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Abstract— This paper presents a coordinated primal-dual
interior point (PDIP) method for solving structured convex
linear and quadratic programs (LP-QP) in a distributed man-
ner. The considered class of problems represents a multi-agent
setting, where the aggregated cost is to be minimized while
respecting coupling constraints as well as local constraints of
the agents. Unlike fully distributed methods, a central agent is
utilized, which coordinates the Newton steps taken within the
interior-point algorithm. In practical PDIP implementations,
predictor-corrector variants are widely used, due to their very
fast convergence. We show that in the coordinated case, a naive
implementation of a PDIP with predictor-corrector scheme
introduces extra communication steps between local and central
agents. We propose a decentralized predictor-corrector scheme
that uses a non-uniform perturbation on the complementary
slackness condition, which is able to reduce the number of
communication steps while preserving fast convergence of the
original methods. The proposed coordinated PDIP method with
decentralized predictor-corrector scheme can be analysed in
the general framework of PDIP methods with non-uniform
complementarity perturbations, for which convergence and
complexity results are provided.

I. INTRODUCTION

We consider the following convex multi-agent optimiza-
tion problem:

min.
x1,...,xm

m∑
i=1

f i(xi)

s. t. ∀i ∈ [1, . . . ,m] ,

gi(xi) ≤ 0 ,

Cixi = yi ,
m∑
i=1

Diyi = d ,

(1)

where superscript i indicates that the function or variable
belongs to agent i. The cost function and the constraint set
are separable, except for the last equality constraint which
introduces coupling between agents. We write (1) in the
‘output coupling’ format, in order the distinguish the local
variables xi, which determine feasibility and the cost of the
agent, and the output variables yi, which contribute to the
coupling between agents.

Problem (1) captures a wide area of interest in estimation
and control in networks [17]. Distributed control problems
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with dynamic or output coupling between agents can be
formulated in the form of (1). Coupling in the cost and
inequality constraints can also be incorporated into (1) by
reformulations with auxiliary variables. See [17] for a sur-
vey on distributed problems on estimation and control and
categorization of formulations and solution methods.

Distributed and coordinated methods for solving problems
of the form (1) is an active area of research. We distinguish
here ‘coordinated’ schemes from ‘distributed’ schemes by
the existence of a central agent that can collect information
from all agents, inducing a ‘star’ topology on the information
network. Many engineering applications, such as power grids
and chemical plants, demand a central point of information,
e.g. SCADA systems, for enabling fault surveillance, inter-
vention by human operators and data storage. Furthermore,
without a central agent, the responsibility of modelling and
managing the coupling between agents will fall on the
agents, who might not have the domain knowledge. Another
motivation for having a central agent is that the convergence
of the optimization method will typically be much faster
compared to fully distributed schemes since information can
be shared efficiently. Distributed methods can be applied
as a coordinated algorithm by choosing the splitting of the
problem accordingly. On the other hand coordinated methods
can often be made fully distributed if it is possible to allocate
the task of the central node among all agents.

Coordinated solution methods are strongly linked to de-
composition methods where the problem is split into a master
problem and many sub-problems. Dual decomposition meth-
ods use Lagrangian relaxation and do not provide feasibility
until convergence, whereas primal decomposition methods
decompose the problem directly and preserve feasibility. In
the constrained setting, the master problem becomes non-
differentiable and is usually solved with suitable first order
methods such as sub-gradient or cutting plane methods [3].
Applying second order methods is still possible by smooth-
ing the problem with barrier functions, either in the dual
setting [13], [18], [25] or in the primal setting [5], [16], [24].
Using second order curvature information, these interior-
point decomposition methods become robust against scaling
and can converge faster to high accuracy solutions compared
to first order methods [5], [17].

Apart from primal and dual interior-point decomposition
methods, there is a third option: applying a primal-dual
interior point method (PDIP) [23] directly to the problem
and decomposing the Newton step. This primal-dual scheme
was proposed in [1], [20], where authors focus on distributed
solutions of the Newton step to eliminate the need for a



central agent, using proximal splitting [1] and message pass-
ing [20] methods. The advantage of the primal-dual interior-
point setting is two fold: Firstly there is no distinction
between local and global iterates and iterations for solving
local problems which only generate intermediate Hessian and
gradient information are eliminated. Secondly, by applying
predictor-corrector schemes [10], [15], PDIP methods can
become very efficient and therefore are commonly used in
implementations aiming for high-performance [2], [9], [14].
However, in the interior-point decomposition framework,
none of the aforementioned works apply a predictor-corrector
scheme for enhancing convergence speed, with the exception
of [13] which apply predictors in the dual decomposition
setting, with primal-dual iterations in the local agents. Note
that the method of [13] does not fall into the primal-dual
framework as we use here.

For an algorithm used in the multi-agent setting, not only
the number of iterations, but also the number of communica-
tions is of utmost importance for practical applicability. Even
though coordinated algorithms can achieve the same number
of iterations as a central method, the number of communi-
cation steps per iteration can be significant. We will show
that applying Mehrotra’s predictor-corrector scheme [15] in
the PDIP setting, results in four communication steps per
iteration. If the communication delay is significant, this might
nullify the benefit of reduced number of iterations. To tackle
this issue we introduce a decentralized predictor-corrector
scheme in the coordinated PDIP setting, which enjoys the
high performance of widely used predictor-corrector (PC)
methods [10], [15], without introducing too many communi-
cation steps. We further analyze the algorithm from a general
point of view of primal-dual interior point with non-uniform
complementarity perturbations, or barrier parameters. This
analysis provides safeguards that can be used to ensure
convergence of the decentralized PC scheme.

II. PRELIMINARIES

In the development of coordinated interior-point method,
we will rely on the following assumptions regarding the
problem data

Assumption 1: The local cost functions f i’s are convex.
Assumption 2: The local constraint sets {xi : gi(xi) ≤ 0}

are convex and compact.
Assumption 3: There exists a strictly feasible point for

problem (1).
Assumption 4: The local output matrices, Ci’s, have full

row rank.
The first two assumptions ensure convexity of the opti-
mization problem. The third assumption is necessary for
using interior-point methods, whereas the last assumption
will facilitate the decomposition of the problem with respect
to the output variables.

A. Primal-Dual Interior Point Method

This section provides a summary of standard primal-dual
interior point framework. See [19], [21] for a more in depth
treatment and [11] for an up to date survey.

For brevity we re-write (1) in a compact form with slack
variables.

min.
x,y,s

f(x)

s. t. g(x) + s = 0 ,

Cx− y = 0 , (µ)

Dy = d , (γ)

s ≥ 0 , (λ)

(2)

where the dual variables µ, γ, λ are shown next to their
corresponding constraints and the following definitions are
used:

s =
[
(s1)T . . . (sm)T

]T
,

f(x) =

m∑
i=1

f i(xi), g(x) =
[
g1(x1)T . . . gm(xm)T

]T
C = blkdiag(C1, . . . , Cm), D =

[
D1 . . . Dm

]
and y, x, d, µ, λ having similar definitions to s.

The first order optimality conditions for problem (2), or
the Karush-Khun-Tucker(KKT) system, can be written as

r(x, y, s, λ, µ, γ) = 0. (3)

where r = (rTdual, r
T
comp, r

T
prim)T , rdual = (rTdual,x, r

T
dual,y)T and

rprim can be described similarly with the following definitions

rdual,x(x, µ, λ) = ∇f(x) + CTµ+ Jg(x)Tλ ,

rdual,y(γ, µ) = DT γ − µ ,
rprim,in,x(x, s) = g(x) + s ,

rprim,eq,x(x, y) = Cx− y ,
rprim,y(y) = Dy − d ,

rcomp(λ, s) = ΛS1 .

(4)

PDIP methods operate by applying Newton’s method on
a smoothed version of the nonlinear set of equations (3).
The smoothing is obtained by perturbing the complementary
slackness condition:

rcent(β, λ, s) = ΛS1− β, β > 0 , (5)

and using the modified function

r̂(β) = (rTdual, r
T
cent(β), rTprim)T .

In order to retain the optimizer of the original KKT system,
the perturbation parameter is decreased progressively. As
β → 0 , the primal-dual pairs converge to the optimizer
of (2) following the so called ‘central path’. In general the
perturbation vector β is obtained by multiplying a scalar
with a vector of ones. However we will let it attain different
values for each constraint, similar to [8], which will allow
us to decentralize the computation in Section III-B. The
Newton direction ∆z = (∆x,∆y,∆s,∆λ,∆µ,∆γ), for the
perturbed KKT system can be found by solving the following
linear system of equations:
H(x, λ) 0 0 Jg(x)T CT 0

0 0 0 0 −Iλ DT

0 0 Λ S 0 0
Jg(x) 0 Is 0 0 0
C −Iy 0 0 0 0
0 D 0 0 0 0




∆x
∆y
∆s
∆λ
∆µ
∆γ

 = −r̂

(6)



where we use the definitions ;

H(x, λ) = ∇2f(x) +Hg(x, λ) ,

∇2f(x) = blkdiag(∇2f1(x), . . . ,∇2fm(x)) ,

Hg(x, λ) = blkdiag(

n1∑
j=1

λ1
j∇2g1j (x), . . . ,

nm∑
j=1

λm
j ∇2gmj (x)) ,

Jg(x) = blkdiag(J 1
g (x1), . . . ,Jm

g (xm)) ,

J i
g (xi) =

[
∇gi1(xi), . . . ,∇gini(x

i)
]T

,

Λ = blkdiag(Λ1, . . . ,Λm), Λi = diag(λ1, . . . , λm) ,

S = blkdiag(S1, . . . , Sm), Si = diag(s1, . . . , sm) .

‘Long step’ methods use the maximum stepsize that pre-
serves strict positivity of the pair λ, s such that (s+t∆s, λ+
t∆λ) > 0 holds, whereas ‘short step’ variants further
restrict the step size to preserve ‘centrality’ and/or to ensure
sufficient decrease in the residuals. The primal dual interior
point method will terminate when the duality gap measure

η = λT s

and the primal dual residuals are reduced below desired
thresholds. η becomes equal to the actual duality gap,
when the iterates are primal and dual feasible, rdual = 0,
rprimal = 0 [6]. For a uniform perturbation vector β, when
the perturbed KKT system is solved, that is we obtain a point
on the central path, we have that

η̂ :=
η

M
=
λT s

M
, η̂1 = β ,

where λ, s ∈ RM , M is the total number of inequality
constraints M =

∑
i n

i and average complementarity value
η̂ provides a measure for the duality gap. In practice it is
not necessary to wait for convergence to the central path,
before reducing the perturbation parameter. In the standard
‘feasible path following’ method, for which convergence and
complexity results are relatively easy to provide [19], the
perturbation vector at each step is chosen as

β = ση̂1, σ ∈ (0, 1) .

To ensure that proximity to the central path is preserved, the
iterates can be constrained to stay within certain neighbor-
hoods [8], [19].

B. Predictor-corrector method

Practical implementations of PDIP methods involve
many heuristic modifications for accelerating the algorithm.
Mehrotra’s predictor corrector [15] together with Gondzia’s
multiple corrections [10] is widely used in commercial
solvers [2] and results in much faster convergence. In this
section we will briefly explain the predictor-corrector ap-
proach. For brevity, we write the Netwon system in compact
form

M∆z = −
[
rprimal,dual

ΛS1− ση̂1

]
.

The Newton step for the original KKT system is given by

M∆zaff = −
[
rprimal,dual

ΛS1

]
,

which is also known as the ‘affine scaling direction’ [19].
The duality gap reduction parameter σ is chosen according to
the performance of the affine scaling direction. The duality
gap measure that would be achieved by the affine scaling
direction with the maximum feasible step-size taff is

η̂aff = (λ+ taff∆λaff)T (s+ taff∆saff)/M .

The reduction parameter is chosen as σ =
(
η̂aff/η̂

)3
. Further

information is extracted from the affine scaling step by com-
puting a corrector term, which aims to correct the error in the
linearization by adding a second order approximation. The
composite predictor-corrector step is computed by solving

M∆zpc = −
[

rprimal,dual
ΛS1 + v − ση̂1

]
,

where the corrector v is defined as

v = ρ (∆Λ)
aff

(∆S)
aff
1,

and ρ is a weighing factor for the corrector (for example,
ρ = taff [22] or ρ = (taff)2 [7]).

III. COORDINATED PRIMAL-DUAL INTERIOR POINT
METHOD

A. Coordinated Newton step

In this section we will show how to exploit the structure
of the linear system (6), such that a Newton direction
can be computed by communicating minimum amount of
information between the agents and the central coordinator.

We start by eliminating ∆s,∆λ,∆x,∆µ from the system,
in the given order, to obtain

∆s = −Λ−1S∆λ− Λ−1rcent ,

∆λ = S−1Λr̃pr,in,x + S−1ΛJg(x)∆x ,

∆x = −R−1r̃dual,x +−R−1CT∆µ ,

∆µ = −P∆y + Pr̃x ,

where we use the definitions

r̃prim,in,x = rprim,in,x − Λ−1rcent ,

r̃dual,x = rdual,x + Jg(x)TS−1Λr̃prim,in,x ,

R = H(x, λ) + Jg(x)TS−1ΛJg(x) ,

r̃x = rprim,eq,x −CR−1r̃dual,x ,

P = (CR−1CT )−1 ,

q = (rdual,y −Pr̃x) .

Finally we are left with two equations

P∆y + DT∆γ = −q ,
D∆y = −rprim,y ,

which can be written in a compact form[
P DT

D 0 ,

] [
∆y
∆γ

]
= −

[
q

rprim,y

]
, (7)

where

P = blkdiag(P 1, . . . , Pm), q = ((q1)T , . . . , (qm)T )T .



step k+1

Central
Agent

Local
Agent i

step k

P i, qi

kri
primal,xk2

kri
dualk2

�yi ti, ⌘i(t)�, t, (Di)T�

time

evaluate ⌘(t), � = �⌘/M

if cond.(⌘, krk2) : terminate

eval. kri
primal,xk2

, kri
dualk2

update (yi, xi, si, �i, µi)

eval. P i, qi

construct P, q

evaluate �y, ��

evaluate krk2

eval. �xi,��i,�si,�µi

construct handle ⌘i(t)

find feasible ti

find t : t < min(t1, . . . , tm, 1)

Fig. 1: Newton step for the coordinated PDIP method

The matrices R and P are guaranteed to be invertible in
virtue of the assumptions made in Section II. This system
of equations can be solved in a coordinated manner as illus-
trated in Figure 1. The coordinated step distributes the linear
algebra operations required to compute P i and qi to the
agents, which can operate in parallel, and therefore reduces
the computational effort at the central agent. Furthermore,
local data of the agents is partially hidden, since the central
agent does not have direct access to the information regard-
ing the values of local variables xi, si, µi, λi or functions
gi(xi), f i(xi).

Starting the iteration step k of the coordinated PDIP
method, the agents receive the global step-size t, the per-
turbation (or barrier) parameter β and either the global dual
variable γ or directly the product (Di)T γ, which will be used
in the computation of rdual,y and qi. Firstly the agent updates
its local variables and residuals using the step-size and the
direction computed in the previous step. Using these values
the agent then constructs the data P i, qi. The data (P i, qi)
is sent to the central agent together with the norms of local
residuals. The central agent constructs the overall residual
norm, block diagonal P and stacked q and solves (7) for ob-
taining the direction in output variables ∆y. Upon receiving
it’s local direction ∆yi the agent evaluates ∆xi,∆λi,∆si,
the maximum feasible step-size and constructs the one-
dimensional quadratic function ηi(t) which outputs the sum
of the local complementarity products for a given step-size t.
Finally the central agent collects local maximum step-sizes
ti and the local ‘duality gap’ functions ηi(t) for computing
the global step-size t, evaluating the duality gap measure
η̂ and the perturbation vector β according to the reduction
parameter σ. Having access to η̂ and the norm of the primal-
dual residuals of the previous step, the central agent can
check if the specified termination criterion is satisfied.

Inspection of Figure 1 reveals that two communication
rounds between the central agent and local agents are nec-
essary to complete a single Newton step; one for computing
parameters P, q and another for coordinating the step-sizes.
In case of a short step approach, where the step-size is
selected as to guarantee centrality and/or sufficient decrease
of the residuals, additional communication steps might be
necessary.

B. Decentralized predictor-corrector
In this section we will investigate how the predictor-

corrector methodology can be applied to the coordinated
PDIP setting, without introducing extra communication bur-
den. The predictor-corrector approach requires computing
two Newton steps per iteration, using the same Hessian. In
practice, the reduction in the number of iterations greatly
compensates the extra time spent in additional back-solves.
However in the coordinated setting, the cost of communi-
cation becomes considerable, as now four communication
rounds are necessary per iteration. In order to remedy
this effect, we propose a decentralized predictor-corrector
approach, which does not require additional communication
rounds.

We break the communication in the predictor step and
accept a cruder prediction; all agents solve a local affine
scaling problem, disregarding the global equality constraint.
This decentralized affine scaling step is used to determine
the local duality gap reduction parameters σi and corrector
vectors. The actual Newton step is then determined in a
coordinated manner, respecting the coupling constraints. The
main modification to the standard coordinated Newton step
is in the first computational block shown in Figure 1, and
changes the way local agents compute qi using the local
centrality residual ricent as

∆(yi)aff = −(P i)−1qi,aff

(ti)aff : (si + (ti)aff∆si, λi + (ti)aff∆λi) > 0

σi =
(
η̂i,aff/η̂i

)3
vi = (∆Λi)aff(∆Si)aff1

ricent = ΛiSi1 + vi − σiη̂i1,
where qaff is computed using the local complementarity
residual ricomp as explained in Section II-B. The rest of
the process is identical to the standard coordinated Newton
step as shown in Figure 1, except that the global reduction
parameter σ and the perturbation vector β are not needed.

Note that the local affine scaling direction could be sig-
nificantly different from the original affine scaling direction,
since the coupling constraint D∆y = −rprimal,y is ignored.
This diminishes the quality of the corrector and the reduction
parameter σi in exchange for reduced communication effort.



In addition, by allowing different σi and corrector terms
for each agent, we break the uniformity in the perturbation
vector β. This last effect is not necessarily undesired, as
discussed by [8] and may even enhance the robustness of the
method. For guaranteed convergence in this setting, certain
conditions that preserves centrality should be enforced, as
explained in the next section.

C. Convergence with non-uniform perturbation
Consider the modified Newton step with a non-uniform

perturbation vector on the complementarity condition:

M∆z = −
[

rprim,dual
ΛS1− ΛSξ

]
(8)

where the vector ξ specifies how much change in each
complementarity pair is desired, with ξ ∈ RM and ξ > 0.
For a given σ > 0, ξ can be selected as ξi = σ η̂

λisi
to recover the standard uniform perturbation vector with
σ. This more generic definition captures the effect of the
decentralized predictor-corrector described in the previous
chapter. Note that any corrector applied together with the
uniform-perturbation can be considered as a non-uniform
perturbation vector.

In this section, we will state the convergence conditions
for quadratic programs (QP) in the feasible case, where the
primal-dual residuals are equal to 0, to make the analysis
simpler as is common in the interior point literature [12],
[23]. The results can be extended to the non-feasible case,
and for LPs and QPs, a feasible point can be obtained with
reformulations of the problem [11], [12].

We restrict the iterations to lie inside the ’symmetric
neighborhood’ [12],

Ns = {(x, y, s, λ) ∈ F0 :
1

ψ
η̂ ≥ λjsj ≥ ψη̂, ∀j ∈ [1,M ]}

for some 1 � ψ > 0, where the strictly feasible set F0 is
defined as F0 = {(x, y, s, λ) : (rprim, rdual) = 0, (s, λ) >
0}. Furthermore we restrict the reduction vector ξ to satisfy
the following criteria,

∃c : 0 < c < 1,

∑
j ξjλjsj

M
= cη̂ (9)

1

φ

cη̂

λjsj
≥ ξj ≥ φ

cη̂

λjsj
(10)

for some 1� φ > ψ. The constraints (10), (9) enforce that
the next point we would like to arrive with the Newton step,
does not have to be on the central path as in the uniform
case, but it should be at least strictly within the Ns and aim
to reduce the overall duality gap.

By applying these conditions, we will ensure that the
linearization error in the Newton step is bounded, and there
is always some finite step-size that can reduce the duality-
gap and keep the system within Ns. The following theorem
states the convergence and complexity result.

Theorem 1: If problem (1) is a convex QP, given ε > 0,
suppose that a starting point (x0, y0, s0, λ0) ∈ Ns satisfies

η0 ≤
1

εκ
(11)

for some positive constant κ. Let {ηk} be a sequence
generated by the iteration scheme, which takes steps using
the Newton relation (8) with admissible parameters φ, ψ and
reduction vectors ξk that satisfy (9), (10), with some α, γ ∈
(0, 1), γ < 1−α and ck ≤ γ. Then, there exists an admissible
step-size tk ∼ O( 1

M ) and an index K ∼ O(M log( 1
ε )), such

that
ηk ≤ ε, ∀k ≥ K.

Proof: Due to space limitations, we refer the reader to
the proof of Theorem 1 of [4] that covers generic convex
QPs.

Integrating convergence conditions to the coordinated set-
ting is not straightforward as one should balance extra
communication burden and performance deterioration with
the robustness of the algorithm. Here we state one pos-
sible way that does not require extra communication, but
a detailed comparison and performance analysis is out of
the scope of this paper. Constraints (10), (9) on ξ can be
satisfied by enforcing 1

φcminη̂ ≥ σiη̂i1 − wivi ≥ φcmaxη̂

and cmax ≥ (
∑
j ξ

i
jλ
i
js
i
j)/M

i ≥ cmin in the decentralized
predictor-corrector computation step using pre-determined
values 0 < cmin < cmax < 1 and a corrector weighing term
wi that is selected by the agent. The central agent collects
max(|ξi−1|) from agents and constructs θ = 2−3/2‖ξ−1‖2∞
and bounding functions on the duality gap measure as
η̂max(t) := η̂((1−t)+tc+t2θ) and η̂min(t) := η̂((1−t)+tc)
which can be sent to the local agents together with ∆yi.
The agents then compute their maximum allowable step-
size that satisfy the neighborhood constraints as timax :
(1/ψ)η̂min(t) ≥ (si + t∆si)T (λi + ti∆λi) ≥ ψη̂max(t) .
Finally, the sufficient decrease condition can be verified by
collecting local duality gap functions ηi(t).

D. Experiments

We apply three different coordinated PDIP methods, PF:
path following with a fixed reduction parameter σ and β =
ση̂1, PC: predictor-corrector, DPC: decentralized predictor
corrector, on randomly generated problems as well as on a
realistic demand response problem taken from [5]. In order
to compare maximum performance, we omit convergence
safeguards and use the ‘long-step’ approach for step-size se-
lection, which is a common practice [19]. On randomly gen-
erated problems, the benefit of the decentralized predictors in
terms of reduced communication burden is clear as shown in
Figure 2. However this reduction is not deterministic, as can
be seen in Figure 3, where the performance of PF method and
DPC method are similar. In terms of iterations, PC method
prevails, but suffers from increased communication rounds.
The DPC method is effective in reducing the communication
burden, however the reduction depends on the problem data
and the starting point. The standard path-following method
is also attractive due to small communication per iteration
requirement and simplicity of the algorithm.

E. Conclusion

In this paper, we have discussed three different coordi-
nated PDIP methods, standard path following, Mehrotra’s



predictor-corrector and the novel decentralized predictor-
corrector method, for solving the multi-agent problem (1).
We provide convergence results for PDIP methods with non-
uniform complementarity perturbations, as the decentralized
PC scheme falls into this category. This convergence result
can be applied to any PDIP method that utilizes corrector
terms and breaks the uniformity of the complementarity
perturbation. Finally we have tested the coordinated PDIP
methods on numerical examples. According to the results,
depending on the expense of iterations and communications,
all three methods are practical. Future work will include
integrating the convergence safeguards in an optimal man-
ner to the decentralized predictor-corrector scheme as well
as generic predictor corrector schemes and more in-depth
comparison on realistic multi-agent optimization problems.
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Fig. 2: Evolution of iteration and communication rounds
required to bring the suboptimality ‖y−y∗‖/ny below 10−5,
for increasing number of agents for randomly generated
coupled QPs with feasible starting points, using the mean
of 10 sampled problems with nx = 20, ny = 5.
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