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ABSTRACT 

The seismic assessment of existing masonry buildings is based on the prediction of their nonlinear 
response under lateral loading. This requires a reliable estimation of the force and displacement 
demand. For this purpose, modelling strategies using structural component elements are widely 
applied both in research and in engineering practice, since they can provide a satisfactory 
description of the cyclic behaviour of a masonry building with a limited computational cost. One 
of such modelling strategies are equivalent frame models, in which beam elements describe the 
response of piers and spandrels.  

This paper proposes the use of two-node, force-based beam elements with distributed inelasticity 
to model the in-plane response of modern unreinforced brick masonry panels. The nonlinearity of 
the response is described through the use of numerically integrated fibre sections and a suitable 
material model, implemented for this scope in the open-source platform “OpenSees”, describing a 
coupling at the local level between axial and shear response. Experimental results from a shear 
and compression test are used to validate the approach and justify some details of the proposed 
modelling strategy. Since the experimental data included also local displacement measures, the 
comparison of the numerical and experimental results is extended to curvatures and shear strains. 
The good agreement between numerical and experimental response confirms the applicability of 
the proposed approach for modelling the cyclic response of unreinforced brick masonry walls.  
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INTRODUCTION 

The assessment of the seismic behaviour of masonry buildings through refined procedures, such 
as static non-linear analyses or incremental dynamic analyses, requires the use of accurate and 
efficient numerical tools for the prediction of the structural response, in terms of strength and 
displacement capacity, in the monotonic and, when needed, in the cyclic range. In this context, 
beam models, despite the strong kinematic assumptions that they imply, still represent typically a 
very good compromise between accuracy of the description of the cyclic response on one side, and 
simplicity and computational efficiency on the other side [1–3]. 

Beam models of masonry walls are meant to be applied to equivalent frame modelling approaches, 
in which the structure is simplified into a frame of deformable elements, corresponding to piers 
and, when present, spandrels, connected by rigid nodes. In equivalent frame models, damage is 
usually assumed to concentrate in the deformable beams or macro-elements, which have to give a 
complete description of the response of the structural element, including all the relevant non-linear 
phenomena and failure mechanisms that can affect it, such as the opening and closure of joints in 
flexure and the diagonal cracking of joints and, eventually, units in shear. Failure mechanisms are 
typically classified into flexural or rocking failure, and shear failure for diagonal cracking or, less 
often, for sliding in the joints [4]. However, in addition to these pure modes, mixed failure 
mechanisms are often observed in experimental tests [5].  

Equivalent frame models for URM buildings make often use of macro-elements developed to 
reproduce the global force-displacement response of a masonry structural element. Although they 
provide information only at the global level, macro-elements owe their large diffusion to the 
numerical simplicity implied in the method. A well-known macro-element was proposed by Penna 
et al. [7]. 

A slightly more refined approach for the equivalent frame modelling of URM building is 
represented by beam models, in which global quantities such as nodal forces and displacements 
are computed together with local quantities (strains, stresses and sectional deformations). Among 
the beam element models with distributed plasticity, force-based formulations are often preferred 
over displacement-based elements because the force interpolation functions verify strictly 
equilibrium in each integration point.  

Force-based beam models for modelling the response of URM walls were proposed by Roca [1] 
and more recently by Addessi et al. [9], resorting to simple non-linear elastic constitutive models 
through which the numerical integration throughout the sections can be avoided. As a more 
complex approach, applicable to the cyclic range, Raka et al. [10] recently proposed a force-based 
beam element with numerically integrated fibre sections for URM walls. The nonlinear behaviour 
in shear was tackled by a phenomenological cyclic law, uncoupled from the axial behaviour, 
describing the shear force-deformation relationship at the sectional level. Effects of the variable 
axial load on the shear capacity, and the influence of the partialisation of the section on the shear 
behaviour, are therefore not captured.  



The present study proposes a force-based beam element for the modelling of URM walls that 
couples bending and shear behaviour. It is applicable to the cyclic range, opening up the possibility 
of conducting a large number of nonlinear time-history analyses with a limited numerical burden, 
which is one of the most appealing features of equivalent frame models. The axial and shear 
behaviour is coupled at the fibre level by means of a simple biaxial mechanical model, which is 
based on a Mohr-Coulomb type law. This model has been implemented by the authors in the 
software OpenSees [12] and will be available as a free tool for the research and professional 
community.  

This paper presents the central idea of the formulation of the material model, and compares 
numerical and experimental results of a wall failing in shear. The adequacy of a beam structural 
model to describe the kinematics of a shear-dominated masonry wall is discussed through the 
comparison with experimentally obtained local deformation measures. 

FORMULATION OF THE BEAM ELEMENT 

The assumption of a standard Timoshenko beam model for a masonry pier implies the acceptance 
of the kinematic hypotheses related to the beam theory, among which the strongest and more 
questionable for squat masonry elements are the adoption of a continuum material model, a 
constant distribution of shear strains on the section and the planarity of the section in the deformed 
configuration. For what concerns shear deformations, after the onset of diagonal cracking in a 
shear wall, a non-uniform shear strain distribution is typically observed [13]. However, it is not 
possible to model the true nonlinearity of the shear deformation in the framework of the 
Timoshenko beam theory. Although alternative structural theories (higher order beam theories) 
can relax the latter condition assuming different deformation modes for the deformed section, in 
this study the classical Timoshenko beam theory is applied.  

If one adopts a material model that assumes that only the compressed portion of the section 
contributes to its shear capacity—such as the model proposed by Roca [1]— the nonlinearity in 
the shear response is partially captured. The shear deformations remain, however, constant along 
the cross section and are therefore accounted for only in an average sense. However, the use of 
suitable material models can provide a rather refined description of the global behaviour of the 
element, despite the approximation that is made on local strains. 

The use of a force-based beam element is suggested by the highly nonlinear profiles of sectional 
strains (i.e. curvatures and shear deformations) along the height of a masonry wall, that are 
observed in experimental tests. These profiles show the development of a region where non-linear 
deformations concentrate, that can be efficiently simulated by force-based beam elements, which 
do not make any assumption on the linearity of such deformation profiles. 

The standard formulation of the Timoshenko force-based beam element as already implemented 
in OpenSees [12] is adopted. Fig. 1 shows some fundamental properties of the formulation. Shape 
functions are used to calculate sectional forces from the nodal forces, ensuring in this way strict 



equilibrium at each integration section. The plane section hypothesis is used to calculate the strains 
(both normal and tangential components) at the fibre. A nonlinear bi-dimensional material model 
can then link these deformations to the stresses, accounting for their interaction.  

                    

Fig. 1 – Formulation of the force-based beam element with coupling between axial and 
shear stress 

Once the stress-strain response at the fibre level is established, numerical integration is performed 
along the section, and an iterative element-section state determination cycle has to be performed 
at each load step, rendering the solution of a force-based element less direct in comparison with a 
standard displacement-based element.  

Material model 
The nonlinear response of the element originates from the nonlinearity of the material model. As 
a minimum requirement, the used material model has to be formulated in a two-component 
strain/stress vector, including normal and tangential stresses. In order to be able to model all 
nonlinear phenomena that characterise the response of in-plane loaded masonry walls, the material 
model should describe complex nonlinear phenomena, such as: 

- Crack opening in tension, and crack closure for reversed loading with stiffness recovery in 
compression, to properly model the rocking behaviour;  

- Compressive failure to model toe crushing, with residual strains after damage in 
compression;  

- Shear failure through a criterion able to take into account the influence of the axial load 
variation and of the decompression of part of the section under bending; 

- Resistance to sliding along closed cracks, in cyclic rocking. This feature is complex to 
model with isotropic models that describe damage with scalar quantities independently of the 
direction, as the shear frictional strength would be improperly coupled with the tensile strength.  



Considering these requirements, a simple constitutive model coupling axial and shear response 
was formulated and implemented in OpenSees. Fig. 2 represents the strength domain of the 
material model. The coupling between axial and shear stresses is ensured by the use of a Mohr-
Coulomb (MC) type criterion, imposing a limit to the shear stress at each fibre depending on the 
current axial stress. Compressive failure is considered independent from the shear stresses, being 
the Mohr-Coulomb condition the only interaction between axial (σ) and shear (τ) stress 
components. 

 

Fig. 2 – Yield domain of the material model 

The basic steps in state determination of this simple biaxial material model are (1) the computation 
of the axial stress from the axial strain through a standard one-dimensional model, and (2) the 
computation of the shear stress based on the shear strain and on the updated value of axial stress, 
using a plastic model for shear. The material model adopted to describe the axial behaviour is the 
material Concrete 02, as already implemented in the source code of OpenSees. This model 
describes compressive damage and degradation of stiffness, hysteresis in the loading-reloading 
cycles, limited tensile strength, linear softening both in tension and compression, recovery of 
stiffness after crack closure, and a residual strength in compression.  

The formulation of the plastic model for shear is based on a modification of the model proposed 
by Lourenço for interfaces [14], considering only the frictional criterion, formalised in the standard 
formulation of eq. 1 through the yield function ���. Zero dilatancy was accounted for. The 
cohesion c and the friction angle ϕ are expressed as function ��� of the hardening variable ��� , 
whose evolution is linked to the plastic multiplier λ ̇ and the rate of plastic strain  ��	 through eq. 3. 

The adopted hardening/softening functions differ from the original model, featuring a parabolic 
hardening and a parabolic-exponential softening which depends on one material parameter, the 
fracture energy 
�

�� for mode II fracture. The initial friction angle 
�� can degrade with evolution 

of the plastic strain maintaining a residual strength 
���. For each strain increment, an implicit 

return mapping scheme is applied.  
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Since the cyclic behaviour of materials affected by cracking is poorly modelled by the classical 
theory of plasticity, several extensions have been proposed to properly account for inelastic 
phenomena during unloading and reloading cycles. The approach followed here is similar to the 
one adopted by Oliveira et al. [15], making use of auxiliary unloading surfaces that govern the 
variation of plastic strains. The evolution of such surfaces is governed by hardening laws that can 
reproduce a complex behavior of the material, as long as they respect few mathematical 
constraints, discussed in detail in Oliveira [16]. In this context, a simple linear evolution law was 
applied, modelling a loss of shear stiffness after the development of large inelastic strains, similarly 
to the model proposed by Aref and Dolatshahi [17]. An example of the resulting cyclic behaviour 
at the local scale is shown in Fig. 3 for the axial and shear components. 

 

Fig. 3 – Cyclic behaviour of the material model in compression (a) and shear, under a 
constant axial load (b, c). Main material properties: fc = 5.7 MPa, ft = 0.25 MPa, 

c = 0.25 MPa, tan ϕin = 0.4, tan ϕfin = 0.2, ./
0 = 8 N/mm, ./

1  = 0.05 N/mm, ./
11 = 0.5 N/mm 

COMPARISON WITH EXPERIMENTAL RESULTS 

The performance of the proposed beam element was compared to a quasi-static cyclic test on one 
URM wall, which was performed at EPFL. The wall was built with hollow clay brick units and 
standard cement-based mortar. The whole test campaign consisted of six quasi-static cyclic tests 
on identical walls, tested under different axial load ratios and moment restraints applied at the top 
of the walls. The test setup, shown in Fig. 4, comprised three servo-hydraulic actuators that could 
be controlled in a fully-coupled mode. The two vertical actuators allowed applying an axial force 
and moment at the top of the wall simulating several top boundary conditions that are different 
from the standard cantilever and fixed-fixed configurations typically applied in shear and 
compression wall tests.  
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Fig. 4 –Wall PUP1 at failure (a), and test setup, showing the position of the three red 
actuators (b) [18] 

Throughout the loading, the deformation of the walls was recorded through a digital 
photogrammetric measurement system, tracking the 3D position of 312 light emitting diodes 
(LEDs) for each test unit. The measurement of the LEDs’ position at a frequency of 2 Hz allowed 
calculating the strain fields in the wall throughout the experiment. The whole dataset is publically 
available online [18]. 

Among the six tests, wall PUP1, which was modelled through the presented approach, exhibited a 
clear shear failure mode, with the development of two diagonal cracks. The dimensions of the wall 
are 2.25 m in height, 2.01 m in length and 0.20 m in thickness. A constant load of 419 kN was 
applied at the top of the wall, corresponding to an axial load ratio of 0.18. A moment was applied 
at the top section through the two vertical actuators, keeping a constant shear span of 0.5H, where 
H is the wall height. The main mechanical parameters derived from material tests on masonry 
wallets (compressive strength and elastic modulus) or calibrated for the numerical model are 
reported in Table 1.  

Table 1 – Mechanical parameters, measured in the characterisation tests or calibrated for 
the numerical model 

measured  calibrated    

�� 5.87 MPa 
�
� 0.05 N/m 2 0.20 MPa 

3 3550 MPa 
�
�� 0.30 N/m tan 
��,, 0.40 

�' 0.25 MPa 
�
� 8 N/m tan 
���, 0.13 

 

Fig. 5 shows the comparison between the experimental global response of the wall and the 
numerical results, in terms of lateral force-displacement response. The Mohr-Coulomb criterion 
used at the material level controls the force capacity of the wall. The displacement capacity is 
governed by the fracture energy in mode II, which defines the post-peak behaviour of the material 
in shear. The accumulation of damage, and the consequent loss of lateral strength, after repeated 



cycles, is captured by the model. However, as the post peak behaviour is rather sensitive to the 
choice of the fracture energy in shear, which is affected by a large uncertainty and seldom 
measured in experimental campaigns.  

The energy dissipation depends on the model for the degradation of the shear stiffness after large 
plastic deformations. Classical plasticity models, with no evolution of plastic strains during 
unloading, lead to an overestimation of the energy dissipation of the wall. On the contrary, if a 
reduced stiffness is accounted for, an improved modelling of the cyclic response of the wall is 
obtained. In Fig. 5, a linear reduction of stiffness up to 30% of the initial stiffness at a plastic strain 
of 1% was calibrated to improve the match the with experimental results in the unloading branches. 

     

Fig. 5 – Comparison between experimental results and numerical force-displacement 
response of the beam element  

The experimental displacement and strain fields, calculated from the LEDs measurements and 
presented in Fig. 6a-b, confirm that shear dominated walls present deformation modes that are not 
captured well by classical beam theories, which postulate that plane sections remain plane after 
deformation. Fig. 6c shows the amplified displacement field measured for the wall PUP1 at 0.15% 
drift, after the onset of diagonal cracking. A warping deformation due to shear, together with the 
opening of the diagonal crack, can be observed. While the latter cannot be described directly by 
beam models, the warping of the section could be captured by higher order beam theories. As 
mentioned, however, the warping deformation mode implies the use of an additional degree of 
freedom at the nodes, and the introduction at the sectional level of two generalised forces and 
deformations (a warping moment and a warping shear).  

The deformation fields calculated for axial and shear strains are largely affected by the 
development of diagonal cracking, which renders the definition of the sectional strains more 
complex, and less objective, compared to the case of flexure dominated walls. If the strain profile 
along horizontal sections is approximated by a linear fit, however, curvatures and shear 
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deformations can be computed for each section. The comparison between the numerical 
predictions and the experimental measures is shown in Fig. 6d for 0.15% drift. The order of 
magnitude and the profile of shear strains agrees on average with the experimental measure. 
However, in the numerical model, the deformation in the post peak localises as expected in only 
one section, which is here the base section. For such shear dominated walls, therefore, both for the 
approximations introduced by the structural model and for numerical reasons, the comparison of 
local deformations is less accurate than it is in the case of flexural walls. However, despite the 
reduced accuracy of the modelling of the sectional response, the overall behavior of the wall could 
be captured. 

 

Fig. 6 – Local experimental deformation fields: vertical strains, (a) and shear strains (b). 
Deformed displacement field with warping of the sections due to shear (c). Comparison of 

experimental and numerical curvature and sectional shear deformation profiles (d) 
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CONCLUSIONS 

Shear dominated walls exhibit a complex deformation field, characterized by a non-planar 
deformation of the sections and inelastic phenomena, such as diagonal cracking, that influence the 
response of the element. However, curvatures and sectional shear strains can be derived from 
linearization of the experimental strains, and show a nonlinear profile that can be modelled 
effectively by a single force-based beam element. Coupling the axial and shear response at the 
fibre level through 2D constitutive relationships can model directly the interaction between shear 
and decompression of the sections, and is able to reproduce with sufficient accuracy the 
experimental average deformation profiles of URM walls, as well as the global response of the 
element. 

An improved plasticity based model able to capture the interaction of shear and axial stresses, and 
to describe both the loss of strength and the reduction of shear stiffness after large deformation has 
been implemented in OpenSees. When used in combination with a force-based element it provides 
a satisfactory modelling of the cyclic response of a shear dominated URM wall. If material models 
that include softening are used, localisation issues affect strongly the response in the post-peak 
branch. The choice of suitable material parameters defining the post peak (fracture energy in mode 
II) and the cyclic behavior (loss of stiffness), governs the modelling of the deformation capacity 
and the loss of strength for accumulation of damage. 

Further research is needed to improve the modelling of the cyclic behavior of the implemented 
material model in shear, through more complex evolution laws that can capture better the 
characteristics of the cyclic response of a shear URM wall. Furthermore, the application of refined 
structural models, such as higher order beam theories modelling the warping of the beam section, 
can be investigated, as they could significantly improve, although at the cost of a higher numerical 
burden, the description of the experimentally observed displacement fields.  
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