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Résumé

Depuis la crise financière mondiale de 2008, le marché financier est devenu plus imprévisible
que jamais, et il semble qu’il le restera dans un avenir prévisible. Cela signifie qu’un investis-
seur est confronté à des risques sans précédent, d’où le besoin croissant d’optimisation de
portefeuille robuste pour les protéger contre l’incertitude, qui est potentiellement dévasta-
teur si non supervisé mais ignoré dans le modèle classique de Markowitz, dont une autre
carence est l’absence de moments d’ordre élevé dans son hypothèse de la distribution des
rendements des actifs. Nous établissons une équivalence entre le modèle de Markowitz et
le problème d’optimisation de la valeur à risque du portefeuille sous la normalité multi-
variée des rendements des actifs, de sorte que nous pouvons ajouter ces caractéristiques
exclues dans le premier implicitement en les incorporant dans le second. Nous proposons
également une méthode d’approximation de spline probabiliste à lissage et un modèle déter-
ministe dans le cadre de la localisation-échelle sous la distribution elliptique des rendements
des actifs pour résoudre le problème robuste d’optimisation de la valeur au risque du ren-
dement du portefeuille. En particulier pour le modèle déterministe, nous introduisons un
nouvel ensemble d ’incertitude qui vit dans l ’espace défini positif pour la matrice d’ échelle
sans compromettre la complexité et le conservatisme du problème d ’optimisation, inventons
une méthode pour déterminer la taille des ensembles, le testons sur des données réelles, et
explorons ses propriétés de diversification. Bien que la valeur à risque soit la mesure de
risque standard adoptée par le secteur bancaire et de l’assurance depuis le début des années
nonante, elle a depuis suscité de nombreuses critiques, notamment de McNeil et al. (2005)
et le Comité de Bâle sur le contrôle bancaire en 2012, également connu sous le nom de Bâle
3.5 [21, 23]. Bâle 4 [22] suggère même de passer de la «valeur à risque» à la mesure de la
«valeur à risque conditionnelle». Nous verrons que la première peut Ãłtre remplacÃl’ par la
dernière ou mÃłme d’autres mesures de risque dans nos formulations facilement.
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Abstract

Since the 2008 Global Financial Crisis, the financial market has become more unpredictable
than ever before, and it seems set to remain so in the forseeable future. This means an
investor faces unprecedented risks, hence the increasing need for robust portfolio optimiza-
tion to protect them against uncertainty, which is potentially devastating if unattended yet
ignored in the classical Markowitz model, whose another deficiency is the absence of higher
moments in its assumption of the distribution of asset returns. We establish an equiv-
alence between the Markowitz model and the portfolio return value-at-risk optimization
problem under multivariate normality of asset returns, so that we can add these excluded
features into the former implicitly by incorporating them into the latter. We also provide a
probabilistic smoothing spline approximation method and a deterministic model within the
location-scale framework under elliptical distribution of the asset returns to solve the ro-
bust portfolio return value-at-risk optimization problem. In particular for the deterministic
model, we introduce a novel eigendecomposition uncertainty set which lives in the positive
definite space for the scale matrix without compromising on the computational complexity
and conservativeness of the optimization problem, invent a method to determine the size of
the involved uncertainty sets, test it out on real data, and explore its diversification proper-
ties. Although the value-at-risk has been the standard risk measure adopted by the banking
and insurance industry since the early nineties, it has since attracted many criticisms, in
particular from McNeil et al. (2005) and the Basel Committee on Banking Supervision in
2012, also known as Basel 3.5 [21, 23]. Basel 4 [22] even suggests a move away from the
“what" value-at-risk to the “what-if" conditional value-at-risk’ measure. We shall see that
the former may be replaced with the latter or even other risk measures in our formulations
easily.
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Chapter 1

Preliminaries

1.1 Introduction

Since the 2008 Global Financial Crisis, there has been a general lack of confidence in the
global financial system and the world economy. The European Sovereign Debt Crisis which
resulted in Greece almost leaving the European Union and thus jeopardizing the single
currency project did not help matters. Whether the European model will continue remains
to be seen, although some observers already see it begin to unravel with the unpegging of
the Swiss Franc (CHF) against the Euro (EUR) since January 2015, as well as the Quantitative
Easing (QE) introduced by the European Central Bank (ECB) shortly afterwards in March
the same year that was to last for at least sixteen months and worth no less than 1.1 trillion
EUR. Theresa May will soon trigger Article 50 to start the two-year countdown to Brexit,
which adds uncertainty to a world already in a state of flux.

Crossing over to the Asia-Pacific, China is in the process of restructuring into a more
consumption based economy from one that is driven by massive state investment, and
whether it can navigate through this transition period and emerge out of these murky waters
successfully is still an unknown. Its slower growth as a result also means that Australia,
whose economy depends heavily on iron ore exports to China, is adversely affected. Dealing
with serious corruption and pollution issues will also be crucial in its ability to retain and
attract talent, maintain social stability and continue its trajectory of growth. Moreover,
China is seeking to expand its hegemony in the region, the evidence of which lies in its
recent disputes with other Southeast Asian nations over the South China Sea, including
a rejection of the Hague Tribunal’s ruling in favor of the Philippines, with Japan over the
Diaoyu or Senkaku Islands, with Taiwan over its independence, and even with Hong Kong
over the freedom to elect its own Chief Executive. The simmering geopolitical tensions in
the region and the threat of their escalating into war and violence is real.

In the United States, Donald Trump was elected in a freak election. What will the world
become under him? Will there be a deregulation of banks causing yet another financial
crisis, an anti-globalization and protectionist stance that further dampens sluggish world
trade, a disengagement with and retreat of American military presence in Asia leading to
an imbalance of power tilted towards China, resulting in a “might is right" instead of a
rules-based order in the region? How about his foreign policies in the Middle East and their
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Chapter 1. Preliminaries

implications?
Add to the mix that we are living in a disruptive age, at the cusp of the so-called “fourth

industrial revolution", where machine learning, robotics and blockchain technology among
others are all set to displace millions of jobs worldwide, changing the way we live and
work, the only certainty for an investor is uncertainty, hence the Basel Committee’s call to
move away from the value-at-risk to the conditional value-at-risk measure, a need for robust
portfolio optimization and the necessity to take into account the possible occurrence of a
black swan event.

1.2 Markowitz Model

[134, Chapter 1] In modern portfolio theory, one is almost certainly reminded of the Markowitz
model, where the investor has terminal wealth wT at the end of the trading period [0,T ]
with utility function U (wT ) such that U ′(wT ) > 0 and U ′′(wT ) < 0. The positivity of the
first derivative means that the higher the terminal wealth, the “happier" the investor is
(non-satiation property). The negativity of the second derivative can be interpreted as the
investor having decreasing added “happiness" with increasing wealth (risk-averse property).
Furthermore, the utility function is of the quadratic form

U (wT ) = ϕwT −ψw2
T

where wT = w0(1 + rP ) such that w0 is the initial wealth and rP is the portfolio return over
the period [0,T ], so that

U (wT ) = ϕw0(1 + rP )−ψw2
0(1 + rP )2

= (ϕw0 −ψw2
0) + (ϕw0 − 2ψw2

0)rP − (ψw2
0)r

2
P

= a+ brP − cr2P ,
where a = ϕw0 −ψw2

0, b = ϕw0 − 2ψw2
0 and c = ψw2

0, and the expected utility is

�(U (wT )) =�(a+ brP − cr2P )
= a+ b�(rP )− c�(r2P )
= a+ (b − c)�(rP )− c�(rP ),

which the investor would like to maximize. Therefore, the quadratic utility function does not
capture aversion to higher-order moments directly like, for example, the Constant Relative
Risk Aversion (CRRA) utility function does. However, Kacperczyk and Damien (2011) show
that the magnitude of this direct effect is negligible qualitatively.

In addition, the market is frictionless, that is, without taxes, transaction costs or short
sales. Simply put, the investor minimizes the portfolio variance subject to a targeted portfolio
expected return:

min
w∈�n

{
1

2
wTΣw :wTμ = r,wT

� = 1

}
,

where Σ ∈ �n×n is a positive definite covariance matrix, μ ∈ �n is the expected return
vector, r ≤max{μ1, . . . ,μn} is the targeted expected return over [0,T ], w ∈�n is the weight

2



Chapter 1. Preliminaries

vector and μ is linearly independent of � ∈ �n to avoid a degnerate scenario, in which
the constraints wT

� = 1 and wTμ = r contradict each other unless nr = μT
�. The 1/2 is

inserted for notational convenience when considering the first-order conditions.

Theorem 1.1 (Black, 1972)

The global optimal solution of

min
w∈�n

{
1

2
wTΣw :wTμ = r,wT

� = 1

}
(1.1)

where Σ ∈�n×n is positive definite, r ∈� and μ ∈�n is linearly independent of � ∈�n, is

w∗ =
(Ar −C)Σ−1μ+ (B−Cr)Σ−1�

D
(1.2)

where A = �TΣ−1�, B = μTΣ−1μ, C = �TΣ−1μ and D = AB−C2.

Proof: Notice that the first order conditions of the equivalent Lagrangian problem

min
w∈�n,υ1,υ2∈�

{
1

2
wTΣw−υ1(wT

�− 1)−υ2(wTμ− r) : υ1,υ2 > 0

}
are

0 = Σw−υ1�−υ2μ, (1.3)

1 =wT
�, (1.4)

r =wTμ. (1.5)

Left-multiplying (1.3) with Σ−1 yields

w = υ1Σ
−1
�+υ2Σ

−1μ. (1.6)

Then, left-multiplying (1.6) with �T and μT, and using (1.4) and (1.5) obtains

1 = υ1A+υ2C and r = υ1C +υ2B

respectively, which in matrix notation is

[1, r]T =

[
A C
C B

]
[υ1,υ2]

T.

Note that

[
A C
C B

]
is invertible since its determinant

D = AB−C2 = ‖P−1�‖2‖P−1μ‖2 − 〈P−1�,P−1μ〉2
is positive, where Σ = PPT, ‖ · ‖ is the Euclidean norm, and 〈·, ·〉 is the inner dot product,
due to the linear indepdence of P−1� and P−1μ and the strict Cauchy-Schwarz inequality
〈x,y〉 < ‖x‖2‖y‖2 when x and y are linearly independent. Now

[υ1,υ2]
T =

[
A C
C B

]−1
[1, r]T

3



Chapter 1. Preliminaries

= [Cr −B,Ar −C]T/D

and substituting it into (1.6) obtains the desired result. �
The standard deviation of the portfolio is

σ(r) =

√
Ar2 − 2Cr +B

D

which is a hyperbola function.

Definition 1.1

If two portfolios have the same expected return, the one with lower standard deviation is said to

dominate the other with higher standard deviation. On the other hand, if two portfolios have the

same standard deviation, the one with higher expected return is said to dominate the other with

lower expected return. A portfolio that is not dominated is called efficient.

It does not make sense to set r < rmin as there will always be another portfolio with the same
standard deviation but a higher expected return. The optimal portfolios with r ≥ rmin are
effcient and the arc that represents them in the (σ(r), r)-space is called the efficient frontier.
To eliminate the possibility of choosing r < rmin, the portfolio expected return is written as
an affine function of the portfolio standard deviation with intercept k and a non-negative
gradient h:

wTμ = k + h
√
wTΣw,

so that by rearranging the intercept is

k =wTμ− h
√
wTΣw,

which is maximized over the feasible domain. That is to say, we solve

max
w∈�n

{
wTμ− h

√
wTΣw :wT

� = 1
}
, (1.7)

to obtain an optimal portfolio with the chosen risk parameter h ∈ [0,∞), which can be
interpreted as the marginal risk premium, or more precisely, the expected additional portolio
return with a unit increase in portfolio standard deviation, corresponding to an r ≥ rmin. The
higher h is, the more risk averse is the investor. Note that (1.7) is equivalent to

max
w∈�n

{
1/(1 + h)wTμ− h/(1 + h)

√
wTΣw :wT

� = 1
}

⇔ max
w∈�n

{
θwTμ− (1−θ)

√
wTΣw :wT

� = 1
}

where θ = 1
1+h ∈ [0,1].

4
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1.2.1 With Riskless Asset

Now, suppose there is a riskless asset return μ0 ∈� less than the targeted expected return r
and denote the weight placed on it as η ∈�. The Markowitz model with riskless asset then
becomes

min
w∈�n,η∈�

{
1

2
wTΣw :wTμ = r − ημ0,wT

� = 1− η
}
.

Theorem 1.2

The optimal solution of

min
w∈�n,η∈�

{
1

2
wTΣw :wTμ = r − ημ0,wT

� = 1− η
}

(1.8)

where Σ ∈�n×n is positive definite, r,μ0 ∈� such that r ≥ μ0 and μ ∈�n is linearly indepen-

dent of � ∈�n is

w∗ =
r −μ0

Aμ20 − 2Cμ0 +B
Σ−1(μ−μ0�) and η∗ = 1−wT∗ �. (1.9)

Proof: The Lagrangian is

min
w∈�n,η,υ1,υ2∈�

{
1

2
wTΣw−υ1(wT

�+w0 − 1)−υ2(wTμ+ ημ0 − r) : υ1,υ2 > 0

}
.

which has first order conditions

0 = Σw−υ1�−υ2μ, (1.10)

υ1 = −υ2μ0, (1.11)

1 =wT
�+ η, (1.12)

r =wTμ+ ημ0. (1.13)

Substituting (1.11) into (1.10) and left-multiplying the result by Σ−1 obtains

w = υ2Σ
−1(μ−μ0�). (1.14)

Furthermore, if we left-multiply (1.14) by �T and μT and make use of the relations (1.12) and
(1.13), we get

1− η = υ2(C −Ar) and r − ημ0 = υ2(B−Cμ0)
respectively. Solving for η in the former, before substituting it in the latter and rearranging
obtains

υ2 =
r −μ0

Aμ20 − 2Cμ0 +B

which, when plugged into (1.14), yields the desired optimal solution. It remains to compute
η∗. �

5
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The standard deviation of the optimal portfolio given by (1.9) is

σ(r) =

√
(r −μ0)2(μ−μ0�)TΣ−1(μ−μ0�)

(Aμ20 − 2Cμ0 +B)2

=

√
(r −μ0)2(Aμ20 − 2Cμ0 +B)

(Aμ20 − 2Cμ0 +B)2

=
r −μ0√

Aμ20 − 2Cμ0 +B
,

which draws out the efficient line in the (σ(r), r)-space.
Theorem 1.3

The efficient line

σ(r) =
r −μ0√

Aμ20 − 2Cμ0 +B
(1.15)

of the Markowitz model with riskless asset (1.8) [p. 5] is a tangent to the efficient frontier

σ(r) =
√
(Ar2 − 2Cr +B)/D. (1.16)

of the Markowitz model without riskless asset (1.1) [p. 3].

Proof: If we invest nothing into the riskless asset, weights on the risky assets add up to
one and left-multiplying w∗ in (1.9) by �T yields

1 =
r −μ0

Aμ20 − 2Cμ0 +B
�
TΣ−1(μ−μ0�)⇒ r −μ0

Aμ20 − 2Cμ0 +B
=

1

C −Aμ0
and when it is substituted back into (1.9), gets

wtan =
1

C −Aμ0Σ
−1(μ−μ0�), (1.17)

which we shall call (1.17) the tangency portfolio. This tangency portfolio is efficient in the
Markowitz model without riskless asset. To prove it, note that its expected return is

r = μTwtan =
B−Cμ0
C −Aμ0

so that inserting it into (1.2) obtains

wtan =

(
A

(
B−Cμ0
C−Aμ0

)
−C

)
Σ−1μ+

(
B−C

(
B−Cμ0
C−Aμ0

))
Σ−1�

D
.

Finally, note that the first derivative of the efficient frontier (1.16) with respect to r evaluated
at the point corresponding to the tangency portfolio reads

dσ(r)

dr

∣∣∣∣∣
r=

B−Cμ0
C−Aμ0

=
A

(
B−Cμ0
C−Aμ0

)
−C√

D
(
A

(
B−Cμ0
C−Aμ0

)2 − 2C (
B−Cμ0
C−Aμ0

)
+B

) =

√
Aμ20 − 2Cμ0 +B,

which is exactly the gradient of the efficient line (1.15). �

6



Chapter 1. Preliminaries

1.3 Value-At-Risk Optimization

Definition 1.2

The ε-level value-at-risk of a random variable X ∈�
V@Rε(X)�max

a∈� {a :�(X < a) ≤ ε}

is the largest value of a ∈� such that the probability of X being less than a is not greater than ε.

Under multivariate normality of returns, the problem of maximizing the portfolio return
value-at-risk

max
w∈�n

{
V@Rε(w

TR) :wT
� = 1,R ∼N (μ,Σ)

}
(1.18)

⇔ max
w∈�n,t∈�

{
t : t < V@Rε(w

TR),wT
� = 1,R ∼N (μ,Σ)

}
⇔ max

w∈�n,t∈�
{
t :�R∼N (μ,Σ){wTR < t} ≤ ε,wT

� = 1
}

⇔ max
w∈�n,t∈�

{
t :�Z∼N (0,1)

{
Z < (t −wTμ)/

√
wTΣw

}
≤ ε,wT

� = 1
}

⇔ max
w∈�n,t∈�

{
t : (t −wTμ)/

√
wTΣw ≤ −z1−ε,wT

� = 1
}

⇔ max
w∈�n,t∈�

{
t : t ≤wTμ− z1−ε

√
wTΣw,wT

� = 1
}

⇔ max
w∈�n

{
wTμ− z1−ε

√
wTΣw :wT

� = 1
}

(1.19)

where z1−ε is the 100(1−ε)th quantile of the standard normal distribution. Note that (1.18) is
maximizing the quantile of the portfolio return and (1.19), which first appeared in Roy (1952)
and is also called the downside-risk problem, can be interpreted as minimizing the portfolio
standard deviation subject to a targeted expected return if ε < 0.5, and is thus equivalent to
the Markowitz model.

1.3.1 With Riskless Asset

Now assume that the weight η∗ on the riskless asset return μ0 is determined exogeneously
to be a value less than one, then the portfolio return V@Rε optimization problem under
multivariate normality of returns becomes

max
w∈�n

{
V@Rε((1− η∗)wTR+ η∗μ0) : (1− η∗)wT

�+ η∗ = 1,R ∼N (μ,Σ)
}

(1.20)

⇔ max
w∈�n,t∈�

{
t : t < V@Rε((1− η∗)wTR+ η∗μ0),wT

� = 1,R ∼N (μ,Σ)
}

⇔ max
w∈�n,t∈�

{
t :�R∼N (μ,Σ){(1− η∗)wTR+ η∗μ0 < t} ≤ ε,wT

� = 1
}

⇔ max
w∈�n,t∈�

⎧⎪⎪⎨⎪⎪⎩t :�Z∼N (0,1)

⎧⎪⎪⎨⎪⎪⎩Z <
t − (1− η∗)wTμ− η∗μ0

(1− η∗)
√
wTΣw

⎫⎪⎪⎬⎪⎪⎭ ≤ ε,wT
� = 1

⎫⎪⎪⎬⎪⎪⎭
7
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⇔ max
w∈�n,t∈�

{
t : t ≤ (1− η∗)wTμ+ η∗μ0 − (1− η∗)z1−ε

√
wTΣw,wT

� = 1
}

⇔ max
w∈�n

{
(1− η∗)wTμ+ η∗μ0 − (1− η∗)z1−ε

√
wTΣw :wT

� = 1
}

⇔ max
w∈�n

{
(1− η∗)wTμ+ η∗μ0 − (1− η∗)z1−ε

√
wTΣw :wT

� = 1
}

⇔ max
w∈�n

{
wTμ− z1−ε

√
wTΣw :wT

� = 1
}
,

which is equivalent to the Markowitz model. The optimal portfolio return value-at-risk of
problem (1.20) is

V@Rε((1− η∗)wT∗ R+ η∗μ0) = (1− η∗)wT∗ μ+ ημ0 − z1−ε(1− η∗)
√
wT∗ Σw∗

= η∗μ0 + (1− η∗)
(
wT∗ μ− z1−ε

√
wT∗ Σw∗

)
(1.21)

where w∗ is the optimal solution of (1.19). Note that (1.21) suggests that if η∗ is to be deter-
mined endogeneously, then η∗ = 1 if

μ0 >wT∗ μ− z1−ε
√
wT∗ Σw∗

⇔ μ0 −wT∗ μ+ z1−ε
√
wT∗ Σw∗ > 0

⇔ z1−ε >
wT∗ μ−μ0√
wT∗ Σw∗

⇔ 1− ε >Φ

⎛⎜⎜⎜⎜⎝wT∗ μ−μ0√
wT∗ Σw∗

⎞⎟⎟⎟⎟⎠
⇔ ε <Φ

⎛⎜⎜⎜⎜⎝μ0 −wT∗ μ√
wT∗ Σw∗

⎞⎟⎟⎟⎟⎠ (1.22)

and η∗ = −∞ if

ε >Φ

⎛⎜⎜⎜⎜⎝μ0 −wT∗ μ√
wT∗ Σw∗

⎞⎟⎟⎟⎟⎠ .
However, if μ0 =wT∗ μ− z1−ε

√
wT∗ Σw∗, then η∗ has to be determined exogeneously since its

taking of any value less than or equal to one results in the same optimal portfolio return
value-at-risk.

1.4 Short-Selling Constraints

It does not make sense to allow infinite short-selling or borrowing. Thus, we let η ≥ 
η ∈�−
and w ≥ � ∈�n− so as to restrict borrowing and short-selling respectively.

8
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1.4.1 Markowitz Model

Jagannathan and Ma (2003) show that the Markowitz model with short-selling constraints

min
w∈�n

{
1

2
wTΣw :wTμ = r,wT

� = 1,w ≥ �
}

(1.23)

is equivalent to

min
w∈�n

{
1

2
wTΣw :wT (μ+υ/ν) = r,wT

� = 1

}
where � = [
1, . . . , 
n]

T, υ is the vector of Lagrange multipliers associated with the constraint
w ≥ � and ν is the Lagrange multiplier associated with wT

� = 1. In other words, if we add
υ
ν to μ in (1.23), the short-selling constraint can be removed without any consequences and
the results in Section 1.2 can be applied directly.

The Markowitz model with short-selling constraints and a riskless asset

min
w∈�n,η∈�

{
1

2
wTΣw :wTμ = r − ημ0,wT

� = 1− η,w ≥ �
}
, (1.24)

has targeted expected return

r = η∗μ0 + (1− η∗)
(

w∗
1− η∗

)T
μ (1.25)

where (w∗,η∗) is the optimal solution of (1.24), and standard deviation

σ(r) = (1− η∗)
√(

w∗
1− η∗

)T
Σ

(
w∗

1− η∗

)
. (1.26)

From (1.26), we have

η∗ = 1− σ(r)√(
w∗
1−η∗

)T
Σ

(
w∗
1−η∗

)
and substituting into (1.25) obtains the efficient line

r = μ0 +

(
w∗
1−η∗

)T
μ−μ0√(

w∗
1−η∗

)T
Σ

(
w∗
1−η∗

)σ(r)

in the (σ(r), r)-space where its radient is the famous Sharpe ratio [180].

1.4.2 Value-At-Risk Optimization

The portfolio return value-at-risk optimization problem with short-selling constraints

max
w∈�n

{
V@Rε(w

TR) :wT
� = 1,w ≥ �,R ∼N (μ,Σ)

}
9
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can be written as

max
w∈�n

{
wTμ− z1−ε

√
wTΣw :wT

� = 1,w ≥ �
}

(1.27)

following the same previous arguments. Analogous to Section 1.3.1, if the weight η∗ on the
riskless asset is determined exogeneously to be a value less than one, then we are interested
in solving

max
w∈�n

{
V@Rε((1− η∗)wTR+ η∗μ0) : (1− η∗)wT

�+ η∗ = 1,w ≥ �,R ∼N (μ,Σ)
}
,

which is equivalent to (1.27) and whose optimal portfolio return value-at-risk is

V@Rε((1− η∗)wT∗ R+ η∗μ0) = η∗μ0 + (1− η∗)
(
wT∗ μ− z1−ε

√
wT∗ Σw∗

)
, (1.28)

where w∗ is the optimal solution of (1.27). Using reasoning similar to that in Section 1.4.1,
the efficient line in the (σ(r), r)-space is represented by

r = μ0 +
wT∗ μ−μ0√
wT∗ Σw∗

σ(r).

If η∗ is to be determined endogeneously, then (1.28) suggests that

η∗ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if ε <Φ

(
μ0−wT∗ μ√
wT∗ Σw∗

)
,

0 if ε >Φ

(
μ0−wT∗ μ√
wT∗ Σw∗

)
.

If μ0 =wT∗ μ− z1−ε
√
wT∗ Σw∗, then η∗ has to be determined exogeneously since its taking of

any value in the interval [
η,1] results in the same optimal return value-at-risk.

10
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Figure 1.1: black line represents efficient frontier of Markowitz model without riskless as-
set, red line represents efficient frontier of Markowitz model with riskless asset of re-
turn μ0 = 0.005, and green lines represent optimal solutions of portfolio return value-
at-risk optimization problem with weight on riskless asset determined exogeneously for

ε = 0.01,0.02, . . . ,0.49, where [r1, r2]
T ∼ N

(
[μ1,μ2]

T,
[

σ2
1 ρσ1σ2

ρσ2σ1 σ2
2

])
such that μ1 = 0.01,

μ2 = 0.03, σ1 = 0.1, σ2 = 0.2, ρ = 0.2.

1.5 Numerical Example

Assume there are two bivariate normally distributed risky assets with expected returns μ1 =
0.01, μ2 = 0.03, standard deviations σ1 = 0.1, σ2 = 0.2, correlation ρ = 0.2, a riskless asset
μ0 = 0.005, and no short-selling. Unless otherwise stated, all programs hereafter are solved
by the R package ‘Alabama’ by Ravi (2015).

Figure 1.1 shows the efficient frontiers of the Markowitz model with and without riskless
asset (red and black lines respectively), as well as those which represent the portfolio re-
turn value-at-risk optimization problems (green lines) for ε = 0.01,0.02, . . . ,0.49, where the
amount invested in the riskless asset is determined exogeneously. Note that the green line
joins the yellow and blue dots at ε = 0.01. As ε increases, the gradient of the green line
increases then decreases, eventually joining the yellow and pink dots.
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1.6 Higher Moments

It is an empirical fact that the distribution of returns often exhibit properties related to
higher moments. Of course, the portfolio return (which is a convex combination of the
individual assets) is asymptotically normal as the number of assets increases due to the
Central Limit Theorem if they are independent, but obviously this is not realistic. Tsiang
(1972), Francis (1975), Friend and Westerfield (1980), and Scott and Horvath (1980) take
into account higher moments in their models, but they lead to serious issues in terms
of solvability and complexity. Another way of including higher moments is through the
use of dynamics, where the asset price process is modeled by variants of the stochastic
differential equation. These models are highly demanding and usually used in derivative
hedging involving only one risky and one riskless asset, and are seldom used in cases
where more assets are included. Heuristic optimization methods, like in Maringer (2005),
can be used to overcome the non-convexity and computational challenges that come with
introducing higher moments, but things such as numerical instability and inaccuracy arise
(since the optimal solution and convergence rate are different each time the optimization is
performed, we are never sure of the global optimality of the resulting portfolio). Therefore,
the inclusion of higher moments into the Markowitz model poses formidable problems.

1.7 Safe Convex Approximation

Fortunately, the equivalence between the Markowitz model and the portfolio return value-at-
risk optimization problem under multivariate normality of asset returns means that higher
moments can be added into the Markowitz model implicitly by incorporating them into a
distribution Q, and considering

max
w∈�n

{
V@Rε(w

TR) :wT
� = 1,w ≥ �,R ∼Q

}
. (1.29)

Nevertheless, the value-at-risk objective function in (1.29) is generally non-concave. An
approach to overcome this problem is to first notice that (1.29) is equivalent to

max
w∈�n,t∈�

{
t : t < V@Rε(w

TR),wT
� = 1,w ≥ �,R ∼Q

}
⇔ max

w∈�n,t∈�
{
t : −V@Rε(w

TR− t) < 0,wT
� = 1,w ≥ �,R ∼Q

}
, (1.30)

and then replace −V@Rε(t −wTR) with a convex upper bound to obtain a “safe" convex
approximation of the associated constraint [25, p. 91]. We next introduce the concept of a
coherent utility measure and then provide a couple of examples of it whose negation are
safe convex upper bounds to the negated value-at-risk.

1.7.1 Coherent Utility Measures

We define coherent utility measures as an analogous counterpart to coherent risk measures,
which are first introduced by Artzner et al. (1999). Let Z :Ω→� be a random function of

12
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the space Z of all F -measurable functions, defined on the measure space (Ω,F ), where F
is a sigma algebra. For Z,Z ′ ∈ Z , let the relation Z � Z ′ imply that

Z(ω) ≥ Z ′(ω) for amost every ω ∈Ω.

A utility function ρ(Z) which maps Z into the extended real line � ∪ {+∞} is said to be
coherent if it satisfies the following axioms:

(i) Concavity: ρ(tZ+(1−t)Z ′) ≥ tρ(Z)+(1−t)ρ(Z ′) for all Z,Z ′ ∈ Z and for all t ∈ [0,1].
(ii) Monotonicity: If Z,Z ′ ∈ Z and Z � Z ′, then ρ(Z) ≥ ρ(Z ′).

(iii) Translation Invariance: If d ∈� and Z ∈ Z , then ρ(Z + d) = ρ(Z) + d .

(iv) Positive Homogeneity: If t > 0 and Z ∈ Z , then ρ(tZ) = tρ(Z).

1.7.2 Conditional Value-At-Risk

[25, p. 93-96] The conditional value-at-risk is a coherent utility measure defined as

CV@Rε � sup
ν∈�

{
1

ε
�R∼Q (min (−Z + ν,0))− ν

}
.

It is sometimes called the average value-at-risk

AV@Rε(Z)�
1

ε

∫ ε

0

V@Rν(Z)dν

or the expected shortfall
ESε ��(Z |Z < V@Rε(Z)),

which can easily be obtained by substituting V@Rν(Z) = F−1Z (ν) = t into the integral of the
AV@Rε definition, where FZ(·) represents the distribution function of the variable Z . The
ESε is also shown to be equivalent to the CV@Rε in Rockafellar and Uryasev (1999).

Replacing −V@Rε with −CV@Rε, the Basel Committee’s recommended risk measure, in
(1.30) obtains a safe concave approximation, provided that �R∼Q{‖R‖2} is bounded. To see
this, note that the constraint

−V@Rε(w
TR− t) < 0

⇔ �R∼Q{wTR− t ≤ 0} < ε

⇔ �R∼Q{t −wTR > 0} < ε

⇔
∫

χ
(
t −wTR

)
dQ(R)� p(w, t) < ε (1.31)

where χ(s) is the characteristic function

χ(s) =

⎧⎪⎪⎨⎪⎪⎩0, s < 0

1, s ≥ 0.

13
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Due to the fact that χ(·) is not a convex function, (1.31) is not necessarily a convex constraint.
However, if we let g(·) be a convex function that is at least as large as χ(·) everywhere, then∫

g
(
t −wTR

)
dQ(R)�Ψ(w, t) < ε (1.32)

is a safe approximation to (1.31), since

p(w, t) ≤Ψ(w, t) < ε

so that whenever (1.32) is satisfied, so is (1.31). (1.32) is also a convex constraint because

Ψ (τu+ (1− τ)w,τs + (1− τ) t) =
∫

g
(
τs + (1− τ) t − (τu+ (1− τ)w)TR

)
dQ(R)

=

∫
g
(
τ
(
s −uTR

)
+ (1− τ)

(
t −wTR

))
dQ(R)

≤
∫

τg
(
s −uTR

)
+ (1− τ)g

(
t −wTR

)
dQ(R)

= τΨ(u, s) + (1− τ)Ψ(w, t).

for all (u, s), (w, t) ∈�n+1 and τ ∈ [0,1].
Notice the inequality

υΨ
(
υ−1(w, t)

)
−υε < 0,

where υ > 0 is a variable, is also a safe convex approximation to (1.31) since

g
(
υ−1s

)
≥ χ

(
υ−1s

)
= χ (s) ∀υ ∈�++

so that
p(w, t) ≤Ψ(υ−1(w, t)),

and υΨ
(
υ−1(w, t)

)
is the perspective function of the convex function Ψ(w, t).1

This implies
∃υ > 0 : υΨ(υ−1(w, t))−υε < 0

is a safe convex approximation of (1.31). Now assume g(·) is a generator (a nonnegative
increasing function such that g(0) ≥ 1 and lim

s→−∞g(s)→ 0), then it can be shown by using

the lower semicontinuity of Ψ(·) and the construction of G(w, t) that the weaker condition

inf
υ>0

{
υΨ(υ−1(w, t))−υε

}
� G(w, t) < 0 (1.33)

is also a safe convex approximation of (1.31). If we let g∗(s) = max [1 + s,0] and Ψ∗(w, t) =
�R∼Q

{
g∗

(
t −wTR

)}
be the generator and safe convex upper bound for p(w, t) respectively,

then

G∗(w, t) < 0

1The perspective of an f :�n→� is the function g(x, t) = tf (x/t) with domain {(x, t)|x/t ∈ dom f , t > 0}.
It is a well known fact that the perspective operation preserves convexity: if f is convex, then g is also convex.
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⇔ inf
υ>0

{
υ�R∼Q

(
max

{
1+υ−1

(
t −wTR

)
,0

})
−υε

}
< 0

⇔ inf
υ>0

{
�R∼Q

(
max

{
υ + t −wTR,0

})
−υε

}
< 0

⇔ inf
υ>0

{
1

ε
�R∼Q

(
max

{
υ + t −wTR,0

})
−υ

}
< 0

⇔ inf
ν<0

{
1

ε
�R∼Q

(
max

{
t −wTR− ν,0

})
+ ν

}
< 0

⇔ inf
ν∈�

{
1

ε
�R∼Q

(
max

{
t −wTR− ν,0

})
+ ν

}
< 0

⇔ − sup
ν∈�

{
1

ε
�R∼Q

(
min

{
wTR− t + ν,0

})
− ν

}
< 0

⇔ −CV@Rε(w
TR− t) < 0,

which proves our case. Note that g∗(s) and Ψ∗(w, t) are the least conservative generator and
safe convex upper bound for p(w, t) respectively, and the CV@Rε constraint is serendipi-
tously the best known safe convex approximation to the V@Rε constraint. However, cal-
culating the CV@Rε requires multi-dimensional integration, which is normally intractable.
The only practical way to compute CV@Rε is via Monte Carlo simulation, which is also
time consuming, especially when ε is small. The only generic case in which the CV@Rε
calculation is tractable is when the support of Q is a finite set {R1, . . . ,RN } so that

Ψ∗(w) =

N∑
i=1

πimax
{
0,1+ t −wTRi

}
,

where N is a moderate positive integer and πi =�{R = Ri}.

1.7.3 Entropic Value-At-Risk

The entropic value-at-risk

EV@Rε(Z) = sup
ν>0

{
−1
ν
log(MZ(−ν)/ε)

}

is a recently introduced coherent utility measure [3] whose negation is also a safe convex
upper bound to the negated value-at-risk. To see this, first note that the general Chernoff
bound is

�(Z ≤ k) ≤ exp{νk}MZ(−ν),ν > 0

where MZ(·) is the moment-generating function of Z . Solving exp{νk}MZ(−ν) = ε for k
yields

kZ(ν) = −1ν log(MZ(−ν)/ε)
so that

�

(
Z ≤ −1

ν
log(MZ(−ν)/ε)

)
≤ ε.
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This implies that −1
ν log(MZ(−ν)/ε) is a lower bound to V@Rε(Z) for all values of ν > 0,

so that by the definition of the entropic value-at-risk we have −V@Rε ≤ −EV@Rε. In fact, if
we let g(s) = exp(s) and Ψ(w, t) =�R∼Q{exp(t −wTR)}, then

G(w, t) < 0

⇔ inf
υ>0

{
υ�R∼Q

(
exp

{
υ−1

(
t −wTR

)})
−υε

}
< 0

⇔ inf
υ>0

{
�R∼Q

(
exp

{
υ−1

(
t −wTR

)})}
< ε

⇔ �R∼Q
(
exp

{
υ−1∗

(
t −wTR

)})
< ε

⇔ log�R∼Q
(
exp

{
υ−1∗

(
t −wTR

)})
< logε

⇔ inf
υ>0

{
log�R∼Q

(
exp

{
υ−1

(
t −wTR

)})}
< logε

⇔ inf
υ>0

{
log(Mt−wTR(υ

−1)/ε)
}
< 0

⇔ inf
υ−1>0

{
υ log(Mt−wTR(υ

−1)/ε)
}
< 0

⇔ inf
ν>0

{
1

ν
log(Mt−wTR(ν)/ε)

}
< 0

⇔ − sup
ν>0

{
−1
ν
log(MwTR−t(−ν)/ε)

}
< 0

⇔ −EV@Rε(w
TR− t) < 0,

where υ∗ is the value which achieves the infimum for �R∼Q
(
exp

{
υ−1

(
t −wTR

)})
and its

logarithm. Therefore, the EV@Rε constraint is also a safe convex approximation to the
V@Rε constraint. Note that since exp(s) ≥max[1+ s,0] ≥ χ(s), we have

−V@Rε ≤ −CV@Rε ≤ −EV@Rε.

Other than the need for the existence and knowledge of the moment-generating function
of the portfolio return, which is not always the case, −EV@Rε is a very conservative upper
bound of the −V@Rε, due to the exponential generator being used.

1.8 Robust Optimization

[25, Chapters 1- 4] Apart from the absence of higher moments is the absence of model
uncertainty in the Markowitz model. Garlappi et al. (2007), Amarov and Zhou (2010), and
Harvey et al. (2011) treat this issue with a Bayesian flavor. Their recurring theme is to choose
a prior for the distribution of returns, find the posterior, and then calculate and maximize
the expected utility function using Bayesian methods. We are more interested in the concept
of robust optimization, or some call it data-driven optimization, where model uncertainty is
taken into account in the optimization process.

In classical optimization, model uncertainty is usually ignored, and the problem is solved
under the assumption that there is perfect information, in the hope that this will not affect
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the feasibility and optimality of the solutions significantly, and that minor adjustments of
the nominal solution would suffice. However, these hopes are not always justified, and even
a little model uncertainty may deserve our attention. For examples to illustrate this point,
refer to Ben-Tal et al. (2009).

1.8.1 Uncertain Linear Optimization

A linear optimization problem is defined as

min
x∈�n

{
cTx+ d :Ax ≤ b

}
(1.34)

where A ∈ �m×n, b ∈ Rm, c ∈ Rn and d ∈ R. The data of the problem is the collection
(A,b,c,d) and the structure of (1.34) is determined by the number of constraints m and the
number of variables n.

An uncertain linear optimization problem is defined as{
min
x∈�n

{
cTx+ d :Ax ≤ b

}
: (A,b,c,d) ∈ U

}
, (1.35)

a collection of linear optimization problems with the same number of constraints and vari-
ables where

U =

⎧⎪⎪⎨⎪⎪⎩
[
cT d
A b

]
=

[
cT0 d0
A0 b0

]
+

L∑

=1

ζ


[
cT
 d


A
 b


]
: ζ ∈ Z ⊂ RL

⎫⎪⎪⎬⎪⎪⎭
is an uncertainty set parameterized in an affine fashion by a vector ζ varying in a given
perturbation set Z [25, p. 7]. A vector x ∈ Rn is called a robust feasible solution to (1.35)
if it satisfies all realizations of the constraints from the uncertainty set, that is, Ax ≤ b for
all (A,b,c,d) ∈ U . The robust value of the objective function in (1.35) at a robust feasible
solution x is the largest value of cTx+ d over all realizations of the data in U . The robust
counterpart of (1.35) is the problem of minimizing the robust value over all the robust feasible
solutions of (1.35), and can be written as

min
x∈�n

{
max

(A,b,c,d)∈U
[cTx+ d] :Ax ≤ b ∀ (A,b,c,d) ∈ U

}
. (1.36)

An optimal solution and value of (1.36) are called a robust optimal solution and value of
(1.35) respectively [25, p. 9]. Essentially, we want to obtain the best of the worst objective
functions, each calculated at a solution that remains feasible in the worst possible scenario.
Note that (1.36) can be rewritten as

min
x∈�n,t∈�

{
t :

cTx− t ≤ −d
Ax ≤ b

}
∀ (A,b,c,d) ∈ U

}
,

where the uncertain objective is pushed into the constraints. Therefore, we lose nothing if
we restrict ourselves to uncertain linear optimzation programs with a certain objective, and
write the robust counterpart as

min
x∈�n
{cTx+ d :Ax ≤ b ∀(A,b) ∈ U}. (1.37)
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Note that by definition, (1.37) remains intact when the original uncertainty set U is extended
to the direct product

Û = U1 × . . .×Um
where

Ui = {[ai ;bi] : [A,b] ∈ U}
is the projection of U onto the data space of the i-th constraint. Therefore, the constraints
in (1.37) can be replaced with

aTi x ≤ bi ∀[ai , bi] ∈ Ui (1.38)

where aTi is the i-th row of A, for i = 1, . . . ,m. If x is a robust feasible solution of (1.38), then
x remains robust feasible when we extend the uncertainty set to its convex hull Conv(Ui).
To see this, note that if [āi ; b̄i] ∈ Conv(Ui), then

[āi ; b̄i] =
J∑

j=1

τj [a
j
i ;b

j
i ]

with appropriately chosen [aji ;b
j
i ] ∈ Ui and τj ≥ 0 such that

∑
j τj = 1. We now have

āTi x =
J∑

j=1

τj [a
j
i ]
Tx ≤

J∑
j=1

τjb
j
i = b̄i , (1.39)

where the inequality is due to the fact that x is feasible for (1.38) and [aji ;b
j
i ] ∈ Ui . Using

similar arguments, the set of robust feasible solutions to (1.38) remains intact when we extend
Ui to its closure. Combining the observations above, we conclude that nothing is lost if, right
from the beginning, U is replaced by the direct product V̂ = V1 × . . . × Vm where Vi is the
closed convex hull of Ui [25, p. 10-13]. Skipping all details which the reader is referred to
the first chapter of Ben-Tal et al. (2009), for some uncertainty structures we are then able
to express each uncertain linear constraint as a finite set of explicit convex constraints, and
reformulate the robust counterpart (1.37) as a computationally tractable2 convex program,
which unfortunately is very conservative and often leads to uninformative and impractical
results where there might not even be a single feasible solution! The answer to this problem
is to consider stochastic perturbations of the data and replace the ith uncertain linear
inequality (1.38) with the chance constraint [25, p. 29-30]

�ζ∼Q

⎧⎪⎪⎨⎪⎪⎩ζ : [a0]Tx+
L∑


=1

ζ
[a

]Tx ≤ b0 +

L∑

=1

ζ
b



⎫⎪⎪⎬⎪⎪⎭ ≥ 1− ε (1.40)

where ζ is a random vector with probability distribution Q and ε ∈ (0,1) is a small tolerance
level.

2Refer to Appendix A of [25] for a mathematical treatment of tractability.
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To deal with uncertainty, we may assume that only partial information is known about
the distribution of ζ so that Q ∈ Q, where Q is a set of probability measures. In this case,
we require

∀Q ∈ Q :�ζ∼Q

⎧⎪⎪⎨⎪⎪⎩ζ : [a0]Tx+
L∑


=1

ζ
[a

]Tx ≤ b0 +

L∑

=1

ζ
b



⎫⎪⎪⎬⎪⎪⎭ ≥ 1− ε (1.41)

which we shall call the ambiguous chance constraint.

1.8.2 Bernstein Approximation

[25, p. 83-86] The equivalence between the Markowitz model and the portfolio return value-
at-risk optimization problem means that we can not only add higher moments, but also
model uncertainty into the former implicitly by incorporating them into the distribution of
returns of the latter. We then end up with the collection of problems{

max
w∈�n

{
V@Rε(w

TR) :wT
� = 1,w ≥ �,R ∼Q

}
:Q ∈ Q

}
whose robust counterpart is

max
w∈�n

{
min
Q∈Q

{
V@Rε(w

TR) : R ∼Q
}
:wT

� = 1,w ≥ �

}

⇔ max
w∈�n,t∈�

{
t :wT

� = 1,w ≥ �, t ≤min
Q∈Q

{
V@Rε(w

TR) :Q ∈ Q
}}

⇔ max
w∈�n,t∈�

{
t :wT

� = 1,w ≥ �, t ≤
{
V@Rε(w

TR) :Q ∈ Q
}
∀Q ∈ Q

}
⇔ max

w∈�n,t∈�
{
t :wT

� = 1,w ≥ �,�R∼Q{t −wTR > 0} ≤ ε ∀Q ∈ Q
}
. (1.42)

If we let
Ψ+(w, t) = sup

Q∈Q
�R∼Q

{
g∗

(
t −wTR

)}
and assume �R∼Q{‖R‖2} is uniformly bounded in Q, then

∀Q ∈ Q : G(w, t) ≤ 0⇔ CV@Rε(t −wTR) ≤ 0

is the least conservative safe convex approximation to the ambiguous chance constraint of
(1.42). Although convex, a problem with such infinitely many non-linear constraints is NP-
hard. Fortunately, we are able to obtain a safe, convex and tractable approximation of (1.42).
Assume

(i) g(s) = exp{s},
(ii) Q comprises of all product-type probability distributions Q = Q1 × . . . × Qn with

marginals Qi ∈ Qi running independently in their respective families Qi , where Qi
is a given family of probability distributions on �, i = 1, . . . ,n,
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(iii) the functions Φ∗i (s)� sup
Qi∈Qi

log�x∼Qi
{exp{xs}} are convex, lower semicontinuous such

that 0 ∈ intDom Φ∗i , and

(iv) efficiently computable lower semicontinuous convex functions Φ+
i (·) ≥ Φ∗i (·) such that

0 ∈ intDom Φ+
i are available.

Under these assumptions,

�R∼Q
{
exp

{
t −wTR

}}
= exp{t}

n∏
i=1

�ri∼Qi
{exp{−wiri}} ≤ exp{t}

n∏
i=1

exp
{
Φ∗i (−wi)

}

and by setting

Ψ+(w, t) = exp{t}
n∏
i=1

exp
{
Φ+
i (−wi)

}
,

it is easily seen that the condition

∃υ > 0 :Ψ+(υ−1(w, t)) ≤ ε

is sufficient to satisfy (1.42) and can be rewritten as

∃υ > 0 : logΨ+
(
υ−1(w, t)

)
≤ logε

⇔ ∃υ > 0 : t +υ
n∑
i=1

Φ+
i (−υ−1wi) +υ log(1/ε) ≤ 0,

which can be weakened to

t + inf
υ>0

⎧⎪⎪⎨⎪⎪⎩υ
n∑
i=1

Φ+
i (−υ−1wi) +υ log(1/ε)

⎫⎪⎪⎬⎪⎪⎭ ≤ 0, (1.43)

also known as the Bernstein approximation.

Remark 1.1

Notice that if each Qi is a singleton, then the left-hand side of (1.43) is exactly −EV@Rε.

However, the EV@Rε constraint is not a special case of the Bernstein approximation, since the

latter requires independence amongst the asset returns while the former does not.

Although tractable, this approximation is also very conservative due to the exponential
generator chosen. To reduce conservativeness, we could artifically increase the tolerance
level ε, but this is somewhat arbitrary. Efforts have been made to bridge the gap between
the CV@Rε and Bernstein approximations [25, p. 97-100], but these methods are rather
difficult to implement. The Lagrangian approximation from Bertsimas et al. (2000), and
Bertsimas and Popescu (2005) can be used to include correlations, but nonetheless suffers
from the same drawback of being too conservative, albeit computationally tractable.
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1.9 Thesis Outlook

We will treat the absence of higher moments and model uncertainty in the Markowitz model
by solving

max
w∈W�

min
Q∈Q

{
V@Rε(w

TR) : R ∼Q
}

(1.44)

where
{
w ∈�n :wT

� = 1,w ≥ �
}
, and for which the solutions shown thus far are either

too conservative or intractable. Since the methods we develop can easily be extended
to the conditional value-at-risk, in line with the Basel Committee’s advice, or even the
entropic value-at-risk, all our numerical implementations will only consider the value-at-
risk for the sake of convenience. Chapter 2 proposes a spline approximation method where
the smoothed minimum (over a finite set of distributions of the asset returns) portfolio
return sample value-at-risk is maximized over the feasible domain. In Chapter 3, we work
with elliptical distributions such that (1.44) possesses a location-scale form. Lobo and Boyd
(2000), El Ghaoui et al. (2003), Goldfarb and Iyengar (2003), Lobo et al. (2007), Natarajan
et al. (2008 and 2010), Ye et al. (2012), Zymler et al. (2013) and Rujeerapaiboon et al.
(2015) all do some related work, but we introduce a novel uncertainty set for the scale
matrix in the positive definite space where the eigenvalues vary in a box uncertainty set
and the eigenvectors each varies in a cone uncertainty set with orthogonality preserved
among them, so that the robust counterpart of the location-scale problem can be converted
into a semi-definite program (SDP) which is solvable in polynomial time. In Chapter 4, we
invent a method to determine the size of the uncertainty sets we use in the robust location-
scale problem and perform numerical experiments on some real data. Chapter 5 includes
trading costs and integer constraints into the robust location-scale problem and converts the
resulting model into a mixed-integer program. Chapter 6 talks about portfolio diversification
properties and Chapter 7 concludes.
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Chapter 2

Spline Approximation

In this chapter, we solve the maxmin V@Rε problem (1.44) using an additive spline approx-
imation to the minimal V@Rε. The minimal V@Rε over a finite set of scenarios is found
by simulating quantile values at each point of the discretized set of the feasible domain (see
below) and then fitting the minimal quantile with an additive second degree spline, which
can then be maximized by any optimizer.

Gaivoronski and Pflug (2005) investigate a related method for finding the portfolio by
maximizing the V@Rε. In their case, the V@R is approximated by a weighted sum of
simulated or observed portfolio returns, with weights that depend on a smoothing parameter
chosen by the user. The goal is to filter out the local noise and to be left with the global
component. They do not take into account model uncertainty.

We assume that Q is a finite set containing M distributions of the return vector. Then,
we estimate the minimum value-at-risk function

MV@Rε(w) =min
Q∈Q V@Rε(w

TR)

by the minimum sample value-at-risk function

MSV@Rε(w) =min
Q∈Q min�Kε�+1 {wTr1(Q), . . . ,wTrK (Q)

}
(2.1)

based on the simulated return vectors r1(Q), . . . , rK (Q) for each Q ∈ Q. In the above formula,
minu(s1, . . . , sn) denotes the uth smallest value among s1, . . . , sn. Finally, we compute an ad-
ditive spline that approximates MSV@Rε(w) in the feasible domain W�, before maximizing
it.

2.1 Additive Spline Approximation

We use univariate quadratic B-splines to approximate the function MSV@Rε(w). First, the
feasible domain W� is discretized into

�� =
{
w : wi ∈ Gi, i = 1, . . . ,n− 1, and wT

� = 1
}
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via evenly spaced grids along the axes, Gi = {
i , 
i +Δ, 
i + 2Δ, . . . ,1 −∑
j�i 
i}, where Δ =

(1− 
1 − · · · − 
n) /(d − 1) is the spacing between adjacent nodes in each direction such that
d is the number of nodes in each direction, freely chosen by the user. Note that the length
of the interval in which each asset weight may vary is the same at 1−∑n

i=1 
i . We may build
�� using the following algorithm, for n ≥ 2:

Algorithm 2.1

1. Let�� = G1.

2. If n = 2, stop algorithm.

3. Otherwise, repeat n-2 times:

i. Let� =��.

ii. For each element e in�:

Let�� = (��\e)∪
{[

e

i+1

]
,

[
e


i+1 +Δ

]
,

[
e


i+1 + 2Δ

]
, . . . ,

[
e

1− eT�
]}
.

The cardinality of�� can be computed with the help of Pascal’s triangle. It is the sum
of the first d elements of the (n− 1)th diagonal parallel to the triangle’s edge and including
the first d values, that is,

d−1∑
j=0

(
n+ j − 2

j

)
.

This can be shown to be of order O(nd−1) and thus only grows polynomially with the
number of assets.

Let wj =
[
wj1, . . . ,wj,n−1,1−∑n−1

i=1 wji

]T
denote the jth node. Then, MSV@Rε(wj ) is

approximated by the additive model

n−1∑
i=1

fi(wji)

for j = 1, . . . , |��| where
fi(wji) =

q∑
k=1

βikB
1
k(wji)

is the q-parameter quadratic B-spline. To fix the B-spline basis, we have to choose q − 3
internal knots and the two endpoints of the feasible domain. The kth basis function of order
o is defined recursively ([57] and [122]) as

Bo+1
k (wji) =

wji − x∗ik
x∗i,k+2 − x∗ik

Bo
k(wji) +

x∗i,k+3 −wji

x∗i,k+3 − x∗i,k+1
Bo
k+1(wji),

with

Bo=−1
k (wji) =

⎧⎪⎪⎨⎪⎪⎩1, if x∗ik ≤ wji < x∗i,k+1,
0, otherwise,
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where the knots x∗i1 < x∗i2 < . . . < x∗i,q−1 in the ith direction are evenly spaced and for
the end intervals articificial knots outside of the feasible domain have to be added. Sub-
sequently, we fit the B-spline coefficients such that the least squares distance between

y =
[
MSV@Rε(w1), . . . ,MSV@Rε(w|��|)

]T
and Wβ is minimized. The j-th row of W is

Wj =
[
B1
1(wj1), . . . ,B

1
q(wj1), . . . ,B

1
1(wj,n−1), . . . ,B1

q(wj,n−1)
]

and
β =

[
β11, . . . ,β1q, . . . ,βn−1,1, . . . ,βn−1,q

]T
.

2.2 Further Comments

The smoothness of the fit is controlled by the choice of q. No additional penalty term is
needed. In order to avoid numerical problems due to ill-conditioned matrices, q(n−1) should
be smaller than the cardinality of��. The choice of q is an art rather than a science, and
always has an associated risk of under-smoothing or over-smoothing. We find that q between
5 and 10 gives satisfactory results. Although it is rather restrictive to use the additive model∑n−1

i=1 fi(wi) instead of the general model f (w1, . . . ,wn−1), empirical evidence by Gaivoronski
and Pflug (2005) shows that the global component of a portfolio value-at-risk function only
has a few extrema, which suggests that the former might be sufficient. Moreover, using an
additive model means that the number of basis parameters only grows linearly with the
number of assets, thus reducing the number of parameters to be estimated greatly. To avoid
simulating a huge number of asset return vectors from each distribution so that an accurate
spline approximation can be obtained, we can employ an iterative method with successively
more simulations, where after each iteration a smaller space around the maximum found for
the current spline approximation is used for the next iteration. Roughness such as kinks and
discontinuities cannot be captured by the spline approximation and is a source of potential
inaccuracy. Finally, note that other risk measures including the CV@Rε and EV@Rε can be
used instead of the V@Rε.

2.3 Numerical Examples

The purpose of this section is to illustrate the effects of model uncertainty on the max V@Rε
problem by solving its robust counterpart using the spline approximation method described
above, and assess its strengths and weaknesses. Thus, we only involve two risky assets,
which are further assumed to be bivariate normally distributed in order to compare results
obtained from the method with the theoretical solutions. In each of Figures 2.1 - 2.3 and
Figures B.1 - B.14 in Appendix B, short-selling is disallowed; subfigure (a) shows the optimal
weight on the second asset/difference in optimal weight between the two assets and subfigure
(b) the negative portfolio value-at-risk against the tolerance level ε; the blue line represents
the case where returns follow a bivariate normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1,
σ2 = 0.2 and ρ = 0.2; the red line represents the robust counterpart with the associated
perturbation set of the parameter vector; the grey vertical line indicates the position of
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ε = 0.05 along the horizontal axis; the cyan line in subfigure (a) represents the difference
between red and blue lines; the black line in subfigure (b) is calculated based on the solution
without uncertainty and the parameters that give the highest possible portfolio negated
value-at-risk at that solution. In each application of the spline approximation method, five
million asset return vectors of each parameter in the corresponding perturbation set are
simulated, the 100εth percent sample quantiles are calculated at w1 = 0,0.05, . . . ,1, and
a univariate second degree B-spline function with twelve parameters and knot locations
0 < 0.1 < . . . < 1 is used. Since the spline is fitted over a single dimension, the maximum of
its values computed at w1 = 0,0.001, . . . ,1 is taken. The approximation results are very close
to the theoretical values and thus omitted in the figures. Note that all wealth is invested into
the risky assets if the negated (robust) optimal value-at-risk is less than the negated risk-free
interest rate, otherwise all wealth is kept in the riskless asset.

In general, the standard deviation uncertainty has a larger effect than mean uncertainty
for smaller tolerance levels, which should not be surprising given that the significance of the
standard deviation term diminishes in the normal quantile function compared to the mean
term as the tolerance level increases. The inverse happens happens for tolerance levels
nearer to 0.5. This is also not surprising, because when the tolerance is exactly 0.5, the
mean term alone determines the optimal investment. The influence of the correlation on the
optimal portfolio is relatively small. In any case, model uncertainty has great ramifications
potentially, and we should in no way ignore them, otherwise it might give us a false sense
of security by making the negative portfolio value-at-risk seem lower than it really is, as
illustrated by the black line being higher than the blue line in each subfigure (b) of Figures
2.1 - 2.3 and Figures B.1 - B.14 in Appendix B.

In each of Figures 2.4 - 2.6, subfigure (a) shows the optimal weight on the second asset
and subfigure (b) the negative portfolio value-at-risk against the tolerance level; the blue line
represents the case in which returns follow the independent bivariate normal distribution
where μ1 = 0.01, μ2 = 0.03, σ1 = 0.1 and σ2 = 0.2; the cyan line represents the case in
which returns follow an independent bivariate Cauchy distribution where either the fifth,
fifteenth or twenty fifth percent quantile of each of its marginals coincides with that of the
corresponding marginal of the aforementioned bivariate normal distribution; the red line
represents the case in which the optimal weights are distributionally robust against the pre-
vious two distributions just mentioned; the green line represents the spline approximation
of the previous case; the grey vertical line indicates the tolerance level of ε = 0.05. The dis-
tributionally robust optimal solution is the same as that of the bivariate Cauchy distribution
for small tolerance levels, before transiting to that of the bivariate normal distribution as
the tolerance level increases. The larger the quantile being matched, the later the onset of
and slower the transition. In Figures 2.5 and 2.6, inaccuracies in the approximated solution
start to appear in the transition period since the splines are unable to capture the kinks
in the functions to be smoothed. In each application of the spline approximation method,
five million asset return vectors are simulated each from the independent bivariate nor-
mal distribution and the associated independent bivariate Cauchy distribution, the 100εth
percent sample quantiles are calculated at w1 = 0,0.05, . . . ,1, and a univariate second de-
gree B-spline function with twelve parameters and knot locations 0 < 0.1 < . . . < 1 is used.
Since the spline is fitted over a single dimension, the maximum of its values computed at
w1 = 0,0.001, . . . ,1 is taken.
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Figures B.15 - B.34 in Appendix B are analogous to those mentioned above where all
things remain constant except that short-selling is allowed up to a maximum of one-fifth the
total wealth for each asset, and the cyan line in each subfigure (a) and the black line in each
subfigure (b) are omitted. In each application of the spline approximation method, five mil-
lion asset return vectors are simulated for each parameter vector in the corresponding per-
turbation set, the 100εth percent sample quantiles are calculated at w1 = −0.2,−0.1, . . . ,1.2,
and a univariate second degree B-spline function with sixteen parameters and knot loca-
tions −0.2 < −0.1 < . . . < 1.2 is used. Since the spline is fitted over a single dimension,
the maximum of its values computed at w1 = −0.2,−0.199, . . . ,1.2 is taken. They suggest
parallel observations, albeit with slightly more inaccuracies in the approximated solutions
when short-selling is involved due to more kinks in the functions to be smoothed, especially
at large tolerance levels.
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Figure 2.1: (a) optimal weight on second asset/difference in optimal weight between
assets and (b) portfolio negated value-at-risk against tolerance level where short-
selling is disallowed; blue - returns follow a bivariate normal with μ1 = 0.01, μ2 =

0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart where [μ1,μ2] ∈
{0.01,0.015,0.02,0.025} × {0.015,0.02,0.025,0.03}; cyan in (a) - difference between red
and blue lines; black in (b) - based on solution without uncertainty and corresponding pa-
rameter in the perturbation set that gives the highest possible portfolio negated value-at-risk.
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Figure 2.2: (a) optimal weight on second asset/difference in optimal weight be-
tween assets and (b) portfolio negated value-at-risk against tolerance level where short-
selling is disallowed; blue - returns follow a bivariate normal with μ1 = 0.01, μ2 =

0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart where [σ1,σ2] ∈
{0.1,0.12, . . . ,0.18} × {0.12,0.14, . . . ,0.2}; cyan in (a) - difference between red and blue lines;
black in (b) - based on solution without uncertainty and corresponding parameter in the per-
turbation set that gives the highest possible portfolio negated value-at-risk.
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Figure 2.3: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level; blue - returns follow a bivariate
normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2 where short-selling is
disallowed; red - robust counterpart where ρ ∈ {0.1,0.2,0.3}; cyan in (a) - difference between
red and blue lines; black in (b) - based on solution without uncertainty and corresponding
parameter in the perturbation set that gives the highest possible portfolio negated value-at-
risk.
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Figure 2.4: (a) optimal weight on second asset and (b) portfolio negated value-at-risk against
tolerance level where short-selling is disallowed; blue - returns follow an independent bi-
variate normal distribution where μ1 = 0.01, μ2 = 0.03, σ1 = 0.1 and σ2 = 0.2; cyan -
returns follow an independent bivariate Cauchy distribution where m1 = 0.01, m2 = 0.03,
γ1 = 0.026 and γ2 = 0.052 such that the fifth percent quantile of each of its marginals
coincides with that of the corresponding marginal of the aforementioned bivariate normal
distribution; red - robust against both bivariate distributions; green - spline approximation
of red case.
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Figure 2.5: (a) optimal weight on second asset and (b) portfolio negated value-at-risk against
tolerance level where short-selling is disallowed; blue - returns follow an independent bi-
variate normal distribution where μ1 = 0.01, μ2 = 0.03, σ1 = 0.1 and σ2 = 0.2; cyan -
returns follow an independent bivariate Cauchy distribution where m1 = 0.01, m2 = 0.03,
γ1 = 0.053 and γ2 = 0.106 such that the fifteenth percent quantile of each of its marginals
coincides with that of the corresponding marginal of the aforementioned bivariate normal
distribution; red - robust against both bivariate distributions; green - spline approximation
of red case.
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Figure 2.6: (a) optimal weight on second asset and (b) portfolio negated value-at-risk against
tolerance level where short-selling is disallowed; blue - returns follow an independent bi-
variate normal distribution where μ1 = 0.01, μ2 = 0.03, σ1 = 0.1 and σ2 = 0.2; cyan -
returns follow an independent bivariate Cauchy distribution where m1 = 0.01, m2 = 0.03,
γ1 = 0.067 and γ2 = 0.135 such that the twenty-fifth percent quantile of each of its
marginals coincides with that of the corresponding marginal of the aforementioned bivari-
ate normal distribution; red - robust against both bivariate distributions; green - spline
approximation of red case.
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Chapter 3

Robust V@Rε Optimization For

Elliptical Distributions

The robust optimization of the V@Rε, CV@Rε or EV@Rε for elliptical distributions is of a
location-scale form, which we will explore in this chapter. In particular, the problem in this
general context is reformulated into a semi-definite program (SDP) under a novel uncertainty
set for the scale matrix.

3.1 Multivariate Normal Distribution

Assuming that the asset return vector follows a multivariate normal distribution, the robust
optimization of the V@Rε becomes

max
w∈W�

min
(μ,Σ)∈M×S

{
V@Rε(w

TR) : R ∼N (μ,Σ)
}

(3.1)

⇔ max
w∈W�

min
(μ,Σ)∈M×S

{
wTμ− z1−ε

√
wTΣw

}
.

3.1.1 CV@Rε Optimization

With V@Rε replaced by CV@Rε, (3.1) is

max
w∈W�

min
(μ,Σ)∈M×S

{
1

ε

∫ ε

0

V@Rν(w
TR)dν : R ∼N (μ,Σ)

}

⇔ max
w∈W�

min
(μ,Σ)∈M×S

{
1

ε

∫ ε

0

wTμ+ zν
√
wTΣwdν : R ∼N (μ,Σ)

}

⇔ max
w∈W�

min
(μ,Σ)∈M×S

⎧⎪⎪⎨⎪⎪⎩wTμ+

√
wTΣw√
2πε

∫ zε

−∞
xexp{−x2/2}dx : R ∼N (μ,Σ)

⎫⎪⎪⎬⎪⎪⎭ (let zγ = x)

⇔ max
w∈W�

min
(μ,Σ)∈M×S

{
wTμ−

(
exp{−z2ε/2}/

√
2πε

)√
wTΣw : R ∼N (μ,Σ)

}
⇔ max

w∈W�

min
(μ,Σ)∈M×S

{
wTμ− (φ(zε)/ε)

√
wTΣw : R ∼N (μ,Σ)

}
,
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Chapter 3. Robust V@Rε Optimization For Elliptical Distributions

where φ(·) is the density function of the standard normal distribution.

3.1.2 EV@Rε Optimization

With V@Rε replaced by EV@Rε, (3.1) is

max
w∈W�

min
(μ,Σ)∈M×S

{
max
ν>0
{− log(MwTR(−ν)/ε) /ν : R ∼N (μ,Σ)}

}
⇔ max

w∈W�

min
(μ,Σ)∈M×S

{
max
ν>0

{
− log

(
exp

{
−νwTμ+ ν2wTΣw/2

}/
ε
)/
ν
}}

⇔ max
w∈W�

min
(μ,Σ)∈M×S

{
max
ν>0

{(
νwTμ− ν2wTΣw/2+ logε

)
/ν

}}
⇔ max

w∈W�

min
(μ,Σ)∈M×S

{
max
ν>0

{
wTμ− νwTΣw/2+ (logε)/ν

}}
⇔ max

w∈W�

min
(μ,Σ)∈M×S

{
wTμ−√−2logε√wTΣw

}
⇔ max

w∈W�

min
(μ,Σ)∈M×S

{
wTμ−√−2logε√wTΣw

}
,

where the second last line is obtained by setting the first-order condition of the inner min-
imization problem to zero. Note that the entropic value-at-risk is not well-defined when
returns follow an elliptically contoured α-stable distribution, since its moment-generating
function does not exist.

3.2 Elliptically Contoured α-Stable Distribution

There is much evidence that asset returns display heavy-tailed properties, starting from the
pioneering work of Mandelbrot (1963a, 1963b, 1967a, 1967b) and Fama (1963, 1965a, 1965b)
among others which come later, including So (1987), Embrechts et al. (1997), Loretan and
Phillips (1994), Rachev and Mittnik (2000), and Meerschaert and Scheffler (2003). However,
some of these heavy-tailed distributions are criticized for their infinite variance, but as Nolan
(2005) says, “. . ., bounded data are routinely modeled by normal distributions which have
infinite support. The only justification for this is that the normal distribution gives a usable
description of the shape of the distribution, even though it is clearly inappropriate for the
tails for any problem with naturally bounded data. The same justification can be used for
stable models . . . The variance is one measure of spread; the scale in a stable model is
another."

Another reason against utilizing such distributions is the high computational complexity
involved in the density calculation, but with modern computing power and the development
of algorithms, this is no longer an issue.

In view of all these, portfolio optimization problems need to be robust against heavy-
tailed distributions. To achieve that, we can let the returns R ∼ EStable(α,μ,Σ) follow an
elliptically contoured α-stable distribution, which is essentially a scaled mixture of multi-
variate normal distributions [175] with joint characteristic function

�(exp{�tTR}) = exp{−(tTΣt)α/2 + �tTμ}, (3.2)
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where μ ∈ �n is the location vector and Σ ∈ �n+ is the shape matrix. This results in the
portfolio return possessing a univariate α-stable distribution, because a random variable
X has an α-stable distribution with shape α ∈ (0,2], skew β ∈ [−1,1], scale γ ∈ �++

and location δ ∈ � parameters, in which case we write X ∼ Stable(α,β,γ,δ), if it has
characteristic function1

�(exp{iuX}) =
⎧⎪⎪⎨⎪⎪⎩exp{−γ

α |u|α[1− iβ(tan πα
2 (sign u)] + iδu}, α � 1,

exp{−γ |u|[1 + iβ 2
π (sign u) log |u|] + iδu}, α = 1,

(3.3)

and substituting t = uw into (3.2) yields the characteristic function of wTR in the form of
(3.3) with β = 0, δ =wTμ and γ =

√
wTΣw. Note that

wTR d
=
√
wTΣwZα +wTμ,

where Zα ∼ Stable(α,0,1,0) has characteristic function �(exp{iuZα}) = exp{−|u|α}, follows
a N (0,2) distribution if α = 2, a heavy-tailed distribution2 with infinite variance if α < 2,
and a Cauchy(1,0) distribution if α = 1. If we assume α ∈ [1,2], then the maxmin V@Rε
problem can be written as

max
w∈W�

min
(α,μ,Σ)∈[1,2]×M×S

{
V@Rε(w

TR) : R ∼ EStable(α,μ,Σ)
}

⇔ max
(w,t)∈W�×�

{
t : t ≤ min

(α,μ,Σ)∈[1,2]×M×S
{
V@Rε(w

TR) : R ∼ EStable(α,μ,Σ)
}}

⇔ max
(w,t)∈W�×�

{
t : t ≤

{
V@Rε(w

TR) : R ∼ EStable(α,μ,Σ)
}
∀(α,μ,Σ) ∈ [1,2]×M×S

}
⇔ max

(w,t)∈W�×�
{
t :�R∼EStable(α,μ,Σ){wTR < t} ≤ ε ∀(α,μ,Σ) ∈ [1,2]×M×S

}
⇔ max

(w,t)∈W�×�
{
t :�Zα

{
Zα < (t −wTμ)/

√
wTΣw

}
≤ ε ∀(α,μ,Σ) ∈ [1,2]×M×S

}
⇔ max

(w,t)∈W�×�
{
t : (t −wTμ)/

√
wTΣw ≤ −F−1Zα

(1− ε) ∀(α,μ,Σ) ∈ [1,2]×M×S
}

⇔ max
(w,t)∈W�×�

{
t : t ≤wTμ−F−1Zα

(1− ε)
√
wTΣw ∀(α,μ,Σ) ∈ [1,2]×M×S

}
⇔ max

(w,t)∈W�×�

{
t : t ≤ min

(μ,Σ)∈M×S

{
wTμ− max

α∈[1,2]
F−1Zα

(1− ε)
√
wTΣw

}}

⇔ max
w∈W�

min
(μ,Σ)∈M×S

{
wTμ− max

α∈[1,2]
F−1Zα

(1− ε)
√
wTΣw

}
, (3.4)

where F−1Zα
(1−ε) is the 100(1−ε)th quantile of Zα . To enable comparison with the Markowitz

model, we should scale FZα
(1− ε) in (3.4) by a factor of F−1Z2

(1− ε∗)/F−1Zα
(1− ε∗) so that it is

1There are many parameterizations of the α-stable distribution; we use the 1-parameterization in Nolan
(2015)

2If X ∼ Stable(α,β,γ,μ) where 0 < α < 2, the pth absolute moment �(|X |p) = ∫ |x|pf (x)dx is finite if and
only if p < α.
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exactly F−1Z2
(1− ε∗) when ε = ε∗, to obtain

max
w∈W�

min
(μ,Σ)∈M×S

{
wTμ− max

α∈[1,2]
{
F−1Z2

(1− ε∗)F−1Zα
(1− ε)/F−1Zα

(1− ε∗)
}√

wTΣw
}
. (3.5)

Remark 3.2

The support of X ∼ Stable(α,β,γ,δ) is

supp(X) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(−∞,δ] if α < 1,β = −1,
[δ,∞) if α < 1,β = 1,

(−∞,∞) otherwise.

For our case in particular, the portfolio return wTR is supported on the real line since β = 0,

which certainly makes sense.

3.2.1 CV@Rε Optimization

Note that (3.5) can be written as

max
w∈W�

min
(μ,Σ)∈M×S

{
wTμ− (F−1Zα∗

(1− ε)z1−ε∗/FZα∗ (1− ε∗))
√
wTΣw

}
⇔ max

w∈W�

min
(μ,Σ)∈M×S

{
V@Rε(w

TR) : R ∼ EStable(α∗,μ, c(α∗,ε∗)Σ)
}

(3.6)

where c(α∗,ε∗) =
√
z1−ε∗/FZα∗ (1− ε∗) such that α∗ is an argument that maximizes F−1Zα

(1 −
ε)z1−ε∗/FZα

(1− ε∗) over α ∈ [1,2]. Replacing V@Rε with CV@Rε in (3.6) yields

max
w∈W�

min
(μ,Σ)∈M×S

{
wTμ+

(
z1−ε∗

∫ ε

0

F−1Zα∗
(ν)dν/

(
εFZα∗ (1− ε∗)

))√
wTΣw

}
,

where the integral
∫ ε

0
F−1Zα∗

(ν)dν can be calculated using, for example, methods in Stoyanov
et al. (2006).

3.3 Distributions With Known Mean and Covariance

El-Ghaoui et al. (2003) show that if Q is the set of all probability distributions with mean
vector μ and covariance matrix Σ, then the maxmin V@Rε problem is

max
w∈W�

{
wTμ−√

ε/(1− ε)
√
wTΣw

}
so that with added parameter uncertainty it becomes

max
w∈W�

min
(μ,Σ)∈M×S

{
wTμ−√

ε/(1− ε)
√
wTΣw

}
.
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Notice that the problems discussed thus far in this chapter are of the location-scale form

max
w∈W�

min
(μ,Σ)∈M×S

{
wTμ−κ(ε)

√
wTΣw

}
, (3.7)

where κ(ε) > 0 is a decreasing function of the tolerance level ε. We shall focus on (3.7)
hereafter. We next look at uncertainty sets for the location vector and scale matrix.

3.4 Location Uncertainty Sets

We first consider location uncertainty sets, which are well-studied (see for example [125,
section 3]), so that (3.7) reduces to

max
w∈W�

min
μ∈M

{
wTμ−κ(ε)

√
wTΣw

}
. (3.8)

3.4.1 Box Uncertainty Set

[125, p. 7] The location box uncertainty set is Mbox =
{
μ : μ ∈ [μ,μ]

}
, where μ and μ

contain the lower and upper bounds of μ entry-wise respectively. Without short-selling, it is
obvious that since each entry of w is non-negative, (3.8) withM =Mbox can be written as

max
w∈W0

{
wTμ−κ(ε)

√
wTΣw

}
where W0 = {w : wT

� = 1,w ≥ 0}, which is equivalent to a Second-Order Cone Program
(SOCP). On the other hand, with short-selling (3.8) withM =Mbox can be written as

max
w∈W�

{
(w+)Tμ− (w−)Tμ−κ(ε)

√
wTΣw

}
(3.9)

where w+ has ith entry w+
i = max{wi,0} and w− has ith entry w−i = max{−wi,0}. Unless

μ ≥ 0 and μ ≤ 0, in which case the objective function is a sum of concave functions and
thus concave, (3.9) is not a convex optimization problem in general. However, (3.8) with
M =Mbox can always be converted into a convex problem which is equivalent to an SOCP:

Theorem 3.4

Let p = (μ+μ)/2 and q = (μ−μ)/2. Then, (3.8) withM =Mbox is equivalent to

max
(w,x)∈W�×�n

{
wTp− xTq−κ(ε)

√
wTΣw : −x ≤w ≤ x

}
.

Proof: Note that

max
w∈W�

min
μ∈Mbox

{
wTμ−κ(ε)

√
wTΣw

}
⇔ max

w∈W�

{
max
s∈�

{
s : s ≤wTμ ∀μ ∈ [μ,μ]

}
−κ(ε)

√
wTΣw

}
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⇔ max
(w,s)∈W�×�

{
s −κ(ε)

√
wTΣw : s ≤wTμ ∀μ ∈ [μ,μ]

}
⇔ max

(w,s)∈W�×�

⎧⎪⎨⎪⎩s −κ(ε)√wTΣw : s ≤ min
μ∈[μ,μ]

wTμ

⎫⎪⎬⎪⎭
⇔ max

(w,s)∈W�×�

⎧⎪⎪⎨⎪⎪⎩s −κ(ε)
√
wTΣw : s ≤wTp+

n∑
i=1

min
ζi∈[−1,1]

ζiwiqi)

⎫⎪⎪⎬⎪⎪⎭
⇔ max

(w,s)∈W�×�

⎧⎪⎪⎨⎪⎪⎩s −κ(ε)
√
wTΣw : s ≤wTp−

n∑
i=1

|wiqi |
⎫⎪⎪⎬⎪⎪⎭

⇔ max
w∈W�

⎧⎪⎪⎨⎪⎪⎩wTp−
n∑
i=1

|wi |qi −κ(ε)
√
wTΣw

⎫⎪⎪⎬⎪⎪⎭
⇔ max

(w,x)∈W�×�n

⎧⎪⎪⎨⎪⎪⎩wTp−
n∑
i=1

xiqi −κ(ε)
√
wTΣw : |wi | ≤ xi , i = 1, . . . ,n

⎫⎪⎪⎬⎪⎪⎭
⇔ max

(w,x)∈W�×�n

{
wTp− xq−κ(ε)

√
wTΣw : −x ≤w ≤ x

}
.

�

3.4.2 Ellipsoidal Uncertainty Set

[125, p. 7-8] The ellipsoidal uncertainty set is

Mellipsoid = {μ : (μ−μ0)
TS−1(μ−μ0) ≤ 1}.

We have that

max
w∈W�

min
μ∈Mellipsoid

{
wTμ−κ(ε)

√
wTΣw

}
⇔ max

w∈W�

min
μ1∈�n

{
wT(μ0 +μ1)−κ(ε)

√
wTΣw : ‖S−1/2μ1‖ ≤ 1

}
⇔ max

w∈W�

{
wTμ0 + min

‖x‖≤1
wTS1/2x−κ(ε)

√
wTΣw

}
⇔ max

w∈W�

{
wTμ0 − ‖S1/2w‖ −κ(ε)

√
wTΣw

}
,

where the second line is obtained by letting μ = μ0 +μ1, the third line by setting S−1/2μ1

as x, and the last line by noting that the optimal solution to the inner minimization problem
is

x∗ = − S1/2w
‖S1/2w‖ ,

the vector opposite in direction to S1/2w with the maximum possible length.

35



Chapter 3. Robust V@Rε Optimization For Elliptical Distributions

3.5 Scale Uncertainty Sets

We now consider the problem

max
w∈W�

min
Σ∈S

{
wTμ−κ(ε)

√
wTΣw

}
(3.10)

and look at some uncertainty sets for the scale matrix Σ.

3.5.1 Box Uncertainty Set

[125, p. 10] The box uncertainty set is

S =
{
Σ : σij ≤ σij ≤ σij , i = 1, . . . ,n,∀j ≤ i,Σ � 0

}
,

where σij and σij are the lower and upper bounds of σij respectively and Σ � 0 ensures Σ
is positive semi-definite.

3.5.2 Ellipsoidal Uncertainty Set

[125, p. 11] Denoting ŝ as the estimated mean vector and V̂ as the covariance matrix of
the vector s of the upper triangular entries of the estimated scale matrix, we define the
ellipsoidal uncertainty set as

S =
{
Σ : (s− ŝ)TV̂(s− ŝ) ≤ c,Σ � 0

}
,

where c > 0 is such that the higher its value, the larger the confidence region for s. One
drawback of this uncertainty set is the huge computational effort needed to calculate the
entries of V̂, which is of order O(n4).

3.5.3 Correlation Coefficient Uncertainty Set

[125, p. 11-12] We define the correlation coefficient uncertainty set as

S =

{
Σ : ρ

ij
≤ ρij ≤ ρij ,Σ � 0

}
=

{
Σ : ρ

ij
σiσj ≤ σij ≤ ρijσiσj ,Σ � 0

}
,

where ρ
ij
and ρij are the lower and upper bounds of the correlation coefficient ρij respec-

tively. Note that the inequalities are generally non-convex in (σi,σj ,σij ) unless ρij
≤ 0 and

ρij ≥ 0, in which case we can introduce an auxiliary variable t ∈� and write the uncertainty
set as

S =

{
Σ : ρ

ij
t ≤ σij ≤ ρij t, t

2 ≤ σ2
i σ

2
j ,Σ � 0

}
=

{
Σ : ρ

ij
t ≤ σij ≤ ρij t,

∥∥∥∥∥∥
[

2t
σ2
i −σ2

j

]∥∥∥∥∥∥ ≤ σ2
i +σ2

j ,Σ � 0

}
,
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where the constraint t2 ≤ σ2
i σ

2
j is equivalent to the second-order cone constraint

∥∥∥∥∥∥
[

2t
σ2
i −σ2

j

]∥∥∥∥∥∥ ≤
σ2
i +σ2

j due to Theorem A.20.

3.5.4 Specific Portfolio Scale Uncertainty Set

[125, p. 12] By specifying certain portfolios, albeit arbitrarily, and imposing constraints on
their scales, we define the specific portfolio scale uncertainty set as

S =
{
Σ : li ≤wT

i Σwi ≤ ui, i = 1, . . . ,p,Σ � 0
}

where wi is the ith chosen portfolio with li and ui being the lower and upper bounds of its
squared scale respectively.

3.5.5 One-Factor Model Uncertainty Set

[125, p. 13] The one-factor model uncertainty set is generally non-convex and defined as

S =
{
Σ : Σ = diag(g) +hhT, (g,h) ∈ U

}
where diag(g) +hhT is the one-factor decomposition of Σ and U is a convex set.

Remark 3.3

Methods to solve (3.10) under the uncertainty sets for Σ introduced in this section can be found in
[125, Sections 5-7] and the references therein.

3.6 Eigendecomposition Uncertainty Set

We next introduce a novel eigendecomposition uncertainty set for the scale matrix. First,
we write Σ in the eigendecomposition form

∑n
i=1λiuiuT

i . Then, we allow the positive
eigenvalues λ = [λ1, . . . ,λn]

T to vary in a box uncertainty set and the eigenvectors u1, . . . ,un
each to perturbate in a cone uncertainty with orthogonality preserved among them. Notice
that the first standard basis vector

e1 = Piui (3.11)

where

Pi =

n−1∏
j=1

Gij

with

Gi1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ci1 si1 01×(n−2)
−si1 ci1 01×(n−2)

0(n−2)×1 0(n−2)×1 In−2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
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Gi,n−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
In−2 0(n−2)×1 0(n−2)×1

01×(n−2) −si,n−1 ci,n−1
01×(n−2) ci,n−1 si,n−1,

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and

Gij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ij−1 0(j−1)×1 0(j−1)×1 0(j−1)×(n−j−1)

01×(j−1) cij sij 01×(n−j−1)
01×(j−1) −sij cij 01×(n−j−1)

0(j−1)×(j−1) 0(j−1)×1 0(j−1)×1 In−j−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

such that cij = hij

/√
h2ij + h2i,j+1 , sij = −hi,j+1

/√
h2ij + h2i,j+1 and hi = [hi1, . . . ,hi,n−1]T is the

vector which right multiplies Gij in (3.11). Thus, the location-scale problem can be expressed
as

max
w∈W�

⎧⎪⎪⎪⎨⎪⎪⎪⎩wTμ−κ(ε)
√√

n∑
i=1

λi(wTP−1i e1)2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⇔ max

w∈W�

⎧⎪⎪⎪⎨⎪⎪⎪⎩wTμ−κ(ε)
√√

n∑
i=1

λi(eT1Piw)2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
The above equivalence is due to Pi being an orthogonal matrix, which essentially rotates ui
to e1 through a sequence of rotations Gi,n−1, . . . ,Gi1, where Gij rotates the vector it is right-
multiplied with along the plane spanned by the jth and (j + 1)th axes so that the resulting
vector has a zero (j +1)th entry. The uncertainty set is

S =

⎧⎪⎪⎨⎪⎪⎩Σ̃ : Σ̃ =

n∑
i=1

λ̃iP
T
i ṽṽ

TPi :
λ̃i ∈ (max{0,λi − bi},λi + bi] ∀i

ṽTe1 ≥ 1− c,‖ṽ‖2 = 1

⎫⎪⎪⎬⎪⎪⎭
where ṽ is restricted to Euclidean length and varies within an acute cone of half-angle
θ = arccos(1− c) such that 0 ≤ c ≤ 1, while λ̃i perturbates within the interval (max{0,λi −
bi},λi + bi] such that bi ≥ 0 for i = 1, . . . ,n. The (i, j)th entry of Σ̃ can be written as

σ̃ij = ṽT [P1i , . . . ,Pni]diag(λ̃)
[
P1j , . . . ,Pnj

]T
ṽ

where Pki represents the ith column of Pk . Thus, once an entry of Σ̃ is fixed through a choice
of λ̃ and ṽ in their respective uncertainty sets, the other entries are likewise determined.
This is what makes the eigendecomposition uncertainty set much less conservative and sets
it apart from the other covariance matrix uncertainty sets introduced previously in this
chapter. The robust counterpart we would like to solve is

max
w∈W�

min
λ̃,x̃∈�n\{0}

⎧⎪⎪⎪⎨⎪⎪⎪⎩wTμ−κ(ε)
√√

n∑
i=1

λ̃i((x̃/‖x̃‖2)TPiw)2 :
λ̃i ∈ (max{0,λi − bi},λi + bi] ∀i

(x̃/‖x̃‖2)Te1 ≥ 1− c

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(3.12)
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where ṽ is replaced with x̃/‖x̃‖2 so that the unit Euclidean length of the eigenvectors is
ensured implicitly. The term within the squared root in (3.12) is always positive since assum-
ing otherwise implies that (x̃/‖x̃‖2)TPiw = 0 and hence w is orthogonal to PT

i (x̃/‖x̃‖2) for
i = 1, . . . ,n, resulting in n+1 orthogonal vectors in Rn, which is absurd.

Although (3.12) is non-convex in general, the next theorem shows that it can be converted
into an SDP.

Theorem 3.5

Assume there exists x such that (x/‖x‖2)Te1 > 1− c, then the optimal w of (3.12) is equal to that
of

max
(w,τ,y)∈W�×�+×�++

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
wTμ−κ(ε)y :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(y + τ(1− c)2)In − τe1eT1 P1w . . . Pnw

wTPT
1

...
wTPT

n

diag(λ̄−11 , . . . , λ̄−1n )y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.13)

where λ̄i = λi + bi .

Proof: Notice that (3.12) can be written as

max
w∈W�

min
x̃∈�n\{0}

⎧⎪⎪⎪⎨⎪⎪⎪⎩wTμ−κ(ε)
√√

n∑
i=1

λ̄i((x̃/‖x̃‖2)TPiw)2 : (x̃/‖x̃‖2)Te1 ≥ 1− c
⎫⎪⎪⎪⎬⎪⎪⎪⎭

⇔ max
w∈W�

min
x̃∈�n\{0}

⎧⎪⎪⎪⎨⎪⎪⎪⎩wTμ−κ(ε)
√√

n∑
i=1

λ̄i((x̃/‖x̃‖2)TPiw)2 : (x̃Te1)
2/x̃Tx̃ ≥ (1− c)2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⇔ max

w∈W�

⎧⎪⎪⎪⎨⎪⎪⎪⎩wTμ−κ(ε)
√√√

max
x̃∈�n\{0}

⎧⎪⎪⎨⎪⎪⎩
n∑
i=1

(λ̄i(x̃TPiw)2/x̃Tx̃) : (x̃Te1)2/x̃Tx̃ ≥ (1− c)2
⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.14)

where we square both sides of the inequality constraint in the first equivalence since by
doing so the set of objective values for the inner minimization problem remains unchanged
although the set of x̃’s for each w enlarges. We now set on proving that

max
x̃∈�n\{0}

⎧⎪⎪⎨⎪⎪⎩
n∑
i=1

(λ̄i(x̃
TPiw)2/x̃Tx̃) : (x̃Te1)

2/x̃Tx̃ ≥ (1− c)2
⎫⎪⎪⎬⎪⎪⎭ (3.15)

is equivalent to

min
τ∈�+,y∈�

⎧⎪⎪⎨⎪⎪⎩y2 : In −
n∑
i=1

λ̄iPiwwTPT
i

y2
− τ
y

(
e1e

T
1 − (1− c)2In

)
� 0, y > 0

⎫⎪⎪⎬⎪⎪⎭ . (3.16)

Let τ ≥ 0 and y > 0 be arbitrary constants so that

n∑
i=1

(λ̄i(x̃
TPiw)2/x̃Tx̃) + yτ((x̃Te1)

2/x̃Tx̃− (1− c)2)
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is an upper bound of
∑n

i=1(λ̄i(x̃TPiw)2/x̃Tx̃) on the feasible set of (3.15) by construction.
This means that

max
x̃∈�n\{0}

n∑
i=1

(λ̄i(x̃
TPiw)2/x̃Tx̃) + yτ((x̃Te1)

2/x̃Tx̃− (1− c)2)

is an upper bound to the optimal value of (3.15). Therefore, if

y2 ≥ max
x̃∈�n\{0}

n∑
i=1

(λ̄i(x̃
TPiw)2/x̃Tx̃) + yτ((x̃Te1)

2/x̃Tx̃− (1− c)2)

⇔ y2 ≥
n∑
i=1

(λ̄i(x̃
TPiw)2/x̃Tx̃) + yτ((x̃Te1)

2/x̃Tx̃− (1− c)2) ∀x̃ ∈�n\{0}, (3.17)

then y2 is an upper bound to the optimal value of (3.15). Note that (3.17) can be written as

y2x̃Tx̃ ≥ x̃T
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

λ̄iPiwwTPT
i

⎞⎟⎟⎟⎟⎟⎠ x̃+ yτ(x̃Te1e
T
1 x̃− (1− c)2x̃Tx̃) ∀x̃ ∈�n\{0}

⇔ x̃T
⎛⎜⎜⎜⎜⎜⎝In −

n∑
i=1

λ̄iPiwwTPT
i

y2
− τ
y

(
e1e

T
1 − (1− c)2In

)⎞⎟⎟⎟⎟⎟⎠ x̃ ≥ 0 ∀x̃ ∈�n\{0}

⇔ In −
n∑
i=1

λ̄iPiwwTPT
i

y2
− τ
y

(
e1e

T
1 − (1− c)2In

)
� 0,

so that the optimal value of (3.16) is greater than or equal to the optimal value of (3.15),
which we denote as V > 0. We are left to prove that (3.16) has a feasible solution such that
its corresponding objective function value is equal to V . In other words, we want to show
that there exists τ∗ ≥ 0 such that

In −
n∑
i=1

λ̄iPiwwTPT
i

V
− τ∗√

V

(
e1e

T
1 − (1− c)2In

)
� 0. (3.18)

Note that there exists an ε0 and an x such that for every ε ∈ (0,ε0],

xT
(
e1eT1 − (1− c)2In√

V

)
x ≥ εxTx (3.19)

due to the strict feasibility assumption. In addition, we have

x̃T
(
e1eT1 − (1− c)2In√

V

)
x̃ ≥ εx̃Tx̃⇒ x̃T

⎛⎜⎜⎜⎜⎜⎝In −
n∑
i=1

λ̄iPiwwTPT
i

V

⎞⎟⎟⎟⎟⎟⎠ x̃ ≥ 0 ∀ε ∈ (0,ε0]. (3.20)

To see (3.20), assume that its “if" condition holds, then we have

n∑
i=1

(λ̄i(x̃
TPiw)2/x̃Tx̃) ≤ V
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⇔ x̃T
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

λ̄iPiwwTPT
i

⎞⎟⎟⎟⎟⎟⎠ x̃ ≤ V x̃Tx̃

⇔ x̃Tx̃− x̃T
⎛⎜⎜⎜⎜⎝
∑n

i=1 λ̄iPiwwTPT
i

V

⎞⎟⎟⎟⎟⎠ x̃ ≥ 0

⇔ x̃T
⎛⎜⎜⎜⎜⎝In −

∑n
i=1 λ̄iPiwwTPT

i

V

⎞⎟⎟⎟⎟⎠ x̃ ≥ 0.

Using the homogeneous S-Lemma A.1 (ii), there exists τε ≥ 0 such that

In −
n∑
i=1

λ̄iPiwwTPT
i

V
− τε

(
e1eT1 − (1− c)2In√

V
− εIn

)
� 0

and in particular,

xT
⎛⎜⎜⎜⎜⎜⎝In −

n∑
i=1

λ̄iPiwwTPT
i

V

⎞⎟⎟⎟⎟⎟⎠x ≥ τεx
T

(
e1eT1 − (1− c)2In√

V
− εIn

)
x

for each ε ∈ (0,ε0]. The fact that xT
(
e1eT1−(1−c)2In√

V
− εIn

)
x > 0 means that τε stays bounded

as ε→ 0, which implies

In −
n∑
i=1

λ̄iPiwwTPT
i

V
− τεi

(
e1eT1 − (1− c)2In√

V
− εiIn

)
� 0 (3.21)

for a properly chosen sequence εi , i = 1,2, . . . such that limi→∞τεi = τ∗ and limi→∞ εi = 0.
Taking limits on both sides of (3.21) as i →∞ obtains (3.18), which proves the equivalence
between (3.15) and (3.16).

Since (3.16) can be reformulated as

min
τ∈�+,y∈�++

{
y2 : In − τ

y

(
e1e

T
1 − (1− c)2In

)

−
[
P1(w/y) . . . Pn(w/y)

]
diag(λ̄1, . . . , λ̄n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
wT/y

)
PT
1

...(
wT/y

)
PT
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⇔ min
τ∈�+,y∈�++

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
y2 :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
In − τ

y

(
e1eT1 − (1− c)2In

)
P1(w/y) . . . Pn(w/y)

(w/y)TPT
1

...
(w/y)TPT

n

diag(λ̄−11 , . . . , λ̄−1n )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
⇔ min

τ∈�+,y∈�++

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
y2 :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(y + τ(1− c)2)In − τe1eT1 P1w . . . Pnw

wTPT
1

...
wTPT

n

diag(λ̄−11 y, . . . , λ̄−1n y)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.22)
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where the first equivalence is by virtue of the Schur Complement Lemma A.2, substituting
the inner maximization problem of (3.14) with (3.22) then yields (3.13), which completes the
proof. �

From now on, we only consider the box uncertainty set for μ and the eigendecomposition
uncertainty set for Σ under elliptical distributions.
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Chapter 4

Size of Uncertainty Sets and Numerical

Experiments

If the uncertainty set is chosen too conservatively (too big), the asset allocation by robust
optimization is typically uninteresting. If the uncertainty set is too small, the robustness we
are looking for is lost. In this chapter, we tackle this conundrum by choosing the size of
the uncertainty set based on the sensitivity of the robust optimal value to size changes. In
particular, the median sensitivity is chosen for our numerical experiments. Nevertheless, let
us first investigate the effects due to tail uncertainty in the next section.

4.1 Distributional Uncertainty

We focus on the problem

max
w∈W�

{
wTμ−κ(ε)

√
wTΣw

}
(4.1)

with
κ(ε) = F−1Z2

(1− ε)
which we label as type A, and with

κ(ε) = max
α∈{1,1.01,...,2}

{
F−1Z2

(1− ε∗)F−1Zα
(1− ε)/F−1Zα

(1− ε∗)
}

(4.2)

for ε∗ = 0.05, 0.1 and 0.15 which we label as types B, C and D respectively, where we
recall that Zα ∼ Stable(α,0,1,0). For type A, we find the optimal V@Rε of the portfolio
return wTR ∼ Stable

(
2,0,
√
wTΣw,wTμ

)
=N

(
wTμ,2wTΣw

)
. For each of types B, C and

D, we find the optimal V@Rε of the portfolio return distributionally robust against all α-
stable distributions where α ∈ {1,1.01, . . . ,2}, β = 0, γ = F−1Z2

(1 − ε∗)
√
wTΣw/F−1Zα

(1 − ε∗)
and δ =wTμ, with γ scaled in such a way that the 100ε∗th percent quantile of the portfolio
return is always equal to that for type A.

In Figure 4.1, each subfigure plots the objective values of (4.2) for type B (ε∗ = 0.05)
against α ∈ {1,1.01, . . . ,2} at a particular tolerance level ε, and the subfigures from left to
right then top to bottom correspond respectively to ε = 0.01,0.02, . . . ,0.49. The maximum
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in each subfigure is the optimal value of (4.2) for type B at its associated ε. The maximum
occurs at α = 1 if ε < ε∗ and α = 2 if ε > ε∗, while it can be any value in {1,1.01, . . . ,2} if
ε = ε∗. Figures C.1 and C.2 in Appendix C are analogous plots for types C (ε∗ = 0.10) and
D (ε∗ = 0.15) respectively, with similar observations.
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4.1.1 Numerical Experiment

Daily stock returns of Netflix, Alphabet, Facebook, General Electric, Microsoft, Boeing,
JP Morgan, Coca Cola, Pfizer, Delta Air Lines, Tesla, Abbot Laboratories, Cisco, Apple,
Bank of America, Exxon Mobil, International Business Machines, Credit Suisse, Qualcomm
and Hewlett Packard on either Nasdaq or NYSE for year 2015 are obtained from Google
Finance, with the assets labeled 1 to 20 in the same order as they are written, where 1

indicates the highest and 20 the lowest location over scale ratio. The location vector and
the scale matrix are estimated by multiplying a hundred to the sample mean and minimum
covariance determinant (MCD) estimators of the daily returns, assumed to be independent
and identically distributed, respectively. In Figure 4.2, each subfigure plots the optimal
weights against the asset number for both the type A and B problems where short-selling is
disallowed at a particular tolerance level ε, and has a red vertical line which separates assets
with a positive location over scale ratio on the left from assets with a negative location over
scale ratio on the right. The subfigures from left to right then top to bottom correspond
respectively to ε = 0.01,0.02, . . . ,0.49. Figures C.3 and C.4 in Appendix C are analogs
of Figure 4.2 for the type C and D problems respectively. Figure 4.3 (a) plots the optimal
weights of the type B problem minus the optimal weights of the type A problem against
the asset number for ε = 0.01,0.02, . . . ,0.49, where short-selling is disallowed. Figures 4.3
(b) and (c) are analogs of Figure 4.3 (a) but with the optimal weight of the type C and D
problems respectively subtracting the optimal weight of type A problem instead. Expectedly,
the optimal weights of the type A problem are the same as those of the type B, C and D
problems when ε is greater than or equal to their corresponding ε∗’s, where the optimal
value of (4.2) is exactly F−1Z2

(1 − ε). On the other hand, the optimal weights of the type
A problem differ considerably to those of the type B, C and D problems when ε is less
than their corresponding ε∗’s where α = 1 is the optimal solution of (4.2). We thus see that
interestingly, introducing heavy-tailedness into the distribution of returns causes weight to
be moved from assets with higher location over scale ratio to those with lower. Figures
4.4 (a), (b) and (c) plot the optimal portfolio expected return of the type A problem and
respectively the robust optimal portfolio expected return of the type B, C and D problems
against the tolerance level, where short-selling is disallowed. Note that if ε is less than the
corresponding ε∗’s, the optimal portfolio expected return for the type A problem is higher
than the robust optimal portfolio expected return for the type B, C or D problem. Figure
4.5 is an analog of Figure 4.4 for the portfolio negated value-at-risk, and shows that if ε is
less than the corresponding ε∗’s, the portfolio negated value-at-risk of the type A problem
is higher than that of the type B,C or D problem, so that it is more likely to invest all wealth
into the risky assets for the former than it is for the latter, which is not at all unintuitive
since for the latter, the asset returns follow a heavy-tailed distribution so that the optimal
allocation should be more conservative. Figures 4.6 - 4.9 are analogs of Figures 4.2 - 4.5
where short-selling is allowed up to a maximum of one-fifth the total wealth for each asset,
whereas Figures C.5 and C.6 in Appendix C are analogs of Figure 4.6 for the type C and D
problems respectively. Similar conclusions can be drawn, but notice how in Figure 4.6, C.5
and C.6, if ε is less than the corresponding ε∗’s, short-selling is less encouraged for the type
B, C or D problem than for the type A problem, which is again inutitive due to the same
reason that for the former, the asset returns follow a heavy-tailed distribution so that the
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optimal portfolio should be more conservative.
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We now set on determining the ‘right’ size of the location box and the scale matrix
eigendecomposition uncertainty sets. More precisely, we find the values of a = [a1, . . . , an]

T,
b = [b1, . . . , bn]

T and c in the problem

max
w∈W�

min
μ̃,λ̃,x̃∈�n

⎧⎪⎪⎪⎨⎪⎪⎪⎩wTμ̃−κ(ε)
√√

n∑
i=1

λ̃i((u/‖u‖2)TPiw)2 :

μ̃i ∈ [μi − ai ,μi + ai] ∀i,
λ̃i ∈ (max{0,λi − bi},λi + bi] ∀i,

(x̃/‖x̃‖2)Te1 ≥ 1− c

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⇔ max

w∈W�

min
ν,u∈�n

⎧⎪⎪⎪⎨⎪⎪⎪⎩wTν −κ(ε)
√√

n∑
i=1

λ̄i((u/‖u‖2)TPiw)2 :
νi ∈ [μi − ai ,μi + ai] ∀i,
(u/‖u‖2)Te1 ≥ 1− c

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.3)

where λ̄i = λi + bi , based on some criteria.

4.2 Location Uncertainty With No Short-Selling

If we assume only location uncertainty with no short-selling, then the robust location-scale
problem (4.3) can be written as

max
w∈W0

{
wT(μ− a)−κ(ε)

√
wTΣw

}
. (4.4)

Theorem 4.6

(i) Let w∗ and V be the optimal solution and value of (4.4) respectively. Then,

dV
dai

= −wi∗. (4.5)

(ii) We have

lim
ai→∞

dV
dai

= 0, (4.6)

provided the limit exists.

(iii) The second derivative of V with respect to each ai is non-negative.

Proof: First, note that since (4.4) is a convex optimization problem, there is zero duality
gap so that the KKT conditions in Theorem A.23 hold. In particular, we have

�wL(w∗,υ∗,ν∗,a) = 0, (4.7)

where the Lagrangian L of (4.4) is a function of the optimal solution w∗, the inequality
and equality KKT multipliers υ∗ and ν∗ respectively obtained by solving the corresponding
dual problem, and a = [a1, . . . , an]

T. The Jacobian of (4.7) with respect to w is exactly
the Hessian of the concave objective function of (4.4), which is negative definite, so that it is
non-singular. Therefore, the Implicit Function Theorem A.19 implies that wi∗ is continuously
differentiable with respect to aj , for i, j = 1, . . . ,n. Moreover, the partial derivatives of the
objective function of (4.4) with respect to wi and ai exist for i = 1, . . . ,n at w∗, so that we
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Chapter 4. Size of Uncertainty Sets and Numerical Experiments

can apply the Envelope Theorem A.24 to obtain (4.5). To prove (4.6), note that in effect we
want to show wa

i = 0 assuming wi∗ converges to wa
i as ai tends to infinity. To that end, let

fai (w) =
1

ai

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

j=1

wj(μj − aj )−κ(ε)
√
wTΣw

⎞⎟⎟⎟⎟⎟⎟⎠
and denote its maximizer over W0 as wai∗ . Note that wai∗ = w∗ so that by assumption, we
have wai

i∗ → wa
i as ai →∞. This implies that {wai

i∗ : ai ∈�++} is a bounded sequence in the
positive real line, and there is a closed bounded interval I ⊂� containing {wai

i∗ : ai ∈�++},
wa
i and 0. Fix wj = wai

j∗ for j � i, then fai (w) is a function of wi which we denote as gai (wi)

and converges uniformly to −wi on I as ai →∞. Therefore, for all ε > 0 there exists n ∈�
such that if ai ≥ n, then

|gai (wi) +wi | ≤ ε ∀wi ∈ I ,
and in particular,

|gai (0)| ≤ ε and |gai (wai
i∗ ) +wai

i∗ | ≤ ε

⇒ − ε ≤ gai (0) ≤ gai (w
ai
i∗ ) ≤ gai (w

ai
i∗ ) +wai

i∗ ≤ ε

⇒ |gai (wai
i∗ )| ≤ ε. (4.8)

Now we set on showing wa
i = 0. Note that since wai

i∗ → wa
i as ai →∞, we have that for

all ε,

(i) there exists an n1 ∈� such that if ai ≥ n1, then∣∣∣wai
i∗ −wa

i

∣∣∣ ≤ 1

3
ε,

(ii) there exists an n2 ∈� such that if ai ≥ n2, then∣∣∣−gai (wai
i∗ )

∣∣∣ ≤ 1

3
ε

by (4.8), and

(iii) there exists an n3 ∈� such that if ai ≥ n3, then∣∣∣gai (wi) +wi

∣∣∣ ≤ 1

3
ε ∀wi ∈ I

due to the uniform convergence of gai (wi) to −wi on I as ai →∞.

The above three statements imply that: For all ε > 0, if ai ≥ n0 = max{n1,n2,n3}, then∣∣∣wai
i∗ −wa

i

∣∣∣ ≤ 1

3
ε,

∣∣∣−gai (wai
i∗ )

∣∣∣ ≤ 1

3
ε, and

∣∣∣gai (wi) +wi

∣∣∣ ≤ 1

3
ε ∀wi ∈ I

⇒ ∣∣∣−wai
i∗ +wa

i

∣∣∣+ ∣∣∣−gai (wai
i∗ )

∣∣∣+ ∣∣∣gai (wai
i∗ ) +wai

i∗
∣∣∣ ≤ ε
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Chapter 4. Size of Uncertainty Sets and Numerical Experiments

⇒ |−wa
i | ≤ ε, (by Triangle Inequality)

which means that wa
i = 0.

Finally, since wi∗ is differentiable with respect to ai , the second derivative of V with
respect to ai exists, for i = 1, . . . ,n, and is non-negative due to the Second-Order Envelope
Theorem A.26. �
Remark 4.4

The proof of Theorem 4.6 is based on the study of Kanniappan and Sastry (1983).

Part (iii) of Theorem 4.6 implies that the first derivative of V with respect to ai is non-
decreasing in ai . Thus,

min
ai≥0

dV
dai

=
dV
dai

∣∣∣∣∣
ai=0

= −wi∗(a)|ai=0
and

sup
ai≥0

dV
dai

= lim
ai→∞

dV
dai

= 0,

so that we can choose the value of each ai by solving

min
ai≥0

dV
dai

+ si

⎛⎜⎜⎜⎜⎝sup
ai≥0

dV
dai
−min

ai≥0
dV
dai

⎞⎟⎟⎟⎟⎠ = dV

dai
, i = 1, . . . ,n

⇔ (1− si)wi∗(a)|ai=0 = wi∗(a), i = 1, . . . ,n (4.9)

for a1, . . . , an simultaneously, where si ∈ (0,1). The right-hand side of (4.9) can be interpreted
as the sensitivity of V to changes in ai while the left-hand side its targeted level. However,
(4.9) is a set of n non-linear equations in n unknowns, which is not easily solvable. Therefore,
we instead find the root ai∗ of

(1− si)wi∗(a)|a=0 = wi∗(a)|aj=0,j�i (4.10)

for i = 1, . . . ,n, separately. Of course, the solution a∗ obtained by such an approach is not
ideal since it does not satisfy (4.9), but since the right hand side of (4.10) is non-increasing
in ai , solving such an equation is not an issue numerically.

At first glance, it appears thatS scaling is a problem for this procedure. As we show next,
this is not the case. Assume that each ai is scaled by a parameter ki > 0 in (4.4) so that it
becomes

max
w∈W0

⎧⎪⎪⎨⎪⎪⎩
n∑
i=1

wi(μi − kiai)−κ(ε)
√
wTΣw

⎫⎪⎪⎬⎪⎪⎭ , (4.11)

and denote the ith optimal weight and value of (4.11) as w̃i∗ and Ṽ respectively. Then, we
have that

dṼ
dai

= −kiw̃i∗,

with its limit as ai → ∞ being zero, and second derivative non-negative, as is the case
without scaling. We solve

(1− si)w̃i∗(a)|a=0 = w̃i∗(a)|aj=0,j�i (4.12)
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⇔ (1− si)wi∗(a)|a=0 = wi∗(k1a1, . . . , knan)|aj=0,j�i (4.13)

for i = 1, . . . ,n separately to obtain a∗∗ = [a1∗/k1, . . . , an∗/kn]T so that substituting it into (4.11)
yields the exact same problem as if a∗ is substituted into (4.4). That is to say, the optimal
solution of (4.4) does not change with the scaling of each ai . This scale invariance property
is good news for us, because we can just assume each ki = 1 without loss of generality.

4.2.1 Numerical Experiment Revisited

We go back to the numerical experiment in Section 4.1.1 but instead consider the robust
location-scale problem (4.4) with

κ(ε) = z1−ε
which we label as type I and

κ(ε) = max
α∈{1,1.01,...,2}

{
F−1Z2

(1− ε∗)F−1Zα
(1− ε)/F−1Zα

(1− ε∗)
}

for ε∗ = 0.05, 0.1 and 0.15 which we label as types II, III and IV respectively. Recall we
always choose the median sensitivity as our targeted sensitivity level. In Figure 4.10, each
subfigure plots the optimal weights of the type I problem both with added location un-
certainty and without added uncertainty at a particular tolerance level ε against the asset
number where short-selling is disallowed, and has a red vertical which separates assets with
a positive location over scale ratio on the left from assets with a negative location over scale
ratio on the right. The subfigures from left to right then top to bottom correspond respec-
tively to ε = 0.01,0.02, . . . ,0.49. Figures C.9 - C.9 in Appendix C are analogs of Figure 4.10
for the type II, III and IV problems respectively. Figure 4.11 (a) plots the optimal weights of
the type I problem with added location uncertainty minus the optimal weights of the same
problem without added uncertainty against the asset number for ε = 0.01,0.02, . . . ,0.49,
where short-selling is disallowed. Figures 4.11 (b), (c) and (d) are analogs of Figure 4.11 (a) but
for the type II, III and IV problems respectively. From these figures just mentioned above,
we see that added location uncertainty has a considerable influence on the optimal asset
allocation and in particular, causes weight to be shifted from assets with higher location
over scale ratio to those with lower. In Figure 4.12, each subfigure plots the optimal portfolio
expected return for a particular type of problem without uncertainty and the robust opti-
mal portfolio expected return of the same problem with added location uncertainty against
the tolerance level, where short-selling is disallowed. We observe that the optimal portfolio
expected return of any type of problem without added uncertainty is never lower than the
robust optimal portfolio expected return of the same problem with added mean uncertainty.
Figure 4.13 is an analog of Figure 4.12 for the portfolio negated value-at-risk. Since the
robust optimal portfolio negated value-at-risk of any type of problem with added location
uncertainty is never lower than the optimal portfolio negated value-at-risk without added
uncertainty by construction, it is less likely to invest all wealth in the risky assets with added
location uncertainty as compared to when no uncertainty is added, which certainly makes
sense. In Figure 4.10, each subfigure plots the optimal weights at a particular tolerance level
ε against those at tolerance level 0.01 of the type I problem both with added location uncer-
tainty and without added uncertainty, where short-selling is disallowed. The subfigures from
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left to right then top to bottom correspond respectively to ε = 0.01,0.02, . . . ,0.49. Figure
4.10 shows that the move towards a less diversified portfolio in the sense that it contains
less assets is more gradual with added location uncertainty as compared to without added
uncertainty, as can be seen by the fact that the green dots move away from the red diagonal
line through the origin with unit gradient at a slower rate than the blue dots as ε increases.
Figures C.7 - C.9 are analogs of Figure 4.10 for the type II, III and IV problems respectively,
with similar observations.
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(d)

Figure 4.11: (a) plots the optimal weights of the type I problem with added location uncer-
tainty minus the optimal wieghts of the same problem without added uncertainty against
the asset number for ε = 0.01,0.02, . . . ,0.49, where short-selling is disallowed; (b), (c) and
(d) are analogs of (a) for the type II, III and IV problems respectively.
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Figure 4.12: (a) plots the optimal portfolio expected return for the type I problem without
uncertainty (blue) and the robust optimal portfolio expected return of the same problem
with added location uncertainty (green) against the tolerance level, where short-selling is
disallowed; (b), (c) and (d) are analogs of (a) for the type II, III and IV problems respectively.
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Figure 4.13: (a) plots the optimal portfolio negated value-at-risk for the type I problem
without uncertainty (blue) and the robust optimal portfolio negated value-at-risk of the
same problem with added location uncertainty (green) against the tolerance level, where
short-selling is disallowed; (b), (c) and (d) are analogs of (a) for the type II, III and IV
problems respectively.
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Chapter 4. Size of Uncertainty Sets and Numerical Experiments

4.3 Location Uncertainty With Short-Selling

If we only assume location uncertainty with short-selling, then the robust location-scale
problem (4.3) can be written as

max
(w,x)∈W�×�n

{
wTμ− xTa−κ(ε)

√
wTΣw : −x ≤w ≤ x

}
. (4.14)

Theorem 4.7

(i) Let (w∗,x∗) and V be the optimal solution and value of (4.14) respectively. Then,

dV
dai

= −xi∗. (4.15)

(ii) We have

lim
ai→∞

dV
dai

= 0, (4.16)

provided the limit exists.

(iii) The second derivative of V with respect to each ai is non-negative.

Proof: The proof is completely analogous to that of Theorem 4.6, and thus omitted. �
Due to part (iii) of Theorem 4.7,

min
ai≥0

dV
dai

= −xi∗(a)|ai=0

and

sup
ai≥0

dV
dai

= 0.

We choose the value of each ai with desired sensitivity level si ∈ (0,1) by solving

(1− si)xi∗(a)|a=0 = xi∗(a)|aj=0,j�i (4.17)

for i = 1, . . . ,n separately. Again, note that solving (4.17) numerically is not a problem since
its right-hand side is non-increasing.

Scaling is also not a problem. Assume that each ai is scaled by a parameter ki > 0 in
(4.14) so that it becomes

max
(w,x)∈W�×�n

⎧⎪⎪⎨⎪⎪⎩wTμ−
n∑
i=1

xikiai −κ(ε)
√
wTΣw : −x ≤w ≤ x

⎫⎪⎪⎬⎪⎪⎭ , (4.18)

with the optimal solution of xi and value denoted as x̃i∗ and Ṽ respectively. Then, we have
that

dṼ

dai
= −ki x̃i∗,
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Chapter 4. Size of Uncertainty Sets and Numerical Experiments

with its limit as ai →∞ and second derivative zero and non-negative respectively. Finally,
solving

(1− si)x̃i∗(a)|a=0 = x̃i∗(a)|aj=0,j�i (4.19)

⇔ (1− si)xi∗(a)|a=0 = xi∗(k1a1, . . . , knan)|aj=0,j�i (4.20)

for i = 1, . . . ,n separately obtains a∗∗ = [a1∗/k1, . . . , an∗/kn]T, which when being substituted
into (4.18) yields the exact same problem as if a∗ is substituted into (4.14). Therefore, we can
just assume each ki = 1 without loss of generality.

4.3.1 Numerical Experiment Revisited

Figures 4.15 - 4.19 correspond to the type I problem and are analogs of those in Section
4.2.1, with all else remaining constant except that short-selling is allowed up to a maximum
of one-fifth the total wealth for each asset. Figures C.13 - C.15 (analogs of Figure 4.15) and
Figures C.16 - C.18 (analogs of Figure 4.19) in Appendix C correspond to the types II, III
and IV problems respectively. Note how added location uncertainty encourages less short-
selling in Figures 4.15 and C.13 - C.15, but otherwise similar conclusions as in the case where
short-selling is disallowed can be drawn.
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(d)

Figure 4.16: (a) plots the optimal weights of the type I problem with added location uncer-
tainty minus the optimal wieghts of the same problem without added uncertainty against the
asset number for ε = 0.01,0.02, . . . ,0.49, where short-selling is allowed up to a maximum
of one-fifth the total wealth; (b), (c) and (d) are analogs of (a) for the type II, III and IV
problems respectively.
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(d)

Figure 4.17: (a) plots the optimal portfolio expected return for the type I problem without
uncertainty (blue) and the robust optimal portfolio expected return of the same problem
with added location uncertainty (green) against the tolerance level, where short-selling is
allowed up to a maximum of one-fifth the total wealth; (b), (c) and (d) are analogs of (a) for
the type II, III and IV problems respectively.
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Figure 4.18: (a) plots the optimal portfolio negated value-at-risk for the type I problem
without uncertainty (blue) and the robust optimal portfolio negated value-at-risk of the
same problem with added location uncertainty (green) against the tolerance level, where
short-selling is allowed up to a maximum of one-fifth the total wealth; (b), (c) and (d) are
analogs of (a) for the type II, III and IV problems respectively.
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4.4 Eigenvalue Uncertainty

If we only assume eigenvalue uncertainty, then the robust location-scale problem (4.3) can
be written as

max
w∈W�

⎧⎪⎪⎪⎨⎪⎪⎪⎩wTμ−κ(ε)
√√

n∑
i=1

(λi + bi)(wTui)
2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (4.21)

Theorem 4.8

(i) Let w∗ and V be the optimal solution and value of (4.21) respectively. Then,

dV
dbi

= − κ(ε)(wT∗ ui)
2

2
√∑n

j=1(λj + bj )(wT∗ uj )
2
. (4.22)

(ii) We have

lim
bi→∞

dV
dbi

= 0, (4.23)

provided the limit exists.

(iii) The second derivative of V with respect to each bi is non-negative.

Proof: The proof of (4.22) is analogous to that of (4.5) in Theorem 4.6.
To show (4.23), assume that limbi→∞w∗ =wbi so that

lim
bi→∞

dV
dbi

= − κ(ε)(wT
bi
ui)

2

2
√
(λi + limbi→∞ bi)(wT

bi
ui)

2 +
∑

j�i(λj + bj )(wT
bi
uj )

2
. (4.24)

If wT
bi
ui = 0, then obviously (4.24) is zero, since its numerator is vanishing and its denom-

inator is positive, otherwise there will be n + 1 orthogonal vectors wbi ,u1, . . . ,un in Rn,
which is impossible. If wT

bi
ui � 0, then (4.24) is also zero since its numerator is finite and its

denominator tends to infinity.
It is easy to check that the second derivative of V with respect to each bi exists just by

observing its expression. Applying the Second-Order Envelope Theorem A.26 obtains

d2V

db2i
≥ κ(ε)(wT∗ ui)

4

4(
∑n

i=1(λi + bi)(wT∗ ui)
2)

3/2
≥ 0,

which concludes our proof. �
Note that an infinitesimal change in bi will not have any effect on V if w∗ is orthogonal

to ui . Each bi is set to the root bi∗ of

min
bi≥0

⎧⎪⎪⎨⎪⎪⎩ dV
dbi

∣∣∣∣∣
bj=0.j�i

⎫⎪⎪⎬⎪⎪⎭+ si

⎛⎜⎜⎜⎜⎜⎝max
bi≥0

⎧⎪⎪⎨⎪⎪⎩ dV
dbi

∣∣∣∣∣
bj=0.j�i

⎫⎪⎪⎬⎪⎪⎭−min
bi≥0

⎧⎪⎪⎨⎪⎪⎩ dV
dbi

∣∣∣∣∣
bj=0.j�i

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎟⎟⎟⎠ = dV

dbi

∣∣∣∣∣
bj=0,j�i
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⇔ (1− si)
(
dV
dbi

∣∣∣∣∣
b1,...,bn=0

)
+ si

⎛⎜⎜⎜⎜⎜⎝ lim
bi→∞

⎧⎪⎪⎨⎪⎪⎩ dV
dbi

∣∣∣∣∣
bj=0.j�i

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎟⎟⎟⎠ = dV

dbi

∣∣∣∣∣
bj=0.j�i

⇔ (1− si)
(
dV
dbi

∣∣∣∣∣
b1,...,bn=0

)
=

dV
dbi

∣∣∣∣∣
bj=0,j�i

,

where si ∈ (0,1) is the chosen sensitivity level, the first equivalence is due to part (iii) of
Theorem 4.8, and the second equivalence is by (4.23).

Like in the case of mean uncertanty, scaling does not pose a problem. Assume that each
bi is scaled by a parameter ki > 0 in (4.21) so that it becomes

max
w∈W�

⎧⎪⎪⎪⎨⎪⎪⎪⎩wTμ−κ(ε)
√√

n∑
i=1

(λi + kibi)(wTui)
2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (4.25)

with the optimal solution and value denoted as w̃∗ and Ṽ respectively. Then, we have that

dṼ
dbi

= − κ(ε)(w̃T∗ ui)
2

2
√∑n

j=1(λj + kjbj )(w̃T∗ uj )
2
,

with its limit as bi →∞ and second derivative remaining zero and non-negative respectively.
Finally, we solve

(1− si)
⎛⎜⎜⎜⎜⎜⎝ dṼ (b1, . . . , bn)

dbi

∣∣∣∣∣∣
b1,...,b=0

⎞⎟⎟⎟⎟⎟⎠ = dṼ (b1, . . . , bn)

dbi

∣∣∣∣∣∣
bj=0,j�i

⇔ (1− si)
(
dV (b1, . . . , bn)

dbi

∣∣∣∣∣
b1,...,bn=0

)
=

dV (k1b1, . . . , knbn)

dbi

∣∣∣∣∣
bj=0,j�i

for i = 1, . . . ,n separately to obtain b∗∗ = [b1∗/k1, . . . , bn∗/kn]T, so that when being substituted
into (4.25) yields the exact same problem as if b∗ = [b1∗, . . . , bn∗]T is substituted into (4.21).
Therefore, we can just assume each ki = 1 without loss of generality.

4.4.1 Numerical Experiment Revisited

Figures 4.20 - 4.24 are analogs of those in Section 4.2.1 while Figures 4.25 - 4.29 are analogs
of those in Section 4.3.1, with all else remaining equal except that we now only consider
eigenvalue uncertainty. Figures C.19 - C.21 (analogs of Figure 4.20), Figures C.22 - C.24
(analogs of Figure 4.24), Figures C.25 - C.27 (analogs of Figure 4.25) and Figures C.28 -
C.30 (analogs of Figure 4.29) in Appendix C correspond to the types II, III and IV problems
respectively. Similar conclusions as the case where only location uncertainty is considered
can be drawn.
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(d)

Figure 4.21: (a) plots the optimal weights of the type I problem with added eigenvalue
uncertainty minus the optimal wieghts of the same problem without added uncertainty
against the asset number for ε = 0.01,0.02, . . . ,0.49, where short-selling is disallowed; (b),
(c) and (d) are analogs of (a) for the type II, III and IV problems respectively.
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(d)

Figure 4.22: (a) plots the optimal portfolio expected return for the type I problem without
uncertainty (blue) and the robust optimal portfolio expected return of the same problem
with added eigenvalue uncertainty (green) against the tolerance level, where short-selling is
disallowed; (b), (c) and (d) are analogs of (a) for the type II, III and IV problems respectively.
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Figure 4.23: (a) plots the optimal portfolio negated value-at-risk for the type I problem
without uncertainty (blue) and the robust optimal portfolio negated value-at-risk of the same
problem with added eigenvalue uncertainty (green) against the tolerance level, where short-
selling is disallowed; (b), (c) and (d) are analogs of (a) for the type II, III and IV problems
respectively.
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(d)

Figure 4.26: (a) plots the optimal weights of the type I problem with added eigenvalue
uncertainty minus the optimal wieghts of the same problem without added uncertainty
against the asset number for ε = 0.01,0.02, . . . ,0.49, where short-selling is allowed up to a
maximum of one-fifth the total wealth; (b), (c) and (d) are analogs of (a) for the type II, III
and IV problems respectively.
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(d)

Figure 4.27: (a) plots the optimal portfolio expected return for the type I problem without
uncertainty (blue) and the robust optimal portfolio expected return of the same problem
with added eigenvalue uncertainty (green) against the tolerance level, where short-selling is
allowed up to a maximum of one-fifth the total wealth; (b), (c) and (d) are analogs of (a) for
the type II, III and IV problems respectively.
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Figure 4.28: (a) plots the optimal portfolio negated value-at-risk for the type I problem
without uncertainty (blue) and the robust optimal portfolio negated value-at-risk of the
same problem with added eigenvalue uncertainty (green) against the tolerance level, where
short-selling is allowed up to a maximum of one-fifth the total wealth; (b), (c) and (d) are
analogs of (a) for the type II, III and IV problems respectively.
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4.5 Eigenvector Uncertainty

If we only assume eigenvector uncertainty, then the optimal w of the robust location-scale
problem (4.3) is approximately equal to that of

max
(w,τ,y)∈W�×�+×�

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
wTμ−κ(ε)y :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(y + τ(1− c)2)In − τe1eT1

wTPT
1

...
wTPT

n

P1w . . . Pnw diag(λ−11 , . . . ,λ−1n )y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0, y ≥ δ

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.26)

by first using Theorem 3.5, then transposing the matrix in the semidefinite constraint (in
which we lose nothing), and finally replacing the positivity constraint on y with y ≥ δ, where
δ is a small positive number. Since the positive semi-definite space is a proper cone, a
semi-definite constraint is also a generalized inequality. Therefore, by definition (A.20), the
associated Lagrangian of (4.26) is

L(w,τ,y,Z,ν.υ) =wTμ−κ(ε)y

+ tr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(y + τ(1− c)2)In − τe1eT1

wTPT
1

...
wTPT

n

P1w . . . Pnw diag(λ−11 , . . . ,λ−1n )y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Z
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ν(wT
�− 1) +

n∑
i=1

υi(wi − 
i) +υn+1τ +υn+2(y − δ)

=

n∑
i=1

wi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝μi + ν +υi + tr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0n×n

pT
1i
...

pT
ni

p1i . . . pni 0n×n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Z
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ τ

(
υn+1 + tr

([
(1− c)2In − e1eT1 0n×n

0n×n 0n×n

]
Z
))

+ y

(
υn+2 −κ(ε) + tr

([
In 0n×n

0n×n diag(λ1, . . . ,λn)

]
Z
))

− ν −
n∑
i=1

υi
i − δυn+2,

where Z ∈ �2n and pji represents the ith column of Pj .
Denoting

Fi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0n×n

pT
1i
...

pT
ni

p1i . . . pni 0n×n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
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G =

[
(1− c)2In − e1eT1 0n×n

0n×n 0n×n

]
,

H =

[
In 0n×n

0n×n diag(λ1, . . . ,λn)

]
,

the Lagrange dual function is then

d(Z,ν,υ) = sup
(w,τ,y)∈�n×�×�

L(w,τ,y,Z,ν,υ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
−ν −∑n

i=1υi
i − δυn+2, if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
μi + ν +υi + tr(FiZ) = 0, i = 1, . . . ,n,

υn+1 + tr(GZ) = 0,

υn+2 −κ(ε) + tr(HZ) = 0,

∞, otherwise,

so that the Lagrange dual problem of (4.26) is

min
(Z,ν,υ)∈�2n+ ×�×�n+2

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩−ν −
n∑
i=1

υi − δυn+2 :
μi + ν +υi + tr(FiZ) = 0, i = 1, . . . ,n

υn+1 + tr(GZ) = 0,
υn+2 −κ(ε) + tr(HZ) = 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.27)

since the semi-positive definite cone is self-dual.

Theorem 4.9

Let (w∗,τ∗, y∗) and (Z∗,ν∗,υ∗) be the optimal solutions of (4.26) and (4.27) respectively, and
denote z∗ the vectorized form of the upper half of Z∗. Assume [z∗,υn+1∗]T, [z∗,υn+2∗]T and each
column of the matrix on the left-hand side of the semi-definite constraint in (4.26) evaluated at
(w∗,τ∗, y∗) are all non-zero vectors, and there exists a feasible solution of (4.26) such that the
(matrix) inequality constraints hold strictly, then

(i) denoting V as the optimal value of (4.26),

dV
dc

= −2(1− c)
n∑
i=1

Zii∗τ∗.

(ii) the second derivative of V with respect to c is non-negative.

Proof:

There is zero duality gap between (4.26) and (4.27) since by assumption, the Slater’s
condition is satisfied by for the former, whose equality and inequality constraints are linear,
and the negative of ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(y + τ(1− c)2)In − τe1eT1
wTPT

1
...

wTPT
n

P1w . . . Pnw diag(λ−11 , . . . ,λ−1n )y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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is convex in (w,τ,y) with respect to the semi-positive definite cone. Therefore, the KKT
conditions in Theorem A.23 hold and in particular,

tr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(y∗ + τ∗(1− c)2)In − τ∗e1eT1

wT∗ PT
1

...
wT∗ PT

n

P1w∗ . . . Pnw∗ diag(λ−11 , . . . ,λ−1n )y∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Z∗
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 0, (4.28)

υn+1∗ + tr

([
(1− c)2In − e1eT1 0n×n

0n×n 0n×n

]
Z∗

)
= 0, (4.29)

wT∗ � = 1, (4.30)

υn+1∗τ∗ = 0, (4.31)

υn+2∗(y∗ − δ) = 0. (4.32)

Since ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(y∗ + τ∗(1− c)2)In − τ∗e1eT1

wT∗ PT
1

...
wT∗ PT

n

P1w∗ . . . Pnw∗ diag(λ−11 , . . . ,λ−1n )y∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0 and Z∗ � 0,

we have ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(y∗ + τ∗(1− c)2)In − τ∗e1eT1

wT∗ PT
1

...
wT∗ PT

n

P1w∗ . . . Pnw∗ diag(λ−11 , . . . ,λ−1n )y∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Z∗ (4.33)

is semi-positive definite1 so that its diagonal entries are all non-negative. Together with
(4.28), which in effect says that the sum of the diagonal entries of (4.33) is zero, the diagonal
entries of (4.33) must all be zeros. This in turn forces all the off-diagonal entries of (4.33) to
be zero, otherwise it is no longer semi-positive definite. In other words, (4.28) is equivalent
to the matrix equality⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(y∗ + τ∗(1− c)2)In − τ∗e1eT1
wT∗ PT

1
...

wT∗ PT
n

P1w∗ . . . Pnw∗ diag(λ−11 , . . . ,λ−1n )y∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Z∗ = 02n×2n. (4.34)

If z∗ � 0 and Zij∗ is any of its non-zero elements, then the partial derivative of the (i, j)th
entry of the resulting matrix on the left-hand side of (4.34) with respect to τ∗ obtains Zij∗((1−
c)2 − 1) > 0. If z∗ = 0, then υn+1∗ > 0 by assumption and the Jacobian of the left-hand side
of (4.29) and (4.31) with respect to (υn+1∗,τ∗) is non-singular. In each case, the Implicit

1It is a well-known fact that if A � 0 and B � 0, then AB � 0.
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Function Theorem A.19 ensures that τ∗ is continuously differentiable with respect to c. The
same argument goes for y∗ where (4.32) is used instead of (4.31). In similar fashion, the
Jacobian of (4.29) and (4.30) with respect to (υn+1∗,wi∗) is also non-singular, so that by
applying the Implicit Function Theorem wi∗ is continuously differentiable with respect to c,
for i = 1, . . . ,n. We can now use Theorem A.25 to obtain the result of part (i). The partial
derivative of the (i0, j)th entry of the matrix on the left-hand side of (4.34) with respect
to Zij∗ where (i0, j) is the index of any non-zero element in the jth column of the matrix
on the left-hand side of the semi-definite constraint in (4.26) evaluated at (w∗,τ∗, y∗) yields
the element itself, which is non-zero, for i = 1, . . . ,n. This means that each entry of Z∗ is
continuously differentiable with respect to c, so that the result of part (ii) follows immediately
by applying Theorem A.26. �

Assuming that the conditions of the above theorem are satisfied, the value of c is set to
the root c∗ of

min
0≤c≤1

dV
dc

+ s

(
max
0≤c≤1

dV
dc
− min

0≤c≤1
dV
dc

)
=
dV
dc

⇔ (1− s) dV
dc

∣∣∣∣∣
c=0

+ s
dV
dc

∣∣∣∣∣
c=1

=
dV
dc

⇔ (1− s) dV
dc

∣∣∣∣∣
c=0

=
dV
dc

where s ∈ (0,1) is the chosen sensitivity level and the first equivalence is due to part (iii) of
Theorem 4.9.

We shall show that scaling is not an issue as before. Assume that c is scaled by k > 0 in
(4.26) so that it becomes

max
(w,τ,y)∈W�×�+×�++

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
wTμ−κ(ε)y :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(y + τ(1− kc)2)In − τe1eT1

wTPT
1

...
wTPT

n

P1w . . . Pnw diag(λ−11 , . . . ,λ−1n )y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.35)

with the optimal solution and value denoted as (w∗∗,τ∗∗, y∗∗) and Ṽ respectively. The corre-
sponding Lagrange dual problem of (4.35) is

min
(Z,ν,υ)∈�2n+ ×�×�2

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩−ν :

μi + ν + tr(FiZ) = 0, i = 1, . . . ,n
υ1 + tr(GkZ) = 0,

υ2 −κ(ε) + tr(HZ) = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.36)

where

Gk =

[
(1− kc)2In − e1eT1 0n×n

0n×n 0n×n

]
,

with optimal Lagrange multiplier matrix denoted as Z∗∗. The derivative of Ṽ with respect
to c is

dṼ
dc

= −2k(1− kc)
n∑
i=1

Zii∗∗τ∗∗.
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and the second derivative of Ṽ with respect to c is non-negative. The value c is now set to
the root c∗∗ of

min
0≤c≤1/k

dṼ (c)

dc
+ s

(
max

0≤c≤1/k
dṼ (c)

dc
− min

0≤c≤1/k
dṼ (c)

dc

)
=
dṼ (c)

dc

⇔ (1− s) dṼ (c)

dc

∣∣∣∣∣∣
c=0

+ s
dṼ (c)

dc

∣∣∣∣∣∣
c=1/k

=
dṼ (c)

dc

⇔ (1− s) dṼ (c)

dc

∣∣∣∣∣∣
c=0

=
dṼ (c)

dc

⇔ (1− s) dV (c)

dc

∣∣∣∣∣
c=0

=
dV (kc)

dc
.

Note that c∗∗ = c∗/k, and when it is substituted into (4.35) obtains the same optimal solution
as if c∗ is substituted into (4.26). Thus, we may assume k = 1 without loss of generality.

4.5.1 Numerical Experiment Revisited

The targeted sensitivity level is always the median and we always assume that the regularity
conditions of Theorem 4.9 hold. Figures 4.30 - 4.39 are analogs of those in Section 4.4.1
but with added eigenvector instead of eigenvalue uncertainty. Figures C.31 - C.33 (analogs
of Figure 4.30), Figures C.34 - C.36 (analogs of Figure 4.34), Figures C.37 - C.39 (analogs
of Figure 4.35) and Figures C.40 - C.42 (analogs of Figure 4.39) in Appendix C correspond
to the types II, III and IV problems respectively. Similar conclusions as in the case where
only location uncertainty is considered can be drawn. Numerical experiments for all the
other different combinations of location, eigenvalue and eigenvector uncertainties are also
done. Generally, for each combination conclusions are not much different from the previous
cases, but the more types of uncertainty (location, eigenvalue and eigenvector) considered,
the higher the robust optimal portfolio negated value-at-risk, so that it is less likely to invest
all wealth into the risky assets. Each SDP is solved with SDPT3 by Toh (1999) using the
MATLAB interface YALMIP by Löfberg (2004).
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(d)

Figure 4.31: (a) plots the optimal weights of the type I problem with added eigenvector
uncertainty minus the optimal wieghts of the same problem without added uncertainty
against the asset number for ε = 0.01,0.02, . . . ,0.49, where short-selling is disallowed; (b),
(c) and (d) are analogs of (a) for the type II, III and IV problems respectively.
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Figure 4.32: (a) plots the optimal portfolio expected return for the type I problem without
uncertainty (blue) and the robust optimal portfolio expected return of the same problem
with added eigenvector uncertainty (green) against the tolerance level, where short-selling is
disallowed; (b), (c) and (d) are analogs of (a) for the type II, III and IV problems respectively.
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Figure 4.33: (a) plots the optimal portfolio negated value-at-risk for the type I problem
without uncertainty (blue) and the robust optimal portfolio negated value-at-risk of the same
problem with added eigenvector uncertainty (green) against the tolerance level, where short-
selling is disallowed; (b), (c) and (d) are analogs of (a) for the type II, III and IV problems
respectively.
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(d)

Figure 4.36: (a) plots the optimal weights of the type I problem with added eigenvector
uncertainty minus the optimal wieghts of the same problem without added uncertainty
against the asset number for ε = 0.01,0.02, . . . ,0.49, where short-selling is allowed up to a
maximum of one-fifth the total wealth; (b), (c) and (d) are analogs of (a) for the type II, III
and IV problems respectively.
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Figure 4.37: (a) plots the optimal portfolio expected return for the type I problem without
uncertainty (blue) and the robust optimal portfolio expected return of the same problem
with added eigenvector uncertainty (green) against the tolerance level, where short-selling is
allowed up to a maximum of one-fifth the total wealth; (b), (c) and (d) are analogs of (a) for
the type II, III and IV problems respectively.
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Figure 4.38: (a) plots the optimal portfolio negated value-at-risk for the type I problem
without uncertainty (blue) and the robust optimal portfolio negated value-at-risk of the
same problem with added eigenvector uncertainty (green) against the tolerance level, where
short-selling is allowed up to a maximum of one-fifth the total wealth; (b), (c) and (d) are
analogs of (a) for the type II, III and IV problems respectively.
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Chapter 5

Trading Costs and Integer Constraints

In this chapter, we include trading costs in the robust location-scale problem considered
in the last chapter. Since trading costs is a function of the asset weights, they render the
problem non-convex. Previous work [126] to circumvent this issue is based on a heuristic
algorithm, which is not exact. We convert the problem into a mixed-integer program. We
also impose integer constraints on the trading quantities to make the asset allocation more
realistic, and show that the resulting problem can likewise be expressed in the form of a
mixed-integer program.

5.1 Trading Costs

Trading costs can be included in a portfolio optimization problem simply by adding the
function

d(w) =

n∑
i=1

di(wi),

where di(wi) is the cost function of the ith asset, to the left-hand side of the budget con-
straint wT

� = 1 to obtain

wT
�+ d(w) = 1. (5.1)

We only consider linear transaction with fixed costs1, meaning that

di(wi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, wi = 0,

α+
i + β+

i wi , wi > 0,

α−i − β−i wi , wi < 0,

where α+
i ≥ 0 and α−i ≥ 0 are the fixed costs, while β+

i ≥ 0 and β−i ≥ 0 are the cost rates of
the long and short positions respectively. Observe that if we let w+ = y and w− = z, then

1In practice, transaction costs may be more complicated, for which the constraint relaxation to be intro-
duced subsequently can be easily adapted.
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Chapter 5. Trading Costs and Integer Constraints

wi0

di(wi)

αi + β+
i wi

α−i + β−i wi

si ti

Figure 5.1: Linear transaction with fixed costs

(5.1) is equivalent to

(y− z)T�+∑n
i=1(α

+
i vi + β+

i yi +α−i (1− vi) + β−i zi) = 1,
yi ≤ tivi , zi ≤ −si(1− vi),
vi ∈ {0,1}, i = 1, . . . ,n,

y,z ≥ 0,

(5.2)

where si = −
i (the most the ith asset can be short-selled) and ti =
1−α+

i −
∑n

j=1,j�i 
j
1+β+i

are the

largest values w−i and w+
i can take respectively. Note that ti is obtained by solving ti+di(ti) =

1 −∑n
j=1,j�i 
j , and (5.2) allows only one of yi and zi to be non-zero, for i = 1, . . . ,n. The

portfolio return is

RP =

n∑
i=1

wi(1 +Ri)− 1

=wTR+wT
�− 1,

where the term wT
� − 1 is not zero anymore but instead equal to the negative of d(w).

Therefore, if linear transaction with fixed costs are to be added to the robust location-scale
problem involving any combination of the location, eigenvalue and eigenvector uncertainties
from the last chapter, we need to solve a mixed integer program, obtained by first adding
wT

� to the objective function, then replacing the budget constraint wT
� = 1 with (5.2),

before changing each w to y− z in the problem.

5.1.1 Numerical Experiment Revisited

Figures 5.2 - 5.6 are analogs of Figures 4.35 - 4.39 in Section 4.5.1, with all else remaining
constant except that we also include the eigenvalue and eigenvector uncertainties mentioned
in the previous chapter as well as trading costs. Figures C.43 - C.45 (analogs of Figure 5.2)
and Figures C.46 - C.48 (analogs of Figure 5.6) in Appendix C correspond to the type II, III
and IV problems respectively. In particular, we fix α+

i = 0.0001, α−i = 0.01, β+
i = 0.0002

and β−i = 0.02 for i = 1, . . . ,20. Each mixed integer program is solved using the internal
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Chapter 5. Trading Costs and Integer Constraints

branch and bound solver of the MATLAB interface YALMIP together with the lower bound
solver SDPT3. Similar conclusions as the other cases can be drawn, but note that the optimal
weights in each problem do not add up to the total wealth due to trading costs.
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(d)

Figure 5.3: (a) plots the optimal weights of the type I problem with added location, eigenvalue
and eigenvector uncertainties plus trading costs minus the optimal wieghts of the same
problem without added uncertainty against the asset number for ε = 0.01,0.02, . . . ,0.49,
where short-selling is allowed up to a maximum of one-fifth the total wealth; (b), (c) and (d)
are analogs of (a) for the type II, III and IV problems respectively.
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(d)

Figure 5.4: (a) plots the optimal portfolio expected return for the type I problem without
uncertainty (blue) and the robust optimal portfolio expected return of the same problem with
added location, eigenvalue and eigenvector uncertainties plus trading costs (green) against
the tolerance level, where short-selling is allowed up to a maximum of one-fifth the total
wealth; (b), (c) and (d) are analogs of (a) for the type II, III and IV problems respectively.
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Figure 5.5: (a) plots the optimal portfolio negated value-at-risk for the type I problem
without uncertainty (blue) and the robust optimal portfolio negated value-at-risk of the
same problem with added location, eigenvalue and eigenvector uncertainties plus trading
costs (green) against the tolerance level, where short-selling is allowed up to a maximum
of one-fifth the total wealth; (b), (c) and (d) are analogs of (a) for the type II, III and IV
problems respectively.
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Chapter 5. Trading Costs and Integer Constraints

5.2 Integer Constraints

So far we assume that a fraction of an asset can be bought or sold, which is not true in
reality. To take into account the indivisibility of shares, we impose integer constraints on the
trading quantities. This means, in particular, that after investment in the risky assets there
is usually remaining proportion of wealth wn+1 ≥ 0 which can be put into a riskless asset
with return μ0 so that the portfolio return is

RP =

n∑
i=1

wi(1 +Ri) +wn+1(1 +μ0)− 1,

where

wi =
miSi
w0

, i = 1, . . . ,n (5.3)

such that mi ∈ � is the number of shares in the long or short position, Si is the asset price
at the beginning of the trading period, w0 is the initial total wealth. The budget constraint
then becomes

wT
�+wn+1 − 1 = 0.

Therefore, if integer constraints are to be included in the robust location-scale problem
involving any combination of the location, eigenvalue and eigenvector uncertainties from
the last chapter, we need to solve a mixed integer program, obtained by first adding wn+1μ0
to the objective function, then replacing wT

� = 1 by (5.2), before letting w be defined as
(5.3) in the problem. On the other hand, if linear transaction with fixed costs as well as
integer constraints are to be included in the robust location-scale problem involving any
combination of the location, eigenvalue and eigenvector uncertainties from the last chapter,
we also need to solve a mixed integer program, obtained by first adding wn+1μ0 +wT

� to
the objective function, then replacing wT

� = 1 with

(y− z)T�+∑n
i=1(α

+
i vi + β+

i yi +α−i (1− vi) + β−i zi) +wn+1 = 1,

yi − zi = miSi
w0

, mi ∈ �,
yi ≤ tivi , zi ≤ −si(1− vi),
vi ∈ {0,1}, i = 1, . . . ,n,
wn+1 ≥ 0, y,z ≥ 0,

before letting w be defined as (5.3) in the problem. Results if we add integer constraints are
very similiar to those of the previous numerical experiments and are thus omitted.
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Chapter 6

Diversification

As we see in the last chapter, robust optimization tends to avoid allocating weight to as-
sets with high location and low scale, which seems to indicate that robustness is linked to
diversification. We will explore this topic in the following chapter.

6.1 Measure of Diversification

The Rao’s Quadratic Entropy (RQE) [169] is extended to formally define the notion of port-
folio diversification in this section.

Definition 6.3

[48, p. 5] Let Ω be a population of elements each characterized by a value X with probability

measure P . The RQE of any two elements ω1,ω2 ∈ Ω corresponding to values X1 and X2 is

defined as

H(P) =

∫
d(X1,X2)dP(X1)dP(X2) (6.1)

where d(·, ·) ∈�+ is symmetric and represents the difference between ω1 and ω2.

Note that (6.1) can be interpreted as the average difference between X1 and X2. If X is
discrete with n possible values x1, . . . ,xn, then

H(P) =
n∑

i,j=1

dijpipj

where pi =�(X = xi), dij = dji and dii = 0 for i, j = 1, . . . ,n.

6.1.1 Portfolio RQE

Definition 6.4

[48, p. 6] The portfolio RQE of a portfolio with n assets and weight vector w = [wi, . . . ,wn]
T is

defined as
1

2
wTDw�HD(w), (6.2)
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Chapter 6. Diversification

where the dissimilarity matrix D is symmetric such that its (i, j)th entry dij ≥ 0 and its ith
diagonal entry dii = 0.

Note that dij can be viewed as the amount of unshared information between assets i and
j . Furthermore, the above definition implies that buying an asset and short-selling another
dissimilar asset instead of buying both the assets should result in a more extreme portfolio
return with less diversification and hence smaller portfolio RQE, which can also be seen as
half the weighted difference between two randomly chosen assets with replacement. Since
D is a Euclidean distance matrix, it is conditionally negative definite [176], meaning that
wTDw is non-positive whenever wT

� = 0, so that according to Rao and Nayak (1985),

HD(w) =
1

2

n∑
i,=1

wiDHD
(wi ,w) (6.3)

where wi
i = 1, wi

j = 0 for j � i and DHD
(wi ,w) = 2HD(wi ,w)−HD(wi)−HD(w) is the differ-

ence between the portfolios w and wi such that HD(wi ,w) =wTDwi . Without short-selling,
(6.3) suggests that the more dissimilar the portfolio w is from the single asset portfolio wi ,
the higher the portfolio RQE. It can also be shown that the portfolio obtained by maximizing
the portfolio RQE is equidissimlar to every asset if there is no restriction on short-selling.
On the other hand, if each asset can be short-selled up to a certain bound, maximizing the
portfolio RQE obtains a portfolio equidissimlar to each asset whose weight does not reach its
bound. We refer the reader to Camarchael et al. (2015) for more properties of the portfolio
RQE.

6.1.2 RQE as Unifying Diversification Measure

The portfolio RQE generalizes quite a number of diversification measures, and we mention
a few of them.

6.1.2.1 Gini-Simpson Index

The Gini-Simpson Index (see for example [200] and [49]) is defined as

1−
n∑
i=1

w2
i � GS(w),

and is a special case of the portfolio RQE where dij = 1− δij such that

δij =

⎧⎪⎪⎨⎪⎪⎩1, i = j,

0, i � j.

To see this, note that

1 =

⎛⎜⎜⎜⎜⎜⎝
n∑
i=1

wi

⎞⎟⎟⎟⎟⎟⎠
2
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so that

1−
n∑
i=1

w2
i =

n∑
i=1

∑
j�i

wiwj .

6.1.2.2 Return Gap

When the portfolio consists of two equally weighted assets with scale matrix

Σ = σ2

[
1 ρ
ρ 1

]
,

and the (i, j)th entry of the dissimilarity matrix is

dij = σ2(1− ρ)(1− δij ),
then

HD(w) =
1

2
σ2(1− ρ),

whose squared root is exactly the Return Gap (RG).

6.1.2.3 Diversification Return

Assume that dij = σ2
i +σ2

j − 2σij where σ2
i and σij are the (i, i)th and (i, j)th entries of the

scale matrix Σ respectively. Then, the portfolio RQE is

HD(w) =
1

2

n∑
i=1

n∑
j=1

(σ2
i +σ2

j − 2σij )wiwj

=
1

2

⎛⎜⎜⎜⎜⎜⎜⎝
n∑
i=1

σ2
i wi

n∑
j=1

wj +

n∑
i=1

wi

n∑
j=1

σ2
j wj − 2

∑
i=1n

n∑
j=1

σijwiwj

⎞⎟⎟⎟⎟⎟⎟⎠
= σ2w−wTΣw (6.4)

where σ2 = [σ2
1 , . . . ,σ

2
n ]. The expression (6.4), which we denote as Dr(w), is also known

as the diversifcation return, and first comes in the form of excess growth rate in Fernholz
and Shay (1982) and appears as the difference between the portfolio compound return and
weighted average asset compond return in Booth and Fama (1992).

6.1.3 Optimal Dissimilarity In Location-Scale Framework

[48, Section 5.2] We consider the optimal dissimilarity matrix D under different scenarios
in the location-scale framework.

6.1.3.1 No Information

When no information is available, the location-scale optimal portfolio RQE is the GS index
with dij = d and dii = 0 for all i = 1, . . . ,n and j � i, since there is no way whatsoever to
distinguish between any two assets.
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Chapter 6. Diversification

6.1.3.2 Correlation Information

If only the correlation information is available, we may assume that each asset has unit
variance without loss of generality. In this case, the (i, j)th entry of the optimal dissimilarity
matrix is dij = 2(1− ρij ), where ρij is the correlation between assets i and j . The portfolio
RQE then becomes

HD(w) =

n∑
i=1

n∑
j=1

(1− ρij )wiwj

=

n∑
i=1

n∑
j=1

wiwj −
n∑
i=1

n∑
j=1

ρijwiwj

=

⎛⎜⎜⎜⎜⎜⎝
n∑
i=1

wi

⎞⎟⎟⎟⎟⎟⎠
2

−
n∑
i=1

n∑
j=1

σijwiwj

= 1−wTΣw,

so that minimizing the portfolio variance is equivalent to maximizing the portfolio RQE.
Note thatHD(w) is a decreasing function of ρij , which makes sense since a higher correlation
among the assets will result in a lower portfolio RQE. In addition, if we let σ denote the
squared root of σ2 element-wise, the diversification ratio is

DR(w) =
σw√
wTΣw

=
1√

wTΣw

so that maximizing it is also equivalent to maximizing the portfolio RQE.

6.1.3.3 Scale Information

Maximizing the portfolio RQE results in a portfolio equidissmilar from each asset contained
in the portfolio if no short-selling is allowed, or from each asset not fully short-selled if
short-selling is allowed. Nevertheless, if the full scale matrix is available, it is better to place
more weight on assets with a lower scale. Hence, maximizing the portfolio RQE is no longer
location-scale optimal and should be combined with other measures to achieve better results.
One way to do it is to minimize σ2w −Dr(w), where the diversification return is coupled
with the weighted average of the diagonal entries of the scale matrix. Another way is to
maximize the Dr(w)/wTΣw which is essentially the portfolio scale adjusted diversification
return. We can also maximize the diversification ratio.

6.1.3.4 Location And Scale Information

If the location vector and scale matrix are fully known, then the portfolio RQE maximization
is also location-scale sub-optimal, since naturally we would like to place more weight on
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Chapter 6. Diversification

assets with higher location and lower scale instead of ignoring their effects. In this case, we
may solve

max
w∈W�

{wTμ−κ(ε)
√
wTΣw}

⇔ max
w∈W�

{
wTμ−κ(ε)

√
σ2w− (σ2w−wTΣw)

}

⇔ max
w∈W�

{
wTμ−κ(ε)

√
σ2w−Dr(w)

}
,

where the diversification return is combined with the portfolio location and weighted average
of the diagonal entries of the scale matrix to achieve a better outcome. If there is imperfect
information of the location vector and scale matrix, then we may solve

max
w∈W�

min
(μ,Σ)∈M×S

{
wTμ−κ(ε)

√
wTΣw

}
,

which is exactly the robust location-scale problem we are interested in.

6.2 Sensitivity of Diversification

Having shown that the natural portfolio RQE measure of the portfolio obtained by solv-
ing the location-scale problem is the diversification return, let us look at how it behaves as
uncertainty is introduced into the model. As we will see later, with the introduction of uncer-
tainty into the location-scale problem, no simple pattern of how the portfolio diversification
return changes may be found.

6.2.1 Location Uncertainty

We first consider the effects of location uncertainty on the portfolio diversification return.
To obtain analytical results later, we do not let wi to be either 0 or 
i , so that the robust
location-scale problem (4.3) can be rewritten as

max
wi∈�\{0,
i },i=1,...,n

⎧⎪⎪⎨⎪⎪⎩wTμ−
n∑
i=1

|wi |ai −κ(ε)
√
wTΣw :wT

� = 1,w ≥ �

⎫⎪⎪⎬⎪⎪⎭ . (6.5)

Note that the impact of removing 0 and 
i from the feasible domain of wi is negligible
due to continuity of the original problem and the optimal solution of (6.5) can be very well
approximated in practice by solving

max
w∈�n

⎧⎪⎪⎪⎨⎪⎪⎪⎩wTμ−
n∑
i=1

|wi |ai −κ(ε)
√
wTΣw :

wT
� = 1,

�+ δ� ≤w ≤ −δ�,
w ≥ δ�

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where δ is a small positive number. Before moving on further, we state a theorem providing
us with the optimal solution of (6.5) in analytical form.

113



Chapter 6. Diversification

Theorem 6.10

Let V be the optimal value of (6.5), then its optimal solution is

w∗ =

Σ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(μ1 − sign(w1∗)a1)

...
(μn − sign(wn∗)an)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦−VΣ−1�

�TΣ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(μ1 − sign(w1∗)a1)

...
(μn − sign(wn∗)an)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦−V�TΣ−1�
.

Proof: Note that solving (6.5) is equivalent to solving

max
xi∈�\{0,±
i },i=1,...,n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[|x1|+ 
1, . . . , |xn|+ 
n]μ−∑n
i=1 ||xi |+ 
i |ai

−κ(ε)

√√√√√√
[|x1|+ 
1, . . . , |xn|+ 
n]Σ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1|+ 
1

...
|xn|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
: [|x1|+ 
1, . . . , |xn|+ 
n]

T
� = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6.6)

for

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1|+ 
1

...
|xn|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. Let x∗ be the optimal solution of (6.6). Since xi cannot be 0 or ±
i ,

the objective and constraint functions are continuously differentiable so that there exists a
Lagrange multiplier ν∗ which satisfies

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(x1∗)(μ1 − sign(|x1∗|+ 
1)a1)

...
sign(xn∗)(μn − sign(|xn∗|+ 
n)an)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦−κ(ε)
diag(sign(x1∗), . . . ,sign(xn∗))Σ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1∗|+ 
1

...
|xn∗|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦√√√√√√
[|x1∗|+ 
1, . . . , |xn∗|+ 
n]Σ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1∗|+ 
1

...
|xn∗|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− ν∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(x1∗)

...
sign(xn∗)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0n×1.

(6.7)
and

[|x1∗|+ 
1, . . . , |xn∗|+ 
n]
T
� = 1 (6.8)

Multiplying (6.7) on the left by [x1∗ + sign(x1∗)
1, . . . ,xn∗ + sign(xn∗)
n], we obtain

[|x1∗|+ 
1, . . . , |xn∗|+ 
n]μ−
n∑
i=1

||xi∗|+ 
i |ai
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−κ(ε)

√√√√√√√
[|x1∗|+ 
1, . . . , |xn∗|+ 
n]Σ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1∗|+ 
1

...
|xn∗|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− ν∗ [|x1∗|+ 
1, . . . , |xn∗|+ 
n]

T
� = 0

which implies
ν∗ = V

by (6.8) and the fact that both (6.5) and (6.6) have the same optimal value.
Multiplying (6.7) on the left by �TΣ−1diag(sign(x1∗), . . . ,sign(xn∗)) obtains

�
TΣ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(μ1 − sign(|x1∗|+ 
1)a1)

...
(μn − sign(|xn∗|+ 
n)an)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦−κ(ε)
�
T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1∗|+ 
1

...
|xn∗|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦√√√√√√
[|x1∗|+ 
1, . . . , |xn∗|+ 
n]Σ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1∗|+ 
1

...
|xn∗|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− ν∗�TΣ−1� = 0

⇒ κ(ε) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝�TΣ−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(μ1 − sign(|x1∗|+ 
1)a1)

...
(μn − sign(|xn∗|+ 
n)an)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦− ν∗�TΣ−1�
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠√√√√√√√

[|x1∗|+ 
1, . . . , |xn∗|+ 
n]Σ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1∗|+ 
1

...
|xn∗|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
by using (6.8) again. Substituting the above into (6.7) before multiplying the resulting equa-
tion on the left by Σ−1diag(sign(x1∗), . . . ,sign(xn∗)) result in

Σ−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(μ1 − sign(|x1∗|+ 
1)a1)

...
(μn − sign(|xn∗|+ 
n)an)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦− ν∗Σ−1�

−
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1∗|+ 
1

...
|xn∗|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝�TΣ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(μ1 − sign(|x1∗|+ 
1)a1)

...
(μn − sign(|xn∗|+ 
n)an)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦− ν∗�TΣ−1�
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 0

so that rearranging we get

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1∗|+ 
1

...
|xn∗|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
Σ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(μ1 − sign(|x1∗|+ 
1)a1)

...
(μn − sign(|xn∗|+ 
n)an)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦− ν∗Σ−1�

�TΣ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(μ1 − sign(|x1∗|+ 
1)a1)

...
(μn − sign(|xn∗|+ 
n)an)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦− ν∗�TΣ−1�
.
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It remains to substitute w∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1∗|+ 
1

...
|xn∗|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ and ν∗ = V into the above equation to obtain the

desired result. �

6.2.1.1 Individual Location Uncertainty

We are now ready to provide a necessary and sufficient condition (6.9) in the following
theorem for the diversification return of the portfolio obtained by solving

max
wi∈�\{0,
i },i=1,...,n

{
wTμ−κ(ε)

√
wTΣw :wT

� = 1,w ≥ �
}

to increase when the jth asset location changes slightly.

Theorem 6.11

Let w∗ be the optimal solution of

max
wi∈�\{0,
i },i=1,...,n

{
wTμ−

∑n

i=1
|wi |ai −κ(ε)

√
wTΣw :wT

� = 1,w ≥ �
}

where ai = piσi for i = 1, . . . ,n. Then, a necessary and sufficient condition for dDr(w∗)
dpj

∣∣∣∣
p=0

to be

positive is

(AB−D(F −μTw̄))w̄j − (Ej(B− 2)−DCj )V̄ − 2w̄j V̄ −ACj +Ej(F − 2μTw̄) > 0, (6.9)

where w̄ and V̄ are the optimal solution and value of

max
wi∈�\{0,
i },i=1,...,n

{
wTμ−κ(ε)

√
wTΣw :wT

� = 1,w ≥ �
}

respectively, A = �
TΣ−1μ, B = σ2Σ−1�, Cj = σ2Σ−1ej , D = �

TΣ−1�, Ej = �
TΣ−1ej and

F = σ2Σ−1μ.

Proof: First, note that wi∗ is differentiable with respect to pj for all i, j = 1, . . . ,n by using
arguments similar to those found in the proof of Theorem 4.6. Therefore, we have that

dDr(w∗)
dpj

=
(
σ2 − 2wT∗ Σ

) dw∗
dpj

where

dw∗
dpj

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝�TΣ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(μ1 − sign(w1∗)p1σ1)

...
(μn − sign(wn∗)pnσn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦−V�TΣ−1�
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
−Σ−1sign(wj∗)σjej + |wj∗|σjΣ−1�

)

−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝Σ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(μ1 − sign(w1∗)p1σ1)

...
(μn − sign(wn∗)pnσn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦−VΣ−1�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
−�TΣ−1sign(wj∗)σjej + |wj∗|σj�TΣ−1�

)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝�TΣ−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(μ1 − sign(w1∗)p1σ1)

...
(μn − sign(wn∗)pnσn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦−V�TΣ−1�
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

by using Theorem 6.10 and the Envelope Theorem A.24, so that

dw∗
dpj

∣∣∣∣∣∣
p=0

=
((
�
TΣ−1μ− V̄�TΣ−1�

)(
−Σ−1sign(w̄j )σjej + |w̄j |σjΣ−1�

)
−
(
Σ−1μ− V̄Σ−1�

)(
−�TΣ−1sign(w̄j )σjej + |w̄j |σj�TΣ−1�

))
(
�
TΣ−1μ− V̄�TΣ−1�

)2
=
(
|w̄j |σjΣ−1��TΣ−1μ−Σ−1sign(w̄j )σjej�

TΣ−1μ+ V̄Σ−1sign(w̄j )σjej�
TΣ−1�

+Σ−1μ�TΣ−1sign(w̄j )σjej − |w̄j |σjΣ−1μ�TΣ−1�− V̄Σ−1��TΣ−1sign(w̄j )σjej
)

(
�
TΣ−1μ− V̄�TΣ−1�

)2
and

dDr(w∗)
dpj

∣∣∣∣∣∣
p=0

=
(
|w̄j |σj�TΣ−1μ

(
σ2Σ−1�− 2

)
− sign(w̄j )σj�

TΣ−1μ
(
σ2Σ−1ej − 2w̄j

)
+ V̄ sign(w̄j )σj�

TΣ−1�
(
σ2Σ−1ej − 2w̄j

)
+ sign(w̄j )σj�

TΣ−1ej
(
σ2Σ−1μ− 2μTw̄

)
−|w̄j |σj�TΣ−1�

(
σ2Σ−1μ− 2μTw̄

)
− V̄ sign(w̄j )σj�

TΣ−1ej
(
σ2Σ−1�− 2

))
(
�
TΣ−1μ− V̄�TΣ−1�

)−2
=
(
|w̄j |σjA (B− 2)− sign(w̄j )σjA

(
Cj − 2w̄j

)
+ V̄ sign(w̄j )σjD

(
Cj − 2w̄j

)
+ sign(w̄j )σjEj

(
F − 2μTw̄

)
−|w̄j |σjD

(
F − 2μTw̄

)
− V̄ sign(w̄j )σjEj (B− 2)

)
(
�
TΣ−1μ− V̄�TΣ−1�

)−2
.

The theorem follows immediately by noting that a necessary and sufficient condition for the
above expression to be positive is for its numerator to be as well. �

6.2.1.2 Simultaneous Location Uncertainty

Next, we provide a necessary and sufficient condition (6.10) in the following theorem for the
diversification return of the portfolio obtained by solving

max
wi∈�\{0,
i },i=1,...,n

{
wTμ−κ(ε)

√
wTΣw :wT

� = 1,w ≥ �
}

to increase when the each asset location changes slightly.
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Theorem 6.12

Let w∗ be the optimal solution of

max
wi∈�\{0,
i },i=1,...,n

{
wTμ−

∑n

i=1
|wi |ai −κ(ε)

√
wTΣw :wT

� = 1,w ≥ �
}

where ai = pσi for i = 1, . . . ,n. Then, a necessary and sufficient condition for dDr(w∗)
dp

∣∣∣∣
p=0

to be

positive is

AB−C +

⎛⎜⎜⎜⎜⎜⎝E − 2
n∑
i=1

|w̄i |σi
⎞⎟⎟⎟⎟⎟⎠(F − 2μTw̄

)
+ V̄

⎛⎜⎜⎜⎜⎜⎝D
⎛⎜⎜⎜⎜⎜⎝C − 2

n∑
i=1

|w̄i |σi
⎞⎟⎟⎟⎟⎟⎠−E(B− 2)

⎞⎟⎟⎟⎟⎟⎠ > 0, (6.10)

where w̄ and V̄ are the optimal solution and value of

max
wi∈�\{0,
i },i=1,...,n

{
wTμ−κ(ε)

√
wTΣw :wT

� = 1,w ≥ �
}

respectively, A = �
TΣ−1μ, B = σ2Σ−1�, Ci = σ2Σ−1ei , D = �

TΣ−1�, Ei = �
TΣ−1ei and

F = σ2Σ−1μ.

Proof: First, note that wi∗ is differentiable with respect to p for i = 1, . . . ,n by using
arguments similar to those found in the proof of Theorem 4.6. Therefore, we have that

dDr(w∗)
dp

=
(
σ2 − 2wT∗ Σ

) dw∗
dp

where

dw∗
dp

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝�TΣ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(μ1 − sign(w1∗)pσ1)

...
(μn − sign(wn∗)pσn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦−V�TΣ−1�
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−Σ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(w1∗)σ1

...
sign(wn∗)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

|wi∗|σi
⎞⎟⎟⎟⎟⎟⎠Σ−1�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝Σ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(μ1 − sign(w1∗)pσ1)

...
(μn − sign(wn∗)pσn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦−VΣ−1�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−�TΣ−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(w1∗)σ1

...
sign(wn∗)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

|wi∗|σi
⎞⎟⎟⎟⎟⎟⎠�TΣ−1�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝�TΣ−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(μ1 − sign(w1∗)p1σ1)

...
(μn − sign(wn∗)pnσn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦−V�TΣ−1�
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−2
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by using Theorem 6.10 and the Envelope Theorem A.24, so that

dw∗
dp

∣∣∣∣∣
p=0

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
(
�
TΣ−1μ− V̄�TΣ−1�

)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−Σ−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(w̄1)σ1

...
sign(w̄n)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

|w̄i |σi
⎞⎟⎟⎟⎟⎟⎠Σ−1�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−
(
Σ−1μ− V̄Σ−1�

)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−�TΣ−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(w̄1)σ1

...
sign(w̄n)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

|w̄i |σi
⎞⎟⎟⎟⎟⎟⎠�TΣ−1�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠(

�
TΣ−1μ− V̄�TΣ−1�

)2
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

|w̄i |σi
⎞⎟⎟⎟⎟⎟⎠Σ−1��TΣ−1μ−Σ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(w̄1)σ1

...
sign(w̄n)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦�TΣ−1μ

+ V̄Σ−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(w̄1)σ1

...
sign(w̄n)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦�TΣ−1�+Σ−1μ�TΣ−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(w̄1)σ1

...
sign(w̄n)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
−
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

|w̄i |σi
⎞⎟⎟⎟⎟⎟⎠Σ−1μ�TΣ−1�− V̄Σ−1��TΣ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(w̄1)σ1

...
sign(w̄n)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠(

�
TΣ−1μ− V̄�TΣ−1�

)−2
and

dDr(w∗)
dp

∣∣∣∣∣
p=0

=

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

|w̄i |σi
⎞⎟⎟⎟⎟⎟⎠�TΣ−1μ(

σ2Σ−1�− 2
)

−�TΣ−1μ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝σ2Σ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(w̄1)σ1

...
sign(w̄n)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦− 2
n∑
i=1

|w̄i |σi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ V̄�TΣ−1�

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝σ2Σ−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(w̄1)σ1

...
sign(w̄n)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦− 2
n∑
i=1

|w̄i |σi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+�TΣ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(w̄1)σ1

...
sign(w̄n)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(
σ2Σ−1μ− 2μTw̄

)

−
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

|w̄i |σi
⎞⎟⎟⎟⎟⎟⎠�TΣ−1�(

σ2Σ−1μ− 2μTw̄
)

−V̄�TΣ−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(w̄1)σ1

...
sign(w̄n)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(
σ2Σ−1�− 2

)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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(
�
TΣ−1μ− V̄�TΣ−1�

)−2
=

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

|w̄i |σi
⎞⎟⎟⎟⎟⎟⎠A (B− 2)−

⎛⎜⎜⎜⎜⎜⎝C − 2
n∑
i=1

|w̄i |σi
⎞⎟⎟⎟⎟⎟⎠

+ V̄D

⎛⎜⎜⎜⎜⎜⎝C − 2
n∑
i=1

|w̄i |σi
⎞⎟⎟⎟⎟⎟⎠+E

(
F − 2μTw̄

)

−
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

|w̄i |σi
⎞⎟⎟⎟⎟⎟⎠D (

F − 2μTw̄
)
− V̄ E (B− 2)

⎞⎟⎟⎟⎟⎟⎠(
�
TΣ−1μ− V̄�TΣ−1�

)−2
.

Since a necessary and sufficient condition for a fraction to be positive is that its numerator
is greater than or equal to zero, (6.10) follows immediately. �

6.2.2 Eigenvalue Uncertainty

We consider the effects of eigenvalue uncertainty on the portfolio diversification return. To
obtain analytical results later, we do not let wi to be 
i , so that the robust location-scale
problem (4.3) can be rewritten as

max
wi∈�\{
i },i=1,...,n

⎧⎪⎪⎪⎨⎪⎪⎪⎩wTμ−κ(ε)
√√
wT

⎛⎜⎜⎜⎜⎜⎝
n∑
i=1

(λi + bi)uiuT
i

⎞⎟⎟⎟⎟⎟⎠w :wT
� = 1,w ≥ �

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (6.11)

Note that the impact of removing 
i from the feasible domain of wi is negligible due to
continuity of the original problem and the optimal solution of (6.11) can be very well approx-
imated in practice by solving

max
w∈�n

⎧⎪⎪⎪⎨⎪⎪⎪⎩wTμ−κ(ε)
√√
wT

⎛⎜⎜⎜⎜⎜⎝
n∑
i=1

(λi + bi)uiuT
i

⎞⎟⎟⎟⎟⎟⎠w :
wT

� = 1,
w ≥ �+ δ�

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where δ is a small positive number. Like in the case of location uncertainty, we state a
theorem providing us with the optimal solution of (6.11) in analytical form.

Theorem 6.13

Let V be the optimal value of (6.11), then its optimal solution is

w∗ =

(∑n
i=1(λi + bi)

−1uiuT
i

)
μ−V

(∑n
i=1(λi + bi)

−1uiuT
i

)
�

�T
(∑n

i=1(λi + bi)−1uiuT
i

)
μ−V�T

(∑n
i=1(λi + bi)−1uiuT

i

)
�

.
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Proof: Note that solving (6.11) is equivalent to solving

max
xi∈�\{0},i=1,...,n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[|x1|+ 
1, . . . , |xn|+ 
n]μ

−κ(ε)

√√√√√√
[|x1|+ 
1, . . . , |xn|+ 
n]

(∑n
i=1(λi + bi)−1uiuT

i

)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1|+ 
1

...
|xn|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
: [|x1|+ 
1, . . . , |xn|+ 
n]

T
� = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6.12)

for

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1|+ 
1

...
|xn|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. Let x∗ be the optimal solution of (6.12). Since xi cannot be 0, the objective

and constraint functions are continuously differentiable so that there exists a Lagrange
multiplier ν∗ which satisfies

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(x1∗)μ1

...
sign(xn∗)μn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦−κ(ε)
diag(sign(x1∗), . . . ,sign(xn∗))

(∑n
i=1(λi + bi)

−1uiuT
i

)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1∗|+ 
1

...
|xn∗|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦√√√√√√
[|x1∗|+ 
1, . . . , |xn∗|+ 
n]

(∑n
i=1(λi + bi)−1uiuT

i

)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1∗|+ 
1

...
|xn∗|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− ν∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(x1∗)

...
sign(xn∗)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0n×1.

(6.13)
and

[|x1∗|+ 
1, . . . , |xn∗|+ 
n]
T
� = 1 (6.14)

Multiplying (6.13) on the left by [x1∗ + sign(x1∗)
1, . . . ,xn∗ + sign(xn∗)
n], we obtain

[|x1∗|+ 
1, . . . , |xn∗|+ 
n]μ

−κ(ε)

√√√√√√√
[|x1∗|+ 
1, . . . , |xn∗|+ 
n]

⎛⎜⎜⎜⎜⎜⎝
n∑
i=1

(λi + bi)−1uiuT
i

⎞⎟⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1∗|+ 
1

...
|xn∗|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− ν∗ [|x1∗|+ 
1, . . . , |xn∗|+ 
n]

T
� = 0

which implies
ν∗ = V

by (6.14) and the fact that both (6.11) and (6.12) have the same optimal value. Multiplying
(6.13) on the left by �TΣ−1diag(sign(x1∗), . . . ,sign(xn∗)) obtains

�
T

⎛⎜⎜⎜⎜⎜⎝
n∑
i=1

(λi + bi)
−1uiu

T
i

⎞⎟⎟⎟⎟⎟⎠μ
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−κ(ε)
�
T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1∗|+ 
1

...
|xn∗|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦√√√√√√
[|x1∗|+ 
1, . . . , |xn∗|+ 
n]

(∑n
i=1(λi + bi)−1uiuT

i

)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1∗|+ 
1

...
|xn∗|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− ν∗�T

⎛⎜⎜⎜⎜⎜⎝
n∑
i=1

(λi + bi)
−1uiu

T
i

⎞⎟⎟⎟⎟⎟⎠� = 0

⇒ κ(ε) =

⎛⎜⎜⎜⎜⎜⎝�T
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

(λi + bi)
−1uiu

T
i

⎞⎟⎟⎟⎟⎟⎠μ− ν∗�T
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

(λi + bi)
−1uiu

T
i

⎞⎟⎟⎟⎟⎟⎠�
⎞⎟⎟⎟⎟⎟⎠√√√√√√√

[|x1∗|+ 
1, . . . , |xn∗|+ 
n]

⎛⎜⎜⎜⎜⎜⎝
n∑
i=1

(λi + bi)−1uiuT
i

⎞⎟⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1∗|+ 
1

...
|xn∗|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
by using (6.14) again. Substituting the above into (6.13) before multiplying the resulting
equation on the left by Σ−1diag(sign(x1∗), . . . ,sign(xn∗)) result in⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

(λi + bi)
−1uiu

T
i

⎞⎟⎟⎟⎟⎟⎠μ− ν∗
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

(λi + bi)
−1uiu

T
i

⎞⎟⎟⎟⎟⎟⎠�
−
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1∗|+ 
1

...
|xn∗|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎝�T

⎛⎜⎜⎜⎜⎜⎝
n∑
i=1

(λi + bi)
−1uiu

T
i

⎞⎟⎟⎟⎟⎟⎠μ− ν∗�T
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

(λi + bi)
−1uiu

T
i

⎞⎟⎟⎟⎟⎟⎠�
⎞⎟⎟⎟⎟⎟⎠ = 0

so that rearranging we get⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1∗|+ 
1

...
|xn∗|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
(∑n

i=1(λi + bi)
−1uiuT

i

)
μ− ν∗

(∑n
i=1(λi + bi)

−1uiuT
i

)
�

�T
(∑n

i=1(λi + bi)−1uiuT
i

)
μ− ν∗�T

(∑n
i=1(λi + bi)−1uiuT

i

)
�

.

It remains to substitute w∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
|x1∗|+ 
1

...
|xn∗|+ 
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ and ν∗ = V into the above equation to obtain the

desired result. �

6.2.2.1 Individual Eigenvalue Uncertainty

We are now ready to provide a necessary and sufficient condition (6.15) in the following
theorem for the diversification return of the portfolio obtained by solving

max
wi∈�\{
i },i=1,...,n

{
wTμ−κ(ε)

√
wTΣw :wT

� = 1,w ≥ �
}

to increase when the ith eigenvalue of the scale matrix changes slightly.
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Theorem 6.14

Let w∗ be the optimal solution of

w∗ =

(∑n
i=1(λi + bi)

−1uiuT
i

)
μ−V

(∑n
i=1(λi + bi)

−1uiuT
i

)
�

�T
(∑n

i=1(λi + bi)−1uiuT
i

)
μ−V�T

(∑n
i=1(λi + bi)−1uiuT

i

)
�

.

Then, a necessary and sufficient condition for
dDr(w∗)

dbj

∣∣∣∣
b=0

to be positive is

AV̄ 2 +BV̄ +C > 0 (6.15)

where

A =
(
σ2 − 2w̄TΣ

)⎛⎜⎜⎜⎜⎜⎝Σ
−1
��

TujuT
j �−ujuT

j ��
TΣ−1�

λ2
j

⎞⎟⎟⎟⎟⎟⎠ ,
B =

(
σ2 − 2w̄TΣ

)⎛⎜⎜⎜⎜⎜⎝ujuT
j ��

TΣ−1μ+ujuT
j μ�

TΣ−1�−Σ−1μ�TujuT
j �−Σ−1��TujuT

j μ

λ2
j

⎞⎟⎟⎟⎟⎟⎠ ,
C =

(
σ2 − 2w̄TΣ

)⎛⎜⎜⎜⎜⎜⎝Σ
−1μ�TujuT

j μ−ujuT
j μ�

TΣ−1μ

λ2
j

+
dV
dbj

∣∣∣∣∣∣
b=0

(
Σ−1μ�TΣ−1�−Σ−1��TΣ−1μ

))
.

Proof: First, note that wi∗ is differentiable with respect to bj for all i, j = 1, . . . ,n by using
arguments similar to those found in the proof of Theorem 4.6. Therefore, the derivative of
the diversification return of the portfolio obtained by solving (6.11) with respect to bj is

dDr(w∗)
dbj

=

⎛⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎣

n∑
i=1

(λi + bi)u
2
i1, . . . ,

n∑
i=1

(λi + bi)u
2
in

⎤⎥⎥⎥⎥⎥⎦− 2wT∗
n∑
i=1

(λi + bi)uiu
T
i

⎞⎟⎟⎟⎟⎟⎠ dw∗dbj

where

dw∗
dbj

=

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

�
TuiuT

i μ

λi + bi
−V

n∑
i=1

�
TuiuT

i �

λi + bi

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝− ujuT

j μ

(λj + bj )2
+V

ujuT
j �

(λj + bj )2
− dV
dbj

n∑
i=1

uiuT
i �

λi + bi

⎞⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎝
n∑
i=1

uiuT
i μ

λi + bi
−V

n∑
i=1

uiuT
i �

λi + bi

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝−�

TujuT
j μ

(λj + bj )2
+V

�
TujuT

j �

(λj + bj )2
− dV
dbj

n∑
i=1

�
TuiuT

i �

λi + bi

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

�
TuiuT

i μ

λi + bi
−V

n∑
i=1

�
TuiuT

i �

λi + bi

⎞⎟⎟⎟⎟⎟⎠
−2

.

such that
dV
dbj

= −
κ(ε)(uT

j w∗)2√∑n
i=1(λi + bi)(uT

i w∗)2
,
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by using the Envelope Theorem A.24. Thus, we have

dw∗
dbj

∣∣∣∣∣∣
b=0

=

⎛⎜⎜⎜⎜⎜⎝(�TΣ−1μ− V̄�TΣ−1�)
⎛⎜⎜⎜⎜⎜⎝−ujuT

j μ

λ2
j

+ V̄
ujuT

j �

λ2
j

− dV
dbj

∣∣∣∣∣∣
b=0

Σ−1�
⎞⎟⎟⎟⎟⎟⎠

−
(
Σ−1μ− V̄Σ−1�

)⎛⎜⎜⎜⎜⎜⎝−�
TujuT

j μ

λ2
j

+ V̄
�
TujuT

j �

λ2
j

− dV
dbj

∣∣∣∣∣∣
b=0

�
TΣ−1�

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠(

�
TΣ−1μ− V̄�TΣ−1�

)−2
=

⎛⎜⎜⎜⎜⎜⎝−ujuT
j μ�

TΣ−1μ

λ2
j

+ V̄
ujuT

j ��
TΣ−1μ

λ2
j

− dV
dbj

∣∣∣∣∣∣
b=0

Σ−1��TΣ−1μ

+ V̄
ujuT

j μ�
TΣ−1�

λ2
j

− V̄ 2
ujuT

j ��
TΣ−1�

λ2
j

+
Σ−1μ�TujuT

j μ

λ2
j

− V̄
Σ−1μ�TujuT

j �

λ2
j

+
dV
dbj

∣∣∣∣∣∣
b=0

Σ−1μ�TΣ−1�− V̄
Σ−1��TujuT

j μ

λ2
j

+V̄ 2
Σ−1��TujuT

j �

λ2
j

⎞⎟⎟⎟⎟⎟⎠(�TΣ−1μ− V̄�TΣ−1�)−2
so that

dDr(w∗)
dbj

∣∣∣∣∣∣
b=0

=
(
σ2 − 2w̄TΣ

)( dw∗
dbj

∣∣∣∣∣∣
b=0

)

=
(
AV̄ 2 +BV̄ +C

)(
�
TΣ−1μ− V̄�TΣ−1�

)−2
.

The theorem follows by noting that a necessary and sufficient condition for the above ex-
pression to be positive is for its numerator to be as well. �

6.2.2.2 Simultaneous Eigenvalue Uncertainty

We now provide a necessary and sufficient condition (6.16) in the following theorem for the
diversification return of the portfolio obtained by solving

max
wi∈�\{
i },i=1,...,n

{
wTμ−κ(ε)

√
wTΣw :wT

� = 1,w ≥ �
}

to increase when the each eigenvalue of the scale matrix changes slightly.

Theorem 6.15

Let w∗ be the optimal solution of

w∗ =

(∑n
i=1(λi + bi)

−1uiuT
i

)
μ−V

(∑n
i=1(λi + bi)

−1uiuT
i

)
�

�T
(∑n

i=1(λi + bi)−1uiuT
i

)
μ−V�T

(∑n
i=1(λi + bi)−1uiuT

i

)
�
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where bi = b for i = 1, . . . ,n. Then, a necessary and sufficient condition for dDr(w∗)
db

∣∣∣∣
b=0

to be

positive is

AV̄ 2 +BV̄ +C > 0 (6.16)

where

A =
(
σ2 − w̄TΣ

)⎛⎜⎜⎜⎜⎜⎝
n∑
i=1

Σ−1��TuiuT
i �−uiuT

i ��
TΣ−1�

λ2
i

⎞⎟⎟⎟⎟⎟⎠ ,
B =

(
σ2 − 2w̄TΣ

)⎛⎜⎜⎜⎜⎜⎝
n∑
i=1

uiuT
i ��

TΣ−1μ+uiuT
i μ�

TΣ−1�−Σ−1μ�TuiuT
i �−Σ−1��TuiuT

i μ

λ2
i

⎞⎟⎟⎟⎟⎟⎠ ,
C =

(
σ2 − 2w̄TΣ

)⎛⎜⎜⎜⎜⎜⎝
n∑
i=1

Σ−1μ�TuiuT
i μ−uiuT

i μ�
TΣ−1μ

λ2
i

+
dV
db

∣∣∣∣∣
b=0

(
Σ−1μ�TΣ−1�−Σ−1��TΣ−1μ

))
.

Proof: First, note that wi∗ is differentiable with respect to b for i = 1, . . . ,n by using
arguments similar to those found in the proof of Theorem 4.6. Therefore, we have that

dDr(w∗)
db

=

⎛⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎣

n∑
i=1

(λi + b)u2
i1, . . . ,

n∑
i=1

(λi + b)u2
in

⎤⎥⎥⎥⎥⎥⎦− 2wT∗
n∑
i=1

(λi + b)uiu
T
i

⎞⎟⎟⎟⎟⎟⎠ dw∗db

where

dw∗
db

=

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

�
TuiuT

i μ

λi + b
−V

n∑
i=1

�
TuiuT

i �

λi + b

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

− uiuT
i μ

(λi + b)2
+V

uiuT
i �

(λi + b)2
− dV

db

uiuT
i �

λi + b

⎞⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎝
n∑
i=1

uiuT
i μ

λi + b
−V

n∑
i=1

uiuT
i �

λi + b

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

−�
TuiuT

i μ

(λi + b)2
+V

�
TuiuT

i �

(λi + b)2
− dV

db

�
TuiuT

i �

λi + bi

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

�
TuiuT

i μ

λi + b
−V

n∑
i=1

�
TuiuT

i �

λi + b

⎞⎟⎟⎟⎟⎟⎠
−2

such that
dV
db

= − κ(ε)
∑n

i=1(u
T
i w∗)2√∑n

i=1(λi + b)(uT
i w∗)2

,

by using the Envelope Theorem A.24. Thus, we have

dw∗
db

∣∣∣∣∣
b=0

=

⎛⎜⎜⎜⎜⎜⎝(�TΣ−1μ− V̄�TΣ−1�)
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

⎛⎜⎜⎜⎜⎝−uiuT
i μ

λ2
i

+ V̄
uiuT

i �

λ2
i

⎞⎟⎟⎟⎟⎠− dV

db

∣∣∣∣∣
b=0

Σ−1�
⎞⎟⎟⎟⎟⎟⎠

−
(
Σ−1μ− V̄Σ−1�

)⎛⎜⎜⎜⎜⎜⎝
n∑
i=1

⎛⎜⎜⎜⎜⎝−�TuiuT
i μ

λ2
i

+ V̄
�
TuiuT

i �

λ2
i

⎞⎟⎟⎟⎟⎠− dV
db

∣∣∣∣∣
b=0

�
TΣ−1�

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠
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(
�
TΣ−1μ− V̄�TΣ−1�

)−2
=

⎛⎜⎜⎜⎜⎜⎝−
n∑
i=1

uiuT
i μ�

TΣ−1μ
λ2
i

+ V̄
n∑
i=1

uiuT
i ��

TΣ−1μ
λ2
i

− dV
db

∣∣∣∣∣
b=0

Σ−1��TΣ−1μ

+ V̄
n∑
i=1

uiuT
i μ�

TΣ−1�
λ2
i

− V̄ 2
n∑
i=1

uiuT
i ��

TΣ−1�
λ2
i

+

n∑
i=1

Σ−1μ�TuiuT
i μ

λ2
i

− V̄
n∑
i=1

Σ−1μ�TuiuT
i �

λ2
i

+
dV
db

∣∣∣∣∣
b=0

Σ−1μ�TΣ−1�− V̄
n∑
i=1

Σ−1��TuiuT
i μ

λ2
i

+V̄ 2
n∑
i=1

Σ−1��TuiuT
i �

λ2
i

⎞⎟⎟⎟⎟⎟⎠(�TΣ−1μ− V̄�TΣ−1�)−2

so that

dDr(w∗)
db

∣∣∣∣∣
b=0

=
(
σ2 − 2w̄TΣ

)( dw∗
db

∣∣∣∣∣
b=0

)

=
(
AV̄ 2 +BV̄ +C

)(
�
TΣ−1μ− V̄�TΣ−1�

)−2
.

The theorem follows immediately by noting that a necessary and sufficient condition for the
above expression to be positive is for its numerator to be as well. �

6.2.3 Location and Eigenvalue Uncertainties

We consider the effects of both location and eigenvalue uncertainties on the portfolio diver-
sification return. To obtain analytical results later, we do not let wi to be either 0 or 
i , so
that the robust location-scale problem (4.3) can be rewritten as

max
wi∈�\{0,
i },i=1,...,n

⎧⎪⎪⎪⎨⎪⎪⎪⎩wTμ−
n∑
i=1

|wi |ai −κ(ε)
√√

n∑
i=1

(λi + bi) (wTui)
2
:wT

� = 1,w ≥ �

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (6.17)

Note that the impact of removing 0 and 
i from the feasible domain of wi is negligible due
to the continuity of the original problem. The optimal solution of (6.17) can be very well
approximated in practice by solving

max
w∈�n

⎧⎪⎪⎪⎨⎪⎪⎪⎩wTμ−
n∑
i=1

|wi |ai −κ(ε)
√√

n∑
i=1

(λi + bi) (wTui)
2
:

wT
� = 1,

�+ δ� ≤w ≤ −δ�,
w ≥ δ�

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where δ is a small positive number. We state a theorem providing us with the optimal
solution of (6.11) in analytical form.
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Theorem 6.16

The optimal solution of (6.17) is

w∗ =

∑n
i=1

uiuT
i

λi+bi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(μ1 − sign(w1∗)a1)

...
(μn − sign(wn∗)an)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦−V�
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∑n
i=1

�TuiuT
i

λi+bi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(μ1 − sign(w1∗)a1)

...
(μn − sign(wn∗)an)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦−V�
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where V is the associated optimal value.

Proof: The proof is completely analogous with that of Theorem 6.10 with the covariance
matrix replaced by its eigendecomposition. �

Subsequently, we provide a necessary and sufficient condition (6.18) in the following
theorem for the diversification return of the portfolio obtained by solving

max
wi∈�\{0,
i },i=1,...,n

{
wTμ−κ(ε)

√
wTΣw :wT

� = 1,w ≥ �
}

to increase when each asset location and each eigenvalue of the scale matrix changes slightly.

Theorem 6.17

Let w∗ be the optimal solution of

w∗ =

∑n
i=1

uiuT
i

λi+bi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(μ1 − sign(w1∗)a1)

...
(μn − sign(wn∗)an)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦−V�
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∑n
i=1

�TuiuT
i

λi+bi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(μ1 − sign(w1∗)a1)

...
(μn − sign(wn∗)an)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦−V�
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ai = pσi and bi = p for i = 1, . . . ,n. Then, a necessary and sufficient condition for dDr(w∗)
dp

∣∣∣∣
p=0

to be positive is

AV̄ 2 +BV̄ +C > 0, (6.18)

where

A =
(
σ2 − w̄TΣ

)⎛⎜⎜⎜⎜⎜⎝
n∑
i=1

Σ−1��TuiuT
i �−uiuT

i ��
TΣ−1�

λ2
i

⎞⎟⎟⎟⎟⎟⎠ ,
B =

(
σ2 − 2w̄TΣ

)⎛⎜⎜⎜⎜⎜⎝
n∑
i=1

uiuT
i ��

TΣ−1μ+uiuT
i μ�

TΣ−1�−Σ−1μ�TuiuT
i �−Σ−1��TuiuT

i μ

λ2
i
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+Σ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(w̄1)σ1

...
sign(w̄n)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦�TΣ−1�−Σ−1��TΣ−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(w̄1)σ1

...
sign(w̄n)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

C =
(
σ2 − 2w̄TΣ

)⎛⎜⎜⎜⎜⎜⎝
n∑
i=1

Σ−1μ�TuiuT
i μ−uiuT

i μ�
TΣ−1μ

λ2
i

+
dV
dp

∣∣∣∣∣
p=0

(
Σ−1μ�TΣ−1�−Σ−1��TΣ−1μ

)
+Σ−1μ�TΣ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(w̄1)σ1

...
sign(w̄n)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−Σ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(w̄1)σ1

...
sign(w̄n)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦�TΣ−1μ
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Proof: First, note that wi∗ is differentiable with respect to p for i = 1, . . . ,n by using
arguments similar to those found in the proof of Theorem 4.6. Therefore, we have that

dDr(w∗)
dp

=

⎛⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎣

n∑
i=1

(λi + p)u2
i1, . . . ,

n∑
i=1

(λi + p)u2
in

⎤⎥⎥⎥⎥⎥⎦− 2wT∗
n∑
i=1

(λi + p)uiu
T
i

⎞⎟⎟⎟⎟⎟⎠ dw∗dp

where

dw∗
dp

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

�
TuiuT

i

λi + p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
μ1 − sign(w1∗)pσ1

...
μn − sign(wn∗)pσn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦−V�
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

uiuT
i

λi + p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−sign(w1∗)σ1

...
−sign(wn∗)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦− dV

dp
�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

n∑
i=1

uiuT
i

(λi + p)2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
μ1 − sign(w1∗)pσ1

...
μn − sign(wn∗)pσn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦−V�
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

uiuT
i

λi + p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
μ1 − sign(w1∗)pσ1

...
μn − sign(wn∗)pσn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦−V�
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

�
TuiuT

i

λi + p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−sign(w1∗)σ1

...
−sign(wn∗)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦− dV

dp
�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

n∑
i=1

�
TuiuT

i

(λi + p)2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
μ1 − sign(w1∗)pσ1

...
μn − sign(wn∗)pσn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦−V�
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
n∑
i=1

�
TuiuT

i

λi + bi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(μ1 − sign(w1∗)a1)

...
(μn − sign(wn∗)an)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦−V�
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−2

such that

dV
dp

= −
n∑
i=1

|wi∗|σi −
κ(ε)

∑n
i=1(u

T
i w∗)2√∑n

i=1(λi + p)(uT
i w∗)2

,

by using the Envelope Theorem A.24. Thus, we have

dw∗
dp

∣∣∣∣∣
p=0

=

⎛⎜⎜⎜⎜⎜⎝(�TΣ−1μ− V̄�TΣ−1�)
⎛⎜⎜⎜⎜⎜⎝−

n∑
i=1

uiuT
i μ

λ2
i

+ V̄
n∑
i=1

uiuT
i �

λ2
i

−Σ−1
⎡⎢⎢⎢⎢⎢⎢⎣
sign(w̄1)σ1

. . .
sign(w̄n)σn

⎤⎥⎥⎥⎥⎥⎥⎦− dV
dp

∣∣∣∣∣
p=0

Σ−1�

⎞⎟⎟⎟⎟⎟⎟⎠
−
(
Σ−1μ− V̄Σ−1�

)⎛⎜⎜⎜⎜⎜⎝−
n∑
i=1

uiuT
i μ

λ2
i

+ V̄
n∑
i=1

uiuT
i �

λ2
i

−�TΣ−1
⎡⎢⎢⎢⎢⎢⎢⎣
sign(w̄1)σ1

. . .
sign(w̄n)σn

⎤⎥⎥⎥⎥⎥⎥⎦− dV
dp

∣∣∣∣∣
p=0

�
TΣ−1�

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠(

�
TΣ−1μ− V̄�TΣ−1�

)−2
=

⎛⎜⎜⎜⎜⎜⎝−
n∑
i=1

uiuT
i μ�

TΣ−1μ
λ2
i

+ V̄
n∑
i=1

uiuT
i ��

TΣ−1μ
λ2
i

− dV
dp

∣∣∣∣∣
p=0

Σ−1��TΣ−1μ

+ V̄
n∑
i=1

uiuT
i μ�

TΣ−1�
λ2
i

− V̄ 2
n∑
i=1

uiuT
i ��

TΣ−1�
λ2
i

+

n∑
i=1

Σ−1μ�TuiuT
i μ

λ2
i

− V̄
n∑
i=1

Σ−1μ�TuiuT
i �

λ2
i

+
dV
dp

∣∣∣∣∣
p=0

Σ−1μ�TΣ−1�− V̄
n∑
i=1

Σ−1��TuiuT
i μ

λ2
i

+ V̄ 2
n∑
i=1

Σ−1��TuiuT
i �

λ2
i

−Σ−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(w̄1)σ1

...
sign(w̄n)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦�TΣ−1μ

+ V̄Σ−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(w̄1)σ1

...
sign(w̄n)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦�TΣ−1�+Σ−1μ�TΣ−1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(w̄1)σ1

...
sign(w̄n)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
−V̄Σ−1��TΣ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign(w̄1)σ1

...
sign(w̄n)σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
�
TΣ−1μ− V̄�TΣ−1�

)−2
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so that

dDr(w∗)
dp

∣∣∣∣∣
p=0

=
(
σ2 − 2w̄TΣ

)⎛⎜⎜⎜⎜⎝ dw∗dp

∣∣∣∣∣
p=0

⎞⎟⎟⎟⎟⎠
=

(
AV̄ 2 +BV̄ +C

)(
�
TΣ−1μ− V̄�TΣ−1�

)−2
.

The theorem follows immediately by noting that a necessary and sufficient condition for the
above expression to be positive is for its numerator to be as well. �

6.2.4 Eigenvector Uncertainty

Finding conditions for the diversification return of the portfolio obtained by solving the
location-scale problem to increase if the eigenvectors of the scale matrix Σ change direction
slightly with their orthogonality preserved is non-trivial, although there is an expression
(6.19) to describe the behavior of this change in the following theorem, which can be easily
modified to include location uncertainty and/or eigenvalue uncertainty.

Theorem 6.18

Denote w̄ the optimal solution of

max
w∈W�

{
wTμ−κ(ε)

√
wTΣw

}
.

Let (w∗,τ∗, y∗) and (Z∗ν∗,υ∗) be the optimal solution of

max
(w,τ,y)∈W�×�+×�

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
wTμ−κ(ε)y :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(y + τ(1− c)2)In − τe1eT1

wTPT
1

...
wTPT

n

P1w . . . Pnw diag(λ−11 , . . . ,λ−1n )y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 0, y ≥ δ

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
and its Lagrange dual problem

min
(Z,ν,υ)∈�2n+ ×�×�n+2

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩−ν −
n∑
i=1

υi − δυn+2 :
μi + ν +υi + tr(FiZ) = 0, i = 1, . . . ,n

υn+1 + tr(GZ) = 0,
υn+2 −κ(ε) + tr(HZ) = 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭
respectively, where w∗ is also the optimal solution of the robust location-scale problem

max
w∈W�

min
u∈�n

⎧⎪⎪⎪⎨⎪⎪⎪⎩wTν −κ(ε)
√√

n∑
i=1

λi((u/‖u‖2)TPiw)2 : (u/‖u‖2)Te1 ≥ 1− c
⎫⎪⎪⎪⎬⎪⎪⎪⎭

using Theorem 3.5.

Denote z∗ the vectorized form of the upper half of Z∗. Assume [z∗,υn+1∗]T, [z∗,υn+2∗]T and
each column of the matrix on the left-hand side of the semi-definite constraint in (4.26) evaluated
at (w∗,τ∗, y∗) are all non-zero vectors. If there exists a feasible solution of (4.26) such that the
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(matrix) inequality constraints hold strictly, then the derivative of the diversification return of the

portfolio obtained by solving (4.26) evaluated at c = 0 is

dDr(w∗)
dc

∣∣∣∣∣
c=0

= (σ2 − 2w̄TΣ)
dw∗
dc

∣∣∣∣∣
c=0

(6.19)

where dw∗
dc is the first n entries of

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂f1
∂w1∗ . . .

∂f1
∂wn∗

∂f1
∂τ∗

∂f1
∂y∗

∂f1
∂Z11∗ . . .

∂f1
∂Z1,2n∗ . . . . . .

∂f1
∂Z2n,1∗ . . .

∂f1
∂Z2n,2n∗

∂f1
∂ν∗

∂f1
∂υ1∗ . . .

∂f1
∂υn+2∗

...
∂fN
∂w1∗ . . .

∂fN
∂wn∗

∂fN
∂τ∗

∂fN
∂y∗

∂fN
∂Z11∗ . . .

∂fN
∂Z1,2n∗ . . . . . .

∂fN
∂Z2n,1∗ . . .

∂fN
∂Z2n,2n∗

∂fN
∂ν∗

∂fN
∂υ1∗ . . .

∂fN
∂υn+2∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂c
...

∂fN
∂c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.20)

provided the inverse exists, such that each of f1, . . . , fN=4n2+2n+5 represents the left-hand side of

one of the equations⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(y∗ + τ∗(1− c)2)In − τ∗e1eT1

wT∗ PT
1

...
wT∗ PT

n

P1w∗ . . . Pnw∗ diag(λ̄−11 , . . . , λ̄−1n )y∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Z∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ij

= 0, i, j = 1, . . . ,2n, (6.21)

μi + ν∗ +υi∗ + tr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0n×n

pT
1i
...

pT
ni

p1i . . . pni 0n×n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Z∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0, i = 1, . . . ,n, (6.22)

υn+1∗ + tr

([
(1− c)2In − e1eT1 0n×n

0n×n 0n×n

]
Z∗

)
= 0, (6.23)

υn+2∗ −κ(ε) + tr

([
In 0n×n

0n×n diag(λ̄1, . . . , λ̄n)

]
Z∗

)
= 0, (6.24)

wT∗ �− 1 = 0, (6.25)

υi∗wi∗ = 0, i = 1, . . . ,n, (6.26)

υn+1∗τ∗ = 0, (6.27)

υn+2∗y∗ = 0. (6.28)

Proof: Due to the same reasons as in the proof of Theorem 4.9, the KKT conditions
(6.21)-(6.28) hold, and (w∗,τ∗, y∗) and Z∗ are continuously differentiable with respect to c.
Since the partial derivative of (6.23) with respect to υn+1∗ is one, and the Jacobian of the
left-hand side of (6.22)-(6.23) with respect to (υn+1∗,ν∗), the Jacobian of the left-hand side
of (6.22)-(6.23) with respect to (υn+1∗,υi∗) for i = 1, . . . ,n, and the Jacobian of the left-hand
side of (6.23)-(6.24) with respect to (υn+1∗,υn+2∗) are all non-singular, we have that ν∗ and
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υ∗ are continuously differentiable with respect to c as well by the Implicit Function Theorem
A.19. Thus, differentiating each equation in (6.21)-(6.28) with respect to c obtains⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂w1∗ . . .

∂f1
∂wn∗

∂f1
∂τ∗

∂f1
∂y∗

∂f1
∂Z11∗ . . .

∂f1
∂Z1,2n∗ . . . . . .

∂f1
∂Z2n,1∗ . . .

∂f1
∂Z2n,2n∗

∂f1
∂ν∗

∂f1
∂υ1∗ . . .

∂f1
∂υn+2∗

...
∂fN
∂w1∗ . . .

∂fN
∂wn∗

∂fN
∂τ∗

∂fN
∂y∗

∂fN
∂Z11∗ . . .

∂fN
∂Z1,2n∗ . . . . . .

∂fN
∂Z2n,1∗ . . .

∂fN
∂Z2n,2n∗

∂fN
∂ν∗

∂fN
∂υ1∗ . . .

∂fN
∂υn+2∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

dw1∗
dc . . . dwn∗

dc
dτ∗
dc

dy∗
dc

dZ11∗
dc . . .

dZ1,2n∗
dc . . . . . .

dZ2n,1∗
dc . . .

dZ2n,2n∗
dc

dν∗
dc

dυ1∗
dc . . . dυn+2∗dc

]T

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂f1
∂c
...

∂fN
∂c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0N×1,

from which it follows that dw∗
dc is indeed the first n entries of (6.20) provided the inverse

exists. The proof concludes by noting (6.19) as an obvious fact. �
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Chapter 7

Conclusions

In Chapter 1, we give the motivation of our thesis and introduce the Markowitz model
before showing that it is equivalent to the portfolio return value-at-risk optimization problem
if we assume the risky asset returns follow a multivariate normal distribution, in which
case a solution of the latter results in a portfolio expected return and standard deviation
that lies exactly on a point of the Markowitz efficient frontier. If a riskless asset is added
and the amounts to be invested in the risky assets and riskless asset are predetermined
exogeneously, then the optimal portfolio with riskless asset has an expected return and
standard deviation that falls on the line joining the point represented by the expected return
and standard deviation of the optimal portfolio without riskless asset and (0,μ0), where μ0
is the risk-free asset return. If the amount to be invested in the risky assets and riskless asset
are to be determined endogeneously, then three things can happen. First, if the optimal
portfolio value-at-risk is lower than the risk-free asset return, then all wealth is kept in
the riskless asset. Second, if the optimal portfolio value-at-risk is higher than the risk-free
asset return, then all wealth is placed on the risky assets. Third, if the optimal portfolio
value-at-risk is equal to the risk-free asset return, then the allocation of wealth has to be
decided exogeneously. We also mention the failure of the Markowitz model to include model
uncertainty and higher moments, but since it is equivalent to the portfolio return value-at-
risk optimization problem under multivariate normality of risky asset returns, these features
can be added into the former implicitly by incorporating them into the latter. However,
doing so generally causes the resulting problem to be non-convex and existing methods in
the literature to overcome this issue are too conservative and/or intractable.

In Chapter 2, we introduce a spline approximation method where the minimal sample
value-at-risk or any other risk measure is smoothed via a quadratic B-spline, which can
then be maximized. Gaivoronski and Pflug (2005) introduce a similar method, but theirs
does not take into account model uncertainty. The cardinality of the discretization set of
the feasible domain and the number of basis parameters to be estimated only increases
polynomially and linearly respectively with the number of assets. Simulation results are
reasonably accurate in the two-dimensional setting.

In Chapter 3, we show that the robust portfolio return value-at-risk optimization prob-
lem under elliptical distributions possesses a location-scale form. We introduce the box
and ellipsoidal uncertainty sets for the location vector, where in particular under the former
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uncertainty set the location-scale problem is equivalent to an SOCP. We introduce the box,
ellipsoidal, correlation coefficient, specific portfolio scale and one-factor model uncertainty
sets for the scale matrix, under any of which uncertainty sets the location-scale problem
either is very conservative, requires a positive definite constraint on the scale matrix (since
the uncertainty set does not live in the positive definite space), has a high computational
complexity or is in any combination of the three situations just mentioned. A novel eigen-
decomposition uncertainty set for the scale matrix is then introduced where the eigenvalues
vary in a box uncertainty set and the eigenvectors each varies in a cone uncertainty set with
orthogonality preserved among them, such that the scale matrix lives in the positive defi-
nite space and all its other entries are determined by fixing any one of them, thus greatly
reducing conservativeness. Although the robust location-scale problem with the eigende-
composition uncertainty set for the scale matrix is non-convex in general, we can convert it
into an SDP which is solvable in polynomial time.

In Chapter 4, we introduce a scale invariant method to determine the size of the box
uncertainty set for the location vector, the box uncertainty set for the eigenvalues and
the cone uncertainty set for each eigenvector, based on a chosen level of sensitivity. We
perform some numerical experiments using data obtained from Nasdaq and NYSE under
different combinations of these uncertainty sets, where the median sensitivity level is always
chosen and the portfolio return value-at-risk is maximized assuming that the returns follow
a multivariate normal distribution and several other comparable elliptical distributions. In
particular, we see that with uncertainty, the move towards a less diversified portfolio (in the
sense that fewer assets are included) is more gradual as the value-at-risk level increases.

In Chapter 5, we include trading costs and integer constraints so that the robust location-
scale optiimization problem involving any combination of the location, eigenvalue and eigen-
vector uncertainty sets from the previous chapter can be reformulated as a mixed integer
program. Numerical experiments analogous to those conducted previously are performed
where similar conclusions can be drawn.

In Chapter 6, we introduce the portfolio RQE as a unifying diversification measure,
and interpret the robust location-scale problem as maximizing the diversification return (a
special case of the portfolio RQE) combined with other measures so that the asset allo-
cation performance is improved, under imperfect information of the model. We also find
expressions for the sensitivity of the diversification return of the optimal portfolio obtained
by solving the location-scale problem to various types of uncertainty, and in some cases
provide conditions for them to be positive.

In conclusion, we provide a probabilistic method and a deterministic model within the
location-scale framework to robustly optimize the portfolio return value-at-risk, with the
flexibility of extending to other risk measures. In the future, we hope to move outside the
location-scale framework without compromising on computational complexity and conser-
vativeness, as well as consider the multi-period setting. On a final note, what we present in
this thesis is only our humble opinion of robust portfolio optimization, which for sure is a
burgeoning field of research with many more exciting years to come.
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Appendix A

A.1 Mathematical Background

Definition A.5

A function f :�n→� is called a norm if

(i) f is non-negative: f (x) ≥ 0 for all x ∈�n,

(ii) f is definite: f (x) = 0 only if x = 0,

(iii) f is homogeneous: f (tx) = |t|f (x) ∀t ∈�, x,∈�n, and

(iv) f satisfies the triangle inequality: f (x+ y) ≤ f (x) + f (y) for all x,y ∈�n.

Remark A.5

We use the notation ‖·‖ to represent a norm hereafter. The distance between two points x,y ∈�n

is defined as the norm of its difference ‖x − y‖. Furthermore, if ‖ · ‖a and ‖ · ‖b represent two
different norms defined on Rn, then there exists α and β such that for all x ∈�n,

α‖x‖a ≤ ‖x‖b ≤ β‖x‖a.
Therefore, we say that all the norms of any finite-dimensional Euclidean space are equivalent.

Definition A.6

A set C ⊆�n is convex if for any x,y ∈ C and θ ∈ [0,1], then θx+ (1−θ)y ∈ C.
Definition A.7

A cone is a set C ⊆�n such that if x ∈ C and θ ≥ 0, then θx ∈ C.
Definition A.8

An element x ∈ C ⊆ �n is an interior point if there exists an ε > 0 such that all points whose

Euclidean distance is less than or equal to ε from x lies completely in C, that is,
{y : ‖y− x‖2 ≤ ε} ⊆ C.

The interior of C, which we denote as int(C), is the set of the interior points of C.
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Remark A.6

Due to the equivalence of norms in the Euclidean space, all norms generate the same set of interior

points. Therefore, we choose the Euclidean norm ‖ · ‖2 without loss of generality.
Definition A.9

An set C ⊆�n is open if every of its points is in its interior, that is, int(C) = C.
Definition A.10

A set C ⊆�n is closed if its complement Rn\C = {x ∈�n : x � C} is open.
Remark A.7

Note that we can also define closed sets in terms of convergent sequence and limit points. A set

C ⊆�n is closed if and only if x ∈�n for any sequence of points x1,x2, . . . which converges to x.

Definition A.11

The affine hull of a set C ⊆�n is denoted aff C and defined as

aff C =
⎧⎪⎪⎨⎪⎪⎩

k∑
i=1

θixi :
k∑

i=1

θi = 1

⎫⎪⎪⎬⎪⎪⎭ .
Definition A.12

The relative interior of a set C is denoted relint C and defined as
{x : B(x, r)∩ aff C ⊆ C for some r ≥ 0}.

where B(x, r) = {y : ‖y− x‖2 ≤ r}.
Remark A.8

Analogous to the definition of the interior of a set, any norm on Rn defines the same relative

interior, so that we choose the Euclidean norm ‖ · ‖2 without loss of generality.
Theorem A.19 (Implicit Function Theorem)

Let f1, . . . , fm : �m+n→ � be continuously differentable functions. Consider the system of equa-

tions
f1(y,x) = c1

...

fm(y,x) = cm

(A.1)

where y = [y1, . . . , ym]
T a x = [x1, . . . ,xn]

T. Suppose y∗ = [y1∗, . . . , ym∗]T and x∗ = [x1∗, . . . ,xn∗]T
form a solution of (A.1), and the determinant of

∂(f1, . . . , fm)

∂(y1, . . . , ym)
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂f1
∂y1

. . . ∂f1
∂ym

...
. . .

...
∂fm
∂y1

. . . ∂fm
∂ym

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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evaluated at (y∗,x∗) is non-vanishing, then there exist continuously differentiable functions g1(x), . . . , gm(x)
such that

f1(g1(x), . . . , gm(x),x) = c1
...

fm(g1(x), . . . , gm(x),x) = cm

for all x in a ball centered around x∗, and

y1∗ = g1(x∗)
...

ym∗ = gm(x∗).

In addition,
∂gk
∂xh

(x∗) can be computed by letting dxh = 1 and dxj = 0, j � h in

∂f1
∂y1

dy1 + . . .+
∂f1
∂ym

dym +
∂f1
∂x1

dx1 + . . .+
∂f1
∂xn

dxn = 0

...

∂fm
∂y1

dy1 + . . .+
∂fm
∂ym

dym +
∂fm
∂x1

dx1 + . . .+
∂fm
∂xn

dxn = 0

and solving for dyk , where each partial derivative is evaluated at (g1(x∗), . . . , gm(x∗),x∗).

Remark A.9

Refer to [183, Chapter 15] for a discussion on the Implicit Function Theorem.

Lemma A.1 (S-Lemma)

(i) (homogeneous version) Let A, B be symmetric matrices of the same size such that xTAx > 0

for some x. Then
xTAx ≥ 0⇒ xTBx ≥ 0

holds if and only if

∃λ ≥ 0 : B � λA.

(ii) (inhomogeneous version) Let A, B be symmetric matrices of the same size and the quadratic
form

xTAx+2aTx+α⇒ xTBx+2bTx+ β ≥ 0

holds if and only if

∃λ ≥ 0 :

[
B−λA b−λa
bT −λaT β −λα

]
� 0.
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Proof: Refer to [30, section 4.3.5]. �
Lemma A.2 (Schur Complement Lemma)

A symmetric block matrix

A =

[
P QT

Q R

]
with R being positive (semi)-definite if and only if

P−QTR−1Q

is positive (semi)-definite.

Proof: A is positive semi-definite if and only if

∀u,v : uTPu+2uTQTv+ vTRv ≥ 0

⇔ ∀u : min
v

{
uTPu+2uTQTv+ vTRv

}
≥ 0. (A.2)

Since R is positive semi-definite, the optimal value of the above optimization problem with
an objective function of quadratic form occurs exactly when the first-order condition is
satisfied, that is, when v = R−1Qu which, upon substituting into (A.2) obtains

∀u : uT(P−QTR−1Q)u ≥ 0,

equivalent to the positive semi-definiteness of P−QTR−1Q. The same argument applies for
the positive definite case. �
Theorem A.20

Let x ∈�n and y,z ∈�+. Then

xTx ≤ yz

if and only if ∥∥∥∥∥∥
[

2x
y − z

]∥∥∥∥∥∥
2

≤ y + z.

where ‖ · ‖2 represents the Euclidean norm.
Proof: If y and z are non-negative, then∥∥∥∥∥∥

[
2x
y − z

]∥∥∥∥∥∥
2

≤ y + z

⇔
∥∥∥∥∥∥
[

2x
y − z

]∥∥∥∥∥∥
2

2

≤ (y + z)2

⇔ 4xTx+ (y − z)2 ≤ y2 + z2 + 2yz

⇔ xTx ≤ yz.

�
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A.2 Generalized Inequality Constrained Optimization

We first state two definitions which we will use in this section.

Definition A.13

A non-strict partial ordering over a set C ⊆ �n, denoted as �C , is a binary relation such that
x,y,z ∈ C satisfy the following properties:

(i) x �C x (reflexivity),

(ii) if x �C y and y �C x, then x = y (antisymmetry),

(iii) if x �C y and y �C z, then x �C z (transitivity).

Definition A.14

A strict partial ordering over a set C ⊆ �n, denoted as ≺C , is a binary relation such that
x,y,z ∈ K satisfy the following properties:

(i) x ≺C x (irreflexivity),

(ii) if x ≺C y, theny⊀C x, (asymmetry),

(iii) if x ≺C y and y ≺C z, then x ≺C z (transitivity).

A.2.1 Generalized Inequality Constraints

Definition A.15

A cone K ⊆ �n is proper if it is convex, closed, solid (has nonempty interior), and pointed

(contains no line, meaning that if x,−x ∈ K, then x = 0).

Definition A.16

A generalized non-strict inequality associated with a proper cone K ∈ �n is the non-strict

partial ordering defined by

x �K y⇔ y− x ∈ K.

Definition A.17

A generalized strict inequality associated with a proper cone K ∈ �n is the strict partial

ordering defined by

x ≺K y⇔ y− x ∈ int(K).

Remark A.10

We also write y �K x and y �K x for x �K y and x ≺K y respectively.
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A.2.2 Duality

Definition A.18

The set

K∗ = {y : xTy ≥ 0 ∀x ∈ K}
where K is a cone is called the dual cone of K.
Remark A.11

Note that K∗ is always convex, even though it may not be so for K.
Definition A.19

A function f :�n→�m is K-convex if
f (θx+ (1−θ)y) �K θf (x) + (1−θ)f (y).

for all x,y ∈ �n and θ ∈ [0,1], where K ⊆ �m is a proper cone associated with the generalized

inequality �K.
Definition A.20

Consider the constrained optimization problem with generalized inequality constraints

max
x∈�n

{
f (x) : gi(x) �Ki

0,hj(x) = 0, i = 1, . . . ,m, j = 1, . . . ,p
}

(A.3)

with Ki ⊆ �ci being a proper cone and a non-empty domain D = dom f ∩mi=1 dom gi ∩pj=1
dom hj . The associated Lagrangian is defined as

L(x,υ1, . . . ,υm,ν) = f (x)−
m∑
i=1

υT
i gi(x)−

p∑
j=1

νjhj(x),

such that υi ∈�ci and ν = [ν1, . . . ,νp]. The Lagrange dual function is defined as

d(υ1, . . . ,υm,ν) = sup
x∈D

L(x,υ1, . . . ,υm,ν).

Remark A.12

Since d(υ1, . . . ,υm,ν) is a pointwise supremum of the Lagrangian which is affine in (υ1, . . . ,υm,ν),
it is always convex.1

Definition A.21

The Lagrange dual problem of (A.3) is

min
υ1,...,υm∈∏m

i=1�
ci

{
d(υ1, . . . ,υm,ν) : υi �Ki∗ 0, i = 1, . . . ,m

}
. (A.4)

1It is a well-known fact that if f (x,y) is convex in x for each y in an arbitrary set A, then g(x) = sup
y∈A

f (x,y)

is convex in x.
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Definition A.22

Let p∗ and d∗ be the optimal values of (A.3) and (A.4) respectively. If p∗ ≤ d∗, we say that weak
duality holds. If p∗ = d∗, we say that strong duality holds, or there is zero duality gap between
the primal and dual problems (A.3) and (A.4) respectively.

Theorem A.21

Weak duality always holds for (A.3).

Proof: Since υi �Ki∗ 0 and gi(x) �Ki
0 for any primal and dual feasible x and υi respec-

tively, we have υT
i gi(x) ≤ 0, so that

f (x) ≤ f (x)−
m∑
i=1

υT
i gi(x)−

p∑
j=1

νihi(x)

due to the third term on the right being zero. Taking the supremum on both sides over x
yields

p∗ ≤ d(υ1, . . . ,υm,ν),

from which the result follows immediately. �

Definition A.23

If there exists an x ∈ relint D of (A.3) such that gi(x) �Ki
and 0,hj(x) = 0 for i = 1, . . . ,m

and j = 1, . . . ,p, then we say that Slater’s condition holds.

Theorem A.22

If f is convex, gi is Ki -convex and Slater’s condition is satisfied for (A.3), then strong duality
holds.

Proof: Refer to [170, p. 47]. �

Theorem A.23 (KKT Optimality Conditions)

Let x∗ and (υ1∗, . . . ,υm∗,ν∗) be the primal and dual optimal solutions of (A.3) and (A.4) respec-
tively with zero duality gap. In addition, assume that gi and hj are differentiable for i = 1, . . . ,m
and j = 1, . . . ,p. Then the following conditions, called the Karush-Kuhn-Tucker (KKT) conditions,
are satisfied:

(i) gi(x∗) �Ki
0, i = 1, . . . ,m,

(ii) hj(x∗) = 0, j = 1, . . . ,p,

(iii) υi∗ �Ki∗ 0, i = 1. . . . ,m,

(iv) υT
i∗gi(x∗) = 0, i = 1, . . . ,m, and

(v) �f (x∗) +
∑m

i=1DgTi (x∗)υ
∗
i +

∑p
j=1νj∗�hj(x∗) = 0.
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Proof: The first three conditions follow straightaway from the definitions of the primal
and dual problems. For the fourth and fifth conditions, note that

f (x∗) = d(υ1∗, . . . ,υm∗,ν∗)

≥ f (x∗)−
m∑
i=1

υT
i∗gi(x∗)−

p∑
j=1

νi∗hi(x∗)

≥ f (x∗),

(A.5)

where the equality is due to the zero duality gap, the first inequality is by definition of
the Lagrange dual problem, and the second inequality is due to the fact that hi(x∗) = 0

and υT
i∗gi(x∗) ≤ 0, with the latter being the case because υ∗ �Ki∗ 0 and gi(x∗) �Ki

so that
υT
i∗gi(x∗) ≤ 0 by definition of the dual cone. This implies that

f (x∗)−
m∑
i=1

υT
i∗gi(x∗)−

p∑
j=1

νi∗hi(x∗) = f (x∗),

and that we must have
∑m

i=1υ
T
i∗gi(x∗) = 0, where each summand is non-positive, from

which we conclude the fourth condition. We can also draw from (A.5) that x∗ minimizes
L(x,υ1∗, . . . ,υm∗,ν∗), from which the last condition follows. �

A.3 Envelope Theorems

Theorem A.24

[142] Consider the optimization problem

max
x∈X f (x,θ)

where X be the set of feasible solutions and f :�n×�→� is a parameterized objective function.

Let x∗ = [x1∗, . . . ,xn∗]T be an optimal solution and assume that the optimal value V (θ) = f (x∗,θ)
is differentiable at θ, that is,

dV
dθ

=

n∑
i=1

∂f

∂xi
(x∗,θ)

dxi∗
dθ

+
∂f

∂θ
(x∗,θ)

exists, then
dV
dθ

=
∂f

∂θ
(x∗,θ),

where
∂f
∂xi

(x∗,θ) and
∂f
∂xi

(x∗,θ) are partial derivatives with respect to xi and θ evaluated at x∗
respectively.

Proof: Since V is differentiable, we have that

dV
dθ

=
dV
dθ−

=
dV
dθ+

. (A.6)
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Now by the definitions of V (θ) and X∗(θ), it is obvious that
f (x∗,θ′)− f (x∗,θ) ≤ V (θ′)−V (θ) (A.7)

for any θ′ > 0. Assuming θ′ −θ > 0, dividing both sides of (A.7) by it and taking their limits
as θ′ → θ+, we obtain

lim
θ′→θ+

f (x∗,θ′)− f (x∗,θ)
θ′ −θ ≤ lim

θ′→θ+

V (θ′)−V (θ)

θ′ −θ
∂f

∂θ
(x∗,θ) ≤ dV

dθ+
.

Analogously, assuming θ′ − θ < 0, dividing both sides of (A.7) by it and taking their limits

as θ′ → θ− yields
∂f
∂θ (x∗,θ) ≥ dV

dθ− . This implies

dV
dθ−

≤ ∂f

∂θ
(x∗,θ) ≤ dV

dθ+

⇒ dV
dθ
≤ ∂f

∂θ
(x∗,θ) ≤ dV

dθ
(by (A.6))

⇒ dV
dθ

=
∂f

∂θ
(x∗,θ).

�
Remark A.13

The above is the Envelope Theorem for an optimzation problem with a parameterized objective

function.

Theorem A.25

Let x∗ be an optimal solution of the primal problem

max
x∈�n

{
f (x) : gi(x, ai) �Ki

0,hj(x, bj ) = 0, i = 1, . . . ,m, j = 1, . . . ,p
}

with a non-empty domain D = dom f ∩mi=1 dom gi ∩pj=1 dom hj , where f , gi and hj are all
differentiable and Ki ⊆ �ci are proper cones. Furthermore, let (υ1∗, . . . ,υm∗,ν∗) be an optimal
solution of the dual problem

min
υ1,...,υm∈∏m

i=1�
ci

⎧⎪⎪⎪⎨⎪⎪⎪⎩supx∈D
f (x)−

m∑
i=1

υT
i gi(x, ai)−

p∑
j=1

νjhj(x, bj ) : υi �Ki∗ 0, i = 1, . . . ,m

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
with zero duality gap. If x∗ is continuously differentiable at (a,b) where a = [a1, . . . , am]

T and

b = [b1, . . . , bp]
T, then

df

dai
(x∗) = − ∂

∂ai

ci∑
k=1

υikgik(x∗, ai), i = 1, . . . ,m,

df

dbi
(x∗) = −νj∗∂hi∂bi

(x∗, bi), i = 1, . . . ,p.
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Proof: First, note that all the conditions of Theorem A.23 are satisfied. Using the last
condition of Theorem A.23,

∂
∂x


f (x∗)−
m∑
j=1

cj∑
k=1

υjk∗
∂
∂x


gjk(x∗, aj )−
p∑

j=1

νj∗
∂
∂x


hj(x∗, bj ) = 0, 
 = 1, . . . ,n

which implies

∂
∂x


f (x∗) =
m∑
j=1

cj∑
k=1

υjk∗
∂
∂x


gjk(x∗, aj ) +
p∑

j=1

νj∗
∂
∂x


hj(x∗, bj ). (A.8)

Now, by the Chain Rule, we have for i = 1, . . . ,p

df

dbi
(x∗) =

n∑

=1

∂
∂x


f (x∗)
dx
∗
dbi

=

n∑

=1

m∑
j=1

cj∑
k=1

υjk∗
∂
∂x


gjk(x∗, aj )
dx
∗
dbi

+

n∑

=1

p∑
j=1

νj∗
∂
∂x


hj(x∗, bj )
dx
∗
dbi

(by (A.8))

= νi∗

⎛⎜⎜⎜⎜⎜⎝
n∑


=1

∂
∂x


hi(x∗, bi)
dx
∗
dbi

⎞⎟⎟⎟⎟⎟⎠+
p∑

j=1,j�i

νj∗

⎛⎜⎜⎜⎜⎜⎝
n∑


=1

d
dx


hj(x∗, bj )
dx
∗
dbi

⎞⎟⎟⎟⎟⎟⎠
m∑
j=1

n∑

=1

cj∑
k=1

υjk∗
∂
∂x


gjk(x∗, aj )
dx
∗
dbi

= −νi∗ ∂
∂bi

hi(x∗, bi),

where the last equality holds because performing implicit differentiation with respect to bi
on both sides of each equation in condition (ii) of Theorem A.23 obtains

n∑

=1

∂
∂x


hi(x∗, bi)
dx
∗
dbi

+
∂
∂bi

hi(x∗, bi) = 0,

n∑

=1

∂hj
∂x


(x∗, bj )
dx
∗
dbi

= 0, ∀j � i

and doing the same for condition (iv) of Theorem A.23 yields

n∑

=1

cj∑
k=1

υjk∗
∂
∂x


gjk(x∗, aj )
dx
∗
dbi

= 0, j = 1, . . . ,m.

An analogous argument yields

df

dai
(x∗) = − ∂

∂ai

ci∑
k=1

υikgik(x∗, ai), i = 1, . . . ,m.

�
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Remark A.14

Theorem A.25 is the Envelope Theorem for an optimization problem with parameterized constraint

functions and a generalization of Theorem 19.5 in [183].

Theorem A.26

Consider the optimization problem

max
x∈X f (x,θ)

where X is the set of feasible solutions and f :�n×�→� is a parameterized objective function.

Let x∗ be an optimal solution and assume that the optimal value V (θ) = f (x∗,θ) is twice
differentiable at θ, then

d2V

dθ2
≥ ∂2f

∂θ2
(x∗,θ),

where
∂2f
∂θ2 (x∗,θ) is the second-order partial derivative with respect to θ evaluated at x∗.

Proof: Note that
V (θ̃) ≥ f (x∗, θ̃) (A.9)

for θ̃ � θ, since x∗ is computed at θ and suboptimal at θ̃. The Taylor’s expansion of V (θ̃)
about θ is

V (θ̃) = V (θ) +
dV (θ)

dθ̃
(θ̃ −θ) + 1

2

d2V (θ)

dθ̃2
(θ̃ −θ)2 + . . .

while that of f (x∗, θ̃) with respect to θ̃ about θ is

f (x∗, θ̃) = f (x∗,θ) +
∂f

∂θ̃
(x∗,θ)(θ̃ −θ) + 1

2

∂2f

∂θ̃2
(x∗,θ)(θ̃ −θ)2 + . . .

= V (θ) +
dV (θ)

dθ̃
(θ̃ −θ) + 1

2

∂2f

∂θ̃2
(x∗,θ)(θ̃ −θ)2 + . . . ,

where ∂f
∂θ̃

(x∗,θ) =
dV (θ)
dθ̃

by the Envelope Theorem A.24. Therefore, inequality (A.9) becomes

V (θ)+
dV (θ)

dθ̃
(θ̃−θ)+1

2

d2V (θ)

dθ̃2
(θ̃−θ)2+. . . ≥ V (θ)+

dV (θ)

dθ̃
(θ̃−θ)+1

2

∂2f

∂θ̃2
(x∗,θ)(θ̃−θ)2+. . . ,

(A.10)
which implies

d2V

dθ2
≥ ∂2f

∂θ2
(x∗,θ)

if θ̃ is close enough to θ so that third and higher order terms in the Taylor’s expansions on
both sides of (A.10) can be ignored. �

Remark A.15

Theorem A.26 is called the Second-Order Envelope Theorem.

145



Appendix B

We place all the figures referred to in Section 2.3 here.
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Figure B.1: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level where short-selling is disal-
lowed; blue - returns follow a bivariate normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2
and ρ = 0.2; red - robust counterpart where [μ1,μ2] ∈ {0.01,0.015} × {0.025,0.03}; cyan in
(a) - difference between red and blue lines; black in (b) - based on solution without uncer-
tainty and parameters that give the highest possible portfolio negated value-at-risk there.
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Figure B.2: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level where short-selling is disal-
lowed; blue - returns follow a bivariate normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2
and ρ = 0.2; red - robust counterpart where [σ1,σ2] ∈ {0.1,0.12,0.14} × {0.14,0.16,0.2};
cyan in (a) - difference between red and blue lines; black in (b) - based on solution without
uncertainty and parameters that give the highest possible portfolio negated value-at-risk
there.
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Figure B.3: (a) optimal weight on second asset/difference in optimal weight be-
tween assets and (b) portfolio negated value-at-risk against tolerance level where
short-selling is disallowed; blue - returns follow a bivariate normal with μ1 =

0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust coun-
terpart where [μ1,μ2,σ1,σ2] ∈ {0.01,0.015,0.02,0.025} × {0.015,0.02,0.025,0.03} ×
{0.1,0.12, . . . ,0.18} × {0.12,0.14, . . . ,0.2}; cyan in (a) - difference between red and blue lines;
black in (b) - based on solution without uncertainty and parameters that give the highest
possible portfolio negated value-at-risk there.
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Figure B.4: (a) optimal weight on second asset/difference in optimal weight be-
tween assets and (b) portfolio negated value-at-risk against tolerance level where
short-selling is disallowed; blue - returns follow a bivariate normal with μ1 =

0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust coun-
terpart where [μ1,μ2,σ1,σ2] ∈ {0.01,0.015,0.02,0.025} × {0.015,0.02,0.025,0.03} ×
{0.1,0.12,0.14} × {0.16,0.18,0.2}; cyan in (a) - difference between red and blue lines; black
in (b) - based on solution without uncertainty and parameters that give the highest possible
portfolio negated value-at-risk there.
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Figure B.5: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level where short-selling is disal-
lowed; blue - returns follow a bivariate normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2
and ρ = 0.2; red - robust counterpart where [μ1,μ2,σ1,σ2] ∈ {0.01,0.015} × {0.025,0.03} ×
{0.1,0.12, . . . ,0.18}× {0.12,0.14, . . . ,0.2}; cyan in (a) - difference between red and blue lines;
black in (b) - based on solution without uncertainty and parameters that give the highest
possible portfolio negated value-at-risk there.
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Figure B.6: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level where short-selling is disal-
lowed; blue - returns follow a bivariate normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2
and ρ = 0.2; red - robust counterpart where [μ1,μ2,σ1,σ2] ∈ {0.01,0.015} × {0.025,0.03} ×
{0.1,0.12,0.14} × {0.16,0.18,0.2}; cyan in (a) - difference between red and blue lines; black
in (b) - based on solution without uncertainty and parameters that give the highest possible
portfolio negated value-at-risk there.
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Figure B.7: (a) optimal weight on second asset/difference in optimal weight between as-
sets and (b) portfolio negated value-at-risk against tolerance level where short-selling
is disallowed; blue - returns follow a bivariate normal with μ1 = 0.01, μ2 = 0.03,
σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart where [μ1,μ2,ρ] ∈
{0.01,0.015,0.02,0.025} × {0.015,0.02,0.025,0.03} × {0.1,0.2,0.3}; cyan in (a) - difference
between red and blue lines; black in (b) - based on solution without uncertainty and param-
eters that give the highest possible portfolio negated value-at-risk there.
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Figure B.8: (a) optimal weight on second asset/difference in optimal weight between as-
sets and (b) portfolio negated value-at-risk against tolerance level where short-selling
is disallowed; blue - returns follow a bivariate normal with μ1 = 0.01, μ2 = 0.03,
σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart where [μ1,μ2,ρ] ∈
{0.01,0.015} × {0.025,0.03} × {0.1,0.2,0.3}; cyan in (a) - difference between red and blue
lines; black in (b) - based on solution without uncertainty and parameters that give the
highest possible portfolio negated value-at-risk there.
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Figure B.9: (a) optimal weight on second asset/difference in optimal weight between as-
sets and (b) portfolio negated value-at-risk against tolerance level where short-selling
is disallowed; blue - returns follow a bivariate normal with μ1 = 0.01, μ2 = 0.03,
σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart where [σ1,σ2,ρ] ∈
{0.1,0.12, . . . ,0.18} × {0.12,0.14, . . . ,0.2} × {0.1,0.2,0.3}; cyan in (a) - difference between
red and blue lines; black in (b) - based on solution without uncertainty and parameters
that give the highest possible portfolio negated value-at-risk there.
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Figure B.10: (a) optimal weight on second asset/difference in optimal weight be-
tween assets and (b) portfolio negated value-at-risk against tolerance level where short-
selling is disallowed; blue - returns follow a bivariate normal with μ1 = 0.01, μ2 =

0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart where [σ1,σ2,ρ] ∈
{0.1,0.12,0.14} × {0.14,0.16,0.2} × {0.1,0.2,0.3}; cyan in (a) - difference between red and
blue lines; black in (b) - based on solution without uncertainty and parameters that give the
highest possible portfolio negated value-at-risk there.
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Figure B.11: (a) optimal weight on second asset/difference in optimal weight between as-
sets and (b) portfolio negated value-at-risk against tolerance level where short-selling
is disallowed; blue - returns follow a bivariate normal with μ1 = 0.01, μ2 = 0.03,
σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart where [μ1,μ2,σ1,σ2,ρ] ∈
{0.01,0.025} × {0.015,0.03} × {0.1,0.18} × {0.12,0.2} × {0.1,0.3}; cyan in (a) - difference be-
tween red and blue lines; black in (b) - based on solution without uncertainty and parameters
that give the highest possible portfolio negated value-at-risk there.
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Figure B.12: (a) optimal weight on second asset/difference in optimal weight between
assets and (b) portfolio negated value-at-risk against tolerance level where short-selling
is disallowed; blue - returns follow a bivariate normal with μ1 = 0.01, μ2 = 0.03,
σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart where [μ1,μ2,σ1,σ2,ρ] ∈
{0.01,0.025} × {0.015,0.03} × {0.1,0.14} × {0.16,0.2} × {0.1,0.3}; cyan in (a) - difference be-
tween red and blue lines; black in (b) - based on solution without uncertainty and parameters
that give the highest possible portfolio negated value-at-risk there.
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Figure B.13: (a) optimal weight on second asset/difference in optimal weight between
assets and (b) portfolio negated value-at-risk against tolerance level where short-selling
is disallowed; blue - returns follow a bivariate normal with μ1 = 0.01, μ2 = 0.03,
σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart where [μ1,μ2,σ1,σ2,ρ] ∈
{0.01,0.015} × {0.025,0.03} × {0.1,0.18} × {0.12,0.2} × {0.1,0.3}; cyan in (a) - difference be-
tween red and blue lines; black in (b) - based on solution without uncertainty and parameters
that give the highest possible portfolio negated value-at-risk there.
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Figure B.14: (a) optimal weight on second asset/difference in optimal weight between
assets and (b) portfolio negated value-at-risk against tolerance level where short-selling
is disallowed; blue - returns follow a bivariate normal with μ1 = 0.01, μ2 = 0.03,
σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart where [μ1,μ2,σ1,σ2,ρ] ∈
{0.01,0.015} × {0.025,0.03} × {0.1,0.14} × {0.16,0.2} × {0.1,0.3}; cyan in (a) - difference be-
tween red and blue lines; black in (b) - based on solution without uncertainty and parameters
that give the highest possible portfolio negated value-at-risk there.
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Figure B.15: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level where short-selling is allowed
up to a maximum of one-fifth the total wealth for each asset; blue - returns follow a bivariate
normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart
where [μ1,μ2] ∈ {0.01,0.015,0.02,0.025} × {0.015,0.02,0.025,0.03}.
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Figure B.16: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level where short-selling is allowed
up to a maximum of one-fifth the total wealth for each asset; blue - returns follow a bivariate
normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart
where [μ1,μ2] ∈ {0.01,0.015} × {0.025,0.03}.
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Figure B.17: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level where short-selling is allowed
up to a maximum of one-fifth the total wealth for each asset; blue - returns follow a bivariate
normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart
where [σ1,σ2] ∈ {0.1,0.12, . . . ,0.18} × {0.12,0.14, . . . ,0.2}.
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Figure B.18: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level where short-selling is allowed
up to a maximum of one-fifth the total wealth for each asset; blue - returns follow a bivariate
normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart
where [σ1,σ2] ∈ {0.1,0.12,0.14} × {0.14,0.16,0.2}.
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Figure B.19: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level where short-selling is allowed
up to a maximum of one-fifth the total wealth for each asset; blue - returns follow a bivariate
normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart
where ρ ∈ {0.1,0.2,0.3}.

●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●

●●●
●●

●●
●●

●
●
●
●

●

●

●

●●●●

0.0 0.1 0.2 0.3 0.4 0.5

−0
.2

0.0
0.2

0.4
0.6

0.8
1.0

1.2

tolerance level

se
co

nd
 as

se
t w

eig
ht

(a)

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●

0.0 0.1 0.2 0.3 0.4 0.5

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

tolerance level

(ro
bu

st)
 op

tim
al 

po
rtfo

lio
 ne

ga
ted

 va
lue

−a
t−r

isk

(b)

Figure B.20: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level where short-selling is allowed
up to a maximum of one-fifth the total wealth for each asset; blue - returns follow a bi-
variate normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust
counterpart where [μ1,μ2,σ1,σ2] ∈ {0.01,0.015,0.02,0.025} × {0.015,0.02,0.025,0.03} ×
{0.1,0.12, . . . ,0.18} × {0.12,0.14, . . . ,0.2}.
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Figure B.21: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level where short-selling is allowed
up to a maximum of one-fifth the total wealth for each asset; blue - returns follow a bi-
variate normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust
counterpart where [μ1,μ2,σ1,σ2] ∈ {0.01,0.015,0.02,0.025} × {0.015,0.02,0.025,0.03} ×
{0.1,0.12,0.14} × {0.16,0.18,0.2}.
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Figure B.22: (a) optimal weight on second asset/difference in optimal weight be-
tween assets and (b) portfolio negated value-at-risk against tolerance level where short-
selling is allowed up to a maximum of one-fifth the total wealth for each as-
set; blue - returns follow a bivariate normal with μ1 = 0.01, μ2 = 0.03, σ1 =

0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart where [μ1,μ2,σ1,σ2] ∈
{0.01,0.015} × {0.025,0.03} × {0.1,0.12, . . . ,0.18} × {0.12,0.14, . . . ,0.2}.
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Figure B.23: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level where short-selling is allowed
up to a maximum of one-fifth the total wealth for each asset; blue - returns follow a bivariate
normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart
where [μ1,μ2,σ1,σ2] ∈ {0.01,0.015} × {0.025,0.03} × {0.1,0.12,0.14} × {0.16,0.18,0.2}.
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Figure B.24: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level where short-selling is allowed
up to a maximum of one-fifth the total wealth for each asset; blue - returns follow a bivariate
normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart
where [μ1,μ2,ρ] ∈ {0.01,0.015,0.02,0.025} × {0.015,0.02,0.025,0.03} × {0.1,0.2,0.3}.
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Figure B.25: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level where short-selling is allowed
up to a maximum of one-fifth the total wealth for each asset; blue - returns follow a bivariate
normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart
where [μ1,μ2,ρ] ∈ {0.01,0.015} × {0.025,0.03} × {0.1,0.2,0.3}.
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Figure B.26: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level where short-selling is allowed
up to a maximum of one-fifth the total wealth for each asset; blue - returns follow a bivariate
normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart
where [σ1,σ2,ρ] ∈ {0.1,0.12, . . . ,0.18} × {0.12,0.14, . . . ,0.2} × {0.1,0.2,0.3}.
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Figure B.27: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level where short-selling is allowed
up to a maximum of one-fifth the total wealth for each asset; blue - returns follow a bivariate
normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart
where [σ1,σ2,ρ] ∈ {0.1,0.12,0.14} × {0.14,0.16,0.2} × {0.1,0.2,0.3}.
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Figure B.28: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level where short-selling is allowed
up to a maximum of one-fifth the total wealth for each asset; blue - returns follow a bivariate
normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart
where [μ1,μ2,σ1,σ2,ρ] ∈ {0.01,0.025} × {0.015,0.03} × {0.1,0.18} × {0.12,0.2} × {0.1,0.3}.
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Figure B.29: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level where short-selling is allowed
up to a maximum of one-fifth the total wealth for each asset; blue - returns follow a bivariate
normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart
where [μ1,μ2,σ1,σ2,ρ] ∈ {0.01,0.025} × {0.015,0.03} × {0.1,0.14} × {0.16,0.2} × {0.1,0.3}.
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Figure B.30: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level where short-selling is allowed
up to a maximum of one-fifth the total wealth for each asset; blue - returns follow a bivariate
normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart
where [μ1,μ2,σ1,σ2,ρ] ∈ {0.01,0.015} × {0.025,0.03} × {0.1,0.18}×{0.12,0.2} × {0.1,0.3}.
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Figure B.31: (a) optimal weight on second asset/difference in optimal weight between assets
and (b) portfolio negated value-at-risk against tolerance level where short-selling is allowed
up to a maximum of one-fifth the total wealth for each asset; blue - returns follow a bivariate
normal with μ1 = 0.01, μ2 = 0.03, σ1 = 0.1, σ2 = 0.2 and ρ = 0.2; red - robust counterpart
where [μ1,μ2,σ1,σ2,ρ] ∈ {0.01,0.015} × {0.025,0.03} × {0.1,0.14} × {0.16,0.2} × {0.1,0.3}.
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Figure B.32: (a) optimal weight on second asset and (b) portfolio negated value-at-risk
against tolerance level where short-selling is allowed up to a maximum of one-fifth the total
wealth for each asset; blue - returns follow an independent bivariate normal distribution
where μ1 = 0.01, μ2 = 0.03, σ1 = 0.1 and σ2 = 0.2; cyan - returns follow an independent
bivariate Cauchy distribution where m1 = 0.01, m2 = 0.03, γ1 = 0.026 and γ2 = 0.052 such
that the fifth percent quantile of each of its marginals coincides with that of the correspond-
ing marginal of the aforementioned bivariate normal distribution; red - robust against both
bivariate distributions; green - spline approximation of red case.
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Figure B.33: (a) optimal weight on second asset and (b) portfolio negated value-at-risk
against tolerance level where short-selling is allowed up to a maximum of one-fifth the total
wealth for each asset; blue - returns follow an independent bivariate normal distribution
where μ1 = 0.01, μ2 = 0.03, σ1 = 0.1 and σ2 = 0.2; cyan - returns follow an independent
bivariate Cauchy distribution where m1 = 0.01, m2 = 0.03, γ1 = 0.053 and γ2 = 0.106
such that the fifteenth percent quantile of each of its marginals coincides with that of the
corresponding marginal of the aforementioned bivariate normal distribution; red - robust
against both bivariate distributions; green - spline approximation of red case.
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Figure B.34: (a) optimal weight on second asset and (b) portfolio negated value-at-risk against
tolerance level where short-selling is allowed up to a maximum of one-fifth the total wealth
for each asset; blue - returns follow an independent bivariate normal distribution where
μ1 = 0.01, μ2 = 0.03, σ1 = 0.1 and σ2 = 0.2; cyan - returns follow an independent bivariate
Cauchy distribution where m1 = 0.01, m2 = 0.03, γ1 = 0.067 and γ2 = 0.135 such that the
twenty fifth percent quantile of each of its marginals coincides with that of the corresponding
marginal of the aforementioned bivariate normal distribution; red - robust against both
bivariate distributions; green - spline approximation of red case.
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Appendix C

We place all the figures referred to in Chapter 4 here. Figures C.1 - C.6 correspond to Section
4.1.1, Figures C.7 - C.12 to Section 4.2.1, Figures C.13 - C.18 to Section 4.3.1, Figures C.19 -
C.30 to Section 4.4.1, Figures C.31 - C.42 to Section 4.5.1, and Figures C.43 - C.48 to Section
5.1.1.
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Appendix C
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the BlackâĂŞLitterman approach to asset allocation. Quantitative Finance 7, 4 (2007),
423–433.

[87] Glosten, L. R., Jagannathan, R., and Runkle, D. E. On the relation between the
expected value and the volatility of the nominal excess return on stocks. Journal of
Finance 48, 5 (1993), 1779–1801.

[88] Goffin, J.-L., Luo, Z.-Q., and Ye, Y. Complexity analysis of an interior cutting plane
method for convex feasibility problems. SIAM Journal on Optimization 6 (1996), 638–
652.

[89] Goldfarb, D., and Iyengar, G. Robust portfolio selection problems. Mathematics of
Operations Research 28 (2003), 1–38.

[90] Golub, G. H., Heath, M., and Wahba, G. Generalized cross validation as a method for
choosing a good ridge parameter. Technometrics 21, 2 (1979), 215–223.

[91] Gu, C. Cross-validating non-gaussian data. Journal of Computational and Graphical
Statistics 1 (1992), 169–179.

[92] Gu, C. Smoothing Spline ANOVA Models. Springer, New York, 2002.

[93] Gu, C., and Kim, Y. J. Penalized likelihood regression: general approximation and
efficient approximation. Canadian Journal of Statistics 34, 4 (2002), 619–628.

218



REFERENCES

[94] Gu, C., and Wahba, G. Minimizing gcv/gml scores with multiple smoothing parameters
via the newton method. SIAM Journal on Scientific and Statistical Computing 12, 2 (1991),
383–393.

[95] Haas, M., Mittnik, S., and Paolella, M. S. A new approach to markov switching GARCH
models. Journal of Financial Econometrics 2, 4 (2004a), 493–530.

[96] Haas, M., Mittnik, S., and Paolella, M. S. Mixed normal conditional heteroscedasticity.
Journal of Financial Econometrics 2, 2 (2004b), 211–250.

[97] Haas, M., Mittnik, S., and Paolella, M. S. Asymmetric multivariate normal mixture
GARCH. Computational Statistics and Data Analysis 53 (2009), 2129–2154.

[98] Hall, P. On unimodality and rates of convergences for stable laws. Journal of the London
Mathematical Society 2, 30 (1984), 371–384.

[99] Hamilton, J. D. Regime switching models. In The New Palgrave Dictionary of Economics,
S. N. Durlauf and L. E. Blume, Eds. Palgrave Macmillan, Basingstoke, 2008.

[100] Harvey, C. R., Liechty, J. C., and Liechty, M. W. Parameter uncertainty in asset alloca-
tion. In The Oxford Handbook of Quantitative Asset Management (2011), B. Scherer and
K. Winston, Eds., Oxford University Press.

[101] Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Second Edition. Springer-Verlag, New York, 2009.

[102] Heiss, F., and Winschel, V. Likelihood approximation by numerical integration on
sparse grids. Journal of Econometrics 144, 1 (2008), 62 – 80.

[103] Hill, B. M. A simple general approach to inference about the tail of a distribution. The
Annals of Statistics 3, 5 (1975), 1163–1174.

[104] Huisman, R., Koedijk, K. G., Kool, C. J. M., and Palm, F. The tail-fatness of FX returns
reconsidered. De Economist 150 (2002), 299–312.

[105] Jacquier, E., and Polson, N. Bayesian econometrics in finance. In The Oxford Handbook
of Bayesian Econometrics, J. Geweke, G. Koop, and H. Van Dijk, Eds. Oxford University
Press, 2011.

[106] Jagannathan, R., and Ma, T. Risk reduction in large portfolios: Why imposing the
wrong constraints helps. Journal of Finance 58, 4 (2003), 1651–1638.

[107] Janicki, A., and Weron, A. Simulation and Chaotic Behavior of α-Stable Stochastic
Processes. Marcel Dekker, New York, 1994.

[108] Jansen, D. W., and de Vries, C. G. On the frequency of large stock returns: putting
booms and busts into perspective. Review of Economics and Statistics 73 (1991), 18–24.

[109] Kacperczyk, M., and Damien, P. Asset allocation under distribution uncertainty. Tech.
rep., NYU Stern School of Business, 2011.

219



REFERENCES

[110] Kane, A. Skewness preferance and portfolio choice. Journal of Financial and Quanti-
tative Analysis 17 (1977), 15–25.

[111] Kanniappan, P., and Sastry, S. M. Uniform convergence of convex optimization prob-
lems. Journal of Mathematical Analysis and Applications 96, 1 (1983), 1 – 12.

[112] Kim, T.-H., and White, H. On more robust estimation of skewness and kurtosis.
Finance Research Letters 1 (2004), 56–73.

[113] Kim, W. C., Kim, M. J., Kim, J. H., and Fabozzi, F. J. Robust portfolios that do not tilt
factor exposure. European Journal of Operational Research 234, 2 (2014), 411 – 421.

[114] Kim, Y. J., and Gu, C. Smoothing spline gaussian regression: more scalable compu-
tation via efficient approximation. Journal of the Royal Statistical Society, Series B 66
(2004), 337–356.

[115] Kirchler, M., and Huber, J. Fat tails and volatility clustering in experimental asset
markets. Journal of Economic Dynamics and Controls 31 (2007), 1844–1874.

[116] Kon, S. J. Models of stock returns: a comparison. The Journal of Finance 39 (1984),
147–165.

[117] Koutrouvelis, I. A. Regression type estimation of the parameters of stable laws. Journal
of the American Statistical Association 75 (1980), 918–928.

[118] Koutrouvelis, I. A. An iterative procedure for the estimation of the parameters of
stable laws. Communications in Statistics: Simulation and Computation 10 (1981), 17–28.

[119] Kozubowski, T. J., and Rachev, S. T. The theory of geometric stable distributions and
its use in modeling financial data. European Journal of Operational Research 74 (1994),
310–324.

[120] Kuester, K., Mittnik, S., and Paolella, M. S. Value-at-risk prediction: A comparison of
alternative strategies. Journal of Financial Econometrics 4 (2006), 53–89.

[121] Kurowicka, D., and Joe, H., Eds. Vine Copula Handbook. World Scientific Publishing
Co. Pte. Ltd., Singapore, 2011.

[122] Lancaster, P., and Šalkauskas, K. Curve and Surface Fitting: an introduction. Academic
Press, London, 1986.

[123] Ledoit, O., and Wolf, M. Improved estimation of the covariance matrix of stock returns
with an application to portfolio selection. Journal of Empirical Finance 10, 5 (2003),
603 – 621.

[124] Lin, X., and Zhang, D. Inference in generalized additive mixed models using smooth-
ing splines. Journal of the Royal Statistical Society, Series B 61 (1999), 381–400.

[125] Lobo, M. S., and Boyd, S. The worst-case risk of a portfolio. Tech. rep., Stanford
University, 2000.

220



REFERENCES

[126] Lobo, M. S., Fazel, M., and Boyd, S. Portfolio optimization with linear and fixed
transaction costs. Annals of Operations Research 152, 1 (2007), 341–365.

[127] Löfberg, J. YALMIP : A toolbox for modeling and optimization in MATLAB. In
Proceedings of the CACSD Conference (Taipei, Taiwan, 2004).

[128] Malevergne, Y., Pisarenko, V., and Sornette, D. Empirical distributions of stock returns:
between the stretched exponential and the power law? Quantitative Finance 5 (2005),
379–401.

[129] Mallows, C. L. Some comments on cp . Technometrics 15 (1973), 661–675.

[130] Mandelbrot, B. New methods in statistical economics. Journal of Political Economy 71,
5 (1963a), 421–440.

[131] Mandelbrot, B. The variation of certain speculative prices. Journal of Business 36

(1963b), 394–419.

[132] Mandelbrot, B. The Variation of Some Other Speculative Prices. The Journal of Business
40 (1967a), 393.

[133] Mandelbrot, B., and Taylor, H. M. On the distribution of stock price differences.
Operations research 15, 6 (1967b), 1057–1062.

[134] Maringer, D. Portfolio Management with Heuristic Optimization. Cambridge University
Press, 2005.

[135] Markowitz, H. Portfolio selection. The Journal of Finance 7 (1952), 77–91.

[136] Markowitz, H. The optimization of a quadratic function subject to linear constraints.
Naval Research Logistics Quarterly 3 (1956), 111–133.

[137] Marx, B. D., and Eilers, P. H. Direct generalized additive modeling with penalized
likelihood. Computational Statistics and Data Analysis 28 (1998), 193–209.

[138] McNeil, A. J., Frey, R., and Embrechts, P., Eds. Quantitative Risk Management: Concepts,
Techniques, and Tools. Princeton University Press, 2006.

[139] Meerschaert, M. M., and Scheffler, H.-P. Chapter 15 - portfolio modeling with heavy
tailed random vectors. In Handbook of Heavy Tailed Distributions in Finance, S. T.
Rachev, Ed., vol. 1 of Handbooks in Finance. North-Holland, Amsterdam, 2003, pp. 595
– 640.

[140] Merton, R. C. An analytic derivation of the efficient portfolio frontier. The Journal of
Financial and Quantitative Analysis 7, 4 (1972), 1851–1872.

[141] Mikosch, T. Modeling dependence and tails of financial time series. In Modeling depen-
dence and tails of financial time series, B. Finkenstaedt and H. Rootzén, Eds. Chapman
and Hall, London, 2003, pp. 185–286.

221



REFERENCES

[142] Milgrom, P., and Segal, I. Envelope theorems for arbitrary choice sets. Econometrica
70, 2 (2002), 583–601.

[143] Mittnik, S., and Paolella, M. S. Prediction of financial downside risk with heavy tailed
conditional distributions. In Handbook of Heavy Tailed Distributions in Finance, S. T.
Rachev, Ed. Elsevier Science, Amsterdam, 2003.

[144] Mittnik, S., and Rachev, S. T. Alternative multivariate stable distributions and their
applications to financial modeling. In Stable Processes and Related Topics, Cambanis
et al., Eds. Birkhäuser, Boston, 1991.

[145] Mittnik, S., and Rachev, S. T. Modeling asset returns with alternative stable models.
Econometric Reviews 12 (1993), 261–330.

[146] Modarres, R., and Nolan, J. P. A method for simulating stable random vectors. Com-
putational Statistics 9 (1994), 11–19.

[147] Muirhead, R. J. Samples from a Multivariate Normal Distribution, and the Wishart and

Multivariate Beta Distributions. John Wiley and Sons, Inc., 2008, pp. 79–120.

[148] Natarajan, K., Pachamanova, D., and Sim, M. Incorporating asymmetric distributional
information in robust value-at-risk optimization. Management Science 54, 3 (2008),
573–585.

[149] Natarajan, K., Sim, M., and Uichanco, J. Tractable robust expected utility and risk
models for portfolio optimization. Mathematical Finance 20, 4 (2010), 695–731.

[150] Nemirovski, A. Polynomial time methods in convex programming. In The Mathematics
of Numerical Analysis: 1995 Ams-Siam Summer Seminar in Applied Mathematics July

17-August 11, 1995 Park City, Utah (Lectures in Applied Mathematics), vol. 32. AMS,
Providence, 1996, pp. 543–589.

[151] Nemirovski, A. Prox-method with rate of convergence o(1/t) for variational inequali-
ties with lipschitz continuous monotone operators and smooth convex-concave saddle
point problems. SIAM Journal on Optimization 15 (2004), 229–251.

[152] Nemirovski, A. On safe tractable approximations of chance-constraints. European

Journal of Operational Research 219 (2012), 707–718.

[153] Nolan, J. P. Numerical calculation of stable densities and distribution functions. Com-
munications in Statistics - Stochastic Models 13 (1997), 759–772.

[154] Nolan, J. P. Parameterizations and modes of stable distributions. Statistics and Proba-
bility Letters 38 (1998), 187–195.

[155] Nolan, J. P. An algorithm for evaluating stable densities in Zolotarev’s (M) parameter-
ization. Mathematical and Computer Modelling 29, 10âĂŞ12 (1999), 229 – 233.
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