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Abstract
In nuclear magnetic resonance (NMR), one of the most serious inherent challenges
is the low sensibility of nuclear transitions. In order to enhance the signal of NMR
experiments, the technique of dynamic nuclear polarisation (DNP) was introduced
in the 1950s, leading to a high field prototype apparatus in the 1990s for solid-state
applications under MAS conditions. In 2003, the coupling between low-temperature
polarisation and room temperature detection also came into reality, which is known
as dissolution-DNP (d-DNP). In this thesis, we present a new sample formulation for
d-DNP experiments. Also, a new scheme for separating the preparation of hyperpola-
rised materials from the detection apparatus is proposed, which would allow us to
overcome the usual requirement that the apparatus for hyperpolarisation and the
device for signal detection have to be in close proximity.

A numerical model based on the finite element method (FEM) is proposed to
study the dynamics of nuclear magnetic energy in both conventional spin glasses
and biphasic d-DNP samples. This method permits a visualisation of the process
of the build-up of polarisation and of the relaxation of magnetisation during a DNP
experiment. Based on such calculations, we could estimate the optimal experimental
parameters for the preparation of hyperpolarised samples, including but not limited
to the chemical composition of the samples, the length of spin locking pulses, and the
duration of intervals between spin locking pulses in pulse sequences.

An interesting conclusion from our simulations is that, under suitable conditions
of storage, the lifetime of the hyperpolarisation can be extended to hours or even days
in carefully designed biphasic samples. This allows us to propose two experimental
approaches aiming at drawing benefit from such an attenuated relaxation.

One method deals with molecules of interest (MOIs) that are in crystalline form
at room temperature and normal pressure. Such powders can be impregnated with
radical-doped organic glass-forming solvents that have an orthogonal solubility. Un-
der DNP conditions, the magnetisation is transferred from the single electron of the
polarising agent (PA) to the nuclei in glassy organic solvents. The nuclear polari-
sation is then relayed to the particles of MOI. We can further confine the nuclear
hyperpolarisation overnight in a moderate static magnetic field in a liquid helium
bath.

On the other hand, for MOIs that are liquid or even gaseous at room temperature
and normal pressure, we propose a spin-labelled solid matrix with interconnecting
pores. The fluids can be filled into the pores of the matrix. Under DNP conditions, the
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DNP process begins from the bulk of the polarising matrix, and then passes to the
fluids that are frozen in the pores.

Key words: NMR, DNP, Sample formulation, Spin diffusion, Numerical simulation
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Résumé
Un des inconvénients inhérents de la résonance magnétique nucléaire (RMN) est la
faible sensibilité des transition des noyaux. La polarisation nucléaire dynamique a
été introduite en vue d’augmenter l’intensité des signaux de la RMN dans les années
cinquante. Un prototype à hauts champs pour des applications dans l’état solide fut
réalisé au début des années 1990. Puis il devint possible de combiner la polarisation à
basse température et la détection des signaux à température ambiante dès 2003 sous
le nom de polarisation nucléaire dyamique par dissolution PND-d pour dissolution-
DNP. Dans ce manuscrit, nous présentons une nouvelle méthode de la prépatarion
des échantillons pour les expériences de type PND-d. Nous montrons aussi une
nouvelle approche qui permet de coupler la préparation de matériaux hyperpolarisés
et les appareils de détection sans exiger la proximité physique de du polariseur et du
détecteur.

Un modèle numérique par éléments finis est proposé pour l’étude de la dynamique
de l’énergie magnétique nucléaire dans un échantillon classique vitreux ainsi que
dans une formulation biphasique. Ces simulations nous permettent de visualiser
non seulement la montée en polarisation mais encore la relaxation de la polarisation
nucléaire tout au long du processus de DNP. Avec les résultats de ces calculs, on peut
envisager une optimisation des paramètres expérimentaux, tels que la constitution
chimique d’un échantillon, la durée de l’impulsion, ou bien la longeur de l’intervalle
entre des verrouillqges des spins dans une séquence.

D’après les simulations, nous avons trouvé que, dans des conditions appropriées,
le temps de vie de l’hyperpolarisation d’un échantillon biphasique peut être prolongé
à plusieurs heures, voire même à plusieurs jours. Deux approches sont démontrées
qui permettent de profiter de cette relaxation ralentie.

Dans la première approche, les molécules d’intérêt sont sous forme cristalline
à température ambiante et pression normale. Les poudres de ces molécules sont
imprégnées avec des liquides contenant des radicaux qui forment un verre à basse
température, dont le solvant possède une solubilité orthogonale par rapport à celle des
poudres des molécules d’intérêt. Sous conditions de DNP, le transfert de l’aimantation
intrevient d’abord entre les spins électroniques de l’agent polarisant et les noyaux du
solvant. Dans un deuxième temps, une redistribution spatiale de l’énergie magnétique
des noyaux se produit à travers l’échantillon, ce qui donne lieu à une accumulation
de l’énergie magnétique nucléaire dans les cristaux contenant les molécule d’intérêt.
Une fois polarisés, ces poudres peuvent conserver leur aimantation nucléaire dans
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un champ magnétique modéré dans un bain de l’hélium liquide pendant plus de 12
heures.

Pour conserver la polarisation dans des substances à l’état liquide ou gazeux à
température ambiante, nous avons développé une matrice poreuse dopée de radi-
caux. Les fluides peuvent pénétrer dans les pores au sein de ces matrices. Après la
solidification de ces fluides à basse température, les molécules d’intérêt peuvent être
polarisées par la matrice par diffusion de spin.

Mots clefs: RMN, PND, la formulation d’échantillons, diffusion de spin, simulation
numérique
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1 Introduction

1.1 Scope of This Work

Since Overhauser and Slichter first demonstrated the possibility of hyperpolarising
nuclear spins in metals by transferring the magnetisation from conducting electrons
in the vicinity as a source [1, 2, 3, 4], the concept of Dynamic Nuclear Polarisation
(DNP) has become one of the most interesting aspects in the community of modern
NMR. An important reason is that the magnetisation of nuclear spins could thus be
enhanced with respect to its thermal equilibrium by a factor given by the ratio of the
gyromagnetic ratios between electronic spin and the nuclear spins, γe−/γn , which is
of 2 orders of magnitude. The coupling of DNP and NMR/MRI therefore attracts the
attention of the whole community, because of the large enhancement in sensitivity.

In the field of modern high field NMR, the microwave-driven DNP technique was
first coupled with solid-state NMR by Griffin’s group under MAS conditions in the
1990s [5]. The DNP-MAS technique was then further promoted in the fields of struc-
tural biology [6, 7, 8, 9], surface chemistry[10, 11, 12, 13, 14, 15, 16, 17, 18], inorganic
materials [19, 20, 21], pharmaceutical industry[22, 23], and many other fields.

On the other hand, in 2003, Jan Henrik Ardenkjær-Larsen et al. reported the bre-
akthrough on coupling low temperature DNP with room temperature liquid state
NMR[24, 25], which is named as dissolution-DNP (d-DNP). A standard d-DNP sy-
stem usually consists of two independent superconducting magnets. One serves
as a polariser, aiming at hyperpolarising the molecules of interest (MOI). The ot-
her magnet operates at room temperature and serves as detector for NMR/MRI
experiments[26, 27, 28, 29]. As we know, after hyperpolarisation, the huge magnetisa-
tion generated in the polariser relaxes at the rate of longitudinal relaxation. Though
various schemes have been proposed to fight this fast decay [30], the physical distance
between the polariser and the detection apparatus has to be as small as possible.

The complexity of the whole d-DNP system hampers the general applications of
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Chapter 1. Introduction

this promising technique. First, because the lab needs be equipped with a sophi-
sticated and expensive polarizing system. Second, because the system involves low
temperatures (1.2-4.2 K) and requires trained scientists with special expertise.

Figure 1.1 – An illustration of the conventional spatial coupling between DNP polariser and
the liquid-state NMR apparatus. The blue triangle indicates the direction of the transfer of the
hyperpolarised fluid after dissolution. The thick straight tube between the polariser and the
NMR apparatus represents the magnetic tunnel of transport. (Cited from [31])

In order to broaden the access to the d-DNP technique and extend its audience, it
is our primary objective to develop a scheme in which a spatial decoupling between
the polariser and the detection apparatus is possible. Inspired by the impregnation
method in the sample preparation of MAS-DNP and d-DNP experiments[7, 13, 16, 22,
32], we proposed a biphasic sample formulation for d-DNP experiments.

The central goal of this thesis is to visualise the practice of Transportable D-DNP
with Biphasic Samples. A strong emphasis is put on the study of the redistribution of
hyperpolarisation between different phases and different nuclear spins. In particular,
simulations based on the Finite Element Method (FEM) are introduced to predict the
flow of magnetic energy within the network of protons and carbons, in analogue with
respect to the diffusion of thermal energy during heat transfer.

To begin with, we present a short comparison between two sample formulations,
the homogeneous spin glass with MOI as solute, and the heterogeneous mixture with
the MOI as a separate phase.
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1.2. Some Basic Concepts

In the chapter 2, we consider the FEM approach for the simulation of diffusion
in a biphasic sample under DNP conditions. First, we demonstrate how the spin
diffusion can be linked with the mathematical models of the flow of magnetic energy
inside the sample with the help of spin-temperature theory. Then we illustrate some
numerical results on the dynamics of DNP build-up, of cross-polarisation, and of
nuclear relaxation in the biphasic sample. The results discussed in chapter 2 shall
be used to guide our experimental application of the biphasic formulation in d-DNP
experiments.

Based on the calculations presented in chapter 2, we developed two different bip-
hasic approaches to transportable hyperpolarisation. The first approach focuses on
polarising the MOI in crystalline form by impregnation of a solution of polarising
agent, which we shall describe in chapter 4. In the chapter 5, we are to deal with
another approach opposite to the chapter 4, that is, to polarise a liquid using a solid
porous polarising matrix.

1.2 Some Basic Concepts

In the following section, we briefly introduce some concepts used in NMR and in
DNP, especially those encountered in the thermodynamic description of DNP process.
Details can be found in the general text books on magnetic resonance [33, 34, 35, 36,
37, 38].

1.2.1 NMR Part

Density Operator

From the quantum mechanical point of view, we can characterize the state of an
system of spins by the density operator of the system, which is defined as:

ρ̂(t )
def====∑

i
pi (t )|φi 〉〈φi | (1.1)

where ρ̂(t) is the density operator of the system at the moment t , φi is the
function that depicts the i th state of the system, and pi is the probability of observing
the i th state of the system.

The diagonal terms of the density operator are called the populations terms, and
the off-diagonal terms are the coherence terms.
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Chapter 1. Introduction

Evolution of the System

For a system with an initial condition defined by the density operator ρ̂(0), we can
claim that it stays in its initial state, if it is not exposed to any interactions.

Otherwise, the dynamics of the system, or of the density operator, is determined by
the quantum mechanical master equation:

d

d t
ρ̂(t ) =−i

[
Ĥ(t ), ρ̂(t )

]− ˆ̂R
(
ρ̂(t )− ρ̂eq

)
(1.2)

where Ĥ(t ) is the spin Hamiltonian, representing all the coherent interactions

that influence the system, ˆ̂R is the relaxation superoperator that treats the interaction
between the spin system and the lattice, and the term ρ̂eq is the time-independent
density operator in the equilibrium state.

Hamiltonian of the System

Consider a two-spin system, where there is an electron, spin Ê , and nuclear spin N̂ .
For simplicity we can write the total stationary Hamiltonian of the system (ĤTot ) as
the sum of all major interactions in the laboratory frame in the system:

ĤTot = ĤZ + ĤD + ĤHF + ĤOther + ĤRF + Ĥμw (1.3)

in which ĤZ represents all the Zeeman interactions between the main static mag-
netic field and the spin, ĤD refers to all the dipolar coupling terms among spins in
the system, ĤHF is for the hyperfine interactions that couple the electronic spins with
the nuclei, and ĤOther includes all the other major interactions in the system, such as
nuclear quadrupolar interaction, electronic zero-field splitting, and so on. The last
term is for the radiofrequency pulses and microwave irradiation.

Zeeman interactions The total Zeeman Hamiltonian is the sum of Zeeman in-
teraction among all the spins that are placed in the static magnetic field,B0, both
electrons, ĤZ ,e , and nuclei, ĤZ ,n :
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1.2. Some Basic Concepts

ĤZ ,tot = ĤZ ,e + ĤZ ,n

=−∑
i
γe B0 ·gi · Ê−∑

k
γnB0 ·δk · N̂

(1.4)

(1.5)

where γe and γn are the gyromagnetic ratios for electrons and nuclei, respectively,
B0 is the static magnetic field vector, gi is the g-tensor of the i th electon, δk is the
tensor of chemical shift anisotropy for the kth nucleus.

When we discuss situations where the static magnetic field strength is around 6.7
Tesla, the Zeeman interaction is the dominant interaction of the system.

Dipolar interactions When we talk about dipolar coupling terms, we include
both the dipolar couplings among electron spin pairs as well as the nuclei spin pairs:

ĤD ,tot = ĤD ,e + ĤD ,n

=∑
i �= j

Êi ·De
i , j · Ê j +

∑
k �=l

N̂k ·Dn
k,l · N̂l

=∑
i �= j

μ0γ
2
eħ

4πr 3
i , j

[
Êi · Ê j − 3

r 2
(Êi · ri , j )(Ê j · ri , j )

]

+∑
k �=l

μ0γ
2
nħ

4πr 3
k,l

[
N̂k · N̂l −

3

r 2
(N̂k · rk,l )(N̂l · rk,l )

]

(1.6)

(1.7)

(1.8)

where De
i , j is the dipolar coupling tensor between the i th and the j th electronic

spin, Dn
k,l is the dipolar coupling tensor between the kth and the l th nuclear spin.

μ0 is the magnetic permeability constant, ħ is the Plank constant, ri , j is the distance
between the i th and the j th electronic spin, and rk,l is the distance between the kth
and the l th nuclear spin, ri , j and rk,l are the spatial vectors that connect the positions
of pairs of free electron and of pairs of nuclei, respectively.

In our system, the two dipolar interactions are both of crucial importance for DNP
process: The electron-electron dipolar coupling helps spreading the partial saturation
feature across the absorptive ESR line shape through the spectral diffusion mechanism.
The nucleus-nucleus dipolar coupling helps propagating the hyperpolarisation from
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Chapter 1. Introduction

the nuclei in the vicinity of electron spins to the whole bulk through spatial spin
diffusion.

Hyperfine interaction The hyperfine interaction comprises two parts, the isotro-
pic part due to the Fermi contact interaction between an unpaired electron and the
nuclei to which the electron is directly attached, and the anisotropic part due to the
dipolar interaction between the electron and nuclei:

ĤHF ,tot = ĤHF ,i so + ĤHF ,ani so

=∑
i ,k

ai ,k · Êi · N̂k +
∑
i ,l

Êk ·Ad
i ,l · N̂l

=−∑
i ,k

2

3
μ0γeγnh|Ψ(0)|2Êi N̂k

−∑
i ,l

μ0γeγnh

4πr 3
i ,l

[
Êi · N̂l −

3

r 2
(Êi · r)(N̂l · r)

]

(1.9)

(1.10)

(1.11)

where the ai ,k represents the scalar for the Fermi contact interaction between
the i th electron and the kth nucleus that is directly bound to the electron i , and the
tensor Ad

i ,l depicts the dipolar part of the hyperfine coupling of a spin pair of one
electron i and one nucleus l .

The isotropic part of hyperfine coupling plays an important role in modifying the
absorptive ESR line shape of radical. The dipolar part of hyperfine coupling links
the electrons and all the nuclei in neighbourhood, which is the major factor for the
transfer of hyperpolarisation from electrons to nuclei.

Rearrangement of dipolar terms If we rearrange the dipolar terms between two
spins Î and Ŝ, which can be either an electron or a nucleus, with raising and lowering
operators (Î+, Î−, Ŝ+, and Ŝ−) and in spherical coordinates, we would have:

ĤD =−μ0γIγSh

4πr 3
(Â+ B̂+ Ĉ+ D̂+ Ê+ F̂) (1.12)
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1.2. Some Basic Concepts

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Â = (1−3cos2θ) · Îz Ŝz

B̂ =−1
4 (1−3cos2θ) · (Î+Ŝ−+ Î−Ŝ+

)
Ĉ =−3

2 sinθcosθe−iφ · (Î+Ŝz + Îz Ŝ+
)

D̂ =−3
2 sinθcosθeiφ · (Îz Ŝ−+ Î−Ŝz

)
Ê =−3

4 sin2θe−2iφ · Î+Ŝ+
F̂ =−3

4 sin2θe2iφ · Î−Ŝ−

(1.13)

where θ is the polar angle of the spherical coordinate system, and φ is the
azimuthal angle.

We know that, after diagonalisation, the term Â+ B̂ commutes with the Zeeman
Hamiltonian of the system, and we call it the secular part of dipolar Hamiltonian Ĥ′

D .
The intensity of Ĥ′

D indicates the intensity of the local dipolar field among spins. The
sum of the other terms is called the non-secular part Ĥ′′

D .

Other interactions In the system we still have a lot of other interactions, for
instance the electron zero-field splitting, the Heisenberg exchange interaction, the
nuclear scalar couplings and the nuclear quadrupolar interaction. Notwithstanding,
on account of that, in the scope of this thesis, we only use monoradicals like TEMPO
and its derivatives (E = 1/2) for doping the DNP sample and the concentration of
radicals in our typical DNP sample is on the order of 10 to 100 mmol/L (equivalent
to 0.1% to 1% in molar percentage), the zero-field splitting does not exist and the
exchange interactions can be well neglected. Besides, the nuclear scalar coupling
is way smaller than all the other interactions. As a result, we only keep the nuclear
quadrupolar interaction in our consideration:

Ĥother = ĤQ

=∑
k

N̂k ·Qk · N̂k

=−∑
k

eQ

2Nk (2Nk −1)h
N̂k ·Vk · N̂k

(1.14)

(1.15)

where Nk is the spin quantum number of the kth nuclear spin, e is the elementary
charge, Q is the nuclear quadrupole moment, and Vk is the electric field gradient
tensor.
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Chapter 1. Introduction

When the sample is free of quadrupolar nuclear spins, this term does not exist in
the total Hamiltonian. When the presence of quadrupolar nuclear spins are abundant,
they might serve as one of the sources of nuclear relaxation of hyperpolarisation even
in a liquid helium bath.

Radiofrequency pulses and microwave irradiation This term is also composed
of two parts: the radiofrequency part mainly works on nuclear spins and the micro-
wave part operates on the electrons.

Ĥμw + ĤRF =−∑
i

2γe Bμw
1,i Êx,i cos(ωμw t )

−∑
k

2γnB RF
1,k N̂x,k cos(ωRF t ) (1.16)

where Bμw
1,i is the strength of microwave field at the position of the i th electronic

spin, ωμw is the frequency of microwave field, B RF
1,k is the strength of radiofrequency

field at the position of the kth nuclear spin, and ωRF is the frequency of radiofrequency
field.

The microwave irradiation mainly serves for the partial saturation of ESR line shape.
The radiofrequency is used for not only the transfer of hyperpolarisation between
different nuclei by cross polarisation but also for signal detection.

In the end, the simplified total stationary Hamiltonian writes:

ĤTot = ĤZ ,e + ĤZ ,n + ĤD ,e + ĤD ,n + ĤHF ,i so + ĤHF ,ani so + ĤQ + Ĥμw + ĤRF (1.17)

Relaxation Supermatrix

Like we use the Hamiltonian of the system to approximate the coherent evolution
of the system, we rely on the relaxation superoperator to estimate the incoherent part.

Under the assumption that the semi-classical theory of relaxation is valid, the
system of spins is coupled to the environment by some time-dependent stochastic
fluctuations that have a vanishing average over time, which was first introduced by
Bloch and Wangsness and later extended by Redfield as the famous Bloch-Wangsness-
Redfield theory.
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ˆ̂R
(
ρ̂(t )− ρ̂eq

)=∫∞

0
dτ

[
Ĥ1(t ),

[
exp(−iĤ0τ)Ĥ1(τ− t )exp(iĤ0τ),

(
ρ̂(t )− ρ̂eq

)]]

(1.18)

where Ĥ1(t) is a time-dependent stochastic Hamiltonian that describes the
random motions with zero time-average, Ĥ0(τ) is the static coherent part of the spin
system.

1.2.2 DNP Part

In principle, there are four major mechanisms that can explain the transfer of polari-
sation from electronic spins to nuclear spins:

• Overhauser Effect

• Solid Effect

• Cross Effect

• Thermal Mixing

In the following section, we limit ourselves to a concise introduction of the main
DNP process in our d-DNP experiments, the thermal mixing.

Spin Temperature When all off-diagonal terms of the density matrix of the spin
system vanish, the system is a canonical ensemble, where the distribution of the
populations of the eigenstates of the spin system conform to the Boltzmann dis-
tribution. As an analogue for the concept of temperature in a canonical internal
equilibrium, we can use a time-dependent spin temperature to describe the time-
dependent distribution of the populations of the spin system [39, 40]. In addition,
with the concept of spin temperature, we can also define the internal energy as well as
the temperature-dependent heat capacity of the spin system.

For a spin system with total Hamiltonian Ĥ0 , we can express the corresponding
density matrix of the system as a function of the inverse spin temperature TS :

9
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Ĥ0 =
∑

i
Ĥi

=⇒ ρ̂=
exp

[− ħĤ0
kTS

]
Tr
[

exp
[− ħĤ0

kTS

]]

=
exp

[−∑i
ħĤi
kTS,i

]
Tr
[

exp
[−∑i

ħĤi
kTS,i

]]

(1.19)

(1.20)

(1.21)

where Ĥi indicates an independent constant of motion of the system, kTS,i is the
spin temperature related to the i th reservoir, ħ is the Plank constant, and k is the
Boltzmann constant.

If we use the inverse spin temperature TI S , the expression has a more concise form:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

TI S
def==== ħ

kTS

ρ̂ = exp
[
−∑i TI S,i Ĥi

]
Tr

[
exp

[
−∑i TI S,i Ĥi

]]
(1.22)

A Taylor expansion can help us transform the matrix exponential into a series:

ρ̂= A×exp
[−∑

i
TI S,i Ĥi

]

= A×
[

1̂+ (−1)k

k !

[−∑
i

TI S,i Ĥi
]k
]

(1.23)

(1.24)

where A is a scalar factor for normalisation.

In the high temperature approximation, where ||TI S,i Ĥi ||	 1, we can keep only the
first order terms and neglect the contributions of all higher order terms, which gives
us the conventional results:

ρ̂= A×
[

1̂−∑
i

TI S,i Ĥi

]
(1.25)

10
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where 1̂ is the operator of unity.

From eq. (1.25), we can see that each spin temperature corresponds to one of the
constants of the motion inside the whole spin system. In thermal equilibrium, all
these spin temperatures equal to the macroscopic temperature of the lattice. When
the system is out of equilibrium, the spin temperature is no longer obliged to be the
same as the lattice temperature, and then each spin temperature can evolve in an
independent way.

Thermal Mixing Similar to the heat transfer between two objects with different
initial temperatures, the transfer of energy can also take place among the electron
Zeeman system, the electron dipolar system, and the nuclear Zeeman system. This
flow of energy eventually results in a steady state where the spin temperatures of the
three different reservoirs are identical, which is called Thermal Mixing.

The occurrence of thermal mixing requires two conditions:

• The ESR line width is broader than the NMR frequency;

• The dipolar coupling among electron spins is strong enough that the electronic
spin diffusion is much faster than electronic longitudinal relaxation, which
permits the establishment of a single spin temperature of the electronic dipolar
system.

Once the conditions of thermal mixing are fulfilled, in the presence of microwave
irradiation, the DNP process can take place, as shown in fig. 1.2:

Continous
Microwave 
Irradiation

MW

   Resonant 
Electron Spins

e= MW

 Electron 
 Zeeman
Reservoir

    Electron 
 Non-Zeeman
   Reservoir

0  m- 0( )  Nuclear 
 Zeeman
Reservoir

-T1,e,Z
-1 -T1,e,D

-1 -T1,n,Z,RRP
-1

Lattice

Figure 1.2 – An illustration of the thermal mixing process in a homogeneous spin glass for DNP
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In the first place, the microwave irradiation saturates the electron spin packet
on resonance with respect to the frequency of the irradiation, which spontaneously
changes the distribution of populations in the electron Zeeman manifold. At the same
time, due to the dipolar interactions among the electrons, magnetic energy exchanges
among the spin packets with similar energies, which leads to a partial saturation of
the whole line-shape. This partial saturation then results in the evolution of spin
temperature in the electron dipolar reservoir. As mentioned above, the ESR line width
is broader than the NMR frequency, we might say that the whole nuclear reservoir
is immersed inside the electron dipolar reservoir. The nuclear polarisation evolves
consequently towards the same steady-state with respect to the non-Zeeman electron
order, and eventually the electron Zeeman manifold.

1.3 Practical Aspects of D-DNP Experiments

In this section, we present a short picture of how d-DNP experiments are conducted.
Typically, they consists of four stages:

1.3.1 Sample preparation

Before starting d-DNP experiments, we have to first find a suitable sample that is in its
optimal state for the transfer of polarisation between electron spins and nuclei. As we
see, most MOI do not contain paramagnetic species as a source of hyperpolarisation.
It is natural for us then to dope pure MOIs or solutions of MOIs with polarising agents.
The key of a successful sample lies in the optimisation of hyperfine couplings between
doped unpaired electrons and the nuclei. Let’s begin with an idealised model with a
single electron spin.

The fig. 1.3 illustrates how the nuclei in close vicinity to an electronic spin (within
ca. 1 nm) experience a hyperfine splitting that is no less than 1 MHz, and this dipolar
coupling drops to about 10 kHz when the radius of neighbouring pair extends to
around 2 nm. On the other hand, from eq. (1.6), we see that the average intensity of
local dipolar fields of protons in a fully protonated solid is on the order of 10-100 kHz.

In this system, the DNP can happen in two ways. One way, which is direct, happens
as the joint consequence of the anisotropic part of the hyperfine coupling and the
constant microwave irradiation. The other way, which is less straight-forward, occurs
when extra nuclei act as intermediates: the intermediate nuclei first gets polarised
through the direct effect, then by the exchange of nuclear magnetic energy (i.e. by
spin diffusion) among like spins, the target nucleus acquires a polarised state.

From those distinct strengths of the dipolar fields shown in fig. 1.3 we can infer that,
for nuclear spin packets that are in close vicinity of the polarising agent, the large
dipolar part of the hyperfine interaction permits its rapid polarisation. Meanwhile,
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Figure 1.3 – The intensity of the dipolar field that results from the anisotropic hyperfine inte-
raction around an electronic spin

the large hyperfine interaction also forbids these nuclei from participating into the
indirect polarising process by playing the role of polarised intermediates. This is
because the frequency of the NMR absorption of such nuclei is largely distinct from
the frequency of the nuclei in the bulk. According to the Fermi’s Golden Rule, the
transition probability of coherent energy transfer becomes almost negligible.

When it comes to the nuclear spins that resides at a medium distance from the
polarising agents, the dipolar field of the hyperfine couplings and the dipolar field of
the network of likespins are almost of the same order of magnitude. The comparable
intensity of two dipolar fields suggests that these kinds of nuclear spins are still in ther-
mal contact with the bulk nuclei. Therefore, they are able to receive the polarisation
from electron spins at a reasonable rate (10-100 kHz) without loosing the transitional
role that links the flow of magnetic energy from paramagnetic centres throughout the
sample.

Meanwhile, when a nucleus has a position in the region where the dipolar field
from HFI is smaller with respect to the nuclear local dipolar field, its probability of
being directly polarised would be significantly smaller than nuclei than for nuclei
in the two above-mentioned categories. It is then a reasonable conjecture that the
nuclear spins of this category are mainly polarised through the indirect effect.

In a real sample, where the spins far outnumbers the one-spin model specified

13
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above, the story complicates itself in an exponential manner. The very first one comes
from the heterogeneity of the sample, which is introduced by radical doping. As
a result of thermodynamics, when we launch the radical-doped MOI or solution
of MOI into the polariser, this multi-component mixture freezes to become a solid.
More specifically, under most circumstances, the uniform liquid sample freezes into
a heterogeneous poly-crystalline mixture, where each chemical compound belongs
to the clusters of its own phase. Such a phase separation has two negative influences
on the DNP performance of the sample. First, since the dipolar interaction between
polarising agent and nuclei only works at short distances, under the condition of
phase separation the grains of free radicals can only affects a very limited volume
around themselves, leaving the largest part subject to the indirect polarisation transfer.
On the other hand, within the clusters of radicals, the distances between free electrons
are on the sub-nanometric scale. The intensity of electron-electron dipolar fields
is on the order of tens and even hundreds of megahertz. The anisotropic part of
hyperfine splittings is negligible compared to such huge entanglements between
electron spins, which directly leads to a poor performance in the DNP process. Aiming
at preventing a phase separation during sample freezing from occurring, people in
the community places high interests on maintaining the random distribution of all
species of molecules by freezing the sample into a glassy form.

As a result, when we are searching for a suitable d-DNP sample, generally we have
two approaches. Either we flash-freeze the mixture of radicals and MOIs directly to
obtain the spin glass, before the crystallisation and phase-separation take places in
the sample. This direct vitrification is often adopted when we wish to polarise the
molecules that has distinct transition between glassy phases and crystalline phases,
e.g. pyruvate acid [24], ortho-tertphenyl [41], amorphous powders of spin-labelled
amorphous proteins [42], or radical-functionalised porous material[43, 44]. Or we
dissolve the MOI in a mixed solvent that consists of a good solvent that favours of the
MOI solubility, as well as a glassy agent to prevent the occurrence of crystallisation
and phase-separation during the freezing process. Seeing that most of the chemicals
do not possess a kinetically stable vitreous phase, we are thus obliged to prepare the
d-DNP sample of these MOIs with the help of vitrifying media[45, 46, 47].

Recently, the Cesàro’s group also proposed a new mechanical method: crystalline
substances and polarising agents are mixed for co-grinding[48]. The crystalline struc-
ture of the MOI is reported to be crushed into a vitreous phase for DNP experiments.
Although this method could be considered as an important progress in the prepara-
tion of kinetically stable d-DNP samples in uniformly vitrified phases, by virtue of
the removal of the glassy agent, this method, admittedly, is confined in the Dogma
that demands the glassy state of DNP samples. Besides, such approach is unable to
solve the inherent drawback of homogeneous spin glasses: the fast nuclear relaxation
induced by paramagnetic impurities, which severely deteriorate the final polarisation
arriving at the detection devices after sample dissolution.
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1.3. Practical Aspects of D-DNP Experiments

1.3.2 Build-up of hyperpolarisation

Direct build-up

Formulated with the appropriate composition, the DNP sample is sent into the polari-
ser for the DNP process.

First, the sample is fully cooled down in a liquid helium bath at 1.2K in a static mag-
netic field. In our experimental set-up, the unpaired electrons can reach a polarisation
of 99.5% in a static magnetic field of 6.7 T. With a continuous microwave irradia-
tion of 87.5 mW ranging from 187 GHz to 189 GHz*, the high electron polarisation is
transferred to the nuclei.

90o

CW

50-100

0.01~1
o

N

Pre-saturation
Block

Direct Build-up Block

o

e

I

-

Figure 1.4 – The pulse sequence used for direct build-up of polarisation.

We can find in fig. 1.4 that a direct DNP build-up involves two basic blocks: the
presaturation block and the direct build-up block. In the presaturation block, we use
a series of 90deg RF pulses to saturate all the polarsiation that has been previously
accumulated in the system. In the direct build-up block, the nuclear spins constantly
receive energy from other nuclear spins. At the end of each block, we perform a pulse-
acquisition with very small flip-angles, which does not destroy the hyperpolarisation
in the nuclear spin reservoir while it gives us enough information on the evolution of
system. A typical example of a direct build-up curve can be found in fig. 1.5.

CP build-up

When we are interested in the hyperpolarisation of low-γ nuclei like 13C or 15N
etc., the conventional way is to directly polarise these nuclei with trityl radicals. A
brilliant example is reported by Golman et al. [49]. In this paper, they have do-
ped 1-13C -pyruvic acid with Tris(8-carboxy-2,2,6,6,-tetra(methoxyethyl)benzo[1,2-
d:4,5d’]bis(1,3)dithiole-4-yl)methyl sodium salt at the concentration of 15 mmol·L−1,
and subsequently injected this hyperpolairsed molecule into the hind leg of a pig so
as to visualise real-time metabolic processes.

*The acual frequency in a specific experiment depends heavily on the nature of radical as well as
on the mode of the hyperpolarisation (positive or negative) that we expect.
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Figure 1.5 – The 1H build-up of DNP process in a solution of 1-13C Sodium Acetate in mixed
solvent of 10% H2O, 40% D2O, 50% d 8 Glycerol at concentration of 3 mol·L−1. The black squa-
res indicate the acquisition points of experimental data during the build-up at 4.2K, and the
red squares stand for the experimental data of the build-up at 1.2K. The solid lines are monoex-
ponential fits to the experimental data.

Such a DNP process in a radical-doped mixture permits us to enter a promising
new area of research. Notwithstanding, because of the low susceptibility of low-γ
nuclei, compared with the build-up process of 1H , the direct DNP approach suffers
from drawbacks like long polarising times and low final polarisation. Various attempts
have been proposed to ameliorate the performance, such as using carefully designed
biradicals [50] or co-doping with paramagnetic metal ions. When these methods are
combined, it is possible to achieve a carbon polarisation of 50% at 3.35 T and 70% at
4.64 T, but the build-up rate is not necessarily shortened.

With the help of multi-channel RF coils, we can then perform the cross-polarisation
(CP) under the Hartmann-Hahn condition to polarise low-γ nuclei from hyperpola-
rised protons in the sample [51, 52, 53, 54, 55, 56]. The main advantage of this CP
scheme is that the build-up of low-γ nuclei now depends on the build-up rate of the
protons, which is significantly faster.

As illustrated in fig. 1.6, the polarisation first accumulates in the proton Zeeman
reservoir, and then CP equalise the polarisation between protons and low-γ nuclei.
In view of protecting the hyperpolarisation in both channels from the fast transverse
relaxation after CP, two adiabatic half passage pulses are applied to reoriente the
magnetisation vector back so as to be parallel with respect to the static field. Then
we repeat the two blocks of proton build-up and of cross-polarisation, until the
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Figure 1.6 – The pulse sequence used in CP build-up of polarisation.

polarisation of low-γ nuclei reaches its maximum. At the end of each of the two blocks,
we also place a pulse-acquisition block with small flip-angle on the low-γ channel, so
as to follow the build-up process, which is demonstrated in fig. 1.7
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Figure 1.7 – The 13C CP build-up of DNP process in a solution of 1-13C Sodium Acetate in
mixed solvent of 10% H2O, 40% D2O, 50% d 8 Glycerol at concentration of 3 mol·L−1. The red
line indicates the evolution of 13C polarisation during CP build-up at 1.2K, where the interval
of 1H build-up between two CP blocks lasts 80 seconds. The blue line represents the evolution
of 13C polarisation of the same sample with a interval of 160 seconds between two CP blocks.

1.3.3 Sample dissolution and transfer

When the rate of nuclear relaxation approaches the rate of polarisation transfer from
radicals to nuclei, the build-up process reaches a steady state. No more net nuclear
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polarisation can be added to the system, even if the DNP process keeps going on.
Once this DNP limit is attained, we can thus stop the polarising process. In order
to make use of the hyperpolarised sample, overheated water is then shed onto the
frozen spin glass for its dissolution. Then the solution is pushed out of the polariser
with overpressured inert gas and transferred to the apparatus for signal detection. It is
worthy to note that, because of the fast nuclear relaxation in low field, the pipeline for
the transfer of the hyperpolarised solution is protected by a magnetic tunnel[57].

1.3.4 Signal detection

After the injection of the hyperpolarised fluid into the container awaiting the appa-
ratus for sample detection, we can start experiments for NMR/MRI. The scope of
research includes but is not limited to the analysis of sample composition [58, 59],
enzymatic reactions [60, 61], protein-ligand interaction [62, 63], oncology [64, 65] and
in-vivo imaging for physiological studies [27, 66, 67]

1.4 Transportable Relay DNP and New Sample Formula-
tion

Though the d-DNP is a powerful tool, the demanding requirements of the hyperpolari-
sing system on both hardware and staff severely hinders the general application of this
technique. A natural question then comes to our mind: Can we physically decouple
the polarising system from the detecting system?

In the initial stage of the development of the d-DNP technique, people have attemp-
ted to take the polarised sample out of the polariser. Their endeavour, however, did
not yield any success. The major reason of lies in the features of nuclear relaxation of
hyperpolarised samples.

As we can imagine, under typical conditions of DNP build-up, where the sample
is placed in magnetic field of 6.7 T and immersed in a liquid helium bath of 1.2 K,
the relaxation of nuclear magnetic energy is very slow: The T1,1H is on the order
of 102 −103 s, the T1,13C is on the order of 103 −104s. Such long nuclear relaxation
times are mainly due to two reasons. First, the low temperature of the environment
forbids almost all microscopic motions in the sample, which results in a very limited
number of phonon modes and thus an inefficient coupling between nuclear magneton
and phonon. In addition, at such temperatures, the electrons spins are almost fully
polarised due to their inherent high magnetic moments with an average T1,e− on the
order of 10−1−101 s. Under such conditions, the fluctuating dipolar fields, as a result of
anisotropic hyperfine couplings, are largely suppressed, and so are the contributions
of paramagnetic relaxation.
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If we now lift the hyperpolarised sample from the ideal condition of low tempera-
ture and high field to room temperature in the Earth’s field, the scenario of relaxation
changes drastically. The first issue we have to deal with is the relaxation rate at high
temperature. As the temperature of hyperpolarised spin glasses increases, the mole-
cular motions, such as stretching, scissoring, rocking, wagging, or twisting, gradually
came back to life from the initial frozen state. Also, the absolute value of the electron
polarisation shrinks as the temperature goes up, which favours the fluctuations of
local dipolar fields in the radical-doped spin glasses. On the other hand, the hyperpo-
larisation experiences a different spin dynamics in low field (ca. the Earth’s field) than
in high field. Typically, when the magnitude of the external magnetic field during the
transport of the hyperpolarised sample is of the same level as the local dipolar field in
the spin glass, peculiar phenomena may happen. For instance, the nuclear thermal
mixing equalises the spin temperature of all nuclear species at a speed that is on the
same order as the transverse relaxation rate R2. Therefore, the key of transportable
hyperpolarisation lies in minimising the relaxation rate of nuclear magnetisation.

As previously stated, the nuclear relaxation caused by molecular motions can be
reduced by storing the hyperpolarised sample in a liquid helium bath, and the con-
tributions of nuclear thermal mixing can be removed by keeping the sample in a
permanent magnet during storage. All these strategies, however, cannot significantly
reduce the fluctuations of local dipolar fields from doped polarising agents. The
paramagnetic relaxation becomes the main leak of nuclear polarisation.

The solution to paramagnetic relaxation can be found by exploiting the short-range
nature of dipolar interaction. A quick revisit of fig. 1.3 tells us that, the paramagnetic
centres can only exert their influence on nuclear spins within an envelope of limited
range. The idea of constructing an artificial segregation in space between the radicals
and the MOIs came to our minds. In principle, the molecules of the polarising agents
are expelled from the clusters of the MOIs, so that the MOI can only receive hyperpo-
larisation through spatial spin diffusion. At the same time, the aggregates of MOIs are
immune to the paramagnetic relaxation during storage/transportation, because the
fluctuations of local dipolar fields due to distant free electrons is now negligible.

In practice, we use an artificial phase-separation to realise the above-stated prin-
ciple: the glassy solution of radical forms the Radical Rich Phase (RRP), while the
MOI alone stays in a distinct Radical Free Phase (RFP). The two individual phases
are only connected by thermal contact at their interface. Thanks to the reduction of
thermal exposure between electronic spins and the MOIs in the RFP, the paramagnetic
relaxation is eliminated, and thus the lifetime of hyperpolarisation of MOI is signifi-
cantly extended. With the prolonged lifetime of hyperpolarisation, transportation of
hyperpolarised MOI now becomes possible.
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Figure 1.8 – An illustration of transportable d-DNP. The blue box indicates the stage of polari-
sation build-up. The build-up curve(red line) here shows the process of diffusion-relayed DNP.
The green box shows a 16-hour-long storage of the hyperpolarised sample. In the red box, the
result of signal detection is shown in the spectrum at the bottom. The signal of hyperpolarised
amino acid (red line) is around 648 times stronger than the thermal signal at room tempera-
ture (black line, 128 times magnified)
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2 Modelling Diffusion-Relayed
DNP in Biphasic Samples

In a biphasic sample, the build-up of the nuclear polarisation comprises three steps:
First, the direct contact between an unpaired electron and nuclei in its vicinity, so that
hyperpolarisation builds up in the radical-rich phase (RRP). Then the polarisation
flows into the radical free phase (RFP) due to the spatial inhomogeneity of polarisation.
Since the spin diffusion is the bottleneck step of the DNP process, the build-up
rate of hyperpolarisation and the final polarisation at steady state could both be
unsatisfactory. In order to equip ourselves with at least qualitative, preferably with
quantitative insight into the physical parameters of biphasic samples, we shall discuss
in this chapter the development of a numerical approach that allows the visualisation
of the spatial propagation of nuclear polarisation during the diffusion-delayed DNP
process in biphasic samples.

Since the 1950s, various schemes based on pure quantum mechanics have been
proposed for evaluating the behaviour of spin diffusion [68, 69, 70, 71, 72, 73]. All of
these analytical methods demand significant efforts for their mathematical treatment.
In addition, we can only obtain straightforward expressions when the spin lattice
remains simple and the geometry not too complicated. Consequently no detailed
attempts of this sort will be presented in this chapter.

Like all the coherent processes, the diffusion of spins can be simulated by first-
principle approaches on a quantum-mechanical basis [74, 75, 76, 77, 78, 79, 80, 81].
Needless to say, we can expect a quasi-exact solutions from such a formalism, except
some inevitable errors due to the nature of numerical analysis, like truncation errors.
Unfortunately, this approach can hardly be applied in our case: the diameter of
particles of molecules of interest (MOI) that we use is nano-metric, even micro-metric.
This meansthat we have at least 105 molecules inside a particle. A system consisting
of such an enormous number of spins remains a challenge for modern computational
technology, letting aside that we have not yet included the RRP as an additional phase.

Inspired by the hydrodynamic approach proposed by D. Greenbaum et al. [82], we
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present an attempt based on the classic theory of heat conduction. The finite element
method (FEM) is applied to visualise the picture, where the diffusion of magnetic spin
is associated with the evolution and propagation of magnetic energy in spin reservoirs.
With this method, we hope that a rational design of the biphasic samples for d-DNP
experiments will eventually be possible.

2.1 The Basic Thermodynamic Concepts

In the frame of spin temperature theory, we use eq. (1.25) to approximate the thermo-
dynamics of the spin system that conforms to the high-temperature assumption.

As the DNP process proceeds, the nuclear spins are so well polarised that the
inverse spin temperatures of the constants of motions are becoming significant, and
we can no longer neglect the higher terms in the series expansions of exponential
functions of the Hamiltonian. Therefore, we are obliged to find a suitable measure
of thermodynamics parameters in the system, so as to replace the (inverse) spin
temperature. Detailed discussions can be found in the book by Wenckebach [83].

2.1.1 Spin temperature theory in measure of polarisation

Consider a simple system of spin I = 1/2 which merely has a Zeeman splitting. If we
express the density operator in the high temperature approximation, we then have:

ρ̂= A×
[

1̂−TI S,zĤz

]
(2.1)

On the other hand, we can also reconstruct the density operator of the same system
using the concept of spin polarisation, which is a dimensionless quantity defined as
the difference of population between two energy levels:

P
def==== p−−p+

p++p−
(2.2)

where P is the polarisation of spin I in this system with a range P ∈ [−1,1], p+ is the
population of particle on the eigenstate with higher energy, and p− is the population
of particle on the eigenstate with lower energy. All the three variables are functions of
the inverse spin temperature TI S and can be time-dependent.

The density operator is then:
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⎧⎪⎪⎨
⎪⎪⎩

P = tanh
(1

2 TI SγB0
)

ρ̂= 1
2 ·
(

1−P 0

0 1+P

)
(2.3)

Defining P̂z as the polarisation operator of the system, we can then rewrite the
density operator of this two-level system in a linear form in analogy to the expression
of the high temperature approximation.

{
P̂z

def==== P · Îz

ρ̂= 1
2 (1̂− P̂)

(2.4)

Though eq. (2.1) and eq. (2.4) have similar forms, it is worthy noting that eq. (2.4) is a
general formula that is valid beyond the limits of the high-temperature approximation.
The only constraint of eq. (2.4) is that the matrix representation of the density operator
of the spin system must not have any off-diagonal terms. Since typical transverse
relaxation times (T2) of the electronic spins are on the order of nanoseconds and those
of nuclei are on the order of milliseconds to seconds, the constraints perfectly match
with the time-scale of this research (from minutes to hours).

The molar capacity of the magnetic energy in terms of polarisation (Cp ) can be
defined as the amount of magnetic energy required to polarise a mole of spins from 0
to 100 %:

Cp
def==== 1

2
·ħγB0 ·NA (2.5)

Where 1
2 ·ħγB0 refers to the energy that is emitted or absorbed by a spin in a field

B0 in units of Joule, c is the spin density in mole per liter, and NA is the Avogadro’s
constant.

In the following sections, we shall be using the polarisation rather than the (inverse
spin temperature as the measure of thermodynamics of the system.

23



Chapter 2. Modelling Diffusion-Relayed DNP in Biphasic Samples

2.2 Diffusion of magnetic energy in direct Diffusion-Relayed
DNP

Our objective in this section is to find a suitable method of describing the time-
dependent behaviour of high-γ nuclei, for instance 1H , during the process of direct
Diffusion-Relayed DNP.

2.2.1 Parabolic Partial Differential Equation for Diffusion of Energy

In accordance with the conventional practices for the study of heat conduction, we
can restate the quantum mechanical phenomenon of spin diffusion in the form of a
spatial redistribution of magnetic energy as a function of time by a parabolic partial
differential equation(PDE):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

da(r ) · ∂P (r , t )

∂t
=∇ · (κ(r ) ∇P (r , t )

)
D(r ) = κ(r )/da(r ) ,r ∈Ω=ΩRRP

⋃
ΩRF P

da(r ) =Cp (r ) · c(r )

(2.6a)

(2.6b)

(2.6c)

where Ω is the entire geometric region, which consists of both RRP (ΩRRP ) and
RFP (ΩRF P ), r =∑

i xi · ei refers to the position vector, ei are basic vectors of space
,da , the scalar damping factor, corresponds to the energy that we need to polarise
all the nuclei in one cubic metre of sample, which is equal to the product of molar
capacity of magnetic energy and the molar concentration of nuclear spin per cubic
metre. D, the spin diffusivity, is a scalar number in an isotropic media, while it is a
second-rank tensor in anisotropic media. κ, by a comparison with its counterpart in
thermal conduction, refers to the spin conductivity: the speed of spatial propagation
in a nuclear spin reservoir under a polarisation gradient of 1 m−1 . It can be either a
scalar or a tensor according to the properties of medium. It is worthy to note that all
these physical properties can be different from one phase to the other.

The boundary conditions of the system are listed below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂n
P (r , t ) = 0,∀n ∈ ∂ΩOut

lim
r→∂ΩIn

P (r ∈ΩRF P , t ) = lim
r→∂ΩIn

P (r ∈ΩRRP , t )

− lim
r→∂ΩIn

κRF P ·∇P (r ∈ΩRF P , t ) = lim
r→∂ΩIn

κRRP ·∇P (r ∈ΩRRP , t )

P (r , t = 0) = 0,∀r ∈Ω

(2.7a)

(2.7b)

(2.7c)

(2.7d)
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2.2. Diffusion of magnetic energy in direct Diffusion-Relayed DNP

where ∂ΩOut is the geometric boundary between the whole sample (Ω) and the
environment, while ∂ΩIn is the interface between the ΩRRP and the ΩRF P , and n is a
vector normal to the boundary.

eq. (2.7a) is the Neumann condition that ensures the adiabaticity of the whole
system. This is the direct result of the absence of coherent transfer of magnetic
energy between the macroscopic sample and its environment. eq. (2.7b) and eq. (2.7c)
describe the behaviour on the biphasic interface. The former implies that the two
distinct phases share the same value of the nuclear polarisation at the interface,
which follows the requirement of continuity. The latter follows the conservation of
magnetic energy between the two distinct phases. The initial condition of the system
is set to be uniformly zero (see eq. (2.7d)), which corresponds to our experimental
conditions where all thermal polarisations are being eliminated by pre-saturation at
the beginning of the build-up sequence, as shown in fig. 1.4.

2.2.2 Coupling Spin Diffusion with DNP

Revisiting the DNP model

We can see that the pure diffusion equation in eq. (2.6) and eq. (2.7) is only valid in
an energy-conserving system. As illustrated in section 2.2.2, the actual case of DNP,
however, does not meet these criteria. When the nuclear polarisation builds-up, we
have an inward flow of nuclear energy from the non-Zeeman electron reservoir to the
nuclear reservoir of RRP.

Continous
Microwave 
Irradiation

MW

   Resonant 
Electron Spins

e = MW

 Electron 
 Zeeman
Reservoir

    Electron 
 Non-Zeeman
   Reservoir

0  m- 0( )  Nuclear 
 Zeeman
Reservoir
   RRP

-T1,e,Z
-1 -T1,e,D

-1 -T1,n,Z,RRP
-1

Nuclear 
Zeeman
Reservoir
  RFP

-T-1
1,n,Z,RFP

Lattice
Figure 2.1 – An illustration of spin diffusion relayed DNP within a biphasic sample

Therefore, we have to find a method to describe the flow of magnetic energy bet-
ween the electron dipolar reservoir and the nuclear Zeeman reservoir in the RRP.

In section 2.2.2 we can see that, we added an extra nuclear spin reservoir, which
contains only the nuclei directly coupled with electrons. In order to simplify the model,
we can now treat the whole electron system together with the microwave irradiation as
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Chapter 2. Modelling Diffusion-Relayed DNP in Biphasic Samples

a black box, whose function is the source of build-up and/or paramagnetic relaxation
in the RRP, as illustrated in section 2.2.2.

 Nuclear 
 Zeeman
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   RRP

-T1,n,Z,RRP
-1

 Nuclear 
 Zeeman
Reservoir
   RFP

-T-1
1,n,Z,RRP

Lattice

Ensemble of 
Electron 

Reservoirs

   Spin 

Diffusion

Polarisation 

  Transfer

Figure 2.2 – An illustration of the simplified thermodynamic model of spin diffusion relayed
DNP

Accordingly, we will have to amend the governing PDE of the system: A time/space-
and-space-dependent source term Q(r , t ) should be introduced.

da(r ) · ∂

∂t
P (r , t ) =∇ · (κ(r )∇P (r , t )

)+Q(r , t ) (2.8)

Since Qi (r , t) is still unknown, before solving the PDE, we need to determine the
exact expression of source term.

Construction of Source Term

We start by considering the simplest case, where there is only a homogeneous RRP. We
also introduce a further assumption that the spatial propagation of the polarisation
within the nuclear spin reservoir is fast, so that the build-up of nuclear polarisation
can be treated as homogeneous throughout the whole sample. In a normal d-DNP
sample, the proton spin-diffusivity is on the order of 10−15 m2s−1[84]. When the
concentration of the radicals is around 50 mM, the average distance between two
radicals is around 10−8m. In such a sample, the average characteristic time of spin
diffusion is on the order of 1s, which is roughly of the same order of magnitude
as the electronic longitudinal relaxation time. Therefore, this assumption could be
reasonable.

In this example, we can thus infer that the spatial gradient of the nuclear polarisa-
tion vanishes: ∇ · (κi ∇P (r , t )) ≡ 0, and the governing PDE reduces to:
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2.2. Diffusion of magnetic energy in direct Diffusion-Relayed DNP

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

da · ∂
∂t P (t ) =Q(t )

D = κ
da

da =Cp · c
∂
∂n P (t ) = 0,∀n ∈ ∂Ω

(2.9)

As shown in fig. 1.5, the build-up behaviour of the nuclear polarisation, P (t ), has a
mono-exponential growth with a vanishing initial value:

We can then deduce the analytical expression of the source term Q(t ) for RRP under
the assumption of a homogeneous mono-exponential growth:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

QRRP (t ) =QRRP ,const −QRRP ,l i n(t )

QRRP ,const = qRRP ×P∞,RRP

QRRP ,l i n(t ) = qRRP ×PRRP (t )

qRRP = da,RRP
τBup,RRP

(2.10)

where the constant part QRRP ,const represents the constant inward energy flow into
the nuclear reservoir, and QRRP ,l i n(t) represents time-dependent energy sink that
refers to the rate of relaxation within the nuclear reservoir.

For the RFP, since the value of the polarisation at thermal equilibrium is negligible
compared to the hyperpolarisation, we can drop the thermal equilibrium term for
simplicity without significant loss of precision. The source term of RFP is then a
simple analogue as in eq. (2.10):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

QRF P (t ) =QRF P ,const −QRF P ,l i n(t )

QRF P ,const = qRF P ×P∞,RF P = 0

QRF P ,l i n(t ) = qRF P ×PRF P (t )

qRF P = da,RF P
τBup,RF P

(2.11)

So wehave obtained a complete PDE description of the dynamics of the system.
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Spatial Discretisation of PDE

Because the RRP does not have the same spin concentration as the RFP, the spin
diffusivity is different in the two phases. The direct consequence of such discontinuous
physical properties is that, as previously stated ineq. (2.7c), the spatial distribution of
the hyperpolarisation can only be continuous at the interface to the first order. The
direct spatial discretisation of Laplacian, which is a second-order derivative of space,
would lose its physical meaning. To solving this problem, we transform this classical
second-order PDE to its corresponding weak form.

To begin with, we multiply both sides of the governing PDE by a test function ν(r ) :

da(r ) · ∂

∂t
P (r , t ) ·ν(r ) =∇· (κ(r )∇P (r , t )

) ·ν(r )

+Q(r , t ) ·ν(r ) ,r ∈Ω (2.12)

Then we can perform integration on both side:

∫
Ω

da(r ) · ∂

∂t
P (r , t )ν(r )dV =

∫
Ω

∇· (κ(r )∇P (r , t )
)
ν(r )dV

+
∫
Ω

Q(r , t ) ·ν(r ) ·dV (2.13)

With the Divergence Theorem, we then obtain the weak form of PDE:

∫
Ω

da(r ) · ∂

∂t
P (r , t )ν(r )dV =

∫
∂Ω

κ(r )ν(r ) ·∇P (r , t ) ·dS

−
∫
Ω

κ(r )∇P (r , t )∇ν(r ) ·dV

+
∫
Ω

Q(r , t ) ·ν(r ) ·dV (2.14)

2.2.3 Simplification of the Model

In the previous subsection, we have formulated the dynamics of the nuclear reservoir
during direct diffusion-relayed DNP in terms of a parabolic PDE with a series of
constraints. The solution to this PDE is, however, not very straight-forward. The reason
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2.2. Diffusion of magnetic energy in direct Diffusion-Relayed DNP

lies primarily in the highly complex geometrical features of the biphasic samples.

From a macroscopic point of view, the RFP is the ensemble of grains of MOI. Since
they result from mechanical grinding, the shapes of grains are all highly irregular. In
addition, the random packing of thousands of irregular grains makes the situation
even more complicated. It is the objective of this section to reduce the complexity of
the geometry of our physical model.

As a the biphasic sample can be considered to be composed of an RFP comprised
of MOI crystallites that are immersed in the RRP, i.e., a solution of PA, we adopt a
core-shell model where the RFP is placed inside a shell of RRP.

Figure 2.3 – An illustration of spherical core-shell model.

As shown in the right part of section 2.2.3, the random distribution of the RFP
crystallites dispersed in the RRP is treated as a biphasic core-shell model. The radius
of inner core, RMOI , is the spherical-equivalent radius of RFP particles, which corre-
sponds to a sphere of the same volume with respect to the mean volume of crystallites
of MOI. The mean volume of the RFP crystallites can be determined by other techni-
ques, such as scanning electron microscopy, X-ray computed microtomography, laser
granulometry, or sieve analysis etc.. Since the volume ratio between the shell and the
core equals the volume of solid powder of MOI and the volume of solution of PA. RPA,
can then be calculated from the sample formulation:

RPA =
3

√√√√3
(

mMOI
ρMOI

+VPA

)
4π

−RMOI (2.15)

where mMOI is the mass of the MOI powder, ρMOI is the theoretical density of MOI in
crystalline form, and VPA is the volume of solution of PA added in the biphasic sample.

With the spherical symmetry, we can even reduce the model into a one-dimensional
model as the left part of section 2.2.3, under the condition that both the RRP and the
RFP be isotropic and the tensor of spin diffusivity reduces into a scalar.
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2.3 The Dynamics in Diffusion-Relayed CP-DNP

In the preceding section, we have established a simplified one-dimensional descrip-
tion of direct diffusion-relayed DNP under a series of assumptions:

• The build-up of nuclear polarisation be uniform throughout space;

• The complex geometry of sample could be expressed in a simple core-shell
model;

• The spin-diffusivity be isotropic.

Now it is our job to extend the mathematical description to Diffusion-Relayed CP-
DNP of low-γ nuclei. Since the sequence of Diffusion-Relayed CP-DNP(fig. 1.6) can
be decomposed into a serial combination of direct Diffusion-Relayed DNP block and
a CP block, our following narration is also divided into two parts. Here we limit the
discussion in a nuclear system with only 1H and 13C , while the general principle can
be applied to other nuclei.

2.3.1 The dynamics in direct DNP blocks

All the principles we developed in the preceding section still apply here:

⎧⎪⎪⎨
⎪⎪⎩

da (r )◦ ∂
∂t P (r , t ) =∇

(
κ(r )◦ (∇P (r , t )

))+Q(r , t )

κ(r ) = D(r )◦da (r )

da (r ) =Cp (r )◦c(r )

∂

∂n
P (r , t ) = 0,∀n ∈ ∂ΩOut

lim
r→∂ΩIn

P (r ∈ΩRF P , t ) = lim
r→∂ΩIn

P (r ∈ΩRRP , t )

− lim
r→∂ΩIn

κRF P ·∇P (r ∈ΩRF P , t ) = lim
r→∂ΩIn

κRRP ·∇P (r ∈ΩRRP , t )

P (r , t = 0) = 0,∀r ∈Ω

(2.16a)

(2.16b)

(2.16c)

(2.16d)

(2.16e)

where P (r , t ) = (
P H (r , t ),PC (r , t )

)ᵀ is the polarisation vector of nuclear system, Q(r , t ) =(
Q H (r , t ),QC (r , t )

)ᵀ is the vector of source term, da (r , t )
= (

da
,H (r , t ),da

,C (r , t )
)ᵀ is the vector of the damping factor, κ(r , t ) = (

κH (r , t ),
κC (r , t)

)ᵀ is the vector of the spin conductivity, D(r , t) = (
D H (r , t),DC (r , t)

)ᵀ is the
vector of the spin diffusivity, Cp (r , t ) = (

Cp
H (r , t ),Cp

C (r , t )
)ᵀ is the vector of the heat

capacity, and c(r , t ) = (
c H (r , t ),cC (r , t )

)ᵀ is the vector of the spin concentration.

The binary operator ◦ here denotes the Hadamard product of tensors, which is
defined as an entry-wise product of two tensors of the same dimension. For x =
(x1, · · · , xn)ᵀ and y = (y1, · · · , yn)ᵀ, we have x ◦ y

def==== (x1 y1, · · · , xn yn)ᵀ
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2.3. The Dynamics in Diffusion-Relayed CP-DNP

Like what we did in eq. (2.14), in our numerical treatment, the governing PDE is
also converted in its weak form.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

da
H (r ) · ∂

∂t P H (r , t )ν(r )dV = ∫
∂Ω

κH (r )ν(r ) ·∇P H (r , t ) ·dS

−∫
Ω

κH (r )∇P H (r , t )∇ν(r ) ·dV

+∫
Ω

Q H (r , t ) ·ν(r ) ·dV∫
Ω

da
C (r ) · ∂

∂t PC (r , t )ν(r )dV = ∫
∂Ω

κC (r )ν(r ) ·∇PC (r , t ) ·dS

−∫
Ω

κC (r )∇PC (r , t )∇ν(r ) ·dV

+∫
Ω

QC (r , t ) ·ν(r ) ·dV

It is worthy to note that, for a diffusion-assisted DNP block that follows a CP block,
the initial value should be the result of the precedent CP block.

2.3.2 The dynamics in CP blocks

Theoretically, during the whole CP process, the build-up and relaxation of polarisation,
the spin diffusion and the equilibration of nuclear magnetic energy between two
nuclear reservoirs all occur simultaneously. The thermal mixing under the nuclear
Hartmann-Hahn condition (on the order of a few milliseconds) proceeds, however,
much faster than both the build-up of nuclear polarisation and its diffusion of nuclear
polarisation ( both occur on time scales on the order of 100-1000 seconds). In the
treatment of CP, we can therefore neglect both the build-up and spin diffusion. The
nuclear thermal mixing during spin-locking can be described by the master equation:

∂

∂t
P =W ·P (2.17)

where W is the matrix of transition probability.

An explicit expression of transition matrix can be obtained after some easy algebra[85,
35]:

W=

⎛
⎜⎝−

1
T H

1ρ
−bH−C · cC

c H+cC bH−C · cC

c H+cC

bH−C · c H

c H+cC − 1
T C

1ρ
−bH−C · c H

c H+cC

⎞
⎟⎠ (2.18)

31



Chapter 2. Modelling Diffusion-Relayed DNP in Biphasic Samples

where T H
1ρ and T C

1ρ are the longitudinal relaxation times in the rotating frame of

proton and of carbon-13, c H and cC are the spin densities of the protons and of
carbon-13, and bH−C is the average heteronuclear dipolar coupling between protons
and carbon-13.

The initial condition of the CP block is always set equal to the numerical result of
preceding direct build-up block.

It is worthy to note that this discussion focuses at the simple Hartmann-Hahn type
experiment: no advanced schemes, such as, RAMP ,etc., are considered.

2.4 Determination of Numerical Values of Physical Pro-
perties

Before launching numerical simulations, we still have to define the values of all above-
mentioned parameters that are required for the numerical simulations. Here we only
briefly introduce the formulae of the calculations. All the quantities in SI units are
detailed in appendix A.1.1. The choice of the parameters can be somewhat idealised,
since they merely serve as a point of departure of some qualitative discussions.

Molar Energy Capacity
The value of the capacity of magnetic energy per one mole of spins can be derived
from eq. (2.5). This value is 5.69 ·10−2 J·mol−1 for protons, and 1.43 ·10−2 J·mol−1 for
carbon-13.

Spin density
The value of the spin density in each phase can be calculated from eq. (2.19).

⎧⎨
⎩c H def==== nHρ·106

MM

cC def==== ρ·106

MM
(nC +0.011 ·nC ′

)
(2.19)

where c H and cC are the spin densities of protons and carbon-13, ρ is the density at
standard conditions of a given compound, MM is the molecular mass of a given com-
pound, nH is the number of protons in the molecular formula of a given compound,
nC is the number of labelled carbon-13 nuclei in the molecular formula of a given
compound, nC ′

is the number of carbon-13 in natural abundance in the molecular
formula of the compound.

When treating a mixture, like the PA in the RRP, the spin density of this glassy mixture
is taken to be the weighted arithmetic mean of the spin densities of all components
based on their relative volumetric percentage. This approximation is based on two
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assumptions: one is that during the phase transition from the liquid state to the frozen
glass the volume of the solvents does not vary in a significant manner. On the other
hand, the partial molar volume of each component in the mixture is negligible, so that
the volume of the mixture can be considered as a linear addition of all components.
Generally speaking, for the a mixture of toluene and THF at a volumetric ratio of of 8:2,
as in the RRP we wish to simulate, these conditions are met without significant errors.

Damping factor
The damping factor of each phase can be determined by multiplying its molar energy
capacity and its spin density, as indicated in eq. (2.6b).

Spin diffusivity
The value of the spin diffusivity can be determined by different methods: either by
experimental measurements [86, 87, 84], by theoretical calculations from the first-
principle [80], or by empirical estimation. In our context, we focus on an empirical
estimate.

This estimate starts from the spin diffusivity of protons in polystyrene measured by
Meyer et al. [84], which is D H

PS = 3.8 ·10−15 m2·s−1. Based on the cubic scaling rule[88]
and assuming that all solids that we treat in this simulation are amorphous, we can
access to the numerical values of other glassy solids:

D H = D H
PS · 3

√√√√ c H

c H
PS

(2.20)

Of course, the spin diffusivity in anisotropic crystalline environments should be
described by a tensor rather than by a scalar value.

The estimation of the spin diffusivity of carbon-13 can be obtained from a less direct
way. According to the dimensional analysis by Abragam [33], the spin diffusivity can
be calculated from the transition probability (W) and the average minimal distance
between two like-spins (ami n):

D =W ·ami n
2 (2.21)

In a sample of adamantane, Bronniman et al.[89] have measured the transition proba-
bility among nuclei of aliphatic carbon-13 nuclei under proton-driven spin diffusion
in a sample of adamantane at natural abundance as WAd amant ane = 0.781s−1. From
the density of adamantane we can derive the Wigner–Seitz radius [90] of 13C spins:

33



Chapter 2. Modelling Diffusion-Relayed DNP in Biphasic Samples

4π

3

(ami n

2

)3ρ ·NA ·0.011

MM
= 1

=⇒ ami n = 3.8 ·10−9m (2.22)

Now we have D Ad amant ane = 8.56 ·10−18 m2·s−1.

As reported by Goldman and Jacquinot [91], the proton-driven spin diffusivity
follows the proportionality of D is proportional to N 4/3. We can derive the proton-
driven spin diffusivity as a function of the concentration of the low-γ spins:

DC = DC
Ad amant ane ·

( cC

cC
Ad amant ane

)4/3
(2.23)

Because of the inhomogeneous broadening of the absorption line shape, for exam-
ple due to CSA broadening, the spin diffusivity should generally be smaller than the
value predicted by eq. (2.23).

When it comes to estimating spin diffusivity in crystals, as stated in previous para-
graphs, we can not directly adopt the scaling rule. The remedy also comes from the
dimensional analysis in eq. (2.21). As a primary approximation, however, we start by
assuming that the spin diffusion in crystals obeys the same scaling rule as in those
glassy matrices, so as to obtain a value as a point of departure of qualitative results.

Spin conductivity
By analogy to the thermal conductivity in heat conduction, the spin conductivity is
defined as the product of spin diffusivity and the total damping factor, as in eq. (2.6c).

Build-up time constants
The time constants of build-up processes can be determined by mono-exponential
fits of experimental data. Normally, for a water-glycerol based sample, this constant
is roughly on the order of 100-300 seconds, depending on the proton concentration
and the radical concentrations in the sample. For a toluene based sample, this time
constant is on the order of 30-120 seconds. In the RFP, there are no radicals, and the
solid of MOI cannot be polarised. This concept is thus not applicable.

The actual time constant used in simulation is set to be 65.4 s for protons, based on
experimental observations. For carbon-13, we assume the time constant to be 1800 s.

34



2.4. Determination of Numerical Values of Physical Properties

Longitudinal Relaxation Times in the Laboratory Frame

Since the nuclear longitudinal relaxation times vary as a function of the polarisation
of the electronic spins in their neighbourhood, the longitudinal relaxation times that
are used in the numerical simulations refer specifically to the time constants of the
nuclear spins in the absence of microwave irradiation, reflecting the situation where
our experiments were conducted. For the RRP, the longitudinal relaxation times of
protons are obtained from the saturation-recovery experiments, and they are found to
be on the order of 100 s. For the crystalline RFP, since the longitudinal relaxation times
of protons are usually too long to be measured from experiments, and we arbitrarily
assume T1(1H) = 6000 s. Further, for 13C , the the longitudinal relaxation times in
the RRP are around 2400 s, and the the longitudinal relaxation times in the RFP is
assumed to be in the vicinity of 36000 s

Maximum Polarisation
The maximum polarisation can be fitted from the data of a build-up experiments. It
represents the value of the asymptote line, towards which the exponential growth
approaches. In an initial stage, we determine P (1H ) = 68% for the proton polarisation
in the RRP from experimental fits. According to the theory of thermal mixing of the
DNP process, all species of nuclear spins arrive at a common spin temperature in the
steady state, so we can determine the carbon-13 polarisation to be P (13C ) = 21%.

Heat Source
The numerical values of the heat source are estimated from the eq. (2.11), along with
all the above-mentioned values.

Average Dipolar Coupling
The average dipolar coupling is used to describe the speed of transfer of nuclear
magnetic energy between distinct nuclear spin reservoirs during the process of cross
polarisation. This parameter can be determined either by experiments for different
spin-locking times during the CP process, or simply approximated from the formula
of dipolar interactions (eq. (1.6)) with data from X-ray diffraction.

In our simulations, the average dipolar coupling in the RRP is set to be equal to the
heteronuclear dipolar coupling for a one-bond distance, around 9000 Hz. In the XRD
structure of (1-13C )-sodium pyruvate, the nearest distance between a labelled carbonyl
group and A methyl proton is around 2.7 angstroms, so that the corresponding bH−C is
around 2000 Hz. In the (U-13C )-glycine, there are both aliphatic and carbonyl carbons,
and we adopted an arithmetic average of 5500 Hz

The average dipolar coupling can also be obtained by fitting to the dynamics of the
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CP process, as discussed by Bornet et al.[92].

Longitudinal Relaxation Times in the Rotating Frame
The longitudinal relaxation times in the rotating frame have a significant influence
on the final result of cross polarisation. According to experimental observations,
the T1ρ is on the range of 100-microseconds to 10-milliseconds, depending on the
cristallinity of the solid phase, the electron polarisation, and many other factors. As a
rough attempt, we use some typical values for the qualitative simulations. The data
for protons in the RRP are obtained from reference [92]. The values of T C

1ρ , for the

moment,are set to be identical with respect to T H
1ρ

For the values of T1ρ in the RFP, it is considered to be long enough to be neglected
on the time-scale of the CP process in a liquid helium bath, because of the negligible
magnetron-phonon couplings in highly periodical structures at low temperatures.

2.5 Results of Numerical Simulations and Discussion

2.5.1 Time-dependent distribution of the proton polarisation du-
ring diffusion-relayed DNP process

Having built-up the physical model underlying our numerical simulations, in this
section we focus on the qualitative features concerning the diffusion-relayed DNP
process. We start with three examples in fig. 2.4, fig. 2.6, and fig. 2.5. On a first
glance, we see that the build-up rate of the proton polarisation in the system is closely
connected with three factors in the experiments: the size of the particles in the RFP,
the volumetric ratio between the PAs and the MOIs, and the deuteration level of the
RRP. We collected the extensive dataset from simulations to investigate the roles of
these factors.

From the fig. 2.7, we can see that the diffusion-relayed DNP process permits a
satisfactory build-up in particles of spin glasses, on the condition that the diameter of
equivalent spheres of the RFP does not exceed 1 μm. In this case, after a 30-minute-
long DNP process, the polarisation of the MOI can almost reach almost the same level
as the RRP itself. If the diameter of the MOI grains grows, the maximum polarisation
that we can obtain during the process gradually decreases. Meanwhile, we starts to
observe a multi-exponential patterns in the calculated build-up curve of the whole
system.

On the other hand, the spin diffusion has its inherent limits. As we can see in fig. 2.7,
the build-up of hyperpolarisation in the particles with diameters above 5 μm is not
very efficient within a reasonable time span, ca. 30 minutes. This might be explained
by considering that the penetration of hyperpolarisation into the RFP can not exceed
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a depth of 5 μm, which leads us to an estimate an upper limit of the particle size for
optimal performance in diffusion-relayed DNP experiments.

Similar numerical researches has also been conducted by varying the thickness of
the RRP layer (see fig. 2.8). Interestingly, the results of these simulations shows that we
do not really require a very thick shell of RRP that coats the crystalline grains. In order
to obtain the best performance in a particle with a radius of 5 μm, a layer of RRP with
thickness of 300 nm is often more than enough. Beyond such a thickness, any surplus
of RRP hardly contributes to polarising the particles of MOI. We can thus consider two
different regimes: when the thickness of the layer of the PA is less than 100 nm, the
process of hyperpolarisation is mainly limited by the overall cooling power of the RRP;
when the thickness of the layer of the PA is greater than 300 nm, the diffusion-relayed
DNP process is mainly controlled by the efficiency of spin diffusion.

As indicated in fig. 2.8, the distinct build-up profiles due to spin-diffusion in two
equivalent spin glasses also raised much interest for the role of concentration of proton
spins in multi-phasic spin diffusion. The equivalent spin glass of glycine (fig. 2.8b) is
more sensitive to the thickness of RRP layer than an equivalent spin glass of sodium
pyruvate (fig. 2.8a). This observation lead to further numerical experiments to study
the influence of spin concentrations on spatial diffusion in biphasic systems. When
considering the same final polarisation levels and the polarisation time constants for
RRPs for different extents of deuteration, we obtained fig. 2.9 .

From the tendencies in fig. 2.9a and fig. 2.9b, we can see that the highest hyper-
polarisation in the RFP is obtained for the least deuterated case. This phenomenon
could be explained by two reasons. First, since we chose the identical build-up time
constants for all the five cases, according to eq. (2.10) and eq. (2.6), the higher con-
centration of spin in the RRP, the higher the cooling power that we can benefit from
to polarise the whole system. Second, the rate of the spatial propagation of nuclear
magnetic energy depends on the spin concentration, since the spin diffusivity is pro-
portional to the cubic root of the proton concentration. This means that a higher
proton concentration allows a thicker layer of RRP to be involved in the build-up pro-
cess of the MOI particles, which in turn enhances the performance of overall build-up
of the RFP.

By revisiting the transmission boundary condition of this biphasic problem eq. (2.7c),
we could gain some semi-quantitative insights. In order to maintain the conservation
of magnetic energy in the system, the outward flow of magnetic energy from the RRP
must be equal to the inward flow into the RFP. By definition, the amplitude of the flow
is the product of the gradient of nuclear polarisation and the spin conductivity, where
the latter is proportional to the spin density to the power of 4/3. As a result, a higher
spin density favours the energy flow from the RRP to the RFP at the interface, and
therefore accelerates the spin diffusion.

The conditions of actual scenarios, however, are not exactly the same as those
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of the above-mentioned simulations. The most significant discrepancy is due to
that we do not always have identical values of the polarisation when the deuteration
level is altered. Generally speaking, when keeping the same concentration of radical
and when working at the same temperature of the helium bath, we always have
less polarisation in RRP when the deuteration level is decreased. The choice of the
chemical composition of the system thus requires some careful consideration. a
trial-and-error approach can yield a compromise between cooling power in thermal
mixing and spin diffusion.

As shown in fig. 2.9a, as long as the proton concentration in the RRP being higher
than the proton concentration of the RFP, the utility of a further increase of proton
spin density in RRP becomes less appealing. The main limiting factor in this case is
the flow at the interface rather than the generation of hyperpolarisation in the RRP.
We can then play with the deuteration level in the RRP to achieve a better and faster
polarisation level in RRP at steady-state, which ensures a optimised gradient of the
nuclear polarisation and consequently an optimised flow of energy. On the contrary,
for an MOI phase like glycine, which has a relatively high proton concentration,
we have reasons to perform more experimental attempts searching for the optimal
experimental condition.

In the ideal situation, we should have the fastest proton diffusion for high proton
concentration and a high final polarisation in RRP. The trade-off between the deutera-
tion and the final polarisation in RRP could be applied when the MOI is not rich in
protons. For the same object, the diameter of the MOI particles would be no more
than 5 μm. Otherwise, the proton spin diffusion would become utterly inefficient.
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(a) Spatial distribution of proton hyperpolarisation.

(b) Build-up curves of proton hyperpolarisation

Figure 2.4 – Simulated time-dependent propagation of proton hyperpolarisation during the
diffusion relayed DNP.The RFP is an equivalent spin glass of sodium pyruvate, where the pro-
ton spin density is 33 mol·L−1. The RRP is a 100% protonated spin glass, where the proton spin
density is 110 mol·L−1. The effective Wigner–Seitz radius is 2.5 μm for the RFP and the effective
thickness is 5 μm for RRP.
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(a) Spatial distribution of proton hyperpolarisation.

(b) The Build-up curves of proton hyperpolarisation

Figure 2.5 – Simulated time-dependent propagation of proton hyperpolarisation during
diffusion-relayed DNP.The RFP is a equivalent spin glass of glycine, where the proton spin den-
sity is 107 mol·L−1. The RRP is a 100% protonated spin glass, where the proton spin density is
110 mol·L−1. The effective Wigner–Seitz radius is 5 μm for the RFP and the effective thickness
is 500 nm for the RRP.
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(a) Spatial distribution of proton hyperpolarisation.

(b) Build-up curves of proton hyperpolarisation

Figure 2.6 – Simulated time-dependent propagation of proton hyperpolarisation during the
diffusion relayed DNP.The RFP is a equivalent spin glass of glycine, where the proton spin den-
sity is 107 mol·L−1. The RRP is a 50% protonated spin glass, where the proton spin density is 55
mol·L−1. The effective Wigner–Seitz radius is 2 μm for the RFP and the effective thickness of 1
μm for the RRP.
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(a) Time-dependence of the proton polarisation of an equivalent spin glass of so-
dium pyruvate.
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(b) Time-dependence of the proton polarisation of an equivalent spin glass of gly-
cine.

Figure 2.7 – Simulated time-dependent build-up curves of proton polarisation in particles of
RFP with different radii. The thickness of RRP shell is constant and equal to 5 μm in all simu-
lations. Both phases are considered as fully protonated.
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(a) Time-dependence of the proton polarisation of an equivalent spin glass of so-
dium pyruvate.
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(b) Time-dependence of the proton polarisation of an equivalent spin glass of gly-
cine.

Figure 2.8 – Simulated time-dependent build-up curves of proton polarisation in particles of
RFP as a function of the thickness of the layer of RRP. The radius of the MOI particles is equal
to 5 μm in all simulations. Both phases are considered as fully protonated.
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(b) Time-dependence of the proton polarisation of an equivalent spin glass of gly-
cine.

Figure 2.9 – Simulated time-dependent build-up curves of proton polarisation in particles of
RFP for different proton concentrations in the RRP. The radius of RFP core is constant and
equal to 5 μm and the thickness of RRP layer is 1 μm in all the simulations. All the RFPs are
fully protonated.
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2.5.2 Time-dependent distribution of nuclear polarisation during
diffusion-relayed CP-DNP process

The evolution of the nuclear polarisation during one block of the CP-DNP process

Our attention will now focus on the combination of proton diffusion with the thermo-
dynamic model of CP, so as to visualise the details of the CP-build-up process. Before
diving into the global performance of whole CP-DNP process, we first examine how
the system evolves in a single block (as illustrated in fig. 2.13).

According to the classic thermodynamic model of cross polarisation, the spin tem-
peratures of two nuclear spin reservoirs converge towards to a common value under
the influence of longitudinal relaxation in the rotating frame. In our case, the evolu-
tion is a bit more complicated. Due the high radical concentration in the RRP, T RRP

1,ρ

is much shorter than T RF P
1,ρ . This directly leads to a difference between two indepen-

dent evolution profiles of the hyperpolarisation in the two phases respectively. In
view of obtaining the highest possible carbon polarisation in the RFP at the end of
the composite process, we guess, at this moment, that the best spin-locking contact
time for spin-lock, which equals to 2.5 ms, remains the same throughout the experi-
ment. Using this value, we can simulate complete build-up profiles at intervals of 300
seconds between two consecutive CP blocks, as shown in fig. 2.11.

The evolution of nuclear polarisation during the whole CP-DNP process

The effect of the interval between CP contact in CP-DNP process From fig. 2.11,
we can see that the polarisation in the RRP reaches its equilibrium on a very short
time-scale. On the other hand, the carbon-13 polarisation inside the grains of the
MOI grows more slowly. This slow increase arrives at a steady state when the spatial
replenishment of the proton polarisation by proton spin diffusion between the two
phases becomes comparable compared to the loss during the transfer of magnetic
energy between the two nuclear reservoirs. As the accumulation of proton polarisation
in the RFP by diffusion is also time-dependent, our next simulations focuses on the
effect of the length of interval between two successive CP blocks.

fig. 2.12a shows the evolution of the carbon-13 polarisation in the RFP during the
CP-DNP build-up for different intervals within a fixed overall duration of two hours.
The envelope of the CP-DNP build-up curve demonstrates the dependence of the
final yield of carbon-13 polarisation on the time-interval between CP. Evidently, the
longer the interval, the higher the overall carbon-13 polarisation in the MOI would be.

This argument is supported by the envelope of the proton build-up curve. Since in
the RFP the longitudinal relaxation time is very long compared to the time-scale of the
spin-locking, we can almost neglect the loss of relaxation during the spin-lock of cross
polarisation. In a polarising experiment with infinite time, the envelope of proton
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polarisation right before the contact of cross polarisation will eventually coincide
with the envelope of the proton polarisation right after spin-lock. In fig. 2.12c, we
can see that over a two-hour-long evolution, the two envelopes for the five-minute
CP intervals starts to merge, while the pair of lines indicate that for the thirty-minute
intervals they are still away from each other. We can then safely conclude that, shorter
intervals between CP contacts might perform better as a compromise between time
and polarisation. Nevertheless, to maximise the polarisation in the RFP, aiming at
remote polarisation, long gaps between consecutive spin-locks and a long overall
duration of the experiments would be necessary. A reasonable interval of 300-900 s
would be enough.

The influence of average particle size of the MOI on the performance of CP-DNP
process As in section 2.5.1, we are also interested in the relation between particle
size and the performance of CP-DNP process.

The simulated CP-DNP build-up curves in fig. 2.13 strongly favours the particles
with a diameter smaller than 1 μm, which nicely corresponds with the simulations of
direct proton spin diffusion.

For particles with small diameters, since the direct proton spin diffusion is very
efficient, so that we do not need long intervals between consecutive CP contacts to
replenish the magnetic energy in proton manifold of the RFP. Larger particles require
longer intervals to build up the proton polarisation. Once the diameter of the particles
exceeds 10 μm. the intervals between consecutive CP contacts no longer plays an
important role, because in this regime, the efficiency of proton spin diffusion becomes
the dominant factor.
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(a) Evolution of spatial distribution of carbon-13 polarisation in a biphasic model.
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(b) Time-dependence of carbon-13 polarisation in a biphasic model.
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(c) Evolution of spatial distribution of carbon-13 polarisation in a biphasic model.
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(d) Time-dependence of carbon-13 polarisation in a biphasic model.

Figure 2.10 – Simulated time-dependence of carbon-13 and of proton polarisation during a
single CP block. Fig (a): Spatial distribution of the 13C polarisation at different moments. Fig
(b): Evolution of the 13C polarisation as a function of the duration of spin-locking. Fig (c): Spa-
tial distribution of 1H polarisation at different moments. Fig (d): Evolution of 1H polarisation
as a function of the duration of spin-locking. The RFP is an equivalent spin glass of sodium
pyruvate. The radius of the RFP core is constant as 2.5 μm and the thickness of the RRP layer is
1 μm in all simulations. Both phases are fully protonated.
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(a) Evolution of the carbon-13 polarisation during a multiple contact CP-DNP ex-
periment.
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(b) Evolution of the proton polarisation during a multiple contact CP-DNP experi-
ment.

Figure 2.11 – Simulated CP-DNP build-up curves for an interval of 300 seconds between two
consecutive CP blocks. The RFP is an equivalent spin glass of sodium pyruvate. The radius of
the RFP particle is 2.5 μm and the thickness of RRP layer is 1 μm all simulations. Both phases
are fully protonated.
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(a) Simulated build-up curves of the carbon-13 polarisation of two-hour-long
multiple-contact CP-DNP process for different intervals between consecutive CP
contacts.

(b) Envelope of simulated build-up curves of the carbon-13 polarisation of two-
hour-long multiple-contact CP-DNP process for different intervals between con-
secutive CP contacts.
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(c) Envelope of simulated build-up curves of the proton polarisation of two-hour-
long multiple-contact CP-DNP process for different intervals between consecutive
CP contacts.

Figure 2.12 – Simulated build-up curves of two-hour-long multiple-contact CP-DNP process
for different intervals between consecutive CP contacts. Fig (a): Time-dependence of carbon-
13 polarisation in the RFP. Fig(b):Envelopes of the carbon-13 build-up curves, showing the
carbon-13 polarisation at the end of each CP contact. Fig (c): Envelopes of the proton build-up
curves. The solid lines refer to the proton polarisation just before spin-locking (b. s.l.). The
dashed-dotted lines indicate the envelope of the proton polarisation immediately after spin-
lockings (a. s.l.). The RFP is an equivalent spin glass of sodium pyruvate. The radius of the RFP
core is 2.5 μm and the thickness of the RRP layer is 1 μm in all simulations. Both phases are
fully protonated.
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(a) Simulated build-up curves of the carbon-13 polarisation for different diame-
ters of RFP particles.

(b) Envelop of the simulated build-up curves of the carbon-13 polarisation for dif-
ferent diameters of RFP particles.
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(c) Simulated build-up curves of the carbon-13 polarisation for different diameters
of RFP particles.

(d) Envelop of the simulated build-up curves of the carbon-13 polarisation for dif-
ferent diameters of RFP particles.
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(e) Simulated build-up curves of the carbon-13 polarisation for different diame-
ters of RFP particles.

(f) Envelop of the simulated build-up curves of the carbon-13 polarisation for dif-
ferent diameters of RFP particles.

Figure 2.13 – Simulated time-dependence of carbon-13 polarisation in the RFP during
multiple-contact CP-DNP processes with different intervals between consecutive CP contacts
and different radii of the RFP particles. In figure (a) and (b), the CP interval is 300 s, in figure
(c) and (d), the CP interval is 900 s, and in figure (e) and (f), the CP interval is 1800 s. The
RFP is an equivalent spin glass of sodium pyruvate. The radius of RFP core is 2.5 μm and the
thickness of RRP layer is 1 μm in all simulations. Both phases are fully protonated.
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2.5.3 Relaxation in hyperpolarised biphasic samples

The last topic in this section will be the relaxation of the hyperpolarisation on long
time-scales.

The simulation we conduct here follows the CP-DNP build-up in the previous sub-
section: we take the last points in the time domain of fig. 2.13 as the initial condition,
then calculate the evolution of the polarisation, both proton and carbon-13 nuclei,
during an interval of 10 hours for relaxaiton. The results are plotted in fig. 2.14 and
fig. 2.15.

The main loss of proton polarisation in the RFP in our scenario is due to the spin
diffusion driven by the spatial inhomogeneity of the polarisation. This spatial inho-
mogeneity pushes the nuclear magnetic energy carried by the proton spins from the
RFP to the RRP. Once the magnetic energy arrives at RRP, it is rapidly consumed by
fast paramagnetic relaxation in RRP.

When the equivalent spherical diameter of particle is less than 2 μm, the relaxation
rates in the RFP and in the RRP are similar. The spatial segregation of the two phases
does not play a significant role in slowing down nuclear relaxation. For bigger particles,
whose spherical-equivalent radius is more than 5 micrometres, the polarisation may
enjoy a prolonged lifetime. The gradient of the polarisation drives the flow of magnetic
energy in both ways: both inward towards the core of the RFP particles, which had
been less polarised; and outward to the RRP that had been rapidly relaxed due to
paramagnetic PAs. Even in the most favourable cases, the proton hyperpolarisation
vanishes within 3 hours.

As we can expect, the carbon-13 polarisation in the RRP decays to zero in 1 hour.
On the other hand, the carbon-13 polarisation in the RFP survives much longer, and
decays with the same long time constant regardless of the difference in particle size.

A closer look at the spatial distribution of carbon-13 polarisation gives us more
details. As suggested by fig. 2.15b, fig. 2.15d, and fig. 2.15f, after complete relaxation
of carbon-13 hyperpolarisation in RRP, there exists an important gradient of carbon-
13 polarisation at the interface between the RRP and the RFP. In contrast to the
proton paths, the outward flow of carbon-13 magnetic energy through carbon-13
spin diffusion from the RFP to the RRP is not efficient. Furthermore, from fig. 2.15a,
fig. 2.15c, and fig. 2.15e we can observe a tendency that, in large crystallites, the
enriched carbon-13 polarisation migrates towards the centre of particle rather the
opposite. This can be easily explained with the huge contrast of 13C concentration in
two phases, and consequently the contrast of spin diffusivity of carbon-13 in either
phase. Although there exists a huge gradient of carbon polarisation at the interface, the
miserable spin conductivity in the RRP does not permit a high total flow of magnetic
energy. Therefore the relaxation of carbon 13 spins at low temperature only depends
on the inherent properties of auto-relaxation. Biphasic spin diffusion does not have a
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leading role.
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(a) Spatial distribution of proton hyperpolarisation during relaxation.

(b) Relaxation of the proton polarisation.
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(c) Spatial distribution of proton hyperpolarisation during relaxation.

(d) Relaxation of the proton polarisation.
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(e) Spatial distribution of proton hyperpolarisation during relaxation.

(f) Relaxation of the proton polarisation.

Figure 2.14 – Simulated time-dependent relaxation of the proton hyperpolarisation during the
diffusion relayed DNP. The RFP is an equivalent spin glass of sodium pyruvate, where the pro-
ton spin density is 33 mol·L−1. The RRP is a spin glass of natural abundance at 110 mol·L−1.
In figure (a) and (b), the effective Wigner–Seitz radius is 0.2 μm for the RFP and the effective
thickness of the RP layer is 1 μm. In figure (c) and (d), the effective Wigner–Seitz radius is 2 μm
for the RFP and the effective thickness of the RP layer is 1 μm. In figure (e) and (f) he effective
Wigner–Seitz radius is 5 μm for the RFP and the effective thickness of the RP layer is 1 μm.
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(a) Spatial distribution of carbon-13 hyperpolarisation during relaxation.

(b) Relaxation of the carbon-13 polarisation.
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(c) Spatial distribution of carbon-13 hyperpolarisation during relaxation.

(d) Relaxation of the carbon-13 polarisation.

61



Chapter 2. Modelling Diffusion-Relayed DNP in Biphasic Samples

(e) Spatial distribution of carbon-13 hyperpolarisation during relaxation.

(f) Relaxation of the carbon-13 polarisation.

Figure 2.15 – Simulated time-dependent relaxation of the carbon-13 hyperpolarisation during
the diffusion relayed DNP. The RFP is an equivalent spin glass of sodium pyruvate, where the
proton spin density is 11 mol·L−1. The RRP is a spin glass of natural abundance at 0.69 mol·L−1.
In figure (a) and (b), the effective Wigner–Seitz radius is 0.2 μm for the RFP and the effective
thickness of the RP layer is 1 μm. In figure (c) and (d), the effective Wigner–Seitz radius is 2 μm
for the RFP and the effective thickness of the RP layer is 1 μm. In figure (e) and (f) he effective
Wigner–Seitz radius is 5 μm for the RFP and the effective thickness of the RP layer is 1 μm.
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3 Microwave-Gated Dynamic
Nuclear Polarisation

The success of a d-DNP experiments depend on the achievement of hyperpolarisation
at low temperatures. Initially , the low-γ nuclei are polarised by direct thermal contact
between 13C spin reservoir and the electronic spin reservoir.

Recently, Jannin et al. reported a success in coupling the DNP with CP. With this
CP-DNP approach, we can first polarise the protons in the system directly, and then
equalise the spin temperatures of the proton and carbon-13 reservoirs in the system.

Based on this CP-DNP scheme, Bornet et al. [92] further proposed a modified
scheme for CP-DNP, in view of optimising CP. The key of this new method is to place
a gating gap in the microwave irradiation before launching the CP spin-locking se-
quence. Such gating gaps allow the electronic spins to relax from their partially
saturated state to their thermal equilibrium, where they are almost 100% polarised. A
high electronic polarisation prior to the CP contact leads to a reduced paramagnetic
nuclear relaxation, and thus to extended nuclear longitudinal relaxation times in the
rotating frame for both protons and carbons. Therefore the efficiency of the CP-DNP
build-up can be improved.

In this chapter, we shall apply the same principles of simulation that we used in
chapter 2 in the context of microwave-gated DNP in homogeneous spin glasses.

3.1 Simulations of the Microwave-Gated DNP

3.1.1 Paramagnetic relaxation under DNP conditions

At low temperature and high field, the nuclear spin N at a distance r from electron
spin E = 1/2 relaxes at the rate constant as a function of time, which could be obtained
from the Solomon-Bloembergen equations[93, 94]:
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R1,ρ(t ) = 1

T1,ρ(t )

= C

r 6
· τc ·

[
1−P E q

e ·Pe (t )
]

1+ω2
n ·τ2

c ·
[
1−P E q

e ·Pe (t )
]2

(3.1)

(3.2)

where Pe (t ) is the electron spin polarisation at time t , P E q
e is electron spin polarisa-

tion in thermal equilibrium, τc is the correlation time the fluctuating electron dipolar
field at the site of the nuclear spin, and C is a constant.

Now we consider two times, teq and t , where the system is at thermal equilibrium

at teq , namely Pe (teq ) = P E q
e , while at time t the system is partially saturated by

continuous microwave irradiation. We define the ξ as the ratio between R1,ρ(t ) and
R1,ρ(teq ):

ξ= R1,ρ(t )

R1,ρ(teq )
= T1,ρ(teq )

T1,ρ(t )

=
[
1−P E q

e ·Pe (t )
]

{
1+ω2

n ·τ2
c ·
[
1−P E q

e ·Pe (t )
]2} ·{1+ω2

n ·τ2
c ·
[
1−P E q

e ·Pe (teq )
]2}[1−P E q

e ·Pe (teq )
]

=
[
1−P E q

e ·Pe (t )
] ·{1+ω2

n ·τ2
c ·
[
1−P E q

e ·Pe (teq )
]2}

{
1+ω2

n ·τ2
c ·
[
1−P E q

e ·Pe (t )
]2} · [1−P E q

e ·Pe (teq )
]

(3.3)

(3.4)

At 1.2 K and 6.7 T, we have the typical values as P E q
e = 0.996 and ωH = 1.79 ·109

rad·s−1 ωC = 4.56 ·108 rad·s−1, so that we can plot the ratio between ξH and ξC as
functions of both Pe (t ) and τc :

As illustrated in fig. 3.1, under the condition that the correlation time of the fluctua-
ting electron dipolar field at the site of the nuclear spin be on the sub-nanosecond
scale, the contribution of paramagnetic relaxation in the total rate of nuclear relaxation
in rotating frame would be amplified when the microwave irradiation is constantly
applied during the spin-locking process. When the nuclear spins are correlated with a
motion, whose time-scale is on the order of 10−8s, the technique of microwave gating
would not be very efficient. On the other hand, if the system were mainly subject to
slow motions that have characteristic times beyond 10−8s, we could even reduce the
loss of paramagnetic relaxation by saturating ESR absorptions.
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Figure 3.0 – The simulation of the ξH and ξC as a function of Pe (t ) and logτc at 1.2 K, 6.7
T. In the red region, the paramagnetic relaxation is stronger when the electron spins are par-
tially saturated, while in the blue region, the paramagnetic relaxation is stronger at thermal
equilibrium.
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Chapter 3. Microwave-Gated Dynamic Nuclear Polarisation

3.1.2 Mathematical formulation of the build-up process

The dynamics of direct diffusion-relayed DNP

Since we are treating the samples with only one phase, the complexity of the problem
reduces drastically from a second-order parabolic partiall differential equaiton (PDE)
into an first-order ordinary differential equation (ODE) of time.

The governing equation then writes:

{
da ◦ ∂

∂t P (t ) =Q(t )

da =Cp ◦c

P (t = 0) = 0

(3.5a)

(3.5b)

For the diffusion-assisted DNP blocks that follows a CP block, the initial value should
be the result of CP block.

The dynamics under CP

We use the same methodology to describe the dynamics within the CP blocks as in
eq. (2.17) and in eq. (2.18). Details can be found in section 2.3.2.

3.1.3 Choice of parameters for simulations

For the simulation of CP profiles in this section, we limit ourselves to the experimental
data reported in the original paper by A. Bornet [92]:

Sample composition
We only consider one DNP sample in this chapter: a frozen solution of 3 mol·L−1

[1−13 C ]acetate in H2O:D2O:glycerol-d8 (v : v : v = 1 : 4 : 5) doped with 40 mmol·L−1

TEMPOL at 1.2 K and 6.7 T.

Spin density
The protonspin density of proton in the mixed solvent of H2O, D2O, and glycerol-d8 is
approximately 11.1 mol·L−1. We consider the total spin density of the frozen solution
to be 20 mol·L−1. A similar calculation can also be applied to assess the spin density
of carbon-13 in the mixed solvent at natural abundance, which gives 0.225 mol·L−1.
We thus have 3.225 mol·L−1 as the total spin density of carbon in the frozen glassy
solution, from the solvent and the carbon-enriched solute together.
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3.2. Numerical result of simulation

Build-up time
The time constants of the build-up process are determined by a mono-exponential fit
of the experimental data. The actual value used in simulations was set to be 150 s for
protons and 6000 s for carbon-13.

Longitudinal Relaxation Time in the Rotating Frame (R)
Let us assume that these two factors share the same value during CP contact for a
qualitative overview.

In the second step, we try to fit the experimental data. Because once the spin tem-
perature of two nuclear spin reservoirs equalises, the relaxation in the rotating frame
is dominated by the faster one of the two. In the cases where we apply continuous
microwave irradiation, the T H

1,ρ is measured to be 10 ms while T C
1,ρ equals 7.4 ms from

the fitting of experimental data. In the microwave-gated case, both time constants are
assumed to be 100 ms.

Maximum Polarisation
The maximum polarisation can be fitted to experimental build-up curves. In the
sample of 3 mol·L−1 [1−13 C ]acetate in H2O:D2O:glycerol-d8 (v : v : v = 1 : 4 : 5) doped
with 40 mmol·L−1 TEMPOL., we have a proton polarisation of 70%. According to the
theory of thermal mixing, at the steady state of the DNP process, all species of nuclear
spins arrive at a common spin temperature, so we can determine the carbon-13
polarisation to be 0.21%.

Average Dipolar Coupling
The average dipolar coupling is used to describe the rate of transfer of nuclear mag-
netic energy between distinct nuclear spin reservoirs during the process of cross
polarisation. This parameter here is fitted to the experimental data of the dynamics of
CP contact: as presented in the supporting information of Bornet’s paper[92], bH−C =
1000/2.68 = 373 Hz.

3.2 Numerical result of simulation

The first simulations that we present show the efficiency of CP for different values of
T1ρ. As shown in fig. 3.1, when the T1,ρ is short, the fast relaxation imposes a strong
penalty on the build-up of carbon-13 polarisation during the thermal contact of CP.
As a compromise, we will have to choose short spin-lock duration for each CP block.

On the contrary, under conditions of microwave gating, we can benefit from a
much longer CP-contact time, in view of more efficient thermal mixing between the
reservoirs of protons and of carbon-13.
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Chapter 3. Microwave-Gated Dynamic Nuclear Polarisation

The fig. 3.1 demonstrates how the T1,ρ influences the evolution of polarisation in
the manifolds of different nuclear spins during the first CP block.

With a similar method, we can then describe the evolution of the polarisation
during all the CP blocks within a multiple-CP-DNP sequence (See fig. 3.3). As the
initial condition changes with the accumulation of carbon polarisation in previous
CP blocks, the optimal duration of spin lock is reduced accordingly, until a dynamic
equilibrium between the replenishment of the proton polarisation and the relaxation
of carbon-13 polarisation finally occurs.

Basing on the optimal condition obtained from fig. 3.3, we can perform simulations
in view of optimized build-up profiles of CP-DNP processes.

3.3 Discussion

Combining the correlations shown in fig. 3.1 and in fig. 3.1, we might conclude that,
in order to benefit from a long and efficient CP blocks, the best timing for launching
the spin-lock would be after the complete relaxation of the electronic spins, long after
cutting off the microwaves. Admittedly, when the microwave irradiation is turned
off, nuclear spins start to relax to their thermal equilibriums as well. This factor is,
however, less significant. This is because, compared to the nuclear relaxation, the
time-scale for the electronic spins to relax to their thermal equilibrium is negligible.
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3.3. Discussion
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(a) The simulated polarisation of protons as a function of the CP contact time for
different T1,ρ .
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(b) The simulated polarisation of carbon-13 as a function of the CP contact time
for different T1,ρ .

Figure 3.1 – The simulated nuclear polarisation as a function of spin-lock time for different
T1,ρ . In both simulated subfigures, the T H

1,ρ is set to be equal to T C
1,ρ . Detailed parameters of

these simulations can be found in table A.3.
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(a) The evolution of 13C polarisation during CP blocks in a CP-DNP sequence wit-
hout microwave-gating.
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(b) The evolution of 13C polarisation during CP blocks in a CP-DNP sequence with
microwave-gating.

Figure 3.2 – The simulated evolution of 13C polarisation during consecutive CP blocks in a CP-
DNP sequence. Red dashed lines link the maxima of 13C polarisation that we can obtain in
each CP block. Detailed parameters of simulation can be found in table A.3.
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3.3. Discussion

Figure 3.3 – The simulated build-up curves of carbon-13 polarisation during multiple CP-DNP
in a frozen solution of 3 mol·L−1 [1−13 C ]acetate in H2O:D2O:glycerol-d8 (v : v : v = 1 : 4 : 5)
doped with 40 mmol·L−1 TEMPOL at 1.2 K and 6.7 T. The red curve is under the condition of
continuous microwave irradiation, and the blue curve is under the condition of microwave
gating. Detailed parameters of simulation can be found in table A.3.
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4 Remote DNP with Impregnated
Microcrystals

In this chapter, we shall present an illustrative example where we successfully il-
lustrated the principle of transportable hyperpolarisation. With the help of a small
electromagnetic solenoid to overcome the local dipolar field inside the sample, we
can move the hyperpolarised crystals of [U −13 C ,15 N ]-labelled amino-acids out of
the polariser. As long as the crystals are stored in a moderate field (ca. 1 T) in a liquid
helium bath, their 13C magnetisation can be observed after a dissolution experiment
following a 16-hour-long storage.

4.1 Sample Preparation

Following the principle of biphasic sample formulation described in chapter 2, we
divide our sample preparation step into two main steps:

• Preparing a micro-particulate radical-free phase (RFP)

• Formulating glassy radical-rich phase (RRP)

4.1.1 Preparing micro-particulate radical-free phase (RFP)

Our attempts thus start with grinding by hand [95] *. fig. 4.1a shows a picture of ground
sodium pyruvate from scanning electron microscopy (SEM). From the statistics illus-
trated in fig. 4.1b, most of the particles have a surface-equivalent diameter around 1
μm, and the overall distribution of particle number manifest a long-tail pattern. It is
worthy to note, however, that the distribution of particle volumes can be very different
from the direct counting of particle numbers. As the volume of particle is proporti-
onal to the cube of diameter of the particles, and although the percentage of large
crystallites is not significant after grinding, most of the molecules are nevertheless

*Detailed protocols can be found in the appendix
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contained in a few large grains. The mean value of the distribution of the particle
volume of sodium pyruvate powder after hand grinding is around 7 μm.

(a) SEM picture of sodium pyruvate after grinding.
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(b) Histogrtam of the distribution of the particle numbers in (a).
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Figure 4.1 – The profile of granularity of a sodium [1−13 C ]pyruvate sample after grinding. Fi-
gure (a) SEM picture of sodium [1−13C ]pyruvate sample after grinding. Figure (b) Distribution
of the surface-equivalent diameters of particles of sodium [1−13C ]pyruvate in terms of the per-
centage of total particle numbers. Figure (c) shows the distribution of the volume-equivalent
diameters of particles of sodium [1−13C ]pyruvate in terms of the percentage of particle volume.

4.1.2 Formulating glassy radical-rich phase (RRP)

In contrast to conventional hydrophilic glassy RRPs, we are obliged to use solvents
that have solubilities that are orthogonal with respect to biological metabolites to
prepare biphasic samples.

Based on the solubility of TEMPO-benzoate, a hydrophobic derivative of TEMPO
radical, we first chose a mixture of toluene and THF as the solvent. The role of THF
(20% v/v) is to ensure the proper vitrification of the mixture, because THF is not
glass-forming on its own and the glassy state of pure toluene is not stable compared
with its crystalline form.

As studied in a previous chapter†, we limit our scope here to the purely protonated
spin glasses. In agreement with the results of numerical simulations, high proton
concentrations favour proton spin diffusion‡. It would then facilitate the flow of

†see section 2.5.1
‡See fig. 2.9
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magnetic energy towards the interface between RRP and RFP.

The choice of the level of doping with polarising agents is more complicated. In
view of a satisfactory DNP performance, we require that the concentration of radicals
to be in the optimal region. When the PA is too diluted, the protons are not sufficiently
coupled to the electronic spins. We cannot achieve an efficient transfer of polarisation
from radicals to nuclei. On the other hand, if we dope too high a concentration
of radicals in the RRP, the dipolar couplings between electronic spins becomes too
strong, so that they compete with the hyperfine couplings that polarises protons. We
would also suffer from an enhanced paramagnetic nuclear relaxation in the RRP as
the content of paramagnetic species in mixture increases. In the lack of convincing
theoretical models, our intuition was confirmed on a trial-and-error basis. Basing on
our previous experience with water-glycerol-based mixtures[96], our experimental
attempts started from 50 mmol·L−1, and the final radical concentration we adopted is
80 mmol·L−1.

For similar reasons, since both organic solvents have a high affinity to oxygen, our
previous experiences leads us to recommend the use of fully degassed solvents. Pre-
degassing of the solvents can significantly reduce the content of paramagnetic oxygen
in the RRP.

4.2 Sample Polarisation

4.2.1 Direct DNP and diffusion-assisted DNP

In fig. 4.2a we illustrate the build-up of the polarisation in the proton reservoir as
a function of time. We can see that the final polarisation approaches 70% and that
the build-up process is complete within minutes. When compared with the mono-
exponential fit of experimental data, we can observe a slight deviation, which might
be explained by the spatial inhomogeneity of the distributions of the radicals.

A typical build-up curve is presented here in fig. 4.2b. The pronounced pattern
of stretched exponential curve suggests that the build-up of the proton polarisation
in the RRP is accompanied by the diffusion of polarisation to micro-crystallites of
the RFP. Such stretched exponential (or multi-exponential) patterns correspond well
to the stretched exponential patterns of the particles, whose spherical-equivalent
diameter is 5-10μm§. This matches the statistics from the SEM images.

4.2.2 Diffusion-assisted CP-DNP

The DNP enhanced proton polarisation can then be transferred to the carbon-13
spins in the RFP by CP at low temperatures. Although our micro-particulate DNP

§See fig. 2.7a
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(a) The DNP build-up curve of proton in pure RRP sample.
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(b) The DNP build-up curve of proton in biphasic sample.

Figure 4.2 – The experimental result of proton build-up curve. Figure (a) shows the direct
build-up curve of proton polarisation in pure RRP (black squares) and mono-exponential fit
of experimental data (red line). The RRP is a organic solution of TEMPO-benzoate at the con-
centration of 80 mmol·L−1 in the mixture of h8-toluene/h8-toluene=8/2. Figure (b) shows the
diffusion assisted build-up curve of average proton polarisation in a biphasic sample (black
squares) and bi-exponential fit of experimental data (red line). The biphasic sample consists of
10 mg of sodium [1−13 C ]pyruvate (ground by hand) and 30 μL of organic solution of TEMPO-
Benzoate at the concentration of 80 mmol·L−1 in the mixture of H8-toluene/H8-toluene=8/2.
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sample formulation is drastically different from the usual glassy solutions, CP-DNP
was performed in essentially the same manner. fig. 4.3b shows the stepwise build-up
of the 13C polarisation of sodium [1−13 C ]pyruvate obtained by multiple-contact CP
at 1.2 K. This may be compared with fig. 4.3a, a similar CP build-up measured for
the same amount of sodium [1−13 C ]pyruvate, but dissolved in a conventional glassy
matrix H2O:D2O:glycerol-d8(2:3:5) doped with 40 m mol·L−1 TEMPOL.

Although these two CP build-up curves look similar, it is worth highlighting two
major differences. First, the time between two consecutive CP contacts needs to
be extended in biphasic samples to allow proton–proton spin diffusion to carry the
polarisation into the RFP particles between CP steps (20 min in the biphasic sample,
instead of 5 min in the conventional glassy matrix). Secondly, the carbon-13 relaxation
between CP contacts, which usually limits the build-up of the carbon-13 polarisation,
is essentially absent in the micro-particulate RFPs because of the absence of any
thermal contact with the PAs. These two new features imply that, albeit the carbom-13
polarisation is slower to build-up, it can in principle achieve the same polarisation
levels as the protons.

4.2.3 Extended lifetime of hyperpolarisation

The carbon-13 spins of metabolites dissolved in homogeneous glassy solutions are
in contact through electron–nuclear dipolar interactions with the PAs that act as
paramagnetic relaxation centres. In a biphasic formulation, on the other hand, the
carbon-13 spins of the RFP are isolated from the PAs by the phase separation. As most
of the molecules of interest (MOIs) reside in the core of the micro-crystallites, the
distance between MOIs and PAs are generally on the order of micrometres, where the
electron–nuclear dipolar interactions can be neglected. In fig. 4.4, we see how the
spin-lattice relaxation time T1(13C ) of sodium [1−13 C ]pyruvate can be significantly
extended at 4.2 K and 6.7 T by switching from a glassy frozen solution, where T1(13C ) is
20 min, to a micro-particulate sample, where T1(13C ) is extended to 37 h. We measured
relaxation times exceeding 20 h in[1-13C]glucose, and 5 h in [U −13 C ,15 N ]alanine and
[U −13 C2,15 N ]glycine.

4.3 Remote Dissolution

Because of the radical-free nature of RFPs, the longitudinal relaxation times of carbon-
13 spins can benefit from a remarkable extension. Hirsch et al. [97, 98] have reported
that by using a cryogenic Dewar coupled with a weak static magnetic field, one can
transport the [1−13 C ]pyruvic acid that has been hyperpolarised by the brute force
method. In their paper, they have pointed out the importance of preventing relaxation
rate during the transfer, where the T1(13C ) can be drastically shorter than the value at
4 K and 6.7 T. There are two reasons: first, the sample is heated to higher temperatures,
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(a) The CP-DNP build-up curve of homogeneous glassy sample.
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(b) The diffusion assisted CP-DNP build-up curve of biphasic sample.

Figure 4.3 – The experimental result of carbon CP build-up curve. Figure (a) shows the CP
build-up curve of carbon polarisation in a homogeneous sample with CP interval of 300 s.
The homogeneous sample is the frozen solution of sodium [1−13 C ]pyruvate (concentration
at 3 mol·L−1) in d8-glycerol/D2O/H2O=5/3/2. TEMPOL serves as PA in the homogeneous po-
larising glass. The doping rate is 40 m mol·L−1. Figure (b) shows the diffusion assisted CP
build-up curve of carbon polarisation in a biphasic sample with CP interval of 600 s. The bip-
hasic sample consists of 20 mg of sodium [1−13 C ] pyruvate (ground by hand) and 60 μL of
organic solution of TEMPO-Benzoate at the concentration of 40 mmol·L−1 in the mixture of
d8-toluene/d8-THF/h8-THF=8/2. We can not directly compare the two scales on y-axis.
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Figure 4.4 – The experimental result of carbon relaxation curve. The red line shows the re-
laxation curve of carbon polarisation in a homogeneous sample. The homogeneous sam-
ple is the frozen solution of sodium [1 −13 C ]pyruvate (concentration at 3 mol·L−1) in d8-
glycerol/D2O/H2O=5/3/2. TEMPOL serves as PA in the homogeneous polarising glass. The do-
ping rate is 40 m mol·L−1. The blue line shows the relaxation curve of carbon polarisation in a
biphasic sample. The biphasic sample consists of 20 mg of sodium [1−13C ] pyruvate (ground by
hand) and 60 μL of organic solution of TEMPO-Benzoate at the concentration of 40 mmol·L−1

in the mixture of d8-toluene/d8-THF/h8-THF=8/2. Both figures are normalised with respect to
the initial signal intensity, respectively.

where more relaxation pathways occur by thermal interactions; second, during the
transfer the sample is moved out of the high magnetic field, where low-field nuclear
thermal mixing [34, 99, 100] can play a role as an extra source of relaxation for carbon-
13 spins, as recently reported by Peat et al. [101].

4.3.1 Auxiliary magnets

In order to prevent low-field nuclear thermal mixing during the storage in low fields,
We have designed a Halbach magnet that provides a constant magnetic field of 1.0
Tesla in the liquid helium cryogenic Dewar for transport.

For the same purpose, we have equipped the transfer stick with an auxiliary sole-
noidal coil. The magnetic field produced by this coil is designed to be around 50 mT.
The intensity of magnetic field matches the experimental result of Peat et al.. The coil
was made with 100 turns per cm. A circuit current of 4 A was turned on in the coil
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4.3. Remote Dissolution

(a)

(b) The Halbach magnet inside the Dewar.

Figure 4.5 – The design of magnetic devices for the transport of hyperpoliarsied sample. Figure
(a) shows the positioning of auxiliary solenoidal circuit inside the sample stick. This auxiliary
solenoidal circuit generates a magnetic field of ca. 500 Gauss. Figure (b) shows the design of
the Halbach magnet, which provides constant magnetic field during the storage.

before moving the sample out of polariser, and turned off after the sample was placed
in the Halbach magnet inside the liquid helium Dewar of transportation.

4.3.2 Dissolution in the liquid helium cryogenic Dewar

The method used for dissolution in a liquid helium cryogenic Dewar is in principle
the same as for the dissolution from in a polariser [102]:

5 mL of superheated D2O at 420 K at a pressure of 1 MPa was injected onto the
biphasic mixture inside the helium Dewar. After 700 ms of dissolution, the liquid
in the sample holder was pushed through a polytetrafluoroethylene (Teflon) tube
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Chapter 4. Remote DNP with Impregnated Microcrystals

through a 0.9 T magnetic tunnel to a home-made injector in a 11.7 T magnet. This
transfer was achieved by using a flow of helium gas at 0.6 MPa for 4.5 s. Afterwards, the
solution was injected into a 5 mm sample tube in 2 s. The whole process, including
dissolution, transfer, and injection, requires ca. 7 s.

The carbon-13 spectra of the hyperpolarised metabolites in fig. 4.6 were obtained
by looping a series of 5deg pulses with subsequent signal acquisition at the intervals
of 2 seconds.
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Figure 4.6 – The spectra of the mixture of 5.5 mg of [U −13 C ,15 N ]alanine and 9 mg of
[U −13 C2,15 N ]glycine after remote dissolution in 11.7 T magnet. These amino-acids were first
polarised at 1.2 K, 6.7 T with the impregnation of the solution of TEMPOL-benzoate (80 m
mol·L−1) in mixed solvent h8-toluene/h8-toluene=8/2. Then the hyperpolarised biphasic mix-
ture is transferred into the updated Dewar for 16-hour-long storage at 4.2K, 1.0T. The dissolu-
tion performed inside the Dewar with overheated water, and the solution is pushed into the
magnet through magnetic tunnel. The red line indicates the first 13C spectrum recorded after
injection with a 5°pulse. The black line shows the 13C spectrum of thermal equilibrium signal
of the same solution after complete relaxation of hyperpolarisation. The spectrum of thermal
equilibrium was obtained with 16 times of 90°pulse at the recycle delay of 300 s.

4.4 Discussion

The experiment of remote dissolution was successful. Meanwhile, there is still plenty
of scope for improvement.

82



4.4. Discussion

The first issue is the distribution of particle sizes in the RFP. From the results of
numerical simulations in chapter 2, we have acquired some empirical guidelines for
the hyperpolarisation of heterogeneous samples by spin diffusion. In an optimised
sample aiming at satisfactory overall direct proton polarisation from diffusion-relayed
DNP, the average value of distribution of particle volumes in RFP should not exceed 2
μm, and the maximum spherical equivalent diameter of particles should not exceed 5
μm. If the distribution of the particle size does not change, we can also expect a nice
carbon-13 polarisation with diffusion-relayed CP-DNP. Admittedly, we have not yet
found a proper way of hand-grinding that permits us to obtain a narrow distribution
of the volumes of crystallites on a sub-micrometric scale. Within commercial and
economical limits for bench-top apparatus in a laboratory, a possible solutions could
be the coupling the hand-grinding and sieve separation. In industrialised applications,
zircon ball-milling coupled with sieve-levelling could be a good example of a top-
down approach. Precipitation after immature nucleation would be an example of the
bottom-up method.

Secondly, a complete study of low field relaxometry could contribute a great deal to
the understanding of the hyperpolarisation, especially for sodium [1−13 C ]pyruvate.

Last but not least, as both toluene and THF are hazardous for animals and human
alike, great improvements can be envisaged from the use of bio-compatible solvents
in the chemical formulation of RRPs.
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5 Concept of Porous Polymeric
Matrix for DNP

In the previous chapter, we have presented an attempt of remote DNP: Fine powder
of MOI is impregnated in a glassy solution of PA. The (sub-)micrometric powder can
then be hyperpolarised by spin-diffusion assisted DNP. Moreover, the lifetime of this
hyperpolarisation is extended due to the segregation of paramagnetic centres. This
methodology, in principle, can be adopted in the application of all crystalline solids.

Naturally, a following question came into our vision: What if the MOIs that we are
using is a liquid at room temperature? We can no longer reduce the size of sample by
mechanical operations. One answer to the question above is to use the liquid-liquid
biphasic formulation, which bases upon the formation of emulsion between two
immiscible liquids, say, water and heptane, water and xylene, or water and ethyl-
acetate. Nevertheless, such formulation faces inevitably fundamental objection.

Because of the high energy of interface between two immiscible phases, the emulsi-
ons are thermodynamically unstable. Without adding any stabiliser, an established
sample may well collapse from its emulsified state to two distinct phases within minu-
tes or even seconds. Therefore, by convention, in the formulation of kinetically stable
emulsion, the addition of surfactant is often of vital importance.

Though the incorporation of surfactants in the mixture can significantly enhance
the kinetic stability of emulsions, we added the complexity of problematic by entering
the reign of triphasic composition. First, the amphiphilic detergents forms micelles
in the new triphasic system. As the micelles migrates freely between phases, they
may extract radicals and redistribute them in the whole sample, which eradicates
the separation between RRP and RFP. Second, once introduced in the system, the
surfactant is immune to common physical separations, such as, filtration. They easily
follow the flow of MOI and eventually arrives at the apparatus of detection, which
complicates the final spectra. In case we are to study the dynamics of proteins, the
surfactants would then act with macromolecules and cause undesirable side-effects.
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Chapter 5. Concept of Porous Polymeric Matrix for DNP

Inspired by the micro-structure of the method of impregnation, where the MOI /
RFP is solid and immobile while the solution of PA / RRP is liquid and mobile, we
came up with a new scheme of phase separation: the fluid MOI be the RFP and a solid
solution of PA serves as the porous matrix that holds the volume of liquid and acts as
the source of hyperpolarisation during DNP experiments.

Similar ideas have already been proposed, of which the most famous is the HYPSO[103].
The main difference between HYPSO and the up-mentioned radical-doped porous
matrix lies in the distribution of PA: In HYPSO silicate, PA are directly introduced
on the surfaces of pores inside the silicate. This spatial alignment is not able to pre-
vent the direct contact between paramagnetic centre and MOI / RFP. In the design
of radical-doped porous matrix, we aim at immersing the radical inside the wall of
matrix. Also, by surface decoration we kill the residual of radical on the surface. There-
fore, the separation of RFP and RRP could be established. Besides, as suggested by
the name <monolithic>, this design stands as a entire piece rather than fine powder,
which further allows subtractive manufacturing for various shapes.

The Polymerised High Internal Phase Emulsion (poly-HIPE) was adopted as the
main method for the preparation of RRP. Emulsions are heterogeneous mixtures
consisting of two phases: the continuous external phase, and the internal phase
dispersed inside the continuous phase. In the High Internal Phase Emulsions (HIPE),
the volumetric percentage of discrete phase can reach up to 90%. The solidification
of external phase and consequent removal of discrete phase, allows our obtaining a
porous solid bulk, with merely 10-30% volume occupied by solid phase. The radicals
are then incorporated inside the solid phase, being attached to the polymer through
chemical bonds. The pores of the obtained material can be then fill with MOIs allowing
to perform DNP experiments.

5.1 Synthesis and characteristication of radical-doped
porous matrix

5.1.1 Synthesis and modification of polymeric matrix

The radical-doped porous bulk was prepared by free radical polymerisation (FRP)
in HIPE. The protocol used was adapted after a previous described procedure [104].
In the literature, Sevsek et al. stopped at the step of polymeric bulk. We modified
the composition and it is detailed in appendix A.3. The chemical composition, the
porosity, and the concentration of doped radical of porous monolithic polarising
matrices that are discussed in this chapter can be found in table A.5

The route of synthesis consists of two major steps: the polymerisation of monolithic
block and are illustrated in fig. 5.1, fig. 5.2.
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Hydrophobic Monomers

SO3NaCl
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Figure 5.1 – The schema of the multi-component heterogeneous polymerisation of polymeric
precursor for PM-01 in the original route of synthesis of the radical-doped porous monolithic
matrix.
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Figure 5.2 – The schema of the reaction of incorporating radical inside the polymeric precursor
for PM-01 through chemical bond.
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Figure 5.3 – The schema of the multi-component heterogeneous polymerisation of polymeric
precursor for PM-02 and PM-03 in the modified route of synthesis of the radical-doped porous
monolithic matrix.
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Figure 5.4 – The schema of the reaction of incorporating radical inside the modified polymeric
precursor for PM-02 and PM-03 through chemical bond.
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5.1. Synthesis and characteristication of radical-doped porous matrix

We started from a minor modification of literature (see [104] and appendix A.3),
where only styrene (Sty) and divinylbenzene (DVB) are employed as the monomer for
hydrophobic skeleton of the polymeric monolith PM-01. The role of 4-Vinylbenzyl
chloride / 1-(chloromethyl)-4-vinylbenzene (VBC) as the oily monomers is to provide
position of chemical anchoring for radicals in latter stage. The usage of sorbitan
monooleate (Span 80) and sodium 4-vinylbenzenesulfinate (NaVBS) has two aspects:
firstly, it serves as a surfactant that provides mechanical support of HIPE; secondly,
after polymerisation, the NaVBS and the unsaturated molecules in SPAN 80 stays at
the surface of polymeric matrix, which reduces the surface tension of hydrophobic
backbone, and thus enhances the infiltration effect of the whole bulk. At the first stage,
we expected the porosity of matrix is about 80%, so the ratio between aqueous phase
and organic phase was set to be 1/4.

Figure 5.5 – The SEM picture of porous monolithic matrix PM-01.

After the preliminary tests, we found that the structure and the mechanical proper-
ties of such monolithic matrix still needs improvement. fig. 5.5 shows the microscopic
appearance of the porous monolithic matrix from original route of synthesis. The
average size of hole inside the matrix is on the order of 20-30 μm, which might be
too big for DNP applications. In addition, the rigidity of this material is too high,
and its toughness and ductility are both insufficient. The monolith breaks into small
pieces with merely slight bending or torsion, which blocks the transferring tube during
dissolution as a result of high pushing pressure in the pipeline. Modified route of
synthesis then arose as the remedy of these problems.

The first modification intends to reduce the rigidity of polymer as the compro-
mise for better toughness against external force. We then replace the Sty by 2-
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Chapter 5. Concept of Porous Polymeric Matrix for DNP

ethylhexylacrylate (EHA), because the segments made of EHA units in a polymeric
chain often has a much lower temperature of glassy transition with respect to pure po-
lystyrene bulk and thus higher chain mobility. We also reduced the molar percentage
of DVB in the organic phase from 90% to 30%, so as to decrease the crosslinking rate
of polymer, in view of an extended ductility. fig. 5.6 demonstrates the SEM picture of
porous matrix PM-02 after the first modification. The average size of pores reduces
and the network of polymeric chain becomes denser.

Figure 5.6 – The SEM picture of porous monolithic matrix PM-02 after the first modification of
route of synthesis. The designed porosity equals 80%.

In view of better profile of the distribution of pore size inside the monolith, we
conducted a second modification that reduces the overall porosity from 80% to 66%,
which correspond to the ratio between aqueous phase and organic phase as 1/2.

We can see the microscopic structure of porous matrix PM03 after the second
modification of chemical formulation in fig. 5.7. Though we can always observe the
existence of large pores in fig. 5.7a, the average size of pore drops to the region of 1-10
μm. The inter-connectivity among neighbouring pores remains, as shown in fig. 5.7b.

5.2 DNP performance of radical-doped porous matrix

5.2.1 Relaxation of porous monolithic polarising matrix

The direct proton DNP build-up curve of PM-01 without MOI loading arrives 30%
in both positive and negative mode at 1.2 K, 6.7 T. On the other hand, at around 4
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5.2. DNP performance of radical-doped porous matrix

(a) SEM image of PM-03 with 500x magnificaiton.

(b) SEM image of PM-03 with 5000x magnificaiton.

Figure 5.7 – The SEM picture of porous monolithic matrix of PM-03 after the second modifica-
tion of route of synthesis. The designed porosity equals 66%.

K, 6.7 T the same sample can only be polarised to 2-3%. We then followed up with a
brief study in the relaxometry of PM-01, and we compared the result with standard
polystyrene reference for size-exclusion chromatography (Std PS ,as a compact bulk,
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Figure 5.8 – The proton buld-up curve of the polarising matrix PM-01 without liquid loading.

wn = 2 ·105Da).

Table 5.1 – The parameters of bi-exponential fitting from saturation recovery experiment of
PM-01 and standard polystyrene reference under different pre-treatments.

sample condition
A f ast t f ast

1 Asl ow t sl ow
1

(-) (s) (-) (s)

PM-01 4.0K, No Degasing 0.60 6.74 0.40 39.9

PM-01 4.0K, Degasing 0.43 14.66 0.56 81.8

PM-01 1.2K, No Degasing 0.41 83.4 0.59 351

PM-01 1.2K, Degasing 0.48 361 0.52 1580

Std PS 4.0K, No Degasing 1.00 25.3 - -

Norm. Intensity(t ) = 1− A f ast
1 ·exp(− t

t
f ast
1

)− Asl ow ·exp(− t
t sl ow

1
)

A f ast
1 + Asl ow = 1

The relaxation profile of PM-01 (see fig. 5.9 and table 5.1) suggests first a pronounced
multi-exponential pattern, which indicates two distinct relaxation mechanisms in
the backbone of porous polarising matrix. The contrast of proton T1 before and after
sample degassing is ca. 2 times at 4.0 K and ca. 4 times at 1.2 K, which further manifests
that of the oxygen biradical is heavily involved in the relaxation. According to Sevsek
et al., the specific surface area in this type of poly-HIPE-based porous material could
be up to 300 m2·g−1, which permits a thorough adsorption of oxygen throughout
the monolith. This explanation also supports the bi-exponential fit of experimental
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Figure 5.9 – The saturation recovery curve of PM-01 and standard polystyrene reference under
different pre-treatments. The squares and line in black shows the experimental data and bi-
exponential fit of PM-01 at 4.0 K, 6.7 T without pre-degasing. The squares and line in blue
shows the experimental data and bi-exponential fit of PM-01 at 4.0 K, 6.7 T with pre-degasing.
The squares and line in green shows the experimental data and bi-exponential fit of PM-01 at
1.2 K, 6.7 T without pre-degasing. The squares and line in magenta shows the experimental
data and bi-exponential fit of PM-01 at 1.2 K, 6.7 T with pre-degasing. The squares and line
in red shows the experimental data and bi-exponential fit of standard polystyrene reference
for size-exclusion chromatography (as a compact bulk, wn = 2 ·105Da) at 4.0 K, 6.7 T without
pre-degasing.

data. The adsorbed molecular oxygen acts as paramagnetic centres on the surface of
polarising matrix, which yields the fast component of bi-exponential pattern. The core
part of the polymeric backbone, which is less affected by oxygen biradical, contributes
to the slower component of bi-exponential curve. It is worthy to note that, though the
standard polystyrene sample is in a compact form, its T1(1H) is also less than 30 s at
4.0 K, 6.7 T. The reason should be attributed as the nature of material.

5.2.2 Spin-diffusion assisted DNP of porous monolith with liquid-
loading

From previous knowledge, we see that, in order to obtain precise experimental in-
formation from porous monolithic materials, we can not place enough attention on
removing oxygen from the sample. Therefore, before the DNP study on pure PM-03
matrix, we chose to fill in the empty volume with d4-MeOD after degassing, so as to
avoid the contamination of oxygen. In fig. 5.10a we illustrate the proton build-up
curve of PM-03 sample with d4-MeOD under microwave irradiation of 187.75 GHz for
positive hyperpolarisation. The final polarisation of this polarising matrix arrived at
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ca. 12%.

The spin-diffusion assisted DNP was also conducted with pure water as liquid MOI.
fig. 5.11b presents a distinct multi-exponential pattern, which suggest the hyperpola-
risation created in polarising matrix crosses the interface between polymeric RRP and
glass and flows into the RFP solid water inside the pores.

After polarising the RFP for 4 hours, we lifted twice the sample completely out
of the polariser to verify if the hyperpolarisation of water in RFP could survive this
transport (see fig. 5.11a). After the first lifting, both the signal intensity and line-shape
of biphasic sample went through a thorough change. Around 63 % percent of initial
polarisation lost during the first lift, while only ca. 10% loss was introduced by the
second lift with respect to the signal after the first lift. This difference in the signal
loss implies the different relaxation pathway in the biphasic sample, which in turn
validates that the incorporated radical is not in direct contact with RFP.

Then we conducted a dissolution to extract the polarised water from inside the
matrix. Similar to the experiment described in chapter 4, 5 mL of superheated D2O
at 420 K under the pressure of 1 MPa was injected onto the biphasic mixture inside
the helium Dewar. After 0.5 s of dissolution, all the liquid in the sample holder were
pushed through a polytetrafluoroethylene tube under the protection of a 0.9 T magne-
tic tunnel to a home-made injector in a 7.05 T magnet. This transfer was achieved by
using a flow of helium gas at 0.6 MPa for 3.5 s. Afterwards, the solution was injected
into a 5 mm sample tube in 2 s. The whole process, including dissolution, transfer,
and injection, covers ca. 6 s. We have obtained a maximal proton polarisation of 2.1%
after dissolution. The longitudinal relaxation time of hyperpolarised water is 20.8 s at
room temperature, which suggests that no paramagnetic species travelled along with
water during the transfer. We have conducted several times the dissolution, both with
and without filtrating the polarising matrix. The decay rate of hyperpolarisation does
not vary, which confirms a satisfactory confinement of PA inside the wall of polarising
matrix.

5.3 Discussion

It is an intriguing phenomenon to us that the degassing process significantly improves
the proton polarisation in the polarising matrix without liquid-loading. A possible
hypothesis lies in the combination of the huge surface-volume of the porous mono-
lith and the high inherent affinity to oxygen of the polymer. If we do not perform
degassing to the porous sample, air, or more specifically, the molecules of oxygen
shall adsorb on the surface of polymer. At low temperature, the two free electrons in
the anti-bond orbital of oxygen molecule couples strongly with the PAs doped in the
polarising matrix, which competes with the hyperfine coupling, and thus dampers
the DNP performance. After degassing, the interference of oxygen in the DNP process

96



5.3. Discussion

is eliminated. The final proton polarisation is therefore optimised.

The low polarisation of water after dissolution might be due to the insufficient
polarisation in the biphasic sample of waterand monolith. The long trend of stretched
exponential in fig. 5.10b indicates a very inhomogeneous distribution pore size with
a mean value larger than 5 μm. We will continue optimising the composition and
porosity of the polymeric matrix.

Also, we envisage a series of porous material with different radical doping rate, in
view of obtaining the best compromise between cooling power of magnetic energy
and the paramagnetic relaxation in RRP. Higher polarisation could also be obtained
from better efficiency of de-oxygenation during DNP process.
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(a) Proton build-up curve of the polarising matrix PM-03 fully soaked with d4-
MeOD.

0 1 2 3 4

0 3600 7200 10800 14400

0

50000

100000

150000

200000

250000

300000

350000

0

50000

100000

150000

200000

250000

300000

350000

1H Build-up

1 H
S

ig
na

lI
nt

en
si

ty
(a

.u
.)

Time (h)

(b) Proton build-up curve of the polarising matrix PM-03 fully soaked with H2O.

Figure 5.10 – Proton build-up curve of the polarising matrix PM-03 soaked with different loa-
ding liquid. The DNP experiment was performed with microwave irradiation at 187.7 GHz for
positive DNP effect. Figure (a) shows the build-up profile of pure backbone of polarising ma-
trix, in which the volume of pores are filled with d3-MeOD. The black line shows the build-up
curve at 4.2 K with modulation of microwave frequency at 50 kHz. The red line shows the build
curve at 1.2 K without modulation of microwave frequency. The blue line shows the build-up
curve at 1.2 K with microwave frequency at 50 kHz. Figure (b) shows the the build-up profile
of pure backbone of polarising matrix, in which the volume of pores are filled with H2O. The
data was recorded with modulation of microwave frequency at 50 kHz.
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(a) Proton spectra of polarising matrix PM-03 fully soaked with H2O before and
after lifting experiment.
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(b) Proton relaxation curve of hyperpolarised H2O after dissolution.

Figure 5.11 – Figure (a) shows the proton spectra of water soaked porous monolith before and
after lifting completely out of the polariser. Black line indicates the spectrum before lifting.
Blue line indicates the spectrum after the first lifting. Red line indicates the spectrum after the
second lifting. Figure (b) shows the exponential decay of hyperpolarisation of water after the
dissolution of water in the pores of polarising matrix. The complete curve of relaxation was
measured with 2 °pulses at the interval of 2 s.
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6 Conclusions

In this thesis, an extensive numerical treatment has been described of the time-
dependent evolution of nuclear magnetic energy in the biphasic samples for disso-
lution dynamic nuclear polarisation (d-DNP) containing spins such as 1H and 13C .
Under conditions where the high temperature approximation is no longer valid, we
propose to use the absolute spin polarisation as new measure of the system and study
the accumulation of nuclear magnetic energy during direct DNP build-up, the transfer
of polarisation through cross-polarisation (CP), and the relaxation of the nuclear
magnetisation before dissolution. From the results of simulations, we have found a
series of characteristic values of the system that allow one to improve performance of
diffusion-relayed DNP, as described in chapter 2:

In view of achieving the best possible performance of direct DNP, the size of particu-
late radical-free phases (RFPs) containing the molecules of interest (MOIs) should be
below 5 microns, and the equivalent thickness of the layers of the radical-rich phase
(RRP) around the particles containing the MOIs should be on the order of 1 micron.
This shows that the volumetric ratios between the two phases are interdependent.
Also, the calculations suggest that the fully protonated RRP facilitate the fast spin
diffusion in biphasic systems throughout the diffusion-assisted DNP process.

Concerning the transfer of magnetic energy between proton and carbon-13 reser-
voirs during the CP-DNP build-up, the optimal duration of the CP contact time and
the duration of the interval between CP contacts in multiple CP series are complex
functions that depend on the sample. Though still fairly primitive, our simulations
have demonstrated their potential in predicting the time-dependent evolution of
the spatial distribution of polarisation throughout the biphasic samples. By iterative
applications of this numerical scheme, we can then optimise the experimental set-up
to obtain the best compromise between overall experimental time and the final level
of the nuclear polarisation.

From the simulated relaxation profiles, we can see that the hyperpolarisation of
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low-γ nuclei in selectively enriched biphasic samples may survive for hours and even
days in the RFP, regardless of the presence of polarising agents (PAs) in the RRP of the
biphasic samples, so that the lifetime of nuclear magnetisation is greatly extended
compared to conventional glassy samples routinely used in d-DNP experiments. Our
simulations verify the principle of the extension of longitudinal relaxation times of
hyperpolarised samples as well as the resulting possibility of remote transportation of
hyperpolarised material of biological and medical interest.

In chapter 3, we investigated the efficiency of CP at low temperatures as a function
of electron polarisation, focusing on the relationship between partial saturation of the
electron spins and the time constant of nuclear longitudinal relaxation in the rotating
frame. Using a similar numerical treatment as in chapter 2, we obtained a practical
method for estimating the experimental parameters of the build-up of CP-DNP in
a homogeneous glassy sample. Based on these calculations, we further analysed a
microwave-gated scheme that largely increases the final carbon polarisation at steady
state to 70-90%, and reduces the time requirements and total duration of CP-DNP
experiments.

To validate our practical approach and verify the hypothesis that hyperpolarisation
can be preserved and made transportable, we proposed two orthogonal methodolo-
gies for preparing biphasic d-DNP samples. The first one relies on the impregnation
of particulate MOI crystals in spin glasses doped with PAs. Using this approach, we
have obtained an extended lifetime of 13C hyperpolarisation in fully labelled amino
acids, which is demonstrated by its survival overnight in a Dewar of liquid helium
at 4.2 K in a static magnetic field of 1.0 T generated by a Halbach magnet. The next
stage of this project would focus on the coupling technique between transportable
hyperpolarised MOI with remote detecting methods, for example, in-vivo ,and even
preclinical, MRI.

Another approach focuses on polarising frozen liquids of MOI using a radical-doped
porous polymeric matrix. Once filled the pores are filled with liquid MOIs, the sample
can reach 30%. We can then obtain a radical-free solution of MOI with a proton
polarisation up to around 2% from dissolution.
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A Appendix

A.1 Supplimentrary information of numerical simulation

A.1.1 The numerical values of parameters used in simulation

In this section, we summarise all the numerical parameters that we used in the simulation
of DNP profiles in biphasic sample as well as in the microwave-gated experiments.
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Appendix A. Appendix

Table A.3 – Physical properties used in the numerical simulation of microwave-gated CP

Parameter Symbol Unit
RRP

Sodium [1−13 C ]Acetate

Concentration c H mol·m−3 3 ·103

1H

Spin density c H mol·m−3 2.0 ·104

Build-up Time tBup
H s 150

Relaxation Time (R)
w/ MW

T H
1ρ ms

10

w/o MW 100

Max Polarisation P∞H - 0.7

13C

Spin density cC mol·m−3 3.225 ·103

Build-up Time tBup
H s 6000

Relaxation Time (R)
w/ MW

T H
1ρ ms

7.4

w/o MW 100

Max Polarisation P∞H - 0.21

Average Dipolar Coupling bH−C Hz 373
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A.1.2 The script of numerical model for simulation

In this section, we attach all the initial codes of numerical simulation that are used in the
coupled runtime environment of COMSOL Multiphysics®with LiveLinkTM for MATLAB®.

Run-time Sequence: Main

1 %
2 % CoeffPDE 1D_1H -13 C _20160525. m
3 %
4

5 % Model last updateded on June 15 2016 , 18:16 by Xiao JI.
6 %
7

8 numofCP = 1;
9 seqBlockNum = numofBlocks ( numofCP );

10 global blocSeqParam
11 blocSeqParam = seqGen ( seqBlockNum );
12 iterStrFunc
13

14

15 PhysChemParams
16

17 import com. comsol . model .*
18 import com. comsol . model .util .*
19

20 model = ModelUtil . create (’Model ’);
21 model . modelPath (’C:\ COMSOL \M ’);
22 model . modelNode . create (’comp 1’);
23

24 ParamsSpec
25

26 model .geom. create (’geom1’, 1);
27 model .geom(’geom 1’). create (’i1’, ’Interval ’);
28 model .geom(’geom 1’). feature (’i1’).set(’p2’, ’r_core ’);
29 model .geom(’geom 1’). create (’i2’, ’Interval ’);
30 model .geom(’geom 1’). feature (’i2’).set(’p1’, ’r_core ’);
31 model .geom(’geom 1’). feature (’i2’).set(’p2’, ’r_core+r_ shell ’);
32 model .geom(’geom 1’).run(’fin ’);
33

34 model .mesh. create (’ mesh1’, ’geom 1’);
35 model .mesh(’mesh 1’). automatic ( false );
36 model .mesh(’mesh 1’). feature (’size ’).set(’table ’, ’semi ’);
37 model .mesh(’mesh 1’). feature (’size ’).set(’hauto ’, ’1’);
38 model .mesh(’mesh 1’). feature (’edg 1’). create (’dis1’, ’Distribution ’);
39 model .mesh(’mesh 1’). feature (’edg 1’). create (’dis2’, ’Distribution ’);
40 model .mesh(’mesh 1’). feature (’edg 1’). feature (’dis 1’). selection .set ([1]) ;
41 model .mesh(’mesh 1’). feature (’edg 1’). feature (’dis 2’). selection .set ([2]) ;
42 model .mesh(’mesh 1’). feature (’edg 1’). feature (’dis 1’).set(’numelem ’, ’r ’);
43 model .mesh(’mesh 1’). feature (’edg 1’). feature (’dis 1’).set(’type ’, ’predefined ’);
44 model .mesh(’mesh 1’). feature (’edg 1’). feature (’dis 1’).set(’ elemratio ’, ’8’);
45 model .mesh(’mesh 1’). feature (’edg 1’). feature (’dis 1’).set(’reverse ’, ’on ’);
46 model .mesh(’mesh 1’). feature (’edg 1’). feature (’dis 1’).set(’ method ’, ’geometric ’);
47 model .mesh(’mesh 1’). feature (’edg 1’). feature (’dis 1’).set(’ elemcount ’,’r_core /2e -9 ’);
48 model .mesh(’mesh 1’). feature (’edg 1’). feature (’dis 2’).set(’type ’, ’predefined ’);
49 model .mesh(’mesh 1’). feature (’edg 1’). feature (’dis 2’).set(’ elemratio ’, ’15’);
50 model .mesh(’mesh 1’). feature (’edg 1’). feature (’dis 2’).set(’ method ’, ’geometric ’);
51 model .mesh(’mesh 1’). feature (’edg 1’). feature (’dis 2’).set(’ elemcount ’,’r_ shell /1e -9 ’);
52 model .mesh(’mesh 1’).run;
53

54 for i = 1: seqBlockNum
55 if i == 1
56 % First block needs specification of evolution in 2 reservoirs
57 model . physics . create (ci(i), ’CoefficientFormPDE ’, ’geom1’, {’u1H’ ’u13C ’});
58 model . physics (ci(i)). prop(’Units ’).set(’ SourceTermQuantity ’, ’powerdensity ’);
59 model . physics (ci(i)). prop(’Units ’).set(’ DependentVariableQuantity ’, ’temperature

’);
60 else
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61 % Following blocks follow the specification of the 1st
62 model . physics . create (ci(i), ’CoefficientFormPDE ’, ’ geom1’, strcat (’u’, num2str(i)

));
63 model . physics (ci(i)).prop(’Units ’).set(’ SourceTermQuantity ’, ’powerdensity ’);
64 model . physics (ci(i)).prop(’Units ’).set(’ DependentVariableQuantity ’, ’temperature

’);
65 model . physics (ci(i)). field (’ dimensionless ’). field (’u ’);
66 end
67 end
68

69 for i = 1: seqBlockNum
70 if i < seqBlockNum
71 if i == 1
72 % First block of BUP Cond . with initial condtion P|_{ t=0} \ equiv 0
73 model . physics (ci(i)). feature (’init 1’).set(’u1H’, ’Pini1H_1 ’);
74 model . physics (ci(i)). feature (’init 1’).set(’u13C’, ’Pini 13C_1 ’);
75 model . physics (ci(i)). feature . duplicate (’init2’, ’init 1’);
76 model . physics (ci(i)). feature (’init 2’). selection .set ([2]) ;
77 model . physics (ci(i)). feature (’init 2’).set(’u1H’, ’Pini1H_2 ’);
78 model . physics (ci(i)). feature (’init 2’).set(’u13C’, ’Pini 13C_2 ’);
79

80 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’c’, ’kappa 1H_1’, 0);
81 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’c’, ’kappa 13C_1’, 3);
82 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’a’, ’qsAntiBup 1H_1’, 0);
83 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’a’, ’qsAntiBup 13C_1’, 3);
84 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’f’, ’Qbup1H_1’, 0);
85 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’f’, ’Qbup 13C_1’, 1);
86 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’da ’, ’NuEnergy 1H_1’, 0);
87 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’da ’, ’NuEnergy 13C_1’, 3);
88 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’be ’, ’-2* kappa 1H_1/x’, 0);
89 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’be ’, ’-2* kappa 13C_1/x’, 3);
90

91 model . physics (ci(i)). feature . duplicate (’cfeq2’, ’cfeq 1’);
92 model . physics (ci(i)). feature (’cfeq 2’). selection .set ([2]) ;
93 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’c’, ’kappa 1H_2’, 0);
94 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’c’, ’kappa 13C_2’, 3);
95 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’a’, ’qsAntiBup 1H_2’, 0);
96 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’a’, ’qsAntiBup 13C_2’, 3);
97 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’f’, ’Qbup1H_2’, 0);
98 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’f’, ’Qbup 13C_2’, 1);
99 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’da ’, ’NuEnergy 1H_2’, 0);

100 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’da ’, ’NuEnergy 13C_2’, 3);
101 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’be ’, ’-2* kappa 1H_2/x’, 0);
102 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’be ’, ’-2* kappa 13C_2/x’, 3);
103

104 elseif mod(i, 2) == 1 & i< seqBlockNum & i >1
105 % Odd block of Bup Cond . inside the sequence
106 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’c’, ’kappa 1H_1’, 0);
107 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’c’, ’kappa 13C_1’, 3);
108 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’a’, ’qsAntiBup 1H_1’, 0);
109 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’a’, ’qsAntiBup 13C_1’, 3);
110 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’f’, ’Qbup1H_1’, 0);
111 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’f’, ’Qbup 13C_1’, 1);
112 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’da ’, ’NuEnergy 1H_1’, 0);
113 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’da ’, ’NuEnergy 13C_1’, 3);
114 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’be ’, ’-2* kappa 1H_1/x’, 0);
115 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’be ’, ’-2* kappa 13C_1/x’, 3);
116

117 model . physics (ci(i)). feature . duplicate (’cfeq2’, ’cfeq 1’);
118 model . physics (ci(i)). feature (’cfeq 2’). selection .set ([2]) ;
119 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’c’, ’kappa 1H_2’, 0);
120 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’c’, ’kappa 13C_2’, 3);
121 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’a’, ’qsAntiBup 1H_2’, 0);
122 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’a’, ’qsAntiBup 13C_2’, 3);
123 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’f’, ’Qbup1H_2’, 0);
124 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’f’, ’Qbup 13C_2’, 1);
125 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’da ’, ’NuEnergy 1H_2’, 0);
126 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’da ’, ’NuEnergy 13C_2’, 3);
127 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’be ’, ’-2* kappa 1H_2/x’, 0);
128 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’be ’, ’-2* kappa 13C_2/x’, 3);
129
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130 elseif mod(i, 2) == 0
131 % Even blocks of CP inside the sequences
132

133 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’c’, ’0’, 0);
134 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’c’, ’0’, 3);
135

136 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’f’, ’0’, 0);
137 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’f’, ’0’, 1);
138

139 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’a’, ’+bHC _1*c13C_1/(c1H_1+c13
C_1) +1/T1rho _1H_1’, 0);

140 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’a’, ’-bHC _1*c1H_1/(c1H_1+c13C
_1) ’, 1);

141 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’a’, ’-bHC _1*c13C_1/(c1H_1+c13
C_1) ’, 2);

142 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’a’, ’+bHC _1*c1H_1/(c1H_1+c13C
_1) +1/T1rho _13C_1’, 3);

143

144

145 model . physics (ci(i)). feature . duplicate (’cfeq2’, ’cfeq 1’);
146 model . physics (ci(i)). feature (’cfeq 2’). selection .set ([2]) ;
147 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’a’, ’bHC _2*c13C_2/(c1H_2+c13C

_2) +1/T1rho _2H_1’, 0);
148 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’a’, ’bHC _2*c13C_2/(c1H_2+c13C

_2) +1/T1rho _1H_2’, 0);
149 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’a’, ’-bHC _2*c13C_2/(c1H_2+c13

C_2) ’, 2);
150 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’a’, ’-bHC _2*c1H_2/(c1H_2+c13C

_2) ’, 1);
151 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’a’, ’+bHC _2*c1H_2/(c1H_2+c13C

_2) +1/T1rho _13C_2’, 3);
152

153

154 else
155 % Last block of Relax
156

157 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’c’, ’kappa 1H_1’, 0);
158 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’c’, ’kappa 13C_1’, 3);
159 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’a’, ’qsRelax 1H_1’, 0);
160 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’a’, ’qsRelax 13C_1’, 3);
161 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’f’, ’Qzero 1H_1’, 0);
162 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’f’, ’Qzero 13C_1’, 1);
163 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’da ’, ’NuEnergy 1H_1’, 0);
164 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’da ’, ’NuEnergy 13C_1’, 3);
165

166 model . physics (ci(i)). feature . duplicate (’cfeq2’, ’cfeq 1’);
167 model . physics (ci(i)). feature (’cfeq 2’). selection .set ([2]) ;
168 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’c’, ’kappa 1H_2’, 0);
169 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’c’, ’kappa 13C_2’, 3);
170 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’a’, ’qsRelax 1H_2’, 0);
171 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’a’, ’qsRelax 13C_2’, 3);
172 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’f’, ’Qzero 1H_2’, 0);
173 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’f’, ’Qzero 13C_2’, 1);
174 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’da ’, ’NuEnergy 1H_2’, 0);
175 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’da ’, ’NuEnergy 13C_2’, 3);
176

177 end
178 else
179 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’c’, ’kappa 1H_1’, 0);
180 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’c’, ’kappa 13C_1’, 3);
181 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’a’, ’qsRelax 1H_1’, 0);
182 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’a’, ’qsRelax 13C_1’, 3);
183 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’f’, ’Qzero 1H_1’, 0);
184 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’f’, ’Qzero 13C_1’, 1);
185 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’da ’, ’NuEnergy 1H_1’, 0);
186 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’da ’, ’NuEnergy 13C_1’, 3);
187 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’be ’, ’-2* kappa 1H_1/x’, 0);
188 model . physics (ci(i)). feature (’cfeq 1’). setIndex (’be ’, ’-2* kappa 13C_1/x’, 3);
189

190 model . physics (ci(i)). feature . duplicate (’cfeq2’, ’cfeq 1’);
191 model . physics (ci(i)). feature (’cfeq 2’). selection .set ([2]) ;
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192

193 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’c’, ’kappa 1H_2’, 0);
194 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’c’, ’kappa 13C_2’, 3);
195 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’a’, ’qsRelax 1H_2’, 0);
196 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’a’, ’qsRelax 13C_2’, 3);
197 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’f’, ’Qzero 1H_2’, 0);
198 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’f’, ’Qzero 13C_2’, 1);
199 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’da ’, ’NuEnergy 1H_2’, 0);
200 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’da ’, ’NuEnergy 13C_2’, 3);
201 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’be ’, ’-2* kappa 1H_2/x’, 0);
202 model . physics (ci(i)). feature (’cfeq 2’). setIndex (’be ’, ’-2* kappa 13C_2/x’, 3);
203 end
204 end
205

206

207

208 for i = 1: seqBlockNum
209 model . study . create (stdi (i));
210 model . study (stdi(i)). create (’time ’, ’Transient ’);
211

212 for j = 1: seqBlockNum
213 cj = @(t)ci(t);
214 if j == i
215 model . study (stdi(i)). feature (’time ’). activate (cj(j), true);
216 else
217 model . study (stdi (i)). feature (’time ’). activate (cj(j), false );
218 end
219 end
220

221 model .sol. create (soli(i));
222 model .sol(soli(i)). study (stdi(i));
223

224 rangei = strcat (’ range (0,’, num2str( blocSeqParam (i ,1)) ,’,’,num2str( blocSeqParam (i ,2))
,’) ’);

225

226 if i == 1
227 model . study (stdi (i)). feature (’time ’).set(’ notlistsolnum ’, 1);
228 model . study (stdi (i)). feature (’time ’).set(’ notsolnum ’, ’1’);
229 model . study (stdi (i)). feature (’time ’).set(’ listsolnum ’, 1);
230 model . study (stdi (i)). feature (’time ’).set(’solnum ’, ’1’);
231 model . study (stdi (i)). feature (’time ’).set(’tlist ’, rangei );
232 model . study (stdi (i)). feature (’time ’).set(’ rtolactive ’, ’on ’);
233 model . study (stdi (i)). feature (’time ’).set(’rtol ’, ’1e -6 ’);
234

235 else
236 model . study (stdi (i)). feature (’time ’).set(’ useinitsol ’, ’on ’);
237 model . study (stdi (i)). feature (’time ’).set(’ initmethod ’, ’sol ’);
238 model . study (stdi (i)). feature (’time ’).set(’ initstudy ’, stdi(i -1));
239 model . study (stdi (i)). feature (’time ’).set(’solnum ’, ’last ’);
240 model . study (stdi (i)). feature (’time ’).set(’usesol ’, ’on ’);
241 model . study (stdi (i)). feature (’time ’).set(’ notsolmethod ’, ’sol ’);
242 model . study (stdi (i)). feature (’time ’).set(’notstudy ’, stdi(i -1));
243 model . study (stdi (i)). feature (’time ’).set(’ notsolnum ’, ’last ’);
244 model . study (stdi (i)). feature (’time ’).set(’ notlistsolnum ’, 1);
245 model . study (stdi (i)). feature (’time ’).set(’ notsolnum ’, ’last ’);
246 model . study (stdi (i)). feature (’time ’).set(’ listsolnum ’, 1);
247 model . study (stdi (i)). feature (’time ’).set(’solnum ’, ’last ’);
248 model . study (stdi (i)). feature (’time ’).set(’tlist ’, rangei );
249 model . study (stdi (i)). feature (’time ’).set(’ rtolactive ’, ’on ’);
250 model . study (stdi (i)). feature (’time ’).set(’rtol ’, ’1e -6 ’);
251

252 end
253

254 model .sol(soli(i)). create (’st1’, ’StudyStep ’);
255 model .sol(soli(i)). feature (’st1’).set(’study ’, stdi(i));
256 model .sol(soli (i)). feature (’st1’).set(’studystep ’, ’time ’);
257 model .sol(soli(i)). create (’v1’, ’Variables ’);
258 model .sol(soli(i)). feature (’v1’).set(’control ’, ’time ’);
259 model .sol(soli(i)). create (’t1’, ’Time ’);
260 model .sol(soli(i)). feature (’t1’).set(’plot ’, ’off ’);
261 model .sol(soli(i)). feature (’t1’).set(’ plotgroup ’, ’Default ’);
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262 model .sol(soli(i)). feature (’t1’).set(’ plotfreq ’, ’tout ’);
263 model .sol(soli(i)). feature (’t1’).set(’ probesel ’, ’all ’);
264 model .sol(soli(i)). feature (’t1’).set(’probes ’, {});
265 model .sol(soli(i)). feature (’t1’).set(’probefreq ’, ’tsteps ’);
266 model .sol(soli(i)). feature (’t1’).set(’control ’, ’time ’);
267 model .sol(soli(i)). feature (’t1’). create (’fc1’, ’FullyCoupled ’);
268 model .sol(soli(i)). feature (’t1’). feature (’fc1’).set(’linsolver ’, ’dDef ’);
269 model .sol(soli(i)). feature (’t1’). feature . remove (’fcDef ’);
270 model .sol(soli(i)). attach (stdi(i));
271

272 end
273

274 for i = 1: seqBlockNum
275 model .sol(soli(i)). runAll ;
276 end
277

278 for i = 1: seqBlockNum
279 model . result . create (pgi(i), 1);
280 model . result (pgi(i)).set(’data ’, dseti (i));
281 model . result (pgi(i)). setIndex (’ looplevelinput ’, ’manualindices ’, 0);
282 model . result (pgi(i)). setIndex (’ looplevelindices ’, slidei (i), 0);
283 model . result (pgi(i)). create (’lngr1’, ’LineGraph ’);
284 model . result (pgi(i)). feature (’lngr 1’).set(’xdata ’, ’expr ’);
285 model . result (pgi(i)). feature (’lngr 1’).set(’xdataexpr ’, ’x ’);
286 model . result (pgi(i)). feature (’lngr 1’). selection .all;
287 model . result (pgi(i)). feature (’lngr 1’).set(’expr ’, ’u1H ’);
288 model . result (pgi(i)). feature (’lngr 1’).set(’linecolor ’, ’blue ’);
289 model . result (pgi(i)). feature (’lngr 1’).set(’linestyle ’, ’cycle ’);
290 model . result (pgi(i)). feature . duplicate (’lngr2’, ’lngr 1’);
291 model . result (pgi(i)). feature (’lngr 2’).set(’expr ’, ’u13C ’);
292 model . result (pgi(i)). feature (’lngr 2’).set(’linestyle ’, ’cycle ’);
293 model . result (pgi(i)). feature (’lngr 2’).set(’linecolor ’, ’red ’);
294 model . result (pgi(i)).set(’title ’, ’P1H (Blue) and P13C (Red) ’);
295 model . result (pgi(i)).set(’ xlabelactive ’, ’on ’);
296 model . result (pgi(i)).set(’xlabel ’, ’Distance from Core (m) ’);
297 model . result (pgi(i)).set(’ ylabelactive ’, ’on ’);
298 model . result (pgi(i)).set(’ylabel ’, ’Polarisation (%) ’);
299 model . result (pgi(i)). feature (’lngr 1’).set(’legend ’, ’on ’);
300 model . result (pgi(i)). feature (’lngr 1’).set(’ legendmethod ’, ’manual ’);
301 model . result (pgi(i)). feature (’lngr 1’). setIndex (’legends ’, ’P1H, 0 s’, 0);
302 model . result (pgi(i)). feature (’lngr 2’).set(’legend ’, ’on ’);
303 model . result (pgi(i)). feature (’lngr 2’).set(’ legendmethod ’, ’manual ’);
304 model . result (pgi(i)). feature (’lngr 2’). setIndex (’legends ’, ’P13C, 0 s’, 0);
305 model . result (pgi(i)).set(’legendpos ’, ’upperleft ’);
306 model . result (pgi(i)).run;
307

308 figure ;
309 mphplot (model ,pgi(i),’rangenum ’ ,1)
310 end
311

312 exportFileDirectory = " C:\ COMSOL \ Output data \20170103\ Raw Data\ ";
313 exportProtonFileName = [’1H-Bup -’, num2str(core. radius ), ’m-’, num2str(core. proton .

concentration ),’M-’,num2str( shell . thickness ), ’m-’, num2str( shell . proton .
concentration ),’M- deltaTime -150s -20170103. txt ’];

314 model . result . export . create (plot1Hi(i), pgi(i), ’lngr1’, ’Plot ’);
315 model . result . export (plot1Hi(i)).set(’ header ’, ’off ’);
316 model . result . export (plot1Hi(i)).set(’sort ’, ’on ’);
317 model . result . export (plot1Hi(i)).set(’filename ’, [ exportFileDirectory , exportFileName

]);
318 model . result . export (plot1Hi(i)).run;
319 model . result . export . create (plot 13 Ci(i), pgi(i), ’lngr2’, ’Plot ’);
320 model . result . export (plot 13 Ci(i)).set(’header ’, ’off ’);
321 return

Run-time Sequence: PhysChemParams

1 % param . reference material for proton reservoir is polystyrene _ Data source : param . ref
_[1]

2

3 param .ref_ proton _ concentration = 81.0*1000; %(mol )
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4 param .ref_ proton _ diffusivity = 0.38e -15; %(m ^2/ s)
5 param .ref_ proton _ energyCapacity = 5.69e -2; %(J* mol ^ -1)
6

7

8 % param . reference material for carbon reservoir is adamantane _ Data source : param .ref _[2]
9

10 % Admittedly , the value of 13C diffusivity in Na - Pyruvate and in Na - Acetate crystals
11 % could be calculated from the 13C spectrum and the XRD data with the method indicated in

param . ref _[2].
12

13 param .ref_ carbon _ concentration = 0.872*1000; %(mol *m^ -3)
14 param .ref_ carbon _ diffusivity = 4.617e -19; %(m ^2/ s)
15 param .ref_ carbon _ energyCapacity = 1.43e -2;%(J* mol ^ -1)
16

17 % param . reference average 1H -13 C dipolar coupling constant is estimated from 1H -13C
distance in XRD structure _

18 % Numerical value with better precision could be obtained from 1H -13C MAS DD Recoupling
Experiment .

19

20 param .core_ heteroDipolar = 2000; %(Hz)
21 param . shell _ heteroDipolar = 9000; %(Hz)
22

23 % The scaling rule ( power 1/3) comes from the ABRAGAM book for the homonuclear network of
abundant spins . param .ref _[2]

24

25 param .core_ proton _ concentration = 80.0*1000; %(mol *m^ -3)
26 param .core_ proton _ diffusivity = param .ref_ proton _ diffusivity * ( param .core_ proton _

concentration / param .ref_ proton _ concentration ) ^(1/3) ;%(m ^2/ s)
27 param .core_ proton _ conductivity = param .core_ proton _ concentration * param . core_ proton _

diffusivity * param .ref_ proton _ energyCapacity ;%(J*m^ -1*s^ -1)
28 param .core_ proton _ initialPolarisation = 0.0; % (1)
29 param .core_ proton _ bupPolarisation = 0.0; % (1) No bup exists in this phase
30 param .core_ proton _ eqPolarisation = 0.0; % (1)
31 param .core_ proton _ energyDensity = param .core_ proton _ concentration * param .ref_ proton _

energyCapacity ;%(J*m^ -3)
32 param .core_ proton _Tbup = 0;%(s) No bup exists in this phase
33 param .core_ proton _T1 = 6000.0; %(s)
34 param .core_ proton _T1rho = 200e -3; %(s)
35 param .core_ proton _ bupSource = 0;%(J*m^ -3*s^ -1) No bup exists in this phase
36 param .core_ proton _ zeroSource = 0 ;%(J*m^ -3*s^ -1) No positive constant source during the

storage of hyperpolarised sample
37 param .core_ proton _ relaxingLeak = param .core_ proton _ energyDensity / param . core_ proton _T1;%

(J*m^ -3*s^ -1)
38 param .core_ proton _ antiBupLeak = param .core_ proton _ relaxingLeak ;%(J*m^ -3*s^ -1) No bup

exists in this phase
39

40 param . shell _ proton _ concentration = 80.0*1000; %( mol*m^ -3)
41 param . shell _ proton _ diffusivity = param .ref_ proton _ diffusivity * ( param . shell _ proton _

concentration / param .ref_ proton _ concentration ) ^(1/3) ;%(m ^2/ s)
42 param . shell _ proton _ conductivity = param . shell _ proton _ concentration * param . shell _ proton _

diffusivity * param .ref_ proton _ energyCapacity ;%(J*m^ -1*s^ -1)
43 param . shell _ proton _ initialPolarisation = 0.0; % (1)
44 param . shell _ proton _ bupPolarisation = 0.6835; % (1)
45 param . shell _ proton _ eqPolarisation = 0.0; % (1)
46 param . shell _ proton _ energyDensity = param . shell _ proton _ concentration * param .ref_ proton _

energyCapacity ;%(J*m^ -3)
47 param . shell _ proton _Tbup = 65.38; %(s)
48 param . shell _ proton _T1 = 90;%(s)
49 param . shell _ proton _T1rho = 10.0e -3; %(s)
50 param . shell _ proton _ bupSource = param . shell _ proton _ bupPolarisation * param . shell _ proton _

energyDensity / param . shell _ proton _Tbup;%(J*m^ -3*s^ -1)
51 param . shell _ proton _ antiBupLeak = param . shell _ proton _ energyDensity / param . shell _ proton _

Tbup;%(J*m^ -3*s^ -1)
52 param . shell _ proton _ zeroSource = 0 ;%(J*m^ -3*s^ -1) No positive constant source during the

storage of hyperpolarised sample
53 param . shell _ proton _ relaxingLeak = param . shell _ proton _ energyDensity / param . shell _ proton _T

1;%(J*m^ -3*s^ -1)
54

55 % The scaling rule ( power 4/3) comes from the GOLDMAN paper for the proton - driven
diffusion of inabundant spins . param . ref _[3]

56 param .core_ carbon _ concentration = 42.8*1000; %(mol *m^ -3)
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57 param .core_ carbon _ diffusivity = param .ref_ carbon _ diffusivity * ( param .core_ carbon _
concentration / param .ref_ carbon _ concentration ) ^(4/3) ;%(m ^2/ s)

58 param .core_ carbon _ conductivity = param . core_ carbon _ concentration * param .core_ carbon _
diffusivity * param .ref_ carbon _ energyCapacity ;%(J*m^ -1*s^ -1)

59 param .core_ carbon _ initialPolarisation = 0.0; % (1)
60 param .core_ carbon _ bupPolarisation = 0.0; % (1) No bup exists in this phase
61 param .core_ carbon _ eqPolarisation = 0.0; % (1)
62 param .core_ carbon _ energyDensity = param . core_ carbon _ concentration * param .ref_ carbon _

energyCapacity ;%(J*m^ -3)
63 param .core_ carbon _T1 = 10*3600.0; %(s)
64 param .core_ carbon _Tbup = 0;% (1) No bup exists in this phase
65 param .core_ carbon _T1rho = 200e -3; %(s)
66 param .core_ carbon _ bupSource = 0;%(J*m^ -3*s^ -1) No bup exists in this phase
67 param .core_ carbon _ zeroSource = 0 ;%(J*m^ -3*s^ -1) No positive constant source during the

storage of hyperpolarised sample
68 param .core_ carbon _ relaxingLeak = param . core_ carbon _ energyDensity / param .core_ carbon _T1; %

(J*m^ -3*s^ -1)
69 param .core_ carbon _ antiBupLeak = param .core_ carbon _ relaxingLeak ;%(J*m^ -3*s^ -1) No bup

exists in this phase
70 param . shell _ carbon _ concentration = 0.69*1000; %( mol*m^ -3)
71 param . shell _ carbon _ diffusivity = param .ref_ carbon _ diffusivity * ( param . shell _ carbon _

concentration / param .ref_ carbon _ concentration ) ^(4/3) ;%(m ^2/ s)
72 param . shell _ carbon _ conductivity = param . shell _ carbon _ concentration * param . shell _ carbon _

diffusivity * param .ref_ carbon _ energyCapacity ;%(J*m^ -1*s^ -1)
73 param . shell _ carbon _ initialPolarisation = 0.0; % (1)
74 param . shell _ carbon _ bupPolarisation = 0.207; % (1)
75 param . shell _ carbon _ eqPolarisation = 0.0; % (1)
76 param . shell _ carbon _ energyDensity = param . shell _ carbon _ concentration * param .ref_ carbon _

energyCapacity ;%(J*m^ -3)
77 param . shell _ carbon _Tbup = 1800.0; %(s)
78 param . shell _ carbon _T1 = 2400.0; %(s)
79 param . shell _ carbon _T1rho = 10.0e -3; %(s)
80 param . shell _ carbon _ bupSource = param . shell _ carbon _ bupPolarisation * param . shell _ carbon _

energyDensity / param . shell _ carbon _Tbup;%(J*m^ -3*s^ -1)
81 param . shell _ carbon _ zeroSource = 0 ;%(J*m^ -3*s^ -1) No positive constant source during the

storage of hyperpolarised sample
82 param . shell _ carbon _ antiBupLeak = param . shell _ carbon _ energyDensity / param . shell _ carbon _

Tbup;%(J*m^ -3*s^ -1)
83 param . shell _ carbon _ relaxingLeak = param . shell _ carbon _ energyDensity / param . shell _ carbon _T

1;%(J*m^ -3*s^ -1)
84

85 param .core_ radius = 5e -6; %(m)
86 param . shell _ thickness = 5e -6; %(m)
87

88 param .time_bup_ duration = 600; %(s)
89 param .time_bup_pts = 600;
90 param .time_bup_ interval = param .time_bup_ duration / param .time_bup_pts;
91 param .time_CP_ duration = 2e -3; %(s)
92 param .time_CP_pts = 100;
93 param .time_CP_ interval = param .time_CP_ duration / param .time_CP_pts;
94 param .time_ relax _ duration = 3600*20; %(s)
95 param .time_ relax _pts = 300;
96 param .time_ relax _ interval = param .time_ relax _ duration / param .time_ relax _pts ;

Run-time Sequence: ParamSpec

1 model . param .set(’Cp1H’, num2str( param .ref_ proton _ energyCapacity ), ’’);
2 model . param .set(’c1HPS ’, num2str( param .ref_ proton _ concentration ), ’’);
3 model . param .set(’D1HPS ’, num2str( param .ref_ proton _ diffusivity ), ’’);
4 model . param .set(’c1H_1’, num2str( param .core_ proton _ concentration ), ’’);
5 model . param .set(’D1H_1’, num2str( param .core_ proton _ diffusivity ), ’’);
6 model . param .set(’ kappa 1H_1’, num2str( param .core_ proton _ conductivity ), ’’);
7 model . param .set(’c1H_2’, num2str( param . shell _ proton _ concentration ), ’’);
8 model . param .set(’D1H_2’, num2str( param . shell _ proton _ diffusivity ), ’’);
9 model . param .set(’ kappa 1H_2’, num2str( param . shell _ proton _ conductivity ), ’’);

10 model . param .set(’Pini1H_1’, num2str( param .core_ proton _ initialPolarisation ), ’’);
11 model . param .set(’Pini1H_2’, num2str( param . shell _ proton _ initialPolarisation ), ’’);
12 model . param .set(’ NuEnergy 1H_1’, num2str( param .core_ proton _ energyDensity ), ’’);
13 model . param .set(’ NuEnergy 1H_2’, num2str( param . shell _ proton _ energyDensity ), ’’);
14 model . param .set(’Tbup _1H_1’, num2str( param .core_ proton _Tbup), ’’);
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15 model . param .set(’Tbup _1H_2’, num2str( param . shell _ proton _Tbup), ’’);
16 model . param .set(’T1_1H_1’, num2str( param .core_ proton _T1) , ’’);
17 model . param .set(’T1_1H_2’, num2str( param . shell _ proton _T1) , ’’);
18 model . param .set(’Pbup1H_1’, num2str( param .core_ proton _ bupPolarisation ) ,’’);
19 model . param .set(’Pbup1H_2’, num2str( param . shell _ proton _ bupPolarisation ) ,’’);
20 model . param .set(’Qbup1H_1’, num2str( param .core_ proton _ bupSource ) ,’’);
21 model . param .set(’Qbup1H_2’, num2str( param . shell _ proton _ bupSource ) ,’’);
22 model . param .set(’ Qzero 1H_1’, num2str( param .core_ proton _ zeroSource ) ,’’);
23 model . param .set(’ Qzero 1H_2’, num2str( param . shell _ proton _ zeroSource ) ,’’);
24 model . param .set(’ qsAntiBup 1H_1’, num2str( param .core_ proton _ antiBupLeak ) ,’’);
25 model . param .set(’ qsAntiBup 1H_2’, num2str( param . shell _ proton _ antiBupLeak ) ,’’);
26 model . param .set(’ qsRelax 1H_1’, num2str( param .core_ proton _ relaxingLeak ) ,’’);
27 model . param .set(’ qsRelax 1H_2’, num2str( param . shell _ proton _ relaxingLeak ) ,’’);
28 model . param .set(’T1rho _1H_1’, num2str( param .core_ proton _T1rho), ’’);
29 model . param .set(’T1rho _1H_2’, num2str( param . shell _ proton _T1rho), ’’);
30 model . param .set(’Cp 13C’, num2str( param .ref_ carbon _ energyCapacity ), ’’);
31 model . param .set(’c13 CAda ’, num2str( param .ref_ carbon _ concentration ), ’’);
32 model . param .set(’D13 CAda ’, num2str( param .ref_ carbon _ diffusivity ), ’’);
33 model . param .set(’c13C_1’, num2str( param .core_ carbon _ concentration ), ’’);
34 model . param .set(’D13C_1’, num2str( param .core_ carbon _ diffusivity ), ’’);
35 model . param .set(’ kappa 13C_1’, num2str ( param .core_ carbon _ conductivity ), ’’);
36 model . param .set(’c13C_2’, num2str( param . shell _ carbon _ concentration ), ’’);
37 model . param .set(’D13C_2’, num2str( param . shell _ carbon _ diffusivity ), ’’);
38 model . param .set(’ kappa 13C_2’, num2str( param . shell _ carbon _ conductivity ), ’’);
39 model . param .set(’Pini 13C_1’, num2str( param .core_ carbon _ initialPolarisation ), ’’);
40 model . param .set(’Pini 13C_2’, num2str( param . shell _ carbon _ initialPolarisation ), ’’);
41 model . param .set(’ NuEnergy 13C_1’, num2str( param .core_ carbon _ energyDensity ), ’’);
42 model . param .set(’ NuEnergy 13C_2’, num2str ( param . shell _ carbon _ energyDensity ), ’’);
43 model . param .set(’T1_13C_1’, num2str( param .core_ carbon _T1) , ’’);
44 model . param .set(’T1_13C_2’, num2str( param . shell _ carbon _T1) , ’’);
45 model . param .set(’Pbup 13C_1’, num2str( param .core_ carbon _ bupPolarisation ) ,’’);
46 model . param .set(’Pbup 13C_2’, num2str( param . shell _ carbon _ bupPolarisation ) ,’’);
47 model . param .set(’Qbup 13C_1’, num2str( param .core_ carbon _ bupSource ) ,’’);
48 model . param .set(’Qbup 13C_2’, num2str( param . shell _ carbon _ bupSource ) ,’’);
49 model . param .set(’ Qzero 13C_1’, num2str( param .core_ carbon _ zeroSource ) ,’’);
50 model . param .set(’ Qzero 13C_2’, num2str( param . shell _ carbon _ zeroSource ) ,’’);
51 model . param .set(’ qsAntiBup 13C_1’, num2str( param .core_ carbon _ antiBupLeak ) ,’’);
52 model . param .set(’ qsAntiBup 13C_2’, num2str( param . shell _ carbon _ antiBupLeak ) ,’’);
53 model . param .set(’ qsRelax 13C_1’, num2str( param .core_ carbon _ relaxingLeak ) ,’’);
54 model . param .set(’ qsRelax 13C_2’, num2str( param . shell _ carbon _ relaxingLeak ) ,’’);
55 model . param .set(’T1rho _13C_1’, num2str( param .core_ carbon _T1rho), ’’);
56 model . param .set(’T1rho _13C_2’, num2str( param . shell _ carbon _T1rho), ’’);
57 model . param .set(’bHC_1’, num2str( param .core_ heteroDipolar ), ’’);
58 model . param .set(’bHC_2’, num2str( param . shell _ heteroDipolar ), ’’);
59 model . param .set(’r_core ’, num2str( param .core_ radius ), ’’);
60 model . param .set(’r_shell ’, num2str( param . shell _ thickness ), ’’);

Function: str4IterGen

1 function y = str4 IterGen (parStr , parNum )
2 % inline func to assign COMSOL _ JAVA keywords
3 y = strcat (parStr , num2str( parNum ));
4 end

Lambda Functions: iterStrFunc

1 stdi = @(t)str4 IterGen (’std ’,t);
2 ci = @(t)str4 IterGen (’c’,t);
3 soli = @(t)str4 IterGen (’sol ’,t);
4 pgi = @(t) str4 IterGen (’pg ’,t);
5 dseti = @(t) str4 IterGen (’dset ’,t);
6 tbli = @(t) str4 IterGen (’tbl ’, t);
7 plot1Hi = @(t) str4 IterGen (’plot1H-’, t);
8 plot 13 Ci = @(t) str4 IterGen (’plot 13C-’, t);

Function: numofBlocks

114



A.1. Supplimentrary information of numerical simulation

1 function y = numofBlocks (x)
2 % Calculate the number of total blocks basing on the number of CP blocks
3 % ONLY take Integer as input
4 % When takeing -1 as param , means only one bup
5 % when takeing 0 as param , means one bup and one relaxation
6 % when takeing n as positive intergers , means n times bup -CP blocks
7

8 if x >0 & mod(x ,1) == 0
9 y = 2*x+1;

10 elseif x == 0
11 y = 2;
12 elseif x == -1
13 y = 1;
14 else
15 error (’<numofCP > must be a positive integer or -1’)
16 return
17 end
18 end

Function: seqGen

1 function seq = seqGen (x)
2 % Generate the array of information in time domain for the simulation .
3

4 param = evalin (’base ’, ’param ’);
5 % get time params from the base workspace
6 if isempty ( param )
7 error (’ parameter must be a positive integer greater than 1’)
8 else
9 if x < 1

10 error (’ parameter must be a positive integer greater than 0’)
11 return
12 elseif x == 1
13 seq = zeros (x, 2);
14 seq (1 ,2) = param .time_bup_ duration ;
15 seq (1 ,1) = param .time_bup_ interval ;
16

17 elseif x == 2
18 seq = zeros (x, 2);
19 seq (1 ,2) = param .time_bup_ duration ;
20 seq (1 ,1) = param .time_bup_ interval ;
21 seq (2 ,2) = param .time_ relax _ duration ;
22 seq (2 ,1) = param .time_ relax _ interval ;
23 else
24 seq = zeros (x, 2);
25

26 for i = 1 : x
27 if mod(i, 2) == 1 & i < x
28 seq(i ,2) = param .time_bup_ duration ;
29 seq(i ,1) = param .time_bup_ interval ;
30 elseif mod(i, 2) == 0
31 seq(i ,2) = param .time_CP_ duration ;
32 seq(i ,1) = param .time_CP_ interval ;
33 else
34 seq(i ,2) = param .time_ relax _ duration ;
35 seq(i ,1) = param .time_ relax _ interval ;
36 end
37 end
38 end
39 end
40 end
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Appendix A. Appendix

A.2 Supplementary information on the preparation of bipha-
sic sample

A.2.1 Preparing micro-particulate RFP

A typical protocol of micro-particulate RFP follows here:

20 mg of sodium [1 −13 C ] pyruvate is placed in an mortar made of agate. Before star-
ting hand-grinding, 100 uL of toluene is introduced in the mortar in view of smoothing the
friction for more homogenised distribution of particle size. Upon complete evaporation of
solvent, another 100 uL of solvent is reintroduced. The occasional addition of milling liquid
lasts along the whole process of 5-minute long hand-milling.

A.2.2 Manual counting for the distribution of particle size

The statistics of the distribution of particle number with respect to the surface-equivalent
diameter of particles of hand-ground sodium [1−13C ]pyruvate is obtained from the software
ImageJ.

Since the image is dense in overlapped particles, the whole process was conducted as a
manual repetition of particle picking and pixel counting on the SEM image.

The distribution of particle size in terms of particle volume is calculated basing on the
distribution of particle number .

A.3 Supplementary information on the synthesis of porous
polarising matrix

A.3.1 Chemicals and Materials

Styrene (Sty, Sigma-Aldrich, Analytical Grade, 99%), divinylbenzene (DVB, Sigma-Aldrich,
80% DVB + 20% Ethylvinylbenzene(EVB)), 4-Vinylbenzyl chloride / 1-(chloromethyl)-4-vinylbenzene
(VBC, Sigma-Aldrich, Mixture of 3- and 4-isomers, 97%), and 2-ethylhexylacrylate (EHA, Sigma-
Aldrich, 98%) were purified by column of basic alumina (Al2O3, Sigma-Aldrich) to remove
the inhibitors before synthesis. Potassium persulfate (K2S2O8), calsium chloride hexahy-
drate (C aC l2·H2O), sorbitan monooleate (Span 80, Sigma-Aldrich), sodium 4-vinylbenzenesulfinate
(NaVBS) and di-tert-butyl peroxide (DTBP, Sigma-Aldrich) were used as receved. Tetrahyd-
rofurane (THF, Sigma-Aldrich) passed through the peroxide test (with potassium iodide /
starch paper) and distilled upon usage. Toluene was also distilled upon usage.

The quantities of starting materials are listed in the following tables:
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A.3. Supplementary information on the synthesis of porous polarising matrix

Table A.4 – Chemical composition of aqueous initiator solution

Chemical
m V n

(g) (mL) (mmol)

K2S2O8 0.11 - 0.407

C aC l2 ·H2O 1.78 - 8.13

H2O - 100 5556

Table A.5 – Characteristic parameters of monomers of polymers discussed in this chapter

NaVBS Sty DVB+EVB VBC EHA Porosity Radical Concentration

(mol %) (mol %) (mol %) (mol %) (mol %) (%) mmol·L−1

PM-01 7.5 2.0 90 0.5 0 80 25

PM-02 7.5 0 30 0.6 61.9 80 25

PM-03 7.5 0 30 0.6 61.9 66 25

A.3.2 Protocol of a typical synthesis

1. All the ionic initiator (potassium persulfate), and the stabiliser (calcium, chloride)
were solubilised in deionised degassed water so as to form the aqueous solution of
initiator. Detailed composition see table A.4. Then dissolve the hydrophilic mono-
mer(NaVBS) in this solution under protective atmosphere.

2. The surfactant and the hydrophobic monomers (Sty, DVB+EVB, VBC, and EHA) were
placed in a reactor (10 mL capped glass vial equipped with a magnetic bar) and the
mixture was stirred (300 rpm) for 10 min under protective atmosphere.

3. The aqueous solution (4 times the volume of the oil-phase) was then added drop-wise
to the oil-phase under continuous stirring under atmosphere. The obtained emulsion
was then sealed and further vigorously stirred for 60 min to yield a viscous uniform
W/O HIPE.

4. The HIPE is then transferred into 6 mm diameter glass tubes (around 1 to 1.5 cm high
column) which there capped and inserted in a preheated oil bath (60 °C ) and further
maintained for 24 h.

5. The resulting bulk polymer was then recovered and successively washed by solid/li-
quid extraction in a Soxhlet apparatus with H2O ( 150 mL, 24 h) and then with ethanol
( 150 mL, 24 h). The clean polymer monolith was then dried under high vacuum at
room temperature for 72 h.

6. The purified polymer monolith was suspended in dry toluene (20 mL/g of polymer),
then di-t-Bu-peroxide (130 μL/g of polymer) was added and the mixture was heated
at reflux under N2 for 24 h (secondary polymerisation).

7. The isolated polymer was washed with THF (3 x 50 mL), then dried under high vacuum
at room temperature for 72 h.
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Appendix A. Appendix

8. The polymer bulk yielded after the secondary polymerisation was then immersed in
a solution of amino-TEMPO (10 eq. with respect to vinylbenzyl chloride) in THF ( 20
mL) and maintained for 1 week at room temperature in the dark. Then the polymer
monolith is washed by fresh THF (3 x 50 mL), immersed in deionised water over night,
and washed by solution of ascorbate (1 mol·L−1)* before drying under high vacuum at
room temperature for 72 h.

A.3.3 Protocol of scanning electronic microscopy (SEM)

SEM was performed with a FEI XLF-30 SEM instrument at 10 kV accelerating voltage. An
amount of 10 mg of finely ground RFP was placed on a film of conducting polymer attached
to the sample holder. The sample was coated with 25nm gold to ensure surface conductivity.

*This step aimes at complete quenching of the residual of TEMPO on the surface of matrix. It is optional
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[104] Urška Sevšek, Jiří Brus, Karel Jeřabek, and Peter Krajnc. Post polymerisation hyper-
crosslinking of styrene/divinylbenzene poly (hipe) s: Creating micropores within ma-
croporous polymer. Polymer, 55(1):410–415, 2014.

127





Acknowledgements

To begin with, I would like to address my full respect and gratitude for the members
of my jury: Prof. Sami JANNIN, Prof. Mattias ERNST, Prof. Lothar HELM, and Prof.
Sandrine GERBER. You are so special to this thesis that you, together with my advisors,
might be the only people that would have gone through this thesis.

I am really grateful to Prof. Geoffrey BODENHAUSEN, my thesis director. I am
deeply impressed by his expertise in NMR spectroscopy, his acute judgements in the
field of magnetic resonance, and his refined taste in the English language as well as the
French. Hardly can I be more grateful for the trust from him: he is always supportive
for immature ideas and he always appreciates naive attempts.

I thank immensely my co-advisor Prof. Jean-Philippe ANSERMET. Without his
sympathetic understanding, firm support and kind generosity, the evolution of this
thesis would have been totally different.

I am much indebted to prof. Sami JANNIN. His perspicacity for the principles of
basic physics, his acumen for the interpretation of experimental phenomena, and
his mastery in constructing scientific instruments always inspire my admirations.
Moreover, he led me to the world of dissolution DNP, guided me through the books
and papers of magnetic resonance of the 1960s and 1970s, instructed me on how
to struggle with finite elements and advised me thoroughly on the composition of
this manuscript. I cannot express enough thankfulness for his farsighted comments,
detailed corrections and constructive advices on this thesis.

To Dr. Pascal MIÉVILLE, I want to express much my obligations. I shall always
remember the Christmas of 2014, which is the first time in my life that I was invited
to spend the Christmas in a Western family. It was also the first time that I felt like at
home in Europe.

In Lausanne, I spent most of my working time with the d-DNP team. It is very true
that any progress in a complicated discipline like d-DNP depends heavily on team
work. I feel thus that I have been very lucky to have the chance to work with them:
Dr. Aurelien BORNET, the patient tank driver, who initiated my interests in the NMR
pulse programming, and in the Apricotine. Dr. Jonas MILANI, the great organiser of St.

129



Acknowledgements

Martin, the princess of boutin jurassien and the adventurer of Great Siberia. Thank
you for your Damascene ! Dr. Basile Viochoud, the Zombie fighter in Wolfenstein. It is
not easy to forget your jokes and your night driving after a fondue aux trois sifflé.

I would like to thank Dr. Roberto BURATTO for his organisation of Italaus and his
help when I was changing my apartment in Lausanne, and Dr. Danielle MAMMOLI,
my Italian teacher. Thank you for teaching me the Chinese philosophy in Italian
style: Dovremmo amare gli animali, per che sono deliziosi. Also, many thanks to Dr.
Angel-Joachim PEREZ-LINDE and to Dr. Srinivas CHITHALAPALLI for their good
company.

I thank Dr. Zhaofu FEI, Dr. Emilia PAUNESCU, Dr. Wei ZHONG and Prof. Paul
DYSON for their collaboration and their help. Without their extensive knowledge of
organic synthesis, of bench work, and of radical-initiated reactions, the synthesis of
porous polarising matrices would have been much more difficult.

I thank also the members at LRM ISIC: Albert HOFSTETTER, Arthur PINON, Bap-
tiste BUSI, Brennan WALDER, Claudia AVALOS, Jasmine VIGER-GRAVEL, Jayasubba
YARAVA, Jozef KUBICKI, Federico PARUZZO, Nadia GAULJAUX, and Prof. Lyndon
EMSLEY, who all contributed to the nice atmosphere in our corridor.

I cannot forget Béatrice BLIESENER-TONG and Anne Lene ODEGAARD for their
kind support in fighting the administration and bureaucracy. I do appreciate the
efforts of Anto BARISIC in maintaining the spectrometers and solving hardware issues.
I want to greet Annelise CARRUPT, Benjamin KRONENBERG, and Gladys PACHE for
their Swiss efficiency in the chemical shop of the BCH. I thank the service of mass
spectrometry, Dr. Laure MENIN, Daniel ORTIZ, and Francisco SEPULVEDA, for their
help in the analyse after my chemical synthesis. Also my sincere thanks to Gregoire
BAROZ for his assistance in electron microscopies.

I have shared my Lausanne period and the first part of my time in Paris working with
Estel CANET, who impressed me with her firm determination. I thank her for telling
me that there are many other possibilities in our lives apart from the professorships in
the academic world.

Although Dr. Diego CARNEVALE and me first met in Lausanne, we did not really
have a chance to work together until our relocation in Paris. He is a real expert in the
solid-state NMR. Without the opportunity of working with him, the solid-state NMR
would still be a region of total mystery in my brain. His considerate suggestions before
the Christmas in 2016 will always be of great worth to me.

With Dr. Pavel KADERAVEK I shared my office and apartment in Lausanne. I was
happy to meet him again in Paris. The various discussions with him on different
cultures, on politics, on religion and secularism, on Tibet, and so forth, have not only
widened my vision of Western culture but also urged me to think about my Asian

130



Acknowledgements

background.

When it comes to the group members in Paris, I would first like to thank Dr. Philippe
PELUPESSY for his detailed examples on the set-up and application of CYTHON for
numerical simulation and data visualisation in Linux system. I have also benefited a
lot from his rich experience in polarisation transfer between nuclear manifolds.

I cannot thank Dr Daniel ABERGEL enough for his invaluable help in searching for
an accommodation in Paris and his wise insight into the stochastic world.

It is my pleasure to have the opportunity to work with the group Paris-en-Resonance:
Dr. Fabien FERRAGE, Dr. Guillaume BOUVIGNIES, Dr. Emeric MICLET, Dr. Dennis
KURZBACH, Aditya JHAJHARIA, Aude SADET, Emmanuelle WEBER, Julien BOUCLON,
Nicolas BOLIK-COULON and Sina MARHABAIE. I thank them deeply for our agreeable
atmosphere in the centre of Paris. I would like to thank Sina and Aditya again for the
cafés and dinners we have taken together.

I would like to thank all my friends outside the NMR communities in Lausanne and
in Paris. They make my four-year Ph.D. life lively and colourful.

在此，特别感谢给予我帮助与支持的费兆福老师，钟伟师兄，薛林师兄。你
们的鼓励与开导让我受益良多。

感谢於邱黎阳、夫妇，杨野，罗智、丁晓璇夫妇，赵顺在宁波饭店的陪伴。
也不会忘记宁波饭店孙哥孙嫂慰藉莼鲈之思的刀工火候。

同样感谢陈沪相识十年的威士忌，高搏、李晨歌夫妇组织的桌游以及黄潘
辉、潘娜的红烧肉，殷晗钧、马老师夫妇的口蘑鸡，王子晴、陈冠名的韭菜盒
子、羊肉锅。还有远在千里之外屈艺的炸猪排，余文超的老五烧烤，刘畅的烤
肋排，张骏青的椰子鸡，程菲、黄丰夫妇的响油鳝滑，孙西桥的涮羊肉，朱磊
的老虎菜，吴雨亭的黄喉、酥肉、耗儿鱼. . . . . .

最后，我要感谢家人恒久不断的支持：固然时而觉得唠叨，始终十分温暖。

Before to conclude, I feel obliged to thank Skype,微信. Though my family is ten
thousand kilometres away, you make them so close as if the distance never sets us
apart.

Paris, 10 May 2017 X. JI

131





 
 

------------------------------------------------------------------------------------------------------------------------------------------------ 
 Page 1 2017/6/29 

CURRICULUM VITAE 
 
NAME: Xiao  
SURNAME: JI 
 
PERSONAL INFORMATION 
Gender: Male 
Date of Birth: 1989/06/29 
Current Address: MB612, Ecole Normale Supérieure,  
 1 Rue Maurice Arnoux,  
 92120 MONTROUGE 
Mobile: (+33) 6 58 36 9 582 
Email: xiao.ji@epfl.ch/xiao.ji@ens.fr 
 
EDUCATION  
2014/02 - 2017/08 Ecole Polytechnique Fédérale de Lausanne Nuclear Magnetic Resonance Ph. D. 
 Thesis Director:  Prof. Geoffrey BODENHAUSEN  (EPFL, ENS) 
  Prof. Jean-Philippe ANSERMET (EPFL) 
2011/09 - 2013/06 University Paris Sud XI Organic Chemistry M. Sc. 
2007/09 - 2011/06 Wuhan University Applied Chemistry B. Sc. 
 
 
RESEARCH EXPERIENCE 
 
2014/02 - Present    Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland 
Position Research Assistant 
 
● Designed and validated a novel sample formulation for magnetic resonance. 
● Built a numerical model to predict the time-dependent dynamics of magnetic polarisation, which directly 

guides the design of new apparatus of magnetic resonance in our team. 
● Created a transportable technology that enhances the sensitivity of NMR/MRI experiments by around 800 

times. 
 

2016/04 - 2017/06    École Normale Supérieure, Paris, France 
Position Research Assistant 

 
● Structrual analyse of derivatives of graphene by solid state NMR 
● Designed new pulse sequence to study the carbon homonuclear dipolar coupling  
● Developed new methodology to study the 1H-14N correlation at 60kHz MAS rate for peptides 

 
2013/01 - 2013/06    Université Paris-Sud XI, Orsay, France 
Position Intern 
 
● Coupled the photochemistry with continuous flow synthesis in microstructured Reactors. 
● Improved the temperature control during reaction optimization, which permits the scaling-up the reaction 

by 10 times via parallel approach. 
● Separated the regio-/stereo-isomers by HPLC/UPLC, then perform NMR tests to determine the absolute 

configuration of intermediates and final products. 133





 
 

------------------------------------------------------------------------------------------------------------------------------------------------ 
 Page 2 2017/6/29 

 
2012/03 - 2012/07    Université Paul-Sabatier III, Toulouse, France 
Position Intern 
 
● Synthesized the surfactants from natural products. 
● Purified the intermediate and final products with preparative reversed-phase chromatography. 
● Analysed the physical and chemical properties of the micelles of surfactants in aqueous solution. 
 

 
TECHNICAL SKILLS 
 
● Theoretical knowledge in magnetic resonance and spin dynamics. 

 Set-up multi-dimensional pulse sequences in Bruker database to perform structural elucidation of small 
molecules in both solid and liquid state. 

● Modify existing pulse sequence as well as develop new NMR experiments with Bruker syntax. 
● Numerical simulation of macroscopic spin diffusion in solid with finite element method using MATLAB and 

COMSOL. 
● Monte Carlo simulation of local magnetic field in amorphous spin glass with C++. 
● Experimental design and statistical analysis of experimental results. 
● Quantitative data analysis and data visualisation with Python and Mathematica. 
● Microsoft Office and LaTeX.  
● Working in both Windows and Linux environments 
 
PUBLICATIONS 
 
 

 D. Carnevale, X. Ji, and G. Bodenhausen, Two-way cross-polarisation for the indirect detection of 
nitrogen-14 nuclei in magic angle spinning NMR spectroscopy. In Preparation. 

 X. Ji, A. Bornet, B. Vuichoud, J. Milani, D. Gajan, A. Rossini, L. Emsley, G. Bodenhausen, and 
S.Jannin., Transportable Hyperpolarized Metabolites. Nature Communication. 2017, 8, 13975. 

 A. Bornet, A. Pinon, A. Jhajharia, M. Baudin, X. Ji, L. Emsley, G. Bodenhausen, J-H.Ardenkjaer-
Larsende, and S. Jannin. Microwave-gated dynamic nuclear polarization. Phys. Chem. Chem. 
Phys., 2016,18, 30530 

 A. Bornet, M. Maucourt, C. Deborde, D. Jacob, J. Milani, B. Vuichoud, X. Ji, J-N. Dumez, A. Moing, 
G. Bodenhausen, S. Jannin, and P. Giraudeau. Highly Repeatable Dissolution Dynamic Nuclear 
Polarization for Heteronuclear NMR Metabolomics. Anal. Chem., 2016, 88, 6179 

 B. Vuichoud, A. Bornet, F. de Nanteuil, J. Milani, E. Canet, X. Ji, P. Miéville, E. Weber, D.Kurzbach, 
A. Flamm, R. Konrat, A. D. Gossert, S. Jannin, G. Bodenhausen. Filterable Agents for 
Hyperpolarization of Water, Metabolites, and Proteins. Chem. Eur. J., 2016, 22, 14696. 

 A. Bornet, X. Ji, D. Mammoli, B. Vuichoud, J. Milani, G. Bodenhausen, and S. Jannin. Long-Lived 
States of Magnetically Equivalent Spins Populated by Dissolution-DNP and Revealed by 
Enzymatic Reactions. Chem. Eur. J., 2014, 20, 17113. 

134


