
Abstract 

In this section, the synthesis of saturated N- and O- heterocycles via formal cy-

cloaddition is presented. The main focus is on metal-catalyzed reactions involving 

C-C or C-X  bond cleavage in three- or four- membered rings. After a fast 

presentation of pioneering works, the important breakthroughs of the last two dec-

ades are presented. The section starts with reactions involving three-membered 

rings. Formal [3+2] cycloadditions of donor-acceptor-substituted cyclopropanes 

and methylenecyclopropanes with carbonyls and imines are important methods to 

access tetrahydrofuran and pyrrolidine heterocycles. Formal [3+3] cycloadditions 

have emerged more recently. On the other hand, reactions of epoxides and aziri-

dines with carbon monoxide or cumulenes are now well-established method to ac-

cess heterocycles. These processes have been completed more recently with cy-

cloaddition with olefins, carbonyls and imines. The section ends with the 

emerging field of four-membered ring activation for cycloaddition with  systems. 
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7. Synthesis of Saturated Heterocycles via Met-
al-Catalyzed Formal Cycloaddition Reactions that 
Generate a C–N or C–O Bond 

7.1 Introduction: Definitions and Scope of the Section 

The discovery of classical cycloaddition reactions, such as the (hetero) Diels-

Alder and 1,3-dipolar cycloadditions, has contributed tremendously to a more effi-

cient access towards both carbocycles and heterocycles. The introduction of the 

term cycloaddition was necessary to distinguish these new types of reactions from 

previously discovered processes leading to cyclic structures, such as the famous 

Robinson annulation. In principle, each cycloaddition can be considered as a spe-

cial case of the more general annulation process, but from which point on an annu-

lation can be called a cycloaddition has been the topic of intensive discussions for 

decades, and is still not settled today. In 1968, Huisgen proposed a set of rules for 

the definition of cycloaddition, and the two first are still largely recognized as pre-

requisite:[1] 

- Huisgen Rule 1: "Cycloadditions are ring closures in which the number of 

 bonds increases." 

- Huisgen Rule 2: "Cycloadditions are not associated with the elimination of 

small molecules or ions. The cycloadduct corresponds to the sum of the 

components." 

The current official definition of cycloaddition by IUPAC is very close to these 

first two rules of Huisgen: 

" A reaction in which two or more unsaturated molecules (or parts of the same 

molecule) combine with the formation of a cyclic adduct in which there is a net 

reduction of the bond mu1tiplicity." 

Although the rule that all the atoms of the starting materials have to be included 

in the product is not explicitly included in the definition, this requirement is usual-

ly recognized by most organic chemists. Even if electrocyclic cyclization process-

es were included in the original definition of Huisgen, the term cycloaddition is 

mostly used today for those reactions proceeding via the formation of at least two 

new bonds. Nevertheless, several researchers think that the term cycloaddition 

should be more strictly limited to reactions involving a continuous overlap of  

electrons, and consequently allowing a concerted process. In fact, in his seminal 

publication, Huisgen already introduced further rules, in particular rule number 3, 

which explicitly stated that cycloadditions should not involve the cleavage of sig-

ma bonds: 

- Huisgen Rule 3: "Cycloadditions do not involve the cleavage of  bonds." 

Unfortunately, in the same publication, Huisgen also described several reac-

tions proceeding via -bond cleavage as cycloaddition. 



3 

To solve this definition dilemma, several researchers have used the term of 

"formal cycloaddition". Although this term has not yet been strongly defined, we 

propose to use it here for those reactions following the rules 1 and 2 of Huisgen 

and the IUPAC definition, but not the more strict criteria of rule 3 and the non-

interrupted  system of electrons (Scheme 7.1). In contrast to annulation reactions, 

the formation of small molecules or changes in the connectivity of atoms not in-

volved in the formation of the new bonds in the ring are not allowed in this case. 

For example, even if the alcohol intermediate formed first in the Robinson annula-

tion formally contains all the atoms of the starting materials, the position of the 

indicated hydrogen has changed. Although also highly useful, such processes will 

not be included in this section. Furthermore, we will limit ourselves to reactions 

for which the definition is valid for the used starting materials, and not on transi-

ently generated reactive intermediates: 

Definition of "formal cycloaddition" in this section: A reaction in which two or 

more molecules (or parts of the same molecule) combine with the formation of a 

cyclic adduct, involving the formation of at least two new  bonds and the cleav-

age of at least one  bond, but not associated with the elimination of small mole-

cules or changes in the connectivity of atoms except for ring formation." 

 

Scheme 7.1: Examples of cycloaddition, formal cycloaddition and annulation as defined in this 

section. 

This type of reaction is highly useful for the synthesis of heterocycles, as it 

gives a direct access to more saturated derivatives, in contrast to classical cy-

cloadditions involving only  systems, but still conserves the perfect atom-

economy of the process. On the other hand, the cleavage of  bonds is much more 

difficult than the rearrangement of  electrons. To increase the reactivity of the 

substrates, the use of ring strain, often together with the further polarization of  

bonds with functional groups has been the most successful, and this section will be 

limited to this approach. In order especially to highlight the synthetic complemen-
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tarity with cycloadditions of conjugated systems, we will limit the discussion to 

reactions giving access to heterocycles with no more than one unsaturated center 

and leading to O- or N- containing heterocycles. 

In order to give a better systematic overview of this fast growing field, the sec-

tion has been organized according to the following criteria (Scheme 7.2): 

A) Ring size of the formal cycloaddition substrate (three, four or larger) 

B) Structure of the ring: all carbons, with one oxygen or one nitrogen and 

with more than one heteroatom. 

C) Number of added atoms during the cycloaddition process: one, two (divid-

ed in isolated  systems and cumulenes) and larger. 

D) Structure of the reacting partner: all carbon, with one oxygen or one nitro-

gen and with more than one heteroatom. 

 

 

Scheme 7.2: Classification criteria for formal cycloaddition reactions. 

7.2 Reactions Involving Three-Membered Rings 

Three-membered rings have been by far most often used in formal cycloaddi-

tion reactions. This is probably due first to the activation of the -bond originating 

from ring strain, which is essential to allow cycloaddition under mild conditions. 

Secondly, there are numerous synthetic methods to access three-membered rings, 

especially cyclopropanes, epoxides and aziridines. This has led to a widespread 

use of these substrates in cycloaddition and annulation reactions. 

7.2.1 Reactions with Cyclopropanes 

Cyclopropanes are very important in organic chemistry, both as structural ele-

ments of synthetic and bioactive compounds and as platforms for further function-

alization. They are also interesting from the theoretical point of view, and are best 

described by the use of Walsh orbitals, which explain their partial  character. For 

these reasons, they can be considered as one-carbon homologues of olefins. De-

spite their high strain energy (26 Kcal/mol), cyclopropanes are still stable com-

pounds, and most useful formal cycloadditions of cyclopropanes have relied on 

further activation of the C-C bond via polarization, especially through the intro-



5 

duction of vicinal donor and acceptor groups (donor-acceptor substituted cyclo-

propanes).[2-8] A second possibility for further activation is the introduction of un-

saturation, which further increases ring strain and stabilizes potential reactive in-

termediate, as exemplified by the rich chemistry of alkylidenecyclopropanes.[9] 

7.2.1.1 Formal [3+2] Cycloadditions with Isolated  Systems 

7.2.1.1.1 C-O Bond Formation 

The formal cycloaddition of cyclopropanes with carbonyl compounds gives a fast 

and atom-economical access to important tetrahydrofuran derivatives. Pioneering 

works of Reissig and co-workers in the eighties have already shown the potential 

of oxygen substituted cyclopropanes to access either tetrahydrofurans or lactones 

(Scheme 7.3, A and B).[10-15] Oshima and co-workers later showed that that unsub-

stituted cyclopropanes could also be used for the cycloaddition (Scheme 7.3, 

C),[16] and Yadav introduced in 2006 silyl activated cyclopropanes as another al-

ternative (Scheme 7.3, D).[17] In 2011, Dobbs and co-workers demonstrated that 

cycloaddition of silylmethyl substituted cyclopropanes was also possible in the ab-

sence of the diester activating group.[18]  

 

Scheme 7.3: Pioneering examples of formal [3+2] cycloaddition of cyclopropanes with carbonyl 

compounds. 

Nevertheless, despite these promising studies, the interest in [3+2] cycloaddi-

tions remained limited for several decades, probably because the factors control-
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ling the stereoselectivity of the reaction were poorly understood. The situation 

changed dramatically when Johnson and co-workers demonstrated in 2005 that the 

Lewis acid catalyzed [3+2] cycloaddition of aryl-diester substituted cyclopropanes 

with carbonyl compounds was not only diastereoselective, but also highly enanti-

ospecific (Scheme 7.4).[19-20] The reaction was successfully extended to alkenyl 

and alkyl substituted cyclopropanes. To rationalize the observed enantiospeficity, 

Johnson and co-workers proposed that the reaction proceeded via a tight ion pair 

II.[21-22] The existence of such "intimate ion pairs" has also been proposed by other 

authors.[23-25] A stereoselective anti attack of the aldehyde followed by a fast bond 

rotation of 120 °C would lead to the favored envelope conformation IV, in which 

all groups are in favorable pseudo-equatorial positions. Finally, C-C bond for-

mation would give the observed tetrahydrofuran. The proposed mechanism was 

further confirmed by the stereospecificity observed when a deuterium label was 

introduced on one of the two ester groups of the cyclopropane. 

 

Scheme 7.4: Enantiospecific formal [3+2] cycloaddition reported by Johnson and co-workers. 

With electron-rich aryl substituents, racemization of the starting material was 

observed. This result opened the way for the development of the first dynamic ki-

netic asymmetric formal [3+2] cycloaddition of aldehydes and cyclopropanes, us-

ing a magnesium PYBOX catalyst (Equation 7.1).[26] 
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Equation 7.1: Dynamic kinetic asymmetric [3+2].formal cycloaddition. 

Further recent extensions of this reaction include highly diastereoselective for-

mal cycloadditions catalyzed by AlCl3
[27] and the use of cyclopropanes bearing a 

quaternary donor site.[28] In the case of vinyl-substituted cyclopropanes, activation 

with a palladium catalyst became possible, due to the formation of a stable -allyl 

intermediate.[29] The broad applicability of the method was further demonstrated in 

the total synthesis of natural products, including (+)-virgatusin,[30] (+)-

polyanthellin A[31-32] and (+)-isatisine A[33-34] (Figure 7.1). Finally, Wang and co-

workers developed intramolecular variations of this reaction to give both fused 

and bridged polycyclic systems and applied the method to a formal synthesis of 

platensimycin.[35] 

 

Figure 7.1: Natural products synthesized via the intermolecular formal [3+2] cycloaddition of 

diester cyclopropanes and carbonyl compounds. 

The seminal work of Johnson and co-workers had enhanced tremendously the 

range of applications of formal [3+2] cycloadditions to access tetrahydrofurans. 

Nevertheless, it remains limited to the use of donor-acceptor cyclopropanes bear-

ing an alkyl (aryl/alkenyl) group and diester substituents. Recently, Wang and co-

workers reported two intramolecular approaches with other types of cyclopro-

panes: the first one involves oxycyclopropanes used in intramolecular cycloaddi-

tions to access bridged cyclopropanes (Scheme 7.5, A),[36] whereas the other made 

use of ketone substituted alkynyl cyclopropanes (Scheme 7.5, B).[37] In the latter 

case, more saturated furan derivatives could also be accessed via an alternative 

[4+2] annulation process if a gold catalyst was used. 
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Scheme 7.5: Extending the scope of formal [3+2] cycloaddition reaction to oxy- and alkynyl- 

substituted cyclopropanes. 

In 2012, Waser and co-workers reported the first use of amino-substituted cy-

clopropanes in the formal [3+2] cycloaddition with both aldehydes and ketones 

(Scheme 7.6). The reaction with aldehydes proceeded at room temperature with an 

iron catalyst and gave racemic products when starting from enantiopure cyclopro-

panes (A).[38] In contrast, the tin-catalyzed annulation with ketones was enanti-

ospecific (B).[39] The obtained amino-substituted tetrahydrofurans are important 

heterocycles, as they constitute the core of natural DNA and RNA, as well as nu-

merous synthetic drugs. 

 

Scheme 7.6: Formal [3+2] cycloaddition of aminocyclopropanes. 

Apart from the introduction of polarizing group, the introduction of an exo 

double bond is another important approach to increase the reactivity of cyclopro-

panes.[40] In fact Nakamura and Yamago already demonstrated in 1990 that the 

formal cycloaddition of methylene cyclopropane acetal with aldehydes and ke-

tones occurred spontaneously upon heating to 80 °C (Equation 7.2).[41] A tri-

methylenemethane intermediate can be proposed for this reaction, leading to a true 

cycloaddition after ring-opening has occurred.  

 

Equation 7.2: Thermal Formal [3+2] cycloaddition of methylenecyclopropane. 
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The use of a palladium catalyst allowed Yamamoto and co-workers to extend 

the scope of cycloaddition reactions between alkylidene cyclopropanes and alde-

hydes (Scheme 7.7).[42] The reaction has been proposed to proceed via oxidative 

addition of Pd(0) onto the C-C bond of the cyclopropane to form a palladium-

stabilized trimethylenemethane intermediate II. Nucleophilic addition onto the al-

dehyde to give a -allyl intermediate III followed by reductive elimination then 

regenerates the catalyst. When compared to other precursors of tri-

methylenemethane in catalysis,[43] alkylidene cyclopropanes are perfectly atom 

economical, but still require relatively high temperature to react. 

 

Scheme 7.7: Palladium-catalyzed formal [3+2] cycloaddition of alkylidenecyclopropanes. 

Finally, the use of Lewis acid to promote the cycloaddition between alkyli-

denecyclopropanes and carbonyl compounds has also been reported, but most re-

actions remain limited in scope or lead to mixture of products.[44-47] 

 

7.2.1.1.2 C-N Bond Formation 

In a similar way as tetrahydrofurans are obtained via the [3+2] cycloaddition of 

cyclopropanes and carbonyls, pyrrolidines are generated from cyclopropanes and 

imines. It is consequently not surprising that many methods established in the case 

of carbonyls were later extended to imines. 

Nevertheless, one of the first examples of the synthesis of pyrrolidines derived 

from oxindoles was developed by Carreira and co-workers based on a unique 

stepwise mechanism (Scheme 7.8).[48] In this reaction catalyzed by MgI2, nucleo-

philic attack by iodide was proposed as the first step. The generated enolate I 

would then add onto the imine, followed by cyclization via an SN2 process. The 

broad potential of the method was further demonstrated in the total synthesis of 

spiroxindole alkaloids, including horsfiline,[49] strychnofoline,[50-51] and spyrotry-
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prostatin B,[52-53] as well as in the production of small molecule libraries with a 

pyrrolidine core.[54-61] 

 

Scheme 7.8: MgI2-catalyzed [3+2] annulation of cyclopropanes with imines and application in 

the total synthesis of spiroxindole alkaloids. 

Kerr and co-workers were the first to apply the principle of diester activation 

for the intramolecular annulation between imines and cyclopropanes (Scheme 

7.9).[62] The reaction proceeded in one-pot from the hydroxylamine derivatives and 

was catalyzed by Yb(OTf)3. Interestingly, the formation of the cis or trans diaster-

eoisomer depended on the order of addition of catalyst or aldehyde. Kerr and co-

workers proposed that in the absence of aldehyde, nucleophilic attack of the nitro-

gen on the cyclopropane was the first step, followed by condensation with the al-

dehyde and ring-closing. When the aldehyde was added first, the formation of the 

oxime would occur initially, followed by attack on the cyclopropane, resulting in 

an inversion of the diastereoselectivity. 

More recently, the methodology was also extended to the synthesis of bridged 

systems[63] and of bicyclopyrazolidines starting from hydrazines.[64] As the N-O or 

N-N bond is easily cleaved in the obtained products, they are easily further func-

tionalized, as has been demonstrated by Kerr and co-workers in the total synthesis 

of (+)-allosecurinine[65] and FR901483.[66] In 2010, Tomilov and co-workers have 

also reported a first example of intermolecular reaction between aryl-diester sub-

stituted cyclopropanes and pyrazolines.[67] 
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Scheme 7.9: Intramolecular [3+2] annulation of cyclopropanes with oximes and applications in 

the total synthesis of alkaloids. 

In 2010, Johnson and co-workers reported that the dynamic kinetic asymmetric 

formal cycloaddition they have developed for aldehydes could also be used in the 

case of imines (Equation 7.3).[68] In this case, the choice of protecting group was 

key to obtain good asymmetric induction, diastereoselectivity and yield in the re-

action. 

 

Equation 7.3: Dynamic kinetic asymmetric [3+2] formal cycloaddition. 

Like in the case of cycloadditions with carbonyls, alkylidenecyclopropanes 

have also been used for the reaction with imines. Nakamura and co-workers were 

again able to use alkylidenecyclopropane acetals for a thermal cycloaddition with 

oximes (Scheme 7.10).[69] The reaction was proposed to proceed via a concerted 

cycloaddition of a trimethylenemethane singlet intermediate after cyclopropane 

opening. Interestingly, cycloaddition occurred on the two less substituted carbon 

atoms of the trimethylenemethane in contrast to the result with carbonyl com-

pounds. The obtained keteneacetal can be easily hydrolyzed to the corresponding 

ester to give trisubstituted pyrrolidines. Later, the method could also be extended 

to sulfonyl and acyl imines as substrates.[70] As in the case of furans, the use of a 

palladium catalyst allowed Yamamoto and co-workers to significantly expand the 

scope of alkylidenecyclopropanes used in cycloaddition reactions with imines.[71-

72] More recently, Shi and co-workers have reported that non-activated alkylidene-

cyclopropanes could react thermally with imines in an intramolecular reaction.[73] 
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Scheme 7.10: Cycloaddition of alkylidenecyclopropanes and oximes under thermal conditions. 

An important progress in the use of alkylidenecyclopropanes activated by an 

electron-withdrawing group was realized by Lautens and co-workers using coop-

erative iodide-Lewis acid catalysis (Scheme 7.11).[74] The use of MgI2 led to the 

formation of the formal [3+2] cycloaddition products. The reaction probably pro-

ceeds via ring-opening of the Lewis acid activated cyclopropane by the iodide, 

followed by addition of the formed enolate I to the imine to give II and finally in-

tramolecular SN2 reaction leading to the pyrrolidine. Interestingly, the use of the 

bulky MAD Lewis acid led to the attack of the  position instead and the for-

mation of a different product via III.[75] 

 

Scheme 7.11: MgI2-catalyzed formal cycloaddition and other annulation reaction of methyli-

denecyclopropanes. 

In order to access enantiopure products, Lautens and co-workers subsequently 

introduced a chiral sulfoxide auxiliary on the imine and obtained excellent dia-

stereoselectivity (Scheme 7.12, A).[76-77] In 2007, they finally reported the first ex-
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ample of catalytic asymmetric formal cycloaddition using a chiral BOX ligand on 

the magnesium catalyst (Scheme 7.12, B).[78] 

 

Scheme 7.12: Asymmetric approaches for the formal cycloaddition between methylidenecyclo-

propanes and imines. 

7.2.2.2 Formal [3+2] Cycloadditions with Cumulenes 

Formal cycloadditions with cumulenes, especially CO2, are very important reac-

tions with small heterocyclic substrates like epoxides or aziridines (vide infra). In 

contrast, these reactions have been only rarely studied with cyclopropanes, alt-

hough the palladium-catalyzed reaction of alkylidenecyclopropanes with CO2 was 

reported initially in 1979 by Inoue and co-workers (Equation 7.4).[79] In 2011, Shi 

and co-workers studied this transformation in greater detail and were able to sig-

nificantly increase its scope.[80] Nevertheless, controlling the regiochemistry of the 

addition still remains a major challenge for this transformation. 

 

Equation 7.4: Formal [3+2] cycloaddition of alkylidenecyclopropanes with CO2. 

Until 2012, examples of cycloadditions of cyclopropanes with other heterocu-

mulenes were rare, with single examples reported with carbon disulfide,[81] phe-

nylisocyanate,[82] phenylisothiocyanate,[83] diazenes,[84-85] and a special [3+1+1] 

process involving isonitriles.[86] In 2012, Li and co-workers reported first the iron-

mediated formal cycloaddition of aryl- and vinyl- cyclopropane diesters with 

isothiocyanates (Scheme 7.13, A).[87] In this work, the products were suggested to 

be thiolactams. However, Stoltz and co-workers reported shortly afterwards that 

the obtained product were more probably thioimidates, which were in their case 

obtained via the same transformation, but using a tin(II) catalyst (Scheme 7.13, 
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B).[88] Stoltz and co-workers also reported the first cycloaddition reactions of car-

bodiimides and isocyanates to give amidines and imidates respectively. 

 

Scheme 7.13: Formal [3+2] cycloadditions with isothiocyanates, carbodiimides and isocyanates. 

7.2.2.1 Formal [3+n] Cycloadditions 

Formal cycloaddition of cyclopropanes with larger partners have been much less 

investigated. Most research has focused on the [3+3] cycloaddition of donor-

acceptor substituted cyclopropanes with nitrones. The seminal studies on this reac-

tion were reported by Kerr and co-workers in 2003, and the reaction was first 

called a homo [3+2] cycloaddition reaction (Scheme 7.14).[89-95] The reaction pro-

ceeded with good yield and stereoselectivity to give 1,2-tetrahydrooxazines. The 

obtained heterocycles are interesting, as they are found at the core of natural prod-

ucts, such as phyllantidine, which was synthesized by Kerr using this methodolo-

gy in 2006.[96] Furthermore, the N-O bond can be easily reduced with samarium 

iodide. After activation of the alcohol and intramolecular nucleophilic substitu-

tion, ring-contracted pyrrolidines are obtained, which led to an alternative strategy 

to the direct [3+2] formal cycloaddition between cyclopropanes and imines dis-

cussed previously. This approach was successfully applied in an impressive syn-

thesis of the alkaloid nakadomarin A[97-98] and the core of the natural product 

yuremamine.[99] Interesting further extensions of the methodology include the use 

of cobalt complexes of alkynyl cyclopropanes diesters as a new approach for do-

nor-acceptor activation of the three-membered ring,[100] the use of nitrones derived 

from isatin to obtain important spiroxindole products,[101] and the use of cyclic 

nitrones as substrates.[102] 
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Scheme 7.14: Formal [3+3] cycloadditions of cyclopropanes with nitrones and applications in 

the total synthesis of natural alkaloids. 

An important breakthrough for the further development of formal [3+3] cy-

cloaddition of cyclopropanes and nitrones was the discovery of a catalytic asym-

metric variation of the reaction (Scheme 7.15). Using a Nickel-DBFOX catalyst, 

Sibi and co-workers were able to develop in 2005 an enantioselective cycloaddi-

tion using unsubstituted cyclopropanes (A).[103]  In 2007, Tang and co-workers re-

ported a kinetic resolution of substituted cyclopropanes using a C1-symmetric 

modified BOX ligand on the nickel catalyst (B).[104] 

 

Scheme 7.15: Asymmetric Formal [3+3] cycloadditions of cyclopropanes with nitrones. 

In 2008, Charette and co-workers further demonstrated that the [3+3] cycload-

dition between azomethine imines and donor-acceptor cyclopropanes was also 

possible (Equation 7.5).[105] In 2013, Tang and co-workers developed a highly en-

antioselective variation of this reaction using a C1-symmetric modified BOX lig-

and on the nickel.[106] Wu and co-workers developed domino-reactions in which 
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the nitrone[107] or the azomethine imine[108] are generated in situ by addition of a 

nucleophile on a triple bond (Scheme 7.16, A and B). In the case of the azome-

thine imine, a three component reaction starting directly from an alkynyl alde-

hyde, a hydrazine and the cyclopropane was possible. 

 

Equation 7.5: Formal [3+3] cycloadditions of cyclopropanes and azomethine imines. 

 

Scheme 7.16: Domino-cyclization cycloaddition from alkynes. 

Finally, two recent examples make use of cyclopropanes bearing a further exo 

double bond (Scheme 7.17): Wang and co-workers reported the first use of alkyli-

denecyclopropane diesters in the formal cycloaddition with esters in 2009 (A).[109] 

In 2010, Wu and Shi reported that the reaction with vinylidenecyclopropane 

diesters proceeded with different regiochemistry (B).[110] The obtained allenes 

were unstable and rearranged to form the ketones. 



17 

 

Scheme 7.17: [3+3] Cycloaddition with alkylidene- and vinylidene-cyclopropanes. 

In addition to [3+3] formal cycloadditions, there are few examples of reactions 

with larger partners, but they usually lead to more saturated heterocycles.[111] 

 

7.2.2 Reactions with Epoxides 

In contrast to cyclopropanes, for which the most frequent reactions have been 

with isolated  systems such as carbonyls and imines, the chemistry of epoxides 

and aziridines is dominated by formal cycloadditions with CO and CO2. These re-

actions are very important for the synthesis of heterocycles, and they would re-

quire a dedicated chapter to be described in details. As this chemistry has already 

been described in several reviews,[112-116] we will present only a few seminal stud-

ies and concentrate more on other transformations, which have been less in the fo-

cus of attention. 

7.2.2.1 Formal [3+1] Cycloadditions 

The formal cycloaddition of epoxides with carbon monoxide is an important reac-

tion for the synthesis of -lactones. One of the major challenges associated with 

this process is to prevent subsequent polymerization of the formed lactones. Ex-

cept for scattered publications and patents describing this transformation in low 

yield, the first truly efficient protocol was reported by Alper and co-workers in 

2001 (Scheme 7.18, A).[117] Key for success was the use of a zwitterionic cobalt 

catalyst and a Lewis acid as a co-catalyst. Coates and co-workers later developed a 

more efficient catalyst, in which the cation of the zwitterionic cobalt catalyst is it-

self a Lewis acid (Scheme 7.18, B).[118-119] Best results were initially obtained with 
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an aluminium salen complex, but later other Lewis acids were found to be even 

more efficient.[120-122] 

 

Scheme 7.18: Formal [3+1] cycloaddition of epoxides and carbon monoxide. 

Following the discovery of the carbonylation reaction, intensive mechanistic 

studies have given a deeper insight in the catalytic cycle (Scheme 7.19).[123-124] The 

reaction is initiated by dissociation of a weakly bound ligand from aluminium to 

generate Lewis acidic complex I. Activation of the epoxide (II) is followed by nu-

cleophilic attack of cobalt to give five-coordinated aluminium alkoxide complex 

III. Insertion of CO into the C-Co bond then gives intermediate IV, which reacts 

with CO to give complex V. The subsequent four-membered ring formation from 

V to give VI has been proposed to be rate-limiting, and the intermediacy of V was 

supported by IR spectroscopy and kinetic studies. Finally, release of the product 

regenerates the active catalyst I. In accordance with the proposed mechanism, the 

reaction proceeded with high stereocontrol, and cis lactones were obtained starting 

from trans epoxides. 
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Scheme 7.19: Proposed catalytic cycle for the carbonylation of epoxides. 

Interesting recent extensions of the reaction are the use of alkylidenecyclopro-

panes as substrates,[125] the synthesis of anhydrides via a double carbonyl insertion 

process,[126] and the first example of carbonylative desymmetrization of meso-

epoxides using a chiral chromium Lewis acid.[127] 

7.2.2.2 Formal [3+2] Cycloadditions with Isolated  Systems 

In principle, the reaction of epoxides with two-carbon  systems can occur either 

via C-C bond cleavage or via C-O bond cleavage. In contrast to cyclopropanes, a 

lone pair is available on the oxygen of the epoxide and allows a concerted ring 

opening to give a carbonyl ylide intermediate, which can then undergo a concerted 

[3+2] cycloaddition with olefins or carbonyl compounds. In fact, the thermal or 

photochemical ring-opening of epoxides was one of the first methods used to gen-

erate carbonyl ylides for cycloaddition reactions.[128] Nevertheless, ring-opening 

occurs under relatively mild conditions only with specific substituents, especially 

cyano and aryl groups. Probably for this reason, other methods to generate car-
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bonyl ylides are nowadays favored. As these reactions can be considered as "true 

cycloadditions", they will not be discussed here. 

Surprisingly, Lewis acid activation of epoxides for (formal) cycloaddition reac-

tions has not been investigated in detail until the work of Zhang and co-workers in 

2011 (Scheme 7.20).[129] Inspired by the successful design in the field of donor-

acceptor cyclopropanes, they discovered that Lewis acid activation of diester sub-

stituted epoxides was possible to give dioxolanes with excellent diastereoselectivi-

ty after cycloaddition with aldehydes. In contrast to what has been observed with 

cyclopropanes, racemization of the starting material was observed, indicating a 

probable carbonyl ylide intermediate II. As the reaction was accelerated with elec-

tron-rich aldehydes, Zhang and co-workers then proposed a stepwise process via 

intermediates III and IV to finally give the dioxolane. Using the same activation 

principles, Zhang and co-workers also developed a [3+2] formal cycloaddition 

with alkynes[130] and a [4+3] annulation between nitrones and alkynyl substituted 

epoxides,[131] but these reactions gave access to more saturated heterocycles. Final-

ly, they reported in 2012 the formal [3+2] cycloaddition of cyclopropanes with in-

doles (Equation 7.6).[132] 

 

 

Scheme 7.20: Formal [3+2] cycloaddition of epoxides and aldehydes and proposed reaction 

mechanism. 
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Equation 7.6: Formal [3+2] cycloaddition of epoxides and indoles. 

In principle, reactions proceeding via C-C cleavage and carbonyl ylides can be 

concerted cycloadditions. On the other hand, reactions involving C-O cleavage 

does not allow a continuous overlap of orbitals and are thus clearly formal cy-

cloadditions. A first approach was developed in the special case of vinyl epoxides: 

based on the well-established access to palladium--allyl complex from vinyl 

epoxides (vide infra), Shim and Yamamoto reported in 1998 the formal [3+2] cy-

cloaddition of this class of substrates with electron-poor olefins (Scheme 7.21).[133] 

The reaction proceeded in good yield, but with low diastereoselectivity. The first 

step in the catalytic cycle was proposed to be formation of the palladium -allyl 

intermediate II. Michael addition of the alkoxide to give III, followed by reduc-

tive elimination will then give the observed product and regenerate the Pd(0) cata-

lyst I. In 1999, they then extended the methodology to the synthesis of oxazolidine 

by formal cycloaddition of vinyl epoxides and tosyl imines (Equation 7.7).[134-135] 

 

 

Scheme 7.21: Palladium-catalyzed formal [3+2] cycloaddition of vinyl epoxides and electron 

poor olefins and proposed reaction mechanism. 
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Equation7.7: Palladium-catalyzed formal [3+2] cycloaddition of vinyl epoxides and imines.  

In 2009, Jarvo and co-workers developed the first asymmetric version of the 

reaction between vinyl epoxides and imines (Scheme 7.22).[136] When using a rho-

dium catalyst, the reaction was enantiospecific. The retention of the stereochemis-

try indicated a mechanism involving double inversion. In contrast, when using a 

palladium catalyst, a dynamic kinetic asymmetric transformation (DYKAT) was 

possible, and enantioenriched products could be obtained from a racemic mixture. 

Both methods gave the oxazolidine in good enantiopurity, but only moderate dia-

stereoselectivity. In 2011, Matsubara and co-workers reported that a nickel cata-

lyst could also be used for the formal cycloaddition of vinyl epoxides and unsatu-

rated ketones.[137] Finally, Hou and co-workers reported the first examples of 

palladium-catalyzed cycloaddition of nitro olefins and vinyl epoxides, which pro-

ceeded with up to 72% ee.[138] 

 

Scheme 7.22: Enantiospecific and enantioselective formal [3+2] cycloaddition of vinyl epoxides 

and imines. 

The main limitation of the palladium-based methods is the requirement for a -

allyl intermediate. In principle, a simple Lewis acid activation would have less 

limitation. Nevertheless, there are only two reports of Lewis-acid catalyzed formal 

[3+2] cycloaddition of epoxides with two-carbon  systems: Su and co-workers 

first reported the ytterbium-catalyzed cycloaddition of imines and epoxides to give 

oxazolidines in 2007 (Scheme 7.23, A).[139] In 2012, Zhang and co-workers studies 

the ring-opening of diester-substituted epoxides more in details, and found out that 

the reaction could proceed either via C-C or C-O cleavage depending on the cata-

lyst (Scheme 7.23, B).[140] With a nickel catalyst, C-C cleavage was observed, and 

the products were obtained in good yield and cis stereoselectivity. In contrast, C-O 

cleavage was favored in presence of a tin(II) catalyst and the reaction proceeded 

with lower diastereoselectivity. The origin of the regioselectivity was rationalized 

based on calculation: the nickel catalyst favored chelation of the two ester carbon-

yl group, leading to C-C bond activation. In contrast, the tin catalyst is bound 



23 

preferentially to the oxygens of one carbonyl group and the epoxide, leading to C-

O bond cleavage. Finally, a last approach was reported by Liu and co-workers in 

2004 based on the oxidation of chalcone epoxides with aminium cations.[141] The 

obtained radical cation intermediate is very reactive and can be used in cycloaddi-

tion reactions with non-activated or electron-rich olefins.  

 

Scheme 7.23: Lewis acid-catalyzed formal [3+2] cycloaddition of vinyl epoxides with imines 

and aldehydes. 

7.2.2.3 Formal [3+2] Cycloadditions with Cumulenes 

The most important cycloaddition of epoxide with cumulenes is by far the reaction 

with carbon dioxide. The obtained carbonates can be easily polymerized to give 

polycarbonates, which are an important class of polymer. With the right catalyst, 

the polymer can also be obtained directly. More than one hundred publications 

have been focused on this reaction, and a full description of this work goes far be-

yond the scope of this section. Fortunately, several recent reviews have been dedi-

cated to this transformation.[142-145] One of the most successful classes of catalysts 

are cobalt, chromium and aluminium salen complexes, which have also allowed 

the development of asymmetric variations of the reaction.[146] 

 

 

Equation 7.8: Formal [3+2] cycloaddition of epoxides and carbon dioxide. 

The reaction with cumulenes is not limited to CO2. In particular, isocyanates, 

isothiocyanates and carbodiimides react with epoxides to give the corresponding 

five-membered heterocycles. One of the main challenges in this transformation is 

to control the regioselectivity of the formal cycloaddition. Earlier work in this 

field focused on the use of halide salts, such as tetrabutylammonium iodide,[147] 
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lithium bromide,[148] tetraphenylstibonium iodide[149-151] or tributyltin iodide-Lewis 

base complexes.[152-153] The halide has been proposed to play a key role for nucle-

ophilic ring opening of the epoxide (Scheme 7.24). The formed alkoxide can then 

add on the cumulene and a SN2 ring closure finally gives the heterocycles. More 

recently, the methodology has been used in the synthesis of libraries of bioactive 

compounds[154-155] and the first example involving isoselenocyanates has been re-

ported.[156] 

 

Scheme 7.24: Halide salt-catalyzed formal cycloaddition of epoxides and cumulenes. 

The only attempt of asymmetric induction using a ytterbium-Pybox catalyst 

was reported by Barros and Phillips in 2010 (Equation 7.9).[157] However, only 

moderate enantioselectivity was obtained and the yield was low, due to the for-

mation of regioisomers and chlorohydrin side products. 

 

Equation 7.9: Enantioselective [3+2] cycloaddition of epoxides and isocyanates. 

Like in the case of formal cycloaddition with two-carbon  systems, a success-

ful solution to the challenge of regio- and stereo-selectivity was found in the use 

of palladium catalysts with vinyl epoxides. In fact, the first reaction of this type 

was reported by Trost and Sudhakar with isocyanates in 1987 (Scheme 7.25, 

A).[158] Interestingly, the reaction was stereospecific when tosyl isocyanate was 

used, but became stereoconvergent with the use of isocyanates bearing a bulky ar-

yl group.[159-160] In this case, high cis stereoselectivity was observed regardless of 

the configuration of the epoxide. Isomerization of the -allyl intermediate was 

proposed to rationalize this result. In 1997, Larksarp and Alper reported the first 

enantioselective variation of the method using TolBINAP as a ligand (Scheme 

7.25, B).[161-162] This reaction gave high enantioselectivity for both isocyanates and 

carbodiimides as substrates. 
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Scheme 7.25: Pd-catalyzed formal [3+2] cycloaddition of vinyl epoxides and cumulenes. 

In addition to formal cycloadditions involving cumulenes with two heteroa-

toms, Baba and co-workers have reported a single example of cycloaddition of ke-

tenes with epoxides (Equation 7.10).[163] Independent of substrate structure and 

solvent, the tetraphenylstibonium iodide-catalyzed reaction proceeded in high 

yield for the formation of either the -lactone or the ketene acetal product. 

 

Equation 7.10: Formal [3+2] cycloaddition of epoxides and ketenes. 

7.2.3 Reactions with Other Three Membered Rings 

Apart from epoxides and cyclopropanes, most investigations have focused on 

the use of aziridines, oxaziridines and diaziridines substrates. As the use of the last 

two for the functionalization of olefins has been already discussed in chapter 2 of 

this volume, the discussion will be here limited to aziridines. Not surprisingly, 

many parallels can be drawn with the reactions involving epoxides, and depending 

on the transformation, reports involving aziridines either inspired or take inspira-

tion from similar work with epoxides. 

7.2.3.1 Formal [3+1] Cycloadditions 

The carbonylation of aziridines is an important method for the synthesis of -

lactams. The main research in this field was conducted by Alper and co-workers 

(Scheme 7.26). They first reported the rhodium-catalyzed carbonylation of aziri-

dines (A).[164-166] The reaction was limited to aryl substituted aziridines. High regi-

oselectivity was observed for insertion in the benzylic C-N bond. Furthermore, the 

reaction proceeded with retention of the stereochemistry at the benzylic center. In 
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1996, they reported a cobalt-catalyzed carbonylation (B).[167] The reaction was 

more general, and proceeded this time with inversion of the stereochemistry and 

insertion in the less substituted double bond. This striking result can be explained 

by the different mechanism of the two reactions. Like for the carbonylation of 

epoxides (vide supra, Scheme 7.19), the reaction with cobalt most probably pro-

ceeds via nucleophilic attack of a cobaltate intermediate.[168] In the case of rhodi-

um, oxidative insertion of I into the C-N bond occurs first to give II (Scheme 

7.27). Hyperconjugation with an aromatic ring is essential for this step.[169] Car-

bonyl insertion, followed by addition of carbon monoxide and reductive elimina-

tion then gives the lactam. Subsequently, the scope of the cobalt-catalyzed reac-

tion was studied more in detail.[170-171] Coates and co-workers also demonstrated 

that the Lewis acid cobaltate complex developed for epoxide carbonylation is also 

more efficient for aziridine carbonylation.[119] 

 

Scheme 7.26: Formal [3+1] cycloaddition of aziridines and carbon monoxide. 

 

Scheme 7.27: Mechanism of the rhodium-catalyzed carbonylation of aziridines. 

In addition to the most successful rhodium and cobalt catalysts, examples of 

carbonylation with stoichiometric nickel complexes were also reported.[172-173] Fi-

nally, the use of palladium catalysis remains limited to methylene-[174] and vinyl-
[176-177] substituted aziridines. 
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7.2.3.2 Formal [3+2] Cycloadditions with Isolated  Systems 

As for epoxides, the lone pair on nitrogen allows the thermal or photolytic 

opening of aziridines to generate an azomethine ylide. Again, this process is often 

limited to specific substituents on the aziridines and requires harsh reaction condi-

tions. It can also be considered as a "true" cycloaddition, and will therefore not be 

discussed in this section. 

As in the case of cyclopropanes, the use of aziridines in formal [3+2] cycload-

ditions has increased tremendously during the last 15 years.[178-179] The first break-

throughs were reported in 1999. Bergmeier and co-workers demonstrated that the 

intramolecular cycloaddition of tosyl aziridines and allyl silanes could be cata-

lyzed by boron-trifluoride etherate (Scheme 7.28, A).[180] Also in 1999, Mann and 

co-workers used the same catalyst for the intermolecular cycloaddition of aryl-

substituted aziridines with enol ethers,[181] and later demonstrated that this system 

could also be applied to non-activated alkenes (Scheme 7.28, B).[182] In these early 

works, high diastereoselectivity could be achieved only in the case of the for-

mation of bicyclic five-five ring systems. In 2000, Nakagawa and Kawahara then 

reported the scandium-catalyzed cycloaddition of unsubstituted Cbz protected 

aziridines with skatole and used the method in a formal synthesis of physostig-

mine (Scheme 7.28, C).[183] In 2001, Yadav and co-workers finally reported that 

scandium triflate was also an efficient catalyst for the reaction of aryl-substituted 

tosyl aziridines with enol ethers and allyl silanes.[184]  

 

Scheme 7.28: Formal [3+2] cycloaddition of aziridines with olefins. 

In 2004, Johnson and co-workers then reported that diester substituted N-aryl 

aziridines could be activated by Lewis acid for reaction with enol ethers (Scheme 

7.29, A).[185] Due to the diester activation, the reaction now proceeds via C-C in-

stead of C-N cleavage. For cyclic enol ethers, a [4+2] annulation process was ob-

served, proceeding probably via a Friedel-Crafts reaction on the aryl ring. The re-



28  

action could also be extended to norbornene as substrate. In the case of acyclic 

enol ethers, the formal [3+2] cycloaddition product was obtained with low dia-

stereoselectivity. Although the reaction was usually performed with stoichiometric 

amount of zinc chloride as Lewis acid, two examples of reactions catalytic in zinc 

were also reported. In 2011, Zhang and co-workers demonstrated that the [3+2] 

cycloaddition product could be obtained for both cyclic and acyclic enol ethers 

when using tosyl aziridines and yttrium triflate as catalyst.[186] 

As has been seen for epoxide and cyclopropanes, the use of vinyl aziridines 

opened the way for -allyl palladium chemistry. The first example of [3+2] cy-

cloaddition with an isolated two-carbon  system was reported by Aggarwal and 

co-workers in 2011 (Scheme 7.29, B).[187] Depending on the reaction conditions 

and substrate structure, pyrrolidine products could be obtained with high diastere-

oselectivity. The synthetic utility of the method was further demonstrated in a 

formal total synthesis of the natural product (-)--kainic acid. Furthermore, Ship-

man and co-workers reported in 2012 the first example of intramolecular formal 

cycloaddition of methylene aziridines with alkenes.[188] 

 

Scheme 7.29: The use of diester- and vinyl-substituted aziridines in formal cycloaddition reac-

tions. 

The formal [3+2] cycloaddition of aziridines is not limited to olefins as part-

ners. The reaction of aziridines with aldehydes and ketones was reported by 

Yadav and co-workers in 2004 using a silyl group to stabilize the carbocation ob-

tained after C-N bond cleavage (Scheme 7.30, A).[189] Oxazolidine products were 

obtained in excellent yield, but moderate diastereoselectivity. In 2007, Singh and 

co-workers then studied the reaction of aryl-substituted tosyl aziridines with both 

carbonyls and imines (Scheme 7.30, B).[190] This reaction was possible using zinc 

triflate as catalyst and also proceeded via C-N bond cleavage. In 2011, Hanamoto 

and co-workers finally reported the formal [3+2] cycloaddition of trifluromethyl 

substituted tosyl aziridines with aldehydes (Scheme 7.30, C).[191] This reaction 

proceeded also with C-N cleavage, but with opposite regioselectivity and high dia-

stereoselectivity. As the trifluoromethyl group is not able to stabilize a carbocation 
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intermediate, the reaction starts most probably by a nucleophilic SN2-like attack of 

the carbonyl on the less substituted carbon of the aziridine.  

The use of diester-substituted aziridines allowed again cycloadditions involving 

C-C instead of C-N cleavage. Using different Lewis acids as catalysts, the groups 

of Zhang[192-193] and Wang[194] reported the cycloadditions with both carbonyls and 

imines (Scheme 7.30, D). Interestingly, good diastereoselectivity was observed for 

the formation of cis-oxazolidines and trans-imidazolidines. 

Scheme 7.30: Formal [3+2] cycloaddition of aziridines with carbonyls and imines. 

7.2.3.3 Formal [3+2] Cycloadditions with Cumulenes 

As in the case of epoxides, carbon dioxide is again the most attractive cu-

mulene for reaction with aziridines. This reaction gives important oxazolidinones 

as products and constitutes an alternative to the reaction of epoxides with isocya-

nates. Even if early work demonstrated already in the 70's and the 80's that the cy-

cloaddition of aziridines and CO2 could be accelerated with halide salts,[195-196] 

progress has been much slower than in the case of epoxides, focusing mostly on 

technical improvements. Interesting recent results includes the use of a chromium 

salen catalyst by Miller and Nguyen[197] and a palladium catalyst together with vi-

nyl aziridines by Aggarwal and co-workers[198] (Scheme 7.31, A and B). The for-

mer reaction gave excellent regioselectivity, whereas the latter reaction already 

proceeded at atmospheric pressure of carbon dioxide. 
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Scheme 7.31: Formal [3+2] cycloaddition of aziridines with carbon dioxide. 

The reaction of aziridines with other cumulenes can be also be catalyzed by 

halide salts.[196] In 1992, Baeg and Alper reported the first palladium-catalyzed 

formal cycloaddition of aziridines with carbodiimides[199] and later extended the 

protocol to isocyanates and isothiocyanates (Scheme 7.32, A).[200]  The regiochem-

istry of the cycloaddition was dependent of the cumulene structure. The reaction 

was enantiospecific. When sulfurdiimides were used, a thiourea was obtained in-

stead of the expected product (Scheme 7.32, B).[201] Although the mechanism of 

this transformation was not yet fully elucidated, a labeling experiment showed that 

the extra carbon atom originated from the methylene group of the aziridine. 

 

Scheme 7.32: Pd-catalyzed Formal [3+2] cycloaddition of aziridines with cumulenes. 

The use of vinyl aziridines together with a palladium catalyst allowed cycload-

dition with cumulenes under milder conditions. Such a process was first reported 

by Alper and co-workers in 2000.[202] In 2003, Trost and Fandrick reported an 

asymmetric variation of the cycloaddition of vinyl aziridines and isocyanates us-

ing the bis(phosphine) ligands developed in their laboratory (Equation 7.11).[203] 

As the reaction proceeded via a -allyl palladium intermediate, a dynamic kinetic 

asymmetric cycloaddition became possible. In 2004, Dong and Alper reported a 

second asymmetric cycloaddition, but the enantioselectivity was moderate.[204] 



31 

 

Equation 7.11: Pd-catalyzed dynamic kinetic asymmetric cycloaddition of vinyl aziridines and 

isocyanates. 

Recently, progress using other catalysts then palladium has also emerged. In 

2008, Hou and co-workers reported the use of tributylphosphine as a catalyst for 

the cycloaddition of aziridines with carbon disulfide and isothiocyanates.[205] Fi-

nally, Sengoden and Punniyamurthy developed in 2013 the iron-catalyzed cy-

cloaddition of aziridines with isoselenocyanates.[206] Interestingly, this reaction 

could be performed "on water" under air, without the care required for more sensi-

tive catalysts. 

7.3 Reactions Involving Four-Membered Rings 

In comparison with the use of three-membered ring, the field of formal cy-

cloaddition involving four-membered ring is still in its infancy. This is probably 

due to the smaller strain-energy per bond, but also to the less developed synthetic 

methods used to access four-membered rings. 

7.3.1 Reactions with Cyclobutanes 

Neglected for a long time, the catalytic activation of cyclobutanes has come re-

cently at the center of attention of the organic chemistry community.[207] Prior to 

2008, only one example of cycloaddition involving a 1,2-donor-acceptor substitut-

ed aminocyclobutane had been reported by Saigo and co-workers in 1991 (Equa-

tion 7.12).[208] A mixture of half aminal and acetal was obtained, which was subse-

quently completely hydrolyzed to the acetal. In this pioneering work, the 

diastereoselectivity was low and the scope of the reaction was limited. In 1993, 

Saigo and co-workers then reported a multi-step [4+2] annulation procedure for 

the synthesis of -lactones starting from acetal-ester substituted cyclobutanes.[209] 

 

Equation 7.12: First example of formal [4+2] cycloaddition of cyclobutanes and carbonyls. 

Surprisingly, it is only in 2009 that this type of transformation was studied 

more in detail. In this year, Parsons and Johnson reported an important break-
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through by using diester-aryl/alkenyl substituted cyclobutanes in the reaction with 

aldehydes (Scheme 7.33, A).[210] The reaction was catalyzed by scandium triflate 

and gave tetrahydropyran products with good yield and excellent diastereoselec-

tivity. In contrast to the similar reaction developed for cyclopropanes, racemiza-

tion of the stereocenter was observed during the reaction. The required cyclobu-

tanes were themselves synthesized by scandium-catalyzed [2+2] formal 

cycloaddition of olefins and methylidenemalonates, which allowed the develop-

ment of a one-pot formal [2+2+2] process to access tetrahydropyrans. The same 

year, Pritschard, Christie and co-workers used cobalt octacarbonyl complexes of 

acetylenes as cation-stabilizing groups on the cyclobutane (Scheme 7.33, B).[211] 

Using again scandium triflate as catalyst, cis-substituted tetrahydropyrans were 

obtained in good yield. 

 

Scheme 7.33: Formal [4+2] cycloaddition of 1,2-donor-acceptor substituted cyclobutanes with 

aldehydes. 

To further extend the scope of formal [4+2] cycloadditions, Pagenkopf and co-

workers then studied oxygen-diester substituted cyclopropanes as substrates 

(Scheme 7.34).[212-214] The reaction was especially successful with bicyclic cyclo-

butanes. They first reported the cycloaddition with imines, which gave enamine 

products after elimination of the alcohol (A).[212] In this case, the reaction of aryl-

diester substituted cyclobutanes gave stable piperidines as products. In a second 

work, they extended the reaction to aldehydes (B).[213]  In this case, stable acetal 

products were obtained with high diastereoselectivity. Finally, they developed in 

2011 the formal [4+3] cycloaddition with nitrones (C). [214]  The reactions pro-

ceeded in good yield, but only with moderate diastereoselectivity. In 2012, Matsuo 

and co-workers further reported a one-pot reaction of 1,2-oxygen diester-

substituted cyclopropanes involving cycloaddition and intramolecular lactoniza-

tion.[215] 
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Scheme 7.34: Formal [4+2] cycloaddition of oxygen-diester substituted cyclobutanes. 

Three-donor-substituted cyclobutanones were introduced by Matsuo and co-

workers for their use in formal [4+2] cycloaddition in 2008 (Scheme 7.35).[216] In 

the case of bicyclic cyclobutanones, cleavage of the less substituted C-C bond was 

observed, leading to stable bicyclic acetals as products (A). For acyclic cyclobuta-

nones, the regioselectivity of the reaction was dependent from the temperature 

(B). At -45°C, cleavage of the less substituted C-C bond was observed. In con-

trast, if the temperature was raised to room temperature, the reversed regiochemis-

try and elimination of ethanol was observed. This is probably due to the higher 

stability of the more substituted zwitterion intermediate. In 2012, Matsuo and co-

workers also reported the use of cobalt octacarbonyl alkyne complexes as donor 

on cyclobutanones.[217] 

 

Scheme 7.35: Formal [4+2] cycloaddition of 3-oxo-cyclobutanones. 

7.3.2 Reactions with Other Four-Membered Rings 
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Most of the cycloadditions involving other four-membered rings are based on 

reactions between oxetanes and azetidines and carbon monoxide or cumulenes. 

Baba and co-workers first reported that tetraphenylstibonium iodide was also a 

good catalyst for the cycloaddition of oxetanes and cumulenes.[163, 218] Alper and 

co-workers then studied the activation of both oxetanes and azetidines with cobalt 

and palladium catalysts (Scheme 7.36). Cobalt octacarbonyl was a good catalyst 

for the carbonylation of azetidines with carbon monoxide (A).[219] Cleavage of the 

more substituted C-N bond was observed in the case of aryl substituents on the 

azetidine. For alkyl substituents, the other regioselectivity was observed. Reaction 

under milder conditions could be achieved using a palladium catalyst and vinyl 

azetidines or oxetanes.[220-222] This reaction proceeds via -allyl palladium inter-

mediates and was successful in the case of isocyanates, isothiocyanates, car-

bodiimides, ketenes and ketimines as cumulenes. Finally, Mann and co-workers 

reported the reaction of tosyl azetidines and electron-rich olefins promoted by bo-

ron trifluoride etherate.[223] In this case, a mixture of [4+2] cycloaddition and fur-

ther elimination products was obtained. 

 

Scheme 7.36: Formal [4+2] cycloaddition of azetidines and oxetanes with carbon monoxides and 

cumulenes. 

7.4 Reactions with Larger Rings 

Up to now, there are only very few studies on formal cycloaddition reactions 

involving C-C bond cleavage of larger rings which gives saturated heterocycles. 

This is probably due to the lack of ring strain, which makes these reactions less 

favorable. An interesting example has nevertheless been reported by Zhou and 

Alper, who developed the palladium-catalyzed formal [5+2] cycloaddition of vinyl 

pyrrolidines and isocyanates to give diazepin-2-ones (Equation 7.13).[224] 

 

Equation 7.13: Formal [5+2] cycloaddition of vinylpyrrolidines with isocyanates. 
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7.5 Conclusions 

Formal cycloadditions proceeding by C-C bond cleavage are important synthet-

ic tools, as they give access to more saturated heterocycles than "classical" cy-

cloadditions involving -systems. However, the activation of C-C bond is diffi-

cult, and the use of ring strain or strong polarized bonds has been necessary to 

develop efficient processes. During the last two decades, broadly applicable meth-

ods have appeared that build on the earlier pioneering work in this area. Cycload-

dition of donor-acceptor cyclopropanes and two or three-atom  systems, as well 

as reactions of epoxides and aziridines with carbon monoxide or cumulenes are 

now burgeoning fields of research in organic chemistry. They have found im-

portant applications both in the synthesis of natural products or the large scale 

synthesis of commodity chemicals. Nevertheless, the field is still in its infancy 

when considering the nearly endless possible combinations of partners for formal 

cycloaddition reactions. Furthermore, only few successes have been reported for 

the simultaneous control of diastereo- and enantioselectivity. There is consequent-

ly a huge potential for both applications and further methodological developments 

in the field of formal cycloaddition reactions for saturated heterocycle synthesis. 
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