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Simplicitly
Foundations and Applications of Implicit Function Types

MARTIN ODERSKY, AGGELOS BIBOUDIS, FENGYUN LIU, OLIVIER BLANVILLAIN,
and HEATHER MILLER, École Polytechnique Fédérale de Lausanne

Understanding a program entails understanding its context; dependencies, con�gurations and even imple-

mentations are all forms of contexts. Modern programming languages and theorem provers o�er an array

of constructs to de�ne contexts, implicitly. Scala o�ers implicit parameters which are used pervasively, but

which cannot be abstracted over.

�is paper describes a generalization of implicit parameters to implicit function types, a powerful way to

abstract over the context in which some piece of code is run. We provide a formalization based on bidirectional

type-checking that closely follows the semantics implemented by the Scala compiler.

To demonstrate their range of abstraction capabilities, we present several applications that make use of

implicit function types. We show how to encode the builder pa�ern, tagless interpreters, reader and free

monads and we assess the performance of the monadic structures presented.
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1 INTRODUCTION
A central issue with programming is how to express dependencies. A piece of program text can be

understood only in some context on which it depends. Most imperative programs express context

as global state. �is technique is non-modular and dangerous due to the pervasiveness of actions

a�ecting that state. �e object-oriented programming �eld has invented several more �ne-grained

dependency injection mechanisms, either in the language itself (e.g. the cake pa�ern (Odersky and

Zenger 2005)) or external to it (e.g., Guice (Vanbrabant 2008), Spring (Johnson 2002), MacWire

(Warski 2013)).

Functional programming has a more straightforward answer: Dependencies are simply expressed

as parameters. A function that relies on some piece of data needs to be passed that data as a

parameter. �is is pleasingly simple but sometimes it’s too much of a good thing. Programs can

quickly become riddled with long parameter lists. A number of programming techniques have

been invented to combat that problem. Currying and point-free style, or the reader monad (Jones

1995), are some examples. Nevertheless, it’s fair to say that the �exible composition of components

with many functional dependencies remains challenging.

A straightforward way of dealing with the problem of having too many parameters is to make

some of them implicit. Arguments to implicit parameters are synthesized according to the type

of the parameter. Implicit parameters were �rst invented in Haskell (Lewis et al. 2000). �ey are

widely used in Scala, where they model type classes (Oliveira et al. 2010; Wadler and Blo� 1989),

con�gurations, capabilities, type constraints (Emir et al. 2006) and many other forms of contextual

abstractions. In fact, we found that 94% of the 120 most popular Scala projects hosted on GitHub
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make use of implicits in some way, with implicit parameters being the most commonly preferred

(full details in Appendix A). �ese widespread usage pa�erns indicate that real word applications

prefer to pass context implicitly. Implicit parameters have also been introduced to Agda (Devriese

and Piessens 2011) and to OCaml (White et al. 2015).

Implicit parameters in Scala avoid the tedium of having to pass many parameters to many

functions. But they do not eliminate all repetition as they still have to be declared in every

function that uses them. For instance, the Do�y compiler (Odersky 2017) for Scala contains over

2600 occurrences of the parameter clause (implicit ctx: Context). �e next version of Scala as

implemented by Do�y supports a concept that can get rid of this repetition. Implicit function types
are �rst-class types representing implicit functions. Just as implicit parameters synthesize function

applications to implicit values, implicit function types synthesize implicit lambda abstractions. It

turns out that implicit function types are surprisingly powerful in that they can abstract over many

di�erent kinds of context dependencies.

Given the widespread use and power of implicits in Scala, it is important to have a precise

formalization that explains their semantics. �e implicit calculus (Oliveira et al. 2012; Schrijvers

et al. 2017) is motivated by examples from both Scala’s implicits and Haskell’s type classes. It comes

close to expressing Scala’s implemented semantics, but there are also some di�erences. In particular,

the implicit calculus demands queries of implicit values to be wri�en explicitly, whereas in Scala

implicit values are passed automatically as arguments to implicit functions. Implicit function types

also appear under the name instance arguments in Agda (Devriese and Piessens 2011; Norell et al.

2017), but their formalization and implementation is quite dependent on the rest of Agda’s type

elaboration.

In this paper, we explore foundations for implicits as they are found in Scala. We develop SI, a

calculus that expresses implicit parameters and implicit function types in a version of System F

with implicit type application. �e typing rules also provide a mapping from SI to full System F.

�e rules as given are notably simpler than previous work and correspond closely to the semantics

of implicits in Scala. In particular, the calculus keeps Scala’s technique that implicit resolution

amounts to choosing an identi�er among a �nite number of candidates. Once this choice is made,

the rest is regular type checking and inference, no separate calculus or algorithm for implicit

resolution is needed.

�e paper substantiates the following two claims:

• that implicit parameters and implicit function types are powerful and widely applicable

constructs for abstracting over context;

• that they admit a simple and elegant formalization.

Organization. First, we introduce a motivating example for implicit function types (Section 2).

Next, we introduce a formalization of implicit function types based on System F (Section 3). �en,

we navigate, through various di�erent applications, a range of new coding pa�erns available to

programmers (Section 5). And �nally, we �nish with a discussion of related work (Section 6).

2 OVERVIEW: FROM IMPLICIT PARAMETERS TO IMPLICIT FUNCTION TYPES
Implicit parameters o�er a convenient way to write code without the need to pass all arguments

explicitly.

On every call to methods with implicit parameters, the compiler looks for an implicit de�nition

in scope to satisfy the call.

So, instead of passing a parameter explicitly:
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val number: Int = 1
def add(x: Int)(y: Int) = x + y
add(2, number)

we can mark a set of parameters as implicit (one parameter in this example) and let the compiler

retrieve the missing argument for us. In the following example add is a method with one implicit

parameter and number is an implicit de�nition.

implicit val number: Int = 1
def add(x: Int)(implicit y: Int) = x + y
add(2)

�is discovery process performed by the compiler is called implicit resolution. �ere are two

basic groups of rules applied by the resolution algorithm: 1) it looks for implicits in the current

scope and 2) in all associated types (e.g., companion objects and outer objects in the presence of

nested types). In the previous example, the implicit de�nition is de�ned in the current scope and

since it is an Int, the compiler resolves the method call by passing number automatically.

Implicits can be used to implement the type class-design (Wadler and Blo� 1989) in Scala. We give

an example of implementation of the ordered type class. �is example consists of three parts: �rst,

Ord[T], which is a regular trait with a single method, compare. Second, the generic function comp,

which compares two arguments and accepts an implicit argument, providing an implicit evidence
that these two values can be compared. �ird, the implicit de�nition intOrd, which provides an

instance of the Ord trait for integers.

trait Ord[T] {
def compare(a: T, b: T): Boolean

}

def comp[T](x: T, y: T)(implicit ev: Ord[T]): Boolean =
ev.compare(x, y)

implicit def intOrd: Ord[Int] = new Ord[Int] {
def compare(a: Int, b: Int): Boolean = a < b

}
comp(1, 2)

2.1 Introducing Implicit Function Types
We introduce implicit function types; types for implicit function values. �ese types extend the

support for �rst class functions to implicit arguments. Just like the normal function type syntax

desugars A => B to scala.Function1[A, B], the implicit function type implicit A => B desugars

to scala.ImplicitFunction1[A, B]:

trait ImplicitFunction1[-T0, +R] extends Function1[T0, R] {
override def apply(implicit x: T0): R

}

�e comp function can thus be rewri�en as follows:
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def comp[T](x: T, y: T): implicit Ord[T] => Boolean =

implicitly[Ord[T]].compare(x, y)

Note that in this de�nition of comp omits naming implicit argument. �e compiler will desugar

body of this de�nition into { implicit ev: Ord[T] => ... }.

implicitly is de�ned in the standard library as the implicit identity function:

def implicitly[T](implicit x: T) = x

Implicit function types can also be used in argument position. For example, we can de�ne an

ascending function which injects the intOrd implicit in an expression:

def ascending[T](expr: implicit Ord[Int] => T ): T = expr(intOrd)

ascending {
comp(1, 2) && comp(3, 4)

}

3 FORMALIZATION
Implicits give considerable power to program designers. It’s therefore important to have a clear

understanding of their elaboration. To this purpose we develop a small calculus SI that can express

key elements of high-level Scala programs. �e calculus can be thought of as an extension of

System F (Girard 1972; Reynolds 1974) with implicit instantiations of both type arguments and

implicit parameters. Its semantics is given by a translation to classical System F.

3.1 Syntax

s, t = Term
x variable
y implicit variable
λx.t function
t t application
? implicit query
let x : T = t in t explicit let
let ? : T = t in t implicit let

R = Restricted type
X type variable
T→ T function type

S, T = Full type
R restricted type
T ?→ T implicit function type
∀X.T polymorphic function type

Fig. 1. SI Syntax

�e syntax of the calculus is presented in Figure 1. At the term level, we have both explicit

variables (x) and implicit variables (y). �is separation saves us the e�ort to maintain two di�erent

environments in the typing rules. Consequently, only implicit variables are available for implicit

resolution. We assume that programmers only use explicit variables in the source code. Implicit

variables are used internally in type checking and semantic translation.
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One peculiarity of this syntax is that lambda abstractions are wri�en curry-style, without a type

for the abstracted variable. Types are introduced separately in a let-expression. �ere are two

variants of the let-binding: explicit and implicit. �e la�er introduce implicit values.

Another peculiarity is that there are no syntax constructs for implicit functions, nor for passing

type or implicit value arguments. All these syntactic elements are to be inferred. �e syntax is

hence quite familiar to a Haskell programmer (say), in that types are given separately for let-bound

variables, closures do not carry types themselves and all type arguments are inferred.

In the calculus, implicit parameters get resolved and applied automatically. �e query operator

(denoted as ?) is used to access implicit parameters of implicit functions (which will be synthesized

during the semantic translation). Programmers can also use the query operator to trigger implicit

resolution explicitly – this corresponds then to the use of implicitly in Scala (Aside: People

familiar with Scala might raise the issue that implicitly usually comes with a type argument such

as in implicitly[Ord[Int]] whereas ? is wri�en without one. But in fact ‘implicitly‘ is a normal

polymorphic function, so its type argument can be inferred just as for any other function. So,

implicitly, wri�en alone, corresponds exactly to our use of ?.)
For types, in addition to the normal function type, we have implicit function types (T ?→ T).

�e types are divided into restricted types and non-restricted types. Restricted types consist of

normal function types and type variables. Non-restricted types represent polymorphic and implicit

functions; they come with elimination rules that are not syntax directed.

3.2 Type System
�e type system of SI is presented in its entirety in Figure 2. SI is based on bidirectional type
checking (Pierce and Turner 2000). Bidirectional type-checking is a technique that incorporates

both a type inference and a type checking �ow for typing terms. In the traditional formulation, two

directions exist: a term t can be inferred to have a type T on the one direction and a term t can be

checked to have a type T on the other. Bidirectionality has been used in a wide range of scenarios

from implementations of systems for dependent types (Coquand 1996; Xi and Pfenning 1999) to

local type inference (Pierce and Turner 2000) and higher-rank types (Peyton Jones et al. 2007).

In SI the judgement form Γ ` t :. T means that the term t gets a synthesized type T under the

context Γ, while Γ ` t / : T means that the term t is checked to be compatible with the expected

type T under the context Γ.

Rule (Var) is standard. Its implicit analogue (�ery) can be thought as implicit resolution for

the query ?. �e variable y in the precondition of (�ery) is chosen arbitrarily — any implicit

variable in the environment could qualify. We discuss in Section 3.6 how to address this source of

non-determinism.

�e typing rule (→ I) is standard for a curry-style system. �e rule is a checking rule, which

means that the type annotation for the lambda parameter can be inferred from the context. �e

typing rule (→ E) is also standard. Note that in the typing of the argument t2, we use the checking

judgement, as the type S is already known from the type S→ T of the function t1. �e typing rule

( ?→ I) type checks an expression by assuming its expansion to an implicit function, but only if the

expected type of the expression is of an implicit function type. �is last point is the reason why we

do not have a syntax for implicit functions: if we did, this rule would have been applied endlessly!

While it’s a simple check in the compiler to stop applying this rule if the term is already an implicit

function, avoiding to specify such a rule makes the calculus more clear.

�e typing rule ( ?→ E) is where automatic resolution of implicits happens. �is rule says that if

a term t is of the implicit function type S ?→ T and implicit resolution can synthesize a term of the

type S, then we can type the term with the type T. �e resolution of the implicit parameter could
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x : T ∈ Γ

Γ ` x :. T
(Var)

Γ, x : S ` t / : T

Γ ` λx.t / : S→ T
(→ I)

Γ, y : S ` t / : T

Γ ` t / : S ?→ T
( ?→ I)

Γ, X ` t / : T

Γ ` t / : ∀X.T
(∀ I)

Γ ` t / : T Γ, x : T ` s :. R

Γ ` let x : T = t in s :. R
(Let-Ex)

y : T ∈ Γ

Γ ` ? :. T
(�ery)

Γ ` t1 :. S→ T Γ ` t2 / : S

Γ ` t1 t2 :. T
(→ E)

Γ ` t :. S ?→ T Γ ` ? / : S

Γ ` t :. T
( ?→ E)

Γ ` t :. ∀X.T

Γ ` t :. [X := S]T
(∀ E)

Γ ` t / : T Γ, y : T ` s :. R

Γ ` let ? : T = t in s :. R
(Let-Im)

Γ ` t :. R

Γ ` t / : R
(Stitch)

Fig. 2. SI Typing Rules

result in a term of implicit function type on which this rule is applied again. �is is how recursive

resolution works in the system.

�e typing rules (∀ I) and (∀ E) introduce and eliminate polymorphic types. Neither of those has a

term form associated with it, so introduction and elimination of polymorphic types is again implicit.

Being checking rules, (∀I) instances are inserted deterministically depending on the expected type.

For (∀E), we rely on type inference to determine the argument type S.

�e typing rule (Let-Ex) type checks explicit let-bindings, while the rule (Let-Im) type checks

implicit let-bindings. Let-bindings are the only place where programmers give type annotations.

�e rule (Stitch) says that in order to check that a term t has type R, it su�ces to show that the

synthesized type for t is R. �is is the important switch that lets us change from type checking to

type synthesis. We allow only restricted types to go through this rule, so that all implicit function

types will go through the rule ( ?→ I), and universal types will go through the rule (∀ E) before the

rule is applied. Conversely, the introduction rules ( ?→ I) anf (∀I) have to be applied in checking

mode to the conclusion of a (Stitch).

Notice that the two rules that handle implicit function types have di�erent directions. �e rule

( ?→ E) is a synthesis rule. It essentially expresses that implicit function types are eliminated

eagerly, as soon as they arise. On the other hand, the rule ( ?→ I) is a checking rule. It says that

implicit function types are introduced only if the expected type speci�es it. Together with the rule

(Stitch), these rules determine the following strategy in the compiler for type checking a term t:

(1) If the expected type is an implicit function type T ?→ T′, create an implicit closure by

entering in the environment an anonymous implicit value and proceed type checking t
with T′ as expected type.
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(2) If the expected type is a restricted type R, type check t. If that succeeds with type T,

post-process T in step (3).

(3) If the type of t is an implicit function type T ?→ T′, perform an implicit search for T. If a

unique term t′ is found that matches T, continue by type checking t t′.

3.3 Type Checking Examples
To illustrate how the type system works, we walk through two code examples. Both are in Scala

syntax for readability. �e �rst example is as follows:

val f: implicit Char => Boolean = ...
implicit val n: Int = 3
implicit val g: implicit Int => Char = ...

f : Boolean

In the code above, interpret the implicit S => T according to the rules: S ?→ T. �e im-

plicit variable de�nition implicit val n: T = ... is equivalent to let ?:T = ..., and f : Boolean

is equivalent to let x:Boolean = f in x.

f ∈ Γ
(Var)

Γ ` f :. Char ?→ Boolean

g ∈ Γ
(�ery)

Γ ` ? :. Int ?→ Char

n ∈ Γ
(�ery)

Γ ` ? :. Int
(Stitch)

Γ ` ? / : Int
( ?→ E)

Γ ` ? :. Char
(Stitch)

Γ ` ? / : Char
( ?→ E)

Γ ` f :. Boolean
(Stitch)

f, n, g ` f / : Boolean

Fig. 3. Type Derivation for f: Boolean

�e type derivation tree for type checking f with the expected type Boolean is given in Figure 3.

For readability, we omit types of variables in the environment and abstract them by Γ when its

meaning is clear from the context. As we observe, automatic implicit resolution happens with

the rule ( ?→ E). �e rule (Query) is used twice to pick the right implicits g and n from the

environment.

Here’s is another example which covers the rule ( ?→ I):

val h: implicit (implicit Int => Char) => Boolean = ...
implicit val n: Int = 3
implicit val g: implicit Int => Char = ...

h: Boolean

�e type derivation for type checking h with the expected type Boolean is given in Figure 4.

An essential di�erence compared to the previous example is that in the resolution of the implicit

parameter for h (with the type Int ?→ Char), we cannot apply the rule (Stitch) as it only works for

restricted types, not implicit function types. �e only possible choice here is to use the rule ( ?→ I),
which does type checking by assuming expansion of expressions into implicit functions. �e rule

(Query) is also used twice to pick the right implicits g and y from the environment. Note that the

rule gives priority to the inner-most implicit in the environment, thus y is chosen instead of n.
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h ∈ Γ
(Var)

Γ ` h :. (Int ?→ Char) ?→ Boolean

g ∈ Γ ′
(�ery)

Γ ′ ` ? :. Int ?→ Char

y ∈ Γ ′
(�ery)

Γ ′ ` ? :. Int
(Stitch)

Γ ′ ` ? / : Int
( ?→ E)

Γ, y:Int ` ? / : Char
( ?→ I)

Γ ` ? / : Int ?→ Char
( ?→ E)

Γ ` h :. Boolean
(Stitch)

h, n, g ` h / : Boolean

Fig. 4. Type Derivation for h: Boolean

3.4 Translation to System F
We introduce a type-preserving translation from SI to System F. �e syntax, typing rules and

semantics of System F are standard, so we omit them here.

�e translation of types is given below:

(S ?→ T)∗ = S∗ → T∗

(S→ T)∗ = S∗ → T∗

(∀X.T)∗ = ∀X.T∗

T∗ = T, otherwise
We use the following judgment form to mean that a well-typed term t in SI will be translated

into a term t′ in System F:

Γ ` t : T { t′

�e translation rules are presented in Figure 5. Note that we do not translate implicit variables

and assume that the target language treats implicit variables and explicit variables the same way.

Theorem 3.1 (Type-preserving Translation). Let t be a SI term of type T, and t′ be an System
F term. If ∅ ` t : T { t′ , then ∅ ` t′ : T∗.

Proof. Straight-forward induction on the typing rules. �

3.5 Examples
To demonstrate the expressiveness of the calculus, we present two examples that apart from using

syntax equivalent to the notation of the calculus they are also veri�ed by the Do�y compiler. �e

implicit function type S ?→ T is wri�en implicit S => T in Scala. Instead of the query operator

? we write implicitly and instead of the let constructs of the calculus we use defs. Since Scala

does not allow defs to be anonymous, we use anonymized names such as __1 and __2, for implicit

de�nitions instead. �ese names are used nowhere else in the program, so their precise spelling is

not important.

Example: Ordering. �is example de�nes a typeclass for orderings with instances on Int and

List. It models higher-order implicits, i.e. implicits that depend on other implicits. In the example,

the implicit for the type Ord[List[T]] depends on an implicit instance of Ord[T].

object Orderings {
trait Ord[T] { def less: T => T => Boolean }

implicit def __1: Ord[Int] = new Ord[Int] {
def less: Int => Int => Boolean = x => y => x < y

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: June 2017.
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x : T ∈ Γ

Γ ` x :. T { x
(Var-Ex)

Γ, x : S ` t / : T { u

Γ ` λx.t / : S→ T { λx:S∗.u
(→ I)

y fresh Γ, y : S ` t / : T { u

Γ ` t / : S ?→ T { λy:S∗.u
( ?→ I)

Γ, X ` t / : T { u

Γ ` t / : ∀X.T { ΛX.u
(∀ I)

Γ ` t / : T { u Γ, x : T ` s :. R { u′

Γ ` let x : T = t in s :. R { (λx:T∗.u′) u
(Let-Ex)

y : T ∈ Γ

Γ ` ? :. T { y
(�ery)

Γ ` t1 :. S→ T { u Γ ` t2 / : S { u′

Γ ` t1 t2 :. T { u u′

(→ E)

Γ ` t :. S ?→ T { u Γ ` ? / : S { u′

Γ ` t :. T { u u′

( ?→ E)

Γ ` t :. ∀X.T { u

Γ ` t :. [X := S]T { u [S∗]
(∀ E)

Γ ` t / : T { u y fresh
Γ, y : T ` s :. R { u′

Γ ` let ? : T = t in s :. R { (λy:T∗.u′) u
(Let-Im)

Γ ` t :. R { u

Γ ` t / : R { u
(Stitch)

Fig. 5. Type-directed translation from SI to System F

}

implicit def __2[T]: implicit Ord[T] => Ord[List[T]] = new Ord[List[T]] {
def less: List[T] => List[T] => Boolean =

xs => ys =>
if ys.isEmpty then false
else if xs.isEmpty then true
else if xs.head == ys.head then less(xs.tail)(ys.tail)
else isLess(xs.head)(ys.head)

}

def isLess[T]: T => T => implicit Ord[T] => Boolean =
x => y => implicitly[Ord[T]].less(x)(y)

}
import Orderings._

isLess(Nil)(List(1, 2, 3))
isLess(List(List(1)))(List(List(1)))
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Example: Propagation of Session Context . �is example models a conference management system.

In this system, users are not allowed to see the scores or rankings of their own papers. �us, all

operations, like ge�ing the score of a paper or rankings of papers, depends on the identity of the

current user. Passing current user (or session) explicitly as parameters of the operations would

be very verbose. Implicit function types help here. By minor changes to the type signatures of

methods, the compiler will propagate the session context automatically.

case class Person(name: String)
case class Paper(title: String, authors: List[Person], body: String)

class ConfManagement(papers: List[Paper], realScore: Map[Paper, Int]) {
type Session[T] = implicit Person => T
def currentUser: Session[Person] = implicitly
def hasConflict(p: Person, ps: List[Person]) = ps contains p

def score: Paper => Session[Int] = paper =>
if hasConflict(currentUser, paper.authors) then -1
else realScore(paper)

def viewRankings: Session[List[Paper]] =
papers.sortBy(score(_))

}

�e following code demonstrates a simple setup where the assumed logged-in user is Bob, who

has also submi�ed a paper in the system. By running this program we observe that Bob is unable

to see the score of his paper (–1 instead of 4 which is the actual value).

val bob = Person("Bob")
val eve = Person("Eve")
val p1 = Paper("Bob's paper", List(bob), "...")
val p2 = Paper("Eve's paper", List(eve), "...")
val cm = new ConfManagement(List(p1, p2), Map(p1 -> 4, p2 -> 3))

implicit def __1: Person = bob

cm.score(p1) // -1
cm.score(p2) // 3

3.6 Disambiguation
�e calculus presented in Figure 2 is ambiguous in two aspects. First, rule (∀ E) does not specify

the type argument syntactically, and di�erent type arguments can lead to di�erent derivations.

�is is similar to the situation in the Hindley-Milner (Damas and Milner 1982) system where we

also assume that the type argument is inferred by an algorithm. �e second source of ambiguity

is speci�c to implicits: rule (�ery) does not specify how to pick an implicit variable from the

environment. By the rule itself, any implicit variable in the environment quali�es, thus there are

several possible derivations. �e implicit ambiguity is problematic because it a�ects semantics.

Choices of implicit values can a�ect the outcome of a program, which means ambiguous implicit

resolutions causes a loss of coherence.

We can regain coherence through a disambiguation scheme that always selects in a deterministic

way a speci�c implicit value among several possible candidates. A simple way to do so is to look
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at nesting: always select the innermost implicit value that matches a required type R. �e Scala

compiler follows this strategy but augments it with other criteria. Section 4 gives more details.

In the rest of this section we formalize this strategy using a de�nition of well-scopedness and

show that it leads to unique type derivations if we restrict ourselves to the monomorphic fragment

of SI without ∀ types (i.e. if we exclude the other source of ambiguity). In the rest of this section,

we will assume a calculus the subset of SI without rules (∀ E) and (∀ I).

�e proofs are signi�cant because they show that argument type selection and implicit variable

selection are the only sources of ambiguity in SI. In particular, no ambiguities can arise from di�erent

possible arrangements of implicit introduction and elimination rules. �is property is enforced by

the directional nature of the typing rules and the particular role of (Stitch), which only works

on restricted types. It makes SI di�erent from the treatment of the unrestricted implicit calculus

(Oliveira et al. 2012) and also from the treatment of implicit parameters in Haskell, where implicit

introduction and elimination are less well controlled and therefore can give rise to surprising

behavior (GHC 2015).

De�nition 3.2. Extend a measure of type size size(T) to judgements as follows:

size(Γ ` t / : T) = size(T) (1)

size(Γ ` t :. T) = –size(T) (2)

Lemma 3.3. Let J be a judgement over the term t. �en for any non-syntax-directed inference
rule that uses J as its le�most precondition and that has t again as the term part of its conclusion:
size(J) < size(J′).

Proof. By inspection of the typing rules �

De�nition 3.4. �e resolved implicit variable res(D) in a derivation tree D ending in a judgement

Γ `? / : T or Γ `? :. T is de�ned as follows.

(1) If D consists of an application of a (�ery) instance

Γ ` y :. T

Γ ` ? :. T

, the variable y.

(2) If D ends with an application of a ( ?→ E) instance

Γ ` ? :. S ?→ T Γ ` ? / : S

Γ ` ? :. T

, the resolved implicit variable of the derivation tree of Γ ` ? :. S ?→ T.

(3) If D ends in an application of a (Stitch) instance

Γ ` ? :. R

Γ ` ? / : R

, the resolved implicit variable of the derivation tree of Γ ` ? :. R.

(4) If D consists of an application of a ( ?→ I) instance

Γ, y : S ` ? / : T

Γ ` ? / : S ?→ T
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, the resolved implicit variable of the derivation tree of Γ, y : S ` ? / : T.

De�nition 3.5. A typing derivationD is well-scoped, if for every subgoal Γ ` ? / : T or Γ ` ? :. T)

in D, and every other derivation D ′ of the same subgoal, res(D) = res(D ′) or res(D ′) is de�ned in

Γ to the le� of res(D).

Well-scoped typing derivations can be produced by a semi-algorithm that, when faced with a

query, always picks the rightmost eligible implicit (which corresponds to the innermost implicit

de�nition as seen from the point where the query is made (it’s not an algorithm because implicit

search might diverge). We can show that the following holds for the monomorphic system without

polymorphic function types:

Proposition 3.6. Given Γ and t, there is at most one well-scoped typing derivation that ends in
Γ ` t :. R, for some restricted type R.

Proposition 3.7. Given Γ, t and T, there is at most one well-scoped typing derivation that ends in
Γ ` t / : T.

Proof. We prove the following three conditions which imply Proposition 3.6 and proposition

3.7: Given Γ, t, and a well-scoped derivation D,

(1) If D ends in Γ ` t :. R, then it is the only well-scoped derivation with this property.

(2) IfD ends in Γ ` t :. T, andD does not end in a rule ( ?→ E), then it is the only well-scoped

derivation with these two properties.

(3) If D ends in Γ ` t / : T then it is the only well-scoped derivation with this property.

Condition (1) implies Proposition 3.6 and condition (3) implies Proposition 3.7. We prove all three

conditions together by an induction on the derivation tree D.

If the derivation consists of a single application of (Var), then (1) and (2) are immediate conse-

quences , and (3) holds vacuously because its precondition does not apply.

Assume now the derivation consists of a single application of (�ery).

Γ ` y :. T

Γ ` ? :. T

We only need to prove (1) and (2), since (3) holds vacuously. Consider another derivation D ′

which ends in Γ ` ? :. T. SinceD andD ′ are both well-scoped, they must both resolve to the same

implicit variable, y. �erefore, D ′ also starts with the same application of (�ery). By lemma 3.3,

D ′ cannot have any other inference rules that take the (�ery) rule as a precondition and that

end in the same conclusion as (�ery).

Assume now the derivation tree D ends in a synthesis rule di�erent from (Var) and (�ery),

with Γ ` t : T as conclusion. Let D0 be the smallest sub-derivation of D that can be extended to

full D by applying zero or more instances of rule ( ?→ E), with D0 and its successors being in

each case the le�-most precondition of what follows. Assume D ′ ends in Γ ` t : T′. We distinguish

according to the form of t. By inspection of the typing rules there are only three cases, one where

t is an application t1t2, the other two there t is an explicit let let x : T = t1 in t2 or implicit let

let ? : T = t1 in t2. Assume the �rst case. �en the only applicable rule is (→ E).

Γ ` t1 :. S→ T′ Γ ` t2 / : S

Γ ` t1 t2 :. T′
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By the inductive hypothesis the typing derivations of Γ ` t1 :. S→ T′ and Γ ` t2 / : S are both

unique. Hence, any other derivationD ′0 of Γ ` t1 t2 :. T′ must containD0 as a sub-derivation. the

same holds for D0, which together with Lemma 3.3 proves (2). �e other two cases are analogous.

To show (1), consider the type T of the conclusion ofD0. Its general form is S1 ?→ . . . ?→ Sn ?→
R, for some types S1, . . . , Sn and restricted type R. We show unicity of derivations by induction on

n. If n == 0, then by Lemma 3.3 D = D0 and therefore (2) implies (1). If n > 0 then the only rule

applicable is ( ?→ E).

Γ ` t :. S1 ?→ (S2 ?→ . . . ?→ Sn ?→ R) Γ ` ? / : S1
Γ ` t :. S2 ?→ . . . ?→ Sn ?→ R

By the induction hypothesis, the derivation of Γ ` t :. S1 ?→ (S2 ?→ . . . ?→ Sn ?→ R) is unique.

�erefore, the same holds for D.

Finally, assume that derivation tree D ends in a checking judgement Γ ` t / : T. If T is of the

form S ?→ T′ the only applicable rule that ends in this judgement is ( ?→ I). By induction, the

derivation for the premise of this rule is unique, which implies with Lemma 3.3 that D is unique. If

T is a restricted type R, the applicable rules are (→ I) and (Stitch). We further distinguish according

to the term t. If t is of the form λx.t′, the last rule must be (→ I), since (Stitch) has a synthesis

judgement as its premise and there is no rule that can typecheck a lambda abstraction in synthesis

mode. By the inductive hypothesis, the premise of the (→ I) application has a unique derivation,

and therefore D is also unique. If t is not a lambda abstraction, the only applicable rule is (Stitch).

By the inductive hypothesis the premise of (Stitch) has a unique derivation, and therefore D is

also unique. �is concludes the proof. �

�e propositions do not hold anymore once we add polymorphic function types because type

instantiation in the rule (∀ E) is also non-deterministic, and interacts in interesting ways with

implicit search. Dealing with this will require a formalization of local type inference and how it is

in�uenced by implicit search.

3.7 Type Checking
We now present a semi-algorithm for type checking programs in the monomorphic fragment of SI.
It is given by four mutually recursive functions:

synth ~Γ ` t� : (T, t) | error
check ~Γ ` t / : T� : t′ | error
elim ~Γ ` t :. T� : (R, t) | error
query ~Γ ` t� Γ ′ : t′ | error

�e de�nitions of these functions are given in Figure 6. synth elaborates synthesis rules in

Figure 5 and check elaborates checking rules. However, there is no synth rule that corresponds

to (�ery). Instead, queries ? that �ll in function arguments are handled by a combination of

query and elim. query tries an implicit candidate in the environment, going le� to right, and elim
instantiates implicit function types.

Proposition 3.8. (Soundness)
(1) If synth~Γ ` t� = (T, t′) then Γ ` t :. T { t′.
(2) If check~Γ ` t / : T� = t′ then Γ ` t / : T { t′

�e proof of Proposition 3.8 is by induction on the number of steps taken by the algorithm. One

can show that each step corresponds to a typing rule in Figure 5.
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synth~Γ ` x� = elim~Γ ` x :. Γ(x)�

synth~Γ ` t1 t2� = (T, t′1 t
′
2) if (S→ T, t′1) = synth~Γ ` t1�

t′2 = check~Γ ` t2 / : S�
error otherwise

synth~Γ ` let x : S = s in t� = (T, (λx : S∗. t′) s′) if s′ = check~Γ ` s / : S�
(T, t′) = synth~Γ, x : S ` t�

error otherwise
synth~Γ ` let ? : S = s in t� = (T, (λy : S∗. t′) s′) if s′ = check~Γ ` s / : S�

(T, t′) = synth~Γ, y : S ` t�
y fresh

error otherwise

elim~Γ ` t :. R� = (R, t)
elim~Γ ` t :. S ?→ T� = (R, t′) if s′ = query~Γ ` S� Γ

(R, t′) = elim~Γ ` t s′ :. T�
error otherwise

query~Γ ` T� () = error
query~Γ ` T� (Γ ′, x : S) = query~Γ ` T� Γ ′

query~Γ ` T� (Γ ′, y : S) = t if (T, t) = synth~Γ ` y�
query~Γ ` T� Γ ′ otherwise

check~Γ ` λx. t / : S→ T� = λx : S∗. t′ if t′ = check~Γ, x : S ` t / : T�
error otherwise

check~Γ ` t / : S ?→ T� = λy : S∗. t′ if t′ = check~Γ, y : S ` t / : T�
y fresh

error otherwise
check~Γ ` t / : R� = t′ if (R, t′) = synth~Γ ` t�

error otherwise

Fig. 6. Type checking algorithm for SI

�e de�nitions given in Figure 6 constitute a semi-algorithm, which might diverge on some

programs (we explain in Section 4 how we deal with this in practice). Hence, we cannot establish

completeness. Nevertheless, we believe the following holds:

Conjecture 3.9. (Semi-Completeness)

(1) If Γ ` t :. T { t′ by a well-scoped derivation then the application synth~Γ ` t� yields (T, t′)
or it diverges.

(2) If Γ ` t / : T { t′ by a well-scoped derivation then the application check~Γ ` t / : T� yields
t′ or it diverges.

3.8 Comparison with the Implicit Calculus
Compared to the implicit calculus (Oliveira et al. 2012; Schrijvers et al. 2017) there are two essential

di�erences.
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First, SI models the automatic application of implicit functions whereas the implicit calculus

requires an explicit query operator like ?T to trigger implicit resolution for the type T.

Second, SI uni�es type checking and implicit resolution whereas the implicit calculus uses two

di�erent sets of rules for these concerns. �is makes SI signi�cantly smaller than the implicit

calculus. We show in Section 4 that the Scala compiler also follows SI’s strategy of using normal

type checking of an implicit candidate for implicit search.

�e two points are connected. It’s because SI can model automatic function application (both for

types and for implicit values) that it can do without a separate set of rules for implicit resolution.

To illustrate this, consider the typing derivation that �nds an ordering over List[Int], given the

code from Section 3.5.

2 : (∀T.Ord[T] ?→ Ord[List[T]]) ∈ Γ
(�ery)

Γ ` ? :. ∀T.Ord[T] ?→ Ord[List[T]] { 2
∀E

Γ ` ? :. Ord[Int] ?→ Ord[List[Int]] { 2[Int]

1 : Ord[Int] ∈ Γ { 1
(�ery)

Γ ` ? :. Ord[Int] { 1
(Stitch)

Γ ` ? / : Ord[Int] { 1
( ?→ E)

Γ ` ? :. Ord[List[Int]] { 2[Int]( 1)
(Stitch)

Γ ` ? / : Ord[List[Int]] { 2[Int]( 1)

In this derivation, each application of (�ery) selects a simple variable ( 1 and 2), but the end

result is the more complex term 2[Int]( 1). If the type system demanded an explicit placeholder

for implicit function arguments, a similar construction would not have been feasible, since we

would have to “guess” a priori where implicit arguments to implicit functions are needed. Hence,

we’d need a separate mechanism of implicit resolution.

On the other hand, a design with separate type checking and resolution judgements has the

advantage that type instantiation can be made explicit. In the Ord instantiation, we “pulled a rabbit

out of our hat” in the application of (∀E) where the instance type was guessed to be Int. So to

arrive at a type checking algorithm we have to complement the system as given with rules that

specify how to infer type arguments. Scala uses a variant of colored local type inference (Odersky

et al. 2001) for this.

Both SI and the basic implicit calculus are ambiguous. �ey both under-specify what implicit

will be chosen in the face of ambiguities. �e Cochis calculus (Schrijvers et al. 2017) elaborates the

implicit resolution rules to ensure determinacy, but the details are involved and it’s not clear to

what degree they correspond to the disambiguation scheme used in Scala and reported in Section 4.

�e well-scopedness condition of Section 3.6 also ensures unique type derivations, but only for

the monomorphic fragment of SI. To extend it to full SI we’d have to complement the system with

rules for the inference of type arguments. �is is beyond the scope of the current paper, though.

4 IMPLEMENTATION
Implicit function types have been implemented in dotc, the reference compiler for future versions

of the Scala language. �is section explains the relationship between this implementation and the

formalization presented in Section 3.

Scala uses colored local type inference (Odersky et al. 2001), which is a re�nement of the

bidirectional type checking rules in Figure 2. In essence, every typing rule is a hybrid between

checking and synthesis: It checks the term against a given outline type and synthesizes the �nal

type of the term. Outline types can have holes in them. Synthesized types follow the shape of the

corresponding outline types, while at the same time �lling in the holes. �is system coincides in

the following algorithmic aspects with Figure 2 and Figure 5
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• If the expected type of a term is an implicit function type, an implicit closure is uncondi-

tionally generated, as prescribed by rule [ ?→ I] in Figure 5,

• If the synthesized type of a term is an implicit function type, the term is immediately

applied to implicit arguments, as prescribed by rule [ ?→ E].

�e implicit search algorithm used by dotc is a re�nement of the algorithm implied by a Figure 2

if the well-scopedness condition is added. In both cases, we choose one of a �nite number of

implicit candidate variables as the implicit argument so that type checking as a whole succeeds.

�e di�erences between the calculus and the full language lie in the question which values are

considered candidates and how to choose one if there are several possible alternatives.

4.1 Implicit Search Candidates
In the calculus, the candidates are all implicit variables bound in the environment. In the full

language, this is re�ned as follows: A reference to an implicit value is a candidate for an implicit

search of type T if (1) it can be expressed as a simple identi�er or (2) it refers to a value of the

implicit scope of T.

Condition (1) subsumes the condition of the calculus, since the variables bound in the environment

are precisely those expressions which can be referred to by a simple identi�er. But in the full

language there are also other variables which can be referred to that way: A variable might have

been made available through an import, or it might have been inherited from a base class.

Condition (2) does not have a counter part in the calculus. �is condition also makes available

as candidates any implicit values “that are de�ned with” the type T for which an implicit value is

searched. �e implicit scope of a type T are all implicit de�nitions in the companion object of T
itself, as well as in the companion objects of any part of T, and the companion objects of any base

type of T. �e purpose of condition (2) is to make implicit values available in a more robust way

that does not require an import. �e de�nition of implicit scope is intentionally kept rather large,

so that any implicit de�nition that bears some relationship to the searched-for type is considered.

�e full language �rst searches implicit candidates that are visible in the current scope, i.e. that

match condition (1). If none are found it falls back to searching candidates in the implicit scope

according to condition (2).

4.2 Disambiguation
�e calculus and the full language also di�er in how an implicit value is chosen among several

candidates. �e rules in Figure 2 are silent about this issue, redendering the calculus ambiguous.

Adding the well-scopedness condition means that the rightmost (i.e. innermost) matching de�nition

is chosen as is described in Figure 6. �e full-language also uses nesting to disambiguate but

combines this with speci�ty. Given two candidate implicit references, it plays a tournament with

two rounds.

One round awards a point for candidate c1 over candidate c2 if c1 is introduced (made visible) in

a scope more deeply nested than the scope where candidate c2 is introduced. �is round is only

applicable to implicit searches in the current scope according to condition (1). For searches in the

implicit scope according to condition (2), a candidate c1 wins instead over c2 if its associated class

is a subclass of the associated class of c2. Here, the associated class of an implicit value c is the

class where c is de�ned, or, if c is de�ned in an object, the object’s companion class.

�e other round awards a point for c1 over c2 is c1’s type is strictly more speci�c than c2’s

type. �is means that c1’s type can be instantiated through widening or polymorphic parameter

instantiation to be c2’s type.
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If one candidate gets more points in these rounds than the other, it is chosen as implicit instance.

In the case of a draw the compiler rejects the program because it is ambiguous.

4.3 Divergence
Since implicit searches can be recursive, it is possible that an implicit search does not terminate. �e

compiler uses the following strategy to detect divergent searches: It keeps track of all unresolved

query types in a stack. For each query type it records its top-level type constructor. If a recursive

query is entered which matches the type constructor of a type on the stack, the query is allowed to

proceed only if its type arguments are strictly smaller than the arguments for the matching query

on the stack. If that condition does not hold, the implicit search fails with a divergence error.

4.4 Optimizations
�e basic search algorithm speci�es that all implicit values in the current scope or in the implicit

scope of the expected types are tried as candidates to resolve a query. Implemented naı̈vely, this

would be very ine�cient. �e Scala compiler employs two main strategies to speed up the search.

�e �rst strategy eliminates from consideration all implicit variables that cannot possibly match

the expected type. To do this, the compiler computes a �ngerprint type, where all implicit parameters

are dropped and all type variables are replaced by a wildcard type that matches any other type.

Only implicit values with �ngerprints matching the expected type are further considered. �is

pre-selection is usually bene�cial because a �ngerprint match is much cheaper than a full type

elaboration of an implicit value, which might in turn trigger recursive implicit searches. What’s

more, the sets of types �ngerprint-matching a query type are also cached, so computation is saved

if the same query is asked several times.

�e second strategy tries to truncate the search space once a �rst match has been found. If there

are several candidates, the compiler normally would need to elaborate the types of all of them

in order to determine a best match or raise an ambiguity error. But we can avoid some of these

elaborations by checking beforehand whether a candidate could possibly a�ect the outcome of

an implicit search. If the candidate value that was already found would be strictly preferable to

the alternative value according to the disambiguation criteria, there is no point in elaborating the

type of the alternative value. �is scheme is rendered more e�ective by keeping track of results of

previous implicit searches and trying values that were selected most o�en in previous queries �rst.

Using these techniques, implicit search becomes reasonably e�cient. We have observed implicit

search typically takes 30% of the total running time of dotc. Of course this depends on the number

and size of generated implicit terms, which can be arbitrarily large, so the 30% number is not a

hard limit but an indication of average behavior on “typical” programs.

4.5 Language di�erences
SI has no syntax for the explicit application of an implicit function. Implicit functions are always

applied automatically by looking for an implicit value that matches the argument type of the

function.

In current Scala this is di�erent in that implicit functions can be applied explicitly - the language

uses the normal functional application syntax for this. So the following would typecheck:

def f: implicit Context => Map[Int, Int]
val ctx: Context
f(ctx)(2)
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In the last line of this program, the �rst parameter ctx is passed as an argument to the implicit

function whereas the second parameter is passed as the argument to the apply function of the

result map (which is inserted automatically).

While convenient, this convention can also be quite limiting and surprising. For instance, we

could not have wri�en f(2) in the last line of the program, since the compiler is incapable of

detecting whether we mean to pass an implicit argument or an explicit one following it. In the

particular case above, the programmer can write f.apply(2), which makes it clear that the implicit

parameter is to be inferred. But this is roundabout and awkward.

�is design choice is by now regarded as a mistake. It would be possible to simply do without

explicit applications of implicit functions, just as SI does. If explicit applications were eliminated,

the last line of the program above could then be expressed like this:

{ implicit val c = ctx; f(2) }

For syntactic convenience, the next major version of Scala will have a construct for applying

implicit functions explicitly, but it will be di�erent from normal function application. �e idea is to

introduce a new method named explicitly on the function type. explicitly converts an implicit

function to an explicit one. So if f has the implicit function type implicit Context => Map[Int,

Int] as above, then f.explicitely has the normal function type Context => Map[Int, Int] and

f.explicitly(ctx)(2) passes ctx as explicit argument to the Context parameter of that function.

Furthermore, we have the following equivalence, for any unary implicit function f:

f = f.explicitly(implicitly)

5 EXPRESSIVENESS & PERFORMANCE
Implicit function types can be a powerful way to abstract over implicits. In this section, we demon-

strate that implicit function types not only promote expressivity, but that they can additionally

improve performance over solutions without implicit function types.

To that aim, we show that implicit function types can be used in the expression of many di�erent

applications. We introduce four di�erent applications that are made clearer and more concise

through the use of implicit function types. �e last two of which we show improve performance over

existing implementations without implicit function types. In Section 5.1, we present an expressive

DSL using the builder pa�ern, followed by an encoding of tagless interpreters (Care�e et al. 2009)

demonstrating how we can abstract over the number of implicit parameters in Section 5.2. In

Section 5.3, we show how we encode the reader monad with an isomorphic representation using

implicit functions, and assess its performance alongside of popular implementations in the Scala

ecosystem. Finally, in Section 5.4, we introduce a new implementation of the free monad, and

assess its performance as well.

5.1 Builder Pa�ern: An Expressive DSL
We demonstrate how implicit function types can be used to build declarative API using the type-safe

builders pa�ern (Kotlin 2014) without any boilerplate at the use-site. Let’s assume we’d like to

de�ne a small DSL to create tables that look like the following:

table {
row {
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cell("top left")
cell("top right")

}
row {

cell("bottom left")
cell("bottom right")

}
}

In this example table, row and cell are function calls to a factory method. Every call creates

a new node (resembling an AST), and registers this newly created node to its parent. Implicit

functions are used to propagate references of parent nodes to newly created nodes. For instance,

the table method takes an implicit Table => Unit as argument:

class Table {
val rows = new ArrayBuffer[Row]
def add(r: Row): Unit = rows += r
override def toString = rows.mkString("Table(", ", ", ")")

}
def table(init: implicit Table => Unit): Table = {

implicit val t = new Table
init
t

}

�e De�nitions of row and cell are analogous. A�er desugaring and implicit resolution, the table

construction above is translated into the following:

table { $t: Table =>
row { $r: Row =>

cell("top left")($r)
cell("top right")($r)

}($t)
row { $r: Row =>
cell("bottom left")($r)
cell("bottom right")($r)

}($t)
}

5.2 Tagless Interpreters: Abstracting Over Multiple Constraints
Implicit function types enable a very useful way to abstract over the number of implicit parameters

introduced in some scope. We demonstrate a usage of this abstraction through an implementation

of the tagless interpreter pa�ern (Care�e et al. 2009) (or object algebra (Oliveira and Cook 2012) as

popularized in the OOP domain) for simple arithmetic expressions.

Tagless interpreters make it possible to add both new syntactic elements and interpretations with-

out breaking the existing hierarchy, thus serving as a solution to the Expression Problem (Wadler

1998).

Below, we show the tagless encoding of a toy language for simple arithmetic expressions with

only two constructs; lit and add. (�ough we would ultimately like to add more constructs!)
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trait Exp[T] {
def lit(i: Int): T
def add(l: T, r: T): T

}
object ExpSyntax {

def lit[T](i: Int) (implicit e: Exp[T]): T = e.lit(i)
def add[T](l: T, r: T)(implicit e: Exp[T]): T = e.add(l, r)

}

To de�ne an expression on integers using these two constructs, we �rst need to implement an

interpreter to evaluate integer expressions as follows:

implicit val evalExp: Exp[Int] = new Exp[Int] {
def lit(i: Int): Int = i
def add(l: Int, r: Int): Int = l + r

}

With that, we can now de�ne an expression in the Exp language. Using what we have so far, we

can de�ne 8 + (1 + 2) as follows:

def tf1[T](implicit e: Exp[T]): T = add(lit(8), add(lit(1), lit(2)))

Allowing one to interpret tf1 as follows:

val evaluated: Int = tf1()
println(evaluated) // 11

To extend the Exp language to be able to handle multiplication, we de�ne a new trait Mult with

the new multiplication operation we’d like to add:

trait Mult[T] {
def mul(l: T, r: T): T

}
object MultSyntax {

def mul[T](l: T, r: T)(implicit e: Mult[T]): T = e.mul(l, r)
}

Ultimately, we’d like to de�ne an expression to evaluate multiplication and additions in the same

expression. We can de�ne 7 + (1 ∗ 2) as follows:

def tfm1[T](implicit e: Exp[T], m: Mult[T]): T = add(lit(7), mul(lit(1), lit(2)))

Interpreting tfm1 requires two instances of interpreters; it requires two implicit parameters, one

of type Exp[T] and another of type Mult[T]. We can use evalExp for addition, and we need another

for multiplication, which can be de�ned as follows:

implicit val evalMult: Mult[Int] = new Mult[Int] {
def mul(l: Int, r: Int): Int = l * r

}
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As we observe, by increasing the number of interpreters, we increase the number implicit

parameters. If we continue extending our toy language in this fashion, we have no way to abstract

over these new extensions as they pile up in parameter lists.

Implicit function types enable us to easily abstract over implicit parameters using type aliases:

type ExtExp[T] = implicit (Exp[T], Mult[T]) => T

�is enables us to de�ne tfm1 much more concisely, allowing us to omit the two implicit param-

eters we had to write above, by using the ExtExp[T] type alias:

def tfm1[T]: ExtExp[T] = add(lit(7), mul(lit(1), lit(2)))

5.3 Reader Monad: Use Contextual Abstraction
�e reader monad represents a computation with the ability to read from an environment. It

is de�ned in term of two operations, ask, to retrieve the environment, and local, to modify the

environment for sub-computations (monad instance omi�ed):

trait Reader[R, A] {
def ask: R
def local[A](f: R => R)(a: A): A

}

Reader expressions are formed using the for-comprehensions (equivalent to the do-notation in

Haskell):

val expr1: Reader[Env, Int] = ...
val expr2: Reader[Env, Int] = ...
val expr3: Reader[Env, Int] =
for {

e1 <- expr1
e2 <- expr2

} yield e1 + e2

Implicit function types can be used as a concise alternative to Reader:

type ReaderIFT[T] = implicit Env => T

Values of type ReaderIFT[T] automatically obtain an Env from the implicit context, and propagate

this value to all sub-expressions in the right-hand side of their de�nition:

val expr1: ReaderIFT[Int] = ...
val expr2: ReaderIFT[Int] = ...
val expr3: ReaderIFT[Int] = expr1 + expr2

Env values can be obtained using implicitly[Env] in the body of ReaderIFT expression, which

corresponds to the ask operation on Reader. Analogously, a new Env can be de�ned for all sub-

expressions via by de�ning a local implicit of that type.
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�is pa�ern is very common is large-scale applications. For instance, in web programming, the

majority of functions take a context argument to propagate information about the request that is

currently being processed. Implicits provide a simple and concise way to transmit this information

across such applications.

5.3.1 Performance Evaluation. We compare the implicit function type encoding of the reader

monad with implementations from two widely-used Scala libraries: Scalaz 7.2 (Scalaz 2017) and

Cats 0.9 (Cats 2017). Scalaz and Cats are general-purpose, functional programming libraries that

provide de�nitions of standard type classes and implementations of commonly used functional

data structures, including the reader monad.

We benchmark
1

the aforementioned implementations using the monad reader laws:
2

ask-idempotent flatMap(ask)(x⇒ ask) ≡ ask
local-ask ∀f : local(f)(ask) ≡ map(ask)(f)

local-�atmap ∀r, f, g : local(g)(flatMap(r)(f)) ≡ flatMap(local(g)(r))(x⇒ local(g)(f(x)))
local-pure ∀f, a : local(f)(pure(a)) ≡ pure(a)

Four micro-benchmarks comprise our evaluation set; each one represents a reader monad law

instantiated with a String environment and identity functions.

Results. Figure 7a shows a 4x to 9x improvement of throughput for the implicit function type

implementation. �is large gap is a consequence of removing a layer of abstraction. Indeed,

the implicit function type encoding is equivalent to manually propagating the environment as

function arguments, whereas both Cats and Scalaz store reader computations in an intermediate

data structure and use type classes for operations. �ese performance improvements are expected,

given that Scala compilers do not inline type classes.

5.4 Free Monads
Data types à la carte (Swierstra 2008) popularized the free monad pa�ern, an abstraction to decouple

monadic expressions from their semantics. Typical Scala implementations (Bjarnason 2012) of this

idea use a generalized algebraic data type (GADT) to encapsulate the monadic structure, called

Free:

sealed trait Free[A[_], T]
case class Pure[A[_], T](a: T) extends Free[A, T]
case class Suspend[A[_], T](a: A[T]) extends Free[A, T]
case class FlatMapped[A[_], B, C](c: Free[A, C], f: C => Free[A, B]) extends Free[A, B]

Interpreters for Free expressions are de�ned as natural transformations, that is, instances of the

Natural trait:

trait Natural[F[_], G[_]] {
def apply[A](fa: F[A]): G[A]

}

1
�e measurements obtained are the average of 10 runs executed on an i7-7700K Processor CPU running Oracle JVM 1.8.0

on Debian 9.0 with binaries produced by scalac 2.12.2. We use the Java Microbenchmark Harness (JMH) (Shipilev et al.

2014) tool with default se�ings: each run averages throughput of execution over 1 second period for 20 warm-up iteration

and 20 measurements iteration.

2
h�ps://github.com/typelevel/cats/blob/v0.9.0/laws/src/main/scala/cats/laws/MonadReaderLaws.scala

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: June 2017.

https://github.com/typelevel/cats/blob/v0.9.0/laws/src/main/scala/cats/laws/MonadReaderLaws.scala


Simplicitly 1:23

Reader monad implementations
Throughput

ask-idempotent local-ask local-flatmap local-pure

Cats Scalaz IFT
0

100

200

300

400

500

600

Highcharts.com

M
op

s/
se

c

(a) Reader Monad

Free monad implementations
Throughput

Cats Scalaz IFT
0

1

2

3

4

5

6

7

8

9

10

11

M
op

s/
se

c

(b) Free Monad

Fig. 7. JVM micro-benchmarks measuring throughput of various implementations in Mops/sec. Average of
10 runs, error bars for 99.9% confidence intervals.

Interpretation of Free expressions is done thought a foldMap function:

def foldMap[A[_], T, M[_]](e: Free[A, T])(n: Natural[A, M])(implicit m: Monad[M]]): M[T] = ...

Users of free monads typically depend on a library that provides the de�nition for Free, foldMap,

and a monad instance for Free. �ese de�nitions are non-trivial and duplication is required to

support other free structures such as the free applicative functor.

5.4.1 An Implicit Function Type Encoding. Implicit function types open the door to an alterna-

tive design of free monad that is simpler to use, more e�cient and doesn’t require any library

infrastructure.

�e new design de�nes a FreeIFT type alias with two curried implicit function types, mirroring

the signature of foldMap:

type FreeIFT[A[_], M[_], T] = implicit Natural[A, M] => implicit Monad[M] => M[T]

In this new encoding of free monads, expressions are function type parametric in the monad

used for interpretation. For instance, a free expression with made Put and Get operations (subtypes

of KVStore) can be de�ned as follows:

type KVStoreIFT[M[_], T] = FreeIFT[KVStore, M, T]

def iftExpr[M[_]]: KVStoreIFT[M, Option[Int]] =
for {

_ <- lift(Put("foo", 2))
_ <- lift(Put("bar", 5))
n <- lift(Get("foo"))

} yield n
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Where the lift method is used to apply an implicit natural transformation:

def lift[F[_], M[_], A](fa: F[A])(implicit F: Natural[F, M]): M[A] = F(fa)

Interpreters are, as in the traditional encoding, natural transformations. However, the interpreta-

tion doesn’t require a library de�ned foldMap function. Instead, it is a simple function application

of iftExpr to an interpreter:

def iftInterpreter = new Natural[KVStore, Future] {
def apply[T](fa: KVStore[T]): Future[T] = ...

}
val iftOutput: Future[Option[Int]] = iftExpr[Future](iftInterpreter)

5.4.2 Comparing Encodings. �e main bene�t of the implicit function type encoding of free

monad is that it doesn’t require any library support. From a user perspective, there is also less

boilerplate involved (the put and get function become unnecessary).

�e two encodings can be shown to be equivalent by de�ning a bijection between representations.

�e conversion to the À la carte encoding is done via interpretation from A to Free[A, ?]: 3

def initialize[A[_]] = new Natural[A, [T] => Free[A, T]] {
def apply[T](a: A[T]): Free[A, T] = Suspend[A, T](a)

}

Conversion from the À la carte encoding also goes through an interpretation, from A to new Expr

trait, which captures the polymorphism in expressions by the implicit function type encoding
4
:

trait Expr[A[_], T] {
def e[M[_]]: FreeIFT[A, M, T]

}

def finalize[A[_]] = new Natural[A, [T] => Expr[A, T]] {
def apply[T](a: A[T]): Expr[A, T] = new Expr[A, T] {

def e[M[_]]: FreeIFT[A, M, T] = a.lift
}

}

5.4.3 Performance Evaluation. �e benchmark simulates a state monad with an expression that

counts to 10 by successively reading from the state, incrementing by 1, and writing back to the

state. Interpreters are implemented by mutating a local variable.

Results. �is new approach shows signi�cant improvements in term of runtime performance. As

opposed to the traditional encoding of free monad, the implicit function type encoding does not

allocate any intermediate structure to capture the monadic structure. Instead, the interpretation

�ows directly through the de�nition.

Figure 7b shows the throughput for creating and interpreting of a simple expression using

di�erent free monad implementations. �e Scalaz implementation closely follows the pa�ern

3
In this example [T] => Expr[A, T] uses the syntax for type lambdas introduced by the Do�y compiler.

4
Language support for polymorphic functions would remove the need for a Expr trait.
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described in the Data Types à la Carte paper (Swierstra 2008). �e Cats implementation is a slight

simpli�cation over Scalaz’, in that it does not require a functor instance. �e implicit function type

encoding described in this section has the best performance among all implementations.

Overall, Scalaz’ infrastructure about free monads is over 500LOC. Cats’ is on the same order of

magnitude, with about 250LOC. �is new encoding is able to implement equivalent functionalities

with a single type alias. We expect the pa�ern of factoring out type class constraints to be applicable

to a large number of use cases. For example, this technique can be used to build free counterparts

of other type classes such as applicative functors and co-monads.

6 RELATEDWORK
�e Haskell programming language supports a version of implicit parameters (Lewis et al. 2000)

through the ImplicitParams language extension. Implicit parameters in Haskell are orthogonal to

the built-in type class mechanism, but are used in a similar manner as constraints on functions.

Even though they come under the same name, implicit parameters in Scala and Haskell are

di�erent in several aspects. Implicit parameters in Scala trade explicit types for implicit terms. If

the type makes it clear that an implicit parameter is in scope, that parameter can be used implicitly

as an argument to another function. By contrast, implicit parameters in Haskell are synthesized

using an explicit query such as ?cmp which also speci�es the name of the searched parameter.

In Haskell, implicit parameter constraints are then propagated automatically to the calling

context in the inferred type of a function. �is automatic propagation makes it look like implicit

parameters support a form of dynamic scoping as was explained in the original paper (Lewis et al.

2000), even though O. Kiselyov showed the correspondence is not exact.
5

By contrast, Scala always demands the function’s type to be given explicitly, and, if no implicit

parameter is mentioned, resolves any implicit queries at the point of de�nition instead of propa-

gating them to the callsite. �is is much more predictable, at the price of a heavier notation for

function de�nitions. As we have shown here, the notation overhead can be reduced substantially

using type aliases of implicit function types.

�ese di�erences between the implicit parameter rules in Haskell and Scala might seem relatively

minor, but they have a large impact on typical use cases and overall usability.

Agda instance arguments (Devriese and Piessens 2011) are closely related to Haskell’s type class

constraints and were inspired by both Scala’s implicits and Agda’s existing implicit arguments.

With implicit function types, we li� the limitations that are described in Devriese et. al (Devriese

and Piessens 2011, Section 1.5) for Scala. Additionally, we present a self-contained high-level

formalization, whereas Devriese et. al present a more algorithmic description on how to modify

Agda’s existing implicit search mechanism. In the aforementioned paper instance arguments do

not support implicit de�nitions of functions that take implicit arguments. However, Agda supports

them with the use of the keyword instance (Norell et al. 2017).

Modular implicits (White et al. 2015) propose an extension to the OCaml language for ad-hoc

polymorphism using modules as the types of implicit parameters. Contrarily to Scala, implicits

in OCaml always raise an ambiguity error in the presence of multiple implicit modules. Modular

implicits support functions with implicit arguments and during elaboration they translate them

into �rst-class functors. However they do not provide dedicated support for the equivalent of

implicit function types.

Coq supports notation overloading and implicit program construction through canonical struc-

tures (Gonthier et al. 2011) and type classes (Sozeau and Oury 2008). Canonical structure instances

5
O. Kiselyov discussing Haskell’s ‘implicit parameters’ are not dynamically scoped–h�ps://web.archive.org/web/

20170708010400/h�p://okmij.org/�p/Computation/dynamic-binding.html#implicit-parameter-neq-dynvar
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are record types that are used to solve equations, during type-checking, involving implicit argu-

ments. However, overlapping instances are not supported in Coq, and since they are required

for numerous scenarios involving canonical structure instances, they need to be restored with

design pa�erns. �is is necessary for lemma overloading capabilities as described in Gonthier et

al. (Gonthier et al. 2011). On the contrary, the capability to backtrack during type inference, enables

dependently-typed logic programming.

6.1 Implicit Calculi
�e Implicit Calculus (Oliveira et al. 2012) provides a general formalization of implicit programming.

It supports partial resolution and higher-order rules. In the calculus, it introduces rule types which

are similar to our implicit function types.

Cochis (Schrijvers et al. 2017) is a recent calculus that tries to combine the strength of Haskell

typeclasses and Scala implicits, i.e. the combination of ease of reasoning and �exibility. Cochis

supports local implicits and meanwhile guarantees coherency. Coherency in Cochis means that

substitution of equals doesn’t change the semantics of programs, which is a reasonable property of

pure functional programs.

According to the Cochis paper, Scala implicits are incoherent. However, this claim is contestable,

as it depends on the time when the substitution happens. If we take equivalent expressions, directly

from source code “substituting equals by equals”, then indeed the semantics might change. But that’s

neither how the compiler reasons about the code nor what the programmer expects. Otherwise, by

doing so, we can turn a well-typed program into an ill-typed program. If we consider “substitution

of equals by equals” happening a�er type checking, as it’s done in the compiler, of course Scala

implicits are coherent, and that’s what programmers expect.

Both of the two calculi mentioned above depend on an explicit type query ?T to trigger implicit

resolution for an instance of a type T. It is noticeable that explicit type query loses the essential

appeal of implicit programming. In this regard, our calculus is closer to Scala implicits.

�e calculi mentioned above, describe more powerful implicit resolution algorithms. However,

the implementation of Scala implicits restrains the power of implicit resolution. Weird or complex

resolutions harm maintainability of the code, and may give rise to tricky bugs in programs. Con-

sequently we keep implicit resolution simple and intuitive to programmers. For this reason, our

calculus be�er models implicits in practical programming languages.

�e two papers mentioned above are more oriented towards resolution algorithms and the

connection between logic and resolution. In this paper we provide a calculus that takes the �rst

step on contextual abstraction in a practical programming language, based on implicit function

types.

Finally, A. Rouvoet (Rouvoet 2016) presents a formal development of implicits, based on Oliveira

et al. (Oliveira et al. 2012). �e author provides a provably complete, syntax-directed resolution

algorithm that either �nds the solution or diverges. �e author also studies a family of termination

conditions that may be added to ensure the termination of the resolution. Although SI is not

syntax-directed, it provides a well-scopedness condition that ensures unique type derivations, but

only for the monomorphic fragment of SI.

7 CONCLUSION
94% of the 120 most popular Scala projects hosted on GitHub take full advantage of implicits. �eir

widespread usage pa�erns indicate that real word applications prefer to pass context implicitly. We

propose implicit function types as a simple and powerful language feature for dealing with contexts

in programming and we present a formal development of implicits, as a whole, in the system SI.
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�e applications we present, highlight emerging encodings, that promote expressivity without

sacri�cing performance.
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A APPENDIX: USE OF IMPLICITS IN THE SCALA ECOSYSTEM
We performed a small empirical analysis of the most popular Scala projects on GitHub. �e projects

in our corpus range from widely-used frameworks for big data processing like Apache Spark, to

open source and mission-critical systems at companies like Twi�er, to widely depended-on open

source web frameworks, to community-built libraries for functional programming, and more.

We selected the top 120 Scala projects hosted on GitHub, ranked by their star count
6
. Table 1

lists all 120 projects we analyzed. On average, projects contained 31,135 lines of code, and had 1,977

stars. In total, we analyzed over 3.7 million lines of Scala code.

Our analysis was syntactic; we counted de�nitions of di�erent kinds of implicits in each code

base, and how they were spread out in each code base. In particular, we looked at how much these

code bases made use of implicit vals, implicit defs, implicit objects, and implicit parameters.

Results. Some of the more interesting insights are shown in Figure 8. Out of the 120 Scala

projects analyzed, 94.17% made use of some form of implicits. Interestingly, we found that implicit

parameters were the most commonly-preferred form of implicit across all code bases. �at is,

42% of all usages of implicits across all projects analyzed are implicit parameters, and 30.39%

are implicit vals. Taken together with the fact that 84% of all projects analyzed make use of

implicit parameter lists speci�cally, this leads us to believe that real-world applications seem to

overwhelmingly prefer to pass context implicitly.

6
Stars are a way of ”liking” projects on GitHub. A project with many stars doesn’t necessarily mean that it is widely-used.

In our case, however, all but one or two projects analyzed are indeed well-known and widely depended-on or used projects.
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Project Stars

apache/spark 13365 laurilehmijoki/s3 website 1800 �lodb/FiloDB 876

apache/incubator-predictionio 10267 lampep�/do�y 1759 pathikrit/be�er-�les 874

playframework/playframework 9495 spark-jobserver/spark-jobserver 1653 japgolly/scalajs-react 874

scala/scala 8478 apache/incubator-openwhisk 1641 tpolecat/doobie 868

shadowsocks/shadowsocks-android 7969 twi�er/�natra 1605 kamon-io/Kamon 859

akka/akka 7305 twi�er/algebird 1527 vkostyukov/scalacaster 850

gitbucket/gitbucket 6424 mesos/spark 1462 sbt/sbt-native-packager 844

twi�er/�nagle 5799 GravityLabs/goose 1427 functional-streams-for-scala/fs2 839

lhartikk/ArnoldC 4992 lagom/lagom 1414 lihaoyi/Metascala 829

airbnb/aerosolve 3961 Net�ix/atlas 1406 scala/pickling 816

yahoo/ka�a-manager 3816 lihaoyi/Ammonite 1319 sryza/aas 814

mesos/chronos 3750 PkmX/lcamera 1284 eligosource/eventsourced 811

twi�er/snow�ake 3513 twi�er/iago 1243 monix/monix 809

snowplow/snowplow 3432 rickynils/scalacheck 1231 akka/reactive-ka�a 800

mesosphere/marathon 3333 datastax/spark-cassandra-connector 1222 sryza/spark-timeseries 799

ornicar/lila 3250 jaliss/securesocial 1211 scala/async 796

rtyley/bfg-repo-cleaner 3235 guardian/grid 1197 lihaoyi/scala.rx 791

fpinscala/fpinscala 3189 ensime/ensime-server 1193 julien-tru�aut/Monocle 789

scalaz/scalaz 3139 non/spire 1192 h�p4s/h�p4s 787

sbt/sbt 3115 lw-lin/CoolplaySpark 1186 twi�er/ostrich 782

twi�er-archive/�ockdb 3112 foundweekends/giter8 1158 sangria-graphql/sangria 778

gatling/gatling 3049 li�/framework 1090 jrudolph/sbt-dependency-graph 768

scala-js/scala-js 3012 mpeltonen/sbt-idea 1085 scalikejdbc/scalikejdbc 765

scala-native/scala-native 2885 �nagle/�nch 1065 databricks/spark-csv 764

twi�er/di�y 2858 scala-exercises/scala-exercises 1051 twi�er/twi�er-server 734

twi�er/scalding 2839 quanti�nd/Ka�aO�setMonitor 1048 ReactiveMongo/ReactiveMongo 718

twi�er-archive/kestrel 2780 mauricio/postgresql-async 1041 adamw/macwire 711

spray/spray 2523 killrweather/killrweather 1018 playframework/play-slick 706

linkerd/linkerd 2315 �oughtWorksInc/Binding.scala 994 jdegoes/blueeyes 702

scalatra/scalatra 2188 tumblr/colossus 989 nscala-time/nscala-time 696

Table 1. Top 120 open source Scala projects on GitHub, by star count.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: June 2017.

https://github.com/apache/spark
https://github.com/laurilehmijoki/s3_website
https://github.com/filodb/FiloDB
https://github.com/apache/incubator-predictionio
https://github.com/lampepfl/dotty
https://github.com/pathikrit/better-files
https://github.com/playframework/playframework
https://github.com/spark-jobserver/spark-jobserver
https://github.com/japgolly/scalajs-react
https://github.com/scala/scala
https://github.com/apache/incubator-openwhisk
https://github.com/tpolecat/doobie
https://github.com/shadowsocks/shadowsocks-android
https://github.com/twitter/finatra
https://github.com/kamon-io/Kamon
https://github.com/akka/akka
https://github.com/twitter/algebird
https://github.com/vkostyukov/scalacaster
https://github.com/gitbucket/gitbucket
https://github.com/mesos/spark
https://github.com/sbt/sbt-native-packager
https://github.com/twitter/finagle
https://github.com/GravityLabs/goose
https://github.com/functional-streams-for-scala/fs2
https://github.com/lhartikk/ArnoldC
https://github.com/lagom/lagom
https://github.com/lihaoyi/Metascala
https://github.com/airbnb/aerosolve
https://github.com/Netflix/atlas
https://github.com/scala/pickling
https://github.com/yahoo/kafka-manager
https://github.com/lihaoyi/Ammonite
https://github.com/sryza/aas
https://github.com/mesos/chronos
https://github.com/PkmX/lcamera
https://github.com/eligosource/eventsourced
https://github.com/twitter/snowflake
https://github.com/twitter/iago
https://github.com/monix/monix
https://github.com/snowplow/snowplow
https://github.com/rickynils/scalacheck
https://github.com/akka/reactive-kafka
https://github.com/mesosphere/marathon
https://github.com/datastax/spark-cassandra-connector
https://github.com/sryza/spark-timeseries
https://github.com/ornicar/lila
https://github.com/jaliss/securesocial
https://github.com/scala/async
https://github.com/rtyley/bfg-repo-cleaner
https://github.com/guardian/grid
https://github.com/lihaoyi/scala.rx
https://github.com/fpinscala/fpinscala
https://github.com/ensime/ensime-server
https://github.com/julien-truffaut/Monocle
https://github.com/scalaz/scalaz
https://github.com/non/spire
https://github.com/http4s/http4s
https://github.com/sbt/sbt
https://github.com/lw-lin/CoolplaySpark
https://github.com/twitter/ostrich
https://github.com/twitter-archive/flockdb
https://github.com/foundweekends/giter8
https://github.com/sangria-graphql/sangria
https://github.com/gatling/gatling
https://github.com/lift/framework
https://github.com/jrudolph/sbt-dependency-graph
https://github.com/scala-js/scala-js
https://github.com/mpeltonen/sbt-idea
https://github.com/scalikejdbc/scalikejdbc
https://github.com/scala-native/scala-native
https://github.com/finagle/finch
https://github.com/databricks/spark-csv
https://github.com/twitter/diffy
https://github.com/scala-exercises/scala-exercises
https://github.com/twitter/twitter-server
https://github.com/twitter/scalding
https://github.com/quantifind/KafkaOffsetMonitor
https://github.com/ReactiveMongo/ReactiveMongo
https://github.com/twitter-archive/kestrel
https://github.com/mauricio/postgresql-async
https://github.com/adamw/macwire
https://github.com/spray/spray
https://github.com/killrweather/killrweather
https://github.com/playframework/play-slick
https://github.com/linkerd/linkerd
https://github.com/ThoughtWorksInc/Binding.scala
https://github.com/jdegoes/blueeyes
https://github.com/scalatra/scalatra
https://github.com/tumblr/colossus
https://github.com/nscala-time/nscala-time

	Abstract
	1 Introduction
	2 Overview: From Implicit Parameters to Implicit Function Types
	2.1 Introducing Implicit Function Types

	3 Formalization
	3.1 Syntax
	3.2 Type System
	3.3 Type Checking Examples
	3.4 Translation to System F
	3.5 Examples
	3.6 Disambiguation
	3.7 Type Checking
	3.8 Comparison with the Implicit Calculus

	4 Implementation
	4.1 Implicit Search Candidates
	4.2 Disambiguation
	4.3 Divergence
	4.4 Optimizations
	4.5 Language differences

	5 Expressiveness & Performance
	5.1 Builder Pattern: An Expressive DSL
	5.2 Tagless Interpreters: Abstracting Over Multiple Constraints
	5.3 Reader Monad: Use Contextual Abstraction
	5.4 Free Monads

	6 Related Work
	6.1 Implicit Calculi

	7 Conclusion
	References
	A Appendix: Use of Implicits in the Scala Ecosystem

