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We study the problem of proving termination of open, higher-order programs with recursive functions and datatypes.
We identify a new point in the design space of solutions, with an appealing trade-off between simplicity of specification,
modularity, and amenability to automation. Specifically, we consider termination of open expressions in the presence
of higher-order, recursive functions, and introduce a new notion of termination that is conditioned on the termination
of the callbacks made by the expressions. For closed expressions our definition coincides with the traditional definition
of termination. We derive sound proof obligations for establishing termination modulo callbacks, and develop a
modular approach for verifying the obligations. Our approach is novel in three aspects. (a) It allows users to express
properties about the environment in the form of higher-order contracts. (b) It establishes properties on the creation
sites of closures instead of application sites and does not require knowing the targets of applications. (c) It uses
a modular reasoning where termination (modulo callbacks) is verified for each function independently and then
composed to check termination of their callers. We present the results of evaluating our approach on benchmarks
comprising more than 10K lines of functional Scala code. The results show that our approach, when combined with a
safety verifier, established both termination and safety of complex algorithms and data structures that are beyond
the reach of state-of-the-art techniques. For example, it verifies Okasaki’s scheduling-based data structures and lazy
trees in under a few seconds.

1 INTRODUCTION

Termination verification, which is the problem of statically verifying whether a program terminates on all
possible values that its parameters can take at execution time, is an ancient and important problem in
software engineering. It plays a key role in establishing robust functioning of programs. From a broader
perspective, termination verification is a method of ensuring totality of functions, especially those that are
recursively defined. This makes it crucial for theorem proving systems (Kaufmann et al. 2000; Nipkow et al.
2002) that allow establishing theorems involving arbitrary recursive functions. Furthermore, termination
verification also forms a key component of most contract-based verification techniques (Blanc et al. 2013;
Jacobs et al. 2011; Leino 2010) by enabling an inductive reasoning that relies on the well-foundedness of the
number of steps executed by a program on any input.

Techniques for proving termination of higher-order programs are gaining increasing relevance. This is
in part due to the increase in popularity of functional programming languages as well as the adoption
of higher-order functions in most languages being used in industry. Moreover, the soundness of popular
higher-order interactive theorem proving and program verification systems (Bertot and Castéran 2004;
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Kobayashi et al. 2011; Nipkow et al. 2002; Vazou et al. 2014) typically relies on termination. However, most
of the techniques for termination verification of higher-order programs are whole program analyses that work
under a closed world assumption, i.e, they require that the targets of all first-class functions can be estimated
(or approximated) at the time of the analysis, e.g. using a control-flow analysis. Such approaches have at
least three main shortcomings. Firstly, users cannot reason at all about termination of an open library that
uses higher-order features without linking the library to a client. Besides the scalability overheads this may
result in, it also means that the termination of the library is established only with respect to a specific
client. Hence, the library has to be re-analyzed for each new client. Secondly, whole program analyses often
trade-off precision for scalability due to the need to analyze large pieces of code. Hence, these techniques are
effective only on programs whose termination argument depends only on the invariants that can be inferred
by a scalable, light-weight analysis. Since termination is an undecidable problem, there exist numerous
interesting algorithms where the invariants required for termination are so complex that they are beyond
the reach of existing automatic invariant inference techniques. For instance, lazy functional queues proposed
by Okasaki (1998) rely on the invariant that the streams used by the queues have finite length. Defining
such invariants requires recursive functions or quantifiers. (Section 5 provide many such examples.) Finally,
it is difficult to integrate whole-program termination verifiers with modular verification techniques such as
Vazou et al. (2014) and Voirol et al. (2015) that verify a contract (or refinement type) independently of the
clients of the library.

In contrast, modular techniques that can reason about termination of different modules or functions
of a higher-order program independently, and later compose the results of the analysis are rather scarce
in literature. The primary challenge here is the need to reason about callbacks i.e, indirect calls whose
targets depend on the calling contexts. In this paper, we propose a new approach for modularly reasoning
about termination of open, higher-order functional programs with recursive functions and datatypes. One
of key challenges in achieving this is devising a reasonable notion of termination for open, higher-order
programs. Unlike the case of first-order programs, defining termination of open higher-order programs is not
straightforward. For example, consider a map function shown below in the syntax of the Scala programming
language (Odersky et al. 2008). The function takes an arbitrary function f and a non-empty list l as input,
and applies f to every element of l.

def map[T,R](f: T ⇒ R, l: List[T]): List[R] = l match {
case Nil() ⇒ Nil[R]()
case Cons(h, t) ⇒ f(h) :: t.map(f)

}

The termination of the function map depends on the termination of the function f passed as input, since map
may apply f during its execution. The parameter f can be a non-terminating function. While this suggests
that map should be flagged as non-terminating, the function exhibits another interesting property that may
suggest the opposite: map terminates whenever f is a terminating function. The latter is an interesting piece
of information for the developer of the function, and is, in fact, what the developer expects. Even more
interesting is the fact that this also enables modular reasoning, since if it is established that a caller of map
passes a terminating function as f, the call to map is terminating. This raises the question of whether map
should be blamed for the non-termination of a function passed as a parameter. In fact, the documentation
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of the Haskell stream library (Swierstra 2015) does not mention map as a non-terminating function, while it
flags certain other functions as potentially diverging. Furthermore, the definition used by the related work
(Giesl et al. 2006) on open program termination, namely H-termination, also considers the function map to
be terminating.

In this paper, we provide a new perspective on the problem by proposing a novel definition for termination
of open, higher-order functions namely termination modulo callbacks. A function is terminating modulo
callbacks iff it terminates on every input for which the callbacks made by the function while executing
under the input terminate. Intuitively, a callback to a function f is a call to a piece of code that is created
outside the function f but is executed by the function. (These notions are formally defined in section 2.)
For the map example, every call f(h) made at runtime is a callback. To check if map terminates modulo
callbacks, it suffices to consider inputs to map where every f(h) is a terminating call. Since map terminates
under all such inputs, it is terminating modulo callbacks. The function size shown below is an illustration of
non-termination modulo callbacks. The function takes as input a node of a stream, and a next function that
returns the next node of the stream given the current node (or None for the last node of the stream). The
function size counts the number of elements in the stream.

def size[T](node: Option[T], next: T ⇒ Option[T]): Int = node match {
case Some(x) ⇒ 1 + size(next(x), next)
case None ⇒ 0

}

There exists an input to the function size under which the function is non-terminating even if all the callbacks
it makes during the execution under the input are terminating. For instance, if next is defined as a function
x ⇒ Some(x), which corresponds to an infinite stream of x, then size is non-terminating as it iterates on
Some(x) forever. The documentation of the Haskell stream library documents every such function that
iterates over a stream (e.g. filter, dropWhile) as potentially diverging. Note that if an expression does not
make any callbacks, e.g. like the main function of a closed program, then the above notion coincides with
the traditional definition of termination.

Advantages of Termination Modulo Callbacks. The following are the main reasons why we believe
termination modulo callbacks is a useful notion for open, higher-order programs.

(a) Intuitive appeal and blame assignment. Based on our experience with studying and developing
higher-order libraries, it appears that this definition matches the termination property that is of interest
to developers of open, higher-order programs. In particular, reporting that a function does not terminate
modulo callbacks is almost always an indication of a bug or an undocumented usage restriction.

This definition also seems to provides a satisfactory assignment of blame for non-termination. For instance,
since map is terminating modulo callbacks, any non-termination during execution of map is the fault of the
caller of map. However, non-termination during execution of size under the inputs shown above is the fault of
the size function. In this case, either size should be disabled from being applicable under such environments,
e.g. by a precondition or by a sanity check, or it should be modified so that it terminates for infinite streams.

(b) Suitability for use in theorem provers and verifiers. The assumption that the callbacks are terminating
functions is well-suited for applications where all functions are required to be terminating, as in the case of
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sealed abstract class Tree[T] { val depth: BigInt }
case class Leaf[T]() extends Tree[T] { val depth: BigInt = 0 }
case class Node[T](child: T ⇒ Tree[T], depth: BigInt) extends Tree[T] {
require(depth > 0 && child.requires(_ ⇒ true) && child.ensures((_, res) ⇒ res.depth < depth)) }

Fig. 1. Lazy tree definition. The require keyword in the Node class states a class invariant and requires and ensures state
higher-order contracts on the first-class function child (namely that child must be defined for all inputs and the depth of its
output must be lower than the current depth).

def fold[C](tree: Tree[Alphabet], f: List[C] ⇒ C): C = {
decreases(tree.depth)
tree match {
case Node(child, _) ⇒ f(Alphabet.values.map(a ⇒ fold(child(a), f)))
case Leaf() ⇒ f(Nil()) }}

Fig. 2. Fold definition on a lazy tree. The decreases keyword specifies the ranking function of the fold.

interactive theorem provers and contract-based software verifiers. In these applications, every function is
guaranteed to be used only under the environment where all the callbacks provably terminate.

(c) Environment Agnostic Definition. As opposed to whole-program analyses, checking whether a function
terminates modulo callbacks can be accomplished independently of the calling context. This gels well with
higher-order contract verification techniques that verify a function independently of the calling context.

(d) Simplicity of the definition. In comparison to the other existing definitions for termination of open,
higher-order functions such as H-termination (Giesl et al. 2006) which is defined cyclicly using H-terminating
terms, our definition is constructed out of the unambiguous notion of termination under a specific input and
does not have any cyclic dependencies on itself.

1.1 Modular Verification of Termination Modulo Callbacks

In this paper, we propose a modular approach to verifying termination modulo callbacks of open programs
and establish its soundness. The main distinguishing aspect of the approach compared to other existing
related techniques is the ability of the approach to exploit user-provided contracts on functions and user-
provided ranking functions to establish termination. The main challenge addressed by our approach is in
making such heavy-weight reasoning scale by controlling the proof obligations (or verification conditions)
that are generated, and by reducing the annotation overhead for users.

In particular, we derive novel and concise sufficient conditions, referred to as proof obligations, for checking
termination of functions modulo callbacks. Interestingly, the sufficient conditions we derive allow us to verify
termination of programs even without requiring the knowledge of the targets of the applications (or indirect
calls). In fact, our approach does not even generate any proof obligations for checking indirect calls, instead
it proves termination by establishing sufficient properties at closure creation sites. Since closure application
sites far outnumber closure creation sites in practice, the technique generates far fewer proof obligations and
scales to complex programs.

We now present an overview of the approach using the example shown in Fig. 1 and Fig. 2. Fig. 1 defines
a datatype Tree with two constructors Leaf, which represents an empty tree, and Node which represents a
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non-empty tree. The datatype Tree defines an abstract field depth, which is initialized to zero in a leaf, and
is defined at the time of construction for a node. The children of a node are given by a field child of function
type T ⇒ Tree. child maps an index of type T to the corresponding children of the node. The construct
require is used to specify function preconditions, as well as invariants of datatypes. Notice that the invariant
of the type Node asserts that the function stored in the field child is such that the depth field of the tree
returned by child is smaller than the depth field of the node. This is the key property that ensures that the
tree has finite depth.

Consider now the fold function shown in Fig. 2 that defines a fold operation on a tree: Tree[Alphabet], where
Alphabet is a class that denotes a finite sequence of distinct symbols. The children of the tree are indexed by
the alphabet symbols. The fold function applies the function f recursively on the children of the tree, and
combines the results of folding the children by applying f again. The decreases construct is used to specify a
ranking function or measure that will be used by the termination checking algorithm, described shortly.
The function map is defined as described earlier and is terminating modulo callbacks. We are interested in
checking if the fold function is terminating modulo callbacks.

In principle, establishing termination of fold modulo callbacks depends on termination of the call to
map and vice-versa. This is because first we need to show that the call Alphabet.values.map terminates
(unconditionally). To prove this we need to know that the argument to the map terminates, which in turn
requires knowing that the function fold terminates on the arguments passed to it. However, this cyclic
dependency is not an impediment to our approach, which relies on creation-site-based reasoning. Our
approach modularly establishes the termination (modulo callbacks) of fold and map by proving that there
exists a measure that decreases across direct recursive calls and the recursive calls made within the closures
created by the functions. For instance, it establishes that the measure of fold namely tree.depth decreases for
the call to fold(child(a),f) made within the closure created by the function. This property is proved using the
datatype invariant of the Node constructor shown in Fig. 1 that asserts that the depth of child(a) is smaller
than depth of the tree. Similarly, we also establish that there exists a measure for map that decreases across
the recursive calls made within the closures created by the map function, which in this case follows from the
wellfoundedness of the List datatype. Though this creation-site reasoning may initially come as a surprise,
we formally show in section 3 that this reasoning is sound by establishing non-trivial, previously unknown
theoretical results in termination of higher-order functional expressions with recursion.

As illustrated by the above example, our approach has two main advantages: (1) functions can be
independently checked for termination much as in contract-driven verification, and (2) we make no closed-
world assumption, thus enabling reusability of library-level termination proofs across multiple clients.
However, our algorithm can also perform non-modular reasoning, i.e analyze a function more than once, in
cases where the contracts provided by the users are insufficient for establishing the required proof obligations.
In our system, users have the option of helping the system scale or achieve better precision by providing
contracts at the level of functions or types. But even in the absence of contracts (or insufficient contracts)
they may rely on the automation in the system to establish the required obligations for termination, which
may potentially (re)analyze the direct or local callees (i.e, non-callbacks) of a function. We refer to such an
analysis where the users can tune the level of modularity based on their needs as a tunable modular analysis.
To further improve automation, we also integrate a light-weight, non-modular static analysis to determine
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the set of local calls (i.e. non-callbacks) that could be transitively invoked by a function. In either case, our
system ensures that the properties (1) and (2) listed above hold.

Contributions. To summarize, the main contributions of the paper are as follows:

• We present a new semantic notion for open higher-order program termination: termination modulo
callbacks. We discuss the advantages of this notion and how it relates to pre-existing notions, and
discuss compositionality of our notion. (Section 2)

• We discuss in Section 3 two different semantically-defined obligations that can be used to establish
termination modulo callbacks. We prove that these obligations are sufficient to establish termination
modulo callbacks and are compositional. We further show in Theorem 4 that the first obligation
is weakly complete, in the sense that it will only fail to establish termination modulo callbacks if
no compositional analysis can succeed. The obligations are based on a novel theorem (Theorem 1)
on termination of closed higher-orders expressions with recursive functions under call-by-value
evaluation semantics. We present detailed proofs of the theorems in the Appendix A.

• We present an approach and a system that modularly verifies the termination obligations using
higher-order contracts. We show how verification and termination can mutually benefit from each
other and establish the soundness of the verification approach (Section 4).

• We present the results of using our system to verify termination of numerous higher-order functional
Scala programs that comprise more than 10K lines of Scala code. To our knowledge, no prior
termination technique can prove termination of some of the data structures we handle such as
Okasaki’s scheduling-based, lazy data structures and lazy trees. These benchmarks demonstrate
the effectiveness of our technique and also more broadly demonstrate the usefulness of higher-order
contracts in higher-order termination verification (Section 5).

2 LANGUAGE AND SEMANTICS

x ∈ Vars (Variables)
f ∈ Fids (Function identifiers)

τ ∈ Type ::= τ̄ | τ ⇒ τ | Unit
v ∈ Value ::= λx.f w̄ where w̄ ∈ (Value ∪ {x})∗

eλ ∈ Lambda ::= λx.f ȳ where ȳ ∈ (Value ∪Vars)∗
e ∈ Expr ::= x | eλ | e e

Fdef ::= def f (x̄) : τ ⇒ τ := e
L ∈ Library ::= 2Fdef

Fig. 3. Syntax of expressions, functions and libraries.

In this section, we formally introduce our notion of termination for open higher-order libraries. For
perspicuity, we present this notion with respect to a toy functional language with (recursive) named
functions, lambda expressions and call expressions. In the later sections, we enrich the language with type
polymorphism, recursive datatypes and higher-order contracts, which takes it closer to the subset of the
Scala language admitted by our tool. Fig. 3 shows the syntax and Fig. 4 the static semantics of the toy
language. In the figure, ā denotes a sequence of elements belonging to a domain A∗, ai refers to the ith
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{(f, τ ) | def f (x̄) : τ := e ∈ L} ⊆ Γ ⊆ (Vars ∪ Fids) × Type

Var
u ∈ Vars ∪ Fids (u, τ ) ∈ Γ

Γ ` u : τ

Lambda
Γ[x 7→ τ1] ` e : τ2
Γ ` λx.e : τ1 ⇒ τ2

DirectCall
Γ ` f : τ1 ⇒ τ2 Γ ` e : τ1

Γ ` f e : τ2

Seq
|ē| = |τ̄ | ∀i. Γ ` xi : τi

Γ ` ē : τ̄

App
Γ ` e1 : τ1 ⇒ τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

FunDef
|x̄| = |τ̄1| Γ[x̄ 7→ τ̄1] ` e : τ2
Γ ` def f (x̄) : τ̄1 ⇒ τ2 := e : Unit

Fig. 4. Static typing rules for expressions with respect to a library L, following simply typed lambda calculus with recursion.

element of the sequence, and |ā| refers to the length of the sequence. The language allows direct calls to
named functions of the form f e and also indirect calls (or applications) of the form e e. The domain Value
defines the set of closed lambda terms (or closures), and the domain Lambda defines lambda terms with free
variables. Without loss of generality, we enforce that the bodies of all lambdas are direct calls to named
functions applied over variables or values. This syntactic restriction ensures that the computation performed
by the lambdas are given by named functions in the program. This allows a succinct presentation of the
termination conditions checked by our approach. (It is straightforward to relax this by introducing more
explicit checks for lambdas which is incorporated in our implementation.) Every expression in our language
is associated with a static label. The label is generally omitted but when needed is denoted as ` : e. A
library L ∈ 2 Fdef is a finite set of function definitions that are closed with respect to named function calls.
That is, every named function called in the bodies of functions (defined in L) are defined in L.

The static typing rules for the expressions are shown in Fig. 4. Since expressions can refer to named
functions, an expression can be type checked only with respect to a library L. As shown in Fig. 4, every type
environment Γ binds all functions in the library L to their declared types. This enables recursive function
definitions since the body of a function f is allowed to refer to any named function defined in the library
(including itself), as shown by the rule FunDef. Other typing rules shown in Fig. 4 are similar to that of
simply typed lambdas calculus. Below we introduce a few notations used in the rest of the paper.

Basic Notation and Terminology. We use A 7→ B to denote a partial function from A to B. h[a 7→ b]
denotes the function that maps a to b and every other value x in the domain of h to h(x). We use h[ā 7→ b̄]
to denote h[a1 7→ b1] · · · [an 7→ bn]. Given an expression e, let FV (e) denote the set of free variables of e.
We refer to an expression without free variables as a closed expression. Given a value λx.f w̄, we refer to
the elements of w̄ that are different from x as the captured values of the closure. Given a function f ∈ L, we
use body (f ) and param (f ) to refer to the body and parameters of f . Note that these operations are always
defined with respect to the library L.

The operation e[e′/x] denotes the syntactic replacement of the free occurrences of x in e by e′. This
operation replaces expressions along with their static labels and also performs alpha-renaming of bound
variables, if necessary, to avoid variable capturing. We extend this operation to replacing a sequence of
variables and denoted it by e[ē′/x̄]. A substitution σ : Vars 7→ Expr is a partial function from variables to
expressions. We use e σ to denote e[σ(x1)/x1] · · · [σ(xn)/xn], where dom (σ) ⊇ {x1, · · ·xn}.
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(Evaluation contexts) C ∈ EContext = [ ] | C e | v C
Context
e { e′

C[e] { C[e′]

UnmarkedCall
v1 = λx.f w̄ b = body (f )
v1 v2 { b[w̄/param (f )][v2/x]

MarkedCall
v1 = (λx.f w̄)+ mb = markAll (body (f ))

v1 v2 { mb[w̄/param (f )][v2/x]

Fig. 5. Operation semantics of the expressions. The function markAll (e) marks every lambda in the expression e.

We define an expression context C as an expression with a hole, which can be substituted by another
(type-compatible) expression e to obtain an expression denoted C[e]. We say e1 is a sub-expression of
e2 (denoted e1 v e2) iff there exists a context C such that e2 is syntactically equal to C[e1]. We say an
expression e is well-typed with respect to a library L iff the expression type checks under an environment Γ

that binds all functions in L to their types (as shown at the top of Fig. 4), and the static labels of expressions
in e are unique.

Operational Semantics. Fig. 5 presents the small-step operational semantics for closed expressions that
are well-typed with respect to a library L. The semantics are defined using a set of reduction rules similar
to beta-reduction rules. However, we instrument the rules to also propagate marks (or taints) on lambda
terms encountered during evaluation. A marked lambda term is denoted by (λx.f e)+. Every lambda term
is unmarked unless explicitly stated. The markers on lambdas will be used shortly to define the notion of
callback, which in turn will be used to define the notion of termination modulo callbacks of open expressions.

Consider the reduction rules shown in Fig. 5. The evaluation context C and the reduction rule Context
enforce a call-by-value evaluation strategy. The rules UnmarkedCall and MarkedCall perform the
usual beta-reduction but with a minor extension. Since (by our syntactic restriction) the body of every
lambda term is a direct call to a function (say f), the direct call is first applied it to its arguments before
the beta-reduction. Note that the rule MarkedCall additionally marks every lambda term in body (f )
using the helper function markAll. This results in a property that every lambda term created by applying a
marked lambda term is also marked, which is essential for defining callbacks. As is evident, the marks on
lambda terms have no effect on the evaluation. In other words, the evaluation of an expression simulates the
usual call-by-value evaluation strategy. We use {∗ to refer to the reflexive, transitive closure of {. Below
we present a conventional semantic definition of termination of closed expressions.

Definition 2.1 (Termination). A closed expression e that is well-typed with respect to a library L

terminates iff the evaluation sequence e { e′ { e′′ · · · is finite.

Semantics of Open Expressions and Termination Modulo Callbacks. We now define the semantics of open
expressions (i.e, expressions with free variables). Subsequently, we define the notion of callbacks and
termination modulo callbacks for open expressions.

Definition 2.2 (Closing Environment). Let e be a (possibly open) expression that is well-typed with respect
to a library L. A closing environment of (e, L) is a pair (σ, L′) where L′ ∈ 2 Fdef and σ : Vars 7→ Value is a
substitution such that

(a) L ∪ L′ is a library,
(b) e σ is a well-typed, closed expression with respect to L ∪ L′,
(c) The lambda terms in range(σ) are marked.
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The first condition ensures that the library L∪L′ is well-formed i.e, has unique static labels for expressions
and is closed with respect to named functions definitions. The second condition ensures that the substitution
σ binds all free variables of e to type-compatible values. The third condition ensures that the lambdas that
are bound to free variables are marked. By the definition of the operational semantics, this in turn implies
that every lambda term created by applying the lambdas in range(σ) are also marked. We refer to every
application of a marked lambda that arises during the evaluation of e σ as a callback of e. Formally,

Definition 2.3 (Callbacks). Let e be an expression well-typed with respect to a library L. Let (σ, L′) be a
closing environment of (e, L). Callbacks(L,L′, e, σ) = {(v1 v2) | ∃C ∈ EContext, {v1, v2} ⊆ Value. (e σ) {∗

C[v1 v2] ∧ v1 is marked }

Dual to callbacks, we define LocalCall (L,L′, e, σ) as the set of applications of lambda terms that
are not marked. That is, LocalCall (L,L′, e, σ) = {(v u) | ∃C ∈ EContext.(e σ) {∗ C[v u] ∧ v ∈
LocalClosure(L,L′, σ, e)}, where LocalClosure(L,L′, e, σ) is the set of unmarked values that arise during the
evaluation of e σ, i.e, {v | ∃C ∈ EContext, v ∈ Value. (e σ) {∗ C[v] ∧ v is unmarked }.

In essence, callbacks are applications of lambda terms that are defined by the environment in which
e is invoked. Thus, their behavior depends on the closing environment. Whereas, local calls apply local
closures created by the expression e (possibly via other local calls) whose definition is available in e or in L.
Intuitively, the non-termination of any callbacks made by e is the fault of the client of e and should not be
blamed on e. Below we present the definition of termination modulo callbacks that is based on this intuition.

Definition 2.4 (Termination Modulo Callbacks). Let e be an expression that is well-typed with respect to
a library L. e terminates modulo callbacks iff for all closing environments (σ, L′) of (e, L),

(∀cb ∈ Callbacks(L,L′, e, σ). cb terminates) ⇒ e σ terminates.

Interestingly, if e does not make any callback, termination modulo callbacks reduces to plain old termination.
In other words, for closed expressions or expression where the free variables do not have function types,
termination modulo callbacks and termination coincide. We define non-termination modulo callbacks as
the complement of termination modulo callbacks. We say a function is terminating (or non-terminating)
modulo callbacks if its body expression is terminating (or non-terminating) modulo callbacks.

Tunable Modular Analysis. We are interested in reasoning techniques where functions (or expressions) are
verified for a property P by utilizing the fact that their callees (or sub-expressions) satisfy the property P,
together with a few additional checks. Such techniques are called modular or compositional. For instance,
type checking is modular because the well-typedness of a function (or expression) can be determined from
the well-typedness of the callees (or sub-expressions) with an additional check for the compatibility of the
types. A main advantage of modularity is that it allows reasoning about parts of the program independently
of others while guaranteeing that the correctness of the parts will imply the correctness of the whole. This
is particularly important for analyzing open libraries as it is desirable to avoid as much re-analysis of the
library as possible for each new client. To make things more concrete we formally define a modular analysis
or verifier as follows.

Modularity. An analysis A : Library → Summary, for some domain Summary, is modular (or library
modular) iff for any library L and L′ ∈ 2Fdef such that L ∪ L′ is a library, A(L ∪ L′) is a function of A(L)
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def f(u): Unit ⇒ Unit := g (λx.h x) def h(x): (Unit ⇒ Unit) ⇒ Unit := x Unit
def g(z): ((Unit ⇒ Unit) ⇒ Unit) ⇒ Unit := z (λy.g z)

Fig. 6. A challenging example for checking termination modulo callbacks modularly.

and L′. In other words, A(L∪L′) does not depend on the implementation of the functions in L but only on
their summaries.

Despite the intuitive appeal of modular analyses, in practice, sacrificing modularity could be beneficial at
times e.g. to reduce the user annotations required on function or library interfaces. We are interested in
analyses where users are able to tune the degree of modularity in verification to achieve the right balance
between user annotation overheads and performance. Users should have the option of helping the system
scale or achieve better precision by providing specifications on function interfaces or modules when required,
but otherwise may rely on the automation in the system to establish the required properties (even if it
requires re-analyzing libraries). We believe this property allows for a truly scalable solution especially
when heavy-weight techniques such as SMT solving or theorem proving techniques are employed, which are
powerful but exhibit unpredictable behaviors.

Non-composability of Termination Modulo Callbacks. Termination modulo callbacks is inherently a non-
modular property, which makes it challenging to design a modular reasoning technique. For instance,
consider the functions shown in Fig. 6 expressed in the syntax of the toy language. The bodies of functions
h and g are trivially terminating modulo callbacks since they just apply the input parameters x and z

respectively, which are callbacks in any closing environment. However, the body of the function f , which
is a closed expression, is non-terminating (and also non-terminating modulo callbacks) due to the cyclic
reduction sequence: g (λx.h x) {∗ (λx.h x) (λy.g (λx.h x)) {∗ g (λx.h x). In other words, composing
expressions that are terminating modulo callbacks does not preserve termination modulo callbacks. However,
this does not imply that termination modulo callbacks cannot be verified modularly. It only implies that
one needs to infer/verify some property in addition to (or stronger than) termination modulo callbacks for
every function in a library to perform a modular verification.

3 TERMINATION OBLIGATIONS

In this section, we reduce the problem of verifying termination modulo callbacks to checking a set of
semantically-defined safety assertions called termination obligations. The goal is to deduce assertions that
are amenable to efficient, modular verification on the functions in a library L. (As shown by Fig. 6, the
definition of termination modulo callbacks as such is not amenable to modular verification.) In section 4,
we describe an algorithm for efficiently checking these conditions using a state-of-the-art safety verification
technique for higher-order programs, based on higher-order contracts.

3.1 A Sound and Complete Condition for Termination

First, we present a new and important theorem about the closed evaluation of expressions in our language
that are well-typed with respect to a library L. The termination obligations are deduced based on this
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theorem. The proofs of all theorems that follow are presented in detail in Appendices A and B. Before we
present the theorem, we introduce a couple of simple definitions.

Definition 3.1 (Incomplete Call Sequence). Let e be a closed expression. A sequence of applications
S : (v1 u1), (v2 u2), · · · is an incomplete call sequence in the evaluation of e iff the call (vi ui) happens
before (vi−1 ui−1) completes. That is, there exists contexts {Ci | i ≥ 1} such that e {∗ C1[(v1 u1)] and for
all i ≥ 2 , (vi−1 ui−1) {

∗ Ci[(vi ui)].

Definition 3.2 (Parameter Substitution). Let e be a closed expression. Let e {∗ (λx.f w̄) u. Define
σparam ((λx.f w̄) u) as the substitution that maps the parameters of the function f to the actual ar-
guments passed to the function f , and where all lambda terms in the arguments are marked. That is,
σparam ((λx.f w̄) u) = [param (f ) 7→ markAll (w̄[u/x])].

We now present an important theorem that provides a sound and complete condition for proving
termination of the evaluation of a closed expression. In simple words, the theorem states that for any
closed expression e belonging to our language, its evaluation terminating if one can bound the length of
every sequence of incomplete calls (i.e, calls that do not return) having the following property: there exists
a function f such that every call in the sequence apply a closure whose target is f and each call in the
sequence applies a closure local to the previous call in the sequence.

Theorem 1 (Locality of Termination). Let e be a closed expression that is well-typed under a library L.
e is terminating if (and only if) for every function f , there exist a n ∈ N that upper bounds the length
of every sequence of incomplete calls S : (v1 u1 ), (v2 u2 ), · · · where each vi is of the form λx.f w̄i and
∀i ≥ 2. (vi ui ) ∈ LocalCall (L,L, body (f ), σparam (vi−1 ui−1 )).

We now briefly explain the significance of this theorem. The only if direction of the theorem is trivial
and hence is shown in parentheses, since if e is terminating then every sequence of incomplete calls in the
evaluation of e should be finite. The other direction is non-trivial, since even if we know that the length
of every sequence S as describe above is bounded by a number n, the number of such sequences could
potentially be infinite meaning that the evaluation of e is non-terminating. The theorem asserts that this is
not possible for a well-typed, closed expression belonging to our language.

This theorem is interesting because for each function f in a library L, it enables us to focus on calls
that are local to f . The local calls only apply local closures whose definitions (i.e, corresponding lambda
terms) are available within the function f or its named callees. The targets of these calls can be inferred
just by traversing the abstract syntax trees of the function f and its (named) callees, as detailed in section 4,
resulting in a plausible strategy for termination checking without considering the calling context. The
following lemma formally states this syntactic property of local closures.

Lemma 2 (Local Closure Property). Let e be an open expression well-typed with respect to a library L, and let
(σ, L′) be a closing environment. Let (` : v) ∈ LocalClosure(L,L′, e, σ), where ` is the static label of v. There
exists a lambda term λx.g ȳ that is a sub-expression of e such that ∃((λx.g w̄) u′) ∈ LocalCall (L,L′, e, σ)
and v = λx.g w̄ or v ∈ LocalClosure(L,L′, body (g), σparam ((λx.g w̄) u′)).

An immediate corollary of the above lemma is that if (` : v) is a local closure of e w.r.t any closing
environment then it is a closure of a lambda term which is a sub-expression of e or a sub-expression of the
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body of some function in L. In other words, the definition or source code of all local closures are available
in the library or in the expression under analysis.

As an illustration, consider the body of the function f shown in Fig. 6: g (λx.h x). (Since we do not
allow direct calls outside of the lamdba terms, g is a syntactic sugar for a lambda term λy.g y.) The
evaluation of the closed expression g (λx.h x) is non-terminating due to the infinite reduction sequence:
g (λx.h x) {∗ (λx.h x) (λy.g (λx.h x)) {∗ g (λx.h x) {∗ · · · . By theorem 1, there must exist a function,
in this case g, such that the length of every sequence of incomplete calls that invoke a closure whose target
is g is unbounded. The infinite sequence S : g (λx.h x) {∗ g (λx.h x) {∗ · · · serves as a witness for the
fact that there does not exist an upper bound on the length of all such sequences (as it doesn’t even exist
for a single sequence).

We are not aware of similar theorems for higher-order programs that derives sound and complete conditions
for non-termination based on the locality of the closures that are invoked. The complete proof of the theorem
is shown in Appendix A. At a high-level, we prove this by showing that if there exists a bound n on all
such call sequences stated in the the Theorem 1, then the recursions in the functions in the library L can
be embedded into a strongly normalizing fragment of lambda calculus, by unfolding the functions upto a
depth of n. For this purpose, we extend the Tait (1967) and Girard (1990) proof of strong normalization of
simply-typed lambda calculus to functions with recursion that are known to be terminating.

Below we use the Theorem 1 to deduce sufficient conditions (proof obligations) for checking termination
modulo callbacks of open expressions.

3.2 Obligations for Termination Modulo Callbacks

Based on Theorem 1, we now present the proof obligations that ensure termination modulo callbacks of
any open expression belonging to a library L. We present the obligation checked by our algorithm in two
steps in order to throw light on the trade-offs involved in the proof obligation and to throw light on the
correctness. We first introduce a weak obligation, which is an intermediate condition that helps derive the
second obligation namely the strong obligation. Our system only uses the strong obligation to establish
termination modulo callbacks.

The first obligation, referred to as weak obligation, requires that there exist a bound on every call sequence
of the form stated by Theorem 1, and thereby ensures termination. For this purpose, we associate a measure
or ranking function with every function f in the library. The measure defines a well-founded ordering on the
set of assignment of expressions to the parameters of f . We assert that every time a call local to body (f )
that applies f is invoked, the measure decreases. (We assume that the measure function is oblivious to the
marks on the lambda terms, which is only an instrumentation artifact.)

Definition 3.3 (Weak Termination Obligation). Let e be an expression well-typed with respect to a library
L. There exists a measure functionMf : (param (f ) 7→ Expr ) → N for every function f belonging to L, and
a measure functionMe for e such that the following holds.

For all e′ ∈ {e} ∪ {body (f ) | f ∈ L}, for every closing environment (σ, L′) of (e′, L),

((λx.f w̄) u) ∈ LocalCall (L,L′, e′, σ) ⇒Mf (σparam ((λx.f w̄) u)) <M (σ)

whereM isMf if e′ is body (f ) for some f , andMe otherwise.
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Theorem 3 (Soundness of Weak Obligation). Let e be an open expression well-typed with respect to a library
L. If the weak termination obligation given by Definition 3.3 holds for L and e, then e terminates modulo
callbacks.

The formal proof of soundness is presented in Appendix B. Intuitively, the reason why this rules out
call sequences of the form stated in Theorem 1 is as follows. If the above obligation holds, every local call
c of e σ invoking a closure whose target is f must have a measure strictly smaller than the measure of
e σ. Similarly, every call local to it, invoking a closure whose target is f , must also have a strictly smaller
measure compared to the measure of c. Thus, any chain of local calls starting from e σ invoking a given
function f must have length at mostMe (σ).

The weak obligation is not complete for termination modulo callbacks. That is, if the obligation fails
for a library L, it may still be possible for an expression well-typed with respect to L to be terminating
modulo callbacks. Nevertheless, we have a weaker completeness guarantee stated below. In simple words,
the following theorem states that if the weak obligation fails then there exist expressions of the library that
are terminating modulo callbacks, yet when composed with each other will lead to an expression that is no
longer terminating modulo callbacks. This suggests that it is necessary to ensure this obligation for a library
L if one has to guarantee termination under all possible clients that are terminating modulo callbacks.

Theorem 4 (Weak Completeness of Weak Obligation). If the weak termination obligation does not hold for a
library L, there exists a library L ∪ L′ and expressions e and e′ well-typed under the library L ∪ L′ such that
e and e′ are terminating modulo callbacks but e e′ is not terminating modulo callbacks.

We refer to this obligation as weak as it is quite permissive in comparison to the conditions presented
later. However, the obligation is also difficult to check (precisely) without knowledge of the definition of
callbacks in the closing environment. This is because, while we only need to check calls local to body (f ),
those calls could be made within callbacks of f (through a local closure passed to the callback). Hence, it is
difficult to know the arguments with which the local closures would be invoked under a closing environment,
and even whether it would be invoked at all. In other words, it is difficult to know the value u used in the
definition of the obligation.

One conservative way to soundly guarantee this obligation is to determine all closures local to f that
could ever be applied during the evaluation of body (f ) (under some closing environment), and establish that
the measure decreases irrespective of the argument on which it is applied. This is the idea behind the strong
termination obligation described below.

Definition 3.4 (Strong Termination Obligation). Let e be an expression well-typed with respect to a
library L. There exists a measure functionMf : (param (f ) 7→ Expr ) 7→ N for every function f in L and a
measure functionMe for e such that the following holds.

For all e′ ∈ {e} ∪ {body (f ) | f ∈ L}, for any closing environment (σ, L′) of (e′, L) and for all lambda term
` : (λx.g ȳ) that is a sub-expression of e′,

∀u.(` : λx.g w̄) ∈ LocalClosure(L,L′, e′, σ) ∧Applicable(L,L′, e′, σ, `, u) =⇒

Mg ([param (g) 7→ w̄[u/x]]) <M (σ)

whereM isMf if e′ is body (f ) for some f , andMe otherwise.
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The operation Applicable(L,L′, e′, σ, `, u) returns true if a closure ` : λx.g w̄ is applied with ar-
gument u during the evaluation of e′ under the closing environment (σ, L′). Note that when
Applicable(L,L′, e′, σ, `, u) iff ((` : λx.g w̄) u) ∈ LocalCall (L,L′, e′, σ), then the strong termination obli-
gation corresponds exactly to the weak version. However, the strong termination obligation can adjust the
precision of the analysis used to compute Applicable as needed. The soundness of the strong termination
obligation is incumbent only on the requirement that this operation conservatively returns true on all lambda
terms that may be invoked before e′ completes (for example, by always returning true).

Theorem 5 (Soundness of Strong Termination Obligation). Let e be an open expression well-typed with
respect to a library L. If the strong termination obligation given by Definition 3.4 holds for L and e then e
terminates modulo callbacks.

We formally detail the proof of this theorem in Appendix B. In practice, a good first approximation of
Applicable(L,L′, e′, σ, `, u) can be given by the function Invocable(L, e′, `) which returns true if a closure
labeled ` is applied during the evaluation of e′ under some closing environment. We also use any available
user-provided preconditions on the possible values of the parameter u (e.g. expressed using a contract on the
lambda term labelled `). The purpose of this operation is to relieve the algorithm from having to consider
lambda terms of e′ that cannot be invoked before e′ completes evaluation (under any closing environment).
Obviously, such lambda terms cannot result in local calls of e′. We will shortly provide a semantic definition
of Invocable(L, e′, `). In our implementation we use a static analysis to approximate this semantic definition.

The strong termination obligation is more amenable to modular verification. Firstly, note that σ is an
assignment of parameters of f to some values. To consider all possible values of the parameters, we could
leave the parameters as unconstrained, free variables. Secondly, the obligation only considers closures of a
sub-expression ` : eλ of body (f ) or e. Thus the definition of all relevant closures that need to be checked is
available in the body of f (or e). Assuming that the measures of each function are already known (either
inferred automatically or provided by the user), the only unknown in the obligation is the constraint on the
captured values of the closures corresponding to eλ, i.e, the substitution σ′ from the free variables of the
lambda to values that is possible at the label `. This is constrained by the path starting from the entry
point of f leading to the lambda term ` : eλ.

Thus, to check the strong obligation it suffices to estimate the substitutions reachable at the point of
lambda creations in the functions in L. In essence, the strong obligation has reduced termination modulo
callbacks of an open library L to the familiar problem of determining reachable states within each function,
albeit in the presence of first-class functions. To be able to constrain the reachable states modularly and
precisely on open programs, we turn to higher-order contracts. The following section details our algorithm
for checking the strong termination obligation using modular, property verifiers for higher-order programs.

Another interesting aspect of the strong obligation is that it only deals with closure creation sites and
establishes properties that must hold for all arguments with which the closures are invoked (except for
Invocable function which could analyze application sites, but is not required to). Any incompleteness due to
this creation site reasoning can be circumvented through additional user annotations, as it is always possible
for a user to express the properties that hold at the application sites of lambda terms as preconditions on
the arguments of the lambda and captured variables. Such preconditions would be taken into account by our
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algorithm presented in the following section. Below we present a sound semantic definition of the Invocable
function, which is used .

3.3 Semantic Definition of Invocable

A straightforward and precise way to define Invocable is by defining Invocable(L, e, `) to be true iff there
exists a closing environment (σ, L′) such that (` : v) u ∈ LocalCall (L,L′, e, σ). This definition of Invocable
makes the strong and the weak obligations almost identical, and thereby also reintroduces the non-modularity
problem we sought to address in the weak obligation. For instance, the call (` : v) u may happen within
a callback of e whose implementation depends on the closing environment. Therefore, we resort to an
over-approximate yet sound definition of Invocable described below that conservatively assumes that a
callback may invoke any closure (local to e) that is accessible from its arguments.

Given an expression e and library L, we define a label ` belonging to L or e as invocable iff either (a)
there exists a call site in the library L or e that applies a local closure (referred to as LocalCallSite) labeled
`, or (b) a closure labeled ` is local to another local closure labeled `′ passed as an argument (or captured by
an argument passed) to a call site in the library L or e that is a callback under some closing environment.

Definition 3.5 (Invocable). Let e be an expression well-typed with respect to a li-
brary L. Let LabelL denote the labels of e and expressions of the library L.

Invocable(L, e, `) iff ∃{r , u} ⊆ Value.((` : r ) u) ∈ LocalCallSite(L, e) ∨ (` : r ) ∈ AccessibleClo(L, e)

where LocalCallSite(L, e) = {(` : v u) | ` ∈ LabelL ∧
∃ closing environment (σ, L′). (` : v u) ∈ LocalCall (L,L′, e, σ)}

NonLocalCallSite(L, e) = {(` : v u) | ` ∈ LabelL ∧
∃ closing environment (σ, L′). (` : v u) < LocalCall (L,L′, e, σ)}

AccessibleClo(L, e) =
⋃
v∈EscapingClo(L,e) LocalClosure(L, v)

EscapingClo(L, e) =
⋃

(v u)∈NonLocalCallSite(L,e) LocalCaptures(L, e, v)
LocalCaptures(L, e, v) = ({v} ∪ {r | r is captured by u}) ∩ LocalClosure(L, e)
LocalClosure(L, e) = {v | ∃ closing environment (σ,L′). v ∈ LocalClosure(L,L′, e, σ)}

In the above definition, LocalClosure(L, e) denotes the set of closures local to e under some closing
environment. LocalCallSite(L, e) denotes the call sites in L or e that apply a local closure under some closing
environment and NonLocalCallSite(L, e) the call sites that apply some non-local closure. EscapingClo(L, e)
is the set of local closures that are passed as arguments to non-local call sites, or are captured by arguments
passed to them. AccessibleClo(L, e) is the set of closures that are local to EscapingClo(L, e). This set
captures the set of closures that may be invoked by a callback under some closing environment.

To compute Invocable using the above definition, we need three pieces of information. (a) We need the
set of closures that are local to e, under some closing environment. (b) We need to know if a call site in L
or e could be a callback or could be a local call to e. (c) We need the set of local closures that are passed
as (or are captured by) arguments to the call sites in L and e. As in the case of the strong obligation,
to compute this information it suffices to determine reachable substitutions (or states) at the call sites
and lambda creation sites in L and e. Our algorithm determines the above pieces of information using a
over-approximate static control-flow analysis that treats callbacks as uninterpreted functions with arbitrary
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d ∈ Tids Datatype identifiers
C ∈ Cids Datatype constructor identifiers

λx.req(c); f ȳ ∈ Lambda req(e); e ∈ Expr req(f, e) ∈ Expr Tdef ::= type d := C τ · · · C τ

L ∈ Library ::= 2Fdef ∪ 2Tdef

Fig. 7. Selection of syntax extensions to the new language.

Contract
Γ ` c : Boolean Γ ` e : τ

Γ ` req(c); e : τ

Domain
Γ ` f : τ1 ⇒ τ2 Γ ` e : τ1

Γ ` req(f, e) : Boolean

Datatype
type d := C1 τ1 · · · Cn τn ∈ L

∃i ∈ [1, n], e ∈ Expr . Γ ` e : τi ∧ (Ci e) ∈ Value
d only appears in positive position in τ1, · · · , τn

Γ ` type d := C1 τ1, · · · , Cn τn : Unit

Fig. 8. Selection of static typing rules of the extended language with respect to a library L.

behavior. However in principle, one can use a higher-order (state or property) reachability analysis (such as
symbolic execution) to determine this information.

4 TERMINATION VERIFICATION ALGORITHM

In this section, we discuss our algorithm for verifying the strong termination obligation discussed in the
previous section. Termination checking is performed in the context of a verification framework and relies on
higher-order contracts for effectiveness. At a high level, the verification and termination procedures of a
library proceed as follows:

(1) First establish that all contracts defined within library functions hold (assuming termination modulo
callbacks of all library functions).

(2) Next, check that the library satisfies the strong termination obligation.
(3) If all checks in steps 1 and 2 were successful, output that the library is verified and terminates

modulo callbacks.

Note that neither the soundness of verification nor that of termination can be claimed unless both procedures
succeed. Although this dependency may seem to imply cyclic reasoning, we show in the following that the
procedure is sound.

4.1 Higher-Order Contracts and Datatypes

We extend the toy language presented previously to support if-expressions, type polymorphism, recursive
datatypes and higher-order contracts. We show a selection of the syntax extensions in Fig. 7. For clarity,
we sometimes omit the req(c) contract from lambdas when it is not relevant. Fig. 8 presents a selection of
the typing rules for the extended language. Note that the proposed type system ensures the existence of
datatype normal forms by ensuring recursive datatypes admit a term in normal form and appear only in
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(Evaluation contexts for contracts) C ∈ EContext = req(C); e | req(C, e) | req(v, C)

Contract-1
req(true); e { e

Contract-2
(λx.req(c); f w̄) v { req(c[v/x]); (λx.f w̄) v

Req-F1
req(λx.req(c); f w̄, v) { c[v/x]

Fig. 9. Small-step operational semantics of expressions containing contracts and domain requirements.

positive positions in their constructor arguments. This restriction preserves the soundness of Theorems 3, 4,
and 5 in the presence of recursive datatypes. The proofs of these theorems can be expanded to the extended
language (Girard 1971),(Girard 1990). The extended language follows the expected operational semantics.
In this section, we assume the existence of a special Boolean datatype with constructors true and false along
with the usual operators (definable as non-recursive functions).

Contracts are introduced into our language through the req(c); e expression. The small-step operational
semantics of contracts can be found in Fig. 9. Contracts within lambdas effectively transform these into
partial functions. In order to specify/reason about the domain of these partial functions, we provide the
req(f, e) construct that evaluates to true iff the function f is defined on e. We are interested in verifying
open programs and it is therefore useful to be able to specify assumptions at function boundaries. Given an
expression req(c); e, we are generally only interested in closing environments (σ, L′) such that c σ {∗ true
and we thus verify properties of e σ under this assumption. Note that when considering evaluation and/or
verification, we can always assume an expression e is of the shape req(c); e′ as wrapping e in req(true); e is
idempotent with respect to evaluation. Further note that the req(c); e construct can also be used to specify
postconditions, as in the following example where pre and post correspond to the usual notions of pre- and
postcondition for function f .

def f(x): Nat ⇒ Nat := req(pre(x)); (λy.req(post(x,y)); id y) e def id(x): Nat ⇒ Nat := x

Validity of contracts is independently established by a verification framework. This operation corresponds
to step 1 of the high-level procedure presented above. We say an expression req(c); e is verified iff

(1) it is well-typed, and
(2) for all closing environment (σ, L′) such that c σ {∗ true and evaluation of e σ is terminating, for all

` : req(c`); e` encountered during evaluation of e σ where ` ∈ L (i.e. e σ {∗ C[` : req(c`); e′`]), we
have c` {∗ true.

Note that nothing is known about the evaluation of c` in cases where e σ is non-terminating. We say library
L is verified when for all f ∈ L, body (f ) is verified. It is often the case that verification procedures rely on
termination for soundness when performing inductive reasoning over function recursions. The termination
procedure we will be presenting relies on contracts having been checked, thus leading to a bidirectional
dependency between contracts and termination. This may seem like circular reasoning, however it has been
shown in (Giesl 1997) that one can soundly rely on properties that have been established through induction
over function recursions during termination verification as long as the full library is checked. In other words,
given a verified library L, it is sound to prove termination of L while relying on all req(c); e encountered
during evaluation to be such that c {∗ true. In the rest of this section, we will therefore rely on contracts
always evaluating to true when establishing our termination conditions.
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4.2 Checking the Strong Termination Obligation

In practice, checking the strong termination obligation directly by relying on a verification framework is
awkward due to potentially uncomputable ranking functions. We address this issue in the following section
and discuss a more tractable way of establishing the strong termination obligation through the verification
framework. This procedure corresponds to step 2 of the high-level algorithm presented earlier.

Let us start by presenting the notion of dependency graph. Given a library L, we construct a labeled
directed graph called dependency graph whose nodes correspond to the functions in the program. The edges
of the graph are constructed as follows. For every function f ∈ L, the graph contains edges from f to the
functions invoked in the body of the lambda expressions contained in body (f ). Each edge is annotated by the
label of the lambda expression that resulted in the edge. Unlike a conventional call-graph, the dependency
graph does not have any edges connecting the indirect call sites to their targets. Thus, constructing a
dependency graph requires only a syntactic analysis of a library.

Definition 4.1 (Dependency Graph). Let L be a library. Define a dependency graph GL = (L,E) where
E = {(f, `, g) | (λx. ` : g ȳ) v body (f )}.

Let us now introduce the notion of path condition. The path condition of a sub-expression (` : e`) v e
corresponds to a boolean expression that must evaluate to true on all paths where evaluation can reach label
`. The path condition provides us with a condition under which properties about ` will become relevant.

Definition 4.2 (Path Condition). Let e ∈ Expr and (` : e`) v e. We say c is a path condition for label ` if
for all closing environments (σ, L′) such that e σ {∗ C[` : e′`], we have c σ {∗ true.

Note that there are many path conditions for a single label-expression pair (the most trivial being true).
When dealing with higher-order functions, computing the most precise path condition of a given label is
undecidable. However, higher-order contracts provide us with a flexible tool to efficiently construct precise
path conditions in the presence of higher-order functions. Indeed, given a lambda (λx.req(c); ` : f w) v e
where e is verified, we can add c to the path condition of ` (by definition of verification). Let us therefore
define PathCond as

PathCond (e, `) := e in
if (c) JetK` else ee := c ∧ PathCond (et, `)
if (c) et else JeeK` := ¬c ∧ PathCond (ee, `)
req(c); Je′K` := c ∧ PathCond (e′, `)
λx.req(c); Jf e′K` := c

e if Jchildi (e)K` := PathCond (childi (e), `)
` : e := true

where JeK` iff (` : e′) v e and childi (e) is the i-th (direct) child of expression e. Assuming (e, L) was soundly
verified, it is clear that PathCond (e, `) is a path condition.

We define a cycle C : f, f1, · · · , fn, f in the graph as a path that begins and ends at the same vertex. For
every edge (f, `, g) that belongs to some cycle in the graph, we establish that for all closing environments
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(σ, L′) we have

(PathCond (body (f ), `) σ {∗ true) ∧ Invocable(L, body (f ), `) =⇒

Mg ([param (g) 7→ (ȳ σ)]) <Mf (σ) (1)

where (λx. ` : g ȳ) v body (f ). As g ȳ appears within a lambda, it may seem necessary to reason about
unknown targets when establishing this property. However, remember that when the lambda has the shape
λx.req(c); ` : g ȳ, the condition c will appear within PathCond (body (f ), `) and can be used to constrain
appearances of the lambda parameter x in ȳ. Notice that in the above definition we only consider cycles
in the dependency graph (whereas the strong termination obligation considers all local closures). This
is sufficient because given two functions f and g such that f precedes g in a topological ordering of the
call-graph then we impose that Mf >Mg. Note that establishing that PathCond (body (f ), `) σ {∗ true
will be discharged to the verification framework.

Lemma 6. If (e, L) is verified, and property (1) holds for all (f, `, g) ∈ E and closing environments (σ, L′),
then the strong termination obligation holds for expression e and library L.

Proof. By applying results from (Giesl 1997), we can assume that verification was sound while proving
termination modulo callbacks. As above, we impose thatMe >Mf for all f ∈ L. If we take Applicable to
be as precise as possible, then by definition of a path condition, Applicable(L,L′, body (f ), σ, `, u) implies that
PathCond (body (f ), `) σ′[x 7→ u] {∗ true for some σ′ corresponding to to the arguments given to f when the
lambda was added to LocalClosure(L,L′, e′, σ). As discussed previously, Applicable(L,L′, body (f ), σ, `, u)
further implies Invocable(L, body (f ), `). Finally, from our language syntax and operational semantics, we know
that lambda ȳ can only consist of either values. Hence, [param (g) 7→ (ȳ σ)] subsumes [param (g) 7→ w̄[u/x]]
and property (1) therefore implies the strong termination obligation. �

As we have a verification framework at our disposal, we want to cast the above check into a higher-order
contract checking problem. Let us start by considering the measure functions Mf and Mg. These can
correspond to arbitrary (potentially non-computable) functions taking a subtitution as input. However, the
verification framework can only reason about constructs that are defined in the language it supports. This
observation implies a certain limitation to the set of measures that can be used to prove termination when
relying on an out-of-the-box verification procedure. In practice, this issue is alleviated by two important
points.

(1) The measure functionsMf andMg can map into any well-founded domain. Indeed, as mentioned
in Section 3, the measure serves only to define a well-founded ordering on the sets of parameter
assignments. By allowing more complex well-founded domains (such as tuples with lexicographic
orderings for example), we can significantly simplify the measure function itself.

(2) Many well-founded domains are supported by verification frameworks. Reasoning about lexicographic
orderins, as well as sets with the subset relation, datatypes with structural inclusion, and lambdas
with inclusion are all well-founded domains that have some support in various verification frameworks.

Consider now a well-founded domain (D,≺) that is supported by the verification framework. We associate
to each function def f (x̄) : τ1 ⇒ τ2 := e ∈ L a terminating function def measuref (x̄) : τ1 ⇒ D := mf . We
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then use the verification procedure to establish that for every edge (f, `, g) that belongs to a cycle in the
dependency graph, for all closing environments (σ, L′),

Invocable(L, body (f ), `) =⇒

(PathCond (body (f ), `) =⇒ measureg (ȳ) ≺ measuref (x̄)) σ {
∗ true (2)

where (λx. ` : g ȳ) v body (f ). Interestingly, when no analysis to approximate Invocable is performed and we
conservatively let Invocable(L, body (f ), `) return true, this property corresponds exactly to the property that
would need to be checked by the verification framework if we were to inject the contract req(measureg (ȳ) ≺
measuref (x̄)) into the lambda λx.g ȳ. Note that we can still enforce measuref > measureg given the
topological sort by ensuring (D,≺) is a lexicographic ordering that guarantees this holds.

Lemma 7. If property (2) holds for all (f, `, g) ∈ E and closing environments (σ, L′), then there exists a
set of measure functions {Mf : (param (f ) 7→ Expr ) 7→ N | f ∈ L } such that property (1) holds for all
(f, `, g) ∈ E and closing environments (σ, L′).

Proof. Given f ∈ L and closing environment (σ, L′) with measuref (param (f )) σ {∗ dσ ∈ D, let us start
by defining Less(σ, f ) = { d ∈ D | d ≺ dσ }. We then let Mf (σ) = |Less(σ, f )|. Given (f, `, g) ∈ E where
(λx. ` : g ȳ) v body (f ), clearly if (measureg (ȳ) ≺ measuref (x̄)) σ {∗ true, then measureg (ȳ) σ {∗ dg and
measuref (x̄) σ {∗ df where dg ≺ df . Hence, by definition of Less, we have Less([param (g) 7→ (ȳ σ)], g) ⊂
Less(σ, f ) and thereforeMg ([param (g) 7→ (ȳ σ)]) <Mf (σ). �

Theorem 8. Given a verified library L and expression e that is verified with respect to L, if for all (f, `, g) in
the dependency graph of L and all closing environments (σ, L′) we have

Invocable(L, body (f ), `) =⇒

(PathCond (body (f ), `) =⇒ measureg (ȳ) ≺ measuref (x̄)) σ {
∗ true

where (λx. ` : g ȳ) v body (f ), then e terminates modulo callbacks.

Proof. Follows from Lemmas 6 and 7, as well as Theorem 5. �

Corollary 9. Given a verification procedure for partial correctness that assumes induction hypothesis over
function recursions, we can construct a verification procedure that additionally proves termination modulo
callbacks.

5 EXPERIMENTAL EVALUATION

We have implemented our termination checker as part of a verification framework for a pure higher-order
functional subset of Scala with higher-order contracts. Our implementation features automated measure,
ranking function and inductive invariant inference, thus presenting a relatively high level of automation.
Our implementation also enables users to provide certain hints to the termination checker, either in the
form of contracts or relevant measures. We have evaluated our procedure over a set of benchmarks totaling
> 10k LoC and show the running time on a few selected benchmarks in Table 10.
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Operation LoC Annot. Time (s) Operation LoC Annot. Time (s)
NNF 101 0 18.0 RedBlackTree 100 0 9.0
Ackermann 10 0 1.4 McCarthy91 10 2 0.7
QuickSort 62 0 8.5 MergeSort 63 1 7.5
QuickSortPar 51 2 6.5 Patterns 25 0 5.5
HOTransformations 41 0 5.5 AmortizedQueue 125 0 3.3
Heaps 147 0 11.0 ListOperations 104 0 12.0
ConcRope 468 0 48.0 ConcTree 320 0 26.0
ConstantProp 268 0 25.0
– Okasaki Data Structures –
BinomialHeap 186 2 8.5 BottomUpMergeSort 123 2 5.5
Deque 241 3 4.5 LazySelectionSort 65 0 1.5
RealTimeQueue 76 0 0.1 LazyNumericalRep 157 2 1.0
– Streams and Lazy Trees –
CyclicFibStream 46 0 2.0 CyclicHammingStream 74 0 2.5
FiniteStreams 42 2 1.2 InfiniteStreams 63 0 0.9
LazyTree 37 1 2.1
– Dynamic Programming –
PackratParsing 135 2 4.0 HammingMemoized 66 1 5.0
Knapsack 70 0 3.5 Viterbi 119 3 1.2
Regression Tests 7525 0 188.0
Total 10920 25 419.0

Fig. 10. Summary of evaluation results for termination checker, featuring lines of code (including annotation lines), the
number of necessary annotation lines, as well as running time of our tool.

Note that some involved termination proofs require certain hints for termination to go through (recorded
in the (Annot.) column). It is important however to realize that these constitute a limitation of our inference
engine and not the termination procedure itself.

The NNF benchmark deals with bringing some formula into negative normal form. The tricky part stems
from nnf(l =⇒ r) calling nnf(¬l ∨ r) such that the structural size of the argument to nnf is only guaranteed
to decrease after the third successive recursive call! The inferred ranking function must hence depend on the
type of the input formula. Patterns comes from (Xi 2001) (Figure 8) and implements regular expression
matching with continuations. The quicksort implementation discussed in (Giesl et al. 2006; Kuwahara
et al. 2014; Xi 2001) can be proved with minimal annotation burden (note that this annotation burden
improves over that of these techniques). Both this version and a simpler one (automatically proved) fail to be
proved terminating by the AProVE termination checker. Our tool can also handle all benchmarks collected
and presented in (Kuwahara et al. 2014). Certain benchmarks require one or two lines of annotations,
however these mostly stem from us proving the more general termination property of the corresponding
open program. The ConcRope and ConcTree benchmarks correspond to certain complex operations in the
Scala data parallel library (Prokopec and Odersky 2015). Finally, the ConstantProp benchmark corresponds
to a lattice-based constant propagation procedure that requires complex reasoning over structural inclusion
for mutually recursive data types. (Some of the benchmarks presented here were taken from a previous work
on verification of resource properties (Madhavan et al. 2017). However, the approach relies on a separate
tool for checking termination of the benchmarks, which is required for its soundness. It also makes the
assumption that the targets of the indirect calls are available at the time of the analysis.)
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abstract class Stream
case class SNil() extends Stream
case class SCons(x: BigInt, tailFun: () ⇒ Stream) extends Stream {
lazy val tail = tailFun()

}

def zipWithFun(f: (BigInt, BigInt) ⇒ BigInt, xs: Stream, ys: Stream): Stream = (xs, ys) match {
case (SCons(x, _), SCons(y, _)) ⇒ SCons(f(x, y), () ⇒ zipWithFun(f, xs.tail, ys.tail))
case _ ⇒ SNil()

}

val fibstream: SCons = SCons(0, () ⇒ SCons(1,
() ⇒ zipWithFun(_ + _, fibstream, fibstream.tail)))

Fig. 11. Implementation of a cyclic Fibonacci stream.

We have also evaluated our approach on various lazy data structures such as streams and lazy trees. Even
though Scala uses call-by-value evaluation by default, such data structures can be encoding using closures
and recursive datatypes whose fields are closure, as in the example shown in Fig. 1. (It is to be noted that
memoization or caching performed by lazy evaluation does not affect termination of programs but only its
performance, therefore we do not consider the memoization aspect of lazy evaluation in our termination
verification.) Combining termination checking with powerful higher-order contracts has enabled us to verify
the termination of complex lazy data structures as described in (Okasaki 1998). The Invocable analysis has
also enabled us to prove termination of functions producing cyclic (infinite) streams such as Fibonacci (see
Fig. 11) or Hamming streams and certain stream operations such as map, drop, concatenation, etc.

6 RELATED WORK

Most approaches to termination checking of higher-order programs first construct an over-approximation
of the call-graph to infer potential indirect call targets, and then apply some technique from first-order
termination checking on the resulting first-order call-graph. First-order termination techniques such as
Size-Change Termination (SCT) (Lee et al. 2001) and termination analysis of Term Rewritting Systems
(TRS) (Giesl et al. 2004) have successfully been applied to a wide range of higher-order programs (Giesl
et al. 2011). However, although the underlying first-order techniques are powerful and well-understood, it
remains difficult to achieve both precision and modularity when computing an over-approximate call-graph.
Furthermore, the reduction from a higher-order program to a first-order one relies on certain assumptions
concerning input first-class functions as these cannot be precisely modeled in the first-order world. Our
technique enables precise reasoning about the higher-order interfaces of libraries by avoiding approximations
when dealing with first-class functions.

A more recent approach has emerged based on binary reachability analysis (Kuwahara et al. 2014;
Ledesma-Garza and Rybalchenko 2012). These techniques forgo the creation of some over-approximate
call-graph and rely instead on reachability analysis to establish the relevant proof obligations. As in our case,
reachability analysis can tie in to existing verification procedures (Kuwahara et al. 2014). However, the high
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level of automation featured by the underlying verification techniques (predicate abstraction and CEGAR
(Kobayashi et al. 2011)) limit the modularity of the approach when compared to contract-based verification.

Perhaps the most closely related to our own approach are those based on dependent-types (Vazou 2016;
Xi 2001). The approach shown in (Xi 2001) mentions creation site checking and is modular at the type level.
However, complete manual specification of the termination argument is required. Furthermore, we show
that well-foundedness of datatypes is not required for termination and constitutes too strong a constraint.
Relaxing this constraint enables us to run our termination checker on a number of interesting and important
benchmarks stating properties of lazy datastructures and infinite streams.

An important feature of our procedure consists in providing termination checking within the scope of a
verification framework. It is clear that user annotations enable more powerful termination checking, however
one must also realize that many interesting termination problems cannot even be specified without the
use of contracts. This limitation of approaches without good contract support such as (Giesl et al. 2011,
2004; Kuwahara et al. 2014) constitute an important differentiating factor. There is therefore an important
class of our benchmarks which cannot be compared with these techniques as they rely on subtle properties
such as stream finiteness (Deque, BottomUpMergeSort, LazyNumericalRep) or bounded depth (LazyTree shown
in Fig. 1) to establish termination. In general, the availability of contracts (even those developped for safety
verification) consitutes a significant enhancement to our termination checking procedure.

A closely related line of work are the approaches for proving resource usage of programs such as time or
space complexity(Avanzini et al. 2015; Danielsson 2008; Gulwani et al. 2009; Hoffmann et al. 2012; Jost et al.
2010; Madhavan et al. 2017; Madhavan and Kuncak 2014; Simões et al. 2012; Sinn et al. 2014; Vasconcelos
et al. 2015; Zuleger et al. 2011). Many of these approaches subsume termination but are aimed at first-order
programs, or work under a closed-world assumption that the targets of all indirect calls are available at
the time of the analysis, especially those that are fully automated. However, Madhavan et al. (2017)
present a technique that can use user-provided contracts to verify resource usage of higher-order programs.
The approach relies on an external termination checker for soundness and does not present a termination
algorithm. Furthermore, while the approach can handle limited class of open programs that do not accept
arbitrary first-class functions as parameters, our approach is aimed at completely open, higher-order library
that can accept arbitrary closures passed by the clients. We included some of the challenging benchmarks
used in that work and prove them to terminating modulo callbacks for arbitrary clients.

7 CONCLUSIONS

We have presented a new approach for checking termination of higher-order programs. The approach is
based on a new semantic notion of termination modulo callbacks. We show that this notion can be used to
establish termination. Furthermore, we present sufficient conditions for establishing termination modulo
callbacks in the form of weak and strong termination obligations.

We present an effective algorithm for checking the strong termination obligation using a safety verifier.
In our approach, the safety verifier both checks the termination-related obligations and benefits from the
induction schema obtained from the termination proofs.

Our termination checking approach is modular at two levels: at the level of programs, and at the level of
functions, as explained below. Firstly, the termination conditions for an open program P are independent
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from its clients (i.e, calling contexts). This is because the conditions are defined on a dependency graph
that is agnostic to the calling context, unlike a traditional call-graph. Secondly, the conditions generated
for each edge in the dependency graph can be checked independently of the conditions generated for the
other edges in the dependency graph, which implies that two functions in the program can be verified
independently (like in a modular inter-procedural analysis). Another benefit of this approach is that, in
practice, lambda application sites far outnumber lambda creation sites. Hence, a termination argument (like
ours) that considers creation sites instead of application sites is more scalable.

Our results show that our termination checking technique is a practical method for verifying termination
of higher-order programs. We expect our result to be important for building verifiers for functional languages,
as well as for building more expressive theorem proving frameworks and dependently typed languages.

A PROOF OF THEOREM 1 - LOCALITY OF TERMINATION

In this section, we detail the proof of Theorem 1. Our proof requires introducing a few additional
instrumentations to the operations semantics and a few novel notions such as creator tree. Eventually, we
prove the theorem by extending (in a minor way) Tait’s proof strategy for strong normalization of System F
(Girard 1990). The following discussion makes clear the intuitive notion of creators and provides a more
intuitive understanding of Theorem 1.

Instrumentation for Creation Labels. We define a new class of expressions called instrumented expressions
that associates every lambda term appearing in the expressions with a sequence of dynamically created labels
called creator labels (CrLabels). We denote a lambda term v with its creator labels by vδ. We define an
operational semantics for these instrumented expressions in Fig. 12. These creator labels on the instrumented
expressions serve two purposes. (a) They help distinguish between different instances of closures created
during an evaluation, i.e, they act similar to object references (or addresses) that uniquely identify the
closures created at runtime. (This is unlike the static labels on expressions whose purpose is to relate a
closure to a lambda term in the input program.) (b) They also help identify the chain of creators that
resulted in the creation of a closure. Intuitively, a creator of a lambda term (or closure) is the closure whose
application resulted in the lambda term (or closure) appearing for the first time. The meaning of this will
become clearer after the discussion of creators and creator tree (see Definition A.1).

The semantic rules shown in Fig 12 are quite straightforward. The component ∆ is meant to track the set
of dynamic labels that are created at each step in the evaluation. This set is necessary as every dynamic
label created at any step in the evaluation is chosen to be different from the labels created previously. As
shown in Fig. 12, the operation freshDLs(e, δ,∆) annotates every lambda term in e with a creator sequence
consisting of δ appended with a fresh label ` < ∆. For conciseness, we omit the ∆ component while depicting
the transitions in the instrumented semantics when it is not relevant for the context.

Any expression of the source language e without the instrumentation can be evaluated using the above
semantic rules by applying the function freshDLs(e, ∅, ∅). When we say an expression e of the source
language is evaluated under the instrumented semantics we imply that freshDLs(e, ∅, ∅) is evaluation under
the semantic rules shown in Fig. 12. It is quite clear from Fig 12 that the evaluation of an expression
under the instrumented semantics bisimulates that under the original semantics (section 2). Intuitively, the
instrumented semantics can be viewed as just decorating the intermediate expressions arising during the
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Context
(e,∆) { (e′,∆′)

(C[e],∆) { (C[e′],∆′)

UnmarkedCall
v1 = (λx.f w̄)δ (b,∆′) = freshDLs(body (f ), δ,∆)

(v1 v2,∆) { (b[w̄/param (f )][v2/x],∆′)

MarkedCall
v1 = (λx.f w̄)δ+ mb = markAll (body (f )) (ib,∆′) = freshDLs(mb, δ,∆)

(v1 v2,∆) { (ib[w̄/param (f )][v2/x],∆′)

freshDLs(e, δ,∆) =


((λx.f ȳ)δ;`,∆ ∪ {`}) where ` < ∆ if e = λx.f ȳ
((e′1 freshDLs(e2, δ,∆

′)),∆′) where (e′1,∆
′) = freshDLs(e1, δ,∆) if e = e1 e2

(e,∆) Otherwise

Fig. 12. Instrumented operational semantics that tracks creation labels of lambda terms. In the figure, the operation δ; `
denotes a sequence δ appended with `.

evaluation of an expression e with additional information. In the sequel, we use the instrumented semantics
to introduce some important notions necessary for the proof.

Creator Relation. We now define a creator relation between applications that arise during an evaluation of
a closed expression under the instrumented semantics. We say an expression e′ is a creator of an application
a : (vδ u) if a lambda term with label δ (which eventually becomes the closure v) is obtained by the reduction
of e′ during the evaluation of e. Formally,

Definition A.1 (Creator). Let e be a closed expression. We say that an expression e′ is a creator of an
application a : (vδ u), denoted e′ �

e
a iff for some evaluation contexts C and C′, (e, ∅) {∗ (C[e′],∆′) {

(C[e′′],∆′′) {∗ (C′[vδ u],_), and δ < ∆′ and δ ∈ ∆′′.

Recall from instrumented semantic rules that creation of new dynamic labels happen only during
applications (i.e, beta-reductions). Therefore, if e′ is a creator of an application a then either e′ is the initial
closed expression e or e′ is another application. Furthermore, by the definition of instrumented semantics,
every application has a unique creator because every dynamic label is created exactly once during some
beta-reduction step (see Fig. 12). We ignore the subscript of �

e
if it is clear from the context. Let �∗

denote the reflexive, transitive closure of �.
Importantly, the creator relation has a strong correlation with the LocalCall relation namely that if c is a

transitive creator of c′ during some evaluation of an expression e, and if c does not complete before c′ then
c′ is a local call of c (under a well-defined closing environment). This is formally stated by the following
lemma.

Lemma 10 (Creator Locality). Let e be a closed expression well-typed with respect to a library L. Let c and c′ be
two applications such that c�∗ c′ and e { C[c] { C[C′[c′]]. That is, c is a transitive creator of c′ and c′ is in-

voked before c completes. Let c be of the form (λx. f w̄) u. c′ ∈ LocalCall (L,L, body (f ), σparam ((λx. f w̄) u)).

Proof. It is given that c �∗ c′. Therefore, there must exist a k ∈ N such that c �k c′. The

proof is straightforward to establish by induction on k. Say c �k−1 b � c′. By hypothesis, b ∈
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LocalCall (L,L, body (f ), σparam (c)). Let the closure invoked by b be (λx.g w̄)δ. Since b is the creator of
c′, by the definition of creator, b introduces a lambda term with δ. As per the semantics this means
that body (g) has a lambda term which is labeled δ, where g is the function invoked by b. The lambda
term will be unmarked iff the closure invoked by b is unmarked. By hypothesis, b invokes an unmarked
closure in the evaluation body (f ) σparam (c). Thus, c′ will also invoke an unmarked closure in the evaluation
body (f ) σparam (c). Thus, c′ ∈ LocalCall (L,L, body (f ), σparam (v u)). �

Creator Tree. We now define a graph called creator tree for a closed expression e well-typed with respect
to a library L. This structure simplifies the presentation of the proof and also provides useful insights into
the evaluation of an expression. The nodes of the graph consist of the expression e and the applications
arising during the evaluation of e. There is a directed edge from a node p to a node a iff p� a.

This graph is a tree rooted at e since (a) every application except the root (which are nodes) have a
creator and hence a parent in the tree, (b) every application is only connected to its parent and hence has
unique path to the root. The following are some of the properties of the creator tree.

Property 11. Let e be a closed expression well-typed with respect to a library L. A creator tree T of e satisfies
the following properties.
I. Every path in the tree corresponds to a chain of creators.
II. For a node (vδ u) in the tree (other than the root) the length of the sequence δ

is equal to the depth of the node.
III. The tree is infinite iff the evaluation of e is non-terminating.
IV. The tree may be infinitely branching if e is non-terminating.

We omit the proofs for the above properties as they are straightforward to derive from the definition of
the creator tree. We now present one of the interesting, non-trivial property of the creator tree.

Theorem 12. Let T be a creator tree for a closed expression e that is well-typed with respect to a library L. e
is non-terminating iff the tree T has unbounded depth, i.e, there does not exist a d ∈ N such that for every
node, the length of the path from root to the node is at most d.

Proof. The if-direction is trivial: if the creator tree has unbounded depth then it should have infinite
size which implies that evaluation of e results in infinite application and hence non-terminating. Therefore,
consider the only-if direction. Let e be an closed expression that is non-terminating. We prove this direction
by contradiction. Assume that there exists a d ∈ N such that depth of the creator tree is at most d. We now
derive a contradiction that e should be terminating.

Error Construct. For the purpose of this proof, we introduce a construct error[τ ] that has the type τ to
our toy language. This construct cannot reduced any further and hence halts an evaluation if during the
evaluation it appears in a position that needs to be reduced. That is, ∀C ∈ EContext.¬∃e.C[error[τ ]] { e.
Clearly, adding the error[τ ] construct does not result in new sources of non-termination. In particular, if a
language is strongly or weakly normalizing then adding the error[τ ] construct to the language preserves this
property. The error[τ ] construct is used in our proof to reduce expressions belonging to the toy language to
those that belong to a strongly normalizing fragment of lambda calculus.
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Construction of a Acyclic Library. We construct a library L′ from L by unfolding all function in L upto
depth d as explained below. For every function f ∈ L, we introduce d + 1 functions {fk | 1 ≤ k ≤ d + 1} in
L′ constructed as follows. The body of each function fk, k ≤ d, is constructed by replacing in the body (f )
every direct call of the form f ȳ by fk+1 ȳ. That is, every function fk, k ≤ d only refers to functions fk+1

in the library L′. If def f (x̄) : τ1 ⇒ τ2 := e is the definition of f in L, the function fd+1 is defined in L′ as
def fd+1 (x̄) : τ1 ⇒ τ2 := error[τ2]. That is, the body of fd+1 is the error construct. Hence if the fd+1 is ever
invoked during an evaluation the evaluation halts. Let e′ be an expression obtained by replacing in e every
reference to a function f by f1.

We now claim that the evaluation of e (with respect to L) bisimulates the evaluation of e′ (with respect
to L′) under the instrumented semantics. We prove this by defining a bisimulation relation between the
expressions that arise during the valuation as follows. Let ∼⊆ Expr × Expr be defined as follows.

∀x ∈ Vars, {ȳ, ȳ′} ⊆ (Vars ∪Value)∗, f ∈ Fids, {δ, δ′} ⊆ CrLabels.
(λx.f ȳ)δ ∼ (λx.f |δ| ȳ′)δ

′
iff ȳ ∼ ȳ′

∀{e1 , e2 , e′1 , e
′
2 } ⊆ Expr . e1 e2 ∼ e′1 e′2 iff e1 ∼ e′1 ∧ e2 ∼ e′2

∀x ∈ Vars. x ∼ x
∀n ∈ N.{ȳ, ȳ′} ⊆ (Vars ∪Value)n. ȳ ∼ ȳ′ iff ∀i ∈ [1, n].yi ∼ y′i
∀τ ∈ Type. error[τ ] ∼ error[τ ]

In the above definition, |δ| denotes the length of the sequence δ of dynamic labels. To prove that ∼ is a
bisimulation we need to show that (a) initially freshDLs(e, ∅, ∅) ∼ freshDLs(e′, ∅, ∅) holds and (b) whenever
e1 ∼ e2 and e1 { e′1 then there exists a e′2 such that e2 { e′2 and e′1 ∼ e

′
2 (and vice-versa). The part (a)

holds since every lambda term in freshDLs(e, ∅, ∅) is of the form: (λx.f ȳ)`, where ` is a dynamic label, and
e′ should have a lambda term λx.f1 ȳ by construction.

Now consider the part (b). Say e1 { e′1 and e1 ∼ e2. Say the reduction invokes one of the application
rules (otherwise the claim holds by induction on the expression syntax). That is say e1 = C[(λx.f ȳ)δ u].
Since e1 ∼ e2, e2 should be of the form C[(λx.f |δ| ȳ) u′] and u ∼ u′. First, there has to exist a e′2 since a
call reduction rule shown in Fig. 12 applies. Secondly, every newly introduced lambda term in e′1 would
have a creator sequence of length |δ| + 1. Now if |δ| < d then by the construction of L′ every lambda
term in body (f |δ|) would refer to the function f |δ|+1, implying that e′1 ∼ e

′
2. If |δ| ≥ d then it means that

during the evaluation of e, there exists an application c with length of the dynamic label greater than d. By
Property 11(II), the depth of the node c in the creator tree of e is greater than d. This is not possible since
we assumed that tree has depth at most d. Therefore, |δ| ≥ d is not possible. Hence, the evaluation of e is
simulated by the evaluation of e′. The converse can be proven similarly.

Termination under Acyclic Library. Now, consider the expression e′ and the library L′. By construction,
no function in L′ uses itself (mutually) recursively. Let enorm be obtained from e by transitively inlining
every call to a named function with their body. enorm refers to no named function and belongs to simply
typed lambda calculus (STLC) fragment augmented with an error[τ ] construct. Since this is a strongly
normalizing fragment, enorm reduce to a normal form under any reduction strategy (including call-by-value).
Since enorm is a closed expression, the normal form it reduces to should be a value. In other words, enorm
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is terminating. Therefore, e′ should also be terminating. Thus, e should be terminating since evaluations of
e′ and e are bisimulations, which is a contradiction. �

Theorem 13. Let T be a creator tree for a closed expression e that is well-typed with respect to a library L. e
is non-terminating iff there does not exist a d ∈ N such that for every node, the number of incomplete calls
in the path from root to the node is at most d.

Proof. The if-direction directly follows form Theorem 12. Therefore consider the only-if direction. Let
e be a closed expression that is non-terminating. We prove this direction by contradiction. Assume that
there exists a d ∈ N that bounds the number of incomplete calls in every path from root. In other words, if
e {∗ C[vδ u] and |δ| > d then (vδ u) is a complete call. We now derive a contradiction that the expression
e must terminate.

To establish this we proceed similar to the proof of Theorem 12 by unfolding the direct function calls
upto a certain depth. But, here we cannot completely eliminate recursion in the unfolded program. We
show termination of the unfolded program by encoding it into a simply typed lambda calculus extended
with terminating recursive functions that can be shown to strongly normalizing.

Construction of a Library with Terminating Functions. Similar to the proof of Theorem 12, we construct
a library L′ by unfolding the functions in L upto the depth d. But instead of replacing the body of functions
at depth d + 1 by error[] as in the proof of Theorem 12, we make them identical to the original function
definition in L.

More formally, for every function f ∈ L, we add f to L and also introduce d functions {fk | 1 ≤ k ≤ d} in
L′ constructed as follows. The body of each function fk, k < d, is constructed by replacing in the body (f )
every direct call of the form f ȳ by fk+1 ȳ. The body of fd is the same as the body of f in L. (Note
that the function f also belongs to L′.) Let e′ be an expression obtained by replacing in e every reference
to a function f by f1. It is easy to see that the following relation introduces a bisimulation between the
evaluations of e and e′. (The proof is similar to the one shown in Theorem 12 and is hence omitted.)

∀x ∈ Vars, {ȳ, ȳ′} ⊆ (Vars ∪Value)∗, f ∈ Fids, {δ, δ′} ⊆ CrLabels.
(λx.f ȳ)δ ∼ (λx.f |δ| ȳ′)δ

′
iff |δ| ≤ d ∧ ȳ ∼ ȳ′

(λx.f ȳ)δ ∼ (λx.f ȳ′)δ
′

iff |δ| > d ∧ ȳ ∼ ȳ′

∀{e1 , e2 , e′1 , e
′
2 } ⊆ Expr . e1 e2 ∼ e′1 e′2 iff e1 ∼ e′1 ∧ e2 ∼ e′2

∀x ∈ Vars. x ∼ x
∀n ∈ N.{ȳ, ȳ′} ⊆ (Vars ∪Value)n. ȳ ∼ ȳ′ iff ∀i ∈ [1, n].yi ∼ y′i

We now claim that every application of the form (λx.f w̄′) u′ in the evaluation of e′ is a complete call
(i.e, it terminates). This is because by the above bisimulation relation there exists a corresponding call
(λx.f w̄)δ u such that |δ| > d in the evaluation of e. Clearly, the evaluation of both calls bisimulate each
other. We are given that any application in the evaluation of e having depth greater than d in the creator
tree of e is complete. Thus, (λx.f w̄)δ u and (λx.f w̄′) u′ are complete calls. Let enorm be an expression
obtained by (transitively) inlining in e′ every call to a named function fk (1 ≤ k ≤ d) with its body. Calls
of the form f ȳ (which invoke a function without a superscript) are not inlined as they could be mutually
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τ ∈ Type ::= τ̄ | τ ⇒ τ | Unit
eλ ∈ Λfun ::= λx.f ȳ where ȳ ∈ Λfun ∪Vars
es ∈ Esrc ::= x | eλ | es es
e ∈ Expr ::= es | λx.e | e e

Fdef ::= def f (x̄) : τ1 ⇒ τ2 := es
(a)

{(f, τ ) | def f (x̄) : τ := e ∈ L} ⊆ Γ ⊆ (Vars ∪ Fids) × Type

Var
u ∈ Vars ∪ Fids (u, τ ) ∈ Γ

Γ ` u : τ

Lambda
Γ[x 7→ τ1] ` e : τ2
Γ ` λx.e : τ1 ⇒ τ2

DirectCall
Γ ` f : τ1 ⇒ τ2 Γ ` e : τ1

Γ ` f e : τ2
Seq
|ē| = |τ̄ | ∀i. Γ ` ei : τi

Γ ` ē : τ̄

App
Γ ` e1 : τ1 ⇒ τ2 Γ ` e2 : τ3

Γ ` e1 e2 : τ2

FunDef
|x̄| = |τ̄1| Γ[x̄ 7→ τ̄1] ` e : τ
Γ ` def f (x̄) : τ̄1 ⇒ τ := e : Unit

(b)

Fig. 13. Syntax and typing rules of a simply-typed lambda calculus with named functions.

(Values) v ∈ Value = λx.e
(Evaluation contexts) C ∈ EContext = [ ] | C e | v C

e {r e
′

C[e] {r C[e′]
r ∈ {β, µ, µ′}

λx.e < Λfun v ∈ Value
(λx.e) v {β e[v/x]

w̄ ∈ (Value ∪ {x})∗ v ∈ Value
(λx.f w̄) v {µ body (f )[w̄/param (f )][v/x]

{1 = {β ∪ {µ
(a) System 1

w̄ ∈ (Value ∪ {x})∗ v ∈ Value (λx.f w̄) v ∈ SN 1
(λx.f w̄) v {µ′ body (f )[w̄/param (f )][v/x]

SN 1 = {e | ∃n ∈ N.¬∃e′.e {n
1 e′}

{2 = {β ∪ {µ′
(b) System 2

Fig. 14. (a) System 1: Call-by-value reduction rules for direct calls and applications. (c) System 2: A strongly normalizing
reduction system.

recursive. We now show that enorm should be terminating by defining a strongly normalizing reduction
system in which the evaluation of enorm could be simulated.

Termination of Expressions with Complete Calls. Consider the Simply typed lambda calculus extended
with named recursive functions presented in Fig. 13 and the reduction rules shown in Fig. 14(a) referred to
as System 1. The expression Esrc corresponds to the expressions of the toy language shown in Fig. 3. The
bodies of functions belong to Esrc. However, the language also allows lambda terms whose bodies could be
arbitrary expressions. Such expressions are denoted using Expr . The typing rules are identical to those of
the toy language shown in Fig. 4.
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The reduction rules of System 1 shown in Fig. 14(a) consist of a usual beta reduction rule, and a
µ-reduction rules for lambda terms in Λfun that applies the body of a named function. Note that compared
to Fig. 5, we ignore the marks on the lambda terms. Moreover, the β and µ reductions can happen not just
on closed lambda terms (closures) but also on lambda terms with free variables (which are the values of this
system). This calculus can be thought of as a generalized form of the operation semantics shown in Fig. 5
but without the additional instrumentation. It is quite obvious that System 1 bisimulates the semantics
of Fig.5 and also the instrumented semantics for the expressions of the toy language. (However System 1
is applicable to expressions with a slightly more relaxed syntax as meanioned earlier.) It is evident that
System 1, which is closely related to System F rec of (Barthe et al. 2008), is not normalizing since it allows
unrestricted recursion. We now devise a more restricted reduction system: System 2 shown in Fig. 14(b)
using System 1 that is strongly normalizing while being capable of bisimulating enorm .

Note that the expression enorm belongs to the syntax presented in Fig. 13. Its evaluation under System 1
bisimulates the evaluation of e′ under the instrumented semantics (as we only inline certain functions in e′

with their body to obtain enorm). Moreover, every application (λx.f w̄) u that arises during the evaluation
of enorm is terminating under the System 1. This is because we know that every application of the form
(λx.f w̄) u is complete in the evaluation of e′. Note that System 1 has only one deterministic reduction
sequence for each expression. Hence call-by-value termination and strong normalization coincide for System
1. Therefore, every application of a lambda term in Λfun arising during the evaluation of enorm is strongly
normalizing. Based on this observation we define a restricted (theoretical) System 2 shown in Fig. 14(b).

System 2 consists of the beta reduction rule and reduction rule µ′ for applications of terms in Λfun . The
rule fires only when the arguments passed to the direct call are known to be strongly normalizing under
System 1 (given by the set SN 1). Though the undecidability of strong normalization of System 1 implies
that it is not practical to implement such a system, System 2 serves as a theoretical basis for proving that
the evaluation of enorm is terminating (or normalizing).

Note that the rule µ′ is a restriction of the rule µ and hence every term that is normalizing in System 1
will also do so in System 2. The following are some of the properties of System 2.

Property 14. Every application of the form (λx.f w̄) e, where e is strongly normalizing, is strongly normalizing
in System 2.

The proof of the above property is quite straightforward. Say e reduces to a normal form u. If
w̄ ∈ (Value ∪ {x})∗ and u ∈ Value then the reduction µ′ applies, but only if the application is normalizing
in System 1 and hence in System 2. Otherwise, no reduction applies in System 2, since u is already normal
and the evaluation context does not allow to reduce w̄.

We now show that System 2 is strongly normalizing. We follow the proof strategy explained in the
Chapter 6 of the book Girard et al. (1989) for establishing strong normalization of simply typed lambda
calculus . The approach is based on the strong normalization proof of System F originally proposed by Tait
(1967) and later refined by Girard (1972). Although System 2 does not support type polymorphism, this
proof strategy also generalizes to type polymorphism as detailed in the book Girard et al. (1989) Chapter
11, and hence allows us to extend the theorems to a language with type polymorphism.

We first define a set of reducible terms, denoted REDT , for each type T . Following Girard et al. (1989)
we define REDT as follows:
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• A expression t of unit type is reducible (i.e, t ∈ REDUnit) if it is strongly normalizing.
• Every lambda term of the form λx.f w̄ of type U ⇒ V is reducible iff for all i ∈ [1, |w̄|], wi is

reducible.
• Every other expression t having a function type U ⇒ V , t ∈ REDU⇒V iff ∀u.(u ∈ REDU ⇒ t u ∈

REDV ).

The only subtlety compared to the definition of REDT presented in section 6.1 of Girard et al. (1989) is
that here we also define reducibility of a lambda term that invokes recursive functions.

We say a term is neutral if it is of the form: x or e1 e2. We now have to show that the reducible definition
satisfies the following four properties (detailed in section 6.3 of Girard et al. (1989)):

CR 1 If t ∈ REDT , t is strongly normalizing.
CR 2 If t ∈ REDT and t {2 t

′, t′ ∈ REDT .
CR 3 If t is neutral and normal, then t ∈ REDT .
CR 4 If t is neutral and t {2 t

′ and t′ ∈ REDT , then t ∈ REDT .

(The original formulation in Girard et al. (1989) combines the properties 3 and 4 into a single property.
We preserve the distinction for clarity.) We now consider each property in turn and show that they hold by
using induction on the structure of the types.

Consider the property CR 1. It is a tautology for unit types. For lambda terms and variables of function
type the property holds since they are normal forms. Consider an term t ∈ REDU⇒V Here we use the same
argument used in section 6.2.3 of Girard et al. (1989). By definition of reducibility, t x is reducible for any
variable x of type U (since x is neutral and normal and hence reducible by CR 3 hypothesis on U). t x is of
type V and by hypothesis it is strongly normalizing. Hence, t should also be strongly normalizing (since in
call-by-value reduction order t should be first reduced to a normal form while evaluating t x).

Consider the property CR 2. Say t ∈ REDT and t { t′. If T is a unit type, t and hence t′ should be
strongly normalizing. Hence t′ ∈ REDUnit . As before, if t is a lambda term or a variable then it cannot
reduce and hence the claim holds trivially. Now say t is an application having a function type U ⇒ V .
Take u reducible of type U . Then t u is reducible (since t is reducible), and t u { t′ u (in call-by-value
evaluation order). The induction hypothesis for V gives us that t′ u is reducible. Hence, t′ u is reducible for
all reducible u. Hence t′ ∈ REDU⇒V .

Consider the property CR 3. It is a tautology for terms of unit type. Therefore, consider a neutral term
t of function type U ⇒ V . We need to show that t u ∈ REDV for any term u ∈ REDU . Now if t u is
normal then by induction hypothesis on V (CR 3), t u ∈ REDV . Therefore, say t u is not normal. Therefore
(t u) { t′. t cannot be a lambda term since t is neutral. Since t is normal, the reduction in t u must happen
within u, i.e, t u { t u′. But we know u is reducible and hence strongly normalizing. Thus, by inducting on
the number of steps taken to reduce u to a normal form, we can establish that (t u) ∈ REDV (see section
6.2.3 of Girard et al. (1989) for intuition on this step).

Finally, consider the property CR 4. The proof of this is very similar to CR 3. It is trivial for expression
of unit type, since if t′ is reducible it is normalizing and hence t should also be normalizing and reducible.
Furthermore, t cannot be variables or lambda terms as they do not reduce to a t′. Consider an application t
of function type U ⇒ V . Say t { t′ and t′ is reducible. We need to show that t u ∈ REDV for any expression
u ∈ REDU . Since t { t′, by call-by-value order t u { t′ u. Since t′ is reducible i.e, t′ ∈ REDU⇒V , by
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reducibility definition t′ u is also reducible i.e, t′ u ∈ REDV . Using hypothesis for V (CR 4 property), t u
is reducible. Hence, all four properties hold for our definition of reducible terms.

Using the above properties we now establish a property about terms in Λfun which is unique to our
system.

Property 15. For every lambda term λx.f w̄ ∈ Λfun of type U ⇒ V that is reducible, for all u ∈ REDU ,
(λx.f w̄) u ∈ REDV . In other words, any λx.f w̄ that is reducible will satisfy the properties of reducible
lambda terms not in Λfun.

By property 14, any (λx.f w̄) u (for a reducible u) is strongly normalizing. Therefore, we prove the
property by induction on the number of steps in the reduction of (λx.f w̄) u to a normal.

Base Case: If (λx.f w̄) u is normal then it is reducible. This directly follows by property CR 3.
Inductive Step: Assume that the claim holds upto k steps. We now show it for k + 1 steps.
Say (λx.f w̄) u { body (f )[w̄/param (f )][u/x]. We now induct on the structure of the term body (f ) and

prove that body (f )[w̄/param (f )][u/x] is reducible for any structure. Claim: for any tsub that is sub-expression
of body (f ), tsub[w̄/param (f )][u/x] is reducible.

Let t′ = tsub[w̄/param (f )][u/x].

(a) If tsub is a variable, then t′ belongs to w̄ or u (because there could be no other free variable in
body (f )). Each wi is reducible since λx.f w̄ is reducible and u is reducible by assumption. Therefore
t′ is reducible.

(b) If tsub is a lambda term then it should be of the form λx.g z̄ ∈ Λfun by the syntax definition
of body (f ). In this case t′ = λx.g (z̄[w̄/param (f )][u/x]). By hypothesis, z̄[w̄/param (f )][u/x] is
reducible. Thus, t′ is also reducible.

(c) If tsub is an application of the form e1 e2 then t′ = t′1 t′2, where t
′
i = ei[w̄/param (f )][u/x], for

i ∈ {1, 2}. By hypothesis both t′1 and t′2 are reducible. Now, if t′1 < Λfun , by definition of
reducibility t′1 t

′
2 is reducible. Now say t′1 is of the form λx.g z̄ ∈ Λfun . The application (λx.g z̄) t′2

should normalize by property 14. We now show that it does so in fewer steps than (λx.f w̄) u.

Let e ∈ Esrc be an expression of the source language that is normalizing. Recall that the bodies of
all lambda terms in e are lifted to named functions. Every application in the expression e must be
reduced to a normal form during the evaluation of e. It is easy to see this by induction on the
structure of the expression. If e is a variable or lambda term then there are no application in e
(note that the bodies of all lambda terms are either variables or values i.e, closed lambda terms in
Esrc). If e is an application of the form e1 e2 then both e1 and e2 have to be reduced to normal
forms by call-by-value reductions. Thus by induction hypothesis, every application in e1 and e2 will
be reduced. Finally, e1 e2 will also be reduced to a normal form.

By this property, the application e1 e2 which is a sub-expression of body (f ) ∈ Esrc would be
normalized during the evaluation of body (f ). Hence, (e1 e2)[w̄/param (f )][u/x] would be normalized
during the evaluation of t′. Thus, (λx.g z̄) t′2 will normalize in fewer or same number of steps as t′,
and hence in strictly fewer steps than (λx.f w̄) u. By the hypothesis on the number of reduction
steps, (λx.g z̄) t′2 is reducible. Hence the property.
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Now that we have established that REDT satisfies the above four properties, we can reproduce the lemmas
necessary for proving strong normalization by Tait and Girard’s strategy. Below we outline the proof for the
lemmas for completeness and also to show that the lemmas are unaffected by the introduction of terms in
Λfun due to the property 15.

Lemma 16. Let t be any expression (not assumed to be reducible) well-typed with respect to a library L under
the typing rules shown in Fig. 13, and let x̄ with type Ū be the free variables of t. If ū is a sequence of
reducible terms of size |x̄| then t[ū/x̄] is reducible.

The proof is very similar to that of theorem 6.3.3 presented in the book Girard et al. (1989). However,
for completeness we present the proof below. We prove this lemma by inducting on the structure of t.

(1) If t is xi then t[ū/x̄] is ui which is reducible by assumption.
(2) If t is w v by induction hypothesis w[ū/x̄] and v[ū/x̄] are reducible. Now if w[ū/x̄] ∈ Λfun ,

by property 15, w[ū/x̄] (v[ū/x̄]), which is t[ū/x̄], is reducible. If w[ū/x̄] < Λfun by definition
w[ū/x̄] (v[ū/x̄]) is reducible and so is t[ū/x̄].

(3) If t is (λx.e) < Λfun of type V ⇒ W , by induction hypothesis, for all v of type V , e[ū/x̄, v/y] is
reducible. This implies that t[ū/x̄] = λy.(w[ū/x̄]) is reducible. (Lemma 6.3.2 of Girard et al. (1989)
has a formal proof of the last part).

(4) If t is (λx.f ȳ) ∈ Λfun , by hypothesis, ȳ[ū/x̄] is reducible. By definition, λx.f ȳ[ū/x̄] = t[ū/x̄] is
reducible.

As a corollary of the above lemma, we obtain that all expressions t are strongly normalizing in System 2
by using ū = FV (t).

Termination of e. The evaluation of enorm under System 2 bisimulates the evaluation of enorm under
System 1, which bisimulates the evaluation of e′ under the instrumented semantics, which in turn bisimulates
the evaluation of e under the instrumented semantics. Since enorm is strongly normalizing in System 2, e
should be terminating under the instrumented semantics and hence also as per the operational semantics of
Fig. 5 This is a contradiction to our assumption that e is non-terminating. Thus, there does not exist a d
that bounds the number of incomplete calls from the root of a creator tree of e to every node in the tree if e
is non-terminating. �

Corollary 17. Let T be a creator tree for a closed expression e that is well-typed with respect to a library L. e
is non-terminating iff for some function f , there does not exist a d ∈ N such that for every node, the number
of incomplete calls of the form (λx.f w̄) u (for some w̄ and u) in the path from root to the node is at most d.

Proof. The if-part follows directly from the main Theorem 13. Let e be non-terminating. Assume for
argument sake that there exists a depth df for every function in the f ∈ L such that for every node, the
number of incomplete calls of the form (λx.f w̄) u (for some w̄ and u) in the path from root to the node is
at most d. Define d = max

f∈L
df . Consider a path in from root to an arbitrary node n in the creator tree whose

length is greater than d ∗ |L|. There has to exist such a path by Theorem 13. By the syntactic restriction of
the toy language, every application in this path should be of the form (λx.f w̄) u for some function f , w̄,
u. Therefore at least only f should appear inside the invoked lambdas more than d + 1 times, which is a
contradiction to our assumption. �
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The locality theorem of termination presented in section 3 follows from the above corollary and Lemma 10
in a straightforward way as detailed below.

Theorem 1 (Locality of Termination). Let e be a closed expression that is well-typed under a library L.
e is terminating if (and only if) for every function f , there exist a n ∈ N that upper bounds the length
of every sequence of incomplete calls S : (v1 u1 ), (v2 u2 ), · · · where each vi is of the form λx.f w̄i and
∀i ≥ 2. (vi ui ) ∈ LocalCall (L,L, body (f ), σparam (vi−1 ui−1 )).

Proof. The only-if direction trivially follows since if e is a terminating expression then every call sequence
in the evaluation of e should be finite. Consider the if direction. We now prove the contra-positive form of
this direction. Say e is a non-terminating expression. By Corollary 17 we know that in the creator tree of e,
for some function f there does not exist a d ∈ N such the number of incomplete calls applying a lambda
calling f from root to any node of the tree is bounded by d. In other words, there does not exist an upper
bound on the length of every sequence of incomplete calls of the form: S : (v1 u1) �∗ (v2 u2) �∗ · · · where
each vi is of the form λx.f w̄i. The claim follows from this by Lemma 10. �

B PROOFS OF CORRECTNESS OF TERMINATION OBLIGATIONS

We now detail the proofs of correctness and completeness theorems of the termination obligations presented
in the paper.

Lemma 2 (Local Closure Property). Let e be an open expression well-typed with respect to a library L, and let
(σ, L′) be a closing environment. Let (` : v) ∈ LocalClosure(L,L′, e, σ), where ` is the static label of v. There
exists a lambda term λx.g ȳ that is a sub-expression of e such that ∃((λx.g w̄) u′) ∈ LocalCall (L,L′, e, σ)
and v = λx.g w̄ or v ∈ LocalClosure(L,L′, body (g), σparam ((λx.g w̄) u′)).

Proof. By the definition of the semantics, a local closure v of e w.r.t (σ, L′) should either be a closure
of a lambda term in e, in which case the claim trivially holds, or be created by an application of another
local closure of e say r. By induction on the length of the evaluation steps, r satisfies the claim, and by
transitivity of locality, the claim holds for v. �

Theorem 3 (Soundness of Weak Obligation). Let e be an open expression well-typed with respect to a library
L. If the weak termination obligation given by Definition 3.3 holds for L and e, then e terminates modulo
callbacks.

Proof. Consider an expression e and library L for which the weak obligation holds. Let (σ, L′) be a
closing environment of e. Assume that every callback of e under σ is terminating, otherwise the claim holds
trivially. For e σ to be non-terminating, there exists a function f such that there does not exist a bound on
the length of every sequence S of incomplete calls of the form: (λx.f w̄i) ui as defined by Theorem 1. We
now show that the length of any such sequence S is bounded byMe (σ).

Let σi (i ≥ 1) be the parameter substitutions of every call (λx.f w̄i) ui in the sequence S. The first call of
the sequence should be local to e σ (i.e, should be an application of an unmarked lambda). Otherwise, it is
a callback of e and hence terminates by assumption. Therefore it cannot be incomplete and cannot be a part
of S as required by Theorem 1. By part (b) of the obligation,Mf (σ1) <Me (σ). Now, by the definition of
the sequence, for all i ≥ 2, Si is local to Si−1. That is, Si is local to body (f ) σi−1. By the definition of the
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obligation,Mf (σi) <Mf (σi−1) <Me (σ). Since < is well-founded, the length of the sequence S should be
bounded byMe (σ). �

Theorem 4 (Weak Completeness of Weak Obligation). If the weak termination obligation does not hold for a
library L, there exists a library L ∪ L′ and expressions e and e′ well-typed under the library L ∪ L′ such that
e and e′ are terminating modulo callbacks but e e′ is not terminating modulo callbacks.

Proof. Let f be a function for which the weak obligation fails. Therefore, there does not exist a measure
for f as required in some closing environment (σ, L′). By the definition of a closing environment, L ∪L′ is a
library. Let e be λx.f (x, σ(x2 ), · · · , σ(xn )), where param (f ) = (x1, · · · , xn). Let e′ be σ(x1). Clearly, e and
e′ are terminating (and terminating modulo callbacks) since they are values. Now, e e′ does not have a
bound on the lengths of sequences of chains of local calls (invoking f) starting from body (f ). This is possible
only if e e′ is non-terminating, otherwise there exists a bound on every set of sequences of calls made during
the evaluation of e e′ namely the number of steps in the evaluation of e e′. Since e e′ is a closed expression,
it is also non-terminating modulo callbacks. �

Theorem 5 (Soundness of Strong Termination Obligation). Let e be an open expression well-typed with
respect to a library L. If the strong termination obligation given by Definition 3.4 holds for L and e then e
terminates modulo callbacks.

Proof. Let us hypothesize that for any function f , if the strong obligation holds then for any call
(λx.h w̄) s local to body (f ) under a closing environment (σ, L′), Mh (σparam ((λx.h w̄) s)) <Mf (σ). We
prove this hypothesis by induction on the evaluation steps taken to invoke a call local to the body of a function
f in L from body (f ). Consider a function f and a call (λx.h w̄) s that is local to body (f ) under some closing
environment σ. By Lemma 2, there exists a lambda term ` : (λx.g ȳ) that is a sub-expression of body (f ) such
that there exists a call (` : λx.g p̄) q that is a local call of body (f ) under σ, and λx.h w̄ is a local closure of the
call. Let σ′ = σparam ((λx.g p̄) q). Note that (λx.h w̄) s should be reachable from body (g) σ′ in fewer number
of steps compared to body (f ) σ. Therefore by induction hypothesis,Mh (σparam ((λx.h w̄) s)) <Mg (σ′). By
the definition of strong obligation, ∀u.Mg ([param (g) 7→ p̄[u/x]]) <Mf (σ) if Applicable(L,L′, body (f ), σ, `, u)
holds. (Notice that Applicable(L,L′, body (f ), σ, `, q) must be true as the call (` : λx.g p̄) q takes place during
evaluation under σ.) Instantiating u on q,Mg ([param (g) 7→ p̄[q/x]]) =Mg (σ′) <Mf (σ). (Note that the
measures are oblivious to the marks on lambdas.) Hence,Mh (σparam ((λx.h w̄) s)) <Mf (σ), where f and
h are arbitrary. Therefore, the weak obligation holds for every function f ∈ L. By a similar argument, the
weak obligation also holds for e. The claim of this theorem follows from Theorem 3. �
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