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Understanding a program entails understanding its context; dependencies, configurations and even imple-

mentations are all forms of contexts. Modern programming languages and theorem provers offer an array

of constructs to define contexts, implicitly. Scala offers implicit parameters which are used pervasively, but

which cannot be abstracted over.

This paper describes a generalization of implicit parameters to implicit function types, a powerful way to

abstract over the context in which some piece of code is run. We provide a formalization based on bidirectional

type-checking that closely follows the semantics implemented by the Scala compiler.

To demonstrate their range of abstraction capabilities, we present several applications that make use of

implicit function types. We show how to encode the builder pattern, tagless interpreters, reader and free

monads and we assess the performance of the monadic structures presented.
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1 INTRODUCTION
A central issue with programming is how to express dependencies. A piece of program text can be

understood only in some context on which it depends. Most imperative programs express context

as global state. This technique is non-modular and dangerous due to the pervasiveness of actions

affecting that state. The object-oriented programming field has invented several more fine-grained

dependency injection mechanisms, either in the language itself (e.g. the cake pattern [Odersky and

Zenger 2005]) or external to it (e.g., Guice [Vanbrabant 2008], Spring [Johnson 2002], MacWire

[Warski 2013]).

Functional programming has a more straightforward answer: Dependencies are simply expressed

as parameters. A function that relies on some piece of data needs to be passed that data as a

parameter. This is pleasingly simple but sometimes it is too much of a good thing. Programs can

quickly become riddled with long parameter lists. A number of programming techniques have been
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invented to combat that problem. Currying and point-free style, or the reader monad [Jones 1995],

are some examples. Nevertheless, it is fair to say that the flexible composition of components with

many functional dependencies remains challenging.

A straightforward way of dealing with the problem of having too many parameters is to make

some of them implicit. Arguments to implicit parameters are synthesized according to the type

of the parameter. Implicit parameters were first invented in Haskell [Lewis et al. 2000]. They are

widely used in Scala, where they model type classes [Oliveira et al. 2010; Wadler and Blott 1989],

configurations, capabilities, type constraints [Emir et al. 2006] and many other forms of contextual

abstractions. In fact, we found that 94% of the 120 most popular Scala projects hosted on GitHub

make use of implicits in some way, with implicit parameters being the most commonly preferred

(full details in Appendix A). These widespread usage patterns indicate that real word applications

prefer to pass context implicitly. Implicit parameters have also been introduced to Agda [Devriese

and Piessens 2011] and to OCaml [White et al. 2015].

Implicit parameters in Scala avoid the tedium of having to pass many parameters to many func-

tions. But they do not eliminate all repetition as they still have to be declared in every function that

uses them. For instance, the Dotty compiler [Odersky 2017] for Scala contains over 2600 occurrences

of the parameter clause (implicit ctx: Context). The next version of Scala as implemented by

Dotty supports a concept that can get rid of this repetition. Implicit function types are first-class
types representing implicit functions. Just as implicit parameters synthesize function applications

to implicit values, implicit function types synthesize implicit lambda abstractions. It turns out that

implicit function types are surprisingly powerful in that they can abstract over many different

kinds of context dependencies.

Given the widespread use and power of implicits in Scala, it is important to have a precise

formalization that explains their semantics. The implicit calculus [Oliveira et al. 2012; Schrijvers

et al. 2017] is motivated by examples from both Scala’s implicits and Haskell’s type classes. It comes

close to expressing Scala’s implemented semantics, but there are also some differences. In particular,

the implicit calculus demands queries of implicit values to be written explicitly, whereas in Scala

implicit values are passed automatically as arguments to implicit functions. Implicit function types

also appear under the name instance arguments in Agda [Devriese and Piessens 2011; Norell et al.

2017], but their formalization and implementation is quite dependent on the rest of Agda’s type

elaboration.

In this paper, we explore foundations for implicits as they are found in Scala. We develop SI, a

calculus that expresses implicit parameters and implicit function types in a version of System F

with implicit type application. The typing rules also provide a mapping from SI to full System F.

The rules as given are notably simpler than previous work and correspond closely to the semantics

of implicits in Scala. In particular, the calculus keeps Scala’s technique that implicit resolution

amounts to choosing an identifier among a finite number of candidates. Once this choice is made,

the rest is regular type checking and inference, no separate calculus or algorithm for implicit

resolution is needed.

The paper substantiates the following two claims:

• that implicit parameters and implicit function types are powerful and widely applicable

constructs for abstracting over context;

• that they admit a simple and elegant formalization.

Organization. First, we introduce a motivating example for implicit function types (Section 2).

Next, we introduce a formalization of implicit function types based on System F (Section 3) and the

implementation of implicit function types in the compiler Dotty (Section 4). Then, we navigate,
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through various different applications, a range of new coding patterns available to programmers

(Section 5). And finally, we finish with a discussion of related work (Section 6).

2 OVERVIEW: FROM IMPLICIT PARAMETERS TO IMPLICIT FUNCTION TYPES
Implicit parameters offer a convenient way to write code without the need to pass all arguments

explicitly. The ability to omit arguments to functions gives rise to many interesting coding styles

and patterns that revolve around the concept of contextual abstraction. The contextual property
in the following code is the evidence that a definition that a method needs appears implicitly. On

every call to functions with implicit parameters, the compiler looks for an implicit definition in

scope to satisfy the call. So, instead of passing a parameter explicitly:

val number: Int = 1
def add(x: Int)(y: Int) = x + y
add(2, number)

we can mark a set of parameters as implicit (one parameter in this example) and let the compiler

retrieve the missing argument for us. In the following example add is a method with one implicit

parameter and number is an implicit definition.

implicit val number: Int = 1
def add(x: Int)(implicit y: Int) = x + y
add(2)

This discovery process performed by the compiler is called implicit resolution. The resolution
algorithm looks for implicits 1) in the current scope and 2) in the companion objects if all classes

associated with the query type. In the previous example, the implicit definition is defined in the

current scope and since it is an Int, the compiler resolves the method call by passing number

automatically.

Implicits can be used to implement type classes [Wadler and Blott 1989] as a design pattern in

Scala. We give an example of an implementation of the “ordered” type class. This example consists

of three parts: first, Ord[T], which is a regular trait with a single method, compare. Second, the

generic function comp, which compares two arguments and accepts an implicit argument, providing

an implicit evidence that these two values can be compared. Third, the implicit definition intOrd,

which provides an instance of the Ord trait for integers.

trait Ord[T] {
def compare(a: T, b: T): Boolean

}

def comp[T](x: T, y: T)(implicit ev: Ord[T]): Boolean =
ev.compare(x, y)

implicit def intOrd: Ord[Int] = new Ord[Int] {
def compare(a: Int, b: Int): Boolean = a < b

}
comp(1, 2)

We have briefly introduced implicit parameters and the kinds of contextual abstraction they can

offer. They are very helpful to avoid clutter in function applications, but implicit formal parameter

lists still have to be explicitly written in every method that has them, which can lead to unwanted
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verbosity. The next subsection introduces a remedy to this problem by providing the means to

type-abstract implicit functions.

2.1 Introducing Implicit Function Types
Implicit Function Types are types for implicit function values. They extend the support for first-class

functions to implicit arguments. Whereas A => B is the type of functions from A to B, implicit A

=> B is the type of functions that take an implicit argument of type A to a result of type B. Using an

implicit function type, the comp function can be rewritten as follows:

def comp[T](x: T, y: T): implicit Ord[T] => Boolean =

implicitly[Ord[T]].compare(x, y)

Note that in this definition of comp the implicit argument of type Ord[T] is anonymous. The

compiler will desugar the body of this definition into { implicit ev$n: Ord[T] => ... } where

ev$n is a freshly generated name. The implicit argument can still be referred using the idiom

implicitly[Ord[T]]. implicitly is defined in the standard library as the implicit identity function:

def implicitly[T](implicit x: T) = x

The new formulation of comp might seem like a minor syntactic twist, but it has far-reaching

consequences. Because implicit Ord[T] => Boolean is now a type, it can be abstracted over by

giving it a name and using only the name afterwards. This is exploited the following example,

which shows how to approach the configuration problem [Kiselyov and Shan 2004] in a type-safe

manner. The goal is to propagate a run-time value, the modulus, while doing arithmetic with the

usual functions, add and mul, uncluttered.

case class Modulo[T](m: T)

type WithModulo[T] = implicit Modulo[Int] => T // Implicit Function Type

def add(a: Int, b: Int): WithModulo[Int] = (a + b) % implicitly[Modulo[Int]].m
def mul(a: Int, b: Int): WithModulo[Int] = (a * b) % implicitly[Modulo[Int]].m

def test1(a: Int, b: Int): WithModulo[Int] =
add(mul(a, a), mul(b, b))

implicit val mod4 = Modulo(4)
val output = test1(2, 3)

test1 implements the operation: (a ∗ a) + (b ∗ b) in a very clean and concise manner. The implicit

value mod4, that is brought into scope, propagates the run-time value 4 in our test case and what is

performed instead is the operation ((a ∗ a) mod 4 + (b ∗ b) mod 4) mod 4. We achieved two things:

a) to transform a configuration requirement into a type that communicates this context-passing

behavior and b) to have compile-time guarantees that all methods are going to be passed the same

value.

3 FORMALIZATION
Implicits give considerable power to program designers. It’s therefore important to have a clear

understanding of their elaboration. To this purpose we develop a small calculus SI that can express
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key elements of high-level Scala programs. The calculus can be thought of as an extension of

System F [Girard 1972; Reynolds 1974] with implicit instantiations of both type arguments and

implicit parameters. Its semantics is given by a translation to classical System F.

3.1 Syntax

s, t = Term
x variable
y implicit variable
λx.t function
t t application
? implicit query
let x : T = t in t explicit let
let ? : T = t in t implicit let

R = Restricted type
X type variable
T → T function type

S, T = Full type
R restricted type
T ?→ T implicit function type
∀X.T polymorphic function type

Fig. 1. SI Syntax

The syntax of the calculus is presented in Figure 1. At the term level, we have both explicit

variables (x) and implicit variables (y). This separation saves us the effort of maintaining two

different environments in the typing rules. Consequently, only implicit variables are available for

implicit resolution. We assume that programmers only use explicit variables in the source code.

Implicit variables are used internally in type checking and semantic translation.

One peculiarity of this syntax is that lambda abstractions are written Curry-style, i.e. without

domain annotations on the bound variables. Instead, type annotations are introduced separately

through let-expressions. There are two variants of let-bindings: explicit and implicit. The latter

introduce implicit values.

Another peculiarity is that there is no syntax for implicit function abstraction, nor for type

instantiation or implicit function application. All these operations are to be inferred. The syntax

is hence quite familiar to a Haskell programmer, in that types are given separately for let-bound

variables, closures do not carry type annotations themselves and all type arguments are inferred.

In the calculus, implicit parameters get resolved and applied automatically. The query operator

(denoted by ?) is used to access implicit parameters of implicit functions (which will be synthesized

during the semantic translation). Programmers can also use the query operator to trigger implicit

resolution explicitly – this corresponds then to the use of implicitly in Scala (Aside: readers

familiar with Scala might object that implicitly usually comes with a type argument such as

in implicitly[Ord[Int]] whereas ? is written without one. But in fact implicitly is a normal

polymorphic function, so its type argument can be inferred just as for any other function. So,

implicitly, written alone, corresponds exactly to our use of the ? operator.)
For types, in addition to normal function types, we have implicit function types (T ?→ T). Types

are divided into restricted types and non-restricted types. Restricted types consist of normal function

types and type variables. Non-restricted types represent polymorphic and implicit functions; they

come with elimination rules that are not syntax directed.

3.2 Type System
The type system of SI is presented in its entirety in Figure 2. SI is based on bidirectional type
checking [Pierce and Turner 2000]. Bidirectional type-checking is a technique that incorporates
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x : T ∈ Γ

Γ ⊢ x :▷ T
(Var)

Γ, x : S ⊢ t ◁ : T

Γ ⊢ λx.t ◁ : S → T
(→ I)

Γ, y : S ⊢ t ◁ : T

Γ ⊢ t ◁ : S ?→ T
(?→ I)

Γ, X ⊢ t ◁ : T

Γ ⊢ t ◁ : ∀X.T (∀ I)

Γ ⊢ t ◁ : T Γ, x : T ⊢ s :▷ R

Γ ⊢ let x : T = t in s :▷ R
(Let-Ex)

y : T ∈ Γ

Γ ⊢ ? :▷ T
(Query)

Γ ⊢ t1 :▷ S → T Γ ⊢ t2 ◁ : S

Γ ⊢ t1 t2 :▷ T
(→ E)

Γ ⊢ t :▷ S ?→ T Γ ⊢ ? ◁ : S

Γ ⊢ t :▷ T
(?→ E)

Γ ⊢ t :▷ ∀X.T
Γ ⊢ t :▷ [X := S]T

(∀ E)

Γ ⊢ t ◁ : T Γ, y : T ⊢ s :▷ R

Γ ⊢ let ? : T = t in s :▷ R
(Let-Im)

Γ ⊢ t :▷ R

Γ ⊢ t ◁ : R
(Stitch)

Fig. 2. SI Typing Rules

both a type inference and a type checking flow for typing terms. In the traditional formulation,

two directions exist: a term t can be inferred to have a type T in one direction and a term t can be

checked to have a type T in the other. Bidirectionality has been used in a wide range of scenarios

from implementations of systems for dependent types [Coquand 1996; Xi and Pfenning 1999] to

local type inference [Pierce and Turner 2000] and higher-rank types [Peyton Jones et al. 2007].

In SI the judgement form Γ ⊢ t :▷ T means that the term t gets a synthesized type T under the

context Γ, while Γ ⊢ t ◁ : T means that the term t is checked to be compatible with the expected

type T under the context Γ.
The rule (Var) is standard. Its implicit analogue (Query) can be thought of as implicit resolution

for the query ?. The variable y in the precondition of (Query) is chosen arbitrarily — any implicit

variable in the environment could qualify. We discuss in Section 3.5 how to address this source of

non-determinism.

The typing rule (→ I) is standard for a Curry-style system. The rule is a checking rule, which

means that the type annotation for the lambda parameter can be inferred from the context. The

typing rule (→ E) is also standard. Note that in the typing of the argument t2, we use the checking
judgement, as the type S is already known from the type S → T of the function t1. The typing rule

(?→ I) type checks an expression by assuming its expansion to an implicit function, but only if the

expected type of the expression is of an implicit function type. This last point is the reason why we

do not have a syntax for implicit functions: if we did, this rule would have been applied endlessly!

While it is a simple check in the compiler to stop applying this rule if the term is already an implicit

function, avoiding to specify such a rule makes the calculus more clear.

The typing rule (?→ E) is where automatic resolution of implicits happens. This rule says that if

a term t is of the implicit function type S ?→ T and implicit resolution can synthesize a term of the

type S, then we can type the term with the type T. The resolution of the implicit parameter could
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result in a term of implicit function type on which this rule is applied again. This is how recursive

resolution works in the system.

The typing rules (∀ I) and (∀ E) introduce and eliminate polymorphic types. Neither of those has a

term form associated with it, so introduction and elimination of polymorphic types is again implicit.

Being checking rules, (∀I) instances are inserted deterministically depending on the expected type.

For (∀E), we rely on type inference to determine the argument type S.
The typing rule (Let-Ex) type checks explicit let-bindings, while the rule (Let-Im) type checks

implicit let-bindings. Let-bindings are the only place where programmers give type annotations.

The rule (Stitch) says that in order to check that a term t has type R, it suffices to show that the

synthesized type for t is R. This is the important switch that lets us change from type checking to

type synthesis. We allow only restricted types to go through this rule, so that all implicit function

types will go through the rule (?→ I), and universal types will go through the rule (∀ E) before the

rule is applied. Conversely, the introduction rules (?→ I) and (∀I) have to be applied in checking

mode to the conclusion of a (Stitch).

Notice that the two rules that handle implicit function types have different directions. The rule

(?→ E) is a synthesis rule. It essentially expresses that implicit function types are eliminated eagerly,

as soon as they arise. On the other hand, the rule (?→ I) is a checking rule. It says that implicit

function types are introduced only if the expected type specifies it. Together with the rule (Stitch),

these rules determine the following strategy in the compiler for type checking a term t:

(1) If the expected type is an implicit function type T ?→ T′, create an implicit closure by entering

in the environment an anonymous implicit value and proceed by type checking t with T′ as
expected type.

(2) If the expected type is a restricted type R, type check t. If that succeeds with type T, post-
process T in step (3).

(3) If the type of t is an implicit function type T ?→ T′, perform an implicit search for T. If a
unique term t′ is found that matches T, continue by type checking t t′.

3.3 Translation to System F
We introduce a type-preserving translation from SI to System F. The syntax, typing rules and

semantics of System F are standard, so we omit them here.

The translation of types is given below:

(S ?→ T)∗ = S∗ → T∗

(S → T)∗ = S∗ → T∗

(∀X.T)∗ = ∀X.T∗
T∗ = T otherwise

We use the following judgment form to mean that a well-typed term t in SI will be translated

into a term t′ in System F:

Γ ⊢ t : T { t′

The translation rules are presented in Figure 3. Note that we do not translate implicit variables

and assume that the target language treats implicit variables and explicit variables the same way.

Theorem 3.1 (Type-preserving Translation). Let t be a SI term of type T, and t′ be an System
F term. If ∅ ⊢ t : T { t′ , then ∅ ⊢ t′ : T∗.

Proof. Straight-forward induction on typing derivations. □
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x : T ∈ Γ

Γ ⊢ x :▷ T { x
(Var-Ex)

Γ, x : S ⊢ t ◁ : T { u

Γ ⊢ λx.t ◁ : S → T { λx:S∗.u
(→ I)

y fresh Γ, y : S ⊢ t ◁ : T { u

Γ ⊢ t ◁ : S ?→ T { λy:S∗.u
(?→ I)

Γ, X ⊢ t ◁ : T { u

Γ ⊢ t ◁ : ∀X.T { ΛX.u
(∀ I)

Γ ⊢ t ◁ : T { u Γ, x : T ⊢ s :▷ R { u′

Γ ⊢ let x : T = t in s :▷ R { (λx:T∗.u′) u
(Let-Ex)

y : T ∈ Γ

Γ ⊢ ? :▷ T { y
(Query)

Γ ⊢ t1 :▷ S → T { u Γ ⊢ t2 ◁ : S { u′

Γ ⊢ t1 t2 :▷ T { u u′

(→ E)

Γ ⊢ t :▷ S ?→ T { u Γ ⊢ ? ◁ : S { u′

Γ ⊢ t :▷ T { u u′

(?→ E)

Γ ⊢ t :▷ ∀X.T { u

Γ ⊢ t :▷ [X := S]T { u [S∗]
(∀ E)

Γ ⊢ t ◁ : T { u y fresh
Γ, y : T ⊢ s :▷ R { u′

Γ ⊢ let ? : T = t in s :▷ R { (λy:T∗.u′) u
(Let-Im)

Γ ⊢ t :▷ R { u

Γ ⊢ t ◁ : R { u
(Stitch)

Fig. 3. Type-directed translation from SI to System F

3.4 Examples
To demonstrate the expressiveness of the calculus, we present two Scala examples, both of which

can be expressed in our calculus with only minor changes in notation. Instead of the query operator

? we write implicitly and instead of the let constructs of the calculus we use defs. Since Scala

does not allow defs to be anonymous, we use anonymized names such as __1 and __2 for implicit

definitions instead. These names are used nowhere else in the program, so their precise spelling is

not important. Both examples are accepted by the Dotty compiler.

Example: Ordering. This example defines a typeclass for orderings with instances on Int and

List. It models higher-order implicits, i.e. implicits that depend on other implicits. In the example,

the implicit for the type Ord[List[T]] depends on an implicit instance of Ord[T].

object Orderings {
trait Ord[T] { def less: T => T => Boolean }

implicit def __1: Ord[Int] = new Ord[Int] {
def less: Int => Int => Boolean = x => y => x < y

}

implicit def __2[T]: implicit Ord[T] => Ord[List[T]] = new Ord[List[T]] {
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def less: List[T] => List[T] => Boolean =
xs => ys =>

if ys.isEmpty then false
else if xs.isEmpty then true
else if xs.head == ys.head then less(xs.tail)(ys.tail)
else isLess(xs.head)(ys.head)

}

def isLess[T]: T => T => implicit Ord[T] => Boolean =
x => y => implicitly[Ord[T]].less(x)(y)

}
import Orderings._

isLess(Nil)(List(1, 2, 3))
isLess(List(List(1)))(List(List(1)))

Example: Propagation of Session Context . This example models a conference management system.

In this system, users are not allowed to see the scores or rankings of their own papers. Thus, all

operations, like getting the score of a paper or rankings of papers, depends on the identity of the

current user. Passing current user (or session) explicitly as parameters of the operations would

be very verbose. Implicit function types help here. By minor changes to the type signatures of

methods, the compiler will propagate the session context automatically.

case class Person(name: String)
case class Paper(title: String, authors: List[Person], body: String)

class ConfManagement(papers: List[Paper], realScore: Map[Paper, Int]) {
type Session[T] = implicit Person => T
def currentUser: Session[Person] = implicitly
def hasConflict(p: Person, ps: List[Person]) = ps contains p

def score: Paper => Session[Int] = paper =>
if hasConflict(currentUser, paper.authors) then -1
else realScore(paper)

def viewRankings: Session[List[Paper]] =
papers.sortBy(score(_))

}

The following code demonstrates a simple setup where the assumed logged-in user is Bob, who

has also submitted a paper in the system. By running this program we observe that Bob is unable

to see the score of his paper (–1 instead of 4 which is the actual value).

val bob = Person("Bob")
val eve = Person("Eve")
val p1 = Paper("Bob's paper", List(bob), "...")
val p2 = Paper("Eve's paper", List(eve), "...")
val cm = new ConfManagement(List(p1, p2), Map(p1 -> 4, p2 -> 3))

implicit def __1: Person = bob

cm.score(p1) // -1
cm.score(p2) // 3

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 42. Publication date: January 2018.



42:10 M. Odersky, O. Blanvillain, F. Liu, A. Biboudis, H. Miller, S. Stucki

3.5 Disambiguation
The calculus presented in Figure 2 is ambiguous in two aspects. First, rule (∀ E) does not specify

the type argument syntactically, and different type arguments can lead to different derivations.

This is similar to the situation in the Hindley-Milner [Damas and Milner 1982] system where we

also assume that the type argument is inferred by an algorithm. The second source of ambiguity

is specific to implicits: rule (Query) does not specify how to pick an implicit variable from the

environment. By the rule itself, any implicit variable in the environment qualifies, thus there may

be several possible derivations. The implicit ambiguity is problematic because it affects semantics.

Choices of implicit values can affect the outcome of a program, which means ambiguous implicit

resolutions causes a loss of coherence.
We can regain coherence through a disambiguation scheme that always selects in a deterministic

way a specific implicit value among several possible candidates. A simple way to do so is to look

at nesting: always select the innermost implicit value that matches a required type R. The Scala
compiler follows this strategy but augments it with other criteria. Section 4 gives more details.

In the rest of this section we formalize this strategy using a definition of well-scopedness and
show that it leads to unique type derivations if we restrict ourselves to the monomorphic fragment

of SI without ∀ types (i.e. if we exclude the other source of ambiguity). In the rest of this section,

we will assume a calculus the subset of SI without rules (∀ E) and (∀ I).

The proofs are significant because they show that argument type selection and implicit variable

selection are the only sources of ambiguity in SI. In particular, no ambiguities can arise from different

possible arrangements of implicit introduction and elimination rules. This property is enforced by

the directional nature of the typing rules and the particular role of (Stitch), which only works

on restricted types. It makes SI different from the treatment of the unrestricted implicit calculus

[Oliveira et al. 2012] and also from the treatment of implicit parameters in Haskell, where implicit

introduction and elimination are less well controlled and therefore can give rise to surprising

behavior [GHC 2015].

We write size(T) for the standard size measure on type expressions T, i.e. size(T) = 1 +
∑
size(Ti),

with {Ti} the (possibly empty) set of subexpressions of T.

Definition 3.2. Extend size(T) to judgements as follows:

size(Γ ⊢ t ◁ : T) = size(T) (1)

size(Γ ⊢ t :▷ T) = –size(T) (2)

Lemma 3.3. Let J be a judgement over the term t. Then for any other judgment J′ over the same
term t, and any non-syntax-directed inference rule that derives J′ and that has J as its leftmost premise:
size(J) < size(J′).

Proof. By inspection of the typing rules □

Definition 3.4. The resolved implicit variable res(D) in a derivation tree D ending in a judgement

Γ ⊢? ◁ : T or Γ ⊢? :▷ T is defined as follows (by recursion on typing derivations).

(1) If D consists of an application of a (Query) instance

y : T ∈ Γ

Γ ⊢ ? :▷ T
,

the variable y.
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(2) If D ends with an application of a (?→ E) instance

Γ ⊢ ? :▷ S ?→ T Γ ⊢ ? ◁ : S

Γ ⊢ ? :▷ T
,

the resolved implicit variable of the derivation tree of Γ ⊢ ? :▷ S ?→ T.
(3) If D ends in an application of a (Stitch) instance

Γ ⊢ ? :▷ R

Γ ⊢ ? ◁ : R
,

the resolved implicit variable of the derivation tree of Γ ⊢ ? :▷ R.
(4) If D consists of an application of a (?→ I) instance

Γ, y : S ⊢ ? ◁ : T

Γ ⊢ ? ◁ : S ?→ T
,

the resolved implicit variable of the derivation tree of Γ, y : S ⊢ ? ◁ : T.

Definition 3.5. A typing derivation D is well-scoped, if for every subderivation D ′
of a resolution

judgment J = Γ ⊢ ? ◁ : T or J = Γ ⊢ ? : ▷ T in D, and every other derivation D ′′
of J,

res(D ′) = res(D ′′) or res(D ′′) is defined in Γ to the left of res(D ′).

Well-scoped typing derivations can be produced by a semi-algorithm that, when faced with a

query, always picks the rightmost eligible implicit (which corresponds to the innermost implicit

definition as seen from the point where the query is made (it is not an algorithm because implicit

search might diverge). We can show that the following holds for the monomorphic system without

polymorphic function types:

Proposition 3.6. Given Γ and t, there is at most one well-scoped typing derivation that ends in
Γ ⊢ t :▷ R, for some restricted type R.

Proposition 3.7. Given Γ, t and T, there is at most one well-scoped typing derivation that ends in
Γ ⊢ t ◁ : T.

Proof. We prove the following three conditions which imply Proposition 3.6 and Proposition

3.7: Given Γ, t, and a well-scoped derivation D,

(1) If D ends in Γ ⊢ t :▷ R, then it is the only well-scoped derivation with this property.

(2) If D ends in Γ ⊢ t :▷ T, and D does not end in a rule (?→ E), then it is the only well-scoped

derivation with these two properties.

(3) If D ends in Γ ⊢ t ◁ : T then it is the only well-scoped derivation with this property.

Condition (1) implies Proposition 3.6 and condition (3) implies Proposition 3.7. We prove all three

conditions together by an induction on the derivation tree D.

If the derivation consists of a single application of (Var), then (1) and (2) are immediate conse-

quences , and (3) holds vacuously because its precondition does not apply.

Assume now the derivation consists of a single application of (Query).

y : T ∈ Γ

Γ ⊢ ? :▷ T
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We only need to prove (1) and (2), since (3) holds vacuously. Consider another derivation D ′

which ends in Γ ⊢ ? :▷ T. SinceD andD ′
are both well-scoped, they must both resolve to the same

implicit variable, y. Therefore, D ′
also starts with the same application of (Query). By lemma 3.3,

D ′
cannot have any other inference rules that take the (Query) rule as a precondition and that

end in the same conclusion as (Query).

Assume now the derivation tree D ends in a synthesis rule different from (Var) and (Query),

with Γ ⊢ t : T as conclusion. Let D0 be the smallest sub-derivation of D that can be extended to

full D by applying zero or more instances of rule (?→ E), with D0 and its successors being in each

case the left-most precondition of what follows. Assume D ′
ends in Γ ⊢ t : T′. We distinguish

according to the form of t. By inspection of the typing rules there are only three cases, one where

t is an application t1t2, the other two there t is an explicit let let x : T = t1 in t2 or implicit let

let ? : T = t1 in t2. Assume the first case. Then the only applicable rule is (→ E).

Γ ⊢ t1 :▷ S → T′ Γ ⊢ t2 ◁ : S

Γ ⊢ t1 t2 :▷ T′

By the inductive hypothesis the typing derivations of Γ ⊢ t1 :▷ S → T′ and Γ ⊢ t2 ◁ : S are both

unique. Hence, any other derivation D ′
0 of Γ ⊢ t1 t2 :▷ T′ must contain D0 as a sub-derivation. the

same holds for D0, which together with Lemma 3.3 proves (2). The other two cases are analogous.

To show (1), consider the type T of the conclusion ofD0. Its general form is S1 ?→ . . . ?→ Sn ?→R,
for some types S1, . . . , Sn and restricted type R. We show unicity of derivations by induction on

n. If n == 0, then by Lemma 3.3 D = D0 and therefore (2) implies (1). If n > 0 then the only rule

applicable is (?→ E).

Γ ⊢ t :▷ S1 ?→(S2 ?→ . . . ?→ Sn ?→R) Γ ⊢ ? ◁ : S1
Γ ⊢ t :▷ S2 ?→ . . . ?→ Sn ?→R

By the induction hypothesis, the derivation of Γ ⊢ t :▷ S1 ?→(S2 ?→ . . . ?→ Sn ?→R) is unique.
Therefore, the same holds for D.

Finally, assume that derivation treeD ends in a checking judgement Γ ⊢ t ◁ : T. If T is of the form

S ?→ T′ the only applicable rule that ends in this judgement is (?→ I). By induction, the derivation

for the premise of this rule is unique, which implies with Lemma 3.3 that D is unique. If T is a

restricted type R, the applicable rules are (→ I) and (Stitch). We further distinguish according

to the term t. If t is of the form λx.t′, the last rule must be (→ I), since (Stitch) has a synthesis

judgement as its premise and there is no rule that can typecheck a lambda abstraction in synthesis

mode. By the inductive hypothesis, the premise of the (→ I) application has a unique derivation,

and therefore D is also unique. If t is not a lambda abstraction, the only applicable rule is (Stitch).

By the inductive hypothesis the premise of (Stitch) has a unique derivation, and therefore D is

also unique. This concludes the proof. □

The propositions do not hold anymore once we add polymorphic function types because type

instantiation in the rule (∀ E) is also non-deterministic, and interacts in interesting ways with

implicit search. Dealing with this will require a formalization of local type inference and how it is

influenced by implicit search.
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synth⟦Γ ⊢ x⟧ = elim⟦Γ ⊢ x :▷ Γ(x)⟧
synth⟦Γ ⊢ y⟧ = elim⟦Γ ⊢ y :▷ Γ(y)⟧
synth⟦Γ ⊢ t1 t2⟧ = (T, t′1 t

′
2) if (S → T, t′1) = synth⟦Γ ⊢ t1⟧

t′2 = check⟦Γ ⊢ t2 ◁ : S⟧
error otherwise

synth⟦Γ ⊢ let x : S = s in t⟧ = (T, (λx : S∗. t′) s′) if s′ = check⟦Γ ⊢ s ◁ : S⟧
(T, t′) = synth⟦Γ, x : S ⊢ t⟧

error otherwise
synth⟦Γ ⊢ let ? : S = s in t⟧ = (T, (λy : S∗. t′) s′) if s′ = check⟦Γ ⊢ s ◁ : S⟧

(T, t′) = synth⟦Γ, y : S ⊢ t⟧
y fresh

error otherwise

elim⟦Γ ⊢ t :▷ R⟧ = (R, t)
elim⟦Γ ⊢ t :▷ S ?→ T⟧ = (R, t′) if s′ = query⟦Γ ⊢ S⟧ Γ

(R, t′) = elim⟦Γ ⊢ t s′ :▷ T⟧
error otherwise

query⟦Γ ⊢ T⟧ () = error
query⟦Γ ⊢ T⟧ (Γ ′, x : S) = query⟦Γ ⊢ T⟧ Γ ′

query⟦Γ ⊢ T⟧ (Γ ′, y : S) = t if (T, t) = synth⟦Γ ⊢ y⟧
query⟦Γ ⊢ T⟧ Γ ′ otherwise

check⟦Γ ⊢ λx. t ◁ : S → T⟧ = λx : S∗. t′ if t′ = check⟦Γ, x : S ⊢ t ◁ : T⟧
error otherwise

check⟦Γ ⊢ t ◁ : S ?→ T⟧ = λy : S∗. t′ if t′ = check⟦Γ, y : S ⊢ t ◁ : T⟧
y fresh

error otherwise
check⟦Γ ⊢ t ◁ : R⟧ = t′ if (R, t′) = synth⟦Γ ⊢ t⟧

query⟦Γ ⊢ R⟧ Γ if t = ?
error otherwise

Fig. 4. Type checking algorithm for SI

3.6 Type Checking
We now present a semi-algorithm for type checking programs in the monomorphic fragment of SI.
It is given by four mutually recursive functions:

synth ⟦Γ ⊢ t⟧ = (T, t) | error
check ⟦Γ ⊢ t ◁ : T⟧ = t′ | error
elim ⟦Γ ⊢ t :▷ T⟧ = (R, t) | error
query ⟦Γ ⊢ t⟧ Γ ′ = t′ | error

The definitions of these functions are given in Figure 4. synth elaborates synthesis rules in

Figure 3 and check elaborates checking rules. However, there is no synth rule that corresponds

to (Query). Instead, queries ? that fill in function arguments are handled by a combination of

query and elim. query tries an implicit candidate in the environment, going left to right, and elim
instantiates implicit function types.
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Proposition 3.8. (Soundness)
(1) If synth⟦Γ ⊢ t⟧ = (T, t′) then Γ ⊢ t :▷ T { t′.
(2) If check⟦Γ ⊢ t ◁ : T⟧ = t′ then Γ ⊢ t ◁ : T { t′

The proof of Proposition 3.8 is by induction on the number of steps taken by the algorithm. One

can show that each step corresponds to a typing rule in Figure 3.

The definitions given in Figure 4 do not handle query terms in the source that are in synthesis

position. In other words, every query term ?must have an expected type. For source terms satisfying

that condition, the definitions in Figure 4 consititute a semi-algorithm, which might diverge on

some programs (we explain in Section 4 how we deal with this in practice). Hence, we cannot

establish completeness. Nevertheless, we believe the following holds for terms t without embedded

queries ? in synthesis position:

Conjecture 3.9. (Semi-Completeness)
(1) If Γ ⊢ t :▷ T { t′ by a well-scoped derivation then the application synth⟦Γ ⊢ t⟧ yields (T, t′)

or it diverges.
(2) If Γ ⊢ t ◁ : T { t′ by a well-scoped derivation then the application check⟦Γ ⊢ t ◁ : T⟧ yields t′

or it diverges.

3.7 Comparison with the Implicit Calculus
Compared to the implicit calculus [Oliveira et al. 2012; Schrijvers et al. 2017] there are two essential

differences.

First, SI models the automatic application of implicit functions whereas the implicit calculus

requires an explicit query operator like ?T to trigger implicit resolution for the type T.
Second, SI unifies type checking and implicit resolution whereas the implicit calculus uses two

different sets of rules for these concerns. This makes SI significantly smaller than the implicit

calculus. We show in Section 4 that the Scala compiler also follows SI’s strategy of using normal

type checking of an implicit candidate for implicit search.

The two points are connected. It’s because SI can model automatic function application (both for

types and for implicit values) that it can do without a separate set of rules for implicit resolution.

To illustrate this, consider the typing derivation that finds an ordering over List[Int], given the

code from Section 3.4.

__2 : (∀T.Ord[T] ?→ Ord[List[T]]) ∈ Γ
(Query)

Γ ⊢ ? :▷ ∀T.Ord[T] ?→ Ord[List[T]] { __2 ∀E
Γ ⊢ ? :▷ Ord[Int] ?→ Ord[List[Int]] { __2[Int]

__1 : Ord[Int] ∈ Γ { __1
(Query)

Γ ⊢ ? :▷ Ord[Int] { __1
(Stitch)

Γ ⊢ ? ◁ : Ord[Int] { __1
(?→ E)

Γ ⊢ ? :▷ Ord[List[Int]] { __2[Int](__1)
(Stitch)

Γ ⊢ ? ◁ : Ord[List[Int]] { __2[Int](__1)

In this derivation, each application of (Query) selects a simple variable (__1 and __2), but the end
result is the more complex term __2[Int](__1). If the type system demanded an explicit placeholder

for implicit function arguments, a similar construction would not have been feasible, since we

would have to “guess” a priori where implicit arguments to implicit functions are needed. Hence,

we’d need a separate mechanism of implicit resolution.

On the other hand, a design with separate type checking and resolution judgements has the

advantage that type instantiation can be made explicit. In the Ord instantiation, we “pulled a rabbit

out of our hat” in the application of (∀E) where the instance type was guessed to be Int. So to

arrive at a type checking algorithm we have to complement the system as given with rules that
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specify how to infer type arguments. Scala uses a variant of colored local type inference [Odersky

et al. 2001] for this.

Both SI and the basic implicit calculus are ambiguous. They both under-specify what implicit

will be chosen in the face of ambiguities. The Cochis calculus [Schrijvers et al. 2017] elaborates the

implicit resolution rules to ensure determinacy, but the details are involved and it is not clear to

what degree they correspond to the disambiguation scheme used in Scala and reported in Section 4.

The well-scopedness condition of Section 3.5 also ensures unique type derivations, but only for

the monomorphic fragment of SI. To extend it to full SI we’d have to complement the system with

rules for the inference of type arguments. This is beyond the scope of the current paper, though.

4 IMPLEMENTATION
Implicit function types have been implemented in Dotty, the reference compiler for future versions

of the Scala language. This section explains the relationship between this implementation and the

formalization presented in Section 3.

Scala uses colored local type inference [Odersky et al. 2001], which is a refinement of the

bidirectional type checking rules in Figure 2. In essence, every typing rule is a hybrid between

checking and synthesis: It checks the term against a given outline type and synthesizes the final

type of the term. Outline types can have holes in them. Synthesized types follow the shape of the

corresponding outline types, while at the same time filling in the holes. This system coincides in

the following algorithmic aspects with Figure 2 and Figure 3

• If the expected type of a term is an implicit function type, an implicit closure is unconditionally

generated, as prescribed by rule [?→ I] in Figure 3,

• If the synthesized type of a term is an implicit function type, the term is immediately applied

to implicit arguments, as prescribed by rule [?→ E].

The implicit search algorithm used by dotc is a refinement of the algorithm implied by a Figure 2

if the well-scopedness condition is added. In both cases, we choose one of a finite number of

implicit candidate variables as the implicit argument so that type checking as a whole succeeds.

The differences between the calculus and the full language lie in the question which values are

considered candidates and how to choose one if there are several possible alternatives.

4.1 Implicit Search Candidates
In the calculus, the candidates are all implicit variables bound in the environment. In the full

language, this is refined as follows: A reference to an implicit value is a candidate for an implicit

search of type T if (1) it can be expressed as a simple identifier or (2) it refers to a value of the

implicit scope of T.
Condition (1) subsumes the condition of the calculus, since the variables bound in the environment

are precisely those expressions which can be referred to by a simple identifier. But in the full

language there are also other variables which can be referred to that way: A variable might have

been made available through an import, or it might have been inherited from a base class.

Condition (2) does not have a counter part in the calculus. This condition also makes available

as candidates any implicit values “that are defined with” the type T for which an implicit value is

searched. The implicit scope of a type T are all implicit definitions in the companion object
1
of T

itself, as well as in the companion objects of any part of T, and the companion objects of any base

type of T. The purpose of condition (2) is to make implicit values available in a more robust way

that does not require an import. The definition of implicit scope is intentionally kept rather large,

so that any implicit definition that bears some relationship to the searched-for type is considered.

1
A companion object is a an object associated with a class or a trait of the same name.
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The full language first searches implicit candidates that are visible in the current scope, i.e. that

match condition (1). If none are found it falls back to searching candidates in the implicit scope

according to condition (2).

4.2 Disambiguation
The calculus and the full language also differ in how an implicit value is chosen among several

candidates. The rules in Figure 2 are silent about this issue, redendering the calculus ambiguous.

Adding the well-scopedness condition means that the rightmost (i.e. innermost) matching definition

is chosen as is described in Figure 4. The full-language also uses nesting to disambiguate but

combines this with specifity. Given two candidate implicit references, it plays a tournament with

two rounds.

One round awards a point for candidate c1 over candidate c2 if c1 is introduced (made visible) in

a scope more deeply nested than the scope where candidate c2 is introduced. This round is only

applicable to implicit searches in the current scope according to condition (1). For searches in the

implicit scope according to condition (2), a candidate c1 wins instead over c2 if its associated class

is a subclass of the associated class of c2. Here, the associated class of an implicit value c is the class
where c is defined, or, if c is defined in an object, the object’s companion class.

The other round awards a point for c1 over c2 is c1’s type is strictly more specific than c2’s
type. This means that c1’s type can be instantiated through widening or polymorphic parameter

instantiation to be c2’s type.
If one candidate gets more points in these rounds than the other, it is chosen as implicit instance.

In the case of a draw the compiler rejects the program because it is ambiguous.

4.3 Divergence
Since implicit searches can be recursive, it is possible that an implicit search does not terminate. The

compiler uses the following strategy to detect divergent searches: It keeps track of all unresolved

query types in a stack. For each query type it records its top-level type constructor.

In the example below, we demonstrate infinite expansion during implicit search. The Dotty

compiler has some heuristics to break infinite expansion after five recursion steps. The following

code is valid according to the declarative type system we present in the paper. Specifically, in the

compiler type checks because we provide the implicit value x (that corresponds to six expansions).

On the contrary, type checking in the algorithm does not terminate because it is not equipped with

similar heuristics.

object Outer {
class C[T]
implicit val x : C[C[C[C[C[C[String]]]]]] = ???
object Inner {

implicit def fGen[T](implicit ev: T): C[T] = ???
implicit def fString(implicit ev: C[Int]): C[String] = ???
implicit def fInt: C[Int] = ???

implicitly[C[String]]
implicitly[C[C[String]]]
...
// error if the compiler didn't have any termination checks (like in the algorithm)
implicitly[C[C[C[C[C[C[String]]]]]]]

}
}
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4.4 Optimizations
The basic search algorithm specifies that all implicit values in the current scope or in the implicit

scope of the expected types are tried as candidates to resolve a query. Implemented naïvely, this

would be very inefficient. The Scala compiler employs two main strategies to speed up the search.

The first strategy eliminates from consideration all implicit variables that cannot possibly match

the expected type. To do this, the compiler computes a fingerprint type, where all implicit parameters

are dropped and all type variables are replaced by a wildcard type that matches any other type.

Only implicit values with fingerprints matching the expected type are further considered. This

pre-selection is usually beneficial because a fingerprint match is much cheaper than a full type

elaboration of an implicit value, which might in turn trigger recursive implicit searches. What’s

more, the sets of types fingerprint-matching a query type are also cached, so computation is saved

if the same query is asked several times.

The second strategy tries to truncate the search space once a first match has been found. If there

are several candidates, the compiler normally would need to elaborate the types of all of them

in order to determine a best match or raise an ambiguity error. But we can avoid some of these

elaborations by checking beforehand whether a candidate could possibly affect the outcome of

an implicit search. If the candidate value that was already found would be strictly preferable to

the alternative value according to the disambiguation criteria, there is no point in elaborating the

type of the alternative value. This scheme is rendered more effective by keeping track of results of

previous implicit searches and trying values that were selected most often in previous queries first.

Using these techniques, implicit search becomes reasonably efficient. We have observed implicit

search typically takes 30% of the total running time of dotc. Of course this depends on the number

and size of generated implicit terms, which can be arbitrarily large, so the 30% number is not a

hard limit but an indication of average behavior on “typical” programs.

4.5 Language differences
SI has no syntax for the explicit application of an implicit function. Implicit functions are always

applied automatically by looking for an implicit value that matches the argument type of the

function.

In current Scala this is different in that implicit functions can be applied explicitly - the language

uses the normal functional application syntax for this. So the following would typecheck:

def f: implicit Context => Map[Int, Int]
val ctx: Context
f(ctx)(2)

In the last line of this program, the first parameter ctx is passed as an argument to the implicit

function whereas the second parameter is passed as the argument to the apply function of the

result map (which is inserted automatically).

While convenient, this convention can also be quite limiting and surprising. For instance, we

could not have written f(2) in the last line of the program, since the compiler is incapable of

detecting whether we mean to pass an implicit argument or an explicit one following it. In the

particular case above, the programmer can write f.apply(2), which makes it clear that the implicit

parameter is to be inferred. But this is roundabout and awkward.

This design choice is by now regarded as a mistake. It would be possible to simply do without

explicit applications of implicit functions, just as SI does. If explicit applications were eliminated,

the last line of the program above could then be expressed like this:
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{ implicit val c = ctx; f(2) }

For syntactic convenience, the next major version of Scala will have a construct for applying

implicit functions explicitly, but it will be different from normal function application. The idea is to

introduce a new method named explicitly on the function type. explicitly converts an implicit

function to an explicit one. So if f has the implicit function type implicit Context => Map[Int,

Int] as above, then f.explicitely has the normal function type Context => Map[Int, Int] and

f.explicitly(ctx)(2) passes ctx as explicit argument to the Context parameter of that function.

Furthermore, we have the following equivalence, for any unary implicit function f:

f = f.explicitly(implicitly)

5 EXPRESSIVENESS & PERFORMANCE
Implicit function types can be a powerful way to abstract over implicits. In this section, we demon-

strate that implicit function types not only promote expressivity, but that they can additionally

improve performance over solutions without implicit function types.

To that aim, we show that implicit function types can be used in the expression of many different

applications. We introduce four different applications that are made clearer and more concise

through the use of implicit function types. The last two of which we show improve performance

over existing implementations without implicit function types. In Section 5.1, we present an

expressive DSL using the builder pattern, followed by an encoding of tagless interpreters [Carette

et al. 2009] demonstrating howwe can abstract over the number of implicit parameters in Section 5.2.

In Section 5.3, we show how we encode the reader monad with an isomorphic representation using

implicit functions, and assess its performance alongside of popular implementations in the Scala

ecosystem. Finally, in Section 5.4, we introduce a new implementation of the free monad, and assess

its performance as well.

5.1 Builder Pattern: An Expressive DSL
We demonstrate how implicit function types can be used to build declarative API using the type-safe

builders pattern [Kotlin 2014] without any boilerplate at the use-site. Let’s assume we’d like to

define a small DSL to create tables that look like the following:

table {
row {

cell("top left")
cell("top right")

}
row {

cell("bottom left")
cell("bottom right")

}
}

In this example table, row and cell are function calls to a factory method. Every call creates a new

node (resembling an AST), and registers this newly created node to its parent. Implicit functions

are used to propagate references of parent nodes to newly created nodes. For instance, the table

method takes an implicit Table => Unit as argument:
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class Table {
val rows = new ArrayBuffer[Row]
def add(r: Row): Unit = rows += r
override def toString = rows.mkString("Table(", ", ", ")")

}
def table(init: implicit Table => Unit): Table = {

implicit val t = new Table
init
t

}

The Definitions of row and cell are analogous. After desugaring and implicit resolution, the table

construction above is translated into the following:

table { $t: Table =>
row { $r: Row =>

cell("top left")($r)
cell("top right")($r)

}($t)
row { $r: Row =>

cell("bottom left")($r)
cell("bottom right")($r)

}($t)
}

5.2 Tagless Interpreters: Abstracting Over Multiple Constraints
Implicit function types enable a very useful way to abstract over the number of implicit parameters

introduced in some scope. We demonstrate a usage of this abstraction through an implementation

of the tagless interpreter pattern [Carette et al. 2009] (or object algebra [Oliveira and Cook 2012] as

popularized in the OOP domain) for simple arithmetic expressions.

Tagless interpreters make it possible to add both new syntactic elements and interpretations with-

out breaking the existing hierarchy, thus serving as a solution to the Expression Problem [Wadler

1998].

Below, we show the tagless encoding of a toy language for simple arithmetic expressions with

only two constructs; lit and add.

trait Exp[T] {
def lit(i: Int): T
def add(l: T, r: T): T

}
object ExpSyntax {

def lit[T](i: Int) (implicit e: Exp[T]): T = e.lit(i)
def add[T](l: T, r: T)(implicit e: Exp[T]): T = e.add(l, r)

}

To define an expression on integers using these two constructs, we first need to implement an

interpreter to evaluate integer expressions as follows:

implicit val evalExp: Exp[Int] = new Exp[Int] {
def lit(i: Int): Int = i
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def add(l: Int, r: Int): Int = l + r
}

With that, we can now define an expression in the Exp language. Using what we have so far, we

can define 8 + (1 + 2) as follows:

def tf1[T](implicit e: Exp[T]): T = add(lit(8), add(lit(1), lit(2)))

Allowing one to interpret tf1 as follows:

val evaluated: Int = tf1
println(evaluated) // 11

To extend the Exp language to be able to handle multiplication, we define a new trait Mult with

the new multiplication operation we’d like to add:

trait Mult[T] {
def mul(l: T, r: T): T

}
object MultSyntax {

def mul[T](l: T, r: T)(implicit e: Mult[T]): T = e.mul(l, r)
}

Ultimately, we’d like to define an expression to evaluate multiplication and additions in the same

expression. We can define 7 + (1 ∗ 2) as follows:

def tfm1[T](implicit e: Exp[T], m: Mult[T]): T = add(lit(7), mul(lit(1), lit(2)))

Interpreting tfm1 requires two instances of interpreters; it requires two implicit parameters, one

of type Exp[T] and another of type Mult[T]. We can use evalExp for addition, and we need another

for multiplication, which can be defined as follows:

implicit val evalMult: Mult[Int] = new Mult[Int] {
def mul(l: Int, r: Int): Int = l * r

}

As we observe, by increasing the number of interpreters, we increase the number implicit

parameters. If we continue extending our toy language in this fashion, we have no way to abstract

over these new extensions as they pile up in parameter lists.

Implicit function types enable us to easily abstract over implicit parameters using type aliases:

type ExtExp[T] = implicit (Exp[T], Mult[T]) => T

This enables us to define tfm1much more concisely, allowing us to omit the two implicit parameters

we had to write above, by using the ExtExp[T] type alias:

def tfm1[T]: ExtExp[T] = add(lit(7), mul(lit(1), lit(2)))
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5.3 Reader Monad: Use Contextual Abstraction
The reader monad represents a computation with the ability to read from an environment. It is

defined in term of two operations, ask, to retrieve the environment, and local, to modify the

environment for sub-computations (monad instance omitted):

trait Reader[R, A] {
def ask: R
def local[A](f: R => R)(a: A): A

}

Reader expressions are formed using the for-comprehensions (equivalent to the do-notation in

Haskell):

val expr1: Reader[Env, Int] = ...
val expr2: Reader[Env, Int] = ...
val expr3: Reader[Env, Int] =
for {

e1 <- expr1
e2 <- expr2

} yield e1 + e2

Implicit function types can be used as a concise alternative to Reader:

type ReaderIFT[T] = implicit Env => T

Values of type ReaderIFT[T] automatically obtain an Env from the implicit context, and propagate

this value to all sub-expressions in the right-hand side of their definition:

val expr1: ReaderIFT[Int] = ...
val expr2: ReaderIFT[Int] = ...
val expr3: ReaderIFT[Int] = expr1 + expr2

Env values can be obtained using implicitly[Env] in the body of ReaderIFT expression, which corre-

sponds to the ask operation on Reader. Analogously, a new Env can be defined for all sub-expressions

via by defining a local implicit of that type.

This pattern is very common in large-scale applications. For instance, in web programming, the

majority of functions take a context argument to propagate information about the request that is

currently being processed. Implicits provide a simple and concise way to transmit this information

across such applications.

5.3.1 Performance Evaluation. We compare the implicit function type encoding of the reader

monad with implementations from two widely-used Scala libraries: Scalaz 7.2 [Scalaz 2017] and

Cats 0.9 [Cats 2017]. Scalaz and Cats are general-purpose, functional programming libraries that

provide definitions of standard type classes and implementations of commonly used functional

data structures, including the reader monad.

We assess the performance of the aforementioned implementations using the monad reader

laws:
2

2
The measurements obtained are the average of 10 runs executed on an i7-7700K Processor CPU running Oracle JVM 1.8.0

on Debian 9.0 with binaries produced by scalac 2.12.2. Although all the experiments were run with scalac the IFT examples
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Fig. 5. JVM micro-benchmarks measuring throughput of various implementations in Mops/sec. Average of 10
runs, error bars for 99.9% confidence intervals.

ask-idempotent flatMap(ask)(x ⇒ ask) ≡ ask
local-ask ∀f : local(f)(ask) ≡ map(ask)(f)

local-flatmap ∀r, f, g : local(g)(flatMap(r)(f)) ≡ flatMap(local(g)(r))(x ⇒ local(g)(f(x)))
local-pure ∀f, a : local(f)(pure(a)) ≡ pure(a)

Four micro-benchmarks comprise our evaluation set; each one represents a reader monad law
3

instantiated with a String environment and identity functions.

Results. Figure 5a shows a 4x to 9x improvement of throughput for the implicit function type

implementation. This large gap is a consequence of removing a layer of abstraction. Indeed, the

implicit function type encoding is equivalent to manually propagating the environment as function

arguments, whereas both Cats and Scalaz store reader computations in an intermediate data

structure and use type classes for operations. These performance improvements are expected, given

that Scala compilers do not inline type classes.

5.4 Free Structures for Free
Data types à la carte [Swierstra 2008] popularized the free monad pattern, an abstraction to decouple

monadic expressions from their semantics. Typical Scala implementations [Bjarnason 2012] of this

idea use a generalized algebraic data type (GADT) to encapsulate the monadic structure, called

Free:

sealed trait Free[A[_], T]
case class Pure[A[_], T](a: T) extends Free[A, T]
case class Suspend[A[_], T](a: A[T]) extends Free[A, T]

were written for Dotty and originally benchmarked, compiled with dotc. However, at the time of writing, the cats and

scalaz libraries were not Dotty-ready. Consequently, we decided to use only scalac and the ITF examples were manually

desugarded into Scala. We present numbers obtained using a single compiler for benchmarking fairness.

3
https://github.com/typelevel/cats/blob/v0.9.0/laws/src/main/scala/cats/laws/MonadReaderLaws.scala
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case class FlatMapped[A[_], B, C](c: Free[A, C], f: C => Free[A, B]) extends Free[A, B]

Interpreters for Free expressions are defined as natural transformations, that is, instances of the

Natural trait:

trait Natural[F[_], G[_]] {
def apply[A](fa: F[A]): G[A]

}

Interpretation of Free expressions is done thought a foldMap function:

def foldMap[A[_], T, M[_]](e: Free[A, T])(n: Natural[A, M])(implicit m: Monad[M]]): M[T] = ...

Users of free monads typically depend on a library that provides the definition for Free, foldMap,

and a monad instance for Free. These definitions are non-trivial and duplication is required to

support other free structures such as the free applicative functor.

5.4.1 An Implicit Function Type Encoding. Implicit function types open the door to an alterna-

tive design of free monad that is simpler to use, more efficient and doesn’t require any library

infrastructure.

The new design defines a FreeIFT type alias with two curried implicit function types, mirroring

the signature of foldMap:

type FreeIFT[A[_], M[_], T] = implicit Natural[A, M] => implicit Monad[M] => M[T]

In this new encoding of free monads, expressions are function type parametric in the monad

used for interpretation. For instance, a free expression with made Put and Get operations (subtypes

of KVStore) can be defined as follows:

type KVStoreIFT[M[_], T] = FreeIFT[KVStore, M, T]

def iftExpr[M[_]]: KVStoreIFT[M, Option[Int]] =
for {

_ <- lift(Put("foo", 2))
_ <- lift(Put("bar", 5))
n <- lift(Get("foo"))

} yield n

Where the lift method is used to apply an implicit natural transformation:

def lift[F[_], M[_], A](fa: F[A])(implicit F: Natural[F, M]): M[A] = F(fa)

Interpreters are, as in the traditional encoding, natural transformations. However, the interpreta-

tion doesn’t require a library defined foldMap function. Instead, it is a simple function application

of iftExpr to an interpreter:

def iftInterpreter = new Natural[KVStore, Future] {
def apply[T](fa: KVStore[T]): Future[T] = ...

}
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val iftOutput: Future[Option[Int]] = iftExpr[Future](iftInterpreter)

5.4.2 Comparing Encodings. The main benefit of the implicit function type encoding of free

monad is that it doesn’t require any library support. From a user perspective, there is also less

boilerplate involved (the put and get function become unnecessary).

The two encodings can be shown to be equivalent by defining a bijection between representations.

The conversion to the À la carte encoding is done via interpretation from A to [X] => Free[A, X]: 4

def initialize[A[_]] = new Natural[A, [X] => Free[A, X]] {
def apply[T](a: A[T]): Free[A, T] = Suspend[A, T](a)

}

Conversion from the À la carte encoding also goes through an interpretation, from A to new Expr

trait, which captures the polymorphism in expressions by the implicit function type encoding
5
:

trait Expr[A[_], T] {
def e[M[_]]: FreeIFT[A, M, T]

}

def finalize[A[_]] = new Natural[A, [X] => Expr[A, X]] {
def apply[T](a: A[T]): Expr[A, T] = new Expr[A, T] {

def e[M[_]]: FreeIFT[A, M, T] = a.lift
}

}

5.4.3 Performance Evaluation. The benchmark simulates a state monad with an expression that

counts to 10 by successively reading from the state, incrementing by 1, and writing back to the

state. Interpreters are implemented by mutating a local variable.

Results. This new approach shows significant improvements in term of runtime performance. As

opposed to the traditional encoding of free monad, the implicit function type encoding does not

allocate any intermediate structure to capture the monadic structure. Instead, the interpretation

flows directly through the definition.

Figure 5b shows the throughput for creating and interpreting of a simple expression using

different free monad implementations. The Scalaz implementation closely follows the pattern

described in the Data Types à la Carte paper [Swierstra 2008]. The Cats implementation is a slight

simplification over Scalaz’, in that it does not require a functor instance. The implicit function type

encoding described in this section has the best performance among all implementations.

Overall, Scalaz’ infrastructure about free monads is over 500LOC. Cats’ is on the same order of

magnitude, with about 250LOC. This new encoding is able to implement equivalent functionalities

with a single type alias. We expect the pattern of factoring out type class constraints to be applicable

to a large number of use cases. For example, this technique can be used to build free counterparts

of other type classes such as applicative functors and co-monads.

4
The [X] => Free[A, X] syntax was introduced in the Dotty compiler to express type lambda.

5
Language support for polymorphic functions would remove the need for a Expr trait.
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6 RELATEDWORK
The Haskell programming language supports a version of implicit parameters [Lewis et al. 2000]

through the ImplicitParams language extension. Implicit parameters in Haskell are orthogonal to

the built-in type class mechanism, but are used in a similar manner as constraints on functions.

Even though they come under the same name, implicit parameters in Scala and Haskell are

different in several aspects. Implicit parameters in Scala trade explicit types for implicit terms. If

the type makes it clear that an implicit parameter is in scope, that parameter can be used implicitly

as an argument to another function. By contrast, implicit parameters in Haskell are synthesized

using an explicit query such as ?cmp which also specifies the name of the searched parameter.

In Haskell, implicit parameter constraints are then propagated automatically to the calling

context in the inferred type of a function. This automatic propagation makes it look like implicit

parameters support a form of dynamic scoping as was explained in the original paper [Lewis et al.

2000], even though O. Kiselyov showed the correspondence is not exact.
6

By contrast, Scala always demands the function’s type to be given explicitly, and, if no implicit

parameter is mentioned, resolves any implicit queries at the point of definition instead of propa-

gating them to the callsite. This is much more predictable, at the price of a heavier notation for

function definitions. As we have shown here, the notation overhead can be reduced substantially

using type aliases of implicit function types.

Agda instance arguments [Devriese and Piessens 2011] are closely related to Haskell’s type class

constraints and were inspired by both Scala’s implicits and Agda’s existing implicit arguments.

With implicit function types, we lift the limitation that implicit arguments are not first-class citizens

as described in Devriese and Piessens [2011, Section 1.5] for Scala. Additionally, we present a self-

contained high-level formalization, whereas Devriese et. al present a more algorithmic description

on how to modify Agda’s existing implicit search mechanism. In the aforementioned paper instance

arguments do not support implicit definitions of functions that take implicit arguments. However,

Agda supports them with the use of the keyword instance [Norell et al. 2017].

Modular implicits [White et al. 2015] are a proposed extension to the OCaml language for ad-hoc

polymorphism using modules as the types of implicit parameters. Contrarily to Scala, implicits

in OCaml always raise an ambiguity error in the presence of multiple implicit modules. Modular

implicits support functions with implicit arguments and during elaboration they translate them into

first-class functors. However they do not provide dedicated support for the equivalent of implicit

function types.

Coq provides implicit arguments where function parameters can be either implicit or they can

be maximally inserted, or even both [Coq Team 2017, Section 2.7]. The distinction comes into

play when a partially applied function expects another argument which is defined as implicit. If

the corresponding flag is enabled we say that the implicit value is maximally inserted. Scala is

always maximally inserting implicits. However, if the expected type is an implicit function type,

the insertion may be cancelled by auto-expansion (typing rule ?→ I).
Coq also supports notation overloading and implicit program construction through canonical

structures [Gonthier et al. 2011] and type classes [Sozeau and Oury 2008]. Canonical structure

instances are record types that are used to solve equations, during type-checking, involving implicit

arguments. However, overlapping instances are not supported in Coq, and since they are required

for numerous scenarios involving canonical structure instances, they need to be restored with design

patterns. This is necessary for lemma overloading capabilities as described in Gonthier et al. [2011].

6
O. Kiselyov discussing Haskell’s ‘implicit parameters’ are not dynamically scoped–https://web.archive.org/web/

20170708010400/http://okmij.org/ftp/Computation/dynamic-binding.html#implicit-parameter-neq-dynvar
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On the contrary, the capability to backtrack during type inference, enables dependently-typed logic

programming.

6.1 Implicit Calculi
The Implicit Calculus [Oliveira et al. 2012] provides a general formalization of implicit programming.

It supports partial resolution and higher-order rules. In the calculus, it introduces rule types which
are similar to our implicit function types.

Cochis [Schrijvers et al. 2017] is a recent calculus that tries to combine the strength of Haskell

typeclasses and Scala implicits, i.e. the combination of ease of reasoning and flexibility. Cochis

supports local implicits and meanwhile guarantees coherency. Coherency in Cochis means that

substitution of equals doesn’t change the semantics of programs, which is a reasonable property of

pure functional programs.

Both of the two calculi mentioned above depend on an explicit type query ?T to trigger implicit

resolution for an instance of a type T. It is noticeable that this explicit type query loses the essential
appeal of implicit programming. In this regard, our calculus is closer to Scala implicits.

The two papers mentioned above are more oriented towards resolution algorithms and the

connection between logic and resolution. In this paper we provide a calculus that takes the first

step on contextual abstraction in a practical programming language, based on implicit function

types.

Finally, Rouvoet [2016] presents a formal development of implicits, based on Oliveira et al. [2012].

The author provides a provably complete, syntax-directed resolution algorithm that either finds

the solution or diverges. The author also studies a family of termination conditions that may be

added to ensure the termination of the resolution. Although SI is not syntax-directed, it provides a

well-scopedness condition that ensures unique type derivations, but only for the monomorphic

fragment of SI.

7 CONCLUSION
94% of the 120 most popular Scala projects hosted on GitHub take full advantage of implicits. Their

widespread usage patterns indicate that real word applications prefer to pass context implicitly.
We propose implicit function types as a simple and powerful language feature for dealing with

contexts in programming and we present a formal development of implicits, as a whole, in the

system SI. The applications we present highlight emerging encodings that promote expressivity

without sacrificing performance.
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A APPENDIX: USE OF IMPLICITS IN THE SCALA ECOSYSTEM
We performed a small empirical analysis of the most popular Scala projects on GitHub. The projects

in our corpus range from widely-used frameworks for big data processing like Apache Spark, to

open source and mission-critical systems at companies like Twitter, to widely depended-on open

source web frameworks, to community-built libraries for functional programming, and more.

We selected the top 120 Scala projects hosted on GitHub, ranked by their star count
7
. Table 1

lists all 120 projects we analyzed. On average, projects contained 31,135 lines of code, and had 1,977

stars. In total, we analyzed over 3.7 million lines of Scala code.

Our analysis was syntactic; we counted definitions of different kinds of implicits in each code

base, and how they were spread out in each code base. In particular, we looked at how much these

code bases made use of implicit vals, implicit defs, implicit objects, and implicit parameters.

Results. Some of the more interesting insights are shown in Figure 6. Out of the 120 Scala projects

analyzed, 94.17%made use of some form of implicits. Interestingly, we found that implicit parameters

were the most commonly-preferred form of implicit across all code bases. That is, 42% of all usages

of implicits across all projects analyzed are implicit parameters, and 30.39% are implicit vals.

Taken together with the fact that 84% of all projects analyzed make use of implicit parameter lists

specifically, this leads us to believe that real-world applications seem to overwhelmingly prefer to

pass context implicitly.

7
Stars are a way of "liking" projects on GitHub. A project with many stars doesn’t necessarily mean that it is widely-used.

In our case, however, all but one or two projects analyzed are indeed well-known and widely depended-on or used projects.
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Fig. 6. Usage of implicits in the Scala ecosystem.

Table 1. Top 120 open source Scala projects on GitHub, by star count.

Project Stars

apache/spark 14905 laurilehmijoki/s3_website 1916 outworkers/phantom 939

apache/incubator-predictionio 10623 MojoJolo/textteaser 1897 sangria-graphql/sangria 937

shadowsocks/shadowsocks-android 10066 twitter/summingbird 1895 japgolly/scalajs-react 930

playframework/playframework 9846 spark-jobserver/spark-jobserver 1798 filodb/FiloDB 927

scala/scala 9117 twitter/finatra 1665 sbt/sbt-native-packager 925

akka/akka 7786 lagom/lagom 1614 functional-streams-for-scala/fs2 915

gitbucket/gitbucket 6634 twitter/algebird 1576 monix/monix 910

twitter/finagle 6047 Netflix/atlas 1553 vkostyukov/scalacaster 909

lhartikk/ArnoldC 5104 mesos/spark 1461 twitter/cassovary 906

yahoo/kafka-manager 4312 GravityLabs/goose 1455 sryza/aas 904

airbnb/aerosolve 4169 lihaoyi/Ammonite 1452 kamon-io/Kamon 895

mesos/chronos 3844 lw-lin/CoolplaySpark 1336 http4s/http4s 881

twitter/snowflake 3753 datastax/spark-cassandra-connector 1299 akka/reactive-kafka 871

snowplow/snowplow 3658 PkmX/lcamera 1297 lihaoyi/Metascala 862

rtyley/bfg-repo-cleaner 3536 rickynils/scalacheck 1285 julien-truffaut/Monocle 846

ornicar/lila 3493 twitter/iago 1252 jrudolph/sbt-dependency-graph 844

mesosphere/marathon 3483 ensime/ensime-server 1243 sryza/spark-timeseries 843

fpinscala/fpinscala 3423 foundweekends/giter8 1241 scala/pickling 823

sbt/sbt 3312 non/spire 1239 eligosource/eventsourced 821

scalaz/scalaz 3305 guardian/grid 1226 scala/async 818

gatling/gatling 3263 jaliss/securesocial 1216 scalikejdbc/scalikejdbc 817

scala-js/scala-js 3150 scala-exercises/scala-exercises 1196 lihaoyi/scala.rx 816

twitter-archive/flockdb 3110 quantifind/KafkaOffsetMonitor 1152 databricks/spark-csv 814

scala-native/scala-native 3049 finagle/finch 1111 twitter/ostrich 790

twitter/scalding 2903 mauricio/postgresql-async 1110 twitter/twitter-server 765

twitter/diffy 2895 lift/framework 1110 adamw/macwire 754

linkerd/linkerd 2867 ThoughtWorksInc/Binding.scala 1101 adamw/elasticmq 736

twitter-archive/kestrel 2790 mpeltonen/sbt-idea 1092 wartremover/wartremover 735

spray/spray 2532 circe/circe 1089 ReactiveMongo/ReactiveMongo 734

milessabin/shapeless 2262 coursier/coursier 1055 nscala-time/nscala-time 731

scalanlp/breeze 2262 getquill/quill 1042 playframework/play-slick 724

scalatra/scalatra 2227 killrweather/killrweather 1040 ReactiveX/RxScala 718

twitter-archive/gizzard 2143 sksamuel/elastic4s 1029 JetBrains/intellij-scala 710

typelevel/cats 2115 tumblr/colossus 1011 jdegoes/blueeyes 704

pocorall/scaloid 2099 json4s/json4s 971 etaty/rediscala 702

intel-analytics/BigDL 2089 paypal/squbs 968 scalaj/scalaj-http 699

apache/incubator-openwhisk 2073 amplab/shark 968 unfiltered/unfiltered 688

lampepfl/dotty 1969 tpolecat/doobie 961 typesafehub/sbteclipse 677

twitter/util 1944 yahoojapan/objc2swift 949 miguno/kafka-storm-starter 675

slick/slick 1926 pathikrit/better-files 943 spray/spray-json 674
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