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Abstract 

Alkynes are among the most versatile functional groups in organic synthesis. 

They are also frequently used in chemical biology and materials science. Whereas 

alkynes are traditionally added as nucleophiles into organic molecules, hyperva-

lent iodine reagents offer a unique opportunity for the development of electro-

philic alkyne synthons. Since 1985, alkynyliodonium salts have been intensively 

used for the alkynylation of nucleophiles, in particular soft carbon nucleophiles 

and heteroatoms. They have made especially a strong impact in the synthesis of 

highly useful ynamides. Nevertheless, their use has been limited by their instabil-

ity. Since 2009, more stable ethynylbenziodoxol(on)e (EBX) reagents have been 

discovered as superior electrophilic alkyne synthons in many transformations. 

They can be used for the alkynylation of acidic C–H bonds with bases or aromatic 

C–H bonds using transition metal catalysts. They were also highly successful for 

the functionalization of radicals or transition metal-catalyzed domino processes. 

Finally, they allowed the alkynylation of a further range of heteroatom nucleo-

philes, especially thiols, under exceptionally mild conditions. With these recent 

discoveries, hypervalent iodine reagents have definitively demonstrated their utili-

ty for the efficient synthesis of alkynes based on non-classical disconnections. 

Keywords: Alkynes, Alkynyliodonium salts, Ethynylbenziodoxol(on)e (EBX) 

reagents. 
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2.1 Introduction: the Umpolung of Alkynes 

Alkynes are among the most versatile functional groups in organic chemistry 

[1]. This comes from the fact that the triple bond is stable under many conditions, 

yet can be easily transformed into a broad range of useful functional groups. In the 

last decades, alkynes have also found numerous applications in neighboring fields, 

such as chemical biology and materials science. For example, the [3+2] cycloaddi-

tion between alkynes and azides is now broadly applied in these fields, as it is bio-

orthogonal, easy to perform and does not generate any waste (the paramount of a 

‘Click’ reaction [2-3]). As linear -systems, alkynes have also found broad appli-

cations in organic electronics or dyes for photovoltaics. To allow continued pro-

gress in synthetic and applied fields, new flexible and efficient methods to synthe-

size alkynes are urgently needed. 

Most of the methods to access alkynes by transfer of a triple bond are based on 

nucleophilic alkynylation (Scheme 2.1, A). This is not surprising, as the terminal 

C–H bond of alkynes is highly acidic due to the sp-hybridization, and the for-

mation of acetylide anions is consequently facile. Methods such as addition of 

acetylides to carbonyl compounds [4] or the Sonogashira cross coupling [5,6] are 

now routinely used for the synthesis of alkynes and are highly reliable. In stark 

contrast, the addition of alkynes onto nucleophiles requires an inversion of their 

inherent reactivity (an Umpolung, Scheme 2.1, B). This approach is more chal-

lenging and has been consequently less developed [7-9]. When considering the 

omnipresence of nucleophiles not only in synthetic organic chemistry, but also in 

chemical biology and materials science, this is an important shortcoming. Indeed, 

reactions such as the alkynylation of enolates, the “inverted Sonogashira” cou-

pling of C–H or C–metal bonds or the direct alkynylation of heteroatoms are high-

ly useful processes, which give access to molecular structures outside the reach of 

classical methods. 
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Scheme 2.1: Nucleophilic and electrophilic alkynylation. 

Due to the high reactivity of the hypervalent bond, hypervalent iodine reagents 

have been intensively used in organic chemistry [10-15]. Among electrophilic al-

kynylation reagents, they occupy a central place, as they are ideally suited to allow 

overcoming the inherent nucleophilicity of alkynes (Figure 2.1). First successes 

were encountered by the use of arylalkynyliodonium salts [16], for which selective 

transfer of the alkyne group to nucleophiles was observed. More recently, the sta-

bility and selectivity issues often present with alkynyliodonium salts have been 

overcome by the introduction of more stable cyclic reagents, especially 

EthynylBenziodoXol(on)es (EBX) [17,18]. Due to their exceptional reactivity, hy-

pervalent iodine reagents are often superior to less reactive reagents such as al-

kynyl halides [19] or sulfones [20-23]. On the other hand, they are more stable and 

less toxic than organometallic reagents, such as organolead compounds [24,25].  

In this chapter, the use of hypervalent iodine reagents for alkynylation reactions 

will be covered. The most important results up to the last review in the field [9] 

will be summarized, followed by a more detailed presentation of the most recent 

works. The use of alkynyliodonium salts will be described first (Section 2.2) fol-

lowed by the use of EBX reagents (Section 2.3). Each section will be divided ac-

cording to the class of alkynylated nucleophile (carbon or heteroatom). The focus 

will be on reactions using well-defined hypervalent iodine alkynylation reagents. 
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Figure 2.1: Electrophilic alkynylation reagents. 

2.2 Alkynylation using Alkynyliodonium Salts 

Alkynyliodonium salts are versatile reagents in organic chemistry, and their use 

goes far beyond alkynylation. For example, they can also be used in the synthesis 

of vinyliodonium salts, in cyclization reactions via carbene insertion or in cy-

cloaddition reactions [16]. Several methods have been developed for their synthe-

sis from different iodine precursors (Scheme 2.2). Early methods focused on the 

reaction of terminal alkynes with Koser reagent 1 [26], but this approach had a 

limited scope, as it worked only with aryl or bulky alkyl group on the alkyne 

(Scheme 2.2, A). More general methods were then developed by the reaction of 

iodosobenzene 2 with alkynylsilanes in the presence of Lewis acids and metal 

salts (Scheme 2.2, B) [27-29]. As the purity of iodosobenzene 2 can be highly 

batch dependent, an alternative protocol was developed starting from (diacetoxy-

iodo)benzene 3 by Kitamura and co-workers [30]. The broadest substrate scope 

was achieved starting from cyano(phenyl)iodonium triflate 4 by Stang and co-

workers, but this approach required the use of more toxic alkynyl stannanes 

(Scheme 2.2, C) [31-32]. Finally, Olofsson and co-workers reported in 2012 a 

very practical one-pot oxidation-alkynylation protocol starting from iodobenzene 

5 and using alkynyl boronic acid esters (Scheme 2.2, D) [33]. A limitation of this 

method is the use of the sometimes unstable and difficult accessible boronic acid 

esters. 
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Scheme 2.2: Synthesis of alkynyliodonium salts. 

 

2.2.1 Alkynylation of C-Nucleophiles 

2.2.1.1 Alkynylation of Acidic C–H Bonds 

The reactivity of alkynyliodonium salts was first discovered in the alkynylation of 

diketones (Scheme 2.3). In 1965, Beringer and Galton reported the alkynylation of 

diketone 6 with alkynyl iodonium chloride 7 in 73% yield (Scheme 2.3, A) [34]. 

However, alkynyliodonium chloride 7 is unstable and decomposes to form the cor-

responding chloroalkyne, which probably precluded more extensive synthetic use 

of this transformation. In 1986, Ochiai and co-workers reinvestigated this reaction 

with more stable alkynyliodonium tetrafluoroborate reagents (Scheme 2.3, B) 

[35]. They found that the result was highly dependent on the substituent of the re-

agent: with a phenyl group, alkyne products such as 9 were obtained, but with ali-

phatic groups, the formation of cyclopentenes such as 10 or 11 was observed. This 

result led Ochiai and co-workers to make a first mechanistic proposal for this 

transformation (Scheme 2.3, C). In contrast to many reactions with hypervalent 

iodine reagents, the initial attack of the nucleophile would not be on the iodine at-

om, but on the conjugate position of the triple bond. The resulting vinyl anion I, 

which can indeed be trapped by acids to form vinyliodonium salts, would then un-

dergo -elimination of iodobenzene to give carbene intermediate II. At this point, 

if the adjacent substituent has a strong migrating aptitude, as is the case for a phe-

nyl moiety, a 1,2-shift occurs to give alkyne product 9. With aliphatic groups, the 

migration is slow, and C–H insertion in either the substrate or the alkyne substitu-

ent is observed to give 10 or 11. In the case of the alkynylation, the use of fast mi-
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grating silyl or hydrogen substituents is especially relevant, as it gives access to 

versatile terminal acetylenes as products [36]. 

 

 

Scheme 2.3: Pioneering examples for the alkynylation of diketones and proposed mechanism. 

After this seminal work, the alkynylation reaction with alkynyliodonium salts 

was applied to several classes of substrates, including diketones [36-38], ketoes-

ters [36], malonates [36,39] and aminomalonates [40,41]. The latter class of com-

pounds is especially interesting, as it was also successful in the case of alkyl sub-

stituted alkynes. This was probably made possible by an efficient 1,2-shift of the 

nitrogen heteroatom. 

In 2014, Nachtsheim and co-workers reported the alkynylation of azlactones 

with trimethylsilyl alkynyliodonium salt 12 (Scheme 2.4, [42]). The obtained 

products were easily transformed into various amino acid derivatives. The reaction 

was also successful in the case of aliphatic substituted alkynes, although C–H in-

sertion was observed as a minor pathway. Interestingly, the use of EBX reagents 

lead to exclusive formation of C–H insertion products, indicating that the same in-

termediate was not formed in both reactions. 
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Scheme 2.4: Alkynylation of azlactones. 

2.2.1.2 Alkynylation of Organometallic Nucleophiles 

As alkynyliodonium salts decompose in the presence of strong bases, the al-

kynylation of organolithium or organomagnesium reagents is not possible. On the 

other hand, organocopper reagents react smoothly with alkynyliodonium tosylates. 

Through the right choice of the organometallic reagent (organocopper or cuprate), 

the reaction was successful on sp [43], sp2 [44], and sp3 [43,45] centers to give 

diynes, enynes and aliphatic alkynes as products. Due to their high reactivity, al-

kynyliodonium salts have also found applications in palladium- or copper-

catalyzed alkynylation reactions such as carbonylation [46], Heck coupling [47-

48], reactions with alkynes [49] and cross-coupling with organoboron/tin com-

pounds [50]. However, their use in these transformations remains scarce, probably 

due their somewhat low stability in the presence of transition metals and the avail-

ability of more convenient alkyne sources. 

2.2.2 Alkynylation of Heteroatoms 

The alkynylation of heteroatoms is interesting, as it gives access to highly reac-

tive and useful acetylene derivatives. Due to the nucleophilicity of heteroatoms, 

the Umpolung approach represented by alkynyliodonium salts is especially attrac-

tive. In several cases, evidence has been gathered that these reactions also proceed 

via a conjugated addition/-elimination/1,2-shift mechanism. 

2.2.2.1 Alkynylation of Oxygen and Nitrogen Nucleophiles 

As oxygen and nitrogen are often hard nucleophiles, their reaction with alkynyl 

iodonium salts is often difficult and can lead to decomposition. In 1987, Stang and 

co-workers reported that alkynyliodonium tosylates can be converted to the corre-

sponding ynol tosylates in the presence of copper triflate (Scheme 2.5, A [51,52]). 

The rearrangement of alkynyliodonium carboxylates is even easier and occurs 

spontaneously in absence of any catalyst (Scheme 2.5, B [53,54]). In this case, the 

iodonium is best generated in situ by ligand exchange on (diacetoxyiodo)benzene 

3 followed by addition of an alkynyl lithium reagent. The same approach could al-

so be extended to ynol phosphates [53,55].  
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Scheme 2.5: Alkynylation of oxygen nucleophiles. 

The synthesis of ynamines was investigated later. The first example was re-

ported by Stang and co-workers in 1994, but this transformation was limited to the 

synthesis of push-pull ynamines (Scheme 2.6, A [56]). An important breakthrough 

was reported by Feldman and co-workers [57] and Witulski and co-workers [58], 

who demonstrated that alkynyliodonium triflates could be used for the synthesis of 

more stable ynamides (Scheme 2.6, B). The first efficient synthesis of this fasci-

nating class of compounds allowed their widespread use in organic synthesis, es-

pecially in metal-catalyzed cycloisomerization and cycloaddition reactions [59]. 

The use of hypervalent iodine reagents is nowadays a classical method to access 

ynamides [60-68]. The method works especially well for the alkynylation of nitro-

gen bearing an electron-withdrawing group such as tosyl, acyl or carbamoyl [58, 

60-65]. It works also for the alkynylation of heterocycles such as imidazole [66] or 

benzotriazole [67]. In 2012, Banert and co-workers also reported the first synthesis 

of azidoacetylene based on the reaction between an azide phosphonium salt and an 

alkynyliodonium tetrafluoroborate [68]. This highly unstable compounds decom-

posed with a half time of 17 h at –30 °C. 

 

Scheme 2.6: Alkynylation of nitrogen nucleophiles. 

2.2.2.2 Alkynylation of Phosphorus, Sulfur and other Nucleophiles 

The alkynylation of phosphorus nucleophiles has been less investigated 

(Scheme 2.7). Ochiai and co-workers first demonstrated in 1987 that the alkynyla-

tion of triphenylphosphine was possible with alkynyliodonium tetrafluoroborate 

salts under light irradiation (Scheme 2.7, A [69]). The reaction most probably in-

volves radical intermediates. In 1992, Stang and Critell showed that light irradia-
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tion was not needed if alkynyliodonium triflates were used [70]. Later, this meth-

odology could be extended to other triaryl- or alkyl phosphines [71-72]. In 1990, 

Koser and Lodaya also reported the synthesis of alkynylphosphonates by the Ar-

busov reaction of alkynyliodonium tosylates with trialkyl phosphites (Scheme 2.7, 

B [73]). Alternatively, the same compounds can be obtained by the reaction of al-

kynyliodonium tosylates with sodium phosphonate salts [74]. 

 

 

Scheme 2.7: Alkynylation of phosphorus nucleophiles. 

The alkynylation of sulfur nucleophiles works well with alkynyliodonium to-

sylates and triflates as long as the sulfur atom is not too electron-rich, else oxida-

tion reactions dominate. For example, alkynyl thiocyanates [38,39,75], thiotosyl-

ates [76] and phosphordithioates [77] can be accessed in good yields (Scheme 2.8, 

A). The alkynylation of thioamides is also possible, but in this case the obtained 

product is unstable and spontaneously cyclizes to give a thiazole (Scheme 2.8, B 

[78,79]). The alkynylation of sulfinates with alkynyliodonium triflates or tosylates 

gives an efficient access towards alkynyl sulfones (Scheme 2.8, C [80,81]). If C–H 

bonds are easily accessible, carbene C–H insertion products can also be observed 

in these transformations [82]. In 2014, Hamnett and Moran reported that the effi-

ciency of alkynyl transfer can be increased by using 2-iodoanisole instead of 2-

iodobenzoic acid as core of the hypervalent iodine reagent [83]. Finally, al-

kynylodonium salts can also be used to generate alkynyl sulfonium salts from dia-

rylthioethers (Scheme 2.8, D, [84]). 
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Scheme 2.8: Alkynylation of sulfur nucleophiles. 

In addition to the alkynylation of second and third row main group heteroa-

toms, there are also a few examples of alkynylation of heavier elements including 

arsenic [85], selenium and tellurium [84, 86, 87]. 

2.2.3 Alkynylation of Metals 

The reaction of alkynyliodonium salts with electron-rich transition metal results 

usually in an oxidative addition under formation of a metal-acetylide complex. 

Although this type of intermediates has been postulated in many catalytic reac-

tions, this section will be limited to the cases in which the metal complexes could 

be isolated and characterized. 

As a first interesting example, Stang and Critell reported in 1990 the alkynyla-

tion of Vaska complexes 16 and 17 with alkynyliodonium triflates as room tem-

perature in excellent yield (Scheme 2.9) [88]. Using bis-alkynyliodonium salts, the 

method could be extended to the formation of binuclear complexes such as 18 and 

19, or even trinuclear systems [89-91]. These conjugated polymetallic complexes 

have great potential for applications in non-linear optics, organic conductors or 

liquid crystals. 
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Scheme 2.9: Alkynylation of rhodium and iridium complexes. 

Stang and co-workers also demonstrated that reaction of platinum(0) complex 

20 with alkynyliodonium triflate yielded alkynyl platinum(II) complexes after 

careful optimization of the reaction conditions (Scheme 2.10, A [92]). Canty and 

co-workers then further used the strong oxidizing properties of alkynyliodonium 

salts to access alkynyl-metal complexes in high oxidation states [93-98]. They first 

demonstrated that platinum(II) pincer complex 21 could be oxidized to plati-

num(IV) alkynyl complex 22 in 91% yield using alkynyliodonium triflate 14 as 

reagent (Scheme 2.10, B [93]). They showed that the method could also be used to 

access platinum complexes 23 and 24 bearing a diphosphine and a bipyridine lig-

and, respectively [94]. The availability of these highly oxidized metal complexes 

allowed them to study elemental steps of catalytic cycles, in particular reductive 

elimination [95-97]. They were also able to synthesize the corresponding palladi-

um(IV) complex 25 and characterize it at low temperature, as it decomposed read-

ily at room temperature [94].  In 2009, Canty and co-workers were also able to 

characterize a rare Pt dimer complex 27 at –80 °C, obtained by reacting Pt(II) bi-

pyridine complex 26 with half an equivalent of alkynylodonium triflate 14 

(Scheme 2.11) [98]. In principle, 27 can be considered as either a Pt(III) or a 

Pt(II)-Pt(IV) dimer. The characterization of intermediate 27 is an important step 

on the way to better understand the mechanism of oxidation leading to high oxida-

tion state metal complexes. 

 

Scheme 2.10: Alkynylation of platinum and palladium complexes. 
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Scheme 2.11: Synthesis of Pt-dimer complex 27. 

2.2.4 Conclusion on the Use of Alkynyliodonium Salts 

With the discovery and use of alkynyliodonium salts, a new class of electro-

philic alkynylation reagents has emerged. Due to their impressive reactivity, they 

could be broadly used to introduce acetylenes on carbon nucleophiles, heteroa-

toms or metals. Nevertheless, with the exceptions of the alkynylation of nitrogen 

and new applications in the synthesis of alkynyl metal complexes, most research 

on alkynyliodonium salts has concentrated in the year 1985-1995, with rare more 

recent breakthroughs. In particular, very few applications using modern catalytic 

methods have appeared, in stark contrast to the use of aryliodonium salts in aryla-

tion reactions [99]. One of the possible reasons for this “drying out” of the field is 

the relatively low stability of alkynyliodonium salts, which makes their use often 

challenging.  

2.3 Alkynylation using Ethynylbenziodoxol(on)e (EBX) Reagents 

One classical approach to enhance the stability of hypervalent iodine reagents 

is to incorporate the iodine atom into a cyclic structure fused to an aromatic ring 

(usually benzene [17,18]). Through the more rigid structure, the overlap of orbitals 

between the iodine atom and the benzene ring is further improved, which leads to 

increased stabilization. Furthermore, as the nucleophilic ligand of iodine (most of-

ten oxygen) is now part of the ring, reductive elimination and - in case of alkynyl 

reagents - conjugate addition is slowed down significantly. This has the advantage 

to further extend the range of substituents tolerated on the iodine atom. When con-

sidering the strong trans-effect in the hypervalent iodine bond [100], this can be 

very important to further modulate the reactivity of the reagents. 

The first synthesis of a cyclic hypervalent iodine reagent was reported by Ochi-

ai and co-workers in 1991 by the reaction of 2-hydroxy-benziodoxolone 28 with 

alkynyl trimethylsilane 29 in presence of boron trifluoride etherate (Scheme 2.12, 

A [101]). 1-[(Cyclohexyl)ethynyl]-1,2-benziodoxol-3(1H)-one 30 (cyclohexyl-

EBX) was obtained in 34% yield. In 1996, Zhdankin and co-workers significantly 

improved the synthesis of EBX reagents by the use of trimethylsilyl triflate as ac-

tivator (Scheme 2.12, B [102]). This protocol was especially efficient in the case 

of aryl or silyl substituted alkynes, and could also be used to access bistrifluoro-
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methyl-substituted benziodoxole derivatives. Waser and co-workers showed later 

that the protocol was highly useful for both, the synthesis of benzene-ring modi-

fied analogues and the synthesis of silyl-substituted EBX reagents on larger scale 

(up to 40 g [103,104]). The synthesis of dimethyl-substituted ethynylbenziodoxole 

reagents was reported by Waser and co-workers in 2012 where the use of a more 

reactive lithium acetylide as alkynylation reagent was required in the synthesis 

(Scheme 2.12, C [103]). Koser and co-workers already reported in 1993 that cyclic 

hypervalent iodine reagents bearing a more electron-withdrawing sulfonate group 

could be also easily accessed from the hydroxy derivative 34 using terminal acety-

lenes and toluene sulfonic acid as activator (Scheme 2.12, D [105]). Finally, Bou-

ma and Olofsson developed in 2012 the first one-pot synthesis of EBX reagents 

starting directly from 2-iodobenzoic acid 35 (Scheme 2.12, E [33]). meta-

Chloroperbenzoic acid was used as oxidant and alkynyl boronic acid esters as al-

kyne source. This protocol was general, allowing the synthesis of alkyl-, aryl- and 

silyl-substituted EBX reagents in 71-90% yield. 

Surprisingly, the synthetic potential of cyclic hypervalent iodine reagents has 

been overlooked for a long time. Prior to 2009, only Kitamura and co-workers re-

ported the use of an iodobenzoic acid based reagent, but in this case the protonated 

“open” form was used [38]. Since 2009, however, EBX reagents have been broad-

ly applied in alkynylation reactions and have proven in many instances to be supe-

rior to the previously used alkynyliodonium salts.  
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Scheme 2.12: Synthesis of cyclic alkynyl hypervalent iodine reagents. 

2.3.1 Alkynylation of C-Nucleophiles 

2.3.1.1 Alkynylation of Acidic C–H Bonds 

In 2010, Waser and co-workers reported the first study of the alkynylation of 

soft carbon nucleophiles using EBX reagents [106]. The alkynylation of ketoesters 

proceeded in nearly quantitative yields using TMS-EBX (36) and TBAF at low 

temperature to give directly the free acetylenes as products (Scheme 2.13). This 

method gave good yields not only for cyclic ketoesters, but also for non-cyclic ke-

to-, cyano- and nitro- esters. In situ 1H NMR experiments showed that the silyl 

group was first removed under these reaction conditions to give the very reactive 
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unsubstituted EBX reagent, which could be characterized at low temperature but 

decomposed at temperature higher than –20 °C. If the synthesis of aryl- or silyl-

substituted alkynes is desired, good results were obtained using simply DBU as a 

base at room temperature [107]. 

 

Scheme 2.13: Alkynylation of activated ester derivatives with TMS-EBX (36). 

The robustness of the method was further demonstrated by Yang and co-

workers, who used it first in the synthesis of drimane-type sesquiterpenoids such 

as marasmene (40, Scheme 2.14 [108]). In this case, the required ketoester was ob-

tained via conjugate addition of an organocuprate onto Michael acceptor 37. Later, 

Yang and co-workers also used the methodology for the synthesis of compounds 

41 and 42 used in the total syntheses of (–)-lingzhiol and a fragment of azadiracht-

in, respectively [109-110]. 

 

Scheme 2.14: Applications of the alkynylation reaction in the total synthesis of natural products. 

The enantioselective synthesis of compounds containing an all-carbon quater-

nary propargylic center would be highly desirable. In their first work, Waser and 

co-workers reported that a low enantioinduction was possible using cinchona-

derived phase-transfer catalysts [106]. In 2013, they were further able to improve 

the enantiomeric excess by using the binaphthyl-based Maruoka phase transfer 

catalyst 44 (Scheme 2.15, A [111]). Although alkyne 45 could be obtained in 83% 

and 79% ee, the enantioinduction was lower for other substrates. In 2014, Maru-

oka and co-workers finally reported the first highly enantioselective asymmetric 

alkynylation using a hypervalent iodine reagent (Scheme 2.15, B [112]. Key to ob-

tain high enantioinduction with ketoester 46 was the use of benziodoxole 47 in-

stead of benziodoxolone reagents. The obtained products could be easily cyclized 
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to the corresponding spiro compounds by iodination or selenenylation. Finally, 

Vesely and co-workers showed in 2013 that the asymmetric alkynylation of -

nitro sulfone derivatives was also possible using cinchona-derived phase-transfer 

catalyst 50 (Scheme 2.15, C [113]). For example, alkyne 51 was obtained in 91% 

yield and 61% ee. 

 

 

Scheme 2.15: Asymmetric alkynylation of ketoesters and nitrosulfones. 

Recently, the scope of the alkynylation protocol has also been extended to other 

nucleophiles. Silva Jr. and co-workers reported the first alkynylation of simple ar-

omatic ketones using TMS-EBX 36, TBAF and potassium tert-butoxide as a base 

(Scheme 2.16 [114]). It is noteworthy that the alkynylation reaction is still highly 

efficient under these strongly basic conditions. Cyclic products could be obtained 

in 60-93% yield. In case of an unsubstituted -position, diynes products were 

formed in 30-92% yield. Interestingly, the alkynylation was also successful with 

an aldehyde, which needed to be immediately reduced prior to isolation due to its 

instability.  
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Scheme 2.16: (Bis-)alkynylation of ketones and aldehydes 

In 2015, Vesely and co-workers further extended the scope of the alkynylation for 

C–H acidic heterocycles [115]. Alkynylated pyrazolone, oxindole, rhodanine and 

azlactone could be obtained in good yields using TMS-EBX 36 and triethylamine 

as base in different solvents. 

To extend the scope of the alkynylation of carbonyl compounds, the functionaliza-

tion of aldehydes using enamine catalysis would appear as a logical choice. How-

ever, this transformation is still unknown. Nevertheless, Huang and co-workers 

reported in 2013 an important breakthrough in the area. The -functionalization of 

aldehydes using pyrrolidine and a gold complex as co-catalyst became possible 

using TIPS-EBX 52 as reagent (Scheme 2.17 [116]). Although -alkynylation was 

observed as minor pathway, the main products were the corresponding allenes. In-

creasing amounts of alkynes were obtained with increasing steric bulk in -

position of the aldehyde. Interestingly, the obtained allenes were still highly reac-

tive under the reaction conditions and if an excess of TIPS-EBX 52 was used, a 

second alkynylation event took place to give enynes in 47-73% yield. 

 

Scheme 2.17: Vinylidenation of aldehydes and cascade alkynylation.  

2.3.1.2 Alkynylation of Aromatic and Vinylic C–H Bonds 

In contrast to the alkynylation of acidic C–H bonds which can also be achieved us-

ing alkynyliodonium salts, the direct C–H functionalization of aromatic com-

pounds or olefins has never been realized with this class of reagents so far. How-

ever, after several unfruitful attempts using palladium or copper catalysts and 

alkynyliodonium salts for the alkynylation of heterocycles, Waser and Brand re-

ported in 2009 the first efficient alkynylation of indoles using TIPS-EBX 52 and 

AuCl as catalyst (Scheme 2.18 [117]). With indole, selective C3-alkynylation was 

obtained. The reaction was tolerant to many functional groups such as bromides, 

acids or alcohols. The method was already used in the synthesis of starting materi-
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als for Friedel-crafts reactions of aminocyclopropanes [118] and for hydroami-

dation to access indole cis-enamides [119]. In 2010, Nevado and de Haro demon-

strated that alkynylation was also possible using directly terminal propiolic ester 

derivatives and (diacetoxyiodo)benzene as co-oxidant [120].  

Due to the high stability of TIPS-EBX 52 many reaction conditions are tolerated, 

which was important to optimize the alkynylation of other classes of aromatic 

compounds. For example, pyrroles were best functionalized in the presence of 

pyridine to avoid decomposition [103]. In this case, selective functionalization of 

the more electron-rich position was observed, unless it was blocked. In contrast, 

less reactive thiophenes required co-activation with a Brønsted acid catalyst, tri-

fluoroacetic acid [121]. The obtained alkynyl thiophenes are interesting building 

blocks for the synthesis of organic materials. Furans could also be alkynylated in 

acetonitrile, sometimes at slightly higher temperature [122]. The alkynylation of 

less reactive benzofurans on the other hand required zinc triflate as co-activator 

[123]. Finally, the reaction was not limited to heterocycles. Electron-rich anilines 

or poly-methoxylated benzene rings could also be alkynylated at 60 °C in isopro-

panol [124]. Nevertheless, only highly electron-rich benzene rings could be func-

tionalized with this method. 

 

Scheme 2.18: Gold-catalyzed alkynylation of aromatic compounds.  

Mechanistically, this new transformation is highly intriguing. Unfortunately, 

gold catalysts bearing phosphine or carbene ligands were not active for the reac-

tion, which made the isolation of well-defined gold complexes impossible. Fur-

thermore, the formation of gold particles was also observed during the reaction. 

Initially, two mechanisms were proposed as shown in Scheme 2.19 [103, 117]. 1) 

an oxidative mechanism involving oxidative addition of the reagent on the gold(I) 
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catalyst to give a gold(III) intermediate I, followed by electrophilic auration to 

give II and final reductive elimination (Scheme 2.19, A) or 2) a -activation 

mechanism proceeding via coordination of the gold catalyst to give intermediate 

III followed by nucleophilic addition leading to IV (Scheme 2.19, B). Finally,-

elimination and 1,2-shift would lead to the product. When the reaction was per-

formed with C13 labelled reagent 54, no shift of the silicium group was observed. 

For these reasons, the oxidative mechanism appeared more probable at this time, 

as a less favorable indole 1,2-shift would have to be proposed in the case of the -

activation mechanism. In 2014, Ariafard studied the mechanism in more detail by 

computational investigations [125].  Interestingly, it was found that both mecha-

nisms A and B were too high in energy for a room temperature reaction. They 

proposed a novel pathway involving iodine to gold shift on the alkyne to give io-

dine-activated gold acetylide intermediate V (Scheme 2.19, C). Addition of indole 

55 followed by -elimination and rearomatization would lead also to product 56 

without silicium shift. It would be interesting in the future to design experiments 

which investigate this unprecedented mechanism. 

 

Scheme 2.19: Speculative mechanisms for the gold-catalyzed alkynylation.  
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An impressive extension of the gold-catalyzed method was reported by Marlet-

ta and co-workers in 2014. They developed the direct alkynylation of protopor-

phyrin IX 57 using TIPS-EBX 52 and AuCl as catalyst (Scheme 2.20 [126]). Pro-

toporphyrin IX 57 is one of the most important heme cofactors and the availability 

of alkyne-tagged derivatives would be highly useful for studying biological pro-

cesses. Interestingly, the use of CuCl2 as co-catalyst was important to prevent the 

formation of gold nanoparticles which led to decomposition. The product 58 was 

obtained as a mixture of four isomers, but this was not an issue for studying bio-

logical processes. 

 

Scheme 2.20: Alkynylation of protoporphyrin IX 57.  

The gold-catalyzed alkynylation of heterocycles allowed the functionalization 

of the most electron-rich position. Nevertheless, this is a limitation if the synthesis 

of other alkyne regioisomers is desired. In 2013, Waser and co-workers reported 

that the C2-selective alkynylation of indoles was possible using a palladium cata-

lyst (Scheme 2.21 [127]). A current limitation of this approach is the requirement 

for an alkyl substituent on the nitrogen atom. 

 

Scheme 2.21: Palladium-catalyzed C2-alkynylation of indoles.  

Up to 2014, the alkynylation via C–H functionalization of non-activated aro-

matic rings using hypervalent iodine reagents was unknown. In 2014, the groups 

of Li, Loh and Glorius reported nearly simultaneously a directing group strategy 

for the alkynylation of arenes using rhodium catalysis (Scheme 2.22). The work of 

Loh and Fang used a pivaloyl benzamide protecting group together with a rhodi-

um(III)-Cp* catalyst and TIPS-EBX 52 as reagent (Scheme 2.22, A [128]). A ma-

jor advantage in comparison to previously reported C–H alkynylation methods is 

that the reaction could be performed at room temperature giving excellent yields 

of products and tolerating many functional groups. Glorius and co-workers report-

ed the alkynylation of benzamides using a cationic rhodium(III) complex (Scheme 

2.22, B, [129]). In this case, the transformation could be also extended to olefins, 
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giving -disubstituted products containing either a benzene ring, a heterocycle or 

an alkene. Li and co-workers reported a very complete study on the C–H alkynyla-

tion of arenes using TIPS-EBX 52 and either rhodium or iridium catalysts 

(Scheme 2.22, C [130]). Using a rhodium(III)-Cp* catalyst activated by zinc tri-

flate, a broad range of heterocycles such as pyridine, pyrimidine or pyrazole could 

be used as directing groups (C1). The pyrimidine ring was not only successful in 

the case of benzenes, but also for the functionalization of indoles. This methodol-

ogy has also been used by Zhou and co-workers to alkynylate a more functional-

ized indole substrate [131]. Non-aromatic directing groups such as oximes, 

nitrones, nitrosoanilines, azo- or azoxy-groups and simple amides could also be 

used. For pivaloyl benzamides, they used conditions very similar to the ones re-

ported by Loh and Fang (C2). They also reported the first example of C–H al-

kynylation catalyzed by an iridium(III)-Cp* complex activated by silver bistri-

flimide (C3). Methoyl benzamides were the best substrates in this case and the 

products were obtained in similar yields as with the rhodium catalyst. 

 

Scheme 2.22: Rhodium-catalyzed directed C–H alkynylation of arenes and olefins. 

Preliminary mechanistic investigations were made my both Loh and Fang and 

Li and co-workers leading to two speculative mechanisms, either via initial oxida-

tive addition or via insertion (Scheme 2.23, A and B). Both mechanisms start with 

activation of the rhodium(III)-chloride complex with different metal salts followed 

by formation of a rhodium(III)-metalacycle I with the substrate including the di-

recting group (most probably with a concerted metalation-deprotonation mecha-

nism). Intermediate I could then reacts with the EBX reagent either via oxidative 

addition to give rhodium(V) intermediate II (A), or via insertion to give rhodi-

um(III) intermediate V (B). For the latter, high regioselectivity is expected for the 

insertion due to the high polarization of the triple bond in EBX reagents. From II, 

reductive elimination gives rhodium(III) intermediate III. Decomplexation of the 

product and re-formation of the rhodium(III) metalacycle I with probably the ben-
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zoate acting as a base then closes the catalytic cycle. From V, -elimination of the 

iodonium reagent will lead to rhodium(III) allenylidene complexe VI. 1,2-aryl 

shift and product decomplexation then gives intermediate IV. Interestingly, Li and 

co-workers also observed the formation of product 59 if Ph-EBX was used as rea-

gent. They proposed that 59 was formed from intermediate III via insertion into 

the alkyne to give VII, followed by protodemetalation. In support of this mecha-

nism, Li and co-workers were indeed able to isolate rhodium(III) complexes cor-

responding to intermediates I and VII (but with a tert-butyl instead of the phenyl 

group for the latter). Furthermore, they argued that the insertion mechanism was 

less probable, due to the high reactivity of rhodium(III) allenylidene intermediate 

VI, for which side reactions would have been expected, especially with nucleo-

philic directing groups. 

 

Scheme 2.23: Speculative mechanisms for the rhodium catalyzed alkynylation.  

With these three reports, the basis was set for a broader use of EBX reagents in 

rhodium catalysis. Loh and co-workers continued their work and reported the al-

kynylation of acryl tosyl imides and enamides [132-133]. The reaction with acryl 
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imides proceeded also with disubstituted alkenes and allowed to extend the scope 

of this transformation. The alkynylation of enamides led to very useful enyna-

mides as products, but was limited to -substituted alkenes. Loh and co-workers 

also demonstrated that the methodology could be extended to the C7-alkynylation 

of indolines using a pyridine directing group on the nitrogen [134]. Interestingly, 

this reaction was also possible with Ph-EBX as reagent. The products can be easi-

ly oxidized to the corresponding indole derivatives. Zhu and co-workers reported 

the use of acetyl as directing groups and Zhou and Li and co-workers a pyrimidyl 

directing group with an iridium catalyst to achieve the same transformation 

[135,136]. In 2014, Chang and co-workers developed the first C8-alkynylation of 

quinolone N-oxide using a rhodium catalyst [137]. The oxygen atom could be easi-

ly removed by reduction. The same year, Li and co-workers reported that azome-

thine ylides were also excellent directing group for the alkynylation of benzene 

rings [138]. Finally, in 2015 Hong and Kang described the selective C–H alkynyl-

ation of quinolones [139]. In the absence of a directing group on the nitrogen and 

using a rhodium catalyst, C5-alkynylation was achieved selectively. Using a py-

rimidyl directing group and, for the first time, a ruthenium catalyst, the C2-

alkynylated products could be obtained. 

Recently, attempts have been made to extend the scope of rhodium-catalyzed 

C–H alkynylation beyond olefins and arenes functionalization via a classical five-

membered metalacycle. Li and co-workers developed the directed C–H alkynyla-

tion of benzaldehydes (Scheme 2.24 [140]). Both alcohols and sulfonyl amines 

could be used as directing groups. With alcohols, an iridium catalyst in methanol 

was used giving ynones in good yields. With sulfonyl amines the best results were 

obtained with a rhodium catalyst in dichloromethane. 

 

Scheme 2.24: Directed C–H alkynylation of benzaldehydes.  

In 2015, Nachtsheim and co-workers investigated the directed alkynylation of 

ortho-vinyl phenols with EBX reagents (Scheme 2.25 [141]). As only moderate 

yields were obtained using TIPS-EBX 52, the more reactive TIPS-EBX* 60, in-

troduced by Waser and co-workers [103], was used. Apart of its enhanced reac-

tivity, the ortho-methyl group in 60 also blocked pathways leading to C–H activa-

tion side products. Exclusive formation of the Z-enyne was observed, without 

alkynylation of the benzene ring. The best yields were obtained for - alkyl or aryl 

substituted vinyl phenols. Unsubstituted products could be isolated in moderate 

yields, but no products were obtained for -substituted vinyl phenols. Mechanisti-

cally, this reaction is interesting, because it proceeds via the formation of a less 

frequent six-membered rhodium metalacycle. From this intermediate, the inser-
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tion-elimination-shift mechanism was proposed, although the oxidative addition 

pathway could also be operative. 

 

 

Scheme 2.25: Directed C–H alkynylation of ortho-vinyl phenols.  

For the synthesis of ynones, an alternative approach to metal catalysis was re-

cently reported by Wei and Zhu and co-workers [142]. Instead of the generation of 

an acyl-metal bond, they speculated that an acyl radical generated by C–H abstrac-

tion under oxidative conditions could also react with EBX reagents. Indeed, this 

was the case using either tert-butyl hydroperoxide (TBHP) or di-tert-butyl perox-

ide (DTBP) as oxidant at 80-130 °C. Although the reaction required a stoichio-

metric oxidant and elevated temperature, it has the advantage to be highly general, 

allowing reactions of aromatic, heteroaromatic and aliphatic aldehydes. Yields 

were generally higher with aromatic aldehydes, but the reaction worked only with 

silyl EBX reagents. Aliphatic aldehydes were obtained in moderate yields, but the 

transformation could also be used for aryl EBX reagents. 

2.3.1.3 Alkynylation of Aliphatic C–H Bonds 

The alkynylation of sp3-C–H bonds has been in general much less developed than 

of sp2-C–H bonds. Metal-mediated methods have been limited to the use of al-

kynyl bromides [143], whereas radical approaches have been dominated by al-

kynyl sulfones [21-22]. Nevertheless, Yu and Chen and co-workers reported re-

cently that aromatic EBX reagents were highly efficient for the interception of 

radical generated in -position to heteroatoms [144]. Silyl EBX could also be 

used. The inherent limitations of this radical-mediated approach are the require-

ment for a large excess of substrate and the formation of mixtures of products 

when several C–H bonds are of similar strength. 

2.3.1.4 Alkynylation of C–C and C–B Bonds 

The alkynylation of C–H bonds is a very attractive method from the point of 

view of synthetic efficiency, but it presents a serious issue of selectivity if no di-

recting groups or polarizing heteroatoms are present. The use of pre-installed 

functional groups can be advantageous in this context, provided that the starting 
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materials are commercially available or easily accessible. In this context, Li and 

co-workers reported in 2012 the oxidative decarboxylative alkynylation of car-

boxylic acids as shown in Scheme 2.26 [145]. Starting from broadly available car-

boxylic acids, aliphatic aromatic and silyl alkynes could be obtained in good 

yields. Impressively, the reaction was successful for the functionalization of ter-

tiary, secondary and primary acids. It also tolerated numerous functional groups 

like bromine, esters or imides. The reaction was proposed to proceed via the silver 

mediated oxidation of the carboxylate to form a carboxyl radical, which immedi-

ately loses carbon dioxide to give an alkyl radical I. The active silver(II) oxidant 

would be generated by oxidation of silver(I) by persulfate, allowing to use silver 

nitrate as a catalyst. The alkyl radical would then add to the triple bond of the 

EBX reagent to give intermediate II. -Elimination of iodo radical III then gives 

the product. Radical III is then most probably further reduced to the carboxylate 

and protonated to give 35, or alternatively, 35 is directly formed via C–H abstrac-

tion. Addition of the radical on the EBX reagent with reversed regioselectivity fol-

lowed by an  elimination-1,2-shift sequence could also be considered. 

 

 

Scheme 2.26: Oxidative decarboxylative alkynylation of aliphatic carboxylic acids.  

In 2014, Chen and co-workers reported an alternative method based on the oxi-

dative alkynylation of trifluoroboronate salts using a photoredox catalyst, sub-

stoichiometric amounts of hydroxybenziodoxolone 28 and EBX reagents (Scheme 

2.27 [146]). The reaction worked well for the transfer of aryl, silyl and alkyl al-

kynes. Primary, secondary, and tertiary boronate salts were all successfully al-

kynylated. The reaction tolerated functional groups such as ketones, bromides, al-

cohols and azides. Interestingly, the authors were also able to perform the 

alkynylation in buffered water solutions in presence of several amino acids, 

demonstrating its potential for the functionalization of biomolecules. Concerning 

the reaction mechanism, the author proposed that light activation of the rutheni-
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um(II) catalyst I generates a strongly reductive complex II, which is able to re-

duce radical IV (or hydroxybenziodoxole 28). The obtained ruthenium(III) com-

plex III is now a strong oxidant able to generate an alkyl radical VI from the 

boronate salt. As shown by Li and co-workers, radical VI then reacts with the 

EBX reagent to give the product and a further molecule of radical IV. In principle, 

a small amount of initiator would be enough to start a catalytic cycle. Nevertheless 

in practice a relatively large amount (50 mol%) of hydroxybenziodoxole 28 is 

needed for an efficient transformation. The possibility of a reaction proceeding via 

a catalyst-independent radical chain reaction was excluded by a light on/off exper-

iment, showing that light was always needed to observe conversion. 

 

 

Scheme 2.27: Alkynylation of aliphatic trifluoroborate salts.  

In 2015, Chen and co-workers reported an extension of the photoredox strategy 

for the synthesis of enones based on the decarboxylation of -keto acids using 

EBX reagents and acetoxy benziodoxolone 61 as additive (Scheme 2.28 [147]). 

The reaction worked again best with aryl EBX reagents, but silyl or alkyl-

substituted alkynes could still be obtained in moderate yields. Aromatic, heteroar-

omatic and aliphatic ynones were obtained in good yields. Interestingly, the meth-

odology was not limited to the synthesis and ketones, but could also be applied to 

access amides and esters. A similar catalytic cycle as for the alkynylation of boro-

nates salts was proposed with oxidative generation of an acyl radical. The key dif-

ference resides in the way the radical is formed. The authors proposed the for-

mation of a covalent adduct between the carboxylate and benziodoxolone 61, 

which would facilitate oxidation by ruthenium(III) to give the radical. In this pro-
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cess, 61 is not reduced and could be therefore used in catalytic amounts. Indeed, 

with only 10 mol% of 61, the alkynylation product was still isolated in 56% yield. 

 
Scheme 2.28: Decarboxylative alkynylation of -carbonyl-substituted carbox-

ylic acids.  

 

Finally, Huang and co-workers reported in 2014 a fundamentally different ap-

proach to access ynones using EBX reagents [148]. During their work on the -

vinylidenation of aldehydes, using cooperative catalysis between an amine and a 

gold catalyst [116], they observed the formation of one carbon atom shorter 

ynones when oxygen was not carefully excluded. By performing the reaction un-

der 1 atm of oxygen and optimizing the reaction conditions, they were able to ob-

tain the ynones as major products (Scheme 2.29). The reaction worked well for the 

synthesis of primary and secondary aliphatic ynones. Interestingly, the formation 

of one ynamide was also reported. The authors proposed that the first step of this 

reaction is similar to the -vinylidenation with the formation of an enynamide. 

However, under oxygen atmosphere this highly nucleophilic intermediate is oxida-

tively cleaved via the formation of a dioxetane ring. Indeed, pyrroldine-2-

carboxaldehyde was observed as a side product. 

 
Scheme 2.29: Ynones synthesis from aldehydes via C–C bond cleavage.  

2.3.1.5 Alkynylation as Part of Domino Processes 

In domino processes, several new bonds are formed in a single transformation, 

leading to a more efficient synthesis [149]. The introduction of an alkyne group 

during domino processes would be highly desirable when considering the versatile 

reactivity of the triple bond. Nevertheless, alkynyliodonium salts were not used in 

such transformations, probably because they are often unstable in the presence of 

transition metal catalysts. 
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In 2010, Waser and co-workers reported the first example of intramolecular palla-

dium-catalyzed oxyalkynylation of alkenes leading to the successive formation of 

a C–O and a C–alkyne bond (Scheme 2.30, A [150]). Whereas the use of alkynyl 

iodonium salts led to the formation of the desired product in trace amount only, 

good yields could be obtained using TIPS-EBX 52 with phenols as nucleophiles 

and palladium(II)bishexafluoroacetylacetonate as catalyst. Only electron-neutral 

or poor phenols could be used in this process, as electron-rich substrates decom-

posed. Aliphatic alcohols could not be used. On the other hand, acids gave lac-

tones with a broader scope. In this case, both aromatic and aliphatic acids could be 

used. In 2011, Waser and co-workers were able to extend the method to the syn-

thesis of lactams using tosylimides as nucleophiles [151]. In this case, best results 

were obtained with palladium(II) chloride as catalyst in ethanol. The reaction 

worked well for the synthesis of -lactams, oxazolidinones and imidazolidinones. 

It was also easily scalable to the gram scale and was used in the total synthesis of 

the pyrrolizidine alkaloid trachelanthamidine. Finally, the method could be also 

applied to the synthesis of -lactams in moderate to high yields depending on the 

rigidity of the substrates. 

 
Scheme 2.30: Oxy- and amino-alkynylation of alkenes.  

 

Originally, Waser and co-workers proposed a mechanism involving a palladi-

um(IV) intermediate III (Scheme 2.31, A [149]). Complex III would be accessed 

by either syn- or anti- oxy/aminopalladation of the olefin to give II, followed by 

oxidative addition of TIPS-EBX 52. Reductive elimination would then give the 

observed product and regenerate the palladium(II) catalyst. This proposal was 

based on the work of Canty and co-workers, who were able to characterize palla-

dium(IV) alkynyl complexes [94]. However, Ariafard reported calculations in 

2014 that gave a very high energy for this reaction mechanism [152]. They found a 

lower energy pathway leading to palladium allenylidene intermediate IV, which 

was in equilibrium with an iodine bound alkynyl palladium complex V, with IV 

being the major species. From IV, a facile -insertion of the alkyl group give pal-

ladium(II) vinyl intermediate V. Finally -elimination of 2-iodobenzoic acid 35 

would lead to the observed product. 
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Scheme 2.31: Speculative mechanisms for the oxy- and aminoalkynylation reac-

tions.  

 

After having successfully developed a domino process involving C(sp3)-C(sp) 

bond formation as terminating event, Waser and co-workers investigated if dom-

ino processes could also be used to make a C(sp2)-C(sp) bond. Preliminary studies 

focused on the synthesis of indoles directly from ortho-alkynyl anilines [153]. A 

one-pot process could indeed be developed, but not a true domino transformation, 

as a gold(III) catalyst was required for cyclization and a gold(I) catalyst for al-

kynylation. A further limitation of this early work is that it gave access to products 

which are easily synthesized via direct C-H alkynylation. To overcome these limi-

tations, Waser and co-workers decided to develop a domino reaction based on the 

gold-catalyzed cyclization of allene ketones to form furans reported by Hashmi 

and co-workers [154]. In this transformation, a C3-metallated furan is formed, 

which could be then alkynylated to give the electronically unfavored regioisomer. 

In 2013, they reported the first example of such a true domino reaction using 

gold(III) picolinate catalyst 62 and ethynylbenziodoxole 63 as reagent (Scheme 

2.32 [122]). The reaction was efficient with electron-neutral and rich aromatic 

rings on the allene, but could not be used in the case of electron-poor substituents 

due to decomposition. It was particularly efficient with alkyl substituents. 
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Scheme 2.32: Domino cyclization-alkynylation of allene ketones. 

  

After this work, the more challenging synthesis of arene-alkynylated indoles were 

investigated. Due to the enhanced reactivity of the pyrrole ring, the direct func-

tionalization of indoles on the benzene ring is highly challenging. A domino pro-

cess to access these compounds would be therefore highly useful. They were able 

to develop a platinum catalyzed method starting from homopropargylic pyrrole 

derivatives and benziodoxole reagent 63 (Scheme 2.33) [155]. Gold catalysts 

could not be used in this process. Starting from C2-substituted pyrroles, C5-

alkynylated indoles were obtained, whereas C3-substituted pyrroles gave C6-

functionalized products. Mechanistically, this reaction much probably proceeds 

via activation of the triple bond in pyrrole 64 by the platinum catalyst (intermedi-

ate I), followed by intramolecular attack of the most nucleophilic pyrrole C2 posi-

tion to give key intermediate II. 1,2 shift of the vinyl-platinum substituent via a 

possible platinum carbene intermediate III then gives complex IV. Interestingly, 

shift of the ether substituent had been observed with gold catalysts for the simple 

cyclization process [156]. At this point, elimination of methanol and re-

aromatization would give a platinum aryl complex V, which would then react with 

benziodoxole 63 to give the observed product 65. The mechanism of this last step 

is not clear at this stage. In case of C3 substituted pyrroles, C2 attack would give 

directly the desired six-membered ring without the need for 1,2-shift. 
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Scheme 2.33: Domino cyclization-alkynylation for the synthesis of arene-

alkynylated indoles.  

2.3.2 Alkynylation of Heteroatoms 

2.3.2.1 Alkynylation of Oxygen and Nitrogen Nucleophiles 

Up to now, no efficient alkynylation of oxygen nucleophiles with EBX rea-

gents has been reported. Also in the case of nitrogen nucleophiles, alkynyliodoni-

um salts remain the reagents of choice. Nevertheless, Cossy and co-workers re-

ported in 2013 that the alkynylation of sulfonamides was possible with TMS-EBX 

36 [157]. Interestingly, no alkynylation was observed in the case of carbamates, 

although these substrates are readily alkynylated with alkynyliodonium salts. Se-
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lective alkynylation of the tosyl amide in presence of a carbamate was possible. 

This selectivity was exploited for the synthesis of tetrahydropyrazine heterocycles.  

In 2014, Ohno and co-workers reported the synthesis of the more complex yna-

mides 68 based on the copper-catalyzed alkynylation of tosyl amide 66 using aryl 

EBX reagent 67 (Scheme 2.34 [158]). Interestingly, this constituted the first ex-

ample of a copper-catalyzed reaction with an EBX reagent in which the alkyne 

group is kept in the product. Although alkynyl bromides have been traditionally 

used in copper catalysis for the synthesis of ynamides, they were not successful in 

this case. 

 
Scheme 2.34: Copper-catalyzed alkynylation of tosyl amide 66 with EBX reagent 

67. 

2.3.2.2 Alkynylation of Phosphorus, Sulfur and other Nucleophiles 

The alkynylation of numerous heteroatom nucleophiles has been highly successful 

with alkynyliodonium salts. Nevertheless, the alkynylation of omnipresent simple 

thiols had never been reported, probably because the oxidation of thiols to disul-

fide is readily promoted by alkynyliodonium salts. In 2013, Waser and co-workers 

demonstrated that the alkynylation of thiols was possible with TIPS-EBX 52 in 

high yields in less than one minute reaction time at room temperature (Scheme 

2.35 [159]). Key for success was the use of tetramethylguanidine (TMG) as a base. 

The scope of the reaction was very broad, as it included aliphatic thiols, thiophe-

nols, heteroaromatic thiols, cysteine and peptides. The transformation was tolerant 

to many functional groups, such as halogens, alcohols, acids, amides, anilines and 

even the free amino group of cysteine. The obtained thioalkynes could be easily 

deprotected and reacted in a [3+2] cycloaddition with azides. In 2014, they further 

reported the extension of the scopes to glycosides, thioacids and sulfide salts 

[160]. Furthermore, the use of not silyl-substituted alkynes was also highly suc-

cessful for all substrates classes. In some cases, the use of triazabicyclodecene 

(TBD) as base gave superior results. The exception were thioacids, as the products 

were too instable to be isolated in this case. Importantly, functional groups such as 

chloride, alcohol or azide incorporated on the EBX reagent were also tolerated. 

The fact that the reaction was successful for a broad scope of EBX reagents was 

surprising, as side reactions were dominating in the case of alkyl substituted al-

kynyliodonium salts (see Section 2.2.1.1). Waser and co-workers turned to calcu-
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lations to gain a better understanding of the reaction mechanism [160]. Deprotona-

tion of the thiol was proposed as required step as no reaction occurred in the ab-

sence of base. A first possibility would be then attack of the thiolate I on TIPS-

EBX (52) to give intermediate II, followed by reductive elimination (A). Howev-

er, intermediate II was not observed in the calculations. A more probable mecha-

nism involves conjugate addition to give III, followed by -elimination and 1,2-

shift to give 70 (B). This pathway was indeed found by calculations with a rela-

tively low transition state of 23 kcal/mol leading to III, followed by a barrierless 

elimination/1,2-silyl shift to give product 70. However, a third unprecedented 

pathway was also found by calculations: a concerted three-atom transition state 

mechanism leading directly to 70, with an energy as low as 10.8 kcal/mol. The 

transition state V itself was distorted and showed a strong polarization, with the 

negative charge in -position and the positive charge in -position to silicium. 

The difference between the two pathways was much smaller for an alkyl substitu-

ent, probably due to the silyl effect. 

 

 
Scheme 2.35: Alkynylation of thiols with EBX reagents. 
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The reaction of sulfinates with alkynyl iodonium salts was successful, as these 

substrates are less easy to oxidize. Nevertheless, Waser and Chen demonstrated 

that EBX reagents can be also useful to synthesize alkynyl sulfones, as they allow 

a new one-pot procedure starting directly form Grignard reagents (Scheme 2.36 

[161]). In this protocol, DABSO (DABCO•SO2) is added after formation of the 

Grignard reagent. Addition of DMF and TIPS-EBX 52 gives aryl alkynyl sulfones 

in 46-85% yield. For base sensitive substrates, it was also possible to start from 

aryl iodides and use a palladium catalyst. 

 
Scheme 2.36: One-pot synthesis of alkynyl sulfones. 

 

In 2014, Waser and Chen also reported that EBX reagents could be used in the al-

kynylation of phosphites (Scheme 2.37 [162]). The reaction also worked well for 

the alkynylation of phosphinates and secondary phosphine oxides. 

 
Scheme 2.37: Alkynylation of phosphorus nucleophiles with EBX reagents. 

 

2.3.3 Conclusion on the Use of EBX Reagents 

In contrast to alkynyliodonium salts, which have been used in organic synthesis 

for decades, EBX reagents have been used intensively only in the last five years. 

However, they have already made a strong impact in the synthesis of alkynes, as 

they allowed new transformations which were not accessible before. They were 

especially successful in transition metal catalysis, where they allowed the devel-

opment of new C–H functionalization and domino reactions. They also demon-

strated important advantages for the functionalization of acidic C–H bonds or car-

bon centered radicals. Alkynyliodonium salts allowed new transformations with 

heteroatoms, such as the alkynylation of thiols, or presented distinct enough prop-

erties to be highly useful, for example in the alkynylation of tosyl amides, sul-

finates or phosphorus nucleophiles. 

2.4 Conclusions 

The importance of alkynes in organic chemistry cannot be overstated. They are 

now also increasingly useful for chemical biology and materials science. The in-

troduction of alkynes as nucleophiles into molecules is currently the method of 
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choice, but it limits the range of disconnections possible. As one of the best elec-

trophilic alkyne synthons, alkynyliodonium salts have attracted strong interest 

since the mid 80’s. Even if very successful, their utility has been limited by their 

lower stability, especially in the presence of transition metals. Nowadays, their 

main routine use resides in the synthesis of ynamides. The introduction of more 

stable ethynylbenziodoxolone (EBX) reagents, first synthesized by Ochiai and 

Zhdankin, has initiated a renaissance of the use of hypervalent iodine reagents for 

alkynylation reactions. A broad range of mild reactions has become now available 

to introduce alkynes onto both carbon nucleophiles and heteroatoms, with the po-

tential to revolutionize the way to disconnect this versatile functional group. As 

research is increasing pace in the area, many more exciting transformations can be 

expected to be discovered in the future. 
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