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Chiral magnets with topologically nontrivial spin order such as Skyrmions have generated enor-
mous interest in both fundamental and applied sciences. We report broadband microwave spec-
troscopy performed on the insulating chiral ferrimagnet Cu2OSeO3. For the damping of magneti-
zation dynamics we find a remarkably small Gilbert damping parameter of about 1× 10−4 at 5 K.
This value is only a factor of 4 larger than the one reported for the best insulating ferrimagnet
yttrium iron garnet at room temperature. We detect a series of sharp resonances and attribute
them to confined spin waves in the mm-sized samples. Considering the small damping, insulating
chiral magnets turn out to be promising candidates when exploring non-collinear spin structures for
high frequency applications.

PACS numbers: 76.50.+g, 74.25.Ha, 4.40.Az, 41.20.Jb

The development of future devices for microwave ap-
plications, spintronics and magnonics [1–3] requires ma-
terials with a low spin wave (magnon) damping. Insulat-
ing compounds are advantageous over metals for high-
frequency applications as they avoid damping via spin
wave scattering at free charge carriers and eddy currents
[4, 5]. Indeed, the ferrimagnetic insulator yttrium iron
garnet (YIG) holds the benchmark with a Gilbert damp-
ing parameter αintr = 3 × 10−5 at room temperature
[6, 7]. During the last years chiral magnets have attracted
a lot of attention in fundamental research and stimulated
new concepts for information technology [8, 9]. This ma-
terial class hosts non-collinear spin structures such as
spin helices and Skyrmions below the critical tempera-
ture Tc and critical field Hc2 [10–12]. Dzyaloshinskii-
Moriya interaction (DMI) is present that induces both
the Skyrmion lattice phase and nonreciprocal microwave
characteristics [13]. Low damping magnets offering DMI
would generate new prospects by particularly combining
complex spin order with long-distance magnon transport
in high-frequency applications and magnonics [14, 15].
At low temperatures, they would further enrich the
physics in magnon-photon cavities that call for materials
with small αintr to achieve high-cooperative magnon-to-
photon coupling in the quantum limit [16–19].

In this work, we investigate the Gilbert damping in
Cu2OSeO3, a prototypical insulator hosting Skyrmions
[20–23]. This material is a local-moment ferrimagnet
with Tc = 58 K and magnetoelectric coupling [24] that
gives rise to dichroism for microwaves [25–27]. The mag-
netization dynamics in Cu2OSeO3 has already been ex-
plored [13, 28, 29]. A detailed investigation on the damp-
ing which is a key quality for magnonics and spintron-

ics has not yet been presented however. To evaluate
αintr we explore the field polarized state (FP) where
the two spin sublattices attain the ferrimagnetic ar-
rangement [21]. Using spectra obtained by two differ-
ent coplanar waveguides (CPWs), we extract a minimum
αintr=(9.9± 4.1)×10−5 at 5 K, i.e. only about four times
higher than in YIG. We resolve numerous sharp reso-
nances in our spectra and attribute them to modes that
are confined modes across the macroscopic sample and
allowed for by the low damping. Our findings substanti-
ate the relevance of insulating chiral magnets for future
applications in magnonics and spintronics.

From single crystals of Cu2OSeO3 we prepared two
bar-shaped samples exhibiting different crystallographic
orientations. The samples had lateral dimensions of
2.3×0.4×0.3 mm3. They were positioned on CPWs that
provided us with a radiofrequency (rf) magnetic field h
induced by a sinusoidal current applied to the signal sur-
rounded by two ground lines (Fig. 1 and Supplementary
Tab. (SI)). We used two different CPWs with either a

sample

substrate
G GS

broad CPW narrow CPW

h

ws wsgwg sample
H

z
x

y
t

FIG. 1. Sketch of a single crystal mounted on either a broad
or narrow CPW with a signal (S) line width ws of either
1 mm or 20µm, respectively (not to scale). The rf field h is
indicated. The static field H is applied perpendicular to the
CPW plane.
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broad [30] or narrow signal line width of ws = 1 mm or
20µm, respectively. The central long axis of the rect-
angular Cu2OSeO3 rods was positioned on the central
axis of the CPWs. The static magnetic field H was ap-
plied perpendicular to the substrate with H ‖ 〈100〉 and
H ‖ 〈111〉 for sample S1 and S2, respectively. The di-
rection of H defined the z-direction following the defini-
tion of Ref. [4]. The rf field component h ⊥ H provided
the relevant torque for excitation. Components h ‖ H
did not induce precessional motion in the FP state of
Cu2OSeO3. We recorded spectra by a vector network
analyzer using the magnitude of the scattering parame-
ter S12. We subtracted a background spectrum recorded
at 1 T to enhance the signal-to-noise ratio (SNR) yield-
ing the displayed ∆|S12|. In Ref. [7], Klingler et al. have
investigated the damping of the insulating ferrimagnet
YIG and found that Gilbert parameters αintr evaluated
from both the uniform precessional mode and standing
spin waves confined in the macroscopic sample provided
the same values. We evaluated damping parameters as
follows (and further outlined in the Supplementary Ma-
terial) [31]. When performing frequency-swept measure-
ments at different fields H, the obtained linewidth ∆f
was considered to scale linearly with the resonance fre-
quency fr as [32]

∆f = 2αintr × fr + ∆f0, (1)

with the inhomogeneous broadening ∆f0. In Fig. 2 (a) to
(d) we show spectra recorded at 5 K in the FP state of
the material using the two different CPWs. For the same
applied field H we observe peaks residing at higher fre-
quency f for H ‖ 〈100〉 compared to H ‖ 〈111〉. From the
resonance frequencies, we extract the cubic magnetocrys-
talline anisotropy constant K = (−0.6± 0.1)× 103 J/m3

for Cu2OSeO3 [compare Supplementary Fig. S1 and Sup-
plementary Eqs. (S1) to (S3)]. The magnetic anisotropy
energy is found to be extremal for 〈100〉 and 〈111〉 reflect-
ing easy and hard axes. The saturation magnetization of
Cu2OSeO3 amounted to µ0Ms = 0.13 T at 5 K [22].

Figure 2 summarizes spectra taken with two differ-
ent CPWs on the two different Cu2OSeO3 crystals S1
and S2 exhibiting different crystallographic orientation
in the field H (further spectra are depicted in Supple-
mentary Figs. S2). For the broad CPW [Fig. 2 (a) and
(c)], we measured pronounced peaks whose linewidths
were small. We resolved small resonances below the large
peaks [arrows in Fig. 2 (b)] that shifted withH and exhib-
ited an almost field-independent frequency offset δf from
the main peaks that we will discuss later. For the nar-
row CPW [Fig. 2 (b) and (d)], we observed a broad peak
superimposed by a series of resonances that all shifted
to higher frequencies with increasing H. The field de-
pendence excluded them from being noise or artifacts
of the setup. Their number and relative intensities var-
ied from sample to sample and also upon remounting
the same sample in the cryostat (not shown). They dis-
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FIG. 2. (Color online) Spectra ∆|S12| obtained at T = 5 K
for different H using (a) a broad and (b) narrow CPW when
H||〈100〉 on sample S1. Corresponding spectra taken on sam-
ple S2 for H||〈111〉 are shown in (c) and (d), respectively.
Note the strong and sharp resonances in (a) and (c) when us-
ing the broad CPW that provides a much more homogeneous
excitation field h. Arrows mark resonances that have a field-
independent offset with the corresponding main peaks and are
attributed to standing spin waves. An exemplary Lorentz fit
curve is shown in blue color in (a).

appeared with increasing temperature T but the broad
peak remained. It is instructive to first follow the or-
thodox approach [29] and analyze damping parameters
from modes reflecting the excitation characteristics of the
broad CPW. Second, we follow Ref. [7] and analyze con-
fined modes.

Lorentz curves (blue) were fitted to the spectra
recorded with the broad CPW to determine resonance
frequencies and linewidths. Note that the corresponding
linewidths were larger by a factor of

√
3 compared to the

linewidth ∆f that is conventionally extracted from the
imaginary part of the scattering parameters [33]. The
extracted linewidths ∆f were found to follow linear fits
based on Eq. (1) at different temperatures [(Supplemen-
tary Figs. S2 and S3 (a)].

In Fig. 3 (a) we depict the parameter αintr obtained
from the broad CPW [34]. For H ‖ 〈100〉 [Fig. 3 (a)],
between 5 and 20 K the lowest value for αintr amounts to
(3.7± 0.4)×10−3. This value is three times lower com-
pared to preliminary data presented in Ref. [29]. Beyond
20 K the damping is found to increase. For H ‖ 〈111〉
we extract (0.6± 0.6)×10−3 as the smallest value. Note
that these values for αintr still contain an extrinsic con-
tribution due to the inhomogeneity of h in z-direction
and thus represent upper bounds for Cu2OSeO3. For
the inhomogeneous broadening ∆f0 in Fig. 3 (b) the
datasets taken with H applied along different crystal
directions are consistent and show the smallest ∆f0 at
lowest temperature. Note that a CPW wider than the
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FIG. 3. (Color online) (a) Damping parameters αintr and
(b) inhomogeneous broadening ∆f0 for H parallel to <100>
(circle) and <111> (square). αintr and ∆f0 are obtained from
the slopes and intercepts at fr = 0, respectively, of linear fits
to the linewidth data (compare Supplementary Figs. S2 and
S3.)

sample is assumed to excite homogeneously the ferro-
magnetic resonance (FMR) at fFMR [35] transferring an
in-plane wave vector k = 0 to the sample. Accordingly
we ascribe the intense resonances of Fig. 2 (b) and (d) to
fFMR. Using fFMR = 6 GHz and αintr = 3.7 × 10−3 at 5
K [Fig. 3 (a)], we estimate a minimum relaxation time of
τ = [2παintrfr]

−1 = 6.6 ns.
In the following, we examine in detail the additional

sharp resonances that we observed in spectra of Fig. 2.
In Fig. 2 (b) taken with the broad CPW for H ‖ 〈100〉,
we identify sharp resonances that exhibit a characteris-
tic frequency offset δf with the main resonance at all
fields (black arrows). We illustrate this in Fig. 4(a) in
that we shift spectra of Fig. 2 (b) so that the positions of
their main resonances overlap. The additional small res-
onances (arrows) in Fig. 2 (b) are well below the uniform
mode. This is characteristic for backward volume magne-
tostatic spin waves (BVMSWs). Standing waves of such
kind can develop if they are reflected at least once at the
bottom and top surfaces of the sample. The resulting
standing waves exhibit a wave vector k = nπ/d, with
order number n and sample thickness d = 0.3 mm. The
BVMSW dispersion relation f(k) of Ref. [13] (compare
also Supplementary Fig. S4) provides a group velocity
vg = −300 km/s at k = π/d [triangles in Fig. 4 (b)].
The decay length ld = vgτ amounts to 2 mm consider-
ing τ = 6.6 ns. This is about seven times larger than the
relevant thickness d, thereby allowing standing spin wave
modes to form across the thickness of the sample. Based
on the dispersion relation of Ref. [13], we calculated the
frequency splitting δf = fFMR−f(nπ/d) [open diamonds
in Fig. 4 (inset)] assuming n = 1 and t = 0.4 mm for the
sample width t defined in Ref. [13]. Experimental val-
ues (filled symbols) agree with the calculated ones (open
symbols) within about 60 MHz. In case of the narrow
CPW, that provides a broad wave vector distribution

[36] we observe even more sharp resonances [Fig. 2 (a)
and (c)]. A set of resonances was reported previously
in the field-polarized phase of Cu2OSeO3 [26, 28, 37, 38].
Maisuradze et al. assigned secondary peaks in thin plates
of Cu2OSeO3 to different standing spin-wave modes [38]
in agreement with our analysis outlined above.
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FIG. 4. (Color online) Spectra of Fig. 2 (b) replotted as
f − fFMR(H) for different H such that all main peaks are at
zero frequency and the field-independent frequency splitting
δf becomes visible. The numerous oscillations seen particu-
larly on the bottom most curve are artefacts from the cali-
bration routine. The inset depicts experimentally evaluated
(filled circles) and theoretically predicted (diamonds) values
δf using dispersion relations for a platelet. Calculated group
velocity vg at k = π/(0.3 mm). Dashed lines are guides to
the eyes.

We attribute the series of sharp resonances in Fig. 2
(b) and (d) to further standing spin waves. In Fig. 5
(a) and (b) we highlight prominent and particularly nar-
row resonances with #1, #2 and #3 recorded with the
narrow CPW for H ‖ 〈100〉 and H ‖ 〈111〉, respec-
tively. We trace their frequencies fr as a function of
H. They depend linearly on H showing that for both
crystal orientations the selected sharp peaks reflect dis-
tinct spin excitations. From the slopes we extract a
Landé factor g = 2.14 at 5 K. Consistently, this value
is slightly larger than g = 2.07 reported for 30 K in
Ref. [13]. From g = 2.14 we calculate a gyromagnetic
ratio γ = gµB/~ = 1.88 × 1011 rad/sT where µB is the
Bohr magneton of the electron. Note that the different
metallic CPWs of Fig. 1 vary the boundary conditions
and thereby details of the spin wave dispersion relations
in Cu2OSeO3. However, the frequencies covered by dis-
persion relations vary only over a specific regime; for e.g.
forward volume waves the regime even stays the same for
different boundary conditions [4]. Following Klingler et
al. [7] the exact mode nature and resonance frequency
were not decisive when extracting Gilbert parameter.

We now concentrate on mode #1 in Fig. 5 (a) for H ‖
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〈100〉 at 5 K that is best resolved. We fit a Lorentzian
lineshape as shown in Fig. 5(c) for 0.85 T, and summarize
the corresponding linewidths ∆f in Fig. 5(d). The inset
of Fig. 5(d) shows the effective damping αeff = ∆f/(2fr)
evaluated directly from the linewidth as suggested in Ref.
[29]. We find that αeff approaches a value of about 3.5
×10−4 with increasing frequency. This value is a factor of
10 smaller compared to αintr in Fig. 3 (a) extracted from
FMR peaks by means of Eq. 1. This finding is interesting
as αeff might still be enlarged by inhomogeneous broad-
ening. To determine the intrinsic Gilbert-type damping
from standing spin waves, we apply a linear fit to the
linewidths ∆f in Fig. 5(d) at fr > 10.6 GHz and obtain
(9.9± 4.1)×10−5. For fr ≤ 10.6 GHz the resonance am-
plitudes of mode #1 were small reducing the confidence
of the fitting procedure. Furthermore, at low frequencies,
we expect anisotropy to modify the extracted damping,
similar to the results in Ref. [39]. For these reasons, the
two points at low fr were left out for the linear fit pro-
viding α′intr = (9.9± 4.1)×10−5.

We find ∆f and the damping parameters of Fig. 3 to
increase with T . It does not scale linearly for H ‖ 〈100〉.
A deviation from linear scaling was reported for YIG sin-
gle crystals as well and accounted for by the confluence
of a low-k magnon with a phonon or thermally excited
magnon [5]. We now comment on our spectra taken
with the broad CPW that do not show the very small
linewidth attributed to the confined spin waves. The
sharp mode #1 yields ∆f = 15.3 MHz at fr = 16.6 GHz
[Fig. 5 (d)]. At 5 K the dominant peak measured at
0.55 T and fr = 15.9 GHz with the broad CPW pro-
vides however ∆f = 129 MHz. ∆f obtained by the
broad CPW is thus increased by a factor of eight. This
increase is attributed to the finite distribution of wave
vectors provided by the CPW. We confirmed this larger
value on a third sample with H ‖ 〈100〉 and obtained
(3.1± 0.3)×10−3 using the broad CPW (Supplementary
Fig. S2). The discrepancy with the damping parameter
extracted from the sharp modes of Fig. 5 might be due to
the remaining inhomogeneity of h over the thickness of
the sample leading to an uncertainty in the wave vector
in z-direction. For a standing spin wave such an inhomo-
geneity does not play a role as the boundary conditions
discretize k. Accordingly, Klingler et al. extracted the
smallest damping parameter of 2.7(5)×10−5 reported so
far for the ferrimagnet YIG at room temperature when
analyzing confined magnetostatic modes [7]. The finding
of Klingler et al. is consistent with the discussion in Ref.
[33]. From Ref. [33] one can extract that the evaluation
of damping from finite-wave-vector spin waves provides
a damping parameter that is either equal or somewhat
larger than the parameter extracted from the uniform
mode (Supplementary material). The evaluation of Fig. 5
(d) thus overestimates the parameter.

To summarize, we investigated the spin dynamics in
the field-polarized phase of the insulating chiral mag-
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FIG. 5. (Color online) Resonance frequencies as a function of
field H of selected sharp modes labelled #1 to #3 extracted
from individual spectra (insets) for (a) H ‖ 〈100〉 and (b)
H ‖ 〈111〉 at T = 5 K. (c) Lorentz fit of a sharp mode #1 for
H ‖ 〈100〉 at 0.85 T. (d) Extracted linewidth ∆f as a function
of resonance frequency fr along with the linear fit performed
to determine the intrinsic damping α′intr from confined modes.
Inset: Effective damping α′eff as a function of resonance fre-
quency fr. The red dotted lines mark the error margins of
α′intr = (9.9 ± 4.1)× 10−5.

net Cu2OSeO3. We detected numerous sharp resonances
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that we attribute to standing spin waves. Their effective
damping parameter is small and amounts to 3.5× 10−4.
A quantitative estimate of the intrinsic Gilbert damping
parameter extracted from the confined modes provides
(9.9± 4.1)×10−5 at 5 K. The small damping makes an
insulating ferrimagnet exhibiting Dzyaloshinskii-Moriya
interaction a promising candidate for exploitation of
complex spin structures and related nonreciprocity in
magnonics and spintronics.

SUPPLEMENTARY MATERIAL

See supplementary material for further spectra, the
magnetic anisotropy constant and linewidth evaluation.
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