of each team in this network consider their team as

the data subject.

Sharing and Installation Patterns

In order to closely model the user characteristics in Google Drive, we assigned to each user in

the collaboration networks a file sharing distribution and a number of apps corresponding to

a user with a matching degree in the PrivySeal Dataset.
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Apps

As we wanted to perform the simulation with a much larger number of users than we had in

the dataset described in Section 5.3.1, we also needed a larger collection of apps. Given that

Google Chrome Store has only around 500 apps that are tagged by the “Works with Google

Drive” tag, we decided to also include all Google Chrome Apps in the dataset (i. e., even those

that do not have this tag). As far as the simulation is concerned, this step is justified since the

only realistic information that we will rely on is the distribution of vendors per app. It is fair

then to assume that this distribution does not differ significantly between the general category

and the Google Drive category. Hence, we augmented the PrivySeal Dataset via apps from the

Google Chrome Store to arrive at 1000 apps. In addition to the app’s installation count and

vendor name, we also collected the set of “Related Apps” that the store displays for each app.

This is because, in our simulation, we will assume that users have the choice to choose the

app itself or one of its related apps. Again, this is a fair assumption as these related apps are

mostly the apps which deliver a close functionality to the app itself, and we will only rely on

them to model the alternatives at each simulation step.

User Decision Models

For the purpose of this simulation, we define 3 user decision models:

– Fully Aware Model (FA): the user always makes the decision that minimizes the privacy

loss of the data subject, taking into account all previous installation decisions by her and by

her collaborators.

– Experimental History-based Model (EHB): the user takes decisions similar to what a ran-

dom user of the HB experimental group does. In specific, we model those users as taking a

history-based decision with probability q and making a random app choice with probability

1− q . We set q based on the number of users who mentioned the app’ existing access

in writing as a reason for their choice in each module of Section 5.4. Based on Module

1’s users’ responses, we set q = 0.57 when the user encounters a vendor she previously

authorized. Based on Module 2, we set q = 0.70 whenever the user is presented with one

vendor previously authorized by a single collaborator. Based on Module 3, we set q = 0.67

for the cases where the user is presented with multiple vendors previously authorized by her

collaborators. In all of these cases, the user will select the vendor with the minimal resulting

Aggregate VFCu with probability q .

– Experimental Baseline Model (EBL): the user takes decisions similar to what a random

user of the BL experimental group does. As users in practice are rarely informed of what their

friends have installed before, we do not integrate this knowledge into the model. Hence, we

only account for the case of Module 1, where the user’s previous decisions are concerned.

Based on the fraction of users who mentioned the app’s existing access as a motivation

for their choice, we set the probability of taking history-based decision in this model as



111

Algorithm 1 Simulation Steps

1: Initialize VFCu value to 0 for each user
2: for t ← 0 to N do � N is total number of steps
3: select a random user u0 based on user’s app installation frequency
4: select a random new app a0 based on app’s installation count
5: Ar el := {a0}∪ (set of related apps of a0)
6: Vr el := set of vendors of apps in Ar el
7: r := a random rational number in the range [0,1]
8: if user had installed apps by vendors in V ′ ⊂Vr el then
9: if (r < q(group,‘same vendor’)) then � q is a function of the user decision model; group is the

experimental group
10: select a random vendor v̂ ∈V ′
11: install the app â in Ar el from vendor v̂
12: else
13: install app a0
14: end if
15: else if ∃ (c ∈C (u0) who installed apps by vendors in V ′ ⊂Vr el ) then
16: compute VFCu0 ({v}) for each vendor v in V ′ at this time step
17: select the vendor v̂ ∈V ′ with highest VFCu0 ({v}) at this time step
18: if (r < q(group,‘collaborator vendor’)) then
19: install the app â in Ar el from vendor v̂
20: else
21: install app a0
22: end if
23: else
24: install app a0
25: end if
26: for all u ∈ {u0}∪C (u0) do
27: update Aggregate VFCu for u � recompute it via Equation 5.2.3
28: end for
29: update the average Aggregate VFC over all users
30: end for

q = 0.18.

In the special case of the team collaboration network, users who take history-based decisions

account for their own decisions and the decisions of their team members only. We do not con-

sider that users account for decisions taken by members of other teams. This is to demonstrate

the potential of the privacy indicators under strict conditions.

5.5.2 Simulation Details

We now move to the description of the simulation itself, which is detailed in Algorithm 1. We

had three simulation groups, named after the three decision models: FA group, EHB group,

and the EBL group. The simulation was run until the average number of apps installed across

by users reached 30 apps7. On a high level, at each simulation step, the following actions are

performed:

7Comparatively, mobile users have accessed 26.7 smartphone apps on average per month in the fourth quarter
of 2014 [The15].
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– A user is selected from the collaboration network via a weighted random sampling based

on the assigned app installation frequencies (line 3). This accounts for the diversity of

users’ installation frequencies. An app a0 is selected from the simulation apps’ dataset

via a weighted random sampling based on the actual app installations count in Google

Chrome Store (line 4). That way, popular apps are installed more frequently (as is the case

in practice).

– A user decision is simulated. The user is assumed to be choosing the app a0 or one of its

related apps. This choice is made depending on the user’s decision model, as explained

previously.

– Finally, the average Aggregate VFC is computed based on all users’ Aggregate VFCu .

5.5.3 Simulation Results

To demonstrate the simulation results, we show three types of figures per collaboration net-

work. On a high level, in Figures 5.7a, 5.8a, and 5.9a, we show how the privacy loss (quantified

using the average Aggregate-VFC) in each group evolves as users install more apps. In Fig-

ures 5.7b, 5.8b, and 5.9b, we show ratios of the privacy loss in the two experimental groups

EHB and FA with respect to the baseline EBL group. Finally, Figures 5.7c and 5.8c, and 5.9c

show the actual events contributing to the privacy loss growth, where we can specifically

check the fraction of apps coming from new vendors, those coming from vendors previously

authorized by the user, and those from vendors previously authorized by collaborators.

Results for Individuals’ Networks

Based on these metrics we start by analyzing the results for the individuals’ networks, where

we observe the following:

Curtailed growth of privacy loss: From Figures 5.7a and 5.8a, we notice that the growth of the

privacy loss is visibly curtailed in the cases of EHB and FA groups compared to the baseline

EBL group. This significant divergence demonstrates the efficacy of our HB privacy indicators.

Impact of the network effect: Looking into the ratios in Figures 5.7b and 5.8b, we see that

the privacy loss in the EHB group has dropped by 41% in the inflated network and by 28%

in the authors-based network (both with respect to the baseline). In the FA group, where

users always optimize their privacy, the privacy loss has dropped by 70% in the inflated

network and by 40% in the authors-based network. This higher impact in the case of the

inflated network is because it is a connected graph, unlike the authors-based network, which

is composed of smaller connected components. Nevertheless, we can state that, although our

privacy indicators have a larger effect on highly connected networks, they are still significantly

effective in less connected networks, like the authors-based dataset.

Importance of accounting for collaborators’ decisions: To dive further into events that lead
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Figure 5.7 – Simulation results in the inflated network
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Figure 5.8 – Simulation results in the author-based network
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Figure 5.9 – Simulation results in the teams’ network

to the observed privacy loss patterns, we look into Figures 5.7c and 5.8c. First, we observe

that users in the EBL group are mainly installing new apps from vendors that had no previous

access to their data. This is reflected in the almost linear increase of privacy loss in Figures 5.7a

and 5.8a. Second, we observe that, in the case of the inflated network, users have frequently

been installing apps from vendors with existing access through their collaborators. In fact,

as apparent in Figure 5.7c, this event outnumbers the event of installing from a new vendor.

Third, the number of installations from collaborators’ vendors is also significant in the case of

the authors-based dataset. While it does not outnumber the installations from new vendors
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(due to the low-graph connectivity), this is still enough to lead to 28% and 40% decrease in

the privacy loss in the EHB and the FA groups respectively. Finally, we note that, although the

users are more frequently encountering vendors authorized by their collaborators than by

themselves, the latter event is still significantly impacting the results. This is because users still

incur an incremental privacy loss with vendors authorized by their collaborators while this loss

is zero with vendors they have previously authorized. Accordingly, the obtained optimizations

are a result of users’ accounting for their own and for others’ decisions.

Results for the Teams’ Network

We now discuss the results for the case of the collaboration network where users work in

teams and aim to protect the privacy of the team’s data. We observe the following, based on

Figure 5.9:

Inherent usage of similar apps: From Figure 5.9c, it is clear that the dominant event is that of

users installing apps which have been authorized by other team members before. This is even

in the case of the baseline group (EBL), which was not the case in the individuals’ networks.

We justify that by the fact that we selected apps at each simulation step to match their realistic

installation frequencies. In practice, apps’ installation counts follow a long-tail distribution,

and users tend to mostly install a limited set of apps. That is why team members will naturally

tend to install a set of similar apps.

Curtailed growth of privacy loss: Still, we observe that the trend of slower growth of privacy

loss also applies in the case of teams (Figure 5.9a). As we also observe in Figure 5.9b, the

privacy loss has decreased by 23% for the EHB group and by 45% for the FA group, both with

respect to the baseline group. This implies that there is ample room for privacy optimization

in teams too.

Effect due to internal collaborators: We finally observe that the privacy loss decrease was

achieved via decisions taken by each team’s members independently, without relying on other

teams’ decisions. This highlights the fact that HB privacy indicators can still be effective even

when users do not account for others’ decisions. Obviously, taking the external members’

decisions into account can lead to further optimizations.

In sum, our simulations provide further evidence of the efficacy of using History-based privacy

indicators in a large network of collaborators. It is worth noting too that, although users in

our study were following the EHB decision model, we believe that, in an actual deployment of

such indicators, the model will move closer to the FA model. This is because users are more

protective when their personal data is at risk than when they are put in a role playing scenario

about fictitious data. Moreover, users in our study were exposed to this indicator for the first

time. When users are educated more about this feature, they might be more likely to take

advantage of it.
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5.6 Related Work

5.6.1 Interdependent Privacy

The problem of interdependent privacy has been tackled before in the context of social apps.

The main approaches were high-level game-theoretic or economic modeling.

Biczók and Chia first introduced the concept of interdependent privacy and studied its pres-

ence in Facebook 3rd party apps’ ecosystem [BC13]. They also modeled its impact via a game

theoretic, (2-player, 1-app) model and showed how positive externalities (improved user expe-

rience due to users installing the same app) and the negative externalities (privacy loss) could

affect the users’ app usage behavior. One of the problems they hint at is the absence of risk

signaling, which is what this chapter has tackled.

Pu and Grossklags [PG14] later presented a more elaborate economic model that additionally

accounts for larger groups of users and the interplay among various social network parameters.

They also consider the users’ “other-regarding preferences”, i.e., how much they care about

privacy harms they inflict on their peers. They showed that app rankings do not accurately

reflect the level of interdependent privacy harm the app can cause (a phenomenon that

does not extrapolate to our case of cloud apps, where all apps have the potential to inflict

interdependent privacy harm). They additionally conclude that even rational users who

consider their friends’ well-being might adopt apps with invasive privacy practices at a certain

stage. One commonality with our work is that they also perform a simulation to study the effect

of app adoption decision at scale. However, our simulations are based on graphs that mimic

the real-world collaboration networks (rather than scale-free networks). We also consider

the worst case of selfish users, and we model users’ decisions based on the user study that

we performed. In that sense, the insights derived here can be seen as complementary to the

insights derived in that paper.

In a subsequent work, Pu and Grossklags [PG15] used a conjoint study approach to quantify

the monetary value which individuals associate with their friends’ personal data. They found

that individuals place a significantly higher value on their own personal information than

their friends’ personal information. This further supports our assumption of self-interested

users in this work. The same authors also built on a user survey in [PG16] to assess the factors

affecting users’ own privacy concerns as well as friends’ privacy concerns in the context of

social app adoption. In particular, they found evidence of negative association between past

privacy invasion experiences and the trust in 3rd party apps handling of their own data. They

also found partial support for a positive effect of privacy knowledge on concerns for users’

own privacy and their friends’ privacy.

Other works have also investigated the issue of interdependent privacy in the context of

location privacy [OHS+16] and genomic privacy [HAHT17]. In this work, we are focused on

quantifying the interdependence of privacy in the context of cloud apps before addressing it

from a usable-privacy perspective, thus bridging the gap between the theoretical studies and
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the end-user needs.

5.6.2 Privacy Nudges

This chapter can be categorized under the line of work on privacy nudges, which we have

discussed in the previous chapter (Section 4.8. In that chapter, we presented the first study

the privacy of 3rd party cloud apps and we exposed that almost two-thirds of those apps

are over-privileged. We also introduced a novel privacy indicator for deterring users from

installing over-privileged apps by showing them Far-reaching insights that apps can needlessly

infer from their data (e. g., top topics, faces, or locations of interest). This work, however,

helps users improve their privacy by reducing the vendors with access to their data, even if

the functionality delivered by the vendor abides by the least-privilege principle. Hence, it

complements these approaches and can be deployed alongside any of them.

In addition to the related works on privacy nudges that we discussed in Section 4.8, we also

note the relevant work by Almuhimedi et al., who showed the effectiveness of regularly alerting

users about sensitive data collected by their apps, in encouraging users to review and adjust

the permissions [ASS+15]. Applying such an approach in the context of 3rd party cloud apps

can also be effective in increasing transparency towards the apps’ practices (see our discussion

on transparency dashboards in Section 4.7).

Highlighting the app’s vendor name in the interface, a step which fits naturally into the HB in-

sights interface has been previously shown by Bravo-Lillo et al., to be effective in nudging users

to pay attention to potential malicious vendors appearing in security warnings [BLKC+13].

They also demonstrated that interacting with the vendor’s field was even more effective. In

our user study, the vendor’s name appeared multiple times as a justification for installing/not

installing the app. However, the problem we tackle here is orthogonal to the problem of

inferring (mis)trust from the vendor’s name; it is rather about the ability of users to remember

vendors across multiple, typically far-apart, installations.

5.7 Summary

The findings in this work are the first to concretely delineate the various aspects of interde-

pendent privacy in 3PC apps. One of the major outcomes is that a user’s collaborators can be

much more detrimental to her privacy than her own decisions. Consequently, accounting for

collaborators’ decisions should be a key component of future privacy indicators in 3rd party

cloud apps. We have shown the impact of History-based Insights as a privacy-enhancing tech-

nology in this context, especially that, based on our user study, users are less likely to account

for previous decisions on their own. Our privacy indicators would optimally be implemented

by the CSPs themselves as they control the authorization interface and the application stores.

The indicators can also be realized by third party privacy providers with access to users’ data.

Our approach can also be easily mapped to other ecosystems. In the mobile apps’ scenario, it
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can enable users to reduce the number of vendors with access to her contacts. It can also be

extended to the case where the goal is protection against 4th parties (e.g., ad providers and

data brokers). There, the user can account for data previously held by a 4th party with which

the app vendor cooperates.





Part IIIHandling Language Complexity

119





6 PriBot: Automated QA
for Privacy Policies

6.1 Overview

The previous two parts of this thesis were contributions towards two main problems: how to

protect the data before it leaves the user’s device in the first place and how to protect the data

before it is transferred from the cloud storage provider to a third party app. In this final part,

we consider the complementary problem: how to better understand what privacy and security

guarantees the apps promise. We tackle this from the angle of privacy policies, which are at

the core of the online notice and choice paradigm for virtually all apps and websites (i.e., not

only restricted to third party cloud apps).

Users, however, rarely read these policies when they sign up to new services. Multiple recent

events have shown that this is not due to indifference but rather to the difficulty of sifting

through all the information spread across multiple pages of text [Isa17, Bra17]. For example,

Unroll.me, a free service for removing unwanted subscriptions from users’ email, was recently

reported to be selling information mined from those emails to third parties (e.g., Uber) [Isa17].

After the media reports, a lot of user backlash occurred. However, the reported practices

were already covered by the company’s privacy policies that users had agreed too. Still, it was

never clear for the majority of users that the company’s business model hinged on selling their

emails’ contents to other parties while still advertising the company as a mailbox “clean-up”

service.

Given this inherent user interest in knowing the data practices of service providers on hand and

the difficulty in attaining that within the different user time, effort, and knowledge constraints,

on the other hand, we see an immediate need to address the shortcomings of privacy policies

with a new perspective. Our motivation is not only the user frustration with the current

status quo but also the emerging technologies, which are adding new kinds of user needs. In

particular, this is manifested through UI-limited devices and automated customer support.
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UI-limited Devices. As part of our daily routines, we interact with a large number of UI-

limited devices and services, such as voice-activated digital assistants (e.g., Amazon Alexa

and Google Assistant) and IoT devices (e.g., smart thermostats or door locks). Many of these

devices rely on voice commands as their primary input method. With such conversation-first

devices, the existing techniques of linking to a privacy policy or reading it aloud are not usable;

they might require the user to access privacy information and controls on a different device,

which is not desirable in the long run [SBDC15]. The miniaturization trend has further led

to new classes of small screen devices, such as smartwatches and other wearables. Previous

efforts on standardizing privacy policy content into tables similar to nutrition-labels [KBCR09]

are difficult to fit on such devices. Even the machine learning techniques of analyzing privacy

policies, such as [ZB14], have so far followed a one-size-fits-all approach by providing all users

with the same interface, regardless of their privacy interests.

Customer Support. Similar issues, related to the inadequacy of current methods for privacy

notice delivery, are emerging in another domain: customer support. As a new trend in the

industry, automated customer support allows companies to respond to customer inquiries

in real time and around the clock. Through chatbots and other automated interfaces (e.g.,

Twitter bots), companies interact with their customers on a variety of topics, including privacy.

We have sampled Twitter for companies’ tweets that mention the term “privacy policy" in

response to customer inquiries. We found that the number of such tweets has increased 20x

between 2008 and 2016. Existing approaches for presenting privacy policies to users cannot

apply in this context; they are incapable of providing concise answers to privacy-related

questions posed in natural language.

Our vision to address such users’ concerns is by treating the privacy policy as an unstructured

data source rather than a user interface. Our approach breaks the concept of privacy policy

into a three-layered framework. On the bottom is the Data Layer, where we have the textual

content of these policies. In the middle, is the Machine Learning layer, which involves the

data analysis algorithms that we built to classify the content of privacy policies and to answer

questions about them. On the top is the User Interface (UI) Layer, which leverage the results

of the automated analysis to relay the information to the user in novel ways.

In this chapter, we develop an instantiation of this framework via PriBot, the first automated

Question-Answering (QA) system for privacy policies. The PriBot system takes a previously

unseen privacy policy and uses it to answer, in real time with high accuracy and relevance,

user questions that are posed in free form.

At the core of PriBot, we propose a novel, deep-learning-based algorithm for matching users’

questions with answers from the privacy policy. This algorithm accounts for the intricacies of

privacy policies that render traditional retrieval or QA systems suboptimal in this case. Specifi-

cally, our approach can handle questions about high-level issues, such as services sharing user

information with third parties, and fine-grained issues, such as whether companies release
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data to legal authorities. PriBot can provide the answers in two alternative forms: via excerpts

extracted from the privacy policy itself, and via high-level interpretations of these excerpts.

PriBot provides substantial benefits for both users and service providers. It allows the user to

pose a question, in natural language, about the privacy practices of a certain provider. PriBot,

whether integrated as a chatbot, a voice assistant, or a social media bot, responds back with a

relevant and concise answer from the company’s privacy policy. Moreover, PriBot enables

providers to deliver privacy notices through their UI-limited devices and services. Furthermore,

companies can use PriBot to add automated support for their privacy-related questions from

consumers without requiring a large knowledge-base of hard-coded rules. PriBot assists

companies by streamlining processes and training for customer service representatives to

handle privacy inquiries.

Contributions

In this chapter, we make the following key contributions:

– We propose a novel deep learning approach for ranking answers with respect to ques-

tions in the privacy domain (Sections 6.3 and 6.4). Our approach consists of a hierarchy

of neural-network classifiers that accounts for both the high-level aspects and the spe-

cific pieces of information present in privacy policies. We evaluate its performance

against multiple traditional QA techniques that we transplanted into the privacy policies

context. We show that our best algorithm consistently surpasses the predictive accu-

racy of traditional QA retrieval techniques on standard metrics (Section 6.6). We also

demonstrate its high user-perceived utility via a user study, where it returned a satisfying

answer among the top-3 for 91% of the questions (Section 6.7).

– We create a new test dataset of user-posed, privacy-related questions from Twitter.

These questions represent real-world and unaltered user-company interactions about

privacy practices. They further have the advantage of avoiding subject bias, which is

likely to happen when eliciting privacy-related questions from individuals (Section 6.5).

– We implement PriBot as an online, real-time, text and voice-activated chatbot (Sec-

tion 6.9). The chatbot delivers answers segmented from the policy itself or answers

generated from high-level interpretations of the policy. Our chatbot is the first practical

system for answering questions about privacy policies. It will be available to the public

via a web interface with the release of this thesis.

6.2 System and Data Overview

In this section, we describe the PriBot approach at a high level, along with the datasets we

utilize to build it.
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Figure 6.1 – High-level system overview of PriBot.

6.2.1 System Overview

From a high-level perspective, PriBot takes as input the user’s questions along with a privacy

policy URL to retrieve suitable answers. Fig. 6.1 provides a high-level description of PriBot.

The operation of PriBot involves two main components, preprocessing the policy and the QA

ranking algorithm.

Policy Pre-processing. PriBot pre-processes the privacy policy through its segmenter com-

ponent. The segmenter first extracts the policy content from the policy’s webpage and then

partitions it into a set of adequately-sized and semantically coherent fragments. These seg-

ments constitute a pool of candidate answers from which PriBot chooses the answer to the

user’s question. We elaborate further on the policy pre-processing in Section 6.3.

QA Ranking Component. At runtime, the main task of PriBot is to match the user’s ques-

tion to one or more segments of the privacy policy. PriBot involves a QA ranking component,

specialized for the privacy setting, to rank the policy segments according to their “closeness”

to the posed question. In this chapter, we contribute a new architecture of neural networks,

termed the Hierarchical model, that accounts for the multi-level complexity of privacy

policies (Section 6.4.3). We compare it against two other models that we build: the Retrieval

model, inspired by traditional information retrieval (Section 6.4.2) and the SemVec model that

takes a neural-network approach to retrieval (Section 6.4.3).

Friendly Summary Approach. We also propose an answer-generation algorithm that sum-

marizes the retrieved policy fragments into a short-form, more readable response. Employing

this approach, PriBot automatically labels the segments matching the user’s question accord-

ing to the type and purpose of privacy practice. It uses these labels to generate an answer via a

custom grammar; these answers are considerably shorter and more readable. We elaborate on

this answering approach in Section 6.8.
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Figure 6.2 – The OPP-115 dataset hierarchy [WSD+16].

6.2.2 Data Overview

To answer the wide range of free-form questions from users, PriBot is data-driven by de-

sign. Prior to this work, there were no publicly available datasets for privacy-related question

answering that we can readily use to train PriBot’s neural networks. To address this chal-

lenge, we leverage the Online Privacy Policies (OPP-115) dataset, introduced by Wilson et

al. [WSD+16]. We re-purpose this classification-oriented dataset as a building block for our

QA ranking approaches (SemVec and Hierarchical). We do not apply this dataset in the tra-

ditional classification sense as it is inapplicable for the QA context. Instead, we use this dataset

to train a set of custom neural networks to extract feature vectors from the user questions and

policy segments, which we use later for answer ranking.

OPP-115 Dataset for QA Purposes

The OPP-115 dataset contains 115 privacy policies manually annotated by skilled annota-

tors (law students). In total, the dataset has 23K annotated data practices. The annotations

were at two levels. First, paragraph-sized segments were annotated according to one of

the 10 high-level categories in Fig. 6.2 (e.g., 1st Party Collection). Then, annotators select

parts of the segment and annotate them using attribute-value pairs, e.g., Information Type:

Location Information Type, Purpose: Advertising, etc. In Fig. 6.2, we only show the

mandatory attributes that should be present in all segments. There were also optional at-

tributes that can sometimes occur in each category. In total, there were 16 distinct mandatory

attributes and 94 distinct values across all attributes. For space constraints, we do not show all

the attribute values in Fig. 6.2. We use this dataset to train a set of neural networks to predict

the higher-level categories and the attribute-value pairs given a policy fragment as input.

Combined Policies Dataset

We have collected a corpus of 16,500 privacy policies of Android apps from Google Play

and augmented it with a diverse corpus of 1,000 privacy policies collected by Ramanath et

al. [RLSS14]. We combine these two policies datasets with the raw policies from the OPP-115

dataset, to form an unlabeled corpus of around 16,615 policies, to which we refer henceforth

as the Combined Policies Dataset. We utilize our Combined Policies Dataset to seed the

Retrieval model and to segment the policies into coherent answers.
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Figure 6.3 – List merging during the policy segmentation.

6.3 Policy Pre-processing

The policy preprocessing includes two steps: extraction and segmentation. Other than the

link to the privacy policy, the preprocessing requires no other information or prior knowledge.

Policy Extraction. Given the URL of the privacy policy (provided by the administrator of

PriBot for instance), the segmenter scrapes the web page containing the privacy policy using

a headless browser (we use PhantomJS in our implementation). Then, it removes all irrelevant

HTML elements including the scripts; header, footer, side and navigation menus; comments;

CCS and header texts (< h1 > to < h6 >).

Second, the segmenter handles the lists inside the policy. Recalling that segments constitute

the answers pool of PriBot, lists require a special treatment as counting an entire list as a

segment could result in overly long segments. On the other hand, treating each list item as an

independent segment is problematic as list elements are typically not self-contained. Fig. 6.3

shows a list from Google’s privacy policy1. Obviously, each of the inner list items (shaded)

cannot function as a standalone segment.

Our handling of the lists involves two techniques, one for small list items (the inner list of

Fig. 6.3) and another for longer list items (the outer list of Fig. 6.3). The segmenter traverses

every list in the policy (< ul > tags). If the largest list element is less than 20 words, then

the segmenter combines the elements with the introductory statement of the list, thereby

converting the list (< ul > element) into a paragraph (< p > element). This is highlighted by

the first two steps of Fig. 6.3. For those lists with long items, the segmenter transforms the

list into a set of paragraphs. Each paragraph is a distinct list element prepended by the list’s

introductory statement as highlighted by the third step in Fig. 6.3. The resulting paragraphs

constitute better standalone answers compared to simply taking the list items out of their

context.

1https://www.google.com/policies/privacy, last modified on Aug. 29, 2016 and retrieved on Feb. 14, 2017
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Policy Segmentation. The segmenter performs initial and coarse-level segmentation by

breaking down the policy according to the HTML < di v > and < p > tags. The < p > elements

include paragraphs in the original policy and the newly constructed ones from the lists. The

output of this step is the initial set of segments. Some of resulting segments might still be long;

the segmenter further breaks them down by passing each of them to an out-of-the-box text

segmenter.

Our choice for the text segmenter is GraphSeg [GNP16], a recently proposed unsupervised

algorithm that generates semantically coherent segments. GraphSeg is an attractive choice

since it makes no assumptions about the structure of the input text. It relies on word embed-

dings to generate segments as cliques of related (semantically similar) sentences. To employ

GraphSeg, our custom word embeddings are generated by training the fastText language

model [BGJM16] on the Combined Policies Dataset. Finally, the segmenter outputs a series of

fine-grained segments.

6.4 Question-Answering Approaches

The primary challenge of PriBot is to develop QA ranking algorithms that match the user’s

question with relevant and accurate answers. The complexity of this task can be motivated by

the question: “To whom do you expose my content?.” While simple, this sentence embodies

four issues to be considered while developing the QA ranking algorithms. First, the terms in

the question might not occur at all in the privacy policy, despite being common in everyday

usage. Second, even if a term like “content” occurs in the policy, it does not indicate the general

topic (e.g., whether the context is about third-party sharing or first party collection). Third,

words tend to be used differently in the question’s context than a policy’s context. Policies

typically use a pronoun like “you” to indicate choices the user has and “we” to indicate what it

does; users mention “you,” in contrast, to refer to the company. Finally, users typically pose

questions in general terms, without specifying their intent in exact words. The answers should

not exhibit the same level of generality as to not miss the information of interest to the user.

With these challenges in mind, we developed three QA ranking approaches. We start with our

unsupervised approach (called Retrieval), inspired by the state-of-the-art in term-matching

retrieval algorithms. Retrieval constitutes the baseline with which we compare the rest of

our QA approaches. We then describe SemVec, our approach that uses word embeddings

and neural networks, to bridge the semantic similarity gap between questions and the policy

segments. Finally, we present our further optimized approach, Hierarchical, that utilizes

a hierarchy of classifiers, accounting for the discrepancy between questions’ and answers’

structures.
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6.4.1 Problem Formulation

The input consists of a user question Q about a privacy policy P . PriBot first generates a

pool of candidate answers {A1, A2, . . . AM } by segmenting the policy (cf. Section 6.3). Each

question comprises the terms {q1, q2, . . . qn}. Similarly, an answer is composed of the terms

{a1, a2, . . . an}. A subset G of the answer pool constitutes the ground-truth. We consider an

answer Ak as correct if Ak ∈ G . We consider Ak as incorrect if G is not empty and Ak ∉ G .

If G is empty, we denote the case as unanswerable. This can happen when the answer to

the question does not exist in the privacy policy. We formulate the problem as a one-shot

question-answering problem, in which PriBot returns the best answer without requesting

further question refinements from the user. This formulation does not preclude conducting a

dialog with our system, provided that users pose standalone questions. The ranking algorithms

introduced below, rank each potential answer (policy segment), A, by computing a proximity

score s(Q, A) between A and each question, Q. Before passing the question and candidate

answers to the ranking algorithms, PriBot processes them with traditional tokenization

techniques (Treebank tokenizer), converts their text into lower case and replaces the numbers

with words.

6.4.2 Baseline Retrieval Approach

To obtain a reasonable baseline to evaluate our QA algorithm against, we developed a ranking

mode that builds on the BM25 algorithm [Rob04], which represents the state-of-the-art in

ranking models based on term-matching. It has been employed successfully across a range of

collections and search tasks, such as the TREC evaluations [BGH+97]. Given both a question

Q (composed of terms qi ) and an answer A, we compute the score s(Q, A) as:

n∑
i=1

IDF(qi ) · f (qi , A) · (k1 +1)

f (qi , A)+k1 ·
(
1−b +b · |A|

avgal

) , (6.1)

where f (qi , A) is the frequency of term qi in A, IDF(qi ) is the inverse document frequency

computed as log(N /df (qi )), N is the total number of answers, df (qi ) is the number of answers

containing qi , and avgal is the average answer length (in words). The default parameters were

taken as k1 = 1.6 and b = 0.75.

This algorithm is highly dependent on the presence of distinctive words in the question that

link it to the answer but has the advantage of being unsupervised. In other words, it does

not require training over a dataset of annotated privacy policies. We take a step to leverage

this by pre-computing the IDF value for each word using a large corpus of unlabeled data.

In particular, we segment the Combined Policies Corpus of Section 6.2.2 to automatically

generate answers. Then, we use those answers to compute the IDF, instead of solely relying on

one policy’s answers. With this, Retrieval provides an even stronger baseline against which

we can evaluate more elaborate approaches.
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6.4.3 Neural Network-based QA

Our second class of approaches relies on supervised learning, which leverages the OPP-115

dataset, to address the challenges we described earlier (related to term matches and usage).

The idea consists of training a supervised model on a proxy task and then using this trained

model as the basis for a QA algorithm. We employ neural network models, which have been

shown to be effective in matching non-factoid questions with answers [FXG+15, TdSXZ16].

Our rationale behind using neural networks is bridging the semantic gap between users and

privacy policies. This can enable users to pose-free form questions, without requiring the ques-

tions to correspond to terminology used in the privacy policies. In what follows, we present

our two QA approaches that are based on neural networks: SemVec and Hierarchical.

Handling the Vocabulary Discrepancy

Traditional QA approaches assume that a representative set of questions and answers are both

available at training time. In our setting, the distribution of the vocabulary terms that people

use in their questions differs from that of the privacy policies’ vocabulary. To handle this

issue, we take advantage of the generalization power of word embeddings, which are vectors

representing the “embeddings” of English words in the di -dimensional and continuous vector

space. With these vectors, words of similar semantics, such as “delete” and “erase” are close

in the embeddings space. We use these vectors as inputs to the neural network. Note the

departure from the Term-Matching approach where the features are the terms themselves.

Specifically, we utilize the GloVe vectors [PSM14], which include 400,000 terms, pre-trained

on a large and general corpus, consisting of the whole English Wikipedia and the Gigaword

corpus. We made the decision to fix the embeddings of the input words during the training

process. This is to account for words that do not occur in the specific vocabulary of the training

set (i.e., the privacy policies in our case). If the embeddings were set to be trainable, words

like “delete” and “erase” might no longer be close in the embeddings space if “erase” does not

occur enough in the privacy policies. Another advantage of the word embeddings is that they

indirectly mitigate the issue of discrepancy in pronouns usage in the questions vs. the policies.

Pronouns are typically close in the embeddings space. Hence, replacing the pronoun “you” in
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a sentence by another pronoun “I” will not shift the combined sentence representation.

Segment Classification with CNNs

A building block of our two approaches is a multi-class classifier that uses convolutional

neural networks (CNNs). This block is driven by the OPP-115 dataset, which is rich in class

information for each segment of the policy. We utilize the classification network as a “proxy

task” that will help us obtain a rich representation of the segments in the policy. An alter-

native building block for our QA problem would have been a proxy task directly trained to

evaluate “phrase similarity.” In that case, the training data can be constructed by labeling

two phrases as “similar” if the skilled annotators gave them the same attribute-value label.

For example, the two phrases “better able to adapt our services and provide you with a bet-

ter experience” and “internal market research to help us better serve you” were both labeled

as {Purpose: Analytics-Research}. The phrase similarity task assumes, however, that

phrases are single-labeled. In practice, the phrases often contain a mixture of attribute-values,

such as mentioning both the type and purpose of information collection in one sentence.

The architecture we use for this building block is presented in Fig. 6.4. An input segment

is composed of terms, which are represented using their embeddings (this happens at the

embeddings layer). Next, the embeddings pass through a Convolutional layer. This layer

applies a nonlinear function (a rectified linear unit (ReLU) in our case) to each window of

k words in a phrase. Thus, it transforms each k-words into a dc -dimensional vector, which

accounts for the co-occurrences of words in this window. The max-pooling layer combines

these vectors by taking the maximum value observed in each of the dc channels over all the

windows (to detect the most important features). This vector passes through the first dense

(i.e., fully connected) layer, which is again followed by a max-pooling operation and a ReLU

activation function. Finally, the vector arrives at the second dense layer. A softmax operation

is applied to the output of this layer to obtain probability distribution across the possible

output classes. This architecture is a simplified variant of the sentiment classification network

introduced by Kim [Kim14]. We particularly reduced the network parameters to account for

the smaller dataset we have, thus improving the classifier’s performance.

Semantic Vector QA Approach (SemVec)

Our deep-learning model builds on the previously introduced CNN classifier introduced in

Section 6.4.3. We train that classifier with the segments from the OPP-115 dataset, labeled

with attribute values. An example segment is “geographic location information or other

location-based information about you and your device” that was labeled as {Information

Type: Location}. We take all the attribute-values as a single pool and train the classifier to

distinguish among them.

After training this model, we extract a “semantic vector”, which is a representation vector that
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Table 6.1 – SemVec parameters and aggregate metrics

Parameter Value

Embeddings size 200
Num. of filters 750
Filter size 3
Dense Layer size 200
Batch size 40

Metric Av. Value

Precision 0.56
Recall 0.54
F1 0.54
Support 200

accounts for the distribution of value labels in the input text. We extract this representation

as the vector at the output of the ReLU activation layer preceding the second dense layer (as

shown in Fig. 6.4). As we use a classification task for training, phrases with similar classification

distribution exhibit similar segment representations.

This representation further accounts for the co-occurrence of the same words in multiple

contexts, despite the fact that the dataset is not designed for multi-label classification. The

semantic vector allows us to rank the similarity between a question (denoted by vector rQ )

and an answer (denoted by vector r A) in our QA system using the Euclidean similarity, defined

as 1/(1+||r A − rQ ||2). This approach has been previously shown to be successful in the image

retrieval domain, where image representations learned from a large-scale image classification

task were effective in visual search applications [RSCM14]. However, we are the first to apply

it for analyzing legal text, such as privacy policies.

Model Tuning. In order to obtain the semantic vectors, we proceeded in training our model.

The training data for the CNN classifier involves around 15,000 (segment,label) tuples, ex-

tracted from the annotated OPP-115 dataset. We reserve 9,000 tuples as a validation set. The

value-labels fall into 81 classes as we select classes with a minimum of 10 labels in each. We

tuned the parameters of the classification network by running a grid-search and selecting the

best-performing model. The selected parameters along with the aggregate statistics are pre-

sented in Table 6.1. In Table 6.2, we present the results of value-level classification performed

across 81 classes. For space constraints only the first 50 classes are shown. We also show in

Figure 6.5 the confusion matrix between all the predicted and the true labels. We ran stratified

cross validation with five folds on the whole dataset to obtain the final results. We obtain

a micro-average precision of 0.56 (i.e., the classifier is on average predicting the right label

across the 81 classes in 56% of the cases – compared to 3.6% precision for a random classifier).

Although we do not rely on the classification outputs per se, this performance is crucial for the

adequacy of the segment representations we obtain.

Hierarchical Classification Approach

One limitation of the SemVec approach discussed in Section 6.4.3 is that it is trained to detect

similarities between policy excerpts representing specific data practices, without accounting
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Figure 6.5 – Confusion matrix for the value-level classifier among the 81 classes.

for high-level categories. For example, consider the following two privacy policy excerpts:

1. “third-party application providers may automatically collect real-time geographic location

information or other location-based information about you and your device . . . ”

2. “we automatically collect and store certain information (. . . ) including: (. . . ) your mobile

device’s geographic location (specific geographic location if you’ve enabled collection of that

information . . . . ”

The annotators labeled the italicized parts of those excerpts as {Information Type: Location}.

However, the whole segment that includes those excerpts was labeled as 3rd Party Collection

in the first case and as 1st Party Collection in the second case. To tailor for these dif-

ferences, we propose Hierarchical, a new model that accounts for both the high-level

categories and the finer-grained attribute values.

Hierarchical consists of building a hierarchy of classifiers that are individually trained on

handling specific parts of the problem, as shown in Fig. 6.6. Given a segment x and its la-

bels from the OPP-115 dataset, we first train a classifier that provides us with a probability

distribution across the high-level categories C (i.e., P (C |x)). This classifier uses the same

model we presented in Fig. 6.4. Next, we have a set of classifiers that are trained on the value-

level; each classifier is trained to classify among the values of a single attribute. For exam-
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1st Party Collection

Category-level Classifier 

Info Type Purpose

LocationFinancial

Collection Mode

LegalMarketing On-website From 3rd party

Figure 6.6 – Overview of Hierarchical QA Approach.

ple, we have an Information Type classifier that provides a probability distribution across

the values: financial, location, survey data, user profile, health, personal

identifiers, demographics, cookies, contact information, device IDs, online

activities, and computer information. More formally, we have the set V = {V 1, . . . ,V K }

of all possible subsets of values, and the classifiers will produce P (V j |x)∀V j ∈V , where V j is

the set of values under a given attribute.

As we train the two classifiers (category- and value-level) independently, we obtain the joint

probability distribution as P (C ,V |x) = P (C |x) ·P (V |x). This distribution accounts for both

the distribution across the value labels as well as for the high-level categories.2 The similarity

score between two segments is computed as the proximity between these distributions. For

this, we rely on the Hellinger distance, which quantifies the similarity between two probability

distributions J = ( j1, . . . , jk ) and L = (l1, . . . , lk ),

H(J ,L) = 1�
2

√√√√ k∑
i=1

(
√

j i −
�

l i )2. (6.2)

We compute the similarity between a question Q and an answer A as 1/(1+H (P A ,PQ )), where

with P A = P (C ,V |A) and PQ = P (C ,V |Q).

Model Tuning For training the value-level classifiers, we used similar parameters to those

of Table 6.1. For the high-level classifier, we tune the parameters using grid-search. We

used a training set of 4,700 categories labels of segments from the OPP-115 dataset and a

tuning set of 1,170 labels. Similar to Wilson et al., OPP-115 dataset [WSD+16], we consider the

attributes of the Other category in Fig. 6.2 as separate classes. Compared to Table 6.1, the best

performing model had 2,000 filters and a dense layer of size 100. We report the classification

results in Table 6.3. As we do not have access to the actual split between the training and

the testing sets in the OPP-115 paper [WSD+16], we report the results based on five folds

stratified cross-validation, and we obtain a micro-average precision of 0.75. By comparison,

2The product is only computed for attribute-value labels descending from each category.
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the best performing SVM model trained on word embeddings in the OPP-115 paper [WSD+16]

had a micro-average precision and recall of 0.66 .3 Therefore, our CNN-based classification

approach significantly improves performance over prior work.

Addressing the generality issue. As we described earlier, users’ questions can often be

generic. Matching such questions with general answers is not desirable as these answers would

be from introductory or generic sentences, lacking the specific details. We address this issue on

the levels of category and value labels. First, we exclude clearly generic answers from consider-

ation. This is done by removing answers that are classified into the Introductory/Generic

category with a probability exceeding a threshold t (we choose t = 0.3 in our evaluation).

These answers typically do not contain relevant details to users’ questions and come at the

top or the end of the policy. Second, we benefit from the generic labels at the value level in

the OPP-115 dataset. For example, (e.g., Generic Personal Information is the annotated

label when the particular information type is unspecified). Our strategy is to exclude such

classes at training time rather than prediction time. We found that this forces the question

and the answer to be classified under more precise labels, even when the question is generic.

That way, general questions are more likely to be matched with specific answers. This does not

affect the case when the question is already labeled with specific labels as these are already

matched together.

3Note that although the testing set was not available, we evaluated our model with different random sets of
similar sizes and the performance was consistently superior.
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Table 6.2 – Classification results for the value-level classifier across 81 classes (first 50 are
shown)

Category Prec. Recall F1 Support

action-third-party-receive-shared-with 0.83 0.66 0.73 589
action-first-party-collect-on-website 0.43 0.30 0.36 509
purpose-basic-service-feature 0.48 0.48 0.48 466
personal-information-type-contact 0.84 0.77 0.80 441
personal-information-type-generic-personal-information 0.70 0.59 0.64 414
purpose-advertising 0.80 0.62 0.70 407
purpose-additional-service-feature 0.41 0.24 0.30 395
purpose-marketing 0.63 0.68 0.65 367
personal-information-type-cookies-and-tracking-elements 0.56 0.73 0.64 365
purpose-analytics-research 0.66 0.57 0.61 358
personal-information-type-user-online-activities 0.61 0.57 0.59 301
purpose-service-operation-and-security 0.62 0.57 0.60 251
choice-type-opt-in 0.42 0.52 0.46 221
purpose-personalization-customization 0.67 0.72 0.69 203
choice-scope-collection 0.20 0.29 0.24 188
personal-information-type-ip-address-and-device-ids 0.46 0.61 0.52 174
choice-scope-first-party-use 0.30 0.34 0.32 163
choice-type-dont-use-service-feature 0.27 0.29 0.28 157
personal-information-type-location 0.60 0.60 0.60 154
purpose-legal-requirement 0.75 0.81 0.78 142
personal-information-type-computer-information 0.67 0.71 0.69 142
personal-information-type-financial 0.72 0.70 0.71 139
choice-type-opt-out-link 0.62 0.50 0.56 130
access-type-edit-information 0.75 0.66 0.70 120
choice-type-browser-device-privacy-controls 0.78 0.70 0.74 113
audience-type-children 0.89 0.79 0.84 112
security-measure-generic 0.64 0.82 0.72 110
personal-information-type-demographic 0.74 0.58 0.65 110
access-scope-user-account-data 0.29 0.17 0.21 101
choice-scope-use 0.19 0.25 0.22 97
action-third-party-collect-on-first-party-website-app 0.15 0.24 0.19 79
personal-information-type-user-profile 0.22 0.39 0.28 77
choice-type-opt-out-via-contacting-company 0.51 0.64 0.57 77
action-third-party-track-on-first-party-website-app 0.16 0.34 0.22 77
choice-scope-first-party-collection 0.15 0.13 0.14 69
choice-scope-third-party-sharing-collection 0.44 0.40 0.42 68
purpose-merger-acquisition 0.66 0.94 0.78 63
choice-type-third-party-privacy-controls 0.41 0.24 0.30 59
change-type-privacy-relevant-change 0.74 0.73 0.73 55
notification-type-general-notice-in-privacy-policy 0.62 0.78 0.69 51
choice-scope-both 0.14 0.10 0.11 51
choice-type-first-party-privacy-controls 0.19 0.42 0.26 48
action-first-party-collect-in-mobile-app 0.34 0.58 0.43 48
action-third-party-see 0.25 0.40 0.30 43
personal-information-type-personal-identifier 0.23 0.60 0.34 42
notification-type-personal-notice 0.79 0.50 0.61 38
audience-type-californians 0.77 0.69 0.73 35
notification-type-general-notice-on-website 0.69 0.71 0.70 34
security-measure-secure-data-transfer 0.77 0.61 0.68 33
security-measure-data-access-limitation 0.48 0.39 0.43 33

Average 0.56 0.54 0.54 8956
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Table 6.3 – Classification results at the category level.

Category Prec. Recall F1 Support

1st Party Collection 0.77 0.82 0.79 328

3rd Party Sharing 0.76 0.82 0.79 268
User Choice/Control 0.68 0.73 0.70 101
Introductory/Generic 0.79 0.65 0.71 136
Data Security 0.77 0.82 0.80 62
Specific Audiences 0.73 0.72 0.72 85
Privacy Contact Info 0.71 0.71 0.71 56
Access, Edit, Delete 0.72 0.53 0.61 40
Practice Not Covered 0.60 0.32 0.42 37
Policy Change 0.81 0.88 0.84 33
Data Retention 0.75 0.21 0.33 14
Do Not Track 0.78 1.00 0.88 7

Average 0.75 0.75 0.74 1167
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6.5 Evaluation Methodology & Dataset

We assess the performance of PriBot’s QA ranking approaches from two angles: the predictive

accuracy (Section 6.6) of the QA models and the user-perceived utility (Section 6.7) of the

provided answers. This is motivated by research around recommender systems evaluation,

where the model with the best accuracy is not always rated to be the most helpful by the users

(see the work by Knijnenburg et al., [KWH10]).

In particular, we evaluate PriBot using a set of real-world, user-posed, and privacy-related

questions, collected from Twitter. These questions represent user-company interactions about

privacy practices. This approach has the advantage of avoiding subject bias, which is likely to

happen when eliciting privacy-related questions from individuals, who will not pose them

out of genuine need. We crawled Twitter to obtain questions that represent realistic privacy-

related concerns of users, in their words. This collection methodology allows us to achieve

high ecological validity as we collect real-world privacy questions from real user interactions

with companies in a medium in which PriBot could be employed and without explicitly

soliciting users’ inputs via a survey.

Instead of directly searching for questions on Twitter, we searched for reply tweets that direct

the users to a company’s privacy policy (e.g., using queries such as "filter:replies our

privacy policy" and "filter:replies we privacy policy"). We then backtracked

these reply tweets to the (parent) question tweets asked by customers to obtain a set of

4,743 pairs of tweets. As customary in computational social science research [OLT16], we dis-

till this initial dataset, filtering the noise via heuristics, to reduce the human labeling effort. In

our case, we filtered the question tweets to keep those containing question marks and at least

four words (excluding links, hashtags, mentions, numbers and stop words). We also selected

the pairs where the reply tweet included a valid link. This link is almost always directing users

to the privacy policy, which automates our answer generation during the evaluation of PriBot.

This stage resulted in 260 pairs of valid question-reply tweets.

Next, the author and another member of the research team manually annotated each of the

tweets in order to remove question tweets (a) that are not related to the privacy policies, (b)

to which the replies are not from the official company account, and (c) with inaccessible

privacy policy links in their replies. The level of agreement (Cohen’s Kappa) among both

annotators for the labels suitable vs. unsuitable was almost perfect (κ= 0.84) [LK77]. The

two annotators agreed on 231 of the question tweets, tagging 182 as suitable. As we will

evaluate the answers to these questions with a user study, our estimates of an adequately

sized study lead us to randomly sample 120 tweets out of the tweets labeled as suitable. We

provide these tweets in Appendix C, and we henceforth refer to them as the Twitter QA Dataset.

The size of our question test set (# = 120) is consistent with other QA evaluation contexts. For

example, the Text REtrieval Conference (TREC) included a question answering track each year

(till 2007) to compare the performance of different QA systems on a given question set. The

number of test questions of a particular type (e.g., those of list or definition types) is usually
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less than one hundred [VB03, DKL07].

6.6 Accuracy Evaluation

In this section, we evaluate the predictive accuracy of the QA models by comparing their

predicted answers against expert-generated ground-truth answers for the questions of the

Twitter QA Dataset from Section 6.5. We consider four evaluation conditions. The first three

correspond to the three QA approaches (Retrieval, SemVec and Hierarchical) and the

fourth to a control approach, Random. In the latter, questions are answered with randomly

chosen segments from the policy.

6.6.1 Ground-truth Generation

To generate the ground-truth, skilled annotators, represented the author and another member

of the research team, were given the user’s question (tweet), and the segments comprising

a policy (generated from the privacy policy URL in the answer tweet based on Section 6.3).

Each policy consists of 45 segments on average (min=12, max=344, std=37). Each annotator

selected, independently, the subset of these segments which they consider as best responding

to the user’s question. This annotation took place prior to PriBot generating its answers to

avoid any bias. While deciding on the answers, the annotators accounted for the fact that

multiple segments of the policy might answer a question. For generic or ambiguous questions,

they included, in the answer set, both the general and specific segments that address the

question. Moreover, given that the annotation is a highly time-demanding task (takes around

6 minutes per question per annotator, excluding consolidation time), we limit the labeling to

60 questions (i.e., to around 2700 segments in total).

After finishing the individual annotations, the two experts met and consolidated the differ-

ences in their labels to reach an agreed-on set of segments, each assumed to be answering the

question. We call this the ground-truth set for each question. The annotators agree on at least

one answer in 88% of the questions for which they found matching segments, thus signifying

a substantial overlap. For questions with the ground-truth containing two or more answers,

the annotators agreed on at least two of these answers in 76% of the questions.

6.6.2 Accuracy Results

We generated, for each question, the predicted ranked list of answers according to each QA

model. In what follows, we describe our approach for evaluating the predictive accuracy of

these models.
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(a) top-k score (b) Precision@k

(c) Recall@k (d) NDCG

Figure 6.7 – Metrics for various values of k, with the color code being:
Random Retrieval SemVec Hierarchical

QA Metrics

We start by reporting a widely used and easily interpretable metric, the top-k score, which

denotes the portion of questions having at least one correct answer in the top k returned

answers. The top-k score has a direct usability implication: the higher it is for low values of

k, the less information the user has to process before reaching a correct answer. We show in

Fig. 6.7a how the top-k score varies as a function of k. Hierarchical model has the best

performance over the other three models. It achieves 0.30, 0.55, 0.64, and 0.72 for k varying

from 1 to 4. As k increases, the differences between the various models become less significant.

At k = 7, the Randommodel is already as good as the Retrieval and the SemVecmodels, which

highlights the importance of achieving higher top-k score at lower k. We also observe that

the Retrieval and SemVec models are trading places for the second best performing model,

with the Retrieval model being better than SemVec at k = 1. This is not entirely surprising.

We seeded Retrieval, which is based on term-matching, with a large corpus of unsupervised

policies, thus improving its performance on answers with matching terms. However, it falls

short when retrieving the other answers with semantic similarity (those with non-matching

terms) as evident from the higher values of k.

To confirm this observation, we evaluated Precision@k (i.e., average proportion of retrieved
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Table 6.4 – MAP and MRR metrics with the expert evaluation.

Random Retrieval SemVec Hierarchical Emb.Variant

MAP 0.23 0.33 0.34 0.40 0.28
MRR 0.32 0.47 0.40 0.50 0.35

top-k answers that are correct 4) in Fig. 6.7b and the Recall@k (average proportion of correct

answers that are retrieved in the top-k) in Fig. 6.7c. As evident from both plots, the SemVec

model exhibits a clear advantage over Retrievalwith respect to both metrics for k > 1. Hence,

our decision to consider the semantic similarity between questions and answers pays off as

it exhibits a superior performance over term-matching. It is also clear from both plots that

Hierarchical performs the best among the QA approaches.

Policy Length

The previous metrics (namely top-k score, Precision@k, and Recall@k) suffer from two

shortcomings. They do not capture how presenting the users with more choices affects their

user experience as they need to process more text. Also, because of their nature, these metrics

attain higher values for short policies that have few potential answers. A better metric that

accounts for both shortcomings is the Normalized Discounted Cumulative Gain (NDCG) [JK02].

Intuitively, it indicates that a relevant document’s usefulness decreases logarithmically with

the rank. The DCG part is computed as DCGk =∑k
i=1

r eli
log2(i+1) , where r eli is 1 if answer A[i ] is

correct and 0 otherwise. NDCG at k is obtained by normalizing the DCGk with the maximum

possible DCGk across all values of k. We show in Fig. 6.7d the average NDCG across questions

for each value of k. It is clear that the Hierarchical model consistently exhibits superior

NDCG and that the SemVec approach is clearly advantageous over the Retrieval model for

k > 1. This indicates that the neural networks models are poised to perform better in a system

where low values of k matter the most. To further focus on the effect of policy length, we

categorize the policy lengths (#segments) into short, medium, and high, based on the 33rd

and the 66th percentiles (we split at #segments of 28 and 46). We then compute a metric

independent of k, namely the Mean Average Precision (MAP), which is the mean of the area

under the precision-recall curve across all questions. Informally, MAP is an indicator of whether

all the correct answers tend to get ranked highly. We see from Fig. 6.8 that, for short policies,

our 3 main models perform very closely, which makes sense given the smaller number of

potential answers. With medium-sized policies, the Hierarchical model is better by a large

margin. This margin is still considerable with long policies, where Retrieval model becomes

worse than Random model and SemVec model as good as Random model.

4We note that the absolute value of Precision@k is inherently low as it depends on the total number of correct
answers per policy.
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Figure 6.8 – Variation of MAP across policy lengths.

Pre-trained Embeddings Choice

As discussed in Section 6.4.3, we utilize the GloVe word embeddings, which are trained on 6

billion tokens. Our motivation is that they can capture the relations between layman terms

used in everyday language and legal terms present in privacy policies. We favored that over

word embeddings built using privacy policies alone, due to the limited size of available policies’

corpora (which are at at least 3 orders of magnitude smaller). To validate this decision,

we evaluated the performance of a variant of the Hierarchical model that uses the word

embeddings of Section 6.3, trained on the 16,615 privacy policies we obtained. We show

in Table 6.4 how this model, named Emb.Variant fares in comparison to the other models.

In addition to the MAP metric, we also computed the Mean Reciprocal Rank (MRR), as MRR=
1

M

∑M
j=1

1
rank j

, where rank j is the rank of the first correct answer for question j and M is the total

number of questions. Table 6.4 shows that this Emb.Variant model performed worse than

all but the Random model. We also evaluated the performance of the classification model of

Section 6.4.3 with those policies’ embeddings. We noticed that their performance approaches

the case of GloVe embeddings, scoring 0.73, 0.74, and 0.74 on the precision, recall, and F1

metrics respectively (1%-2% lower compared to Table 6.3). This shows that the use of the

more generic, but also more expansive, GloVe embeddings rather than privacy policy specific

embeddings results in a more robust overall performance on the QA task, likely due to the

larger size of data it is trained on.

6.7 User Study

We conducted a user study to assess the user-perceived utility of PriBot’s answers. Our

methodology is simple; for each QA pair, we collect the evaluations from 10 different individu-

als (via Amazon MTurk). We repeat this assessment for each of the four different conditions

(Retrieval, SemVec, Hierarchical and Random). We evaluated the top 3 responses of each

QA approach to each question. Thus, we assess the utility of 360 answers to 120 questions

(randomly chosen from the Twitter dataset). With four modes, we have 1,440 QA pairs, for

which we obtained 17,790 user evaluations.
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Study Design

We used a between-subject design by constructing four surveys, each corresponding to a

different evaluation condition. We provide the study materials in Appendix C. The survey

starts with a series of demographics questions. Second, we include an open-ended Cloze

reading comprehension test (based on [Cra13] and employed by Wilson et al. [WSR+16] and

Reidenberg et al. [RBC+15]). The test consists of an English paragraph with five missing words.

The respondents fill (by typing in) each blank with a single word best fitting the context. We

utilize this test to assess the reading level of participants and weed out responses failing in

more than 2 blanks.

Next, we display a series of 17 QA pairs (each on a different page). Of these, 15 are a random

subset of the pool of 360 QA pairs (of the evaluated condition); a participant does not receive

two QA pairs with the same question. The other two are randomly positioned anchor questions

serving as attention checkers. The first corresponds to a QA pair with a clearly relevant answer,

and the second has a clearly irrelevant answer. We shuffle the order of the QA pairs per user,

to account for ordering effects (participant fatigue and practice). Additionally, we enforce a

minimum duration of 15 seconds for the respondent to evaluate each QA pair.

Participant Recruitment

After obtaining IRB approval, we recruited participants using Amazon Mechanical Turk

(MTurk). More than 90% of the respondents were from North America (U.S. and Canada). We

limited the respondent pool in MTurk to those with 95% success rate in their previous tasks.

Across all the conditions, the average completion time of the survey was 14 minutes. In total,

1,186 individuals participated in our study. We compensated each respondent with $1. We

show the breakdown per group in Table 6.5. We limit the Random group to 60 questions (180

QA pairs) and collected five responses per QA pair. While not fully representative of the general

population, our set of participants exhibited high intra-group diversity, but little difference

across the respondent groups. For all respondents, the average age is 37 years (std=12), 59%

are males, 41% are females, more than 90% have some level of college education and more

than 90% reported being employed (less than 15% are teachers or students).

QA Pair Evaluation

To evaluate the relevance for a QA pair, we display the question and the candidate answer as

shown in Fig. 6.9. In our pilot studies, the respondents were confused about the context of the

question as it might depend on the company. Hence, we decided to display the company’s

name and Twitter Bio, which resulted in a better understanding of the context. Although

there is a potential bias due to the perceived quality of answers to questions pertaining to

well-known brands, this should not favor one QA approach over another as the same set of

questions is presented in the four conditions. Moreover, many of the tweets (questions) and
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Definitely Relevant: It perfectly answers the question.

Partially Relevant: It answers the bulk of the question, though there might be more to say.

Undecided: I find it too difficult to give a judgment on this pair.

Partially Irrelevant: It doesn't answer the question; only has a slight clue.

Definitely Irrelevant: It totally misses the topic of the question.

Question:  .@AskTarget ok thanks but I assume that means yes you all do sell patient names and
addresses?  

Answer:  We may share your personal information with other companies, or organizations which are
not part of Target. These companies and organizations may use the information we share to provide
special offers and opportunities to you. To opt out of our sharing of your personal information with
such companies and organizations, go to the Choices section of this privacy policy. 

How relevant is the candidate answer to the given question?

Figure 6.9 – An example of a QA pair.

Table 6.5 – A breakdown of the top-k relevance score by evaluation group (N is the number of
participants per group).

Group N
top-k Relevance Score

k = 1 k = 2 k = 3

Random 66 0.36 0.59 0.75
Retrieval 268 0.52 0.77 0.87
SemVec 271 0.50 0.75 0.84
Hierarchical 291 0.55 0.77 0.91

the policy segments (answers) already contained references to the company’s name.

We asked the respondent to rate the relevance of the candidate answer to the question on

a 5-point Likert scale (1=Completely Relevant to 5=Definitely Irrelevant). Fig. 6.9

depicts the explanation of each item on the Likert scale. We denote a respondent’s evaluation

of a single answer candidate corresponding to a QA pair as relevant if s/he chooses either

Definitely Relevant or Partially Relevant. We consider the response as irrelevant if

the respondent chooses Partially Irrelevant or Definitely irrelevant. Finally, we

label the candidate answer of a QA pair as relevant when more than half of the individual

evaluations for the pair are relevant. At this point, each QA pair from the four approaches is

tagged as either “relevant” or “irrelevant”.

User Study Results

As in the previous section, we compute the top-k score for relevance (i.e., the portion of

questions having at least one relevant answer in the top k returned answers). Table 6.5 shows

this score for the four QA approaches with k = [1,2,3]. We show in Table 6.6 the MAP and the
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Table 6.6 – MAP and MRR metrics for user-perceived utility.

Random Retrieval SemVec Hierarchical

MAP (3 answers) 0.54 0.74 0.70 0.75
MRR (3 answers) 0.55 0.74 0.70 0.75

MRR metrics, which are independent of k. We compute these metrics by considering the top 3

answers returned by each model (the ones evaluated in the study).

For all the metrics, the Hierarchical approach clearly outperforms the rest. The respondents

regarded at least one of the top 3 answers as relevant for 91% of the questions, with the first

answer being relevant in 55% of the cases. The Retrieval model comes at a close second,

edging the SemVec approach. Our explanation for this result is twofold. First, as we have seen

in Section 6.6.2, the Retrieval model has a better predictive accuracy at k = 1, likely due to

the notable portion of the answers which contain terms present in the question. For instance,

this is the case when users ask about particular personal information, such as “Does anybody

know if @EE sell on emails?”. Second, users are likely to perceive answers with matched terms

more positively than answers with non-matched terms but with close meaning.

Still, the main takeaway from these results is that PriBot answers the users’ questions in a

satisfactory manner to them, which highlights its practical significance.

6.8 Friendly Summary Generation

The evaluation shows that Hierarchical model outperforms other ranking models in terms

of retrieval accuracy and perceived utility of responses. In addition, we note that the joint

probability distribution across categories and values (Section 6.4.3) has a high-level inter-

pretation. It informs us about the prominent classes present in each segment. We exploit

this property in order to generate abstractive answers (i.e., user-friendly summaries) from the

extractive answers we already have (from the Hierarchical approach). This model, termed

as Friendly-summary, serve the users better by returning simpler and shorter answers.

Fig. 6.10 illustrates our approach. Given an existing answer and the computed joint probability

distribution, we first remove the low-quality labels, the ones with probability lower than

a threshold (equal to 0.05 in our implementation). Then, we group the labels under the

high-level category they belong to, as shown in the figure. Next, for each high-level category,

we generate a summary based on all the labels descending from it. This grouping serves

to preserve the coherence of the generated content. The summary consists of one or more

sentences and is generated based on our custom grammar. Our grammar consists of an

optional introductory sentence about the high-level category, followed by a statement about

each label. Statements describing the same attributes (e.g., information type) follow a similar

structure; they start with an optional introductory phrase, followed by a specific phrase about



145

Float may also transfer personal data to
Float-affiliated companies in other countries.
These may be outside the European
Economic Area and may not have adequate
laws that protect the rights and freedoms of
data subjects in relation to the processing of
personal data. Where this is done, Float shall
take necessary steps to adequately protect
the information transferred. In addition, we
will transfer/share your personal data as
required by law, such as to comply with a
subpoena, or similar legal process.

3rd Party Collection

Action: Shared with

Purpose: Legal Requirement

Info Type: User profile

Specific Audiences:
Audience Type: 

Citizens from other countries

Data Security
Security measure: 

Privacy/Security program

0.24

0.23

0.12

0.14

0.05

Summary 1: We share data with third parties. Our
data sharing might involve personal information (like
your user profile info). We need this to respond to
requests from legal authorities (i.e. the government).

Summary 3: We take security measures to guard your
data. We particularly adhere to a special privacy and
security framework.

Summary 2: We have a special section in the policy
on how we handle the data of citizens of other
countries.

Figure 6.10 – The flow diagram of the Friendly-summary approach.

the value (e.g., user profile information). Example summaries are shown in Fig. 6.10. We rank

these answers according to the label of highest joint probability present in them.

Friendly-summary has the benefit of responding back to the user in a simplified language

while keeping the essence of the extracted answer. These properties are highly desirable in

conversational settings, such as voice-activated devices. We evaluated the perceived utility of

this approach with the same user study protocol and setup as Section 6.7 to compare against

the extractive approaches. Based on the evaluation by 290 users, we obtained a top-k score

of 0.52, 0.69, and 0.83 for a k of 1, 2, and 3 respectively. Comparing with the results of Table 6.5,

we see that the top-1 score of Friendly-summary is the second after the Hierarchical

approach. This is despite the fact that Friendly-summary produces generic answers instead

of returning policy extracts. The answers are also 2.5 times shorter on average. Finally, the

Friendly-summary achieves better readability with an 8.7 score on the Flesch-Kincaid Grade

Level compared to 12.6 for the answers from the policy.

6.9 PriBot Implementation

To demonstrate the practical feasibility of our approach, we implemented PriBot as an online,

text and voice-activated chatbot. As shown in Fig. 6.11, the user poses a question about

the company of his/her choice to which the chatbot responds with the top-ranked answer

according to the Hierarchical approach. In addition, the interface allows checking two more

answers via an accordion interface, expandable via a user click. The chatbot also provides the

option of narrating the answer to illustrate its functionality with voice-activated devices. We

provide several examples of the answers returned by PriBot in Appendix D.

Chatbot System

Fig. 6.13 shows the flow of the chatbot. It follows a client-server architecture; the client consists

of the user-facing interface and the back-end server consists of a chatbot server as well as a

machine learning (ML) server. We implemented the chatbot server using rivescript-js to script

the chatting logic and Node.js to interact with the ML server. The ML server employs the Keras

neural network library (with a TensorFlow backend) for training and running the classifiers of

the Hierarchical approach. We run the back-end server on an HP Z280 workstation with

two bridged Nvidia Titan X GPUs. The chatbot server receives the question and the policy’s
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Figure 6.11 – A screenshot of PriBot

identifier from the client and passes them to the ML server. If the question belongs to a

previously unseen privacy policy, the ML server runs the pre-processing logic of Section 6.3.

Then, the ML server passes each segment of the policy through the Hierarchical classifiers to

obtain their vector representations. The server caches each segment and its associated vector

in Redis, an in-memory data store. This is a one-time effort per policy. If the question belongs

to a pre-processed policy, the ML server passes the question through the same workflow

of the segments to obtain its vector representation. Next, an answer ranking component

determines the top three segments matching the user’s question. The chatbot server returns

these segments (the answers) to the client for display to the user.

Timing Measurement

To assess how practical our chatbot is, we measure its delay to generate a response and the

time it takes to read out the response through a speech synthesizer. We measure the chatbot’s

answer generation delay for each of the 120 Twitter questions and the three QA approaches,

Hierarchical, SemVec and Retrieval; the distribution is shown in Fig. 6.12a. Practically, all

approaches return answers in almost real-time, with the Hierarchical taking around 120ms

longer than the fastest model, which is likely an acceptable tradeoff given the higher accuracy

and utility of the responses it provides. Compare that to the 6 minutes taken by the skilled

annotator to decide on an answer.

Fig. 6.12b shows the distribution of the time for IBM Watson’s Text to Speech Engine to narrate
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(a) Answer Delay
(b) Narration
Time

Figure 6.12 – Chatbot timing
measurements.
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Figure 6.13 – The system flow diagram of our chatbot imple-
mentation.

a chatbot’s answer. We compare between extractive approaches (Retrieval, SemVec and

Hierarchical), which are based on the same segmentation process that returns excerpts of

the policy, and the abstractive approach of Friendly-summary that constructs answer in a

different way. We consider the top 3 answers for the 120 Twitter questions of the extractive

approaches and compare them to those of the abstractive approach. The 75th percentile of

the narration times is less than 30 seconds for the extractive methods and less than 10 seconds

for the abstractive approach. This shows that the chatbot returns reasonably short responses

for the user questions, making it also suitable for voice-based conversational systems.

6.10 Discussion

In this section, we discuss the implications and the challenges for the demonstrated ability to

answer free-form questions from privacy policies.

Ecological Validity

Similar to studies involving users, we employed several decisions that could have impacted the

evaluation of PriBot. First, we tested it in the wild with a social media dataset that is rife with

informal language, complaints, cynicism and jokes. Some questions (e.g., questions 33 and 34

in Appendix C) contained spelling mistakes and Internet acronyms which resulted in returning

wrong segments (we intentionally kept these cases). Note that research on adaptive language

behavior in HCI [PHB+06] indicates that users tend to align their language to that of computer

systems’ with limited perceived capability. We conjecture that in a practical scenario, where

users are aware they are communicating with an automated agent, their wording is expected

to be different, and PriBot’s performance even better. Thus, our evaluation is both realistic as

well as conservative in assessing accuracy.

An avid reader might notice the differences between the predictive models’ accuracy (Sec-

tion 6.6) and the users’ perceived quality (Section 6.7). This is, actually, consistent with the

observations from research in recommender systems where the prediction accuracy does not
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always match user’s satisfaction [TMA+04, MAC+02, KWH10]. In addition, users are known to

be biased by the very fact that they are evaluating a specific answer since it can be considered

as a recommendation [KJ13]. We have tested this aspect by asking the experts to take the user

study with the same 120 questions. We found that the expert-perceived utility of the models,

based on the survey, was consistently higher than the predictive accuracy measured from the

ground truth of Section 6.6 (a 5–10% difference). We can partially attribute this difference to

the potential persuasive effect of the recommendations on the experts themselves.

UI Considerations

Like any QA automated system, PriBot may make mistakes in practice. However, a well-

implemented UI can mitigate the negative effects of potential mistakes. One optimization

is to show automatically classified labels (e.g., 1st party collection or data security) next to

the answers’ IDs. The user can then glance quickly at multiple answers and click on the

one matching her intention. This allows providing more potentially correct answers without

overloading the user. Another approach consists of PriBot asking the user for a clarification

about the intended high-level category when there are multiple close matches. This also

suits the voice-based UI. To improve the future predictions, PriBot actually includes an

additional button for users to give feedback on a returned answer’s quality. Furthermore, we

hypothesize that “incorrect” answers from an evaluation perspective can be of educational

value in practice, potentially covering other user concerns.

Another UI-related challenge is displaying potentially conflicting answers to the users. One

answer could describe a general sharing clause while another specifies an exception (e.g., one

answer specifies “share” and another specifies “do not share”). To mitigate this issue, we used

the same CNN classifier of Section 6.4.3 and exploited the fact that the OPP-115 dataset had

optional labels of the form: “does” vs. “does not” to indicate the presence or absence of

sharing/collection. This classifier had a cross-validation F1 score of 95%. Hence, we can use

this classifier to detect potential discrepancies between the top-ranked answers. The UI of

PriBot can thus highlight the potentially conflicting answers to the user.

Deployment and Legal Aspects

A standalone chatbot is only one of many applications for PriBot. PriBot can be integrated

within a platform like Amazon Alexa or Google Assistant as another way of delivering informa-

tion about privacy policies of third party apps. Also, it can function as a means to facilitate the

comparison of the privacy practices of different companies. PriBot can answer a standard

set of questions from a range of policies to provide researchers, users and regulators with a

scalable and quantifiable way to compare privacy policies.

However, PriBot is not intended to replace the legally-binding privacy policy or terms of

services. It offers a complementary interface for users to easily inquire the contents of a
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privacy policy. Following the trend of automation in legal advice [Goo17], insurance claim

resolution [Lev17], and privacy policy presentation [ZB14, LFL16], 3rd parties, e.g., automated

legal services firms, can deploy PriBot as a solution for their users. As is the standard in similar

cases, these companies should amend PriBot with a disclaimer specifying that PriBot is an

assistant and does not represent the actual service provider [Hwa13]. The same can be done

in the case of a company deploying PriBot to directly interact with users.

Companies and service providers can also deploy PriBot internally as an assistant tool for

their customer support agents to handle privacy-related inquiries. Putting the human in the

loop allows for a favorable trade-off between the utility of PriBot and its legal implications. For

a wider discussion on the issues surrounding automated legal analysis, we refer the interested

reader to the works of McGinnis and Pearce [MP14] and Pasquale [PC15].

Finally, we note that the quick responses given by PriBot can play a role in privacy policy

debates. In fact, Fig. 6.11 showed the case of Unroll.me, a free service for removing unwanted

subscriptions from users’ email. Recently, there has been a lot of backlash against this company

after it was reported to be selling information mined from those emails to third parties (e.g.,

selling data to Uber about the billing emails for customers of its competitor Lyft) [Isa17]. As

Figure 6.11 shows, PriBot answers the question about third-party sharing with the particular

policy segment that describes the practice reported on in the news. This is despite the fact

that the question’s only intersection with the answer is the word “with”.

6.11 Related Work

Several studies have evaluated the effectiveness of privacy policies. Good et al., showed

that users have a limited understanding of these policies and that they have a little desire to

read them [GDG+05]. In a later work, Good et al., found that giving a short summary notice,

in addition to the End User License Agreement, before installing the software significantly

reduced the number of installations [GGMK07]. Moreover, they showed that presenting users

with a short summary notice after installation led to a significant number of uninstalls.

Privacy Policy Analysis

Accordingly, there have been numerous attempts to create easy-to-navigate and alternative

presentations of privacy policies. We differentiate between approaches that pursued manual

designs of notices and approaches that investigated automated approaches of analyzing the

policies.

Manual Designs

The Platform for Privacy Preferences (P3P) was one of the early works at making privacy

policies more accessible [CLM+02, RC99]. In P3P, websites encode their policies in a machine-
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readable format, and software agents (typically in the browser) parse this information and

display it to the user. Examples of such agents were Privacy Bird [CGA06] and Privacy Bird

Search [BCKM04]. Still, P3P did not have wide adoption, and its working group was closed in

2006, due to the weak adoption from the industry, the limited spread of such agents, and to

the issues of user comprehension and enjoyability [Cra12, KBCR09].

In a later work, Kelley et al., proposed using nutrition labels as a paradigm for displaying

privacy notices [KBCR09]. In their study, users were able to find out about data practices

more quickly and had a more enjoyable information seeking experience compared to natural

language policies. Icons representing the privacy policies have also been proposed [HZH11,

CGA06].

In the financial sector, the standardization approach of privacy notices has found applica-

bility [GHH+12] in the United States. However, in the general industry, no approach, till

now, has reached the standardization point, and service providers have not voluntarily opted

into one of the proposed approaches. Zimmeck and Bellovin suggest three reasons behind

that: (i) the absence of industry incentives to move from the de facto standard of privacy

policies, (ii) the support for natural language policies from the U.S. governmental agencies,

and (iii) the stronger expressivity of natural language and its ability to relay industry-specific

nuances [ZB14].

(Semi-)Automated Analysis

Early works on this problem studied the problem of analyzing privacy policies for limited

purposes. Costante et al., targeted the problem of listing the set of data collected by the

website [CdHP13]. In another work, Costante et al., [CSPdH12] developed a solution for

assessing the completeness of privacy policies according to a predefined set of categories.

Stamey and Rossi showed a system for topic modeling on privacy policies, which includes an

ambiguous term extractor [SR09]. Still, these works have been focused on studying a single

aspect of the policies with a limited scope. In this work, we tackle the problem on a much wider

scale and with specialized natural language processing techniques, rather than out-of-the-box

mechanisms (which we also show as sub-optimal).

Recently, several efforts have explored the potential of automated analysis of privacy policies.

For example, Liu et al., have used deep learning to model the vagueness of words in privacy

policies [LFL16]. Zimmeck et al., have been able to show significant inconsistencies between

app practices and their privacy policies via automated analysis [ZWZ+17]. These studies,

among others [SSWS16, LWSS16], have been largely enabled by the release of the OPP dataset

by Wilson et al., [WSD+16], containing 115 privacy policies extensively annotated by law

students.

Our work is the first to use the OPP dataset for the task of answering free-text questions by

users. This work also falls in the line of automatically generating a data-driven interface to
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privacy policies. In that regard, the closest work to ours is that of the Privee system. Privee

used crowdsourced data from the “Terms of Service; Didn’t Read” service 5 to train a machine

learning classifier on grading a privacy policy according to 6 classes [ZB14]. This system was

deployed in the form of a Google Chrome extension. In contrast, we automate the analysis at

a much more fine-grained level, with more than 90 categories. We also exploit the emergence

from a highly rich annotated dataset in building the core QA algorithms of PriBot. In addition,

we believe that a standalone web application has much more potential to satisfy wider users

need than the limited interface of Chrome extensions.

Automated Question Answering

QA techniques typically tackle two types of questions: factoid questions asking about short

facts (e.g., what is the highest peak in Europe?), and non-factoid questions, which are typically

complex and open-ended (e.g., what losses can auto insurance protect you from?). Evidently,

our work falls into the second category. In the past few years, deep learning methods have

shown superior results to traditional retrieval techniques in this domain. Researchers have

explored several combinations of Convolutional Neural Networks (CNNs) [FXG+15], Long

short-term memory networks (LSTMs), Attention-based Networks [TdSXZ16], and pointwise

neural networks [RHL16] for this problem in general.

PriBot follows the spirit of many of these previous efforts in that we use word embeddings

as features of a neural network to compute the proximity between sentences. However,

the contributions of PriBot stem from addressing the unique challenges associated with

the privacy policies domain (e.g., the absence of a QA dataset), in developing a custom QA

architecture, and in demonstrating the quality of PriBot’s generated answers with a large-

scale user study.

6.12 Summary

In this chapter, we propose PriBot, the first privacy-specific QA system that is readily available

for public use. It answers user’s free-form questions from previously unseen privacy policies.

We developed two deep-learning algorithms that allow PriBot to return answers from the

privacy policy. We evaluated PriBot using a dataset of 120 real-world questions that we

collected from Twitter. Our user study of 1186 participants revealed the high accuracy and

relevance of PriBot’s answers. Further, we provide a proof-of-concept implementation of

PriBot as a user-facing chatbot and evaluate its usability.

We envision that the techniques developed in PriBot will open the door for the future of

automated privacy specialists in different fields. It has the potential to replace repeated work

that takes several minutes with a considerably accurate replacement that takes milliseconds.

This can result in a significant efficiency boost in the customer service domain for example.

5tosdr.org
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Such improvements cannot be achieved if each company relies on its small dataset of privacy

related conversations.



7 Conclusion

In this thesis, our goal was to improve the accessibility and usability of data privacy. We tackled

this in an age where users’ personal information is being collected at an enormous scale, data

practices are more and more obscure, and risk communication is significantly lagging behind.

We started with three obstacles in mind: scale adaptation, risk communication, and language

complexity. Throughout the previous chapters, we presented our efforts for mitigating these

obstacles. The takeaway messages from this thesis can be summarized as follows:

Feasibility of Sensitivity Assessment over Unstructured Data. We have shown with C3P

that one can tame the complexity of sensitivity analysis in the case of unstructured files by

accounting for the various context and content features that are associated with such files.

We have found that this goal can be attained in a privacy-preserving manner too. Another

interesting finding is that Item Response Theory, despite not being as complex as the recent

machine learning models, is well suited to model the users’ privacy attitudes and the files’

sensitivity levels.

Improving Risk Communication with Data Analysis and Visualization. We have shown

via PrivySeal that risk communication for unstructured data is not only achievable but can

also be highly effective. Our Far-reaching Insights approach serves towards reducing the

opacity of data processing by exposing, to the user, the possible repercussions of granting

access to over-privileged 3rd party cloud apps. We have also found that not all insights are

created equal. For instance, relational insights, displaying information about users’ relations

with others, were more effective than personal insights about the user only.

Enlightening the Users on Interdependent Privacy Risks via New Privacy Indicators On

top of exposing the extent of interdependent privacy in third party cloud apps, we sought a

way to curtail the privacy loss via privacy indicators. We were able to show that small changes

in the permissions interface (i.e., our History-based Insights) can help the users better account

153
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for previous decisions.

Building Better Privacy Interfaces with Machine Learning. We have demonstrated that

privacy policies do not have to stay to be the de facto method for communicating data practices

on the long run. Policies can be rather used as the fuel to power the machine learning models,

which, in turn, can be leveraged to give the users the specific information they are looking

for. We have shown the efficacy of this approach with users in the case of question answering,

where our new model scored high relevance and accuracy metrics.

On a high level, one of the key differentiators of our work was striving for demonstrability by

putting the systems, whenever possible, in the hands of end-users with minimal effort needed

on their behalf. This was the case for example with PrivySeal, which grew to around 1750

registered users at the time of writing this thesis. It is also the case with PriBot, our newly

released web application.

Looking forward, we highlight both the direct extensions of our work and the long term

ramifications. To begin with, although the privacy issue in cloud file sharing has been less

pronounced recently, there are several emerging problems that share a similar DNA. For

example, conducting privacy preserving analytics over users’ interactions with smartphones

has been on the agenda of the top manufacturers. We envision that a lot of interesting analytics

can also be conducted on unstructured data, and there is much work to be done there on

offline feature specification and extraction with machine learning.

When it comes to deterring users from installing over-privileged applications, we have ad-

mittedly attempted at breaking the knowledge imbalance between users and providers with

Far-reaching insights. Hence, using this exact technique is likely to not be in the interest of

platform providers as it can curtail their growth. However, we envision that these techniques

can be alternatively provided by third parties, which offer privacy as a service. These third

parties can be used by the interested individuals or teams in an organization. On the other

hand, highlighting the effects of interdependent privacy and informing users about the exist-

ing parties with access to their data is less of a burden for the platform providers. In the future,

we hope that providers go beyond listing the apps that the user has authorized to visualizing

the parties with access to their data. This includes parties enabled by other users and parties

enabled by the apps themselves (e.g., ad providers, data brokers, etc.). This gives users a more

transparent overview of their data.

Moreover, in the case of privacy policies, our work on PriBot scratches the service of what

is possible. We see a significant opportunity of complementing these policies with existing

datasets, such as customer services’ logs, to attain much higher accuracy. Another interesting

extension is to go beyond rule-based summarization to abstractive summarization, where

the policies are encoded in a simpler language. That is another avenue where deep learning

research on summarization, neural machine translation, and text generation can be leveraged.

Additionally, putting PriBot and other similar systems in the hands of user would provide
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a valuable data source for adjusting the models based on users’ feedback. Towards that

end, there is work to be done on the adequate interfaces for collecting feedback and proper

methods for promptly integrating such feedback within the models themselves. Furthermore,

we plan to tackle the UI design challenges of PriBot by investigating the trade-off between

accuracy and usability. We also plan to improve the accuracy of PriBot through a multi-stage

conversation. For example, we want to narrow down the answers by allowing PriBot to ask

whether the user is concerned about the third parties or the first party.

To look further, one of the major outcomes of this thesis is that unstructured privacy interfaces

are feasible and effective. We distinguish these interfaces from the traditional structured

privacy interfaces, such as permission dialogs with pre-scripted text, predesigned privacy

labels, or privacy information within application stores. It has often been the case in the

user experience domain that “the best interface is no interface” [Kri15]. This has been further

reaffirmed with the emergence of new devices where “the only interface is no interface”.

Accordingly, privacy indicators should not be restricted by a form or a medium. In fact, the

emerging trend of virtual assistants calls for virtual privacy specialists that can effectively

communicate to the user the data practices of all the new parties receiving users’ information.

In such specialists, we see a lot of potential for applying our data-driven techniques in risk

communication. Talking to the user using their data as a language is one of the most effective

methods as we have seen, not only because it swiftly relays the message but also because it

reduces habituation and serves as an educational tool.





A Study Material for Chapter 2

In this appendix, we present the material used in the user study reported in Chapter 2. The

full vocabulary on which we build is presented in Figure A.1. The questions were split over 9

surveys with a similar structure. The surveys are all presented next (we kept them as they were

originally, with the replicated instructions).
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Figure A.1 – Vocabulary used in the user study
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a photo of some family you don’t know, captured in their house
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You have a photo of a family you don’t know, captured in their house. 
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a photo of some family you don’t know, captured in their house
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a photo of some family you don’t know, captured in their house
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B Study Material for Chapter 5

In this appendix, we provide the material for the study reported in Chapter 5.

B.1 Introductory Material

First the participants were presented with the instructions presented in Figure B.1 and B.2.

Next, they answer the introductory survey in Figures B.3 and B.4.

181



182 APPENDIX B. STUDY MATERIAL FOR CHAPTER 5

Instructions

Overview
What is this about?
Cloud storage services (e.g. Dropbox, Google Drive, OneDrive, etc.) are now being used by a lot of people for various purposes. People store their documents,
photos, or music on these services, so that they can access these les from any device at any time. 
Also, many companies have developed applications that you can connect to your Dropbox or Google Drive accounts. For example, you can allow an image
editing app to access your Dropbox in order to edit an image you have stored there. You can also use an app for signing documents you already have on
Google Drive. 
These apps are made by companies other than Google or Dropbox, but they provide users with a lot of services by connecting to their Google Drive or
Dropbox accounts. That's why they are called 3rd Party Apps. 
We are conducting a user experiment to check how people make decisions when they install such 3rd party apps.

Are you eligible?
To qualify for completing the tasks, you will have to be:

a user with a good familiarity with one of the cloud storage services.
have actually utilized these services to store les

How is the study paid? (Read this please)
All participants will automatically receive the first payment after completing the study.
All the participants who complete the study without randomly lling answers will receive an amount equal to 2.5 times the first payment as a bonus
(for example first payment will be $0.5 and bonus will be $1.25)

This is especially important in the part where the answer is in the form of text input. You will be provided with guidelines on how to not answer
these questions. After we manually check these answers for quality, we will issue the bonus to all participants who have answered according to
the guidelines.

Why is this important?
Your contribution will lead to better process of cloud apps' installation.
You will a ect how apps are presented to the users in the future.

Example Apps
To make sure you understand how these apps work, here are two examples: 

This is an application called ILoveIMG that allows importing photos from Google Drive and then cropping them. 

Figure B.1 – First part of the instructions given to the participants at the beginning of the study



183

Here is another application called PandaDoc that allows importing a letter from Google Drive and then signing that letter. 

Process
You will rst go to our study's webpage on the given link.
You will answer a survey.
You will be given a set of tasks related to cloud services.
Then you will be asked to ll a nal short survey.
At the end, you will be given a code that you have to enter in CrowdFlower interface in order to get the payment.

Do Not
Do Not Refresh the study's page or close it until the end of the study where you get your completion code. Refreshing it will make you lose the
progress and start your task from the beginning.
Do Not press the Back or Forward buttons on your keyboard to go to the previous or next page during the study. Only click on the given buttons in
order to go to the next step.
Do Not use a tablet or smartphone to do this study: only use a computer/laptop/desktop

Do's
Please try to do the experiment without interruption as some parts are related.
Think well about your decisions during the experiment.
Check all the possible choices before making your mind on a decision.

Figure B.2 – Second part of the instructions given to the participants at the beginning of the
study
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Survey
Please answer in English the following questions (and the subsequent study).  
Make sure you have read well the instructions on CrowdFlower. You can also see them on this page:
https://privyseal.epfl.ch/#!/hisExp/instructions

1. 
What is your CrowdFlower Contributor ID?

2. 
What is your age (in years)?

3. 
What is your gender?

 Male 
 Female

4. 
What is the highest degree or level of school you have completed? If currently enrolled, highest degree received.

 High school 
 Trade/technical/vocational training 
 Associate or Bachelor’s degree 
 Post Graduate Degree

5. 
What is your occupation?

 full-time employee 
 student 
 part-time worker 
 self-employed 
 homemaker 
 Unemployed/retired

6. 
Have you worked before or studied in a field related to IT (Information Technology)?

 Yes 
 No

7. 
Please list the names of cloud storage service(s) that you use to store your files?

8. 
Select all the purposes for which you use these providers?

 Storing photos 
 Storing documents 
 Sharing photos with others 
 Collaborating on documents 

9. 
Have you previously used real-time collaboration services (e.g. Google Docs)?

 Yes 
 No

10. 
Suppose you have friends who don't use cloud storage services. What is the one feature/advantage that you can mention to
convince them to use such services.

11. 
Have you previously given 3rd party applications access to some/all of your cloud files?

 Yes 
 No

Figure B.3 – First part of the initial survey that the participants fill
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12. 
If you answered Question 11 by 'Yes', to how many 3rd apps approximately have you given access?

 1-5 
 5-10 
 more than 10

13. 
If you answered Question 11 by 'Yes', what was the purpose of those 3rd party application(s)?

14. 
If a 3rd party application requests the permission to: "View and manage the files in your Google Drive (or Dropbox)", what do
you think that means?

 The app can immediately view all my les. 
 I can give the app access to speci c les when I want

15. 
If a 3rd party application requests the permission to: "View and manage Google Drive (or Dropbox) files and folders that you
have opened or created with this app.", what do you think that means?

 The app can immediately view all my les. 
 I can give the app access to speci c les when I want

16. 
With how many people overall have you shared files previously?

 0 
 1-5 
 5-10 
 more than 10

Done. Go to experiment

Figure B.4 – Second part of the initial survey that the participants fill
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B.2 Material for Modules

The participants are then presented with the modules summarized in Figure B.5. Figure B.7

to B.17 show screenshots of different steps in the modules. The captions in those figures refer

to the numbering in Figure B.5. Before each module, the instructions in Figure B.6 are shown.

Figure B.5 – High level overview of the modules of the experiment;
we refer to the parts in this figure in the coming figures.
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Figure B.6 – Instructions that participants see before each module

Module 1

Figure B.7 – Module 1-a: the participant is asked to install an application from a specific
company.
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Figure B.8 – Module 1-a: the participant sees the traditional permissions interface to install
the app.

Figure B.9 – Module 1-a: the participant is notified again of the company name in order to get
familiarized with it.
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Figure B.10 – Module 1-b: the participant is asked to install an app of a certain purpose; two
apps satisfy this purpose and are shown (in a random order) on the top row.

Figure B.11 – Module 1-b: the participant is shown the permissions interface, depending on
the experimental group; here we show the case of HB group.
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Figure B.12 – Module 1-b: the participant is asked to provide a justification for their choice.
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Module 2

For this module, we show the case of Module 2-d and 2-e in Figure B.5. The case of Module

2-b and 2-c follow a similar structure.

Figure B.13 – Module 2-d: the participant is made aware that a collaborator has installed an
app from a specific company by requesting her to type company URL in the box. We randomly
selected the name between Lisa or John for each user in our study. Here, we show the case of
Lisa. Afterwards, the participant gets a confirmation as in Figure B.9.

Figure B.14 – Module 2-e: the participant is asked to install an app of a certain purpose; two
apps satisfy this purpose and are shown (in a random order) on the top row. One of these
apps has been installed earlier by Lisa. The participant sees an installation interface similar to
Figure B.11 and has to justify as in Figure B.12.
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Module 3

Figure B.15 – Module 3: at the beginning of the module, the participant is made aware that
Lisa has more of the shared files than John.

Figure B.16 – Module 3-a: the participant is made aware that Lisa has installed an app called
PDF Mergy; a confirmation like in Figure B.9 is then shown.



193

Figure B.17 – Module 3-b: the participant is made aware that John has installed an app called
PDF File Merger; a confirmation like in Figure B.9 is then shown.

Figure B.18 – Module 3-c: the participant is asked to install an app of a certain purpose; two
apps satisfy this purpose and are shown (in a random order) on the top row. One of these apps
has been installed earlier by Lisa and the other by John. The participant sees an installation
interface similar to Figure B.11 and has to justify as in Figure B.12.

B.3 Final Survey

After finishing the modules, the participants are requested to fill a final survey, shown in

Figure B.19.
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Thanks for completing the experiment. We have some nal questions for you. After you answer them,
click on the button below to access the Completion code that you can enter in CrowdFlower for getting
your reward.

1. 
If you knew that your friend (let's call him John) has connected an application to his Google Drive and has given it access to all
files (including those you share with him), would you prefer that you are notified about that?

 Yes 
 No 
 Indi erent

2. 
You were asked several times to choose between two apps to install. Select all the reasons from below that affected your
decisions.

 Permissions the apps requested 
 Whether the app name looked professional/cool 
 How much the app's company knew previously about me 
 Whether the company has a professional-looking name 
 I was actually confused and selecting randomly 
 Others (please specify:) other reason(s)

3. 
Given two apps with the same permissions. App A is from a company that you have previously given access to your Google
Drive. App B is from a company that you haven't given access in the past. Which app, in your opinion, would give you better
privacy?

 App A 
 App B 
 Both apps give me the same privacy.

4. 
Assume you have installed an application called YouMusic from a company called Musicana and gave it access to all your files
on Google Drive. Now you are considering installing an application called YouVideo from the same company. How do you think
that this application will affect your privacy:

 It will a ect my privacy negatively. 
 It will a ect my privacy positively. 
 It will not have an e ect on my privacy. 

Please justify your answer: 

5. 
If you connect an application to your Google Drive and you give it access to all files (including those you share with your
friends), would you prefer that your friends are notified about that?

 Yes 
 No 
 Indi erent

6. 
(Optional) Please feel free to provide any general feedback below.

Done. Show me the finishing code.

Figure B.19 – Final survey presented to the participants
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In this appendix, we provide the material for the study reported in Chapter 6.

C.1 Introductory Material

The participants are presented with the instructions in Figure C.1, followed by a demographics

survey (Figure C.2 and C.3) and a reading test (Figure C.4).

We are researchers from the University of Michigan in the U.S. and EPFL in Switzerland. We are trying
to understand the mindset of individuals regarding the privacy practices of the different services, apps
and websites they use.

To help us in our research, we need you to evaluate a set of question-answer pairs about the privacy
policies of different companies. In particular, we need your feedback regarding how
relevant/satisfying you find the displayed answer to each question.

Please Note: We have a minimum duration of 15 seconds before you can move to the next question.

Before we jump in to the main study task, we will ask you to answer few background questions. Please 
answer those questions honestly. The answers to those questions will NOT impact your participation in 
this study or the received compensation.

Figure C.1 – General instructions at the beginning of the study
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male

female

I prefer not to tell

No high school

Some high school

High school graduate

Some college - no degree

Associates/2 year degree

Bachelors/4 year degree

Graduate degree - Masters, PhD, professional, medicine, etc.

Demographics

Please answer the following questions honestly. The answers to those questions will NOT impact your participation 
in this study or the received compensation.

Please provide your age (in years):

Please provide your gender: 

Which of the following best describes your highest achieved education level?

Figure C.2 – First part of the demographics survey
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Administrative support (e.g., secretary, assistant)

Art, writing, or journalism (e.g., author, reporter, sculptor)

Business, management, or financial (e.g., manager, accountant, banker)

Computer engineer or IT professional (e.g., systems administrator, programmer, IT consultant)

Education (e.g., teacher)

Engineer in other fields (e.g., civil engineer, bio-engineer)

Homemaker

Legal (e.g., lawyer, law clerk)

Medical (e.g., doctor, nurse, dentist)

Retired

Scientist (e.g., researcher, professor)

Service (e.g., retail clerks, server)

Skilled labor (e.g., electrician, plumber, carpenter)

Student

Unemployed

Decline to answer

Other

North America (United States, Canada)

South America

Europe

Asia & Middle East

Africa

Australia

Which of the following best describes your primary occupation?

Please provide your place of residence:

Figure C.3 – Second part of the demographics survey
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Please read the text below and think of the word which best fits each space. Use
only one word in each space.

In fiction, robots have a personality, (1) _______________ reality is disappointingly different.  Although 
sophisticated (2) _______________  to assemble cars and assist during complex surgery, modern robots 
are dumb automations, (3) _______________of striking up relationships with their human operators. 
However, change is (4) _______________ the horizon. Engineers argue that, as robots begin to make
 (5) _______________ a bigger part of society, they will need a way to interact with humans.  To this end 
they will need artificial personalities. 

(1)

(2)

(3)

(4)

(5)

Figure C.4 – Cloze reading test, with 5 blank values, used to judge the reading comprehension
abilities of the participants and to remove the low-performing ones.
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C.2 Answer Evaluation

The participants are then shown the instructions in Figure C.5, followed by 17 question-answer

pairs. Figure C.6 shows an example of each pair.

For the rest of this study, we will present you with 17 question-answer pairs.
At each step, we will give you a question somebody asked about the privacy
practices of a company.
Below the question, you will find a candidate answer, which might or might not be
relevant.
Please read both the question and the candidate answer carefully, and indicate how
relevant do you find the candidate answer to the posed question.
We have given you the company name and Twitter bio to supply you with additional
context, in case you need it.
You have to choose one of 5 choices, ranging from Definitely Relevant to Completely
Irrelevant.

 
Beware: There are some steps, where the evaluation is very obvious, so if you are
filling it without reading carefully, this will lead to rejecting your HIT.

Figure C.5 – Instructions for the answer evaluation part

Definitely Relevant: It perfectly answers the question.

Undecided: I find it too difficult to give a judgment on this pair.

Partially Relevant: It answers the bulk of the question, though there might be
more to say.

Definitely Irrelevant: It totally misses the topic of the question.

Partially Irrelevant: It doesn't answer the question; only has a slight clue.

Company:  nswpolice
Twitter Description: The Official Twitter account of the NSW Police Force. Please do not
report crime here. For emergencies, contact 000 or 131 444 for non urgent matters. 

Question:  @nswpolice what sort of data do you track outside the questions for
visitors to the link? 

Answer:  Please note that mobile phone users accessing this website should be
aware that most phone applications enable their user's mobile phone details (and in
some phone applications, also their user's geographic location) to be recorded by the
NSWPF's website host. That information will be kept secure, confidential and private,
in accordance with the applicable laws. 

How relevant is the candidate answer to the given question?

Figure C.6 – Example question-answer pair, given to the participants for evaluation

We list below the 120 questions around privacy policies that we use in our evaluation (collected

from Twitter and agreed on during the annotations by the author and another member of the

research team.).
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1. @Monsterjobs_uk Are you legally responsible for any loss of claimants’ data that may occur on Universal

Job Match?

2. @Kenshoo I know I can just check your website, but are you taking any personal data while you are looking

for our search queries?

3. Just tried to change my details at @theregister and it now wants my address and phone number. Why?

4. @NorthumbrianH2O thanks. Do you pass on customer addresses to 3rd parties? Got interiors catalogue

addressed to me here. How did they know?

5. @EE May I please request what companies my details have been passed on to? I am getting calls from

various elec suppliers. Many thanks.

6. @creditkarma Does cancelling an account also delete all associated data (especially SSN) from your system?

Want to know before I sign up. :)

7. @yewknee @Simplify does it simplify sharing your banking data with advertisers?

8. @TechSmith Do you collect information and provide it to third parties?

9. @moneysupermktUK Hi - if I use your service will there be ANY telephone calls from you or 3rd party

company or is it 100% web based?

10. @Viber So, can everyone in your contacts see the photos you have shared on Viber even if not originally

shared with them? @fit_gurl

11. @TradeMe Isn’t releasing information under the Privacy Act voluntary? I.e to protect users you could make

the Police follow formal process?

12. @FitbitSupport is data stored on the cloud? I heard of leaks from the cloud.

13. @SparkMailApp Is there more information about sync settings via cloud. Security? Possible to delete what’s

been synced?

14. @nswpolice what sort of data do you track outside the questions for visitors to the link?

15. @weebly shocked at the unsolicited emails and calls I’m getting since I signed up with your web service.

Did you REALLY sell my information?

16. @Prezi Guys, small question: the email addresses you collect from Prezi accounts, are they being used for

third parties? If so, why?

17. @myen Are Evernote notes encrypted at rest?

18. @quip quick question if I connect my accounts can you access all my info? Or it still remains just for me to

see?

19. .@AngiesList so do you sell your mailing list to everyone??? My junk email has increased exponentially since

joining. #sheesh

20. @fullcontact do you have a warrant canary statement that you’ve never provided users’ address books to

authorities? If not, can you?

21. @getspeedify, does Speedify encrypt my traffic or is it an unencrypted VPN? Also, do you keep logs of users?

If so, for how long?

22. @duckduckgo You don’t log user info, but what bout cookies ? Do you use them every time we log on ?
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23. @AskSubaruCanada So that makes it ok for you to give them personal info to spam customers with every

day? Where was the opt out option?

24. @skulpt_me Very interested in your device! Can you tell us how our personal info and data are used and/or

resold with your app?

25. @loseit how about you guys? Do you #share the data we log in your app? #Privacy https://t.co/qTH6Ir905A

26. @EuclidAnalytics are you able to isolate a MAC address’ data and provide it to law enforcement?

27. @threatspikelabs what data do u store, if any, how long u store for? 3rd party compliance? If served with

warrant what’s ur steps to protect

28. @Adobe do you sell Mail Adresses??!!

29. @FreePPICheck do you keep or pass over any personal information after completing your ppi check??

30. Hey @Optus why am I getting calls from people wanting to sell me funeral insurance? Have you sold my

phone number to a call centre?

31. @nest Do you keep your customer’s emails private after you have obtained an email during installation

setup?

32. @smallpdf are your applications HIPAA compliant?

33. @SpotifyCares where is the opt out option for shareing personal info. If I opt out of the terms I am told that

I cannot use Spodify?

34. @msg @ProductHunt @service Curious how personal info is protected, assuming u have to give it out for

most cust serv resolutions?

35. Also, @HotDocOnline you make no mention on your site of how patient data is secured. Would you like to

elaborate in public?

36. Does anybody know if @EE sell on emails? I’ve been inundated with junk mail since I got my new contract

the other week...

37. @carmillaseries how secure is the merch store? I want to buy myself something for my birthday but I’m

afraid to use my credit card online.

38. @carshare hey folks, what’s the best way to reach you about security disclosure of your service and potential

access to customer data?

39. @submittable why do I suddely need to enable cookies? Is there an opt out, or am I switching back to

stamps?

40. Latest @bankofireland iPhone app update wants constant background access to my location. For security,

marketing, or something else?

41. MT @Remind101 @cellyme ...What do you do with the phone numbers that are archived? Your current

policy?

42. @AirsideInsider Could you provide some technical docs about the security used for the #MobilePassport

apps? Saved locally, encryption, etc.

43. Ok @HRBlock, why would @Ghostery report over 16 advertising trackers from your supposedly secure

online tax application?
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44. @angrybirds is this true? http://t.co/gCBoFIcZ you send people’s contacts to 3rd parties without permis-

sion?

45. @LinkedInHelp so someone is selling my email address from you and signing me up? Are you saying that

you’ve nothing to do with this email?

46. @floatapp how secure are your servers? Can you direct me to the security info on your website please?

47. @Gopit_Search @PrivacyMatters what’s your privacy statement and what data do your store from your

users?

48. .@AskTarget ok thanks but I assume that means yes you all do sell patient names and addresses?

49. @opendns I’d like to know if there’s any security concern, like whether the DNS provider can track my

browsing. What are the privacy issues?

50. @swiftkey can your app NOT collect my passwords and credit card numbers? How is that legal?

51. @HootSuite_Help If I sign up: Where’s the option on your website to opt out of your sharing my personal

info?

52. Also, can anyone at @TrustifyPI guarantee that the emails people put in to check against this “list” won’t be

sold off? No TOS on app.

53. @SagiGidali Hi Sagi, what’s your stance on keeping customer logs, and where is your company/customer

data based for legal reasons?

54. @Telstra just wondering what’s the extent of your monitoring on customers (me). Link me to pds if possible?

55. @TTChelps Yes, how will you manage my travel records and contact info, under what circumstances will

you release to 3rd parties?

56. @AirbnbHelp you already have my phone number, my linkedin and my profile pic + feedback from previous

hosts. So why you want my ID? @Airbnb

57. @hushmail Q: does hushmail collaborate with NSA to spy on its users’ emails? http://t.co/aZqiuL6sja

looking for alternative to Google mail

58. @EtsyHelp is it safe putting my banking info to etsy?? I have unpaid student loans, and I don’t want them

paying off @Etsy for my info :P

59. @troyhunt @FreedomeVPN do they log traffic ? Port open for upload ? Rhanks :)

60. @onavo Can I ask - why is it free? and how do u guarantee that data is anonymised? Ta :)

61. So @stripe has entered the UK market (nice) shouldn’t they declare if they share user data with any one?

62. @asiaelle @graceishuman I like Evernote for some things but I worry about data security. Who can see my

pages ?

63. The @nest needs to collect your in and out patterns for all your family. Who owns that data? Can it be

subpoenaed? federated? @mdrasch #IoT

64. @tigerVPN Can’t wait for the IOS app! It seem that I can’t find info if u log or no log to guarantee our privacy?

65. @duckduckgo –is it really private. Does duckduckgo–follow me and watch me and spy on me? Can I truly

search in total privacy?
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66. @Telus @Shawhelp @Shawinfo Can you verify if you provide customer information without a warrant to

law enforcement but upon request? #bcpoli

67. @nest Is Nest sharing data with Google still optional? Will it remain that way for the foreseeable future?

68. @duggan My money is on marketing plus hubris. @bankofireland, how confident are you that data won’t

leak?

69. .@fitbit What are you doing to protect customers’ privacy?

70. @TMobileHelp where’s the part of my contract where I gave you permission to log my urls and location?

71. @Netflixhelps The Perfect World Peanut Labs offer to earn zen for signing up. Will my information be

confidential or is it shared with PWE?

72. Hey @indeed, do you sell info to 3rd party sites?

73. @Jawbone how do you protect all the information tracked by your wearables? #CIS210

74. I understand that @airbnb want to see my ID’s before booking, but can I know what they are doing with

that data ? #privacy #matters

75. @privatewifi Will do more research, but how do I know VPN software isn’t gathering my data/personal info?

76. @mysms Can you elaborate on prvcy polcy? Can employees access sms? If so, when/when would they?

What safeguards exist to prevent abuse? Thx!

77. @mrgunn @colwizSupportWhat kind of data do you collect from users? What do you do with it? Who

stands to gain from it financially? How?

78. @Viber is that truth you are spying on users’s calls ??

79. @22seven - do you, would you, could you ever share personal data with SARS? Is there anything in your

T&C’s prohibiting you to do so?

80. Hey @GoDaddy why do you guys sell my information every time I buy a domain from you? I’m assuming I

gave you permission at some point?

81. @sprintcare @sprint - What’s up with the new privacy contract you guys just did? Giving away our info to

random businesses ? #Sketchy #Smh

82. @opera Do you track and store people’s data like Google, Microsoft, Facebook and all their other cronies? If

you don’t I’ll switch to you.

83. Does @Official_GDC have a privacy statement anywhere re: the personal data of attendees & how it’s shared

w/ exhibitors, speakers, etc.?

84. Is this correct? @VodafoneIreland cc rep said they don’t retain customer information predating your existing

or last contract. cc: @ComReg

85. Hey @HostGator can you not sell my phone number to telemarketers? Paying for privacy protection should

protect me from YOU TOO

86. With the rapid rise in so called encrypted messaging apps, how do you feel @viber competes on security?

#cgc14

87. @UnrollmeHelp is there a way i can be sure that you’re not just the nsa reading my mails? #faq
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88. @evernotehelps are my notes being saved encrypted on your servers per default? Or is only manually

encrypted text encrypted?

89. @Telstra So nothing more than absolutely necessary to meet legal interception and not used unless required

under law?

90. @Viber if I sign up with viber, do you load my iphone contacts into your servers? Thanks #viber

91. @AutomaticHelp hi! how is the sensitive data my Automatic collects encrypted and stored?

92. @truecallerhelp good, thx. The question was different: will they be removed from your servers or not?

Which is the procedure to remove them?

93. Sean: What Mobile Apps Know & Transmit About You: @AngryBirds sends my contacts to third parties?

#WTF #FAIL http://t.co/IKVYc6l7

94. @simpletaxca What personal information do you retain after I do my taxes on your site?

95. @MailChimp Does Mail Chimp retain our list and use or sell them elsewhere ?

96. @FreePPICheck if I were to give you my phone #, how many people will you sell it to?

97. @TripCase how safe isthe personal info?

98. @fitbit @FitbitSupport Where can I go to see who you sold my private health data too? http://t.co/Rd64dKWGFb

99. @VentraChicago How do you use our personal data once we’ve registered with Ventra? #AskVentra

100. @bitly Thanks for the response. Does bitly have access to the links? What if I wanted to send a file to a

friend and it’s personal?

101. @jobsdotie Also, no data privacy guarantee, or info on who gets access to my CV (is it just the advertising

company or also jobs.ie staff?).

102. @nest Privacy question, does Nest share usage patterns or anything with third parties? cc @joshmend

103. The @tapjoy ad framework uploads my UDID *and* my MAC address? Is that *really* necessary? :|

104. Dear @eBay I don’t appreciate my buyers having access to my phone number! Why is this person calling

me at 9pm? #totallyinapprpriate

105. Soooo, I joined @mint about a week ago and today I’ve received 7 credit card offers in the mail... selling my

info much?

106. Hi @auspost how can a person opt out on Australia Post storing phone numbers ?

107. .@MGMResortsIntl do you sell your mlife member contact information? Receiving calls from sports betting

tip line since staying @ NYNY.

108. Im conflicted 2 clicking “accept” to your policy changes. Why do you need my birth date, friends info, etc.?

@SpotifyUSA #TaylorMightBeRight

109. @AdblockPlus https://t.co/3Awum5BwRF How much control will users have over their personal data?

#tracking #adblock

110. @clue just curious. do you share users information with third parties? i’m getting targeted ads for tampons

etc. after using your app.
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111. @theTunnelBear nice! Given the recent U.K. change in law, do you have any details about your logging

privacy etc?

112. Is customer credit card info stored encrypted? Even if it is storing password in plain text kind of kills that.

@RSComponents

113. @davidsbridal when people sign up for your site, do you sell their info? I have received numerous unsolicited

calls on my cell phone.

114. @Cabelas Do you or your partners sell, share, or otherwise disseminate your customer’s mailing addresses

directly or indirectly to the @NRA?

115. @Spotify Due to the complete lack of respect for privacy in the new T&C I wonder where to delete my

account? stopped subscription already.

116. @hubspot Why must I enable third party cookies in your browser settings? Is there a workaround? DM pls

117. @Viber Hi, is your service secured against spying by the nsa and gchq?

118. .@automatic Who owns my driving data? Will my driving behavior be aggregated and sold?

119. @ProtonMail @ProtonMailHelp E.g.: If I use my IOS to access emails, what data is stored by you guys? Is

there a link to explain?

120. @Nosgoth - is it mandated to link our steam account to Square in order to play the game ? What securities

are in place for protection of acc

C.3 Final Survey

Finally, the participants are presented with a short survey to check their legal expertise (Fig-

ure C.7).
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Very Difficult

Difficult

Neutral

Easy

Very Easy

No legal training

No legal training, but my background in another field
provides me with some legal experience

Knowledgeable in legal matters, but no formal legal training

Studied law

Received other legal or paralegal training

Yes

No

Legal Background

Please answer the following questions honestly. The answers to those 
questions will NOT impact your participation in this study or the 
received compensation.

How easy or difϐicult is it for you to understand legal texts, e.g., a privacy policy of a website or a legal contract.

What is your level of legal training?

Do you work in a position that requires legal expertise (e.g., working as a paralegal, lawyer or attorney)?

Figure C.7 – Final survey for checking the legal expertise of the participants



D Example Cases for PriBot

In this appendix, we show PriBot in action with questions about multiple companies.

Figure D.1 – The first answer about third-party sharing in the case of the headphones company
“Bose” [Bra17]
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Figure D.2 – The second answer about third-party sharing in the case of the headphones
company “Bose” [Bra17]

Figure D.3 – The third answer about third-party sharing in the case of the headphones company
“Bose” [Bra17]
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Figure D.4 – The first answer about mobility tracking in the case of Google. Notice the semantic
matching between mobility and location data.

Figure D.5 – The first answer to an informal question about providing data to the NSA in the
case of Google. “NSA” is semantically matched to “government”.
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Figure D.6 – The first answer to a question about data retention in the case of Twitter. Notice
the absence of matched terms between the question and the answer.

Figure D.7 – The second answer to a question about data retention in the case of Twitter.
Notice the different duration given for a different data type, showing the interesting patterns
that can be observed by comparing the top answers.
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Figure D.8 – The first answer to a question about data control in the case of Twitter. Again,
opting out is a form of data control, and the answers are in this spirit.

Figure D.9 – The second answer to a question about data control in the case of Twitter. Other
forms of data control are provided in this answer.
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Figure D.10 – The first answer to a question about data control in the case of Khan Academy.
Notice the semantic matching between “kids” and “child” and the high levle understanding of
the user’s interest in data control options.
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