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Abstract

Understanding the plasma dynamics in tokamaks is of fundamental importance to re-
liably predict the performances of future fusion devices. Because of the complex phe-
nomena at play, state-of-the-art simulation codes are needed to investigate the plasma
dynamics. Consequently, errors affecting such numerical tools can have far reaching con-
sequences. The present thesis focuses on developing and applying rigorous verification
and validation (V&V) procedures to plasma turbulence simulations, ultimately improv-
ing our understanding of the plasma dynamics.

First, a rigorous code verification methodology for grid-based simulation codes is pre-
sented and used to assess the correct implementation of a physical model in a plasma
simulation code. It consists of using the method of manufactured solutions and execut-
ing an order-of-accuracy test, assessing the rate of convergence of the numerical solution
to the manufactured one. The methodology is then generalized to particle-in-cell (PIC)
codes, accounting for numerical schemes intrinsically affected by statistical noise and
providing a suitable measure of the distance between continuous, analytical distribution
functions, and finite samples of computational particles. The proposed procedure is suc-
cessfully applied to verify GBS, a simulation code used to study plasma turbulence in
the tokamak scrape-off layer (SOL), and to verify a one-dimensional PIC code.

Even if the physical model is correctly implemented, simulations are always affected by
numerical errors. A rigorous solution verification methodology for estimating the nu-
merical statistical and discretization errors affecting plasma turbulence simulations is
discussed in the present thesis. The estimate of the numerical statistical error, such
as the one due to the finite number of particles used in PIC simulations, is based on
repeating the simulation with different pseudorandom number generator seeds. For the
discretization error, the Richardson extrapolation is used to provide an approximation
of the exact solution. The solution verification methodology is then applied to quantify
the numerical error affecting GBS and PIC simulation results.

A further source of uncertainty affecting the results of plasma turbulence simulations is
given by the use of input parameters that are not precisely known or accurately mea-
sured. A methodology based on a decomposition of the model equation solution in terms
of Chebyshev polynomials along the input parameter, time, and spatial coordinates is
proposed. This methodology is then successfully employed to investigate the influence of
input parameter variations on the results of a two-dimensional drift-reduced Braginskii
model.

By carrying out a set of validation exercises, the final part of the present thesis is tar-
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geted to increase the reliability of our SOL modelling. First, seeded blob simulations
carried out considering five different models are validated against measurements taken
in the TORPEX basic plasma physics experiment. The comparison of simulations and
experimental results sheds light on the dynamics of these structures that lead to large
transport in the SOL. Furthermore, GBS simulations are validated against RFX-mod
experimental measurements, providing interesting insights on the SOL plasma dynamics
in this device. Finally, the impact of the shape of magnetic equilibrium on SOL tur-
bulence is investigated through a rigorous validation of GBS simulations against TCV
experimental measurements.

Keywords:

plasma physics, code verification, solution verification, validation, controlled
fusion, scrape-off layer, plasma turbulence, turbulent transport, fluid simu-
lations, kinetic simulations.
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Résumé

Comprendre la dynamique des plasmas dans les tokamaks est d’importance cruciale
pour pouvoir prédire les performances de futures expériences de fusion de fagon fiable.
En raison des phénomenes tres complexes en jeu, des codes de simulation de pointe sont
nécessaires pour étudier la dynamique des plasmas. Par conséquent, des erreurs affectant
ces outils numériques peuvent avoir des conséquences énormes. Cette these est dédiée au
développement et a l'application de procédures de vérification et de validation (V&V)
rigoureuses pour des simulations de turbulence des plasmas, avec comme but final 'amé-
lioration de notre compréhension de la dynamique des plasmas.

Tout d’abord, une méthodologie pour vérifier rigoureusement I'implémentation correcte
d’un modele physique dans un code de simulation des plasmas basé sur la méthode des
différences finies est présentée. Cette méthodologie consiste a utiliser la méthode des ma-
nufactured solutions et a évaluer le taux de convergence de la solution numérique vers la
solution exacte. La méthodologie est ensuite généralisée aux codes PIC (particle-in-cell),
en tenant compte du fait que les schémas numériques sont intrinsequement affectés par
des incertitudes statistiques et en fournissant une mesure appropriée de la distance entre
des fonctions de distribution continues et analytiques, et les particules de calcul utilisées
pour les simulations. La procédure proposée est appliquée avec succes pour vérifier GBS,
un code de simulation utilisé pour étudier la turbulence des plasmas dans la scrape-off
layer (SOL) des tokamaks, et pour vérifier un code PIC unidimensionnel.

Méme si le modele physique est correctement implémenté, les simulations sont toujours
affectées par des erreurs numériques. Une méthodologie rigoureuse pour estimer les er-
reurs numériques statistiques et de discrétisation affectant les simulations de turbulence
des plasmas est discutée dans la présente these. L’estimation de I'erreur statistique, telle
que celle due au nombre fini de particules utilisées dans les simulations PIC, repose sur la
répétition de la simulation avec différentes graines aléatoires utilisés pour l'initialisation
des générateurs de nombres pseudo-aléatoires. Pour 'erreur de discrétisation, I'extrapo-
lation de Richardson est utilisée pour approximer la solution exacte. La méthodologie
est ensuite appliquée pour quantifier 'erreur numérique affectant les résultats des simu-
lations de GBS et des codes PIC.

Une autre source d’incertitude affectant les résultats des simulations de turbulence des
plasmas est liée a I'utilisation de parametres d’entrée qui ne sont pas connus ou mesurés
avec précision. Une méthodologie basée sur une décomposition de la solution des équa-
tions en termes de polynémes de Tchebychev le long des parameétres d’entrée, du temps
et des coordonnées spatiales est proposée. Cette méthodologie est ensuite appliquée avec
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succes pour étudier I'influence des variations des parametres d’entrée sur les résultats
d’un modele drift-reduced de Braginskii bidimensionnel.

En effectuant un ensemble d’exercices de validation, la partie finale de la présente these
vise a accroitre la fiabilité de notre modélisation de la SOL. Tout d’abord, des simula-
tions de seeded blobs effectuées en considérant cing modeles différents sont validées avec
des mesures prises dans I'expérience de physique des plasmas TORPEX. La comparaison
des simulations avec des résultats expérimentaux permet de mieux comprendre le mou-
vement de ces structures, qui sont responsables d'une grand partie du transport observé
dans la SOL. En outre, des simulations faites avec GBS sont validées avec des mesures
expérimentales prises sur RFX-mod. Elles fournissent des informations intéressantes sur
la dynamique du plasma dans la SOL de ce dispositif. Enfin, I'influence de la forme de
Iéquilibre magnétique sur la turbulence dans la SOL est étudiée grace a une validation
rigoureuse des simulations de GBS avec des mesures expérimentales de TCV.

Mots clefs :

physique des plasmas, vérification, validation, fusion contrdlée, scrape-off
layer, turbulence, transport turbulent, simulations fluides, simulations ciné-
tiques.
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CHAPTER

Introduction

Because of the continuous growth of world population and energy per capita consump-
tion, the overall energy production increased by more than a factor 20 in the past two
centuries [1]. This allowed many people to enjoy an unprecedented level of mobility and
comfort. However, about a quarter of the world population still lives today without
electricity [2]. Providing the energy necessary to support the development of emerging

Biofuels and waste Other

10.3% \14%
Hydro

2.4%
Nuclear
4.8%

Natural gas
21.2%

Figure 1.1 — World total energy supply by source in 2014. Data taken from the International
Energy Agency.

economies constitutes an enormous challenge for humankind. In fact, today’s energy
production is essentially based on fossil fuels such as oil, gas or coal (see Fig. 1.1). The
reserves of these resources will inevitably deplete and are unequally distributed on Earth,
giving rise to conflicts and social uncertainty. Even more important, the combustion of
fossil fuels releases an enormous amount of greenhouse gases, ultimately leading to cli-
mate changes and global warming. To overcome these issues and ensure the entire world

1



Chapter 1. Introduction

population an equitable access to low-price energy, there is a strong motivation in devel-
oping alternative sources of energy that are sustainable and abundant.

Inspired by nature and looking at the primary energy source of our planet, the Sun,
researchers all around the world are investigating the possibility of using nuclear fusion
reactions, continuously occurring in stars, as an alternative source of energy. Nuclear
fusion is the process that allows two nuclei to fuse together, generating all the known
elements heavier than hydrogen. If the total mass of the elements produced by the fusion
reaction is smaller than the sum of the reactant masses, the produced nuclei have an
higher binding energy per nucleon than the reactants, and the reaction is exothermic.

2

In fact, according to Einstein’s relation, the energy E = Amc® is released during the

nuclear reaction, where
Am =Y "m, =Y my, (1.1)
T p

with m, and m, the masses of the reactants and of the products. Because of the low
probability of most of the fusion reactions to take place, among all the possible exother-
mic reactions only few are of interest for a fusion power plant.

The most suitable nuclear reaction to be exploited for energy production is the fusion
of a nucleus of deuterium (D) with one of tritium (7). This reaction, described by the
following equation

1D+ T —3 He(3.5MeV) + n(14.1 MeV), (1.2)

requires a temperature of the reactants larger than 1keV to occur. This temperature is
necessary for deuterium and tritium nuclei to overcome Coulomb’s repulsion and allow
the strong nuclear force to fuse the nuclei together with a non-vanishing probability.
The reaction in Eq. (1.2) releases approximately 350 GJ of energy per gram of fuel.
Deuterium is abundant in oceans and can be easily extracted from water. On the other
hand, tritium is a rare resource and should be produced by making the neutrons collide
with lithium in the blanket of a fusion reactor.

Energies larger than 1keV are well beyond the ionization energy. Therefore, the D — T
reaction occurs when matter is completely ionized and in the plasma state. To be of
interest for energy production, the plasma should be confined sufficiently well, so that
the energy released by fusion reactions can heat the fresh fuel and keep the reactions
going. In other words, the power lost from a fusion reactor, W/7g, where W is the energy
density in the plasma and 7z the energy confinement time, should be compensated by the
power generated by fusion reactions. This results in a constraint on the triple product
n e, with n, the electron plasma density and 7; the ion temperature. For D — T
fusion reactions and 7T; 2 14 keV, it results that self-sustaining fusion reactions occur for
nTyme 2 3-102 keVsm ™, a condition derived by Lawson in 1957 [3].

To satisfy Lawson’s criterion, two main strategies are currently investigated, based on
an inertial and a magnetic approach to the plasma confinement. The goal of the inertial
confinement fusion (ICF) research is to obtain very high plasma densities (n, ~ 103 m~=3)
by compressing pellets of fuel with high-energy lasers, electron or ion beams. The high
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Figure 1.2 — Left: Schematic representation of a stellarator. Right: Magnetic field coils of
Wendelstein 7-X. Image source: Eurofusion website.

density allows to confine the plasma for a very short time, of the order 75 ~ 107%s. The
largest ICF experiment currently operational is the National Ignition Facility (NIF) in
Livermore, USA [4]. On the other hand, magnetic confinement fusion (MCF) research
is targeted to develop a fusion reactor working at much lower densities (n, ~ 10 m=3).
This implies that much longer confinement times should be achieved (75 2 1s).

The stellarator and the tokamak are the two most promising concepts of MCF reactors,
and are both based on confining the plasma inside a toroidal vacuum vessel by using
twisted magnetic field lines. Stellarators use the magnetic field created by a complex set
of coils to confine the burning plasma (see Fig. 1.2). The largest operational stellarator
in the world, whose construction was recently completed in Greifswald, Germany, is
Wendelstein 7-X. Its first Helium plasma was successfully produced at the end of 2015,
showing encouraging preliminary results [5]. On the other hand, tokamaks generate
twisted magnetic field lines by exploiting the high plasma conductivity and inducing a
toroidal plasma current like a transformer. The largest tokamak in operation is JET, an
European experiment located in Culham, UK (see Fig. 1.3). It is the fusion device that

i @o9%’
L =

Figure 1.3 — Interior of JET, the largest tokamak operating in the world. Image source: Eurofusion
website.

obtained the highest amplification factor @), with @) the ratio between the fusion power
generated in the reactor and the external heating power, reaching @) ~ 0.7 and a triple
product n,T;7p ~ 8-10°keVsm™® [6]. The target of the ITER tokamak (the way in
Latin), which is under construction in Cadarache, France, is to significantly improve the
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Chapter 1. Introduction

energy amplification and perform plasma discharges with @ = 10 [7]. ITER operation
is expected to start in 2026, and, if successful, it will “demonstrate the scientific and
technological feasibility of fusion power for peaceful purposes”.

The tokamak is currently the most advanced device to exploit fusion as an energy source,
and it is described in detail in Section 1.1. Then, the reminder of the present chapter is
organized as follows. Because of the complex interactions between charged particles, solid
surfaces, and electromagnetic fields, understanding and modelling the plasma dynamics
in tokamaks is an extremely challenging task. As a results, state-of-the-art numerical
codes are needed to investigate the physics at play. The discussion of these tools is the
subject of Section 1.2. The procedure used to assess the reliability of plasma simulations
is summarized in Section 1.3. Finally, the main contributions provided by the present
thesis to the plasma physics community are illustrated in Section 1.4.

1.1 The tokamak device

A toroidal magnetic field can eliminate the losses of plasma charged particles due to their
free streaming along the magnetic field lines. However, since particle drifts are induced
by curvature and gradients of the magnetic field lines, a purely toroidal magnetic field is
not sufficient to confine a plasma [8]. A poloidal magnetic field should be superimposed
to the toroidal one and used to average out these drifts. In a tokamak, the toroidal
field is produced by a set of external coils located around the vacuum vessel, whereas
the poloidal field is generated by inducing a current in the plasma. This current, which
also heats the plasma because of Ohmic dissipation, is induced by the action of a central
solenoid that works as the primary circuit of a transformer. By varying the current in
the solenoid, an electromotive force is applied to the plasma and, because of its high
conductivity, a strong toroidal plasma current is induced, which in turn generates the
desired poloidal field. The sum of the toroidal and the poloidal magnetic fields engen-
ders twisted magnetic field lines that confine the hot plasma. The configuration thus
generated results in magnetic field lines that wind around the torus, defining toroidally
nested magnetic surfaces, called flux surfaces. A schematic representation of the toka-
mak concept is presented in Fig. 1.4.

Even if the magnetic field lines created in a tokamak can confine single charged par-
ticles, their collective response makes the plasma confinement very challenging. First,
for the plasma to be macroscopically stable, plasma currents, densities, and plasma to
magnetic pressure ratios cannot exceed certain values. In fact, because of the pres-
ence of curvature and gradients of the magnetic field, pressure gradients, and current
densities, violent macroscopic events such as disruptions can occur if these limits are
exceeded. These events should be avoided in a fusion reactor, as they might severely
damage the device. Second, plasma particles can collide against each other by inter-
acting through Coulomb’s force, giving rise to radial diffusion (the so-called collisional
transport) that degrades the plasma confinement. Finally, because of the presence of
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1.1. The tokamak device

inner poloidal coil current
magnetic field coils outer poloidal
magnetic field coils

toroidal
magnetic field coils

plasma ’l

|
toroidal magnetic
field

plasma current

Figure 1.4 — Schematic representation of a tokamak. The inner poloidal magnetic field coils, at
the center of the device, are used to induce the plasma current and generate the poloidal magnetic
field. The toroidal magnetic field coils generate the toroidal magnetic field. The sum of the two
magnetic field components results in twisted magnetic field lines (in yellow), used to confine the
plasma. Outer poloidal magnetic field coils are used to shape the plasma and control its stability.
Image source: Eurofusion website.

free energy sources such as plasma pressure gradients and magnetic curvature, instabil-
ities arise in tokamaks and develop into turbulent transport, the so-called anomalous
transport, ultimately leading to radial particle and heat flows. It has been observed
experimentally that anomalous transport exceeds by many orders of magnitude the ex-
pected collisional transport in tokamaks [9]. The physical mechanism that governs the
anomalous transport is not entirely understood yet, undermining our capabilities to pre-
dict the performances of future fusion devices.

Because of turbulence, plasma is transported across the magnetic flux surfaces and even-
tually reaches the walls of the device. This leads to undesired particle and heat flows to
the vacuum vessel, which can be damaged. To control the location where the particles
and heat are deposited and, possibly, mitigate their effect, two different strategies are
adopted. First, one can insert a solid rail in the vessel, the so-called limiter, or push
the flux surfaces against a particular location of the vessel wall (the inboard wall in the
case of Fig. 1.5, left). This defines a separation between the closed fluz surface region,
where the magnetic field lines wrap around the nested flux surfaces and the plasma is
well confined (core plasma, indicated by solid lines in Fig. 1.5, left), and the region where
magnetic field lines intercept a solid surface, the so-called open field line region (indi-
cated by dashed lines in Fig. 1.5, left). The surface that defines the separation between
these two regions is called the last close flux surface (LCFS). By flowing much more
rapidly along the field lines than perpendicularly to them, the plasma is lost and the
heat is exhausted at the limiter surfaces or in proximity of the contact point between
the LCFS and the vessel, preventing therefore the plasma to reach the rest of the vessel
walls. This is why the open field line region is referred to as the scrape-off layer (SOL).
On the other hand, one can use a set of external coils to produce a magnetic topology
such that the core plasma is kept away from the walls of the device, thus directing the
particles and heat outflowing from the core to plates designed to sustain high heat fluxes.
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Figure 1.5 — Poloidal cross section of a tokamak for two different magnetic configurations. Left:
Limiter configuration, the plasma touches the limiter and the contact point defines the LCFS.
Right: Diverted configuration, the hot plasma core does not enter in direct contact with the wall
and the magnetic field is diverted so that particles and heat flows are directed to the target plates.
Source: Ref. [10].

This diverted configuration is represented in Fig. 1.5, right.

Plasma properties are extremely different in the closed flux surface region and in the
SOL. In the confined region the plasma is well confined at high density and tempera-
ture, and micro-turbulence leads to density and temperature fluctuations usually small
compared to the equilibrium profiles (~ 1%). On the other hand, the SOL plasma dy-
namics is determined by the interplay between the plasma outflowing from the core,
the cross-field turbulent transport, and parallel flows along the magnetic field lines. In
this region fluctuations are large, with amplitude comparable to the background val-
ues. A multiphysics approach is required to address the SOL plasma dynamics, since
it results from the interaction between charged particles, neutrals, and solid surfaces.
Despite being just a few centimeters thick, the SOL plays a crucial role in determining
the performance of the entire fusion device, as it sets the boundary conditions for the
core, it controls the impurity dynamics and the recycling level, and it is responsible of
exhausting the tokamak power, thus determining the heat load at the vessel [11].

1.2 Plasma modeling and numerical simulations

Understanding the turbulent plasma dynamics in a tokamak is an extremely challenging
task, although necessary to address some of the most crucial issues that the fusion
program is facing today. The plasma charged particles are subject to the action of the
Lorentz force and, at the same time, they are sources of electromagnetic fields, leading
to complex nonlinear interactions. Moreover, plasma turbulence phenomena involve
an extremely wide range of spatial and temporal scales, from the electron-orbit Larmor
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1.2. Plasma modeling and numerical simulations

motion (~ 107's; ~ 107" m) to the macroscopic scales of a discharge (~ 1s, ~ 1m) [12].
The study of plasmas in MCF devices is further compounded by the complex magnetic
geometries involved. As a result, the models developed to describe the plasma dynamics
are in general extremely difficult to solve analytically and state-of-the-art simulations
need to be used to investigate the physics at play.

Because of the rich variety of plasma phenomena present in tokamaks and due to their
extremely complex behaviour, a hierarchy of models was developed in the past to describe
the plasma physics. The most direct description consists in solving the equations of
motion of each particle together with the Maxwell equations. Although conceptually
simple, such a model is computationally too demanding due to the large number of
particles involved. To overcome this issue, a statistical approach based on Liouville’s
theorem was developed, leading to the Boltzmann equation, which is written as

Ofa Ofa  da Ofa
aft+v'a‘];+§ba(E+v><B)-a'};—%:C(fa,fB) (1.3)

Equation (1.3) describes the evolution of the distribution functions of the « species, f,,
under the action of the electromagnetic fields and Coulomb’s collisions, where x and v
are the spatial and velocity phase-space coordinates, g, and m, the particle charge and
mass, E and B the electric and magnetic fields, solution of the Maxwell equations, and
C(fa, [3) is an operator modelling Coulomb’s collisions between « and  plasma species.
In the tokamak core, collisions are typically neglected due to the local high temperature,
and it is not justified to assume that distribution functions are close to a Maxwellian. A
full kinetic description of the plasma is therefore necessary. To decrease the computa-
tional cost of kinetic models, Eq. (1.3) is usually averaged over the fast-particle gyrational
motion, removing the fast cyclotron timescales from the system and reducing from six to
five the dimensions of the phase-space, thus obtaining the so-called gyrokinetic model.
Moreover, since the density and temperature fluctuations are generally much smaller
than the background values, a separation between equilibrium profiles and fluctuations
is often performed. Different numerical approaches were developed in the past targeted
to solve the gyrokinetic equation, based both on particle-in-cell (PIC) algorithms, where
a number of computational particles is evolved according to the equations of motion,
and gyrokinetic Eulerian simulation codes, which make use of grid-based algorithms.

Unlike the core, the collisionality in the SOL is typically high enough to assume that
distribution functions are close to Maxwellian. In this case, a fluid model that evolves
a few moments of the distribution function is usually sufficient to describe the plasma
dynamics. On the other hand, transport is highly intermittent in the SOL, and a separa-
tion between background profiles and fluctuations is not justified. The modeling of SOL
dynamics is usually based on a set of two-fluid equations, such as the ones derived by
Braginskii in 1965 [13]. These equations, which are often simplified thanks to the drift
approximation [14], were implemented in a number of simulation codes that are currently
used to investigate the SOL turbulence dynamics (see e.g. Refs. [15-20]). These simula-
tion codes are providing insights into some of the fundamental physical mechanisms at
play in the SOL, such as the dynamics of intermittent transport events [21], the value
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Chapter 1. Introduction

of the electrostatic potential [22], the origin of the spontaneous SOL toroidal plasma
rotation [23], or the equilibrium pressure gradient length [24].

1.3 Verification and validation (V&V) procedure

Errors affecting simulations of the plasma dynamics in a tokamak can have far reaching
consequences, particularly at this stage of the fusion program, when we approach the
ITER era and the conceptual design of DEMO. The reliability of numerical simulations
is assessed by the verification and validation (V&V) procedure [25-27]. V&V is com-
posed of three separated tasks: the code wverification process, which is a mathematical
issue targeted to assess that the physical model is correctly implemented in a numerical
code; the solution verification procedure, used to estimate the numerical error affecting
the results of a simulation; and the wvalidation, used to assess the consistency of the
code results, and therefore of the physical model, with experimental measurements. A
schematic representation of the V&V procedure is shown in Fig. 1.6.

In plasma physics, code verification is usually based on performing code-to-code compar-
isons (see e.g. Refs. [28-32]). Simulations of very simple problems, such as the Landau
damping of electron-plasma waves, for which an analytical solution is known, are also
used. While valuable, these tests do not allow to rigorously verify the correct implemen-
tation of a model in a simulation code, since, for example, it is generally impossible to
understand if differences between the numerical results of the two codes are due to the
finite resolution of the grid used for the discretization or to errors in the implementa-
tion of the codes. On the other hand, to perform more rigorous verification procedures,
an analytical solution is needed, but this does not generally exist. To overcome these
issues, a systematic approach has been developed by the computational fluid dynamics
community [26]. However, its use in plasma physics remained limited to single routines
(see e.g. Refs. [33,34]).

The correct implementation of the model equations in the simulation code does not imply
that numerical results are free from numerical errors. Sources of numerical errors are:
rounding off, finite statistical sampling (e.g. using a finite number of particles randomly
distributed to represent a distribution function), termination of an iterative scheme with
a non-vanishing residue, and finite grid resolution [26]. All these have to be estimated in
order to provide the numerical error affecting the simulation results. In plasma physics,
numerical errors are usually quantified by performing grid-refinement-based analysis.
Furthermore, in order to perform a rigorous validation of the code results and to assess
the reliability of the code predictions, it is necessary to estimate the uncertainties that
affect simulation results due to the use of input parameters that are not precisely known
or accurately measured. In plasma physics, these uncertainties are typically investigated
by performing sensitivity scans.

Once the simulation code is rigorously verified and the uncertainties affecting the numer-
ical results are correctly quantified, the simulations can be compared with experimental

page 8



1.3. Verification and validation (V&V) procedure

g

OBSERVATIONS

VALIDATION

ANALYSIS INTERPRETATION

N N

COMPUTATION

CODE VERIFICATION

SOLUTION VERIFICATION

Figure 1.6 — Schematic representation of the V&V procedure. By performing observations, ex-
perimental measurements are collected. Through their analysis, analytical models are derived and
used to describe the dynamics of a physical system. The model equations are then discretized
and implemented in a numerical code that is used to carry out simulations of the physical system.
The numerical results are finally used to interpret the experimental measurements and understand
the physics at play. Code verification procedures are used to assess if the algorithm is correctly
implemented in the simulation code. The numerical error affecting simulation results is estimated
by performing a solution verification. Finally, validation is used to assess the agreement between
simulations and experimental measurements.

measurements, ultimately to assess the maturity of the considered physical model. An
increasing validation effort is being carried out by the plasma physics community. A num-
ber of validation exercises have been performed in the recent past, for example focusing
on gyrokinetic simulations of turbulence in the tokamak core (see e.g. Refs. [35-38]).
Moreover, guidelines to perform a rigorous validation were ported to the plasma physics
community from other domains, as described in Refs. [39,40]. From a practical point
of view, performing a rigorous validation requires to (i) identify the common quantities
to compare between experiments and simulations, denoted as validation observables;
(ii) organize the observables in a hierarchy based on the assumptions required for their
evaluation; (iii) estimate the difference between experimental measurements and simula-
tions for each individual observable; and (iv) quantify the agreement between numerical
results and experiments through the use of an appropriate metric. Main goals of a val-
idation procedure are: (i) compare different models to understand which one is better
in describing a physical system; (ii) assess the maturity of a physical model in order
to make reliable predictions; and (iii) make progress in our physics understanding by
pointing out which are the key physics elements of a model. A review of validation in
plasma physics was recently published [41].
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1.4 Scope and outline of the present thesis

The goal of the present thesis is to develop a rigorous V&V procedure, suitable for nu-
merical codes used for the simulation of the plasma dynamics, and apply it, ultimately,
to improve our understanding of plasma turbulence in the tokamak SOL. More precisely,
this thesis provides a rigorous code and solution verification procedure, as well as some
examples of its application, both considering (i) GBS, a three-dimensional fluid code
that is used to simulate plasma turbulence in basic plasma physics experiments and in
the SOL of tokamaks; and (ii) a one-dimensional, electrostatic, collissionless PIC code,
used to study the dynamics of the plasma sheath. A rigorous methodology to assess
how model results are affected by input parameter variations is also presented. Finally,
to improve our understanding of some of the key physics elements governing the SOL
plasma dynamics, a validation procedure is applied to GBS and other plasma turbulence
codes for different experimental scenarios.

This thesis is structured as follows. Bridging the gap between plasma physics and other
scientific domains, in particular the computational fluid dynamics community, a general,
rigorous, and simple-to-apply code verification procedure for grid-based simulation codes
is presented in Chapter 2. The proposed code verification procedure consists in using the
method of manufactured solutions [27,42-44] and executing an order-of-accuracy test,
assessing the rate of convergence of the numerical solution to the manufactured one.
This methodology is then generalized to PIC codes. Finally, the proposed methodology
is used to verify GBS and a one-dimensional, electrostatic, collissionless PIC code.

In Chapter 3 a rigorous solution verification methodology is proposed, which allows to
quantify both statistical and discretization uncertainties affecting a simulation. The sta-
tistical uncertainty affecting a PIC simulation is estimated by repeating the simulation
with different pseudorandom number generator seeds. For the discretization uncertainty,
the Richardson extrapolation [45,46] is used to provide an approximation of the ana-
lytical solution and the grid convergence index (GCI) [47] is used as an estimate of the
relative discretization uncertainty. The procedure is applied to evaluate the numerical
error affecting the simulations carried out with the codes verified in Chapter 2.

The study of the propagation of input parameter uncertainties through a simulation
model is the subject of Chapter 4. To investigate the dependence of the model results
on input parameter variations, the use of the weighted residual method (WRM) in the
Chebyshev spectral domain is proposed. In particular, the model equation solution is
decomposed in terms of Chebyshev polynomials along the parameter, time, and spatial
coordinates, providing an approximated semi-analytical solution of the problem with ex-
plicit dependence on input parameters. The proposed methodology is then applied to a
two-dimensional drift-reduced Braginskii model to assess the influence of input parame-
ter variations on the model results.

The dynamics of blobs is investigated through a multi-code validation in Chapter 5.
Blobs, also known as filaments, are structures with an excess of density and temperature
relative to the surrounding plasma, which substantially contribute to the observed turbu-
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lent transport in the tokamak SOL. Three-dimensional and two-dimensional seeded blob
simulations are performed with five different fluid models, all based on the drift-reduced
Braginskii equations, and the numerical results are compared among themselves and
validated against experimental measurements provided by the TORPEX device [48,49].
The multi-code validation allows to point out the key elements at play in determining
the blob motion, providing some interesting insights on the TORPEX plasma dynamics.
In Chapter 6 the SOL plasma dynamics of the RFX-mod experiment [50] is investigated.
Considering the experimental parameters of two inner-wall limited RFX-mod plasma
discharges, the instability that drives most of the SOL turbulence transport in the RFX-
mod device is identified using linear theory and nonlinear GBS simulations. Then, the
numerical results are compared with experimental measurements, assessing the reliabil-
ity of the GBS model in describing the REX-mod SOL plasma dynamics.

The study of magnetic equilibrium effects on SOL turbulence transport is the subject of
Chapter 7. First, an analytical model used to describe non-circular magnetic geometries
is implemented in GBS. This model is then used to investigate theoretically the impact
of the equilibrium shape on SOL linear instabilities. An analytical scaling for the equi-
librium pressure gradient length in non-circular geometries is also derived. Finally, the
GBS model is rigorously validated against TCV experimental measurements considering
plasma discharges with different magnetic geometries.

The results discussed in the present thesis are finally summarized in Chapter 8, offering
possible future perspectives for the development and the application of V&V procedures
to plasma turbulence simulation codes. The discussion of the drift-Braginskii model
and of the GBS code, the presentation of the gradient removal mechanism and its use
in evaluating the equilibrium pressure gradient length, the computation of the metric
coefficients used in evaluating GBS differential operators, the derivation of the magnetic
equilibrium implemented in GBS, and the analytical derivation of the curvature operator
used in Chapter 7, are illustrated in Appendices A, B, C, D, and E, respectively.
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CHAPTER

Code verification

Code verification is the procedure used to assess the correct implementation of a physical
model in a numerical simulation code. It can be carried out by [26]: (a) performing sim-
ple tests (e.g. energy conservation tests), (b) comparing simulation results with results
from other codes (also known as code-to-code benchmark), (c¢) quantifying the numeri-
cal error with respect to an exact solution, (d) testing the convergence of the numerical
solution to an exact solution, and (e) comparing the rate of convergence of the numerical
solution to an exact solution with the expected order of the numerical scheme (order-of-
accuracy tests). As the first two procedures, (a) and (b), do not require an exact solution
of the model equations, they are simpler to perform. Indeed, code-to-code comparison is
routinely performed to verify numerical codes used in plasma physics, including particle-
in-cell (PIC) simulation codes [28,30-32,51,52]. While valuable, this test does not allow
to rigorously verify the considered codes. In fact, a fully verified code of reference im-
plementing the same mathematical model is needed to use this method [25, 53] and,
generally, it is very difficult to understand if a difference in the code results is due to dis-
cretization errors or to an incorrect implementation of the model. Moreover, performing
a benchmark between two simulation codes can be tedious due to different choices in
normalization, coordinates, etc. On the other hand, the last three procedures, (c)-(e),
are more rigorous, but they require an exact solution of the model. While rigorous code
verification procedures have been used in plasma physics [33, 34|, their use remained
limited to single routines, without approaching the full complexity of a simulation code.
In the present chapter we focus on the order-of-accuracy tests, as those are the only
tests able to ensure both the correct coding of the model equations and the correct im-
plementation of the chosen numerical scheme [26]. Since an analytical solution is not
available for most of the physical models used in plasma physics research, we employ
a systematic approach to overcome this issue, that is the method of manufactured so-
lutions (MMS) [27,42-44]. This approach has been developed by the computational
fluid dynamics community, with the idea of reversing the considered problem: instead
of searching for the analytical solution of the model, we impose a manufactured solution
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Chapter 2. Code verification

and we modify the equations by adding analytical terms with the goal of accommodating
the manufactured solution.

The goal of the present chapter is threefold. First, in Section 2.1 we present a rigor-
ous code verification methodology, developed in particular by the computational fluid
dynamics community and based on the MMS, for the verification of grid-based sim-
ulation codes, bridging the gap between our community and other scientific domains,
where considerable experience was developed in the last years on this subject. Then, in
Section 2.2 we generalize this methodology for the verification of PIC codes, accounting
for numerical schemes intrinsically affected by statistical noise and providing a measure
of the distance between continuous, analytical distribution functions, and finite samples
of computational particles. Finally, in Section 2.3 we apply these procedures to rigor-
ously verify (i) a plasma turbulence code, namely GBS [20], used to simulate plasma
turbulence in the tokamak scrape-off layer (SOL) and in basic plasma devices (see Ap-
pendix A for a detailed description of GBS), and (ii) a one-dimensional, electrostatic,
collisionless PIC code, used to study the sheath plasma dynamics. The results discussed
in the present chapter are published in Refs. [54,55]. We remark that, following our
work, other plasma turbulence simulation codes were rigorously verified, as reported for
example in Refs. [56,57].

2.1 Rigorous verification of grid-based simulation codes

In this section we present a rigorous code verification methodology for grid-based simu-
lation codes. This methodology is based on performing an order-of-accuracy test. This
test analyses the convergence of the numerical solution to a known analytical solution,
also verifying that the discretization errors reduce at the rate expected for the numeri-
cal scheme, as the spatial mesh and the time step are refined. Since an exact solution
of the model is needed to systematically evaluate the discretization error affecting the
simulation results, the order-of-accuracy test is performed using the MMS approach, as
detailed in the following.

2.1.1 Order of accuracy test

Formally, an order of accuracy test for a simulation code can be stated as follows. Given
a theoretical model M with an analytical solution s, such that M (s) = 0, and the
numerically discretized model of M, M,, with a numerical solution s, that satisfies
My, (sn) = 0 (his a parameter representing the degree of refinement of the mesh), the error
affecting the numerical results is expressed as €5, = ||sp,—s||, where || - || denotes a designed
norm. The theoretical order of accuracy, p, associated with the numerically discretized
operator My, represents the rate at which the numerical solution s, converges to the
analytical solution s as the mesh is refined. The numerical error, in fact, satisfies the
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relation e, = C,h?+O (h**), where C), is independent of h, and p is the order of accuracy
of the numerical scheme, typically evaluated through its Taylor expansion [26,27,44].
Having the two numerical solutions of M} and M, i.e. s, and s,;,, where rh indicates
coarsening the A mesh by a factor r, one can evaluate an observed order of accuracy, p,
using

In (erh/eh)'

In (1) (2.1)

p=
If p converges to p for h — 0, i.e. when the discretization error is dominated by the
lowest order term in the expansion (the so-called asymptotic regime), we can state that
the code is verified and the equations are correctly solved, with the order of accuracy
expected for the numerical scheme.

2.1.2 The method of manufactured solutions

The evaluation of the numerical error €),, necessary to obtain p, requires that s is a
known function. Unfortunately, s is unknown in most cases, in particular for complex
plasma models. The MMS was developed to overcome this issue, and approaches the
problem as follows [27,42-44]: instead of solving M analytically, an arbitrary function
sy is imposed as a solution to the model (the so-called manufactured solution), and the
model equations are modified to accommodate the imposed solution; the modified model
is then solved numerically to compute the numerical error. More precisely, for a given
model M, we choose an analytical function sy, and compute a source term, S = M (sy;),
which is subsequently subtracted from M to obtain a new analytical model G = M — S.
The analytical solution of G is sy: G (sy) = M (spr) — S = 0. It is then straightforward
to compute the discretization of G, G, = M, — S, which can be solved numerically
to obtain sp;p. Since the source term S is computed analytically, we do not add any
new source of numerical error to the original numerical model, and the numerical error
€n = ||Sm — Sa | satisfies

en=C'h"+0 (), (2.2)

where C" is a constant independent of h. By showing that p — p for h — 0, one verifies
the simulation code.

To conclude the description of the MMS, we note that the initial condition and the
boundary conditions have to be imposed to s;s5. Regarding the initial condition, we im-
pose Sanli—o = Sarlt—o- When Neumann boundary conditions are considered, we enforce
(n-V), sarnlboundary = 0+ VSar|boundary, Where n is the unit vector perpendicular to the
boundary and the operator (n- V), is the discretized derivative used by the code. In the
case of Dirichlet boundary conditions, we require sy ar|boundary = S0 |boundary. In some
cases, for example in GBS, more elaborated boundary conditions are used, which require
the computation of further source terms (see Section 2.3.1 for a concrete example).
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The idea behind the MMS is trivial. However, its implementation requires to consider
some subtleties. As a matter of fact, the manufactured solution should satisfy the fol-
lowing requirements [26]: (i) be sufficiently smooth and not singular, (ii) satisfy the code
constraints (e.g. positivity for the density or the temperature), (iii) be general enough
to excite all terms present in the equations, and (iv) ensure that the different terms
composing the equations are of the same order of magnitude so that no term dominates
the others. Due to these constraints, the manufactured solutions are usually built as
a combination of trigonometric and/or hyperbolic functions. We remark that the code
verification is a purely mathematical issue and therefore the choice of sj; is independent
of the physical solution of M. We also remark that the MMS cannot be applied to codes
used to model singularities, shocks or discontinuities; the verification of these codes is
still an open issue [26]. Finally, care must be taken computing the source terms and ap-
plying the boundary conditions, the use of symbolic computational software could result
necessary for this purpose.

2.2 Rigorous verification of PIC codes

Originally developed to simulate fluid flows in two dimensions [58], the PIC algorithm
is now a valuable tool to solve the Vlasov-Maxwell system of equations [59-63]. The
PIC algorithm approximates the distribution function with a set of computational parti-
cles that are evolved in time according to Newton’s laws, and computes self-consistently
the electric and magnetic fields acting on the particles by solving Maxwell’s equations.
While conceptually simple in their basic formulations, the development of PIC sim-
ulation methods has significantly increased their range of applicability, accuracy, and
performance. Energy, momentum, and charge conserving algorithms have been devel-
oped [64-66], which, also within an implicit-time discretization [67-71], allowed progress
from the solution of one-dimensional, electrostatic models, to the simulation of complex
and realistic three-dimensional electromagnetic systems. Thanks to PIC simulations,
significant progress has been made in the understanding of fundamental plasma phe-
nomena, such as collisionless shocks (see e.g. Refs. [72-74]), magnetic reconnection (see
e.g. Refs. [30,75,76]), laser-plasma interactions (see e.g. Refs. [77-79]), and the plasma-
wall transition (see e.g. Refs. [80,81]).

Considering the widespread use of PIC codes, we propose a methodology to rigorously
assess their correct implementation. We note that the rigorous code verification method-
ology presented in Section 2.1 is not directly applicable to PIC codes. Therefore, in the
present section we discuss how to generalize the MMS for the verification of PIC codes,
accounting for numerical schemes intrinsically affected by statistical noise and provid-
ing a measure of the distance between continuous, analytical distribution functions, and
finite samples of computational particles.
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2.2.1 The PIC method

The PIC algorithm represents the distribution function of plasma species as a set of
computational particles (also known as superparticles or markers), whose position in the
phase space is evolved according to Newton’s laws. The forces acting on the particles are
obtained by solving Maxwell’s equations, having assigned to a numerical grid the charge
and the current carried by the particles [59-63].

As the goal of this section is to introduce a rigorous methodology for the verifica-
tion of PIC simulation codes, we consider the simplest kinetic model describing a one-
dimensional, electrostatic, collisionless plasma in a periodic domain. The generalization
to the collisional, electromagnetic, three-dimensional case does not present conceptual
difficulties. The model we consider is written

Ofa , Ofa | G p0fa _

ot +U8z +maE8v =9 (2:3)
oE  p

=L (2.4)

where f,(z,v,t) is the distribution function for the v species (o = e for electrons and o =
i for ions), g, and m,, are the particle charge and mass, p(r,t) = > Go [ 7 ful(z,v,t)dv
is the total charge distribution and E(z,t) is the electric field. As m; > m,, ions can
be assumed at rest as a first approximation, with the ion plasma density n; = ff;f’ fidv
constant in time and uniform along z. In the remainder of this section we use this
approximation and we consider only the evolution of the electron distribution function
(we drop the « index).

The PIC method solves numerically Eqs. (2.3)-(2.4) by performing the following steps.
(i) At t = 0, N computational particles are randomly distributed in the phase space
according to a distribution function fy(x,v), and a weight w, is assigned to each particle,
with w, = f(z,,v,,t = 0)/fo(zp,vp) [if fo(x,v) = f(z,v,t = 0) all markers have the
same weight|. (ii) The particle charge is assigned to a numerical grid with spacing Ax,
to obtain the charge distribution at each grid point. (iii) Poisson’s equation, Eq. (2.4),
is solved and the electric field F is computed on the grid. (iv) E is interpolated from
the grid to the particle positions, to obtain the electric field E, acting on each particle.
(v) The equations of motion of the computational particles

dw,

dt

dz,

dt

d
= UP? & = ng, (25)

=0
’ dt  m

are numerically integrated in time to ¢t = At, with At the step of the time integration
scheme. The distribution function is now known at ¢t = At and, following the steps
(ii)-(v), the system is advanced until the final time of the simulation is reached.

Noting that the error associated with a statistical representation of the distribution
function is expected to decrease as N /2 [82,83], the numerical error affecting quantities
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that result from a simulation such as f and E, is
€ = C1Az® + CyAt? + C3sN~Y/2 + higher order terms. (2.6)

where C, C5, and C5 are constants independent of Az, At, and N; « denotes the
order of accuracy of the spatial operators in the interpolation between particles and grid
positions and in the solution of Poisson’s equation; and [ is the order of accuracy of the
time integration scheme.

To simplify the expression of the numerical error, we write the degree of refinement h as

Az \* [ At\? N2

A.ZCQ Ato N()
where Az, Aty, and Ny are reference parameters for a standard simulation. Conse-
quently, from Eq. (2.6) we obtain

en = Cph? + O (K1), (2.8)

where C,, is a constant independent of h. In the following, we consider p = «, i.e. we
define the theoretical order of accuracy of the algorithm as the order of accuracy of the
spatial discretization scheme.

2.2.2 Challenges in applying the MMS to PIC code verification

The verification of PIC codes with the MMS is not straightforward, as it implies the
comparison of a continuous, analytical distribution function with a sample of computa-
tional particles affected by statistical noise. In this section we propose a methodology
to perform this comparison.

First, the manufactured solutions Fj; and f); are chosen, and the corresponding source
terms to be added on the right-hand side of Egs. (2.3)-(2.4) are computed according to

Ofu +van n qErv Ofm

Sr(@,0,1) = ot oz m  Ov (29)
and
0Em 4
_ P 2.1
Selt) = S0 - 2, (210)

with Sg = 0if E); is chosen consistently with fj;. While adding Sg in Poisson’s equation
does not present any conceptual difficulty, adding a source term to the Vlasov equation
requires the evolution in time of the computational particle weights, w,, and the modifi-
cation of Eq. (2.5) accordingly [84]. More precisely, the particles are initially distributed
with a pseudorandom number generator according to a chosen distribution function
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fo(z,v) and the initial weights are set as w,(0) = far [2,(0),v,(0), 0]/ fo [2,(0), v,(0)].
The weights w,, are then evolved according to

dwy, _ Splzp(t), vp(t), 1]
dt folzp(0),0,(0)]

We remark that, in the presence of a collision operator, the marker distribution is not

(2.11)

conserved along particle trajectories and Eq. (2.11) should be generalized according to
Ref. [84]. We also note that, to avoid altering the convergence properties of the numerical
scheme, Eq. (2.11) has to be integrated in time by using a numerical scheme with order
of accuracy S or greater.

We now define the norms used to compute the numerical error affecting the simulation
results. For the electric field, this does not present any particular difficulty, and we
indicate the distance between the numerical and the manufactured solution as

e(Fy) = max max |Fy(t) — Euley(t), ]| (2.12)
On the other hand, the definition of the norm used to quantify the numerical error af-
fecting fy; requires to measure the distance between a continuous analytical distribution
function and a set of N computational particles.

The comparison of a data set of N elements to a distribution function is a general
mathematical issue that appears in many research fields [85,86]. For a one-dimensional
probability density function g(z), a data set can be compared to g considering the cumu-
lative distribution function (CDF) G(z) = [*_ g(2/)dz’ and the empirical distribution
function (EDF) related to the data set Gn(z) = 300, 0(x — x,,)/N, where z, are the
elements of the data set, p =1,..., N is the particle index and 0(x) is the Heaviside step
function [f(z) = 0 if x < 0, and 6(z) = 1 otherwise]. Under the null hypothesis, i.e.
{xp}p=1,.n is a set of N random realizations of the distribution function g, and in the
limit N — oo, the distance Dy = sup, g |G(z) — Gy ()| converges to 0 as O(N~1/2) [87],
where the supremum is used rather than the maximum since G (x) is a piecewise con-
tinuous function.

To generalize this result to d > 1 dimensions, Peacock developed a method, detailed in
Ref. [88], which is used to evaluate the distance between a multidimensional distribution
function and an observed sample of N elements. For a two-dimensional distribution
function fy/(x,v,t) and a data set of N elements {x,(t), v,(t)},=1.. n of equal weight,
at a given time ¢ (in the reminder of this section we drop the ¢ dependence to simplify
the notation), Peacock’s methodology requires one to define the four CDFs

1 T v 1 +oo v
F'(z,v) = —/ / fu(2! v)da' dv', F%(x,v) = —/ / I v)da' dv',
n J—ooJ—oo nJx S

3 1 Foo oo /A ! g 4 1 v +oo ro 3
F(:Jc,v):ﬁ/x /U faur(2 02’ do, F(x,v)zﬁ/_oofv (2 0)da'do',
(2.13)
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and the four EDFs

Al | o1
Fh(z,v) = ZNQ(x—xp)Q(U—vp), F3(z,v) ZN z)0(v —vy,),
p=1 p=1
, N N (2.14)
Fy(z,v) =Y —0(z, — 2)0(v, —v), Fy(x,0) =" —0(z — x,)0(v, — v),
=1V =i IV
and compute the largest difference between F* and Fy (i = 1,2,3,4),
d = sup |F'(z,v) — Fi(z,v)|. (2.15)
(z,v)ER2
The distance between fys(z,v) and {z,,vp}p=1,. n is thus defined as
p (fur) = max (df, df, df, dy) . (2.16)

Reference [88] shows empirically that ep (i) decreases as O(N~1/2), irrespective of the
choice of far, if {z}, vp}p=1, .~ is a set of random realizations of fy;.

To verify a PIC simulation code with the MMS, one has to account for arbitrary values
of w,, and the definition of the F}, Eq. (2.14), should be modified as

I
hE

N
Fh(z,v) = Z O(x — x,)0(v — v,), F(z,v) 0(x, —x)0(v —v,),

3
Il
—

(2.17)
)0(vy — ),

|
[]=
>
S
=
8
[
8
S

N
F(00) = X il = 2000 =) Fi(a.0)

S
Il
—

with @, = w,/ Z;VZI w,. We show empirically (see Section 2.2.3) that, if one defines the
EDFs according to Eq. (2.17), ep (fas) still decreases as N~%/2 for N — oo.

We remark that ep (fy) is affected by statistical uncertainty due to the random initial-
ization of the markers. Consequently, the observed order of accuracy p obtained using
en, = ep (fu) in Eq. (2.1) is also affected by statistical uncertainty. To perform an or-
der of accuracy test, it is therefore necessary to carry out a number, n,, of simulations
with different pseudorandom number generator seeds, and compute the numerical error
€ni = €p (fu) for each simulation, with ¢ = 1,...,n,. Then, following the methodology
discussed in Section 3.1, it is possible to approximate the expected value of €, with

1 &
— > ens (2.18)
Ns =1
and the corresponding statistical uncertainty with

Aey, = 1.96%, (2.19)

where o, = \/ o (en — €n4)?/(ns — 1) is the standard deviation corresponding to the
distribution of €,;. Finally, the expected value of p is computed combining Eq. (2.18)
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with Eq. (2.1), and the corresponding statistical uncertainty is obtained as

oL (Ba), (Bean)’
A —MJ( o) (2 220,

2.2.3 Reducing the computational cost of a PIC verification

The evaluation of ep (fys) is computationally expensive for a data set with a large num-
ber of elements. In fact, since Fi(x,v) is a discontinuous function, the classical methods
applied to compute the maximum value of a continuous function are not suitable. More-
over, the local maxima of the difference |F(z,v) — Fi(z,v)| are found at the N? points

(Tp;, Vp, ), wWith p;j = 1,..., N and p, = 1,..., N. Therefore, to compute d?, one has to
evaluate the limits
‘= lim lim |Fi(x,v) — Fi(z,v)] (2.21)

I*)ipj ’U*)Upk

for all (z,,,v,,) and then impose d}’ = max;; dj ;.

Reference [89] shows that F (x,v), where (z,v) is a general point of the phase-space, can
be evaluated with a brute force algorithm, or partitioning the points (x,, v,) in a k-d tree
or in a range-counting tree. It results that the complexity of computing d” according to
Eq. (2.15) is: O(N?) with the brute force algorithm, O(N°/2) with a k-d tree partitioning,
and O(N?log N) with a range-counting tree partitioning. The memory used to partition
the N points with a range-counting tree scales as O(N log N), while it scales as O(N)
for a k-d tree partitioning or brute-force algorithm. Therefore, all the evaluations of the
EDF used to obtain the results presented in this chapter are performed using a k-d tree
partitioning, which in our opinion is the best compromise between computational cost
and memory needs.

To decrease the computational cost of computing d!’, Fasano and Franceschini propose
an alternative approach [90], which approximates df as

d¥ ~d'" = max_lim lim |F'(2,v) — Fj(z,0)], (2.22)

p=1,..,N z—m% vy

where the F}; are evaluated according to Eq. (2.14). Reference [90] shows empirically that

the value of exx ( far) decreases as O(N~/2) if we define epp(f3r) = max (dfF, dyt k't dfF>,
where {x,,v,},-1,. n is a set of random realizations of fy;. The computational cost of
evaluating df'f" is reduced by a factor N with respect to d?.

As the computational cost of evaluating df* remains very demanding for high values

of N, we discuss here an alternative method used to approximate d’. Instead of max-
imizing |F'(z,v) — Fi(z,v)| over all points (z,,v,), as done according to Fasano and
Franceschini’s approach, one can generate M random points (z;,v;), with j = 1,..., M,
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and approximate d? with

di ~=d}'" = max |F'(x;,v;) = Fy(j,05)|- (2.23)
Jj=1,...,

This approximation is a true equality in the limit M — oo, and corresponds to evaluating

Eq. (2.15) with the Monte-Carlo method. We can therefore compute the distance between

fu(z,v) and {xp, vp}p1, N as
enc (far) = max (1€, d)° d}'C, )< . (2.24)

The evaluation of dM¢ is computationally N2/M times less demanding than df and
N/M times less demanding than df'*".

To further reduce the computational cost of performing a PIC code verification, we also
investigate the comparison of F'(x,v) with Fj(z,v) only at x = 400 and v = +o0, i.e.
evaluating the supremum of the difference |F*(z,v) — Fi(z,v)| only over the boundaries
of the phase-space domain. More precisely, we define the two errors

T +o00 N

€x(far) = sup / fu(2 v)dv| da’ — Z W0 (x — )|, (2.25)
zeR /=00 |/—c0 =1
v “+oo N

eo(far) = ilellg [m [m fu(z, U’)dm] dv’ —pzzzlwpﬂ(v —up)l, (2.26)

and assess whether they decrease according to the order of accuracy expected for the
numerical scheme.

To empirically show that ep(far), €pr(far), and exre(far) decrease as N=/2 for N — oo
if {xp, vp}pe1,. v is a set of random realizations of fy; and w, # 1, we proceed as follows.
First, we generate N points (z,,v,) according to fo(v) = e~ *!/(2L), with p = 1, ..., N,
z, € [0, L], and v, €] — 00,00, and we set w, = fi1(xp,v,)/ fo(vy,), where

fi(z,v) = l—v e . (2.27)

Then, we compute ep(f1), err(f1), and exo(f1) [for exro(f1), M = 10°]. We apply this
procedure for different NV, and, for each N, we repeat the process a number of times,
changing the pseudorandom number generator seed. We compute the averaged value of
ep(f1), err(f1), and epe(f1) according to Eq. (3.1), and the corresponding statistical
uncertainties according to Eq. (3.3). Finally, defining h = 1/N, we estimate p and its
statistical uncertainty by applying Egs. (2.1) and (2.20). The results thus obtained are
presented in Fig 2.1. We observe that the distance between fi(z,v) and the data sets
decreases as N~'/2 for N — oo, with a similar value, for all the three norms.
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Figure 2.1 — Values of ep(f1), epr(f1), and eprc(f1) averaged over the performed set of simulations
(left panel) and corresponding values of p (right panel) for h = 1/N. The error bars represent the
statistical uncertainty affecting the results.

2.3 Examples of application of the code verification
methodology

We illustrate two concrete examples of application of the code verification methodologies
discussed above by applying the procedure described in Section 2.1 to the GBS code and
the methodology illustrated in Section 2.2 to a one-dimensional, electrostatic, collisionless
PIC code. These two codes constitute an ideal test bed for the proposed verification
methodologies.

2.3.1 Application of the code verification methodology to GBS

The GBS code [20] was developed at the Swiss Plasma Center (SPC) in the last few years
with the goal of simulating plasma turbulence in basic plasma physics experiments and
in the tokamak SOL. The details of the model solved by GBS, as well as its numerical
implementation, are described in Appendix A. For the purpose of the present chapter,
we consider a limited tokamak configuration with circular magnetic flux surfaces in the
infinite aspect ratio limit and a toroidal limiter on the high-field side equatorial midplane,
with no magnetic shear. Moreover, the Boussinesq [91-93], the cold ion (7; = 0), and
the electrostatic approximations are used. Under these assumptions the GBS model
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equations, Eqgs. (A.65)-(A.70), reduce to

Om = = Ro{#,n} +2[C (p) =nC (9)] = Vy (nvye) + DaVin + 5, (228)

1

3n
1 . 2

v”d) — —V‘lpe — 071VHT@ + Vj“ - 7VHG6:|
n 3n

2 1
0w == Ro{@,w} + ~C (pe) = v Viw+ —Vjj + 3-C(Gi) + DuViw, (2.29)

Oje = — Ry {¢7 Uue} + %

— 0V Ve + Doy V30, (2.30)
1 P
Oy = — Ro {6, Uui} — UVl = Vipe — 5 VGi + Dy, Vo), (2.31)
4 7 T,
0T, == Ro{o, T} + T {50 (Te)+ - ~C(n) = C (¢)} —vVle + V) (XHeVuTe)
2 i e
+IT. {o.ﬂvuvui — 171V} + 0.71 (W) Vun} + DpVAT, + Sp..

(2.32)

where the differential operators C, {¢, —}, V| and V7 are detailed in Section A.3.4. The
system is closed by the Poisson’s equation V2 ¢ = w.

The GBS model equations are completed by a set of boundary conditions that describe
the plasma properties at the magnetic pre-sheath entrance [94], as described in Ap-
pendix A. Within the assumptions used in this section, they are written as

v =% ¢ (2.33)
Ve =+ csexp (A — ¢/T) (2.34)
9,1, =0 (2.35)
on =T Cﬁsayvui (2.36)
w=— (8yv”i)2 T csagvﬂi (2.37)
0y = F Oy (2.38)

where A = 3. Here the upper signs apply to the case of magnetic field directed towards
the wall, while the lower ones apply to the opposite case. While the numerical scheme
used to solve Eqgs. (2.28)-(2.32) and (2.33)-(2.38) is described in Section A.3.5, we note
that the expected orders of accuracy characterizing the numerical model are p, = 2, in
the spatial directions, and p; = 4, for the time discretization. Defining h = Ay/Ay, =
Ax/Azy = Az/Azy = (At/At)?, we expect an overall p = 2 for the numerical scheme.
In order to verify the implementation of Eqgs. (2.28)-(2.32) and (2.33)-(2.38) in GBS,
the methodology illustrated in Section 2.1 is applied as follows. First, the discretization
scheme used to solve Eqs. (2.28)-(2.32) and the Poisson’s equation is analyzed, using,
for simplicity, Dirichlet (for vj;, vj. and w) and Neumann (for n, 7, and ¢) boundary
conditions. Dirichlet boundary conditions are applied at the grid points (therefore,
no numerical error results), and Neumann boundary conditions are discretized with a
second-order numerical scheme. Second, we study the order of accuracy characterizing
the discretization scheme of the boundary conditions, Egs. (2.33)-(2.38), decoupling these
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from the solution of Eqgs. (2.28)-(2.32). Finally, the two sets of equations [Egs. (2.28)-
(2.32) and Eqgs. (2.33)-(2.38)] are coupled to complete the verification of the overall GBS
code. The code verification methodology is divided in these three steps to simplify the
investigation of possible implementation errors; in the present section we show only the
final results [i.e. verification of Eqgs. (2.28)-(2.32) coupled with Egs. (2.33)-(2.38)], which
summarize the verification results obtained for GBS. We note that the methodology
for the code verification allowed us to find and correct a minor bug, related to the
discretization of the G; and G. terms at the boundaries. We tested that, luckily, the
generated numerical error was very small, and its influence on the previous GBS results
completely negligible.

To verify the implementation of the drift-reduced Braginskii equations into GBS and
to satisfy the requirements given in Section 2.1.2, we choose to manufacture the model
solution as the combination of trigonometric functions. More precisely, the functions
used to represent the six fields appearing in Eqgs. (2.28)-(2.32) are expressed as

C, <z — gy)
a

where Ay, B,, Cs, D, E, and F; are arbitrary constants and sy, = n, T, v|j;, Ve, w, ¢
are the fields present in the GBS equations. The B, coefficients are used to ensure the

sy (y,x, z,t) = Ag {BS + sin

sin (Dyy) sin (Est + st)} , (2.39)

positivity of n and T, the other coefficients to calibrate the amplitude of the errors in
order to guarantee that there is no dominating term in the equations. This means that
the amplitude of the coefficients is chosen such that, for the used meshes, the simulations
are in the asymptotic regime and the errors affecting the different terms of Eqs. (2.28)-
(2.32) are of the same magnitude. As GBS is developed to simulate turbulent modes
mainly aligned to the field lines, we impose the dependence on y and z as the product
of two terms: the first one perfectly aligned to the field lines (the term containing Cy)
and a second term (containing D;) representing a perturbation in the poloidal direction
(i.e. along the y coordinate), chosen small, not to have the discretization error on the
parallel derivative dominating over the others. The E, and Fy terms introduce the time
and radial dependencies. We note that Cs must be an integer to satisfy the periodicity
of the system along the z coordinate.

The computation of the source terms is trivial. It consists in plugging the analytical
functions presented in Eq. (2.39) into Eqgs. (2.28)-(2.32) and in Poisson’s equation to
obtain the source term S. This process is particularly tedious, but it involves only
straightforward algebraic manipulations with no conceptual difficulties. As the results
of these computations do not present any theoretical interest, we do not present those
herein. We just mention that we compute the source terms using the symbolic manip-
ulation software Mathematica [95], which allows the direct translation into Fortran90
language. This enables the implementation of the obtained expressions in GBS, without
any significant difficulty and reducing the possibilities of mistakes.

The verification of the boundary conditions described in Eqgs. (2.33)-(2.38) requires the
computation of additional source terms. In fact, the manufactured solutions given in
Eq. (2.39) do not satisfy the boundary conditions. Consequently, as done for the equa-
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Figure 2.2 — Norm of the numerical error affecting the discretizetion scheme used in GBS, plotted

as function of the refinement degree h, for the two norms L.,

(left panel) and Lo (right panel).
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Figure 2.3 — Observed order of accuracy, p, characterizing the discretization scheme of GBS,
computed applying Eq. (2.1) and plotted as function of the refinement degree h, for the two norms
L (left panel) and Ly (right panel).

tions governing the physics of the SOL region, we insert the manufactured solution into
Egs. (2.33)-(2.38) and we add the resulting source terms to the boundary condition equa-
tions.

For the computation of the error and to estimate p, we consider the two norms, Ly (i.e.
Ifllo = VXN f2/N) and Ly, (i.e. ||f|loc = max |f;]); Lo is appropriate to ensure the cor-
rect global convergence of the results, while L, is used to assess the local convergence
in all points of the domain. Figures 2.2 and 2.3 summarize the GBS verification results.
Six simulations are performed with h = 1,2,4,8,16,32 and the corresponding errors,
computed using the Ly and L., norms, are shown in Fig. 2.2. We observe that the nu-
merical error clearly decreases when refining the mesh (i.e. decreasing the value of h); on
a logarithmic scale, the numerical error decreases linearly, with slope p, as expected. We
also note that our scan leads to a reduction of the numerical error by at least three orders
of magnitude, this gives confidence that there are not subdominant errors decreasing at
a rate different than the expected one. The estimate of the observed order of accuracy,
evaluated according to Eq. (2.1), is plotted as a function of the parameter h in Fig. 2.3.
Clearly, with the refinement of the meshes, p tends to p for all the fields, as expected,
although the rate of convergence is field dependent. This is due to the fact that the
coefficients of the Taylor expansion of the numerical error are different for each field.

page 26



2.3. Examples of application of the code verification methodology

Consequently, we demonstrate that Eqs. (2.28)-(2.32), the Poisson’s equation, and the
boundary conditions [Eqs. (2.33)-(2.38)] are correctly coded in GBS, with a numerical
scheme that satisfies the theoretical order of convergence.

2.3.2 Application of the verification methodology to a PIC sim-
ulation code

To exemplify the methodology presented in Section 2.2, we consider the following PIC
algorithm. Equations (2.3)-(2.4) are solved on a periodic spatial domain that extends
from z = 0 to x = L. A numerical grid z; = i{Ax is used to discretize the x coordinate,
with Az = L/M the grid spacing (i = 0,..., M — 1 and M the number of grid points),
and a time step At is introduced for the integration of the equations of motion. The
charge of the particles is assigned to the grid using a first-order weighting scheme, known
as cloud-in-cell (CIC) scheme [60], i.e. p(z;,t) = Y00, ql[w; — x,(t)]wy(t), with I the
interpolation function given by

_ 0 if |z| > Az
)= { “Bl1iffe] < Ax (2.40)

Poisson’s equation 02¢(z,t) = —p/ey is solved by using a second order centered finite
difference scheme and imposing the boundary condition ¢(x = 0) = 0. The electric
field E, is computed according to E(z,t) = —0,¢(x,t) by using a second order centered
finite difference scheme and interpolating from the grid onto the particle positions using
again the CIC scheme. Finally, the equations of motion, Eq. (2.5), are integrated in
time with a second order Leapfrog scheme. This numerical scheme is second order in
Az and At, i.e. o = = 2. All quantities are normalized to (tilde denotes a physical
quantity in SI units): © = #/Ap, t = {@pe, where Ap = \/€oTuo/(7ge?) is the Debye length
and Wy, = \/Mpe?/(egm,) is the plasma frequency, with n, and T.o a reference density
and electron temperature, respectively. The simulation code is written in Fortran90 and
parallelized using a domain cloning approach, implemented within an hybrid message
passing interface (MPI) and OpenMP environment.

To apply the code verification methodology discussed in Section 2.2, we choose the
following manufactured solutions

Ey(x,t) = 2rk, L sin(nt) sin <kx2£rx> , (2.41)
fu(z,v,t) = fo(z,t) fo(v), (2.42)

where
folv) = \;vge‘* (2.43)

page 27



Chapter 2. Code verification

) 6 a
o err(f1) o p(f1)
o err(fo) e Of| @ B(f)
O €(E,)for fi e o p(Ep)for fi
T102H * €(Ep) for fo 7 4+ * p(Ey)for fo
5 e Q
o '// 3r e
e S R R )
100 ke~ ‘ ‘ ‘ 1l
1 2 4 8 16 1 2 4 8
h h

Figure 2.4 — Values of epp (far) and €(E,) averaged over the performed set of simulations (left
panel) and corresponding p (right panel) for the two distribution functions f; and f,, and for
h =1,2,4,8,16. Each error is normalized to its value at h = 1, and the statistical uncertainties are
represented with error bars. The dashed lines represent h? (left panel) and p = 2 (right panel).

and we make use of two functions for f,(x,t),

fer(z,t) = [1 — sin(wt) cos(2mz/L)] /L, (2.44)
Fatet) =+ 51—t {5l )

to ensure empirically that the results discussed are valid for different choices of fj;. We
denote f1 = fu1f, and fo = fiof,. We remark that the manufactured solutions satisfy
the requirements listed in Section 2.1.2. In particular, the parameters k., L, and A allow
us to calibrate the numerical error, so that the magnitude of the different terms in the
Vlasov-Poisson system are of the same order of magnitude (we use L = 2 and k, = 2
for fi, and k, =5, L =5, and A = 20 for f5, and for all the simulations we evolve the
computational particles for 2 time units). We note that f,(v) is chosen different from a
Maxwellian distribution in v to ensure that a numerical solution does not converge to fi;
because of numerical dissipation. Finally, we note that the computational particles are
initially distributed according to the probability distribution function fo(v) = e~1*!/(2L)
and the initial weights are computed as w,(0) = fa[z,(0),v,(0), 0]/ fo[v,(0)].

For the verification of the PIC code, we refine at the same time the grid size and the
time step, while increasing the number of particles. Defining h = Az/Axy = At/Aty =
(N/Ny)~/4, we perform five sets of simulations, with respectively h = 1,2,4,8, 16, for
both f; and f;. We perform simulations with A = 8,16 thousands of times, simula-
tions with A = 4 hundreds of times, and simulations with h = 1,2 a few times, and for
each value of h we compute the average of epp (fyr) and €(E,) and the corresponding
uncertainty. The observed order of accuracy p and the corresponding uncertainty are
computed applying Egs. (2.1) and (2.20), respectively. We note that, while e(E,) is com-
puted considering all the time steps of the simulations, epp (fy/) is estimated at ¢ = 2
due to the high computational cost of its evaluation.

The results obtained from these simulations are represented in Fig. 2.4. Both epp (far)
and €(E,) clearly decrease for h — 0. Moreover, the observed order of accuracy p con-
verges to 2 when decreasing h, proving that the PIC algorithm is correctly implemented
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Figure 2.5 — Values of epp (f1) and €(E,) averaged over the performed set of simulations (left
panel) and corresponding p (right panel) for h = 1,2,4,8,16. Each error is normalized to its value at
h =1, and the statistical uncertainties are represented with error bars. The dashed lines represent
h (left panel) and p = 1 (right panel).

in the code, and the equations are verified.

As a further proof of the capabilities of the code verification methodology illustrated
herein, we perform the same verification with a zero-order weighting scheme (the so-
called nearest-grid-point scheme, or NGP scheme) when interpolating the electric field.
This corresponds to use an interpolation function defined as

1 if|x < &2
I(z) = =2 2.4
(z) { 0 if|z] > Ae (246)

when interpolating the electric field from the grid onto the marker positions. Since the
accuracy of the numerical scheme is reduced, the error affecting the results is expected
to satisfy

e =C"h+O(Rh?), (2.47)

where C” is a constant independent of h. The results are presented in Fig. 2.5 (only
f1 is considered for this test). The code verification methodology is able to identify
this change in the numerical scheme. In fact, while both epp (f1) and €(E,) decrease
as h — 0, the observed order of accuracy converges to 1. Therefore, the proposed code
verification methodology not only ensures that the numerical solution converges to the
exact solution, but it also correctly identifies the convergence rate.

To investigate the applicability of the distance epe (far) for the verification of PIC
simulation codes, we consider the same set of simulations presented in Figs. 2.4 and
2.5, and we evaluate the difference between fy/(z,v,t) and the sample of computational
particles according to Eq. (2.24) at t = 2, for M = 10°. The results thus obtained are
shown in Fig. 2.6. We observe that the error decreases for h — 0 as expected both for the
CIC and NGP schemes, with p — 2 for the CIC scheme, and p — 1 for the NGP scheme.
Moreover, we note that the errors computed according to Fasano and Franceschini’s
method (see Figs. 2.4 and 2.5) and according to Eq. (2.24) are very similar. This means
that the norm €,;¢ is suitable for the verification of PIC simulation codes.

Finally, we consider the same set of simulations presented in Figs. 2.4 and 2.5 and we
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Figure 2.6 — Values of ey¢ (f1) averaged over the performed set of simulations (left panel) and
corresponding p (right panel) for h = 1,2, 4,8, 16, interpolating the electric field onto the marker
positions both with the CIC (red circles) and the NGP (blue squares) interpolation schemes. Each
error is normalized to its value at h = 1, and the statistical uncertainties are represented with error
bars. The dashed lines represent h and h? (left panel) and p = 1 and p = 2 (right panel).
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Figure 2.7 — Values of ¢,(fy) and €,(fu) averaged over the performed set of simulations (left
panel) and corresponding p (right panel) for the two distribution functions f; and fs, and for
h =1,2,4,8,16. Each error is normalized to its value at h = 1, and the statistical uncertainties
are represented with error bars. The dashed lines represent h? (left panel) and p = 2 (right panel).
The electric field is interpolated from the grid onto the particle positions using the CIC scheme.

evaluate €,(fy) and €,(fy). The results thus obtained are presented in Figs. 2.7 and
2.8 for the CIC and NGP weighting schemes, respectively. We observe that the error
decreases for h — 0 as expected for both the weighting schemes, with p — 2 for the CIC
scheme, and p — 1 for the NGP scheme. Therefore, also the norms defined in Egs. (2.25)-
(2.26) are suitable for the verification of PIC simulation codes with the MMS. We note
that, as the computational cost of evaluating €, (fas) and €,( far) is considerably decreased
with respect to exp (far), this evaluation is performed for all t = 0.087, with j =0, ..., 25,
and the maximum between the resulting values is computed. We finally remark that
this last approach is easily generalized to a d-dimensional distribution function, without
increasing significantly the computational cost of performing the order-of-accuracy test.
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Figure 2.8 — Values of €, (f1) and €,(f1) averaged over the performed set of simulations (left panel)
and corresponding p (right panel) for h = 1,2,4,8,16. Each error is normalized to its value at h = 1,
and the statistical uncertainties are represented with error bars. The dashed lines represent h (left
panel) and p = 1 (right panel). The electric field is interpolated from the grid onto the particle
positions using the NGP scheme.

2.4 Conclusions

In this chapter a rigorous methodology for plasma simulation code verification is dis-
cussed. This methodology is general, rigorous, simple-to-apply, and does not present
any conceptual difficulties. Code verification requires to choose an adequate manufac-
tured solution which satisfies some reasonable assumptions. Then, the source terms to
be added to the model equations, as well as the boundary conditions, are readily eval-
uated. At this point, it is possible to compute p [Eq. (2.1)] by performing a number of
simulations corresponding to more and more refined meshes. If p — p for h — 0, the
code is verified.

The methodology is then generalized to PIC algorithms. This is done by accounting
for the statistical noise that intrinsically affects the simulation results, and providing a
measure of the distance between continuous, analytical distribution functions, and finite
samples of computational particles. In particular, the value of ¢, is estimated averag-
ing over several simulations carried out with different pseudorandom number generator
seeds, and the statistical uncertainty affecting €, and p is quantified. Then, a distance
to account for time-evolving marker weights if provided, proving empirically that ep and
epp still decrease as N~'/2 for N — oo when w, # 1. Moreover, since the proposed
norms are extremely demanding in terms of computational resources when large num-
ber of computational particles are considered, the value of df is approximated with a
Monte-Carlo approach and e is used in verifying the PIC simulation code, allowing
us to considerably decrease the computational cost of a PIC code verification. Finally,
the norms €, and ¢, are introduced, showing that it is possible to consider independently
each coordinate of the phase-space when performing a PIC code verification. The latter
approach is easily generalized to phase-space in more dimensions, without increasing the
computational cost considerably.

The application of the proposed procedure to the GBS code allowed us to find and correct
a minor bug that was generating very small numerical errors, with completely negligible
influence on the previous GBS results. This shows the power of the proposed method-
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ology. The final result of the study described herein is that the implementation of the
physical model in the GBS code has been completely and rigorously verified, ensuring
the correct solution of the model equations. As a matter of fact, the verification exercise
largely increases the confidence on the numerical results obtained using the GBS code.

Finally, the application of the code verification procedure to a one-dimensional, electro-
static, collisionless PIC simulation code allowed us to investigate the peculiarities of the
proposed methodology, showing how to perform a rigorous PIC code verification. This
methodology can be easily generalized to more complex geometries and more realistic
systems, providing the basis to perform a rigorous verification of complex PIC codes.
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Solution verification

Due to the finite computational power available to perform simulations and, conse-
quently, the finite precision achievable, the simulation results are always affected by
numerical errors, even if the model equations are implemented correctly. Estimating
the amplitude of these errors is a crucial issue, not only to ensure the reliability of the
numerical results, but also to quantify the uncertainty of the simulations when perform-
ing a rigorous validation of the physical model against experimental results (see e.g.
Chapter 7). The evaluation of the numerical error affecting the simulation results is the
objective of the solution verification procedure [26,27,96,97].

Simulation results are affected by round-off, iterative, statistical sampling, and discretiza-
tion errors [26]. The sum of these errors constitute the numerical uncertainty affecting
the simulation results. Round-off errors are due to the finite number of digits that com-
puters use when representing numerical values. Assuming that all the computations are
performed in double precision, round-off errors are usually negligible with respect to the
other sources of errors (we assume that this is the case in the remainder). Iterative
errors are due to the use of iterative numerical schemes terminated with a finite residue.
This source of error can be reduced by increasing the number of iterations and it is
neglected here. The statistical sampling errors entering, for example, in the evaluation
of time-averaged quantities used for code validation can be reduced or eliminated per-
forming averages on steady-state simulations over a sufficiently long time interval. In
the following we assume that simulations are in steady-state and that long enough time
are considered, and we consequently neglect these errors. On the other hand, statistical
sampling errors affecting PIC simulations due to the random initialization of markers
cannot be neglected. Also discretization errors introduced by the numerical scheme used
to discretize the physical model are usually not negligible, both for grid-based and PIC
simulation codes, and they should be rigorously estimated.

We note that the analysis of the simulation results is generally performed using post-
processing tools (e.g. the linear growth rate of an instability is usually obtained with an
exponential fit). The solution verification procedure should also quantify the numerical
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uncertainty introduced by these tools.

As an a priori study of the numerical scheme to obtain an analytical expression charac-
terizing the behavior of the error is, most of the time, extremely complex to perform,
we use an a posteriori method to compute the numerical error affecting the simulations.
This requires an estimate of the analytical solution, which in most cases is not known. In
Section 3.1 we discuss a rigorous methodology for estimating the statistical uncertainties
affecting the numerical results. Then, in Section 3.2, using the Richardson extrapola-
tion [45] as a higher order estimator of the exact solution and Roache’s grid convegence
index (GCI) [47] as a relative numerical uncertainty estimate, we provide an evaluation
of the discretization error. The methodology is then applied in Section 3.3 to GBS and
to the one-dimensional PIC code presented in Chapter 2 to provide an estimate of the
numerical error affecting the simulations carried out with these two codes. The results
discussed in the present chapter are published in Refs. [54,55].

3.1 Statistical error

While for grid-based codes the statistical sampling error can be reduced to negligible val-
ues by performing sufficiently long steady-state simulations (note that this is true only if
the average of a quantity of interest is well defined, we assume that it is the case in the
following), one should rigorously evaluate the statistical error introduced in PIC codes
by a finite number of computational particles initialized using pseudorandom number
generators, or by operators based on pseudorandom number generators (e.g. when a
collision term is added to the Vlasov equation). To estimate the statistical uncertainty
affecting X,, where X}, is a point-by-point solution value or a solution functional evalu-
ated from a PIC simulation with discretization parameter h, we proceed as follows. We
repeat the simulation ng times with the same h, but changing the pseudorandom number
generator seed, and we define

_ 1 &
Xp=—> X, (3.1)

S =1

where Xj,; is the i-th evaluation of X, and ¢ = 1,...,ns. Assuming that the Xj,; are
randomly distributed from an unknown probability distribution with unknown but finite
mean fx;, and variance og(yh, then X, — ix.n for ng — co. Moreover, according to the
central limit theorem, the distribution of X), converges to the normal distribution with
mean /iy, and variance a‘;’(’h /ns for ng — oo. Therefore, for ny — oo,

1.960 — 1.960
MX,h_ixﬁ SXhSMX,h‘FiXJl

N NG (3.2)
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with probability equal to 0.95. As a consequence, X}, can be used as an estimator of X,
and we compute the uncertainty on this value as

1.960x 1,
Vs

We remark that the unknown ¢%, can be estimated according to

AX ot = (3.3)

Ns
9 1

O’Xh: Z(Xh’i—Xh)Q. (34)

ns — i

Equations (3.1) and (3.3) provide a rigorous estimate of X}, and of its statistical uncer-
tainty. However, due to the high computational cost of PIC simulations, ng is typically
low. To still have a realistic estimate of the statistical uncertainty, one can run n, sim-
ulations with a smaller number of particles, N’ < N, and evaluate the corresponding
variance, (ox)°, according to Eq. (3.4). Then, assuming that the statistical uncertainty
is proportional to N~/2, the statistical error for a single simulation carried out with N
particles can be estimated as

N/
AXitat = 1-960X,h’ W (35)

3.2 Discretization error

In the early 20th century, Richardson developed a method [45,46], later extended [98,99],
to accelerate the rate of convergence of a numerical sequence. This method is based on
the use of two numerical solutions obtained using two different meshes, X} and X, to
compute a new solution that presents a convergence rate that is, in general, one order
higher than the original solution. Defining the Richardson extrapolation as

o o, Xn— X

X=X+ 1 (3.6)
then | X — X| = O(h?t!) [45,46], where X is the exact solution of the physical model
and p is the order of accuracy of the numerical scheme defined in Chapter 2 (i.e. X
converges to X faster than X, for h — 0). Consequently, we can use X as higher order
estimator of X and approximate the discretization error as

. _ Xon — X,
disc _ X\ = | Z&rh =2k
AXfle || X, = X|| = H | (3.7)
and the relative discretization error (RDE) as
Xp-X X,-X X5-X
RDE = =1 ~Th 2 Zrh T R (3.8)

X B X _thp—th.
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We remark that, for X to be a reasonable estimate of X , several assumptions should
be satisfied [26]. First, the Richardson extrapolation method requires that the degree of
mesh refinement can be represented solely by the parameter h. Second, the simulations
used to evaluate X should be in the asymptotic regime, that is p ~ p, where

In (% = Xo0) / (X0 = £)]

In (r) (39)

p=
This may result in computationally very expensive simulations, due to the potential need
for very fine meshes. Third, it is required that the solutions are smooth enough and do
not present singularities and/or discontinuities. More precisely, to allow the expansion of
the numerical error in powers of the parameter h, the derivatives of the analytical solution
should exist and be continuous. Finally, we note that we do not have any guarantee that
the Richardson extrapolated solution will meet the same governing equations satisfied
by either the numerical solution or the analytical solution. Consequently we use this
extrapolation for the computation of the numerical error only.

Since it may be demanding to satisfy the requirement of being in the asymptotic regime,
Ref. [47] introduces the GCI, defined as

GCI =

Tﬁ—l Xh

that represents another estimate of the relative discretization error affecting the sim-
ulation results. The GCI is obtained by approximating in Eq. (3.8) Xpr? — X, ~
(r? — 1) X;,. The parameters F, and p ensure that the GCI is larger than the numeri-
cal discretization error in 95% of the cases, and are defined as follows: if the difference
between p and p is less than 10%, the simulations are assumed to be in the asymptotic
regime and Fy = 1.25 and p = p. If the difference between p and p is larger than 10%,
a more conservative factor of safety, Fy = 3, is used and p = min [max (0.5, p), p|. If p is
not evaluated (for example, if only two solutions are available), Fy = 3 and p = p. We
note that there is still an ongoing discussion in the verification community about the
generality of these estimates.

To conclude our presentation of the discretization error estimate methodology, we dis-
cuss a few details. First of all, we draw the attention to the fact that the presented
procedure can be applied not only to point-by-point solution values, but also to solution
functionals. This is important for the use of this methodology to estimate the numerical
error affecting the observables used in the validation of the physical model [27]. Second,
as X;, and X, are in general computed on different meshes, the results on the coarser
mesh have to be interpolated on the finest grid, using an interpolation scheme whose
order is equal or higher than the order of the numerical scheme used by the code. A
complete discussion of this topic is found in Ref. [98]. Finally, we illustrate a useful
propriety of the GCI, that is the possibility of computing the overall GCI analysing each
coordinate of the problem independently. As it can result numerically very expensive to
perform a uniform refinement of the grid along all the coordinates at the same time, it is
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possible to refine separately each coordinate of the mesh by a factor r;, where the index
i refers to the coordinate under investigation. This allows us to compute a GCI; and a
p; for the i coordinate, and obtain the overall GCI as GCI = Y, GCI;.

3.3 Examples of application of the solution verifica-
tion methodology

Since estimating the numerical error affecting a simulation is needed not only to ensure
the reliability of the numerical results, but also to perform a rigorous validation of the
physical model, the quantification of the numerical error constitutes a fundamental pro-
cess of the verification methodology. In this section we apply the methodology presented
above to GBS and to the PIC code illustrated in Section 2.3.2 to exemplify the procedure
and assess the reliability of the simulation results.

3.3.1 Application of the solution verification methodology to
GBS

In the present section we focus on simulating the SOL plasma turbulence of a high-
field side limited tokamak, considering the electrostatic, cold ion, GBS model discussed
in Section 2.3.1, with ¢ = 4, v = e*ngRy/(miojcs) = 0.1, me/m; = 200, L, = 400,
Ry = 500, and yj. = 0 (see Ref. [100] for the physical investigation of those results).
Since the GBS code is used to study quantities like temporal and spatial averages of vy,
and v, <v”i> and <v”e>, time-averaged radial profiles, e.g. of p. = nT, and ¢, and the
equilibrium pressure gradient length, L, = —p./Vp, (see e.g. Chapters 6 and 7), in the
following we evaluate the numerical errors affecting these quantities. We note that their
time-average is done in the time interval 40 < ¢ < 80, during which the turbulence is in a
quasi-steady state (except n, which still shows a secular trend, although relatively weak,
and vj; and vj., which present an even weaker secular trend). This allows to neglect
the statistical uncertainty affecting the simulation results, and to focus our attention on
discretization errors.

To apply the methodology described in Section 3.2, we analyse separately the spatial
and the temporal coordinates. More precisely, in order to obtain the Richardson ex-
trapolation, Eq. (3.6), and to compute the observed order of accuracy, Eq. (3.9), we
execute five simulations using five different meshes: starting from the most refined mesh
(in space and time) we perform two subsequent spatial grid coarsenings by ry = 1.5;
the remaining two meshes result from the subsequent multiplication of the time step by
1.5 (r, = 1.5), without any change of the spatial grid. Hence, the meshes of the five
simulations, listed in the first column of Table 3.1, are characterized by two parameters,
hs = Ay/Ayy = Ax/Axy = Az/Az, that describes the discretization in the spatial
coordinates, and h; = At/Aty, that defines the degree of refinement of the time step. It
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Table 3.1 — Values of L, <v||,»> and <v||e> computed on five different meshes, as characterized by
hs and hy;.

Grid (n, x ny xn,) Time Step  h, hy L, <U||i> <U\|e>

192x80x24 3.00-107° 225 1.00 25.56 -0.039 0.066
288x120x36 3.00-107° 150 1.00 27.22 -0.067 0.091
432x180x54 3.00-107° 1.00 1.00 27.22 -0.070 0.100
432x180x54 4.50-107°  1.00 1.50 26.67 -0.071 0.100
432x180x54 6.75-107° 1.00 225 23.89 -0.069 0.107

. =225 h, = 1.00

hy = 150, hy = 1.00
—hy = 1.00, h, = 1.00
—hy = 1.00,h, = 1.50
—h, = 1.00, by = 2.25

3
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Figure 3.1 — Radial profiles of p. (left panel) and ¢ (right panel), averaged over time and along
the toroidal and poloidal directions, for five meshes, as characterized by hs and h;.

is Ayo = 0.93, Azg = 0.56, Azy = 0.12, and Aty = 3.0-107°.
For the five simulations considered, the quantities of interest are listed in Table 3.1 (L,,
<v||i>, and <v”e>) and shown in Fig. 3.1 (radial profiles of p, and ¢). We note that <UH,»>

and <v||e> are computed taking the average of the parallel velocities over the entire spa-
tial domain of interest. The radial profiles of p. and ¢ are obtained taking the average
of these quantities along the poloidal and toroidal directions; the equilibrium pressure
gradient length is computed as the radial distance between the maximum value of the
radial profile of p, and the half of its maximum value.

The results presented in Table 3.1 and in Fig. 3.1 show that the differences of the var-
ious quantities computed on the meshes characterized by h; = 1.00,1.50,2.25 are very
small, if compared to the changes due to the spatial discretization. The only quantity
presenting a meaningful dependence on the time step is L,; for this quantity we apply
the methodology described in Section 3.2, finding p; = 3.97 and GCI; = 0.6% (here,
GCl; is referred to the most refined mesh; the GCI; value relative to the other meshes
is obtained by multiplying the GCI; of the most refined mesh by A}, and similarly for
the spatial discretization). The observed order of accuracy is remarkably close to the
expected p; = 4, and the resulting numerical error is very small. Therefore, in the fol-
lowing, we neglect the numerical error associated to the time discretization with respect
to the one due to spatial discretization.

The evaluation of the numerical error due to the spatial discretization affecting the quan-
tities of interest is summarized in Table 3.2. We start our analysis by considering <UHZ'>
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Table 3.2 — Values of GCI; and RDFE computed using the parameters ps, ps and Fy, valid for the
finest mesh [hy = hy = 1.0].

Field p, p. F. GCL(%) RDE(%)
vy 341 23 20.7 -6.5
ve) 287 2 3 20.5 6.4
p. 18 2 125 120 -8.8

¢ 308 2 3 7.3 -2.4

and <v”e>. By applying Eq. (3.9) to these quantities, we obtain a value of p, larger than
ps. The difference between p, and p, is probably due to the fact that, in the present
scenarios, the parallel velocities average to very small quantities, if compared to the local
value of v; and vy (even one order of magnitude lower). Therefore, <’UHZ-> and <UHE> are
very sensitive quantities; this can lead, not surprisingly, to a difference between p, and
ps. Using Eq. (3.10) and the conservative value Fy = 3, the resulting GCI; are relatively
large. The analysis of the radial profiles of p. and ¢ is very similar: depending on the
difference between ps and p, we choose the corresponding value of F; and p,, by which
we compute the GCI,. At a mesh similar to the one generally used for GBS simulations,
we find that the numerical error affecting these quantities is of the order of 20 — 25%.
Finally, we note that the differences between the values of L, computed on the three
meshes characterized by hs = 1.00, 1.50, 2.25 are of the same order of the spatial grid size
(Axz = 0.56 for hy = 1.0) and, therefore, below the numerical error necessary to perform
the Richardson extrapolation (in fact, Az is the intrinsic uncertainty on L,; therefore, it
is not possible to distinguish between two values of L, whose difference is below or equal
to 2Ax). It follows that we can assume the numerical error affecting L, comparable to
the spatial grid size.

Several observations should be addressed to our results. First, the quantities are clearly
converging at a rate that is typically not very different from the expected one. Second,
our analysis allows us to estimate the numerical error affecting the different quantities
of interest; this will be used in the future to choose the mesh refinement necessary to
achieve the desired accuracy. In any case, it is reassuring that, the correct qualitative
behaviour is retrieved by all GBS simulations even at the coarser meshes. Third, as the
value of F; = 3 is generally thought to be conservative, our estimate of the numerical er-
ror is quite safe. Finally, throughout our solution verification, we assumed that statistical
errors are negligible. As a matter of fact, the most refined simulation is computationally
extremely expensive and we could not verify this assumption. Moreover, as previously
pointed out, n is not in perfect steady state; it is possible that the value of the GCI is
reduced by considering longer time intervals.
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3.3.2 Application of the solution verification methodology to a
PIC simulation

In order to illustrate a practical example of application of the solution verification
methodology discussed above to a PIC simulation, we consider here the two-stream
instability. This textbook plasma instability is ideally studied by using PIC codes.

We consider the distribution function f(z,v) = f.(z)f,(v), where f,(z) = 1/L and
fo(v) =[0(v —vg) + 6(v + vp)] /2, with d(v) the Dirac function. The dispersion relation
associated with small amplitude perturbations is

(3.11)

1 1 1
2

Dlwk)=1-3 (w — kug)? * (w+ kvo)? |
Since for 0 < k < 1/vg the w solution of D(w,k) = 0 is complex, the system is af-
fected by an instability called two-stream instability. As a consequence, if the system
is perturbed, small amplitude modes can grow exponentially, before saturating due to
nonlinear effects. The fastest growing mode, with growth rate ymax = 1/v/8, is obtained
for kmax = 1/3/(8v3).

To numerically compute the linear growth rate of the two-stream instability, we pro-
ceed as follows. First, we initialize the system according to a distribution function
f=1[fr + Acos(kmax)] f», where A < 1 is used to seed the perturbation, and we carry
out a simulation with the PIC code detailed in Section 2.3.2. Second, we compute the
Fourier transform of ¢(z,t) along , thus obtaining ¢(k,¢). Third, we identify the time
interval during which the mode @(kmax,t) grows exponentially. Finally, over the iden-
tified time interval, we fit the amplitude of the mode, |¢(kmax,t)|, with an exponential
curve to evaluate vax.

We now apply the solution verification methodology discussed above to rigorously esti-
mate Y.y and its numerical uncertainty Avy,.x. We perform three sets of ten simulations
for h = Az /Axy = At/Aty = (N/Ny)~'/* = 1,2, 4, with different pseudorandom num-
ber generator seed. We consider L = 2w, vy = 0.2, Azg = L/128, Aty = 1/16, and
Ny = 2.048 - 10, for which we expect kmax =~ 3 and Ymax =~ 0.353. The time evolution of
| (Fmax, t)| is shown in Fig. 3.2 (left panel) for h = 4. After an initial transient, the mode
grows until ¢ ~ 18, before saturating because of nonlinear effects. We exponentially fit
each profile in the time interval 15 < ¢t < 17 to obtain the growth rates vy., that we
plot in Fig. 3.2 (right panel, red crosses). The same process is repeated for h = 1 (green
crosses) and h = 2 (blue crosses). It is noticeable that the spreading of the growth rates
is smaller at smaller h (i.e. larger N).

To compute Avy,.x We estimate separately the uncertainty introduced by the post-
processing (i.e. the exponential fit), Ay/® = the statistical uncertainty, Av3et

max’ max?

and
the discretization error, Ay%s¢. First, the uncertainty introduced by the exponential
fit is Afyr{l’;&l ~ 0.003, that is the confidence interval of the fit for the simulations with

h = 1. Second, applying Eq. (3.1), we compute the values of Yax 5 averaged over the set
of simulations for h = 1,2,4, which are represented in Fig. 3.2, right panel, as circles.
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Figure 3.2 — Time evolution of [¢(kmax,t)| for h = 4 (left panel) and growth rates of the two-
stream instability for h = 1,2,4 (right panel). The circles in the right panel represent Ymax 5, while
the error bars represent Avympax. The dashed line represents the expected value of Ymax

We note that, as discussed in Section 3.1, the variance of Ymax1 can be estimated as
041 & 0,4/16 = 3.7-107*. This is close to 0,1 = 3.9-107*, obtained with Eq. (3.4).
We therefore obtain At ; = 0.0002.

Third, the discretization error is obtained by applying the methodology discussed in
Section 3.2. In particular, using the three estimates of vax,, Obtained by averaging over
the 10 simulations, which are Ypax, = 0.349,0.343,0.318 for h = 1,2, 4, respectively, we
compute the Richardson extrapolation Ymax = Ymax,1 + (Ymax,1 — Ymax,2)/3 = 0.351 accord-
ing to Eq. (3.6). We also compute the observed order of accuracy according to Eq. (3.9),
obtaining p = 1.96, thus ensuring that the Richardson extrapolation is a reasonable
estimate of the exact solution. The discretization error is thus computed according to
Eq. (3.7), obtaining Ay&se | = 0.002.

Finally, Av,.x is obtained by summing up the uncertainty introduced by the exponential
fit, the statistical uncertainty, and the discretization error, Ayyax = A’yﬁ,jfx’l +Aygit |+

A’yr‘ffjil, obtaining Aypax =~ 0.005. Comparing the value of Ypax1 = 0.349 with the ex-
pected value Y. =~ 0.353, it results that the numerical evaluation of 7. is consistent

with the exact solution within the numerical uncertainty.

3.4 Conclusions

In the present chapter we discuss the methodology for performing a rigorous solution
verification of plasma simulations, proposing a concrete approach for quantifying the sta-
tistical uncertainty and the discretization error. Since PIC simulations are intrinsically
affected by non-negligible statistical uncertainties, these are quantified by repeating the
simulation with different pseudorandom number generator seeds.

The procedure we propose for estimating the discretization error, based on the use of
the Richardson extrapolation as an estimate of the exact solution, is definitely valid for
simulations belonging to the asymptotic regime. For simulations not belonging to the
asymptotic regime, the GCI still allows to estimate the numerical uncertainty. The total
numerical uncertainty affecting the simulation results is then computed by summing up
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the different contributions.

The application of the proposed procedure to GBS allowed us to estimate the amplitude
of the numerical error affecting GBS simulations, useful not only to ensure the relia-
bility of the simulations, but also to perform the validation of the code results against
experimental data (see e.g. Chapter 7). The application of the proposed procedures to
a one-dimensional, electrostatic, collisionless PIC simulation allowed us to exemplify the
procedure used for the quantification of statistical uncertainties.
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CHAPTER

Uncertainty propagation

In order to assess the reliability of a simulation and rigorously validate it against exper-
imental measurements, it is crucial to estimate the uncertainties affecting the numerical
results. The uncertainties stem from numerically solving the model equations with finite
precision, or from the use of input parameters that are not precisely known or accu-
rately measured. In Chapter 3 a methodology to evaluate the numerical uncertainty is
discussed. In the present chapter we focus on the propagation of input uncertainties
through the model equations.

An analytical study of uncertainty propagation is unfeasible for complex physical models
such as the ones describing plasma turbulence. In these cases uncertainty propagation
is approached numerically. The simplest strategy to study uncertainty propagation is
based on the assumption that the uncertainty on an input parameter is described by a
probability distribution [101]. A sample of input parameters is then randomly generated
according to such a distribution and a simulation is performed for each input of the
sample. A distribution of simulation results it thus obtained. From this distribution
it is possible to evaluate the uncertainty affecting the point-by-point solution values or
solution functionals. While conceptually simple, this approach is usually not applicable
to plasma turbulence simulations because of the high computational cost and of the large
number of input parameters typically involved. Despite the fact that sophisticated pro-
cedures have been developed to predict the response of the model to variation of input
parameters using the smallest possible number of simulations, such as Bayesian analy-
sis [101], multifidelity Monte-Carlo estimations [102], and the response surface method-
ology [103], to our knowledge they have never been employed by the plasma physics
community. Rather, uncertainty propagation is typically investigated in plasma physics
by performing sensitivity scans (see e.g. Ref. [104]). More precisely, the input param-
eters, x;, which the code is more sensitive to, are identified. Then, one simulation is
performed by using the input parameters at their reference values x; = ;. In addition,
two more simulations are run for each identified input parameter, using x; = z; + ¢,
with ¢; the uncertainty on the reference value z;. Finally, the uncertainty is identified
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Chapter 4. Uncertainty propagation

assuming a linear dependence of the simulation results on the input parameters. While
computationally less demanding than a Bayesian analysis, this approach is still consider-
ably expensive, particularly for plasma turbulence simulations involving a large number
of input parameters. Moreover, the solution of differential equations practically never
depends linearly on the input parameters [101]. A more rigorous approach for analysing
uncertainty propagation is therefore needed.

To overcome these issues and estimate the dependence of the code results on the input
parameters, we develop a methodology based on a decomposition of the model equation
solution in terms of Chebyshev polynomials along the input parameter, time, and spatial
coordinates. More precisely, a series of Chebyshev polynomials is used to represent the
solution of a differential equation and to express its dependence on all the temporal,
spatial, and input variables. A weighted residual method (WRM) is then employed to
deduce a set of algebraic equations, thus making it possible to numerically evaluate the
coefficients appearing in the Chebyshev decomposition and obtaining a semi-analytical
expression for the solution with explicit dependence on the input parameters. This al-
lows determining the parametric dependence of the solution, avoiding to perform a set of
simulations for different input values. Moreover, thanks to the minmaz property char-
acterizing Chebyshev polynomials [105], this approach allows estimating the parametric
dependence of the model equation solution with a small number of spectral terms and,
therefore, with reduced computational cost. By applying the proposed methodology
to a two-dimensional drift-reduced Braginskii model previously used to investigate the
plasma dynamics in the TORPEX device [104] and in the tokamak SOL [15,106], and
employed in Chapters 5 and 7 to study the TORPEX and the TCV SOL plasma dy-
namics, we assess the influence of input parameter uncertainty on the model results.
We note that the use of fully spectral methods to solve differential equations is far from
new, as they have been widely employed by the computational fluid dynamics commu-
nity (see e.g. Ref. [107]). However, fully spectral codes were rarely used to investigate
plasma physics problems and their use was limited to the study of plasma flows and lin-
ear stability analysis (see e.g. Refs. [108,109]). In fact, to our knowledge, fully spectral
methods were never applied to the study of uncertainty propagation in nonlinear plasma
turbulence simulations. This motivates the study illustrated in the present chapter.
This chapter is structured as follows. In Section 4.1 the spectral method we employ to
solve differential equations is presented. More precisely, we discuss the approximation of
the model equation solution with Chebyshev polynomials, the application of the WRM,
the approximation of differential and nonlinear operators, and the treatment of initial
and boundary conditions in the Chebyshev spectral domain. Then, in Section 4.2 we
discuss the two-dimensional drift-reduced Braginskii model and we apply the Chebyshev
spectral method to study the uncertainty propagation through the model equations. The
conclusions follow.
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4.1. Chebyshev spectral method

4.1 Chebyshev spectral method

In this section we discuss the use of the WRM to approximate a differential equation
with a set of algebraic equations in the Chebyshev spectral domain. First, we introduce
the WRM for an arbitrary set of basis functions. Then, we discuss some interesting
features of the WRM when Chebyshev polynomials are used as basis functions. Finally,
we discuss the approximation of differential and nonlinear operators, and the treatment
of the initial and the boundary conditions in the Chebyshev spectral domain.

4.1.1 Weighted residual method

The WRM is used to solve differential equations by approximating their solution with a
linear combination of linearly independent basis functions. A set of algebraic equations
for the coefficients of each corresponding basis function is then deduced, whose solution
globally minimizes the distance between the exact solution and the linear combination
of basis functions for a given norm [110].

Formally, we consider an initial value parabolic or hyperbolic partial differential equation

?;; = D{u} + S, (4.1)
with the exact solution u = u(¢, x; p) that depends on time ¢ € [t, t1], space coordinates
X € [Xo,X1], and a set of parameters p € [po, p1] (the indexes 0 and 1 referring to the
lower and upper boundaries of the considered domains). Here D is a linear or nonlinear
differential operator acting on u and S = S(¢,x;p) a given source term. Equation (4.1)
is completed by an initial condition u(to, x; p) = ug(x; p), with ugy a given function, and
a set of boundary conditions for the spatial domain. In order to use the WRM to solve
Eq. (4.1), we approximate

K L M

u(t,x;p) ~ualt,x;p) =Y > > a0 (%) (p), (4.2)

k=0 1=0 m=0

where &, &, and &P, are the basis functions chosen for the expansion of u, ay,, constant
coeflicients, and K'+1, L+1, M +1 the numbers of basis functions used for the expansion
in time, real space, and input parameter space, respectively. Integrating Eq. (4.1) in time,
i.e. writing

u(t,x;p) = uo(x:p) + [ (D{u} +8)dt’, (4.3)

to

we define the residual R as

R(t,x;p) = a(t,x;p) — {uo(x; p) + /t: (D{u} +S)dt'|. (4.4)
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For estimating the coefficients ay,,, the equation

t1
/ / / R(t,x; p)Wiim(t,x; p)dtdxdp = 0 (4.5)
to

is then solved for all 0 < k£ < K, 0 <1< L, 0 <m < M, with Wy, (t,x;p) a set of
(K 4+ 1)(L+ 1)(M + 1) properly chosen weight functions.

4.1.2 Weighted residual method in Chebyshev spectral domain

For simplicity, in the following of this section we consider a one dimensional func-
tion uw = wu(t,x;p) depending on one spatial dimension x and one input parameter
p. The generalization to equations with more dimensions and parameters does not
present conceptual difficulties. We choose the Chebyshev polynomials of the first kind
T,(z) = cos(ncos™! z), defined for z € [—1,1], as basis functions. Hereafter T,, are sim-
ply named Chebyshev polynomials. We note that n € N constitutes the degree of the
Chebyshev polynomial. Chebyshev polynomials are orthogonal over the weight function
w(z) = (1 — 2%~ in the interval z € [—1,1], i.e

1 Tm(x)Tn(a:)dx T
-1 V1 — 22 2

where 0, is the Kronecker delta (8,,, = 1 if m = n and J,,, = 0 otherwise), and

(5mn + (5777,06710) ’ (46)

are characterized by the minmaz property, i.e. the expansion of a continuous function

f(@) = Sy aTi(x), with

2 m Ti(x)
a; = T)——==dx, 4.7
l 7B, Ja, f(z) T— 2 (4.7)
provides the most accurate approximation of f under the maximum norm, || — ||, for

a polynomial of degree L [105]. The minmazx property motivates the choice of using the
T, polynomials as basis functions, since it implies that the best approximation of f at
order L in Chebyshev space is simply the series truncated at [ = L. Consequently, we
approximate

u(t,z;p) = Y Y T (1) T(X) T (0), (4.8)

k=0 =0 m=0
where

t— A, x— A, p—A,

TZT’ X:

(4.9)

with Ay = (t1 + t9)/2 and B; = (t1 — to)/2 (similar definitions apply to the other
quantities), such that 7,x,0 € [—1,1]. Primes on summation signs indicate that the
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4.1. Chebyshev spectral method

0-th term of each sum is multiplied by a factor 1/2, i.e.

, a
Z a,T,(x) = EOTO(X) + a1Ti(x) + aTo(x) + ... + anTn(X). (4.10)
The residual R is thus given by

up(x; p) + /t: (D{u} + S)dt'|, (4.11)

with u approximated according to Eq. (4.8). The equations that provide the coefficients
agim, Eq. (4.5), take the form

t1 rz1 rp1
/ / / RWm (t, z; p)dtdzdp = 0, (4.12)
to Jzo Jpo

where we choose

Ti(r)  Ti(x) Tm(U)
V1I—=721—x2/1-

to take advantage of the orthogonality property of Chebyshev polynomials. We now

Wiim(t, z;p) = (4.13)

express Eq. (4.12) in a form useful for further progress. Using the orthogonality property,
Eq. (4.6), we have

11 3
/ / / u(t, x, p) Wi (t, z; p)dtdedp = BB, B, <2> Clalom.- (4.14)

Moreover, we approximate

‘ K L M
/ S(t/,$7p)dt/ >~ ZIZI Z /Sk‘lmTk ( )Tm(O') (415)
to k=0 1=0 m=0
and
L M
D= Y b0 T0) (4.16)
=0 m=0

Finally, we write
. K L M
/t D{u(t',z: p)}dt' ~ Z SN A T(F)TH () Ton(0), (4.17)
0 k=0 [=0 m=0

where Ay, are assumed to be known coefficients. Using again the orthogonality property
of Chebyshev polynomials, Eq. (4.12) yields

At = 205001 + Aim + Skim, (4.18)
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which is a set of (K + 1)(L + 1)(M + 1) coupled algebraic equations. Equation (4.18)
approximates

u(t, z;p) = uo(z;p) + /t: (D{u} + S)dt' (4.19)

in Chebyshev space. The term 20,00, represents the initial condition, and Ay, and
Siim the projection along the Chebyshev basis of the operator D applied to u and of the
source term, respectively.

In order to solve Eq. (4.18) for agm,, one has to deduce first an explicit relation between
Apim and the Chebyshev expansion of D{u}. Approximating

1

D{u} =~ """ e Te(T)Ti(X) T (o), (4.20)

k=0 [=0 m=0

we have
B
Apim = = (Ck—140m — Chi11m) 0<k<K-1
2k
B (4.21)
Apim = ?léckal,m k=K.
Since
to
/ D{u(t',z:p)}dt' =0, (4.22)
to

the coefficients Ay, are found by imposing
K
Agpm = =2 Apim (—1)F. (4.23)
k=1

Finally, in order to solve Eq. (4.18) for the coefficients ay;,, one has to express the
operator D in the Chebyshev spectral domain and determine the coefficients ¢y, as a
function of ax,. This is detailed in Section 4.1.3.

To conclude our discussion on the use of the WRM with Chebyshev polynomials, we
would like to make two remarks. First, while Eq. (4.1) constitutes a single differential
equation, Eq. (4.18) represents a set of coupled algebraic equations that can be solved,
either analytically or numerically, to compute the coefficients ay,,, and obtain an approx-
imated semi-analytical solution of Eq. (4.19) with explicit dependence on p. Second, in
general, Eq. (4.18) cannot be solved analytically if D is a nonlinear operator. In such a
case, Eq. (4.18) must be solved numerically, usually employing an iterative solver. Since
the latter might need a good initial guess to converge, it is suitable to decompose the
time interval into sub-domains. More precisely, the time coordinate ¢ € [to, ;] is decom-
posed in N sub-domains of length A" > 0, with i = 1,..., N and t; — t, = 2N, At'.
Equation (4.18) is then solved for ¢ € [ty, ty + At'] using the initial guess aj,,, = 2000},
(al,,, and b = denote respectively the coefficients ayy,, and by, corresponding to the sub-

i+1

domain A#'). Finally, for the subsequent sub-domains we impose bt = S /ai, and
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4.1. Chebyshev spectral method

we use the initial guess al;! = ai, for the solution of Eq. (4.18) in the sub-domain i+ 1.

4.1.3 Operators in the Chebyshev spectral domain

In order to relate the coefficients ay,, in Eq. (4.8), used to represent u in the Chebyshev
spectral domain, with the coefficients ¢y, in Eq. (4.20), one has to express differential
and nonlinear operators in Chebyshev space. This is performed by exploiting some useful
properties of Chebyshev polynomials, as summarized in the following of this section (see
Ref. [105] for a more detailed discussion). For simplicity, we consider functions of one
variable x. The generalization to multiple variables does not present any conceptual
difficulty.

Differential operators

First-order spatial derivatives of a function can be easily obtained by exploiting the
property

dr, on
= Ti(v). 4.24
=5 l;:) 1(x) (4.24)
n—lodd

Therefore, the first-order derivative of a function f(x) = S/, 'a;Ti(x) is computed as

df d L 2 L—-1 L
—(x) ==Y "aTi(x) =5 > " > AaxTi(x). (4.25)
dx dx P B, P )\A:lltjld

Similarly, second order derivatives of f(x) are expressed as

d2f d2 L , 1 L72/ L ) )
ﬁ(x) = > 'aTi(x) = B2 > A (>\ —1 )CLATZ(X)' (4.26)
-z L T =0 A=l+2

A—leven

Higher order derivatives are obtained iterating Eq. (4.24). We remark that, when differ-
entiating with respect to = a function f(x) represented in terms of Chebyshev polyno-
mials of order L, the function df /dx only includes polynomials up to order L — 1.

Nonlinear terms

Linear operators involving the addition or subtraction of two functions are easily handled
in the Chebyshev spectral domain. On the other hand, care must be taken in computing
nonlinear operators related, for example, to the multiplication of two functions. There-
fore, we focus on the product operator, that is the basis of all nonlinear operators.
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Considering that the product of two Chebyshev polynomials is given by

To()Ta(x) = 5 [Tnn(@) + Tl ()] (4.27)

1
2
it is possible to write the product h(z) = f(z)g(x) between the two functions f(x) =
Sico'aTi(x) and g(x) = Sz, 0iTi(x) as

) =3 3" [T + Ty ()]

. (4.28)
L L+l -1 L—1
arb; aib;— arb;y
=>' {Z 5 LX) VR IR VIR
1=0 Li=l i=0 i=1
We now approximate

L

h) = > aTi(). (4.29)

=0

i.e. we truncate the expansion of h(x) at order L (because of the minmaz property, this
truncated series is the most accurate polynomial representation of h(x) to order L). To
express the coefficients ¢; in terms of a; and b;, we impose

00 ) L , L+ albz l — L—1 albi—i-l
> AT =" X — Z )+ 3 =5 ) (4.30)
=0 =0 Li= i=0 =1

and we multiply both sides of Eq. (4.30) by T,(x)/v/1 — x?, with 0 < p < L. Then, by
applying Eq. (4.6), we obtain

b 7 Ll (A (2 b
Cz=2‘” T HHL” : (4.31)

=0 i=1

with 0 <[ < L.

4.1.4 Initial condition

The coefficients by, in Eq. (4.16), used to express the initial condition in Chebyshev
space, are given by

by, = Bacpr <72T)2 /: /p:l uo(z;p) \/71}(% f%dmdp (4.32)

Since, in general, the integrals in Eq. (4.32) cannot be computed analytically, we intro-
duce an approximation of by, that can be easily evaluated. In fact [105],

2
by >~ ——

+
11 Z ulto, 5 0) Ti(xr) T (0), (4.33)

H M+
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where

XTICOS[LZ_I(T—;)}, as:cos{Mil(s—;ﬂ, (4.34)

z, = Byxy + Az, and p; = B,os + A,. The expression in Eq. (4.33) approximates by,

in the limit L, M — oo and it is easily generalized to continuous functions with more
variables. We remark that uy(z;p) should satisfy the spatial boundary conditions.

4.1.5 Boundary conditions

We now discuss how to set the boundary conditions in the Chebyshev spectral domain.
To simplify the discussion, we consider differential equations where the operator D in-
volves second order derivatives of u with respect to #. The generalization to higher order
derivatives does not present any conceptual difficulty. Moreover, we consider that the
same kind of boundary conditions is applied at the two boundaries of the spatial domain
and we focus on Dirichlet, Neumann, and periodic boundary conditions. Combinations
of different kinds of boundary conditions are easily obtained following the procedure
described hereafter. We finally remark that, when a multi-dimensional spatial domain is
considered, only one condition can be applied at the corners. It is generally good practice
to ensure that the boundary conditions applied at the different edges are compatible at
the corner points.

Dirichlet boundary conditions

Dirichlet boundary conditions are applied as follows. Since the expansion of d*u/dz?
leads to polynomials up to order L — 2, the boundary conditions are set by imposing
the L — 1 and L coefficients of the Chebyshev expansion. Considering the two boundary
conditions

u(t, zo;p) = a(t;p), u(t, v1;p) = B(t;p) (4.35)

and approximating

alt:p) = 37 S " T(r) Tn(0),
v m;) (4.36)
,B(t,p) = Z/ Z lﬁkak(’r)Tm(U)a
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the orthogonality property of Chebyshev polynomials implies that, to satisfy Eq. (4.35),

Z apim T (— Z aklm )
Z apmTi(1 Z Akl

(4.37)

where we use Tj(—1) = (—1)! and T;(1) = 1. Taking the sum and the difference of these

two expressions and rearranging we obtain

Brem
U L—1m = — (5 Z ke 1ms

lodd
L—2

Qgm + B
akLm:M Z QAk,lm

leven

if L is even, whereas we have

Ok + B
Ak L—1,m = M Z Q. l,ms

leven

Brm
Aklm = —————— Z Q. l.m

lodd

if L is odd.

Neumann boundary conditions

Neumann boundary conditions can be imposed in a similar way.

boundary conditions of the form

By enip) = Bltp),

U
t . _ t:
( 7370a]?) Cy( a]j)a dz

dx

with

(4.38)

(4.39)

Let us consider two

(4.40)

(4.41)
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Using again the orthogonality property of Chebyshev polynomials, we obtain

2

Bf Z Z )\ak)\m )
TI=0 ) ll;;ild
5 L1 (4.42)
— > Z A rm-
BI =0 =l+1
)\ lodd

Now, by taking the sum and the difference of these two expressions and rearranging, we

obtain
2 &,
Qe + Brm = iR > Pagim,
“ S
" (4.43)
Brm — Qb = 5 > Pagm.
v 1=

N
)
<
@

n

An explicit expression for the coeflicients ay 11, and agr,, is easily computed by rear-
ranging Eq. (4.43), that is

Ak + 5km 1127:3 12

Ak, L—1,m = Bx T g Aklm,
2(L —1)? =1 (L—1)2
P PR (4.44)
AkLm = Bx% - % 12 75 Akim
le?en
if L is even, whereas we have
Bkm — Qkm =2 l2
ag—1m = Be 5 — 75 klm;
2(L —1)? 11_22 (L —1)2
i + By L2 p (4.45)
AkLm = BxT - Z 12 5 Qkim

lodd

if L is odd.

Periodic boundary conditions

In order to apply the periodic boundary conditions

du

du
u(t, xo;p) = u(t, z1;p), %(t,l’o;])) = %(t,ml;P), (4.46)
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we impose in the Chebyshev spectral domain

L L
Z/aklm l = Z/aklm,
L71 -1 (4.47)
/ Z Apam = Z Z AGgam -
1=0 =I+1 =0 A=l+1
,\ lodd ,\ lodd

These expressions are rewritten as

L
Z Qllm — , Z ZQCLklm =0. (448)

l odd leven

The coefficients ax, —1,, and akr,, are thus given as

L—2 l2

Ak, L—1,m = Z Alm s ALm = — Z 12 75 Aklm (4-49)

lodd leven
if L is even, whereas we have

L-3 12

eL—in = — Y =17 1)2aklm7 AkLm = Z Akim (4.50)
=2
[ even lodd

if L is odd.

4.2 Uncertainty propagation through a plasma tur-
bulence model

To illustrate an application of the Chebyshev spectral method to the study of uncer-
tainty propagation, we present here the simulation of plasma turbulence in a simple
magnetized torus (SMT), carried out with a two-dimensional drift-reduced Braginskii
model (see Ref. [104] for a detailed discussion of this model). The implementation of the
model in a numerical code using the WRM approach and the decomposition in Cheby-
shev polynomials described above allows us to study the propagation of the uncertainty
affecting the input parameter that characterizes the plasma losses at the vessel.

4.2.1 Two-dimensional drift-reduced Braginksii equations

We consider an SMT configuration, where the magnetic field, B, is obtained by superim-
posing a toroidal magnetic field on a vertical magnetic field. This results in helical field
lines that wind around the toroidal vacuum vessel from the bottom to the top of the de-
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4.2. Uncertainty propagation through a plasma turbulence model

vice. This configuration, implemented in a number of basic plasma physics experiments
such as TORPEX [48,49] and Texas Helimak [111], is of interest to the plasma physics
community because it offers a simple and well diagnosed scenario to study the turbulent
transport related to instabilities such as interchange modes and drift waves, which are
present also in the tokamak SOL. In fact, models similar the the one used to investigate
SMT plasma dynamics have been used also for the tokamak SOL (see e.g. Ref. [106]).
To describe the SMT configuration, we indicate with = the radial coordinate, with z the
coordinate along B (approximately the toroidal direction), and with y the coordinate
perpendicular to z and z (approximately the vertical direction). Because of the high col-
lisionality typical of SMT experiments, it is justified to model the plasma dynamics with
a set of drift-reduced Braginskii equations. Within the hypothesis k| = 0 and under the
assumption of cold ions, it is possible to integrate the drift-reduced Braginskii equations
detailed in Appendix A in the parallel direction, in order to evolve the line-averaged
density n(y,z) = [n(y,z,2)dz/Ly, electrostatic potential ¢(y,x) = [ o(y,x, 2)dz/Ly,
and electron temperature T,(y,z) = [T.(y, x, z)dz/L), with Lj = 2r N R, the magnetic
field line length, Ry the major radius, and N the number of turns of the magnetic field
line in the device. Neglecting the parallel electron thermal conductivity term, using the
Boussinesq approximation to simplify the vorticity equation, assuming an infinite aspect
ratio, and applying Bohm’s boundary conditions at the sheath edge, v, = /T, and
vje = VT exp(A — ¢/T,), the resulting system of equations is

on _ _ on _ 09\ _ _¢
O Rufoun}+2 (ay ”ay) ony/Te exp (A Tg) £ Do) + 5.,
(4.51)
ow 2 0p. B o
& = R + 20 /T, |1- o (A £ | + Do) (4.52)
o, AT, (10p. 50T, 06
= — T _— —_— _—
ot Roio, Teh + 3 (n dy 3 Oy 8y>
- QUT;\/TE [1.71 exp (A - ?) - 0.71} + D, (T.) + St,, (4.53)

where A ~ 3 for hydrogen plasmas, w = V%¢, and the operators V2 and {¢, —}
are detailed in Section A.3.4 (in this chapter we use the normalization described in
Appendix A). The parameter o is used to model the parallel losses at the magnetic
pre-sheath (MP) entrance. Assuming that the plasma density at the MP entrance is
nyp(y,x) = n(y,z)/2, we obtain ¢ = 1/(27N). However, the value of nyp is not pre-
cisely known, and ¢ is affected by a large uncertainty.

To further simplify the problem, we write exp(A —¢) ~1+ A — ¢ and nln(n) ~n — 1
assuming ¢ close to A and n close to 1, respectively. Moreover, we use the isothermal
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plasma approximation, i.e. T, = 1. Equations (4.51)-(4.53) are thus rewritten as

8,0 = — Ro{¢/, 0} +2 (9,0 — 0,0)) — 0 (1 — ¢/) + Dy, (6)
+ Dy [(2:0)° + (9,0)°] + S (1-0) (4.54)
Ow = — Ro{¢,w} + 20,0 + 0¢' + D, (w), (4.55)

where w = 03¢/ +05¢/, ¢’ = ¢ — A, and 6 = log(n). The model in Eqs. (4.54)-(4.55) is an
ideal test bed for the application of the WRM discussed in Section 4.1, since it contains
both first and second order derivatives and nonlinear convective terms.

We note that the scalar fields 0, w, and ¢" depend on time, ¢ € [to,?1], on the spatial
coordinates = € [z, z1] and y € [yo, y1], and on the parameter o, which is estimated from
experimental measurements with large uncertainty. Our goal is to estimate the impact
of variations of ¢ in the interval [0, 01| on the solution of Eqgs. (4.54)-(4.55).

4.2.2 Numerical implementation

In order to investigate the dependence of n, ¢ and w on o, we developed a simulation
code that solves Eqs. (4.54)-(4.55), together with w = 03¢’ + 9.¢/, implementing the
WRM with Chebyshev decomposition described in Section 4.1. More precisely, we write

0(t5,0) = 32732 5152 el TV T ()T ), (4.56)
lt,70) = 3132 D152 Tur) OO T (T ), (4.57)
) =30 Y DY T Ton ()T, (4.58)

e
I
=)
~
I
o
Il
o
3
Il
<)

where K, L, M, and N are the highest order Chebyshev polynomials used for the de-
composition along the temporal, radial, vertical, and parameter coordinates, respectively,
and

T_t—At Tz — A, y—A, o— A,
=5

(4.59)

with A, = (t1 + to)/2 and B; = (t1 — tp)/2. Similar definitions apply to the other
quantities.

Following the procedure described in Section 4.1.3, we write the operators {¢, A}, 0, A,
0yA, Dy(A), with A = 0,w, ¢, as well as the terms o (1 — ¢'), 0¢/, and S5,,(1 — 0), in
the Chebyshev spectral domain, obtaining a set of 3K (L — 1)(M — 1)(N + 1) algebraic
nonlinear equations for the coefficients af,,. ., a%,,.., and ailmm with0 <k < K,0<[<
L—2,0<m<M-—2,0<n<N. The k =0 coefficients are obtained as described
in Section 4.1.4, while the l = L — 1,1 =L, m = M — 1, and m = M coefficients are
computed by applying the boundary conditions as discussed in Section 4.1.5. To solve
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4.2. Uncertainty propagation through a plasma turbulence model

numerically the resulting system of equations, we write the equation w = 92¢' + 8§¢’ in
the Chebyshev spectral domain as a linear system Aa® = a*, with A a square matrix
with inverse é*% whereas a“ and a? are vectors containing respectively the coefficients
Ay and aflmn. This allows us to express a® = A~ 'a*. Using the expression of a? as a
function of a in Eqgs. (4.54)-(4.55), we obtain a set of 2(K + 1)(L + 1)(M + 1)(N +1)
algebraic nonlinear equations for the coefficients af,,,,,, and a$,,,, in the form

ER ()] aan

with a’ a vector containing the coefficients af, =~ and f a vector function reflecting
Eqs. (4.54)-(4.55) in Chebyshev spectral domain.

The nonlinear system of equations, Eq. (4.60), is implemented in a numerical code written
in Fortran90 and interfaced with the MATLAB environment [112] and it is solved with
the MATLAB fsolve nonlinear system solver using a trust-region algorithm. To facilitate
the solver convergence, we separate the time coordinate in sub-domains as described in
Section 4.1.2 (the results we show consider At = At’ = (.2 and we verified numerically
that they are converged with respect to At).

4.2.3 Simulation results

For our simulations we consider a spatial domain extending radially from xq = 0 to
x1 = 80 and vertically from yg = 0 to y; = 80. Moreover, we consider a parameter o
varying between oy = 0.05 and o7 = 0.1. At zy and z; we impose Dirichlet boundary
conditions for ¢ and w, while we use Neumann boundary conditions for 6. Because of
the assumption & = 0, we impose periodic boundary conditions at gy and y; and we
set the length y; — 1y as the distance between the returns of a field line in the poloidal
plane. Moreover, we use a source term of the form S, (z) o« exp [—(z — x5)?/16], with
rs = 20, to mimick the plasma source at the electron cyclotron resonance layer present
in TORPEX, and we set D,, = D, =5 and Ry = 200. We note that similar parameters
were used for TORPEX simulations in Ref. [104].

Figure 4.1 shows typical snapshots of the plasma density for ¢ = 0.05,0.075, 0.1, resulting
from a simulation performed with (K, L, M, N) = (1,22,22,3). The turbulent character
of the plasma dynamics observed in previous finite difference simulations is retrieved
also by our WRM simulation, with eddies extending radially outward from the source
location and that detach from it, creating blobs that propagate towards the low-field side
part of the domain. We remark that the WRM approach makes it possible to simulate
the TORPEX plasma dynamics for any value of ¢ between 0.05 and 0.1 solving once
Eq. (4.60).
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Figure 4.1 — Typical snapshot of plasma density for o = 0.05,0.075,0.1 (left, middle, and
right panels, respectively), obtained by evaluating ¢ according to Eq. (4.56) with (K, L, M,N) =
(1,22,22,3).

4.2.4 Uncertainty propagation

Numerical simulations of plasma turbulence in basic plasma physics experiments, as well
as in the tokamak SOL, are often employed to evaluate time-averaged quantities (e.g.
the time-averaged pressure gradient length L, = — (p.), /V (pe),, with (p.), the time-
averaged plasma pressure [113]). Therefore, as an example of uncertainty propagation
study, in the following we focus on the radial profile of the vertical- and time-averaged
plasma density,

(), (x;0) = ! /yy1 /tl n(t, z,y; o)dydt. (4.61)

' (y1 — yo)(t1 — to) Jyo Jto

We verified numerically that (n), , = (exp(9)), , ~ exp({(#),,). This simplifies the eval-
uation of (n>y7t, since it allows to analytically integrate the Chebyshev expansion of
over t and y as

/yoyl /t;fl Z / Z / Z / Z /aklmnTk (X)Tm(v)Tn(,U)dydt

k=0 (=0 m=0 n=0
L . N / Ky ail (462)
— AB,B )T mn_
yg n;) Z Z (1—k2)(1—m?)

k even m even

and approximate

()¢ (w;0) = exp <IZ’ ) '@znTz(x)Tn(u)> : (4.63)

n=0
where
B K M (19
A = 4 ' ' Kmn . 4.64
tl_toyl yO k=0 mzzo (1= k*)(1—m?) (4.64)
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Figure 4.2 — Radial profiles of (n), , (2;0) computed according to Eq. (4.63) for o = 0.5,0.075,0.1
(left, middle, and right panels, respectively). The simulation results are obtained by using a Cheby-
shev decomposition with (K, L, M, N) = (1,12,9,1), (2,14,11,2), (3,16, 13, 3) (blue, red, and yellow
lines, respectively), and by using the finite difference code that solves Eqs. (4.54)-(4.55) [104] (black
lines).

We note that the results presented herein consider time averages performed over intervals
of approximately 40 time units, with simulations in turbulent quasi-steady state.

Figure 4.2 shows the profiles of (n), ,(z;0) for o = 0.5,0.075,0.1 (left, middle, and
right panels, respectively) obtained from three WRM simulations with (K, L, M, N) =
(1,12,9,1), (2,14,11,2),(3,16,13,3) (blue, red, and yellow lines, respectively). The
profiles are compared to the results of simulations performed with a finite difference
code [104] that solves Eqgs. (4.54)-(4.55) (black lines). We observe that the results ob-
tained with the WRM are consistent with simulations carried out with the finite differ-
ence approach, the differences probably due to the relatively small number of spectral
terms used in the decomposition of 6, ¢’, and w (a large number of spectral terms is
needed to accurately represent the density profile obtained with finite difference simu-
lations in Chebyshev space). In Fig. 4.3 we also show the two-dimensional profile of

(n)y; [mo]

Figure 4.3 — Profile of (n),, (z;0) as function of 2 and o obtained by using the WRM in the
Chebyshev spectral domain with (K, L, M, N) = (3,16,13,3).

(n),. (z;0) as a function of x and 0. We observe that increasing the parallel loss term,
Le. o, the value of (n), , (z;0) decreases, as expected.
To investigate quantitatively the impact of ¢ on the simulation results, we focus on
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Chapter 4. Uncertainty propagation

the time-averaged density gradient length L, = —(n}),, /0, (n),,. More precisely,
we assume that the density decreases exponentially for z > wg, ie. (n),, (z;0)
exp|—(z — xg)/L,(0)] and we compute L, (o) by evaluating

Ln(0) = [z1/2(0) — 2]/ In(2), (4.65)

with z1/9(0) satistying (n), , (z1/2;0) = (n),, (¥s;0)/2. Assuming that o is characterized
by a probability density function

fo(0) o exp[—(o — A,)?/0.0057], (4.66)

we randomly generate a number of samples ¢!, i = 1,2, ..., distributed according to
f» (see Fig. 4.4, top left panel), and for each element ¢’ we compute the correspond-
ing L,(c%). The results thus obtained are presented in Fig. 4.4 for (K,L,M,N) =
(1,12,9,1),(2,14,11,2),(3,16,13,3) (top right, bottom left, and bottom right panels,
respectively). We observe that the three averaged values L, ~ 55 48,51, obtained

800 w w w w 600

(=)

o

=]

T
ot
o ]
o (=]
T T

# occurrences
S
o
(e}
o
o

# occurrences
[\ w =~
o
o

[\
o
[

800 500

$600 T z 400/

= =

g £300f

= 400 =

3 $200 +

o o

$200 - #’:100 L
0 0
40 45 50 55 60 40

L,

Figure 4.4 — Top left panel: Values of ¢/ randomly distributed according to f,. The correspond-
ing distributions of L, (c%), computed according to Eq. (4.65), are displayed for (K, L, M,N) =
(1,12,9,1),(2,14,11,2),(3,16, 13, 3) (top right, bottom left, and bottom right panels, respectively).

for (K,L,M,N) = (1,12,9,1), (2,14,11,2), (3,16, 13, 3), respectively, depend slightly
on K, L, M, and N. Moreover, L, does not depend linearly on o, since the three
L,, distributions do not exhibit the same Gaussian distribution as ¢. While the av-
eraged value of L, is only slightly affected by the number of spectral terms used in
the simulation, the distribution of L, shows a more significant dependence. However,
when evaluating the standard deviations SD(L,) corresponding to each distribution,
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we obtain SD(L,) = 1.8,2.0,3.1. The difference between these values is small. This
means that it is possible to obtain a rough estimate of the spread of L,, due to vari-
ations of o, by considering a small number of spectral terms, which is exactly the
target of our methodology. This is particularly remarkable, since the simulation per-
formed with (K,L,M,N) = (1,12,9,1) is less demanding, in terms of computational
resources, by approximately a factor 350 with respect to the simulation carried out with
(K,L,M,N) = (3,16,13,3).

4.3 Conclusions

In the present chapter we propose a rigorous methodology to assess the uncertainty af-
fecting a simulation result due to the propagation of input parameter uncertainties. The
methodology is general, simple to apply, and allows to approximate the model equation
solution with a semi-analytic expression that depends explicitly on time, spatial coordi-
nates, and input parameters.

In order to study the impact of input parameter variations on the results of a plasma
turbulence model, we propose to use a WRM with decomposition in Chebyshev poly-
nomials. This choice is motivated by the minmaz property characterizing a Chebyshev
decomposition. By applying the WRM, a system of nonlinear algebraic equations is
derived for the coefficients of the Chebyshev expansion. The solution of these equations
provides directly the information on the dependence of the simulation result on the input
parameters.

We apply the proposed methodology to a two-dimensional drift-reduced Braginksii model
used to investigate the plasma dynamics in basic plasma physics experiments and in the
tokamak SOL. These equations are decomposed in the Chebyshev spectral domain and
the resulting system of equations is implemented in a numerical code. The plasma tur-
bulent dynamics is retrieved by our simulations and an explicit dependence of the time-
averaged density profiles on the parameter describing the parallel losses is obtained. To
our knowledge, this is the first time that a fully spectral approach is used to successfully
simulate plasma turbulence and study uncertainty propagation.

Assuming that the input parameter under consideration is distributed according to a
Gaussian probability distribution function, we compute the standard deviation that char-
acterizes the corresponding (in principle, non-Gaussian) distribution of time-averaged
density gradient lengths. We find that a reasonable value of the dispersion of the den-
sity scale length due to the uncertainty affecting the input parameter that describes the
parallel losses can be obtained using a small number of Chebyshev polynomials, i.e. by
carrying out reduced-cost simulations.
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CHAPTER

A multi-code validation: blob
dynamics in TORPEX

Blobs, also known as filaments, are structures with an excess of density and temperature
relative to the surrounding plasma, elongated in the direction parallel to the magnetic
field. Blobs detach from the main plasma and move outwards in the SOL due to a self-
generated E x B field. Experimental evidences point out that the transport associated
with these structures could reach half of the total perpendicular transport observed in
a tokamak SOL [114], leading to significant particle and heat fluxes to the walls. In the
recent past, a large effort has been carried out to improve the knowledge of the blob dy-
namics, both experimentally and theoretically, achieving significant progress [114,115].
While illustrating the first validation exercise of the present thesis, the goal of this chap-
ter is to further improve our understanding of the blob dynamics, and therefore increase
the reliability of the numerical tools employed for their simulation, performing a valida-
tion that involves several plasma turbulence codes used to model the SOL region. We
remark that the work presented herein represents the first multi-code validation of blob
dynamics, despite the very large use of simulations in analyzing this phenomenon (see e.g.
Refs. [21,116-123]). Two-dimensional and three-dimensional simulations of seeded blobs,
based on five different models implemented in four turbulence codes (BOUT++ [18],
GBS [20], HESEL [124,125], and TOKAM3X [126]), are validated against experimental
blob measurements. We assess the consistency of the numerical results with experimental
measurements and, at the same time, we investigate the differences between the simu-
lation results of the five models through a benchmark study. Thanks to the differences
among the models, we identify and assess the key physics elements that determine the
blob motion.

The experimental measurements are taken from the TORPEX experiment [48,49], an
ideal device for the validation of plasma turbulence codes. In fact, the TORPEX con-
figuration mimics the main features of the tokamak SOL, while remaining relatively
simple, and it is equipped with a complete set of diagnostics. Conditionally-averaged
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Chapter 5. A multi-code validation: blob dynamics in TORPEX

measurements taken on TORPEX provide the two-dimensional profiles of plasma density,
electron temperature, and floating potential for the blob, which are needed to accurately
initialize seeded blob simulations. At the same time, it also provides the measurement of
the blob velocity used to validate the numerical results. A parameter scan is performed
by detecting blobs with different density peak values. This allows for a comparison
between experimental measurements and simulations of blobs propagating at different
velocities and having different internal stability properties.

Because of the relatively high collisionality of TORPEX plasmas, all models we con-
sider are based on the drift-reduced Braginskii equations. However, they differ in the
assumptions used to simplify the equations, such as the hypothesis of cold ions, isother-
mal electrons, or negligible electron inertia. Some of the models make use of the infinite
aspect ratio approximation. We also consider two-dimensional models, based on different
closures of the parallel currents on the vessel wall. The influence of all these assumptions
on the blob dynamics is analysed through a benchmark study, where the same scenario
is considered for all the models, and the differences observed in the simulation results
are investigated.

This chapter is structured as follows. In Section 5.1 we illustrate the TORPEX device
and the experimental setup used in the present work. Section 5.2 introduces the five
models used to simulate the blob dynamics and discusses their main differences. Then,
we illustrate our simulations, focusing on their initialization, in Section 5.3. Section 5.4
present a sensitivity study performed to investigate the influence of the input parameter
uncertainties on the numerical results. The comparison of the experimental measure-
ments and the simulations are the subject of Section 5.5. The Conclusions follow in
Section 5.6. The results discussed in the present chapter are published in Ref. [127].

5.1 Experimental scenario

The experimental data shown in the present chapter are obtained on the TORPEX ex-
periment, a toroidal device with major radius R = 1 m and minor radius ¢ = 0.2m that
features the simple magnetized toroidal (SMT) configuration. A toroidal magnetic field
(B, = 76mT on axis) superposed on a vertical magnetic field (B, = 1.6mT) results
in helical field lines that wind around the device. The field lines intercept the top and
bottom walls of the device in the inner half part of the cross section (high field side),
while in the outer half of the cross section (low field size) a poloidal steel limiter provides
a region that has a nearly constant connection length L ~ 27 R, and near-perpendicular
incidence of the magnetic field lines on the target [128]. This configuration is schemati-
cally shown in Fig. 5.1 (left panel). The coordinate system (y,x, z) used in this chapter
is also represented in Fig. 5.1 (left panel): x is the radial direction, z is the direction
parallel to B (and coincides approximatively with the toroidal direction), and y is per-
pendicular to x and z (and coincides approximatively with the vertical direction).

A hydrogen plasma is produced and sustained by microwaves in the electron cyclotron
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Figure 5.1 — Schematic representation of the TORPEX experiment (left panel). The limiter lo-
cated in the low-field side region is shown together with the probes used to perform blob conditional
sampling. Note that SLP is not represented at 180° from the limiter as it is in the experiment for
drawing convenience. Background profiles of n (middle panel) and 7, (right panel) in the low-field
side region, where blobs propagate, are also presented. The profiles are measured in a poloidal
plane 3 cm away from the limiter.
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range of frequencies. On the high-field side of the device, turbulence driven by ideal
interchange modes [129, 130] results in blobs, which dominate transport on the low field
side. Typical plasma parameters are n ~ 10 m=3 and 7, ~ 5eV in the source region,
and are slightly smaller in the blob region. The ions are typically much colder than
the electrons. An example of the time-averaged profiles measured in the blob region is
presented in Fig. 5.1 (middle and right panels).

The experimental results used in this chapter are obtained using two diagnostics: (i) a
vertically oriented linear array of Langmuir probes (LPs) with 1.8 cm distance between
tips, located at x = 7cm and toroidally separated approximatively by 180° from the
limiter, referred to as SLP, and (ii) a single-sided LP, positioned approximatively 3 cm
away from the limiter and with the collecting plate oriented perpendicularly to the mag-
netic field lines. Time-resolved two-dimensional measurements associated with blobs are
obtained using conditional sampling over many blob events, allowing the reconstruction
of the I —V Langmuir characteristic. This technique is explained in details in Ref. [129],
and can be summarized as follows. The probes of the SLP array, biased at —40V and
operated in ion saturation current mode, are located at fixed positions in the blob region
and are used as reference probes, while the single-sided probe, placed close to the limiter,
is operated in swept mode. Positive bursts in the SLP reference signals are interpreted
as blobs moving in front of the reference probe. When a blob is detected, the voltage V'
applied to the swept probe and the corresponding measured current value I are retained.
The whole set of voltage and current values is interpreted as the I — V' characteristic
associated with blobs, which is evaluated as a function of time with respect to the detec-
tion. To reconstruct the two-dimensional profiles, the single-sided LP is moved radially
in between discharges. This experimental setup has been used to investigate the parallel
current structure associated with blobs, as presented in Ref. [122].

The TORPEX experiment is an ideal device for the validation of plasma turbulence
codes for two reasons. First, a wide range of observables can be provided with high
spatial resolution, such as the plasma density, the electron temperature, the floating
potential, and the parallel current. This is crucial to perform accurate seeded blob simu-
lations, which require the profiles of all evolved fields at a certain time to set the proper
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initial conditions. Second, the SMT configuration mimics the main features of the toka-
mak SOL, such as open field lines, curvature and gradients of the magnetic field, and
plasma pressure gradients, but in a simpler configuration. This facilitates considerably
the analysis and the interpretation of the experimental and simulation results.

5.2 The models and the simulation codes

Because of the relatively high collisionality of TORPEX plasmas, we use a fluid approach
based on the Braginskii equations [13] to model the blob dynamics. Moreover, since the
time scale of the blob dynamics is such that d/dt < w.; (where w.; = eB/m, is the ion
gyrofrequency), we can consider these equations in the drift limit (see e.g. Ref. [14]).
Finally, we note that, since in the present scenario magnetic perturbations are negligible,
only electrostatic models are considered.

Although the drift-reduced Braginskii model is now well established (see Appendix A
for a detailed discussion of this model), for practical purposes several approximations
are introduced to simplify the equations. Those approximations vary from code to code
and, in general, their effect on the blob motion is not well known. In order to evaluate
their impact on the blob dynamics, while identifying the physical processes that play the
most important role in setting the blob motion, we perform several seeded blob simula-
tions by using five different nonlinear models, implemented in four different simulation
codes, each of which is used to simulate the plasma dynamics in the tokamak SOL. The
five models are: two isothermal models, one three-dimensional and the other one two-
dimensional, written in the STORM module [123] within the BOUT++ framework [18]
and named in the following BOUT++3D and BOUT++2D, a three-dimensional cold
ion model implemented in the GBS code [20], a two-dimensional model implemented
in the HESEL code [124,125], and a three-dimensional isothermal model implemented
in the TOKAM3X code [126]. In the remainder of this section, each of the simulation
models and codes is described and a discussion of the differences between the models is
provided.

All the equations presented in the following of this section are normalized as illustrated
in Appendix A, except for the time scales, which are normalized to w_'. Additionally,
the magnetic field amplitude in normalized units is defined as B = 1/(1 + x) and the
plasma vorticity as w = V32 ¢. The differential operators V3 and {¢, A} are detailed in
Section A.3.4, while V|| = 9.,.

5.2.1 BOUT++43D

Assuming cold ions and isothermal electrons, neglecting plasma-neutral interactions,
and considering the infinite aspect ratio limit (in particular V-b = 0), the BOUT++3D
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drift-reduced Braginskii equations in normalized units can be written as

ddof =C(n) —nC(¢) — V| (nvne) + Dp(n) + Sy, (5.1)
d;:j _7(;1) — VW + % + Do(w), (5.2)
di;;li == vV — V¢ — i) — S”:”, (5.3)
dodile == VeV |Vje + % <V|¢ - % + 77|j|) - Snv”e. (5.4)

Here d°f /dt = 0,f +{¢, f} is the convective derivative that takes into account the E x B
drift, C'(f) = —g0, f is the curvature operator, where g = 2/ R represents the strength
of the VB and curvature drifts, .S, is a particle source defined in Section 5.3, n =
MeVei/(1.96m;w,;) is the normalized parallel resistivity, v,; = nget In A/ [Sm;/ 2e2 (27rTeo)3/ 2}
is the electron-ion collision frequency, D,(n) = D,V?2n and D, (w) = p; V2 w are perpen-
dicular diffusion operators, where D,, = 2m,ve;/(miwe) and p1; = 3ve; /(4wei)y/me/mi; are
the normalized particle perpendicular diffusivity and the normalized ion perpendicular
viscosity, respectively. We note that in all the models considered in the present chapter
the Boussinesq approximation is used to simplify the evaluation of the divergence of
the polarization current (the validity of this assumption in modelling the SOL plasma
dynamics is discussed in Refs. [91-93]).

Equations (5.1)-(5.4), supplemented by standard sheath boundary conditions [131] [i.e.
v; = £1 and v, = £exp (—¢) at the target], constitutes the BOUT+43D model, which
is implemented within the BOUT++ framework. A first order upwinding scheme is em-
ployed to evaluate the parallel advection derivatives, while the Arakawa scheme [132]
is used for the perpendicular E x B advective derivatives. Other derivatives are com-
puted using second order central difference schemes. Time integration is carried out with
a variable time-step, variable order, fully implicit Newton-Krylov backwards difference
formula solver from the PVODE library [133]. We note that only half of the physical
domain is evolved, assuming a symmetric evolution of the blobs with respect to the plane
perpendicular to the magnetic field that is midway between the two limiter surfaces. A
more detailed discussion of the model is presented in Ref. [123].

5.2.2 BOUTH++42D

Assuming k| = 0 and linearising the sheath boundary conditions, such that v =
texp(—¢) ~ £(1 — ¢), Egs. (5.1)-(5.4) are integrated in the parallel direction, in or-
der to evolve line-averaged quantities. Consequently, the three-dimensional system of
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equations reduces to the following two-dimensional fluid equations

d° 1—
Lr o) - nc() - 2" =2 1 D,(n) + 5., (55)
dt L
d’w  C(n) ¢
=>4+ 2—+4+1D, 5.6
U= L D) (5.6)
Here L = 27 Ry is the connection length in normalized units and S, = 2n, / Lyis a

particle source defined in Section 5.3. The quantities n, w, and ¢ are the line-averaged
plasma density, vorticity, and electrostatic potential respectively, and, taking n as an
example, are defined as n(z,y) = OL” n(x,y,2)dz/Ly. We note that a similar model

is used in Chapter 4 to investigate the propagation of input uncertainties through the
model equations.

Egs. (5.5)-(5.6) constitute the BOUT+42D model, which is implemented within the
BOUT++ framework. For its solution, the same numerical scheme employed in BOUT++3D
is used. For a more detailed discussion of this model see Ref. [123].

5.2.3 GBS

Assuming cold ions, neglecting the electron thermal conductivity, and considering the
infinite aspect ratio limit, the drift-reduced Braginskii equations implemented in the
GBS code, Egs. (A.65)-(A.70), reduce to

d’n

- =C(p.) —nC(¢) =V (nvue) + D,(n) + Sy, (5.7)
d’w _C(pe) VHJH L GGy
d"vj; Vpe 2V G
7 = VIVl = — =~ Vit Dy (v) = —5 =, (5.9)
vy,
dtH = = VeV ||Vl = VenVle + Doy, (V)e) 510,
5.10
Pe ) 2V, G.
(V”(b H — 0.7 T, + 7 — 311 ) ,
dOTe
7 { T:) - C(fb)] — vV Te
(5.11)

%T <0 71V 11 V||U|e) +Dr (T.) + St..
The normalized ion-neutral and electron-neutral collision frequencies, v;, and v,,, eval-
uated as described in Ref. [134], are introduced here to mimic collisions with the neutral
particles present in a weakly ionized plasma, such as that found in TORPEX, whereas
other plasma-neutral interactions are neglected for simplicity. The terms S,, and S, are
the particle and electron temperature sources, respectively. Small perpendicular diffu-
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sion terms, written in the form D,(a) = D,V3 a, where D, are constant coefficients, are
introduced mainly for numerical reasons. The two terms representing gyroviscous effects
are given by G; = —ny; [QVHUHi +C (qﬁ)} and G, = —1pe. [QVHv”e —C(pe) /n+C (¢)}
Equations (5.7)-(5.11), supplemented by Bohm’s boundary conditions [i.e. vj; = ¢, and
Ve = ¢, exp (A — ¢/T.) at the sheath entrance, where ¢, = /T, and A = 3 for hydrogen
plasmas], constitute the GBS model used in the present chapter. Spatial derivatives are
discretized using a second-order finite difference scheme, except for the E x B advective
terms, which are discretized with a second-order Arakawa scheme. Time is advanced
using a standard fourth-order Runge-Kutta scheme. For a more detailed discussion of
the GBS code, see Appendix A.

In the present chapter, all GBS fields have been separated into background and seeded
blob components, and only the latter component is evolved. This allows us to use arbi-
trary background profiles, with no need to find and implement the appropriate plasma
source. To clarify this procedure, we rewrite Eq. (5.7) in the form that is actually solved
by GBS

aglfl = — {bvg: nuu} — {dw, g} — {dwis nui} + D)

+ (Tog + o) C () + (g +100) [C(Tot) — Cur)] (5.12)

— (g + 161) Vet — 101 V|[V)lesbg — (Vljesbg T Vjie,ot) V161 — Vet V|| Tibg,

where the indexes bg and bl refer to the background and blob components, respectively.
In Eq. (5.12) it has been assumed that the background profiles are constant in time and
independent of y. Equations (5.8)-(5.11) and Bohm’s boundary conditions are treated
with the same procedure.

It has been verified with a two-dimensional version of the GBS model that there are
no significant differences between seeded blob simulations carried out by separating the
background and blob quantities with respect to the ones where they are both evolved
simultaneously.

5.2.4 HESEL

In the HESEL model, the drift-reduced Braginskii equations are reduced to a set of
two-dimensional fluid equations by neglecting the instantaneous parallel currents, while
retaining the equilibrium one, and estimating the parallel advection terms under the
hypothesis v; V| = v V| = ¢,/L). The resulting model, which is implemented in the
HESEL code, is presented in Refs. [124,125]. Since the ion temperature dynamics shows
a very small impact on the present seeded blob simulation results (see Section 5.2.6), we
choose to not show here the ion temperature equation and to present only the cold ion
model to simplify the discussion of the differences between the models considered in the
present chapter.

Neglecting electron-ion collisions and, therefore, assuming cold ions, the system of equa-
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tion presented in Refs. [124,125] reduces to

dn A A n
E:C(pe)—n0(¢)—;+9n(n+¢), (5.13)
d° A 2c, (@)
V. <dtvj_¢> _C(pe) + Dw(w) — VipWw + LH |:1 — exXp (A - <Te>i;>:| ) (514)
3d 54 p? 5 A De 3
5%17@ = 50 <n> - §pec(¢) - _— + §Dn(pe - ). (5.15)

Here df /dt = 8, f+{¢, f}/ B is the convective derivative and C'(f) = —§d, f is the HESEL
curvature operator, with § = 1/Ry. Equilibrium currents to the limiter are approximated
by the sheath dissipation term entering in Eq. (5.14), where (—), represents the average
along y, with A = 2.8 in this case. The perpendicular diffusion terms D,,(a) = D., V3 a
and D, (a) = D,V3a are introduced to describe electron-neutral and ion-ion collisions,
where D,, = pgven and D, = p?yii, pe and p; are respectively the electron and ion
Larmor radius in normalized units, and v,, and v;; are respectively the electron-neutral
and the ion-ion collision frequencies in normalized units. The loss of the plasma density
due to the parallel flow is parametrized by the characteristic time 7, = Lj/(2c,), while
the electron pressure parallel dynamics by 7y, = 15Lﬁuen (1+4/ves) /(1280v2%), where
Ves = LjVen/(2ve) and v, is the thermal electron velocity in normalized units. The
parallel advection of the vorticity is neglected here, because of its small amplitude with
respect to the ion-neutral collision drag term v;,w.

The HESEL model is implemented in the code using the Arakawa scheme to discretize the
E x B advective terms, a finite difference scheme to discretize the x and y derivatives, and
a stiffly-stable third-order scheme [135] for time integration. A more complete discussion
of this code is presented in Refs. [124,125].

5.2.5 TOKAM3X

Assuming cold ions and isothermal electrons, the version of the drift-reduced Braginskii
equations evolved by TOKAMS3X can be written as

T O(n) —nC(6) — V- [(T = i) b] + Duli) + 5, (5.16)
% =2C(n) = QC(¢) + V- Kjl - QE) b} + Dq(9), (5.17)
% =-TC(¢)-CcT)-V- (sz> — 2V n+ Dp(T), (5.18)

0 :TLVH(ZS—VHTL—F??HTL]'”’ (5_19)

where Q = V- (V1 ¢/B?) is the plasma vorticity that takes into account magnetic field
variations, I' = nvy; is the ion parallel momentum and S, is a particle source [see Sec-
tion 5.3, Eq. (5.22) for its definition]. Small perpendicular diffusion terms of the form
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D,(a) = D,V?%a, where D, are constant coefficients, are introduced to dissipate turbu-
lent structures of size comparable to the grid spacing.

Equations (5.16)-(5.19), completed by the linearized Bohm’s boundary conditions [i.e.
I' = +n and jj = +n[l —exp (A —¢)] =~ £n(¢—A) at the target]|, are solved by
the TOKAM3X code with a first order operator splitting. Advection terms and source
terms are first advanced explicitly, using a shock-capturing algorithm (the Roe-Marquina
scheme based on the WENO interpolation [136]). Parallel current terms are advanced
using a fully implicit three-dimensional solver in order to capture the associated fast dy-
namics without considerably constraining the time step. Finally, perpendicular diffusion
terms are advanced implicitly. The spatial discretization is done based on conservative
finite differences evaluated on a structured flux-surface aligned mesh. A more detailed
discussion of the TOKAM3X code is presented in Ref. [126].

5.2.6 Summary of analogies and differences among the physical
models

Besides the differences related to the numerical schemes used to evolve the five mod-
els, which are neglected here as we consider simulations that are numerically converged,
the five models differ because of several assumptions made to simplify the drift-reduced
Braginskii equations. The remainder of this section is dedicated to a discussion of these
differences. To examine the differences between the models, we note that Eqs. (5.16)-
(5.19) can be recast in the GBS and BOUTH+ form by expressing €2, I and j) in terms
of the quantities evolved by these codes. Moreover, we note that it has been verified with
the TOKAMS3X code that, in the considered blob scenarios, the Boussinesq approxima-
tion has a negligible influence on the numerical results. The analogies and differences
among the codes can be summarized as follows.

(i) Two-dimensional closures. In order to reduce the three-dimensional model to a
two-dimensional set of equations, in BOUT++42D we impose the sheath dissipation clo-
sure, that is k) = 0 [123], while in HESEL we impose the vorticity advection closure
by approximating v,V = vV = ¢,/L [123]. By imposing the sheath dissipation
closure, one assumes that the parallel gradients are negligible, and that the filaments
extend from target to target. On the other hand, by applying the vorticity advection
closure, instantaneous sheath currents are neglected. As discussed in Section 5.5 and
shown previously in Ref. [123], these approximations may have a strong impact on the
simulation results.

(ii) Boundary conditions. The BOUT++3D and GBS models are supplemented
by full Bohm’s boundary conditions, TOKAM3X and BOUT++2D employ linearised
Bohm’s boundary conditions, while the HESEL model makes use of the weak sheath
formulation, and therefore the equilibrium currents to the limiter are described by the
sheath dissipation term entering in Eq. (5.14). It has been verified with BOUT++3D
that the linearisation of the boundary conditions has negligible impact on the simulation
results presented herein.
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(iii) Temperature effects. In the present work the BOUT++2D, BOUT++3D, and
TOKAM3X models assume isothermal electrons and cold ions, GBS assumes cold ions,
while HESEL evolves the ion dynamics, assuming ions initially at room temperature
(T; = 0.025eV at t = 0). A detailed investigation of the T, effects on the simulation
results is presented in Section 5.4. The T; influence on the simulation results was inves-
tigated with HESEL, showing negligible impact on the blob dynamics, and will not be
further discussed.

(iv) Magnetic field equilibrium and background profiles. First, regarding the magnetic
geometry, we note that BOUT++2D, BOUT+43D, and GBS models are here written
in the infinite aspect ratio limit, while TOKAM3X retains the V - b terms. Moreover,
in TOKAM3X and HESEL the variation of the magnetic field is retained in the E x B
advective terms, while it is neglected in BOUT+42D, BOUT++43D, and GBS. Due to
the TORPEX large aspect ratio, these approximations have a negligible influence on
the results. We also note that in BOUT++2D, BOUT++3D, GBS, and TOKAM3X
models, the curvature operator, C'(—), is twice as large as the curvature operator C'(—)
appearing in HESEL (i.e. ¢ = 2§). Therefore, the ballooning instability drive is halved
in HESEL with respect to the one present in the other four models (a reduced balloon-
ing drive leads to slower blob radial motion [128]). Finally, the background profiles are
time-independent and can be arbitrarily imposed in the version of GBS used here be-
cause of the separation between background and blob components. On the other hand,
in BOUT++2D, BOUT++43D, and TOKAMS3X the full quantities are evolved, and the
equilibrium profiles are sustained by appropriate source terms, while in HESEL the full
quantities are evolved, but, assuming slow variation of the plasma background with re-
spect to the time-scale evolution of blobs, no source terms are introduced to sustain the
background profiles (this is justified a posteriori by the simulation results).

(v) Electron inertia. In BOUT++3D the electron inertia is retained in both the
parallel ion and electron momentum equations, Egs. (5.3)-(5.4), in GBS it is neglected
in the ion parallel momentum equation, Eq. (5.9), while in TOKAM3X it is neglected in
both the Egs. (5.18)-(5.19). As a matter of fact, the simulations presented in Section 5.5
show that the electron inertia has negligible influence on the blob motion.

(vi) Dissipative terms. In BOUT++2D and BOUT++ 3D the perpendicular diffu-
sion coefficients are set using the physical values of the electron-ion and ion-ion collision
frequencies, while in HESEL electron-neutral and ion-neutral collisions are also taken
into account. These classical diffusion coefficients are computed according to Ref. [137].
In contrast, in GBS and TOKAMS3X arbitrary perpendicular dissipative terms are intro-
duced (D, ~5-107*—1073), and we ensured that they have a negligible influence on the
simulation results using GBS to perform a sensitivity scan of the diffusion coefficients
over two orders of magnitude, i.e. decreasing and increasing the value of the diffusion
coefficients used for the simulation by a factor of ten. Moreover, in GBS the v,, and
V;n, terms are introduced to mimic the electron-neutral and ion-neutral collisions, while
the G, and G; terms model the plasma viscosity. A sensitivity scan of these dissipative
coefficients over two orders of magnitude show that they have a negligible impact on the
simulation results.
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In Section 5.4 and 5.5 we discuss the influence of the approximations listed above on
the blob dynamics, comparing the simulations performed with the five models among
themselves and against experimental data. In particular, we identify the modelling of the
electron temperature and the parallel current closure used to derive the two-dimensional
models as the most important differences among the models, and therefore, we focus our
attention on those.

5.3 Seeded blob simulations

Using the five models presented in Section 5.2, we perform simulations of seeded blob
motion with three different sets of initial conditions. This allows us to compare the
simulations among themselves and validate them against experimental observations over
a set of different conditions. The three different cases correspond to considering three
different amplitude windows for the blob detection in the I, reference signal provided
by the SLP tips. More precisely, we consider trigger events for which the I, peaks of
the reference signal fall in (i) the interval 2.00 — 2.750, where o is the standard devi-
ation of the reference signal (o/(ls): =~ 0.5, where (Iyy); is the time-average of the
I, signal), (ii) the interval 2.750 — 3.50, and (iii) the interval 3.50 — 4.250. In the
following, these three scenarios are dubbed “case 17, “case 2”7, and “case 3”7, respectively.
The three trigger windows result in blobs with different density peak values ng, with
no/npy = 0.85,1.0,1.9 for the three cases, where ny, is the time-averaged plasma density
at the reference probe position. These blobs are found to have different velocities and
internal stability properties. For the three cases, the blob profiles at the detection time
t = 0 are shown in Fig. 5.2.

The simulations are initialized according to the experimental measurements. The back-
ground profiles of n and T, are evaluated as the median value of the time-dependent
signal reconstructed from the fit of the I — V' curves, and are shown in Fig. 5.1 (middle
and right panels). As the dependence of the background profiles on the y coordinates is
weak, they are fitted with expressions that depend only on x;

g (2) =a(Bx) + 0, (5.20)
T, pg(x) =€- exp (Cx), (5.21)

)

where o = —4.2-10"m™3, 8 = 1m™%, v =29, § = 25-10°m~3, ¢ = 2.8¢V, and
¢ = —5.9m™t. We note that the measurements of the plasma quantities are taken on a
poloidal plane at a distance of approximatively 3 cm from the limiter and no experimental
information is available on the parallel dependence of the profiles. This introduces an
uncertainty in setting the z dependence of the equilibrium profiles (and blob initial
conditions) in the three-dimensional codes. However, in previous TORPEX experiments
it has been observed that the plasma density background profile is approximatively flat
along z, except for a drop in the proximity of the limiter [138]. Therefore, as suggested
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Figure 5.2 — Plasma density (first column), electron temperature (second column), and float-
ing potential (third column) at detection time ¢t = 0, for “case 1”7 (first row), “case 2” (second
row), and “case 3” (third row) conditionally averaged blobs, from which have been subtracted the
backgrounds.

in Ref. [123], a density source

10exp (10|z — 7| /)
7 [exp (10) — 1]

S(x, z) = npg(x) (5.22)
is introduced in BOUT+4-3D and TOKAM3X. It follows that the source term to be used
in BOUT++2D is S,, = nyy(z) /7. In GBS we linearise the model equations and, there-
fore, there is no need to introduce plasma sources. On the other hand, we have to impose
the density background, and we choose to impose the one that is produced by using the
source of Eq. (5.22) in BOUT++3D. In HESEL there are no plasma sources, and 7y, is
imposed at t = 0 accordingly to Eq. (5.20). For the electron background temperature
profile, we note that in BOUT++2D, BOUT++43D, and TOKAMS3X, the electron dy-
namics is assumed to be isothermal. Therefore, in these models, a uniform background
temperature is imposed, and a sensitivity study of 7, ,, is performed (see Section 5.4).
On the other hand, in GBS and HESEL, T ;, is expressed according to Eq. (5.21) and
it is assumed constant along z. Moreover, we note that HESEL describes finite ion
temperature effects. Assuming the ion temperature as the ambient temperature (which
approximatively corresponds to the neutral temperature), an uniform 7; = 0.025€V is
imposed at ¢ = 0.

Finally, the background profiles of ¢, w, v; and v). are obtained by imposing Bohm’s
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boundary conditions at the limiter plate and assuming no net background current flow-
ing to the limiter, as discussed in Ref. [123]. The blob initial conditions are set by using
the conditionally averaged profiles at the detection time ¢t = 0. The experimental profiles
of ny, Tep, and Vi have been fitted, imposing a monopolar structure in the poloidal
plane for ny and 7., and a dipolar structure for V4, according to the expressions

[ (x — x0) 2 Yy 2
ny(z,y) =ng-exp |— | —=| —|—] |, (5.23)
On,x O-n,y
[ (x — x0) 2 y 2
Te7bl(x, y) = TO . eXp — T — ; s (524)
@ Y
_ - (z — ) ’ Y— Y ?
thbl(xay) =V EXp | = | ——— i
I OVl Ovy1
(o — o) ) B ) (5.25)
Ov,z,2 Ovy,2

where x5 = 0.07m and the value of the other parameters appearing in Eqs. (5.23)-(5.25)

are summarized in Table 5.1 for the three cases.

Table 5.1 — Parameters used to initialize the seeded blob simulations, deduced by fitting the
experimental measurements using Eqgs. (5.23)-(5.25).

case 1 case 2 case 3

no [10° m~—3] 1.975 £ 0.135 2.335 + 0.325 4.395 + 0.855
Op.z [c1] 2.20 +0.20 2.40 + 0.30 1.65+0.45
Opy [cm] 2.40 +0.20 2.10 +0.20 1.75+£0.25
To [eV] 0.345 + 0.065 0.960 £ 0.250 1.730 £ 0.280
o7, [cm] 1.05£0.15 1.05£0.25 0.80 £+ 0.20
ory lcm] 3.65 £+ 1.05 1.45+£0.25 2.85 +0.95
Vi [V] 2.330 £ 0.170 4.600 £ 0.740 4.715 4+ 0.405
Oy [cm] 3.55 +£0.25 3.25+£0.25 4.95 4+ 0.35
Y1 [cm)] 2.55 +0.25 2.60 £ 0.20 1.15+£0.35
Oy [cm] 2.95+0.05 3.10 £0.20 4.90 4+ 0.60
Va [V] —1.540 £0.140 —2.350 +0.550 —6.155 £ 0.965
Ov,z2 [cm] 3.10 £0.20 2.75+0.35 2.95+0.45
Yo [cm] —2.10£0.40 —0.50 £ 0.80 —2.454+0.15
Oyy2 [cm] 4.00 £0.30 4.75+£0.45 2.50 £0.30

The expressions of ny and Vy;y in Egs. (5.23) and (5.25) are relatively well supported by
the experimental measurements. On the other hand, the fitting of 7. using Eq. (5.24)
is only partially justified, due to the high uncertainties affecting the measurements (see
Fig. 5.2). Because of these uncertainties, we also impose ¢y ~ Vj; 4, neglecting the AT,
term (previous studies show that the AT, term increases the blob spinning [139]). The
three-dimensional initial profiles are obtained by using Bohm’s boundary conditions at
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the limiter, and assuming that ng, 7. 5, and ¢ are constant along the parallel direction,
while vy and v);p are a linear function of z. We note that in the isothermal models
T., = 0 is imposed. Finally, we enforce wy = V3 ¢y. The influence of the approxi-
mations introduced to initialize the seeded blob simulations on the numerical results is
discussed in Section 5.4.

The seeded blob motion is simulated on a time interval that is equal to the experimental
blob correlation time, i.e. approximatively 50 us. Longer simulations are not useful for
comparison with the experiments, because the coherence of the conditionally averaged
blob is completely lost on longer timescales.

To compare the numerical simulations against experimental measurements, we focus our
attention on the blob radial and vertical motion. The position of the blob is computed as
follows. First, for the simulation results, the blob ion saturation density current profile
is computed as

_ 1 1
Ju(z,y,t) = i[nbg(x) + (2, y, t)}\/Te,bg(ﬂf) + Tep(z,y,t) — Enbg(x) Tepg(), (5.26)
while for the experimental results it is simply given by

. Isa T, 7t - ]sa z, 7t
(T, y,t) = (2.0,1) A< {2,y )>t, (5.27)

where I, (x,y,t) is the measured ion saturation current, (—); denotes the median value
in time, and A is the projected area of the single-sided LP probe. Second, the j;; signal
is averaged in space, ju(t) = (ju(z,y,t))sy, where (—),, denotes averaging along the
x and y coordinates on the entire physical domain. Third, we identify the surface S(t)
which satisfies (jiy (2, 1,t))s@) = 0.2 ju(t), where (—) gy denotes the average carried out
on the domain defined by S(¢). Finally, the position of the blob is identified as the
geometric center of the surface S according to

J[spy zdxdy
zu(t) = L7
Js dedy (5.28)
un(t) = Hs ydady .
w(t) = ————7—.
ﬂS(t) dxdy

The use of this procedure allows us to reduce the sensitivity of the results to the noise
present in the profiles. The radial and vertical velocities of the blob are simply defined
as v, (t) = day(t)/dt and v, (t) = dyy(t)/dt. To exemplify the use of this procedure, in
Fig. 5.3 we consider the experimental measurements associated with blobs at the three
times t = 0, t = 24 us, and t = 48 us. The black contours represent the boundaries of
the surfaces S and the black crosses denote the blob positions, x; and .

We note that, while it is possible to perform quasi-steady state turbulence simulations
and compare the numerical results with the experimental measurements, in the present
chapter we choose to consider seeded blob simulations in order to decrease the compu-
tational cost of the simulations and simplify the comparison of the numerical results.
As a matter of fact, we ensure that the velocity of conditionally-averaged, turbulence-

page 76



5.4. Sensitivity studies

t=0us t=24pus t =48 us
0.05
2
v g is
g Ly
~
—0.05 0
0.05 3
o —
s & 2%
g > 1z
~
—0.05 0
0.05 ;
o =
g & F\ 2=
g > 1:
—0.05 0

0.05 0.1 0.15 0.05 0.1 0.15 0.05 01 0.15
x [m] x [m] x [m]

Figure 5.3 — Experimentally measured I,,; profiles, from which have been subtracted the back-
grounds, at ¢ = 0 (first column), ¢ = 24 us (second column), and ¢ = 48 us (third column), for the
“case 17 (first row), “case 2” (second row), and “case 3” (third row) blobs. The black contours
represent the boundaries of the surfaces which satisfy (jyi(2,¥,1))st) = 0.2-jn(t) and the black
crosses denote the blob positions zp; and yp;.

generated blobs does not significantly differ from the velocity of a seeded blob by pro-
ceeding as follows. Applying the conditional average technique described in Section 5.1
to a sufficiently long two-dimensional fully turbulent GBS simulation, we obtain the
conditionally-averaged profiles associated with blobs, and we use these profiles to initial-
ize a two-dimensional seeded blob simulation. The comparison of the velocities obtained
from the seeded blob simulation and the conditionally-averaged blob, which is not dis-
played here, shows that the difference between the two velocities is to within an error of
10%.

5.4 Sensitivity studies

In order to compare the simulation results among each other and against the exper-
imental measurements, four sensitivity scans are performed. We first investigate the
sensitivity of the simulation results to the input parameters and initial conditions. Sec-
ond, we focus our attention on the influence of the equilibrium electron temperature
profiles on the numerical results. Third, we analyse the impact of the electron temper-
ature dynamics on the blob motion. Finally, we study the sensitivity of the simulation
results to the numerical parameters, such as the diffusion coefficients introduced in GBS
and TOKAM3X.

To estimate the effect of the uncertainties found in setting the initial conditions (dis-
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cussed in Section 5.3) on the simulation results, we first estimate the confidence intervals
of the fitting parameters (Table 5.1). Second, we perform a sensitivity scan of the blob
size (0, and o, coefficients) and of the peak-to-peak value of its dipolar potential, as they
are expected to be the parameters that affect the blob velocity the most. More precisely,
we perform five simulations for each of the three cases: one simulation, dubbed standard
simulation, initialized with the reference fitting parameters, two simulations setting the
size of the blob using the minimum and maximum values within the confidence interval
of the fitting parameters, and two other simulations with the minimum and maximum
peak-to-peak values of the dipolar profile of the plasma potential. Third, we compute
the maximum of the difference between the standard simulation and the other four simu-
lations, and we use this as the measure of the uncertainty affecting the numerical results.

FBOUT++3D
0.13 1 £ BOUT++2D
1-GBS

0.12| +HESEL

T TOKAM3X

ts] %107 t[s] %107

Figure 5.4 — Radial (left panel) and vertical (right panel) position of the blob as function of time
for “case 17, with error bars representing the uncertainties affecting the numerical results due to
the uncertainties on the initial conditions.

The results of the sensitivity scan for the “case 1”7 blob are shown in Fig. 5.4, where
the error bars represent the evaluated uncertainties. It is evident that the uncertainties
affecting the radial and vertical position of the blobs are relatively small, which ensures
that the uncertainties on the blob initial conditions do not strongly affect the simulation
results. Similar results (not shown) are obtained for “case 2” and “case 3”.

Next, we perform a sensitivity scan of the electron temperature background value. This
is motivated by the fact that, while BOUT++3D, BOUT++2D, and TOKAM3X as-
sume a uniform 7, ;,, the experimental temperature background profile shows a strong
radial variation.

The results of this sensitivity study are presented in Fig. 5.5. BOUT++3D, BOUT++2D,
and TOKAM3X are used to carry out two simulations each, one with 7T, ,, = 2.8V (T 4
value at = 0.0 cm, corresponding to the maximum value of 7¢, over the considered
domain) and one with T¢,, = 1.85eV (7., value at x = 0.07 cm, corresponding to the
T,y value at the position where the blob is initialized). Moreover, two simulations are
performed with GBS, one imposing a uniform 7¢, = 2.8V, and one with T, set ac-
cording to Eq. (5.21).

Figure 5.5 shows that the radial velocity of the blob is strongly affected by T, (a larger
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Figure 5.5 — Radial (left panel) and vertical (right panel) position of the blob as function of time
for “case 17. Solid curves represent the simulation results with 7t 3, = 2.8 eV, dashed curves consider
Tepg = 1.85¢V for BOUT++3D, BOUT++2D, and TOKAMS3X and T ;, given by Eq. (5.21) for
GBS.

Te g leads to a larger radial velocity). Furthermore, GBS simulations point out that
the blob radial motion is faster for 7t p, = 2.8 eV than for the experimental T, profile.
Regarding the vertical motion of the blob, we observe that the radial variation of T¢ 4,
strongly impacts the blob dynamics, while varying a uniform 7. ;, value has a minor im-
pact. In fact, when a radial dependent profile of T¢ , is considered, by imposing Bohm’s
boundary conditions at the limiter and no net parallel background current flowing to the
target, we obtain a radially dependent electrostatic background potential, which leads
to a positive vgyp in the vertical direction. Similar results are obtained for the “case
27 and “case 3”7 blobs. Consequently, the 7T, ;, profile considerably affects the simulation
results. In Section 5.5 this has to be taken into account in the comparison of the simu-
lation results among each other and with experimental measurements.

Then, we simulate with the GBS code an isothermal blob (i.e. we impose T,y = 0 at
all times), an initially thermalized blob (i.e. we impose T, = 0 at ¢ = 0 and then let
the blob temperature evolve), and an initially hot blob [i.e. we impose Ty = Tt (2, y)
at t = 0, accordingly to Eq. (5.24), and then let the blob temperature evolve]. A uni-
form T¢p, = 2.8€eV is imposed. This is motivated by two things. First, as discussed
in Section 5.3, high uncertainties are affecting the experimental measurements of the
electron temperature. Second, in BOUT++3D, BOUT++2D, and TOKAMS3X the blob
is assumed isothermal, while in GBS and HESEL the electron temperature is evolved. In
Fig. 5.6 we present the results of this study. Considering the radial motion, we observe
that the isothermal blob is the slowest one, while the hot blob is the fastest. However,
the motion of the blob is only slightly affected by temperature effects. Moreover, Fig. 5.6
shows that the impact of the isothermal blob assumption on the blob vertical velocity
is very small. This indicates that the presence of a radially-varying 7., profile is the
main drive of the vertical motion, as discussed above.

Finally, we would like to make a few remarks. First, we note that all the simulations
used in this chapter are converged with respect to the temporal and spatial discretiza-
tion and, therefore, the numerical uncertainty can be neglected. Second, we note that,
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Figure 5.6 — Radial (left panel) and vertical (right panel) position of the blob as function of time,
obtained from GBS simulations of “case 1”7 with T, 3, = 2.8eV. The blue curves correspond to an
initially hot blob [i.e. T p = Tep(z,y) at t = 0, as in Eq. (5.24)], the green curves correspond to
an initially thermalized blob (i.e. T = 0 at ¢ = 0 and then letting the blob temperature evolve),
and the red curves correspond to an isothermal blob (i.e. imposing T¢ 4 = 0 at all times).

performing several sensitivity scans, it has been verified that the values of the numerical
parameters, such as the diffusion coefficients introduced in GBS and TOKAM3X, do not
significantly affect the simulation results. Third, we remark that in Chapter 4 we discuss
a rigorous methodology for estimating the impact of uncertainty propagation related to
not precisely known input parameters on the simulation results. However, since we do
not have developed yet a fully spectral code for investigating the blob dynamics, we
cannot apply here such methodology.

5.5 Analysis and validation of the simulation results

First, focusing our attention on the qualitative analysis of the blob simulation results,
we present in Fig. 5.7 the two-dimensional poloidal profiles of plasma density and elec-
trostatic potential associated with “case 17, “case 2”7, and “case 3” blobs at t = 48 us, for
the five simulation models. We consider 7., = 2.8¢V in the isothermal and Eq. (5.21)
in the non-isothermal models. Several observations can be made from these results.

(i) Noticeable differences exist between the “case 1” and “case 2” blobs, and the “case
3”. In particular, the size of the “case 3” blob is significantly smaller than in the two
other cases. This leads to steeper gradients and stronger secondary instabilities, consis-
tent with the numerical results.

(ii) The BOUT++2D results are qualitatively similar to the ones from BOUT++3D,
the main difference being the amplitude of the density profiles. This is due to the fact that
in BOUTH++2D line-averaged quantities are evolved and plotted, while for BOUT++3D
snapshots on a poloidal plane close to the limiter are shown, where the blob density is
smaller than at the center of the device.

(iii) Comparing the results of BOUT++3D, GBS, and TOKAM3X, although we
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Figure 5.7 — Plasma density and electrostatic potential, from which have been subtracted the back-
grounds, for the “case 17, “case 2”7, and “case 3” blobs, simulated with BOUT++2D, BOUT++3D,
GBS, HESEL, and TOKAM3X, at t = 48 us. We note that for BOUT++2D and for HESEL the
line-averaged quantities n(z,y)/2 and ¢(z,y) are represented, while the profiles of n(zx,y,2) and
o(x,y, z) are displayed for the three-dimensional models at the simulated poloidal plane closest to
the limiter.

observe a similar global evolution of the blobs, some differences in the details of the
structures are apparent. In TOKAM3X the blobs are subject to fingering effects, not
visible in the other simulations. The shape of the BOUT+43D blobs is rounder than in
GBS and the blob tails are less pronounced in GBS (tests show that this is related to the
plasma-neutral collisions, not taken into account by the other three-dimensional models).
Moreover, we note that the blobs simulated with GBS show an upward motion, and are
spinning counterclockwise. The upward motion is related to the E x B vertical motion
due to the radial dependence of the electron temperature background, as discussed in
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Section 5.4. The spinning occurs because of effects of the evolving electron temperature
on the blob plasma potential, which is consistent with the observations in Ref. [139].

(iv) Focusing on the HESEL results, we note that the blobs are more “mushroom-
like” and show a completely different evolution than in the other four models. This is
related to the HESEL assumption that diamagnetic currents are predominately closed
through polarization currents.

The analysis of the differences among the five models helps us understand the results
of the validation of the simulation results against the experimental measurements. The
radial and vertical blob velocities produced by the simulations and as measured from the
experiment are plotted versus time in Figs. 5.8 and 5.9.

3500 — Experimental
—BOUT++3D
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Figure 5.8 — Radial velocity of the blob as function of time for “case 1”7 (left panel), “case 2”
(middle panel), and “case 3” (right panel), obtained from numerical simulations and experimental
measurements (the gray shaded region represents the experimental uncertainty due to the finite
spatial resolution of the probes).

Regarding the experimental measurements of the radial velocity, despite some fluctu-
ations mainly due to experimental uncertainties, it is visible that blobs decelerate as
they move outwards, for each of the three cases. The radial velocity of the blobs sim-
ulated with BOUT++3D, BOUT++2D, GBS, and TOKAMS3X also decreases in time.
However, particularly in “case 1”7 and “case 2”7, the blob deceleration is weaker in the
simulation results than in experiments, and the initial velocity peak is not well captured.
On the other hand, the radial blob velocity simulated with HESEL shows a completely
different evolution. In fact, while moving outwards, the HESEL “case 1”7 and “case 2”
blobs accelerate significantly, while the “case 3”7 blob decelerates.

To perform a quantitative comparison between experiments and numerical results, and
to gain a deeper insight on the blob dynamics, we average the experimental and the
simulated radial blob velocities between ¢ = 0 and ¢t = 48 us, for the three cases, and we
theoretically predict the radial blob velocity according to Ref. [128] as

2,
Vi o (5.29)

1 R_5/2 | vnVRa 1y, +ng’
1+pZLH‘/2a + e, Y

Vy =

where a = VIn20,, is the vertical size of the blob, ps ~ \/T¢y,m;/(eB) is the ion
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Figure 5.9 — Vertical velocity of the blob as function of time for “case 1”7 (left panel), “case 2”
(middle panel), and “case 3” (right panel), obtained from numerical simulations and experimental
measurements (the gray shaded region represents the experimental uncertainty due to the finite
spatial resolution of the probes).

Table 5.2 — Blob radial velocity for the three cases, computed according to Eq. (5.29) and time-
averaging simulations and experimental results.

case 1 [m/s] case 2 [m/s] case 3 [m/s]
T. Backrgound 1.85 eV 2.8 eV Eq. (5.21)  1.85¢V 2.8 eV Eq. (5.21) 1.85 eV 2.8 eV Eq. (5.21)
Analytical scaling 420+£40 670+ 50 - 530450 810+60 - 800480 1170490 -
Polarization closure  910£40  1100£50 - 990+£70 1180490 - 12804+100  1480£110 -
BOUT++2D 440 760+50 - 570 930430 - 1000 1370430 -
BOUT++3D 540 850420 - 670 1020£20 - 1100 14604130 -
TOKAM3X 560 87060 - 710 102040 - 1030 1210210 -
GBS isothermal - 890 - - 1070 - - 1520 -
GBS - - 66010 - - 790+40 - - 13704150
HESEL - - 1470440 - - 1850470 - - 6504200
Experimental - - 840420 - - 970420 - - 1030420

Larmor radius, ¢; &~ /T, ;,/m; is the ion sound speed, and ng/(ny, + ng) is the ratio
between the peak density value of the blob, ng, and the total density, ny, + ng. The
three terms in the denominator represent possible closures of the diamagnetic current
due to, respectively, the ion polarization current, the parallel current to the sheath, and
the ion-neutral collisions (the latter is neglected in the following due to the low value
of v,). The ng/(nyy + ng) term represents the slowing down of the blob due to a finite
background density. We note that Eq. (5.29) is derived under the assumption of isother-
mal evolution.

In Table 5.2 we summarize the results of our analysis. First, considering the two back-
ground electron temperatures T¢p, = 1.85€eV and T, = 2.8 eV, we compute the veloci-
ties theoretically predicted by using Eq. (5.29). We compute both the expected velocity
from the full scaling in Eq. (5.29) (“Analytical scaling”), and the expected velocity
from the ion-polarization closure scaling when an halved ballooning instability drive is
considered, which corresponds to v, = \/a/iRcSno/ (g + no) (“Polarization closure”).
Second, averaging in time the radial velocities, we list the BOUT+42D, BOUT++43D,
and TOKAMS3X results corresponding to T, = 1.85¢eV and 1., = 2.8¢eV. For GBS,
simulations with a uniform 77 3, = 2.8 eV background and considering an isothermal blob
(i.e. T.p = 0 at all times) are listed. Moreover, we present the GBS and HESEL results
when the experimental background temperature profile is used and the blob temperature
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is evolved. Finally, the experimental radial velocity measurements are averaged in time,
to obtain the values presented in the last row of Table 5.2. Several observations can be
made from these results.

(i) The velocities obtained for T, ;, = 2.8 eV from BOUT++3D, GBS with isothermal
electrons, and TOKAMS3X are very similar. It follows that the three models are equally
able to predict the radial velocity of the blobs. Within the uncertainties affecting the
measured quantities used as input parameters, they are consistent with experimental
observations for “case 1”7 and “case 2”7, while the “case 3”7 experimental measurements
do show a smaller velocity with respect to the simulations. This difference is due to the
blob motion in late part of the considered time interval, when the blob loses its coherence
and the difference between experimental measurements and simulation results increases,
as shown in Fig. 5.8.

(ii) BOUT++2D gives a radial velocity that is slightly smaller than the one com-
puted with the three-dimensional isothermal models. Previous comparisons between
two-dimensional and three-dimensional simulation results showed that the density drop
in the three-dimensional simulations is larger than the one estimated to derive the two-
dimensional model [21]. This leads to smaller parallel sheath currents and, therefore,
faster blob dynamics in the three-dimensional simulations. However, the difference be-
tween BOUT++2D and BOUT++43D results are relatively small, indicating that the
sheath dissipation closure represents well the considered experiments. This is consistent
with previous experimental investigations, from which it has been concluded that for
similar TORPEX experimental scenarios the parallel currents play an important role in
setting the blob motion [128, 140, 141].

(iii) The “case 17 and “case 2” blobs simulated with HESEL produce radial velocities
that are much larger than the ones observed experimentally. This leads us to conclude
that, for the present experimental scenario, the weak sheath formulation combined with
the vorticity advection closure is not a good representation of the plasma dynamics, con-
sistently with point (ii). It is emphasized that this result concerns only the considered
experimental scenario, and it is not generally true.

(iv) The analysis of “case 3” HESEL results shows a velocity that is smaller than both
the experimental velocity and the velocity resulting from the other models. This may
be due to the fact that the blob completely loses its coherence through the simulation,
as can be observed in Fig. 5.7.

(v) The simulation results obtained with GBS considering the experimental tempera-
ture background show a radial velocity that is slightly smaller than the measured one for
“case 17 and “case 27, while it is slightly higher for “case 3”. It could appear surprising
at first sight that the experiments agree better with the isothermal models than with
the results of the non-isothermal GBS simulations. However, Fig. 5.8 shows that this
is due to a fortuitous event: the differences in the radial velocity between experimental
measurements and isothermal simulations in the first and second halves of the simula-
tions are cancelling out, giving an apparently better agreement of the averaged radial
velocities.

(vi) Comparing our isothermal simulation results with the analytical scaling derived
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from the isothermal estimate presented in Ref. [128], we observe that Eq. (5.29) under-
estimates the blob radial velocity. In the appendix of Ref. [140] and in Ref. [142] other
possible blob velocity scalings are discussed, for which it is assumed that the blob is
subject to a Kelvin-Helmholtz instability. These scalings produce results which differ
from Eq. (5.29) when low values of ng/(nsg +no) are considered. In particular, they give
larger velocities than the ones predicted by using Eq. (5.29), which are closer to the nu-
merical results of the isothermal simulations. Additionally, assuming that the analytical
scaling of Eq. (5.29) underestimates the blob radial velocity because of the small value
of ngy/(npg + no), and comparing the HESEL results with the “Polarization closure” row
in Table 5.2, we conclude that the HESEL model should be able to properly describe the
blob dynamics in cases where diamagnetic currents are predominantly closed through
polarization currents.

Considering the experimental vertical motion, we observe that the blobs move in TOR-
PEX with positive, almost constant, velocity. The dynamics of the blobs simulated with
GBS is consistent with the experimental measurements. The HESEL model, which as-
sumes a non-isothermal background according to Eq. (5.21), presents a vertical velocity
that is initially consistent with experimental measurements and diverges later from the
experimental results. On the other hand, the other models are not in agreement with
the experimental measurements. This reflects the fact that the vertical blob motion is
mostly driven by a background vgyp flow, as discussed in Section 5.4.

5.6 Conclusions

In this chapter we present numerical results obtained from seeded blob simulations car-
ried out with five different models, which are validated against the experimental data
obtained from the TORPEX device. The models differ because of a number of assump-
tions used to simplify the drift-reduced Braginskii equations, such as the hypothesis of
cold ions, isothermal electrons, or negligible electron inertia. Moreover, some of the mod-
els make use of the infinite aspect ratio approximation. In addition to three-dimensional
models, we also consider two-dimensional models, based on different closures of the par-
allel currents on the vessel walls.

The comparison between the results of the different models and the experiments allow
us to identify the most important physics elements that play a role in setting the blob
velocity. For the present experimental scenario, we show that the vorticity advection
closure, such as the one implemented in HESEL, is not able to correctly reproduce the
plasma dynamics associated with the blobs, while the sheath dissipation closure, such as
the one implemented in BOUT++2D, is in agreement with the three-dimensional simu-
lations and experimental results. This is consistent with previous experimental analysis,
whereby it was shown that parallel currents are important in setting the radial velocity
of blobs in typical TORPEX hydrogen plasmas [128,140,141]. To properly validate the
HESEL model, one would need to consider plasmas with higher ion mass or blobs with
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a smaller size, for which it has been shown that the parallel current contribution is neg-
ligible [140].

We also observe that the value of the background electron temperature is important in
setting the radial velocity of blobs, meaning that an accurate measurement of this quan-
tity is necessary to perform reliable simulations. Moreover, comparing the results of the
five codes between each other, we conclude that the radial dependence of the electron
temperature background plays a role in determining the correct vertical motion of the
blobs, while the evolution of the electron temperature is only necessary to describe their
spinning. We also showed that the electron inertia, the Boussinesq approximation, and
the infinite aspect ratio limit have a minor importance in determining the blob velocity.
The results presented in this chapter provide us with a better understanding of the blob
dynamics, and increase the reliability of the models used to carry out the seeded blob
simulations. The experimental scenario presented in this chapter constitutes an ideal test
bed also for future benchmarks and the validation of seeded blob simulations, thanks to
the measurements available, which allow accurate initialization of the simulations and
detailed comparisons with the numerical results. The magnetic configuration that we
consider facilitates considerably the analysis and the interpretation of the experimental
and simulation results.

This work represents a fundamental step towards the validation of full turbulence sim-
ulations against experimental measurements in more complex geometries, as it is in the
tokamak SOL. Such validation exercises are described in Chapters 6 and 7.
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CHAPTER

A validation in a tokamak:
turbulence in the RFX-mod SOL

Due to the complex nonlinear phenomena taking place in the tokamak SOL region, the
plasma dynamics is usually investigated numerically, thanks to state-of-the-art simula-
tion codes (see e.g. Refs. [18,20,125,126]). In the present chapter we focus on the
tokamak limited SOL configuration. Besides being of interest as a stepping stone to-
wards the simulation of more complex experimental scenarios, this configuration has
recently attracted large attention since the ITER start-up and ramp-down phases will
be performed using the high-field side part of the vacuum vessel as the limiting sur-
face [143,144].

In the past, extensive theoretical and numerical studies of the instabilities driving the
SOL dynamics were performed (see e.g. Ref. [145]). It was found that, in the limiter
configuration, SOL turbulence is generally driven by drift-waves (DWs) and ballooning
modes (BMs) [145,146]. It was also demonstrated that these linear instabilities typically
saturate due to a nonlinear local flattening of the plasma gradient and the resulting
removal of the instability drive [100]. These theoretical findings were subsequently val-
idated against experimental measurements taken on a number of tokamaks around the
world, such as TCV, Alcator C-Mod, and ISTTOK, showing good agreement between
simulations and experimental measurements of plasma turbulence [147-149]. Moreover,
using these observations and assuming that resistive BMs drive the SOL turbulence dy-
namics and that the parallel losses at the vessel are balanced by the turbulent transport,
an analytical scaling for the equilibrium pressure gradient length was derived [24,113].
It was found that this scaling is consistent with measurements taken on a number of
experimental devices [150].

The goal of the present chapter is to investigate a SOL parameter regime that was not
explored earlier and, in general, difficult to access experimentally. More precisely, we
investigate the SOL plasma dynamics in a circular limiter configuration with a low safety
factor at the last close flux surface (LCFES), qrors < 3, for which the SOL turbulence
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is expected to be clearly in the inertial DW (InDW) regime [145]. Our study is based
on performing SOL turbulence simulations considering two tokamak circular plasma
discharges carried out in the RFX-mod experiment [50] with gpcrs =~ 2,3. The RFX-
mod device can access such low safety factors thanks to an advanced feedback magnetic
boundary control system, which allows stabilizing resistive wall modes and to carry out
plasma discharges with ¢rors &~ 2 without disruptions [151]. We then analyse the na-
ture of the turbulence in the SOL of RFX-mod and we carefully compare our simulation
results against RFX-mod measurements.

The present chapter is organized as follows. We first discuss the RFX-mod experimental
setup in Section 6.1. In Section 6.2 we describe the simulations of the RFX-mod plasma
discharges. The simulations are then used to uncover the instability that drive the SOL
plasma dynamics in Section 6.3. Finally, the numerical results are validated against
experimental measurements in Section 6.4. The conclusions follow.

6.1 The experimental setup

The REX-mod experiment is a flexible toroidal device with major radius R = 2m and
minor radius a = 0.459 m, equipped with a set of 192 actively controlled coils that cover
the whole vacuum vessel [50]. While RFX-mod plasma discharges have been performed
mainly in the reversed field pinch (RFP) configuration, recent developments now allow
operating the device also with magnetic geometries that feature inner-wall limited and
diverted ohmic tokamaks [151-153]. Using a toroidal magnetic field on axis B, ~ 0.6 T
and a plasma current up to I, ~ 150kA, it is possible to perform plasma pulses longer
than 1s with integrated plasma densities n, > 10 m~3 and core electron temperatures
T, > 500eV.

In the following we consider two circular inboard-limited ohmic L-mode deuterium
plasma discharges (#38373 and #38413), carried out in the RFX-mod device with a
toroidal magnetic field on axis B, = 0.54T and plasma currents I, = 150kA and
I, = 100 kA. These two plasma currents correspond to the safety factors grcrs = 2 and
qLors = 3, respectively. The plasma densities and electron temperatures at the LCFS for
the two discharges are n.y = 7.7 x 10'7,2.0 x 10" m~2 and T,y = 16, 19 eV, respectively,
and correspond to the two normalised plasma collisionalities v* = L/ AP = 6.9,1.3,
where L = 2mqrors R is the parallel connection length and AP the electron mean free
path.

The experimental measurements illustrated in the following of the present chapter are
obtained using the U-probe installed in RFX-mod. This probe consists of two boron
nitride arms, each of them equipped with 25 electrostatic pins [154,155]. Some of the
pins are used as a five-pin triple probe [156], allowing simultaneous measurements of
ion saturation, I, plasma density, n, electron temperature, 7,, and floating potential,
Vi, with time resolution of 0.2 us. The U-probe is located at a fixed radial position
at the outward equatorial midplane, with its arms in the horizontal direction. In or-
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der to obtain measurements at different radial locations, the plasma column is slowly
shifted towards the inner wall of the device during the discharge, while keeping a con-
stant edge safety factor. We note that the experimental measurements related to the
#38373 plasma discharge we use for the present validation are taken only in between
sawtooth crashes. This leads to a reduced number of measurements for the considered
time traces (20’000 measurements) available for the analysis of the #38373 discharge
(approximately a factor ten less with respect to the #38413 discharge, for which we have
175’000 measurements).

6.2 GBS simulations of the RFX-mod SOL

The tokamak SOL region is generally studied by employing a plasma fluid description,
such as the Braginskii fluid model [13]. Moreover, since the SOL turbulent time scales are
much slower than the ion cyclotron time, and the perpendicular (to B) scale lengths are
longer than the ion Larmor radius, the drift approximation can be applied to simplify the
fluid model, thus obtaining a set of drift-reduced Braginskii equations useful to describe
the SOL plasma dynamics (see Appendix A for a discussion of this model). We con-
sider this model also for the present study, althought the conditions for the applicability
of the fluid model are marginally satisfied for the RFX-mod #38413 plasma discharge.
Neglecting electromagnetic effects as suggested in Ref. [157], since S.R/L, < 1073 in
the REX-mod SOL ([, is the plasma to magnetic pressure ratio and L, the equilibrium
pressure gradient length), assuming cold ions (no ion temperature measurements are
available on RFX-mod for these discharges, the impact of ion temperature effects on
SOL turbulence is investigated in Ref. [158]), and employing the Boussinesq approxima-
tion [91-93] to simplify the vorticity equation, the drift-reduced Braginskii equations,
Egs. (A.65)-(A.70), reduce to Eqgs. (2.28)-(2.32). The drift-reduced Braginskii system
is closed by the Poisson’s equation V2 ¢ = w and by the set of boundary conditions
in Eqs. (2.33)-(2.38), which describe the plasma dynamics at the limiter magnetic pre-
sheath entrance. The resulting model is solved thanks to the GBS code, as detailed in
Appendix A. Note that, unless specified otherwise, in the present chapter we make use
of the normalization and of the toric coordinate system (y, x, z) detailed in Appendix A.
Focusing on a circular plasma with a toroidal limiter located at the high-field side, and
assuming a large aspect ratio geometry and no magnetic shear to simplify the equa-
tions (a discussion of the impact of these assumptions on DWs and BMs is presented in
Refs. [145,146]), we perform two nonlinear GBS simulations based on the RFX-mod ex-
perimental parameters R, q.crs, e, and T.o. For the two plasma discharges #38373 and
#38413 these parameters lead to the normalized plasma resistivities v = 0.005, 0.001, the
normalized major radii Ry = 1872,1716, and the poloidal domain sizes L, = 2700, 2470.
In addition, we consider A = 3, a reduced ion to electron mass ratio m;/m. = 800, a
reduced normalized parallel electron thermal conductivity x|. = 2, and the normalized
perpendicular diffusion coefficients Dy = 5, where A = n,w, vy, v);, Te. The particle
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and temperature sources, used to mimic the plasma outflow from the core, are assumed
poloidally and toroidally constant, with radial dependence S, . (z) o exp [—(x — a)?/c?],
being o0 = 2.5. The radial domain extends from the inner radius x; = a — 30 to the outer
radius x, = @+ 70 in both simulations. Since a set of first-principle boundary conditions
describing the plasma interaction with the outer wall and the interface between the SOL
and the core does not exist yet, ad hoc boundary conditions are applied at x; and z,,
with Neumann’s boundary conditions used for n, vy, v;, and T, and Dirichlet’s bound-
ary conditions for w and ¢. To mitigate the impact of these boundary conditions on the
simulation results, the two regions extending from z; to x = a, and from x = a + 55 to
T, are considered as buffers and are not included in the analysis of the results.

We note that, because of the necessary rather large numerical grids (N,, Ny, N,) =
(128,1279,320), (128,1279,212), with N,, N,, and N, the number of points in the ra-
dial, poloidal, and toroidal directions, the two simulations discussed herein are extremely
expensive. The reduced mass ratio and parallel electron thermal conductivity are con-
sequently used to considerably decrease the computational cost of the simulations. We
also note that, while in the RFX-mod discharges the plasma current and the toroidal
magnetic field are in the same direction, we use a current that is in the opposite direction
to the magnetic field in the GBS simulations.

A typical GBS snapshot for the REX-mod plasma discharge #38373 is shown in Fig. 6.1.
On the left panel we present a three-dimensional view of In(p.). We clearly observe
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Figure 6.1 — Snapshot of a three-dimensional nonlinear GBS simulation based on the RFX-mod
plasma discharge #38373. Left panel: Three-dimensional visualization of In(p.), showing a section
of the domain simulated by GBS with the toroidal limiter at the high-field side (in blue). Right
panel: Poloidal cross section of the electron pressure plasma profile, with the limiter represented in
blue at the high-field side.

plasma turbulent eddies that are aligned to the magnetic field. On the right panel we
show a poloidal cross section of the simulated p. profile, with R and Z the radial and
vertical coordinates of a cylindrical coordinate system located at the center of the toka-
mak. The plasma dynamics described by our simulations results from the interplay of
the plasma outflow from the core, mimicked by the particle and temperature sources, the
radial outwards transport due to turbulence, the parallel plasma flows, and the losses at
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the limiter plates. No separation between background and turbulent quantities is made.
The equilibrium pressure gradient length L, = —p./Vp. is directly evaluated from non-
linear simulations by computing the averaged radial p. profile at the outer midplane,
pe(®) = (pe(0, 7, 2,1)), ,, where (—)_, denotes averaging over z (the toroidal coordinate)
and ¢, and fitting p.(x) between z = a and x = a+55 assuming p.(x) o exp[—(x—a)/L,).
For the two plasma discharges #38373 and #38413 we find L, = 31 and L, = 37, re-
spectively. Computing the power spectral density of the p. fluctuations in the nonlinear
simulations (not shown here), it is also possible to estimate the poloidal wave number
of the mode that drives most of the turbulent transport. For the two plasma discharges
considered herein we find £, ~ 0.1 — 0.2.

6.3 Identification of the instability driving the SOL
transport

Previous investigations of the SOL plasma dynamics indicate DWs and BMs as the main
instabilities driving SOL turbulent transport [17,145,157]. BMs are interchange-like
modes, driven unstable by magnetic curvature and pressure gradients pointing in the
same direction. The mechanism leading to BMs can be summarized as follows. Because
of the presence of a pressure gradient, electrons and ions drift in opposite direction,
perpendicular both to Vp, and B. In presence of a small density perturbation, a charge
separation occurs, which gives rise to an electric field. When the magnetic curvature
and the pressure gradient point in the same direction, the generated electric field leads
to an E x B flow that amplifies the initial perturbation, resulting in an instability with
a phase shift between the pressure and potential perturbations close to w/2. The par-
allel component of the electric field can be balanced by plasma resistivity, in this case
the instability is known as resistive BMs (RBM), by electron inertial effects, giving rise
to inertial BMs (InBM), or by electromagnetic effects, which cause the growth of ideal
BMs (IBM). On the other hand, DWs are due to an E x B convection of the plasma
pressure when electron adiabaticity is broken by resistivity or finite electron mass, lead-
ing respectively to resistive DWs (RDW) and InDWs. This is understood as follows. If
we consider a plasma with approximately adiabatic electrons, regions with high plasma
pressure correspond to regions with high plasma potential, and vice versa. Consequently,
pe. perturbations are associated with an E x B flow. In the presence of plasma pressure
gradients, this flow might result in an instability, the DW instability.

Past works show that qrcrs and v strongly affect the SOL turbulent regime. In par-
ticular, it is demonstrated that it exists a threshold value of v below which a transition
from RBMs to InDWs is observed, and this threshold value increases with the decraese
of the safety factor [145]. While in typical tokamak conditions the SOL is expected to
be in the RBM regime or marginally in the DW regime, for the parameters considered
herein turbulence is expected to be clearly in the InNDW regime [145]. In the following
of the present section we investigate the nature of the instability that drives most of the
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Figure 6.2 — Profiles of L,, as function of y based on the RFX-mod discharge #38373, solving the
“full” GBS model, Egs. (2.28)-(2.32) (blue line), the “BM” model (red line), and the “DW?” model
(yellow line).

SOL turbulent transport in the plasma discharges #38373 and #38413.

6.3.1 Nonlinear simulations

In order to identify the instability that drives most of the RFX-mod SOL turbulent
transport, we proceed as follows. Considering the plasma discharge #38373, we perform
three nonlinear simulations solving (i) the “full” GBS model, Eqgs. (2.28)-(2.32), (ii) the
“BM” model, considering Eqgs. (2.28)-(2.32) where we neglect the diamagnetic term in
the Ohm’s equation, i.e. we simplify Eq. (2.30) as

2

2 VIGe| = eV Ve + Dy V1vje, (6.1)

R m; .
Ovje = ——{d,vpef + {VW’ + v —
Ps0 Me
and (iii) the “DW” model, where we neglect the pressure curvature term in the vorticity
equation of the “full” GBS model, which corresponds to rewriting Eq. (2.29) as

R 1 1
Oow=——{o,w} — viViw+ =V + -—C (Gy) + DwViw- (6.2)
Ps0 n 3n

For each simulation we then compute p.(y,r) = (pe(y,z,2,1)),, and, at fixed y, we fit
Pe(y, ) between x = a and x = a + 55 assuming p.(y, z) x exp[—(x — a)/L,(y)]. The
values of L,(y) thus obtained are shown in Fig. 6.2 for the three models. We observe
that the “full” and the “DW” models lead to quite similar L, for y > 0, while L, is
larger for y < 0 in the “DW?” simulations, particularly in the proximity of the limiter.
This is probably due to the stabilizing effect of magnetic curvature on SOL turbulence
at the tokamak high-field side. On the other hand, the value of L, for the “BM” model is
considerably smaller than for the original simulation. This suggests that DWs are driving
most of the SOL turbulent transport, in agreement with the expectations in Ref. [145].
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Figure 6.3 — Probability distribution function of the phase shift between dp. and §¢ for the non-
linear simulations based on the two RFX-mod plasma discharges #38373 (left panel) and #38413
(right panel).

Another approach we explore to understand the nature of the dominant instability, based
on investigating the phase shift and the correlation between electron pressure and plasma
potential fluctuations, dp, and d¢, turns out not conclusive. Since DWs lead to electrons
in conditions close to adiabaticity, we expect a small phase shift between dp. and d¢
and a noticeable correlation between these two quantities. On the other hand, BMs
are expected to show a phase shift close to m/2 and no correlation between dp, and
d¢ [159]. Following the methodology illustrated in Ref. [146], we compute for the two
GBS simulations of REX-mod the probability distribution function of the phase shift and
the joint probability between dp, and 0¢ at © = a + 15 for all 6, € [—m,w]. The results
obtained are presented in Figs. 6.3 and 6.4. Concerning the phase shift, we observe that
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Figure 6.4 — Joint probability of dp. and d¢ normalized to their standard deviation for the non-
linear simulations based on the two RFX-mod plasma discharges #38373 (left panel) and #38413
(right panel).

P(0pe, 0¢) =~ m/4 at the k, of the largest amplitude mode. Moreover, dp. and ¢ do not
show a clear correlation, nor they are clearly not correlated (for both simulations the
correlation coefficient is approximately 0.7). Therefore, while the results obtained from
the analysis of the phase shift and of the joint probability are not incompatible with a
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SOL dynamics mostly driven by DWs, they are not conclusive to indicate the instability
that drives most of the SOL turbulent transport.

6.3.2 Linear instabilities

As a confirmation of the nature of the turbulent transport identified by using the nonlin-
ear simulations, we consider the linear properties of the instability dominating the SOL
plasma dynamics. This approach allows us also to disentangle more easily the role of
resistivity and electron inertia and to study ion to electron mass ratios not accessible by
the nonlinear simulations.

First, in order to deduce a linear model useful for investigating the SOL plasma dy-
namics, we introduce the flux-tube (X = Y = aa/q, Z = qR6,) coordinate system,
where r is a flux coordinate, &« = ¢ — q(r)0, a field line label, ¢ the toroidal angle,
0. and q(r) are the straight field line angle and safety factor defined in Section A.3.4,
and ¢ = ¢(a) = qrers. Equations (2.28)-(2.32) are then expressed in the (X,Y, Z) co-
ordinate system and the resulting system of equations is linearised assuming that the
equilibrium plasma profiles depend only on the radial coordinate X. Moreover, each
quantity A = A(X,Y, Z,t) is split between an equilibrium part Ay(X) and the perturba-
tion 0A(Y, Z,t) = SA(Z) exp [ikyY + ~t], with ky the poloidal wave number and 7 the
linear growth rate. Equilibrium gradients are defined as OxA = —Ao/La, where Ly is
a characteristic length associated with Ay at X = a. The X dependence of JA is ne-
glected here because ky /kx ~ v/kyL, > 1 for both DWs and BMs [160,161]. Assuming
®o = Vjip = V)0 = 0, noting that ng = 1 and T,y = 1 in normalized units, and neglecting
gyroviscous and diffusion terms, the resulting linearised system of equations is written
as

o
o

R
yon = — ikyL—Oégb — 2iky cos(0,) (0p. — 0¢) + 0z (6]'“ — 5UH¢) ,

n

76&) = — QZky 008(9*)5]7@ + 825]”’
%WJHE =07 (6¢ — dpe — 0.TLT,) + 63y,

/N /N /N
o o o
=

SIS
~—  ~— ~— ~—

Yov); = — Oz0pe,

4 «
T, = — ikyn 25 — ihy Lc0(02) <5pe + 251 — 5¢>
L, 3 2
2 .
+ gaz (1.71(5” — (51}‘“) s (67)

where dp. = dn+ 0T, 0jj = dv); — V|, 0w = —ki-0¢, and nn = L,/ Lr,. Equations (6.3)-
(6.7) determine the linear growth rate of the SOL plasma instabilities.

To solve Egs. (6.3)-(6.7), a numerical code was developed, which evaluates v as a function
of the parameters Ry/L,,, m./m;, n, v, q, and ky. The numerical implementation of the
code is detailed in Ref. [146], and its main features are summarized here. First, the Z
coordinate is discretized using a fourth order finite difference scheme. Second, Dirichlet
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boundary conditions are imposed at the end of the flux tube to dn, d¢, and 07,, while
no boundary conditions are applied to the ion and electron parallel velocities. We note
that we extend the simulation domain along the Z coordinate to mitigate the impact
of the boundary conditions on the obtained results. Finally, the discretized system of
equations is integrated implicitly in time, starting from random noise. By studying the
growth of the most unstable mode, we obtain ~.

As discussed in Section 6.3.1, it is possible to remove the BM instability from the sys-
tem, Eqgs. (6.3)-(6.7), by zeroing out the curvature term in the vorticity equation, i.e.
neglecting the first term of the right-hand side of Eq. (6.4). The solution of the resulting
reduced model is denoted in the following as ypy. On the other hand, DWs are removed
from the model by neglecting the diamagnetic term in the Ohm’s equation, i.e. zeroing
out the dp. and 07, terms of Eq. (6.5). The solution of this reduced model is denoted in
the following as vyg;.

Considering m;/m. = 800, the parameters v, Ry and ¢, inputs of the linear code, provided
by experimental measurements of the plasma equilibrium, setting n ~ 0.7 according to
typical simulation results (see e.g. Ref. [161], and also in agreement with the nonlinear
results obtained with the two GBS simulations of RFX-mod), and imposing L, and ky
as evaluated in Section 6.2 from the nonlinear simulations, we solve Eqgs. (6.3)-(6.7) for
v, Yow, and vgys. For the two discharges #38373 and #38413 we obtain v = 5.1,4.4,
Ypw = 5.2,4.5, and vy = 0.3,0.1, respectively. While the values of vpy, are similar
to the growth rates obtained by solving the original Eqgs. (6.3)-(6.7), removing the DWs
from the system leads to a growth rate close to zero. This means that the DW is the
instability that drives most of the SOL turbulent transport in the two plasma discharges
considered herein, in agreement with the nonlinear results.

In order to disentangle the impact of resistivity and electron inertia on DWs, we simplify
Eqgs. (6.3)-(6.7) as follows. We first neglect the curvature terms to avoid coupling with
BMs, together with the compressibility terms in the continuity and temperature equa-
tions. Then, assuming v > kz, we remove the sound wave coupling from the model.
The resulting system of equations is written as

yon = —iky%é(;ﬁ — 020, (6.8)

Yow = =070V, (6.9)

;”: Y6vye = Bz (8¢ — Op. — 0.T16T.) — véu), (6.10)
2

’yéTe = —Z/{}y?’]%&(]ﬁ — 17158Z5U“e (611)

Equations (6.8)-(6.11) constitute the minimal model necessary to describe the linear dy-
namics of RDWs and InDWs. RDWs and InDWs are removed from the model, Egs. (6.8)-
(6.11), by setting v = 0 and m./m; = 0, respectively. Solving Eqgs. (6.8)-(6.11) with
the linear code discussed above, we obtain v = 6.1,4.7 for v = 0 and v = 3.1,1.9
for m./m; = 0. Since the growth rates are approximatively a factor two smaller for
me/m; = 0 with respect to v = 0, we conclude that InNDWs are driving most of the SOL
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turbulent transport in the two plasma discharges considered here, in agreement with the
conclusions in Ref. [145].

We note that, while ky and L, input of the linear code, can be obtained from the non-
linear simulation results, they can also be estimated semi-analytically. In fact, in the
limit of a negligible E x B flow, the saturation of the growth of BMs and DWs is usually
determined by the gradient removal mechanism, i.e. the saturation of the mode is due
to the nonlinear local flattening of the plasma pressure profile, thus removing the drive
of the instability [100]. The main aspects of this theory are detailed in Appendix B and
the main result is

Ly, q(
L,= =2 (- 12
P 1+77 Cs <kY>max’ (6 )

with ¢, = 1 because of the normalization employed. Equation (6.12) is an implicit equa-
tion for L, that is solved by scanning -, solution of Egs. (6.3)-(6.7), over the parameter
space (ky, L, ) and searching for the value of L,, and ky that satisfies Eq. (6.12). This pro-
cedure is applied to determine the equilibrium pressure gradient length of the two plasma
discharges #38373 and #38413 for m;/m. = 800, obtaining L, = 44,56, ky = 0.17,0.17,
and v = 3.8,3.1, respectively. The L, values computed according to Eq. (6.12) are in
qualitative agreement with the results obtained from the nonlinear simulations discussed
in Section 6.2. Moreover, the wave number associated with the instability that drives
most of the SOL turbulent transport is in good quantitative agreement with nonlinear
results.

Equation (6.12) allows us to investigate the impact of the reduced ion to electron mass
ratio on our results. This is necessary since performing nonlinear simulations with
m;/m. = 3600 is too demanding in terms of computational resources. Imposing a realis-
tic ion to electron mass ratio m;/m. = 3600, we obtain L, = 39,52 and ky = 0.14, 0.16.
We see that L, and ky are only slightly affected by increasing the ion to electron mass
ratio to a realistic value. Moreover, we note that the same turbulent regime obtained
with m;/m. = 800 is found also for the experimental value m;/m, = 3600, i.e. the SOL
turbulent transport is mainly driven by InDWs.

6.4 Validation of the GBS simulations against ex-
perimental measurements

In order to assess the reliability of the drift-reduced Braginskii model and of the GBS
simulations, we now compare the nonlinear numerical results with RFX-mod experimen-
tal measurements. We remark that the plasma dynamics inside the LCFS is neglected
in the simulations considered herein. Therefore, we expect a better agreement between
simulation results and experimental measurements in the far SOL than in the near SOL.
Note that the results illustrated in the present section are in SI units.

First, we present the experimental and simulation radial equilibrium profiles of n, T,
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Figure 6.5 — Experimental (blue circles) and simulation (red lines) radial equilibrium profiles of
plasma density (first row), electron temperature (second row), ion saturation current density (third
row), and floating potential (fourth row), for the two RFX-mod plasma discharges #38373 (left
column) and #38413 (right column).

Jsat, and Vj for the two REX-mod discharges discussed above in Fig. 6.5 (we evaluate
Jsat = encs/2 and Vy; = ¢ — AT, /e in the simulations). According to the results pre-
sented in Chapter 3, we assume a 20% relative numerical error affecting the simulation
equilibrium profiles and we neglect other sources of uncertainties. We observe that the
equilibrium radial profiles of n, 7., and js, obtained from the nonlinear simulations
of both discharges are consistent with the experimental results within the estimated
uncertainties. However, since the experimental uncertainties are rather large, it is not
possible to reliably estimate the n and 7T, equilibrium gradient lengths. Concerning Vy;,
the simulation results do not agree with the experimental measurements, in particular
in the proximity of the LCFS. We note that the uncertainty on the LCFS position is
approximately 5mm. However, this uncertainty is not sufficiently large to explain the
discrepancy in the Vy; radial equilibrium profile. This discrepancy is probably related
to simulating only the open field line region of RFX-mod, since the plasma dynamics
close to the LCFS plays an important role in setting Vy; in the near SOL [162], and to
neglecting ion temperature effects.
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Figure 6.8 — First row: Experimental (blue lines) and simulation (red lines) probability density
function of §jsqs (first and third column) and 6Vy; (second and fourth column) normalized to their
standard deviation. Second row: Experimental (first and third panels) and simulation (second
and fourth panels) joint probability of §jsq¢ and 0Vy; normalized to their standard deviation. The
results are evaluated approximately at 2 cm from the LCFS and are displayed for the two RFX-mod
plasma discharges #38373 (first and second columns) and #38413 (third and fourth columns).

In Fig. 6.6 we compare the experimental root-mean-square (RMS) values of §jgqr, 655M5
normalized to the equilibrium j,4, with the simulation results. We observe that the sim-
ulations underestimate approximately by a factor of two the jy,; fluctuations for both the
considered discharges. In Fig. 6.6 we also display the skewness and the kurtosis related
to the experimental and numerical jz,; time traces. For these quantities the simulation
results show a better agreement with the experimental measurements than for §jZM9
In particular, the simulation results display a js,; skewness close to zero in the proxim-
ity of the LCFS and monotonically increasing in the SOL, in agreement with previous
experimental SOL investigations [163-165].

In Fig. 6.7 we present the radial profiles of the 6V RMS values, (5Vf1fMS , and of the
Vi skewness and kurtosis. Concerning the RMS values, we observe an almost radial
constant level of fluctuations both in the simulations and in the experiment. However,
while the numerical results display a quite good agreement with RFX-mod experimental
measurements for the #38373 discharge, the agreement worsen considering the discharge
with lower plasma collisionality. The V}; skewness monotonically decreases in the SOL
both for the simulations and for the RFX-mod experimental measurements, with good
quantitative agreements between the two quantities. Finally, concerning the Vy; kurto-
sis, we observe good qualitative agreement for both discharges, with an almost constant
value close to three, except for R — Rycps > 2.5 cm, where the kurtosis is larger. We
note that a comparison of the Vy moments between simulations and experimental mea-
surements is also discussed in Ref. [166], considering TORPEX plasma discharges. Con-
siderably larger discrepancies between numerical results and experimental measurements
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Figure 6.9 — Experimental (blue lines) and simulation (red lines) profiles of the jsq: (first row)
and Vy; (second row) power spectral densities, and of the phase shift (third row) and the coherence
(fourth row) between 0754 and 6V, for the two RFX-mod plasma discharges #38373 (left column)
and #38413 (right column).

were found in that case, probably due to the presence of fast electrons, resulting from
the source operating at the electron cyclotron resonance.

Our observations on the agreement of j,,; and Vy skewness and kurtosis are confirmed
by comparing the numerical and experimental probability density functions (PDF) cor-
responding to js,; and Vy fluctuations normalized to their standard deviation in the far
SOL, at approximately 2cm from the LCFS, as shown in the first row of Fig. 6.8. We
observe that the simulation results are in quite good agreement with experimental mea-
surements for both physical quantities and for both discharges. The j,,, PDF displays
a positive skewness, while the V; PDF is negatively skewed. We note that small differ-
ences are observed between experimental measurements and simulation results for the
distribution tails, particularly for the plasma discharge #38373. This might be due to
intermittent events occurring inside the LCFS, which are not taken into account in the
simulations. However, these differences are too small to explain the different level of j,u
fluctuations, and allow us to conclude that the different levels of fluctuations between
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Figure 6.10 — Experimental (first and third panels) and simulation (second and fourth panels)
S(kg, f) spectra obtained from Vy; time-traces for the two RFX-mod plasma discharges #38373
(first and second panels) and #38413 (third and fourth panels).

simulations and experimental measurements are not related to coherent intermittent
events, which would strongly affect the PDF tails. In Fig. 6.8 we also compare the
experimental joint probabilities between 67, and dVy; at approximately 2 cm from the
LCFS, normalized to their standard deviation, with the simulation results. A good qual-
itative agreement between experimental measurements and simulation results is found,
with §jsat/0j.,, and 0Vj /oy, showing moderate anticorrelation.

For the analysis of the equilibrium profiles and fluctuation properties, it emerges that the
major difference between experimental measurements and simulations lies in the level of
Jsat fluctuations. We explore the reason of the discrepancy in Fig. 6.9, where we display
the numerical and experimental power spectral densities (PSD) related to js and V.
We observe that for both discharges and for both quantities the PSD monotonically
decreases for f 2 10kHz, in agreement with previous observations [149]. However, the
simulation PSD is smaller than the experimental one, particularly for the #38413 dis-
charge, whose plasma collisionality is smaller. We also see that the discrepancy between
simulations and experimental measurements increases for f 2> 100kHz. In Fig. 6.9 we
also display the phase shift and the coherence between js¢ and Vy; fluctuations. First, we
note that the experimental measurements are noisier for the #38373 discharge because of
the presence of sawtooth instabilities and of the resulting lower temporal statistics used
for the analysis. We also observe that the phase shift resulting from the nonlinear sim-
ulations is in better agreement with experimental measurements for f 2 20 kHz than it
is at low frequencies, where P(0V};, §jsqt) > 0 for the experimental measurements. This
discrepancy at low frequencies seems related to incoherent experimental fluctuations, as
shown in the last row of Fig. 6.9. In fact, the simulation results display a quite strong
coherence between jy and Vy; at all frequencies, while the experimental measurements
show a lower coherence, particularly at low frequencies. Overall, the results presented
in Fig. 6.9 indicate a better agreement between simulations and experimental measure-
ments in the frequency rage 10kHz < f < 100 kHz, where the coherence between ¢jgq;
and 0V}, is higher, while the agreement worsen at low and high frequencies, with the
RFX-mod measurements dominated by incoherent structures.

To further investigate the discrepancies observed between simulations and experimental
measurements, in Fig. 6.10 we display the S(kg, f) spectra obtained from the V; time
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traces at R — Rpcrps =~ 2cm and related to the two plasma discharges #38373 and
#38413. We note that, while the spectra obtained from the V}; experimental measure-
ments are evaluated according the two-point correlation technique describe in Ref. [167],
the simulation results are obtained computing the Fourier transform of the Vy; time
signals along ¢ and y. In Fig. 6.10 we observe that the modes are mainly rotating in
the ion diamagnetic direction, both for the experiment and the simulations. However,
while in the experiment the dominant modes have kgppyo < 0.03, for the simulations
0.1 < kgpso < 0.2, as previously discussed. We note that, assuming a linear relation be-
tween k and f, in the simulations we obtain kg = 1/py for f = 100kHz. Since the drift
approximation is not justified for kgpsg = 1, and kgpso = 1 corresponds approximately
to the maximum wave number resolved by the grids used for the present simulations,
we infer that the increasing discrepancy observed for f 2 100kHz in the PSD may be
related to the limits of the drift-reduced Braginskii model and to the simulation finite
grid resolution.

In summary, the GBS model is able to qualitatively reproduce most of the RFX-mod
experimental measurements, with the noteworthy exception of 07, and, in general, a
better agreement for the RFX-mod plasma discharge #38373, whose plasma collision-
ality is higher than in the #38413 discharge. Since the ¢j,, and 6V} phase shift and
joint probability agree between simulation results and experimental measurements at
the frequencies where the fluctuations are more coherent, we conclude that the turbu-
lent transport should be driven by InDWs both in simulations and in the experiment,
with coherent structures having similar statistical properties.

The differences observed in the V}; radial profile and in the level of j, fluctuations may
be, at least in part, related to simulating only the tokamak SOL region, neglecting the
plasma dynamics inside the LCFS. As a matter of fact, we note that previous tests per-
formed considering GBS simulations of ISSTOK [168] indicate an increase of §5EM5 /5,

up to 30% when the plasma dynamics inside the LCFS is included in the simulations.

RMS
sat

In addition, sensitivity tests pointed out that §j depends on the plasma resistivity,

with 35 increasing by approximately 15% when increasing v by a factor ten.

6.5 Conclusions

In the present chapter GBS simulations based on two RFX-mod plasma discharges with
low edge safety factors are discussed. The SOL turbulent regime in the two discharges
is identified. Moreover, the GBS simulations are compared with experimental measure-
ments, showing good qualitative and quantitative agreement for most of the considered
quantities.

The nonlinear simulations, carried out with GBS, are based on the two RFX-mod plasma
discharges #38373 and #38413. They point out that, for the two considered discharges,
the turbulent transport is mostly driven by DWs. To disentangle the effect of resistivity
and electron inertia on the RFX-mod SOL dynamics, a linear model is introduced. It is
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found that plasma adiabaticity is mostly broken by electron inertia, resulting in InDWs.
Moreover, assuming that the linear growth of BMs and DWs saturates because of the
nonlinear local flattening of the plasma pressure profile, the equilibrium pressure gradi-
ent length and the wave number associated with the instability that drives most of the
turbulence transport are estimated with a quasi-linear theory, showing good agreement
with the nonlinear results. This theory is then employed to investigate the impact of the
reduced ion to electron mass that is used in the nonlinear simulations. It is found that
InDWs are expected to drive the SOL turbulence also for realistic m;/m. = 3600.

In order to expand the GBS validation parameter regime and assess the reliability of
the GBS model at low safety factor values, the simulation results are carefully compared
with RFX-mod experimental measurements. It is found that the numerical results are
in good agreement with experimental radial equilibrium profiles, fluctuation measure-
ments, and higher order moments of js; and Vy;, except for the equilibrium profile of Vi,
and the level of fluctuations of j,,. We infer that the observed discrepancies between
simulations and experimental measurements are, at least in part, related to simulating
only the tokamak SOL region, without including the plasma dynamics inside the LCFS,
and to the limits of applicability of the drift reduced approximation.
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CHAPTER

A rigorous validation: plasma
shaping effects in TCV

Despite the fact that the effects of plasma shaping on core turbulence have been exten-
sively investigated, both experimentally and numerically (see e.g. Refs. [169-173]), the
attempts to study the effects of plasma shaping on scrape-off layer (SOL) turbulence
in limited geometry are only experimental (see e.g. Ref. [174]). This motivates the
work discussed in the present chapter, where the impact of tokamak inverse aspect ratio
(€), Shafranov’s shift (A), elongation (x), and triangularity (6) on the SOL dynamics
is studied. The goal of our analysis is threefold. First, the main linear instability driv-
ing the SOL dynamics is identified, depending on the shape of the magnetic geometry.
Second, an analytical model for the characteristic equilibrium gradient pressure length,
L, = —p./Vpe., that features shaping effects is deduced. Finally, the model employed for
investigating the impact of plasma shaping on the SOL plasma dynamics is rigorously
validated against TCV [175] experimental measurements.

Our study is based on the drift-reduced Braginskii equations, which we express in ar-
bitrary magnetic geometry in Section 7.1. Focusing on a limited SOL, this being the
simplest configuration retaining the relevant effects of plasma shaping, we then use a sim-
ple analytical equilibrium model [176] to express the dependence of the magnetic field on
€, A, k, and §. The impact of the magnetic geometry on the growth rate of ballooning
modes (BMs) and drift waves (DWs) is analysed using a linearised model, as discussed
in Section 7.2. Assuming that the linear instabilities saturate due to a nonlinear local
flattening of the plasma gradient and the resulting removal of the instability drive [100],
we determine the main instability driving SOL turbulence and express L, as a function
of the shaping parameters, as illustrated in Section 7.3. Our theoretical findings are com-
pared in Section 7.4 with the results of three-dimensional, global, flux-driven, nonlinear
simulations of SOL turbulence carried out with GBS [20,177]. Then, in Section 7.5 we
present a possible physical interpretation of our results. Finally, the methodology used
to perform a rigorous validation of a model against experimental measurements is dis-
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cussed and applied to validate the GBS model against TCV measurements in Section 7.6.
Our conclusions follow in Section 7.7. Part of the results presented in this chapter are
published in Ref. [178].

7.1 The model

The high plasma collisionality in the tokamak SOL allows neglecting kinetic effects and
using a fluid approach to describe plasma dynamics. In this section we present the model
we consider in the present chapter, used to analyse the impact of shaping effects on SOL
turbulence and to investigate the TCV SOL plasma dynamics.

7.1.1 Fluid moment equations

The analysis of the SOL dynamics presented in this chapter is based on the use of the
drift-reduced Braginskii equations discussed in Appendix A. Within the electrostatic and
Boussinesq approximations, the GBS model, Eqs. (A.65)-(A.70), reduces to

on R 2
5 =~ g (6} + 5(0(p) —nC (@) = V- (nvjchy) +Du(n) + 5,0, (7.1)
Ow Ry 2B B? .
ot = B {¢7W} + 70 (pe + Tpi) — U”iv”w + ?V . (]”bo)
B
+ 5 C(Gi) + Dolw), (7.2)
8U\|e . Ro my; vae VjH 2
ot - § {gba/UHe} + E [V|¢ — T — O71VHTE + 7 — %v”Ge
B UHCVHUHE + Dvue(vl\e)v (73)
ov i RO 1 2
alcl - B {¢7 UHi} — v Vv — EVH (pe + TDi) — %V||Gi + Dvui(v\li)7 (7.4)
aT, Ry AT, [C(p) 5
% - B {0, 10} + 3B [n +5C0(T) = C(9)| — vV Te + Sz,
2T, V- (7)bo
+5° 0.71(71) = V- (viebo) | + V) (x)eVyT.) + Dr.(T.),  (7.5)
aTz o RO 4E C<pe> 5T
o B {0, Ti} + 3B [n ?O(E) C(o) UHiVHTz + S,
27; | V- (J)bo
T3 (n) =V (vpibo) | + V) (0 V) T3) + Dri(T2), (7.6)

where w = V3 ¢ + 7V2T; is the plasma vorticity and we use the normalization detailed
in Appendix A. As usual, the Poisson brackets are defined as {¢, A} = by (V¢ x VA),
the curvature operator as C'(A) = B/2[V x (by/B)] - VA, the perpendicular Laplacian
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as VIA = =V [by x (by x VA)], and the parallel gradient reduces to VjA = by- VA
in the electrostatic limit, with A = n,w, ¢, v|;, ve, T, T;. Equations (7.1)-(7.6) are com-
pleted by the set of boundary conditions describing the plasma dynamics at the magnetic
pre-sheath entrance, Eqs. (A.75)-(A.81), detailed in Section A.3.3. With respect to the
model used for the RFX-mod simulations, we remark that the present equations con-
sider finite ion temperature effects, since typical charge exchange measurements indicate
7~ 1 in the proximity of the last close flux surface (LCFS) in TCV.

7.1.2 Coordinate systems and differential operators

We express here Egs. (7.1)-(7.6) for arbitrary magnetic geometries. We note that the
dependence on the magnetic field geometry enters in the model through: (i) the norm
of the magnetic field B, (ii) the direction of the unit vector by, and (iii) the differential
operators {¢, —}, C(—), V|(—), and V3 (—), which are computed, having defined a
magnetic geometry, by expressing the covariant and contravariant components of the
magnetic field and of the metric tensor in the chosen coordinate system.

In the present chapter, we make use of the toric (0,,r, ) and the flux-tube (7, a,0,)
coordinate systems, where r is a flux coordinate, ¢ is the toroidal angle, o = ¢ — ¢(r)6,
is a field line label, and 6, is the straight field line angle defined as

1 B-Vyp

0.(r,0) = — 7.7
(r.9) q(r) Jo B-V¢ 1)
with # and €’ the poloidal angle and
1 2" B-Vop
= — dée .
) 2w / B-Vo (7.8)

the safety factor. We remark that, in the remainder of this chapter, we rescale the toric
coordinate system as y = af,, v = r, and z = Ryp, where a is the tokamak minor radius
in pg units. We also rescale the flux-tube coordinate system as X = r, Y = (a/q)a, and
Z = qRob., with ¢ = gq(a) the safety factor at the LCFS.

In the (y,z,2) coordinate system, the differential operators can be written in their ad-
vection form, obtaining

{0. A} = P¥{o,Abye + P*{¢, Abss + P¥{0, A}y, (7.9)
JOA | pe0A 04

0A LA 0A

C(A) = 5+ C 5+, (7.11)
82A 0*A A 0A 0A
2 — YT xxZ LT T
V3iA NYY 0 + N 8y6m+N N /\/
LO*A 0?A 82A 8A
Yo Tz Yz
+ N# 5. + N 528 + N ya 5 (7.12)
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Figure 7.1 — Poloidal cuts of the magnetic surfaces generated assuming a magnetic equilibrium
given by Eqgs. (7.20)-(7.24), for € = 0.25, A(0) ~ 7 (in pso units and for 5, = 0), k = 1.8, and
d = —0.3 (left panel), 6 = 0 (middle panel), and § = 0.3 (right panel). Black thick lines represent
the LCFS, while blue lines represent magnetic surfaces in the core.

with {¢, A},, = 0,A0,¢ — 0,A0,¢, while equivalent expressions are found consider-
ing the (X,Y,Z) coordinate system. Assuming an axisymmetric magnetic field and
that turbulence is characterized by V A/V A > 1, one can compute the coefficients
in Egs. (7.9)-(7.12) (the details of the derivation are presented in Appendix C). The
resulting nonzero coefficients are

e _ @ . RoBdc, oV aRyB [8% (1] (809* 80,4)} (713)

Jb#’ 27 96, - 2g |or or 0.
pp
N =g7, N =2ag",  NW=d <99*9* * gq) , (7.14)
NE =V,  NY=aV?0, (7.15)
for the (y, x, z) coordinate system and
PXY _ _li97*57 DZ — qRObe*, (7.16)
RoB Oc aRyB [ dc ¢
X 0 @ Y 0 T 0.
_ _ _ 1

¢ 27 06,’ ¢ 2Jq (80* or ) ’ (7.17)

202" 2 oo
NXX = g NXY — gq (1’ NYY = (thg2 7 (7.18)
NX =V, NY =292 (7.19)

q
for the (X,Y, Z) coordinate system.
7.1.3 Magnetic equilibrium

In the present chapter we consider the magnetic equilibrium that is obtained by solving
the Grad-Shafranov equation in the r/Ry — 0 limit, taking into account elongation and
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nonzero triangularity [176], neglecting the plasma pressure contribution, and extrapo-
lating the equilibrium to r = a. The solution of the Grad-Shafranov equation, presented
in Appendix D, leads to

R.(r,0) = Ry { Ro A(Z) + P S,,;%(Or) cos[(m — 1)0] — PIEBZ) cos 9} ,
(7.20)
Ze(r,0) = Ry {};o sinf — 2222 Sn};(or) sin[(m — 1)0] — P]éz) sin 9} , (7.21)
F(r) = Ry {1 - ;{%q(iy 241 ;Oqo (Zﬂ } , (7.22)
jrgp
27rq / o e _qg, (7.23)

q(r) = g0 + (¢ — q) (a> : (7.24)

where A(r) is the Shafranov’s shift in the 8, — 0 limit (being 3, the ratio of the plasma
pressure to the poloidal magnetic pressure), So(r) and S3(r) are shaping functions related
to k and ¢ by k = [a — Sa(a)]/[a + Sa2(a)] and 0 = 4S5(a)/a, qo is the safety factor at
the magnetic axis, and Jy,, = R.(0,R:.09Z. — OgR 0, Z.) is the Jacobian associated with
the (0,r, ) coordinate system. The analytical expressions of the functions Sy(r), S3(r),
A’(r), and P(r) are given in Appendix D. Examples of magnetic surfaces resulting from
this model are presented in Fig. 7.1.

Combining Eq. (7.7) with the expression of the axisymmetric field B, one obtains

jO/w /
0.(r,0) = w, / oot (7.25)

We note that 0, = 0 = 0 and 0, = 6§ = 27 correspond to the equatorial low-field side
midplane and that, in general, Eq. (7.25) is not analytically integrable, but it is possible
to find numerically the two functions 0, = 60,(r,6) and the inverse § = 6(r,0,). From
these, all the coefficients of Eqs. (7.13)-(7.19) can be computed, and Eqs. (7.1)-(7.6)
are completely defined. Finally, we note that in the limit A(0) — 0, Kk — 1, 6 — 0,
and neglecting P(r) and the 72/R2 term of Eq. (7.22), we obtain the circular magnetic
equilibrium discussed in Ref. [179].

7.2 Linear instabilities

The turbulent transport observed in the tokamak SOL is due to the nonlinear develop-
ment of linear modes that are destabilized by plasma gradients and unfavorable magnetic
curvature in the presence of resistivity and electron inertia [180-184]. For typical SOL
parameters, BMs and DWs are found to be the main instabilities driving plasma turbu-
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lence [17,145,157].

In the reminder of this section, focusing on the resistive branch of BMs and DWs, we dis-
cuss the properties of SOL linear instabilities and, in particular, the derivation of resistive
BM (RBM) and resistive DW (RDW) dispersion relations in non-circular magnetic ge-
ometries. Following the procedure applied in Section 6.3.2, we linearise Eqs. (7.1)-(7.6)
assuming that the equilibrium plasma profiles depend only on the radial coordinate
X and we write the perturbation as dA(Y, Z,t) = dA(Z)exp [ikyY + ~t], with ky the
poloidal wave number and v the linear growth rate. In the cold ion limit (for a discus-
sion of the impact of ion temperature on SOL instabilities we refer to Ref. [158]), i.e. for
7 = 0, the resulting system of equations writes

von = ]L%O PHE6) + 5 208 (5p, — 56) + (V) +V-by) (6, = uy),  (7.26)
%’yéw :ECL (dpe) + (V) + V- bo) 63y, (7.27)
%V%He =V (6¢ — dpe — 0.T10T,) + v, (7.28)
Youj; = — V| 0pe, (7.29)

6T, —L—EPL(&;&) + ch ((5})6 + 25T, — 5¢>
+3 (VH +V by (17165 — dvy) , (7.30)

where dp, = dn + 0T, 0j; = dvj; — OV, dw = (Vi)L d¢, n= L, /Lt, and
PHUA) = Py A, CHA) =iC kA, (VR) A= -AVIRA (731)

Equations (7.26)-(7.30) determine the linear growth rate of SOL plasma instabilities
in arbitrary magnetic geometry. Plasma shaping affects the growth rate through four
terms: V(—)+ V- by that results from the plasma advection along magnetic field lines,
PL(—)/B that represents the E x B convection, C*(—)/B that introduces curvature
drifts and plasma compressibility, and (V2)" (—)/B2, the vorticity operator.

To solve Egs. (7.26)-(7.30) in arbitrary magnetic geometry, the numerical code detailed
in Section 6.3.2 is generalized to evaluate  as a function of the parameters Ry/L,,
m;/Mme, 1, V, q, ky, €, k, and §, with € = a/Ry. The coefficients of the differential
operators are implemented according to Eqs. (7.16)-(7.19) at X = a as follows. First,
Eq. (7.25) is solved numerically, using the trapezoidal rule to approximate the integral.
Then, the relation 6, = 0,(r,0) is inverted using a linear interpolation scheme, to obtain
the function 6 = 0(r,6,). The derivatives of the magnetic field components and of the
metric coefficients appearing in Egs. (7.16)-(7.19) are finally computed using second order
finite difference schemes. We verified that the evaluation of the geometric coefficients is
numerically converged, and that, in the limit of circular magnetic surfaces, we recover
the analytical expressions given in Ref. [179].

In the following we focus our attention on the high plasma resistivity regime by setting
v = 0.1 and describe the impact of plasma shaping on RBMs and RDWs. This value,
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larger than in usual tokamaks SOL plasma conditions, is chosen to completely decouple
the resistive and the inertial branches of the BMs and DWs. As shown in the remainder
of this chapter, plasma shaping mainly influences the RBMs growth rate, while the
value of v has only a minor impact in determining the linear growth rate and the wave
number of the mode driving the turbulent transport. We note that we consider ¢ = 4,
Ry = 500, and 1 = 0.66 for our linear studies (7 is obtained from nonlinear simulations,
see Section 7.4, in agreement with Ref. [161] results). The small positive value of the
magnetic shear in limited discharges is expected to stabilize DWs [146, 160] and should
weakly affect BMs.

7.2.1 Resistive ballooning modes

Resistive BMs are interchange-like modes, driven unstable in the presence of finite re-
sistivity when the plasma pressure gradient and the magnetic field line curvature point
in the same direction [185-189]. Setting d; — ik; and neglecting the compressibility
terms with respect to the advection terms, the parallel dynamics in the continuity and
temperature equations, the diamagnetic term in the Ohm’s law to avoid coupling with
DWs, as well as the coupling with sound waves (valid for v > kz, kz ~ 1/q for RBMs),
Egs. (7.26)-(7.30) can be simplified to obtain

Ry 1

751)6 = 7*,PL(6¢)7 (732)
L, B
1 L 2 . .
=1 (V3) 60 = EcL(cspe) + (iD%kz +V - by) 33, (7.33)
0 = v6jj + iD?kz0¢, (7.34)

where L, = L,,/(1+n). Equations (7.32)-(7.34) constitute the minimal model describing
the linear properties of RBMs.

Considering Eqgs. (7.32)-(7.34) in a circular magnetic geometry in the ¢ — 0 limit, it was
shown [146] that the peak growth rate, v ~ ,, with v, = \/2Ry/L, being the ideal BM
growth rate, occurs for ky ~ ky, where ky, = 1/1/¢v7,. Imposing ky = k;, we compute
the ratio /7, as a function of x and ¢ for € ~ 0.25 and A(0) ~ 7. The results are
presented in Fig. 7.2 (left panel). We observe that RBMs are stabilized for x > 1 and for
0 < 0, while their growth rate is enhanced for § > 0.2. To isolate the different shaping
effects on the linear growth rate, we perform the same analysis for e = 0 and A(0) = 0.
The results are presented in Fig. 7.2 (right panel). While the same trends are recovered,
the ratio /v, is larger for ¢ = 0 and A(0) = 0 than for € ~ 0.25 and A(0) ~ 7. This
suggests that aspect ratio and Shafranov’s shift effects stabilize RBMs, in agreement
with the observations in Ref. [179]. We note that these results are independent of L,,.
A detailed analysis of the linear growth rate shows that the curvature operator affects
the RBM growth rate the most. As a matter of fact, assuming PXY = —1, NYY =1,
D? =1,V-by =0, B=1,and C¥ = —0,R(r,0) g, indicates that the r
derivative is computed at fixed 0,, the results of Fig. 7.2 are recovered, within an error

9., where
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Figure 7.2 — Value of /v, as a function of £ and §, obtained considering RBMs and solving
Egs. (7.32)-(7.34) for ky = kp. The left panel is obtained for € ~ 0.25 and A(0) ~ 7, while the right
panel is computed for e = 0 and A(0) = 0.
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on 7y/7, typically less than 20%.

This observation allows to simplify Eqs. (7.32)-(7.34) assuming a strongly ballooned
mode around 6, =0, ky = 1/q, P*Y = ~1, NYY =1, D =1,V-by =0, B=1, and
CY = —0,R(r,0)

9.—0- In fact, one can write the RBMs dispersion relation as

¥+ 2907 =17 =0, (7.35)

where yp = —1/(2v¢* ki), v1 = /O, R(r,0)|s.=0, and 7 = v/7,. Equation (7.35) shows
that the RBM has a growth rate v = v;7v, and it is stabilized by finite kz effects through
the yp term.

7.2.2 Resistive drift waves

Resistive DWs are instabilities driven by the E x B plasma convection and destabilized
when electron adiabaticity is broken by finite resistivity [190-194]. Assuming v > k7 as
for the RBMs, we can neglect sound wave coupling in Egs. (7.26)-(7.30). Moreover, the
curvature term in the vorticity equation can be neglected (to avoid coupling with BMs),
together with the compressibility terms in the continuity and temperature equations.
Consequently, we obtain a reduced system of equations describing the RDWs dynamics,
which writes

Ry 1 , .
~on = EEPL((S@ + (iD%kz + V - bo) ji, (7.36)
1
10w = (mzkz +V- bo) 57, (7.37)
0 = iD?kz (8¢ — dp. — 0.718T.) + v53y, (7.38)
o RO N S5 2/, 7 .
WL = 5P (09) + 1713 (iD%kz +V - by) 6. (7.39)
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Figure 7.3 — Values of Ymax Ly, /Ro (left panel) and ky max (right panel) as a function of x and 4,
obtained considering RDWs and solving Eqgs. (7.36)-(7.39) for L, = 10, e ~ 0.25, and A(0) ~ 7.
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Equations (7.36)-(7.39) are solved as a function of ky, x, and 9, by using the linear solver
previously described. For each magnetic shape, the growth rate is maximized over all
possible ky values, and the maximum value y,., and the corresponding ky, denoted as
ky max, are presented in Fig. 7.3 for € ~ 0.25 and A(0) =~ 7. We note that Jy,.x normalized
to Ry/Ly, i.e. YmaxLn/Ro, is independent of L,,. We see that .y associated with the
RDWs decreases both by increasing x and |d|, suggesting that RDWs are most unstable
in a circular magnetic geometry. However, the effect of plasma shaping on the RDW
growth rate is considerably weaker than on RBMs. We also note that kyn.x decreases
with x and |§]. The analysis of the impact of aspect ratio and Shafranov’s shift effects
on RDWs growth rate shows a small influence on vypax and ky max, in agreement with the
observations in Ref. [179].

Finally, we note that, considering a circular magnetic geometry in the infinite aspect
ratio limit and setting 07 — ikz, we simplify Eqs. (7.36)-(7.39) to write the dispersion
relation of RDWs as

%ﬁ + ab¥ +ia =0, (7.40)
where o = k% L,/ [2ky Rov(1+1.71n)], b = 1/ky+ky (141.71%-2/3), and 4 = vL,, /[Ro(1+
1.71)n]. We remark that Eq. (7.40) has to be solved over all the possible ky and kjz
values. In fact, kz is a priori unknown for RDWs and depends on v, Ry/L,, and 7.
Solving Eq. (7.40) numerically, it results that Re(fmax) ~ 0.0874 for ky ~ 0.582 and
a ~ 0.0412, where Re(A) indicates the real part of A.

7.3 Estimate of the pressure gradient length

The time-averaged plasma pressure gradient length L, in the tokamak SOL originates
from a balance between the turbulent perpendicular transport of particles and heat,
resulting from the nonlinear development of the unstable modes, and the parallel losses
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Figure 7.4 — Value of L, as a function of x and 0 that are solution of Eq. (7.41). The left panel
is obtained for € ~ 0.25 and A(0) ~ 7, while the right panel is computed for e = 0 and A(0) = 0.

e=0,A(0

at the end of the magnetic field lines. In the limit of a negligible E x B shear flow and
for typical SOL parameters, we assume that the gradient removal turbulence saturation
mechanism, i.e. the local nonlinear flattening of the plasma pressure profile and the
resulting removal of the instability drive, is the mechanism that regulates the amplitude
of SOL turbulence [100]. Our estimates of L, based on the gradient removal theory in
circular magnetic flux surface geometries show agreement with nonlinear simulations and
experimental observations [24,113].

The main features of the theory are summarized in Appendix B, where the equality

qa (7
L,=—(— 41
b Cs <kY>max (7 )

is deduced. Since Eq. (7.41) is an implicit equation in L,, it must be approached nu-
merically. We follow the same procedure detailed in Section 6.3.2. In particular, we
solve Eqgs. (7.26)-(7.30) for v over the parameter space (ky, L,) in search for the value
of L, that satisfies Eq. (7.41). We note that in the remainder of this section we assume
cs = 1 (i.e. that the reference temperature corresponds to the one at the LCFS) and we
consider m;/m. = 2000, n = 0.66, ¢ = 4, and Ry = 500.

The values of L, that satisfy Eq. (7.41) for ¢ ~ 0.25 and A(0) ~ 7 are presented in
Fig. 7.4 (left panel) as a function of x and d. Several observations can be made based on
these results: (i) triangularity has a weak impact on L, when x = 1; (ii) for § =0, L,
is reduced by increasing k, suggesting that turbulence is suppressed by elongation; (iii)
for k > 1, L, is reduced for § < 0, indicating that turbulence is suppressed by negative
triangularity; and (iv) for k > 1, L, is increased for ¢ 2 0, the effect becoming more
relevant at ¢ 2 0.3, meaning that turbulence is enhanced by large positive triangularity.
To isolate the different shaping effects on the SOL width, we perform a L, scan on &
and 0 with A(0) = 0 and € = 0. The results are presented in Fig. 7.4 (right panel).
While the same trends previously observed for e ~ 0.25 and A(0) ~ 7 are recovered,
L, is larger, suggesting that Shafranov’s shift and e effects stabilize plasma turbulence.
This is in agreement with the observations presented in Section 7.2.
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Figure 7.5 — Ratio between yrpa and ygpw as a function of k and 4, obtained solving Egs. (7.32)-
(7.34) and (7.36)-(7.39) with the linear code imposing the L, and ky values that are solution of
Eq. (7.41). The left panel is obtained for e ~ 0.25 and A(0) ~ 7, while the right panel is computed
for ¢ = 0 and A(0) = 0. The black lines indicate the transition between yrpw > vrpam and
YRDW < YRBM -

We note that the solution of Eq. (7.41) provides also the ky value of the mode that leads
to most of the transport. An analysis of ky as a function of k and § has been performed,
showing that plasma shaping has a small impact on its value.

To investigate the impact of the plasma shaping on the turbulent regimes, and therefore
to gain a deeper insight on the turbulence properties, we compute the growth rate asso-
ciated with RBMs (ygga) and RDWs (ygpw) at the L, and ky solutions of Eq. (7.41),
as a function of x and . This is done by solving Eqgs. (7.32)-(7.34) and (7.36)-(7.39)
with the linear solver presented in Section 7.2. The ratio between ygrpy and yrpw as
a function of x and § for € ~ 0.25 and A(0) ~ 7 is presented in Fig. 7.5 (left panel).
We observe that: (i) the RBM is the dominant instability for positive values of the
triangularity; (ii) the RDW dominates when negative ¢ values are considered; (iii) a
combination of the two instabilities characterizes the plasma dynamics for x ~ 1 and
for § ~ 0.2 — 0.3. This is in agreement with the observations in Section 7.2, where it is
shown that RDWs are only slightly affected by plasma shaping, while RBMs are strongly
stabilized by elongation and negative triangularity.

We also study the impact of Shafranov’s shift and e effects on RBMs and RDWs by
performing the same analysis for € ~ 0 and A(0) = 0. The results (see Fig. 7.5, right
panel) show that Shafranov’s shift and e effects stabilize the RBMs, leading to a decrease
of the equilibrium pressure gradient length, as discussed earlier.

We now deduce an analytical scaling of L, as a function of x and §. Since RBMs are
strongly affected by plasma shaping, while the (v/ky )max ratio associated with RDWs de-
pends weakly on the magnetic shape [variation of (7/ky )max less than 30% for 1 < x < 1.8
and —0.5 < 0 < 0.5], we derive the analytical scaling of L, considering the RBM disper-
sion relation only, and we assume that the resulting scaling breaks down if L, , < L, rpw,
where L, , is the result of the RBM analytical scaling and L,, ppw is the equilibrium pres-
sure gradient length associated with RDWs deduced from Eqs. (7.40) and (7.41) for a
circular magnetic geometry (L, ppw = 27.7 for v = 0.1, ¢ = 4, Ry = 500, and n = 0.66).
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Figure 7.6 — Value of L, as a function of x and §, obtained from Eq. (7.44) for ¢ = 4, v = 0.1,
and Ry = 500. The black line indicates L,(x,0) = L, rpw. We note that in the top-left corner we
impose Lp = Lp’Rpw.

—_

Having observed that magnetic shape affects the RBM growth rate mostly through the
curvature operator, we assume a strongly ballooned mode around 6, = 0, ky ~ 1/q,
and CY ~ —8,R(r,0)]g,—o to simplify Egs. (7.32)-(7.34). Moreover, imposing ¢ = 0 and
A(0) = 0 for the sake of simplicity, we evaluate O, (7/ky) = 0 to identify the largest
~v/ky ratio, obtaining

C(k, 6, Ky -
N2 = 75(3(])’ ky = \/55170(%, 5,q)"""2, (7.42)

where

§¢ *(1q—1) k-1 (k—1)(bg—2)

C(k,0,q) = 0, Ru(r,0)|g,—0 = 1+ - — , (7.43
(k. 8,9) (r,8)lo.=0 T+¢ 16(+q) 21 kiipCtre P
as deduced in Appendix E. Plugging these values into Eq. (7.41), we derive
Ly, = ﬂcm 8, q)> T TR (7.44)
p,a — 33/7 ;0,4 q 0 - .

Equation (7.44) is a generalization of the scaling deduced in Refs. [24,100,113] to include
non-circular magnetic geometries and allows us to predict the SOL width of inner-wall
limited discharges from first-principle arguments when elongation and nonzero triangu-
larity are considered. In Fig. 7.6 we present the result of this scaling. We recover the
same trends observed in Fig. 7.4 and the transition between RDWs and RBMs, tak-
ing place at L,, = L, rpw and indicated by the black line, in good agreement with
the condition Ygrpr /vYrow = 1 of Fig. 7.5 (right panel). However, we notice two main
differences between the analytical scaling and the numerical results: (i) for k = 1 the
analytical scaling shows that L, depends on ¢ while L, is almost independent of J in
Fig. 7.4; and (ii) for 0 > 0.3 the value of L, decreases by increasing the plasma elon-
gation, while the opposite behavior is observed in the results of Fig. 7.4. By solving
Eq. (7.41) within each assumption made in the derivation of Eq. (7.44), we observe that
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the differences between the analytical scaling and the numerical results are mainly due
to the approximation C¥ ~ CY

9.—0. In fact, the global magnetic geometry has an effect
on RBMs that cannot be correctly captured by the modification of the curvature at the
outer midplane.

7.4 Nonlinear simulations

In this section we carry out a set of nonlinear simulations of the SOL plasma dynamics
using the GBS code [20] and compare these with the results presented in Sections 7.2 and
7.3. We first describe the numerical scheme implemented in GBS, focusing on the mod-
ifications introduced to generalize the magnetic geometry of the code. We then present
the nonlinear simulation results and their comparison with our theoretical findings.

7.4.1 Implementation and numerics

The model presented in Section 7.1 is now implemented in the GBS code [20]. A detailed
description of the code can be found in Appendix A.

While the implementation of the differential operators {4, A}, C(A), and VA does
not present any conceptual difficulty, the computation of the V2 operator in arbitrary
geometry is not straightforward. In fact, the discretization of the operator V2 can
introduce numerical instabilities with positive growth rate if V3 is represented with a
non-symmetric real matrix D. To ensure the self-adjointness of D, we write

8x+ 2874

a( 1 0A Nwzm) 0 (NyyM+N$96A

2
A= — — —
Vi ox + oy Qy 2 Ox

. OA ., OA

> + N %M\Naﬁy’ (7.45)
with N"* = N?* — 9, N** — 9,N*¥ /2 and N"Y = NV — I NW — 9, N*¥ /2, and we neglect
the N7 and N terms with respect to the N** N*¥ and N'¥ terms, since the first two
terms are usually a times smaller than the last three, and they are therefore expected to
have a negligible impact on the simulation results. Finally, we note that the geometric
coefficients in Eqs. (7.13)-(7.15) are computed with the same numerical scheme presented
in Section 7.2 and used for the coefficients in Eqgs. (7.16)-(7.19).

7.4.2 Simulation results

Two sets of four nonlinear simulations with (x,0) = (1,0), (1.8,0), (1.8, —0.3), (1.8,0.3)
are carried out with GBS, considering in one case € ~ 0.25 and A(0) ~ 7, and in the
other ¢ = 0 and A(0) = 0. Other relevant physical parameters are ¢ = 4, v = 0.1,
Ry = 500, m;/m. = 200, 7 = 0, L, = 800, and L, = 150, being L, the radial size of
the domain, extending from x; = a — 50 to xz, = a + 100. The particle and electron
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Figure 7.7 — Poloidal cross sections of the electron pressure plasma profile resulting from nonlinear
simulations carried out for ¢ = 0 and A(0) = 0, extending from z = a to x = a + 90. The four
magnetic geometries considered are characterized by k =1 and § = 0 (top left panel), kK = 1.8 and
0 = 0 (top right panel), k = 1.8 and § = —0.3 (bottom left panel), and x = 1.8 and § = 0.3 (bottom
right panel). The limiter is indicated by a blue line at the inner midplane.

temperature sources, used to mimic the plasma outflow from the core, are modelled as
Sn1, o exp [—(z — a)?/o?], with o = 2.5. Since most of the particles coming from the
core are lost at the limiter plates, preventing them from reaching the vessel wall, the
conditions applied at x = x,, the outer edge of the simulation domain, should not sig-
nificantly impact turbulence. Therefore, a buffer region is located between x = a + 90
and = = z,, and ad hoc boundary conditions (Dirichelet for ¢ and w, and Neumann for
n, Vi, Vje, and T,) are applied at x = z,. On the other hand, at the LCFS, the plasma
outflow from the core is mimicked by the source terms. These sources are located at
a distance of 50 units from the inner boundary of the computational domain, and the
domain between z = x; and x = a is used as buffer region and it is not taken into account
for turbulence analysis. Consequently, also at x = z;, ad hoc boundary conditions (the
same applied at z,) are used, and we verified that their impact on turbulence properties
is not significant.

As ym,/m; < v, we expect that the unphysical value of the mass ratio does not influence
the results [146]. The simulations are carried out with the following numerical parame-
ters: N, =192, N, = 512, N, = 64, ; = . = 2, x|,r. = 0.2, and all the perpendicular
diffusion coefficients are in the range 5 — 10. We remark that the value of the dissipative
coefficients does not affect significantly the simulation results (simulations carried out
with x|z, = 100 show a ~ 20% steeper L,.) In Fig. 7.7 we present typical poloidal
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Figure 7.8 — Poloidal cross sections of the electron pressure plasma profile resulting from nonlinear
simulations carried out for € ~ 0.25 and A(0) ~ 7, extending from = = a to © = a + 90. The four
magnetic geometries considered are characterized by k = 1 and § = 0 (top left panel), k = 1.8 and
0 = 0 (top right panel), k = 1.8 and § = —0.3 (bottom left panel), and k£ = 1.8 and 6 = 0.3 (bottom
right panel). The limiter is indicated by a blue line at the inner midplane.

snapshots of the plasma pressure for ¢ = 0 and A(0) = 0. One observes the presence of
turbulent eddies that transport plasma radially outward. In the two simulations with
(k,0) = (1.8,0), (1.8, —0.3) plasma turbulence penetrates considerably less in the SOL
with respect to a circular magnetic geometry. This is consistent with Section 7.3 re-
sults, which show that elongation and negative triangularity decrease L,. In these two
simulations, turbulence results to be suppressed in particular at the outer midplane, in
agreement with the findings in Section 7.2, which shows that RBMs are stabilized by
elongation and negative triangularity. On the other hand, plasma turbulence appears to
have similar amplitude in a circular magnetic geometry and for x = 1.8 and § = 0.3, in
agreement with Section 7.3 results.

We note that the four simulations carried out with € ~ 0.25 and A(0) ~ 7 (see Fig. 7.8)
display the same trends, but their differences are less pronounced than in the e = 0 and
A(0) = 0 case. Therefore, in the following we focus our attention on the four simulations
with € = 0 and A(0) = 0, where the differences are larger, and we briefly discuss the
results of the simulations with € ~ 0.25 and A(0) ~ 7.

To investigate the nature of the turbulence present in the nonlinear simulations, we apply
the same procedure described in Section 6.3.1 to compute the probability distribution
function of the phase shift between the electron pressure and the potential fluctuations
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Figure 7.9 — Probability distribution function of the phase shift between the electron pressure and
the potential fluctuations resulting from nonlinear simulations carried out for € = 0 and A(0) = 0.
The four magnetic geometries considered are characterized by x = 1 and § = 0 (top left panel),
k = 1.8 and § = 0 (top right panel), xk = 1.8 and § = —0.3 (bottom left panel), and x = 1.8 and
0 = 0.3 (bottom right panel).

and the joint probability of dp. and d¢ normalized to their standard deviation. This is
done for 0, € [—m, 7] and at © —a = L, In2, over a time interval of approximately 30
units, for each of the four simulations with € = 0 and A(0) = 0. The results thus obtained
are presented in Figs. 7.9 and 7.10. In the simulations with (x,d) = (1,0), (1.8,0.3) the
phase shift is closer to 7/2 and electron pressure and potential fluctuations are less corre-
lated, with a correlation coefficient of 0.66 and 0.73, respectively, indicating that RBMs
contribute to the SOL dynamics. On the other hand, for x = 1.8 and § = —0.3, the
phase shift is close to 0 and the electron pressure and potential fluctuations are more cor-
related, with a correlation coefficient of 0.84, suggesting that RDWs are the turbulence
drive. For k = 1.8 and 6 = 0 it is not possible to clearly discriminate between RBMs
and RDWs, since the electron pressure and potential fluctuations have a correlation co-
efficient of 0.82, similar to the simulation preformed for x = 1.8 and § = —0.3, but the
phase shift is larger than 0. We note that, performing the same analysis for the four
simulations with € ~ 0.25 and A(0) ~ 7, we find that RDWs drive turbulence except
for Kk = 1 and § = 0, where a combination of RBMs and RDWs is responsible of the
turbulent dynamics. These results are in agreement with Sections 7.2 and 7.3 findings.
Finally, to perform a quantitative comparison between the estimate of L, given by
Eq. (7.41), the analytical scaling in Eq. (7.44), and the nonlinear simulation results,
we time-average the pressure profiles provided by GBS over an interval of approximately
30 time units, and over four time subdomains, each of about 7.5 time units. The results
are then averaged over the toroidal angle and the averages fitted at the outer midplane
assuming p.(x) o< exp [—(x — a)/L,]|. The fit over the interval of 30 time units provides
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Figure 7.10 — Joint probability of the electron pressure and the potential fluctuations normalized
to their standard deviation resulting from nonlinear simulations carried out for e = 0 and A(0) = 0.
The four magnetic geometries considered are characterized by x = 1 and § = 0 (top left panel),
k = 1.8 and § = 0 (top right panel), xk = 1.8 and 6 = —0.3 (bottom left panel), and x = 1.8 and
0 = 0.3 (bottom right panel).

L,, while the difference between the L,s obtained over the four subdomains gives an
estimate of its uncertainty. Applying this methodology, and computing the L, given by
Eq. (7.41) and Eq. (7.44), we obtain the results listed in Table. 7.1. We note that, since
Eq. (7.44) gives L, = 23.4 for k = 1.8 and § = —0.3, we replace this value with L, ppw
in Table 7.1. Several observations can be made based on these results: (i) Eq. (7.41)
is in fairly good agreement with the results obtained from the nonlinear simulations,
indicating that the gradient removal theory is able to predict L, even when non-circular
magnetic geometries are considered; and (ii) if e = 0 and A(0) = 0, Eq. (7.44) provides
an estimate of L, that is in good agreement with Eq. (7.41), meaning that the analytical
scaling correctly describes the dependence of L, on x and 6. We remark that the results

Table 7.1 — Values of L, obtained from the nonlinear simulations, from Eq. (7.41), and from
Eq. (7.44).

Nonlinear sim. Eq. (7.41) Nonlinear sim. Eq. (7.41)

0 Eq. (7.44

(+,9) e~ 025 A0)~T  e~025 A0)~T e=0,A0)=0 =0 A0) =0 (T4
(1.0,0.0) 2541 27.4 3742 38.9 37.1
(1.8,0.0) 20+ 1 20.7 26+ 3 30.3 28.8
(1.87 70.3) 15+1 18.1 20+1 26.2 27.7
(1.8,0.3) 2341 26.8 43+3 36.8 34.1
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Figure 7.11 — Magnetic field lines in the ¢ — 6 plane, at = a, for ¢ = 0 and A(0) = 0. The
four magnetic geometries considered are characterized by k = 1 and 6 = 0 (top left panel), x = 1.8
and 0 = 0 (top right panel), xk = 1.8 and § = —0.3 (bottom left panel), and x = 1.8 and § = 0.3
(bottom right panel).

for the nonlinear simulations in Table 7.1 are obtained at the outer midplane. However,
we note that similar results are obtained also when considering the poloidally averaged
plasma pressure profile.

7.5 Discussion of the theoretical results

To intuitively explain the impact of plasma shaping on SOL turbulence, we represent
in Fig. 7.11 the magnetic field lines that characterize the four simulations with ¢ = 0
and A(0) = 0 in the ¢ — @ plane and at fixed radial position z = a. We observe that
for the two simulations with (k,d) = (1,0),(1.8,0.3), magnetic field lines are almost
straight and their slope is close to 1/¢ = 0.25 at the outer midplane. On the other hand,
the two simulations with (x,d) = (1.8,0), (1.8, —0.3) are characterized by magnetic field
lines that are stretched in the poloidal direction and their slope strongly increases close
to 8§ = 0. A detailed investigation of the impact of x and § on the magnetic field lines
indicates that values of kK > 1 and § < 0 stretch the magnetic field lines in the poloidal
direction near § = 0, while they are compressed for large positive triangularities. This
suggests that particle trajectories lie longer in the bad curvature region in a circular
magnetic geometry, or for § > 0, with respect to the case of kK > 1 or § < 0. Since
BMs are strongly destabilized at the outer midplane, i.e. in the proximity of § = 0,
elongation and negative triangularity result in a stabilization of BMs, as observed in the
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simulation results previously discussed. The same argument can be used to explain the
impact of A and €. As a matter of fact, magnetic field lines are even more stretched in the
proximity of # = 0 when Shafranov’s shift and finite aspect ratio effects are included. We
remark that in Sections 7.1.3 we computed the Shafranov’s shift neglecting the plasma
pressure contribution. Since A(0) usually increases almost linearly with f,, we expect
that including the plasma pressure contribution in the magnetic equilibrium stabilizes
the RBMs and decreases L.

We would like to point out that plasma shaping seems to have a similar impact both on
core and SOL turbulence. In fact, Refs. [169-172] pointed out that core turbulence is (i)
usually stabilised by elongation, except for large positive triangularities, for which it is
enhanced, (ii) stabilised by negative triangularity, and (iii) destabilised by large positive
triangularity.

7.6 Rigorous validation against TCV measurements

In Section 7.1 we discuss an analytical equilibrium model to account for plasma shaping
effects, which we use to investigate theoretically the impact of €, A, x, and § on the SOL
turbulence dynamics. While our theoretical results are in qualitative agreement with
previous experimental investigations (Ref. [174] shows that L, decreases with k), an ac-
curate quantitative comparison between simulations and experiments is needed in order
to assess the reliability of our theoretical results and confirm that the implementation
of a non-circular magnetic geometry in Eqgs. (7.1)-(7.6) actually improves our modeling
capabilities of the SOL plasma dynamics. An experimental campaign was carried out on
TCV [175] for this purpose, providing experimental measurements that can be compared
with GBS simulation results by employing a rigorous validation methodology. This com-
parison allows us to rigorously quantify the improvement of the agreement between GBS
simulations and non-circular TCV discharges when plasma shaping effects are taken into
account according to Egs. (7.1)-(7.6).

In the present section we first discuss how to perform a rigorous validation of a phys-
ical model against experimental measurements. Then, considering three TCV plasma
discharges with different equilibrium magnetic shapes, we validate against experimental
measurements (i) the three-dimensional GBS model in Eqs. (7.1)-(7.6), (ii) the three-
dimensional GBS model in Egs. (7.1)-(7.6) in circular magnetic geometry and in the
infinite aspect ratio limit, and (iii) the two-dimensional version of the GBS model il-
lustrated in Chapter 4. Note that the results discussed in the following of the present
section are in SI units.
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7.6.1 Validation methodology

The methodology to perform a rigorous validation of the simulation results is discussed
in Refs. [39-41] and was applied for the first time to TORPEX simulations [104]. Herein
we briefly present the key elements of the methodology.

Simulations and experiments have to be compared considering a number of physical
quantities, common to the experimental measurements and simulation results, and anal-
ysed using the same techniques. These physical quantities are denoted as validation
observables. In order for an observable to be considered for the validation, it should
satisfy the following criteria. First, the observable should be physically relevant. This
means that focus should be put on observables containing the most important theoretical
predictions and being more sensitive to the model assumptions. Second, each observable
should be independent of the other observables. Third, if an observable depends on space
or time, its resolution should be sufficient to describe its variation along all dimensions.
Once the observables are defined and evaluated, the agreement between experiments and
simulations relative to each observable has to be quantified. We denote with e; and s; the
values of the j-th observable used in the comparison, as coming from the experimental
measurement and the simulation results, respectively. Most of the observables depend
on space and time, and are typically given on a discrete number of points, denoted as
N;. We denote with e;; and s;; the values of the j-th observable at points ¢ = 1,2, ..., N;
(the present notation can therefore be used for zero-, one-, two-, etc., dimensional ob-
servables). For the j-th observable, we normalize the distance d; between experiments
and simulations with respect to the uncertainty related to these quantities as

1 Y

PR P S C Tt i (7.46)

_ 2 PR
N; = Aej; + Asjy;

where Ae;; and As;; are the uncertainties affecting e;; and s;;. Since simulations and
experiments can be considered to agree if their difference is smaller than their uncertain-
ties, we define the level of agreement between experiments and simulations with respect
to the observable j as

= ool = 1 = )2

(7.47)

with R; < 0.5 corresponding to agreement (experiment and simulation results agree
within uncertainties), while R; 2 0.5 denoting disagreement (experiment and simulation
results are outside the uncertainties). Here, we choose dy = 1 and A = 0.5. Our tests
show that the conclusions of a validation exercise are not affected by the specific choices
of the parameters dy and X if these parameters are within a reasonable range. Some
authors prefer to normalize the distance between experimental and simulation results to
the actual value of the observables, rather than to their uncertainty [26]. We believe
that the normalization to the uncertainty is the most appropriate choice in the present

case, as we are interested in understanding if the basic physics mechanisms at play in
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the system are well captured by the model under consideration. The normalization to
the actual value of the observable is instead preferable in the case that the predictive
capabilities of the code are tested.

Since the distance between experiments and simulations is normalized to their uncer-
tainties, particular attention should be paid in evaluating Ae;; and As;;. In the case
of the experiments, we can identify three main uncertainty sources. First, a measuring
device is typically modelled to evaluate the physical quantities of interest (e.g. from
the I — V' curve of a Langmuir probe one can deduce n and T,). Since experimental
measurements typically do not follow perfectly the model predictions, a fit has to be
made in order to evaluate the relevant physical parameters, introducing an uncertainty
that we denote with Aef’ lf Second, a source of uncertainty is due to properties of the
measuring device that are often difficult to evaluate accurately (e.g. geometry and sur-
face condition of a Langmuir probe). Thus, measurements should be performed with
different tools (e.g. Langmuir probes that differ in dimension, surface condition, and
electronics). The quantity Aeé’;b denotes the uncertainty related to the probe properties.
Finally, the plasmas are not perfectly reproducible due to control parameters difficult
to set or know precisely (e.g. the vacuum pressure). Experiments should be repeated
in order to check the reproducibility of the plasma, while measurements are taken with
different measurement devices. The quantity Ae}” is the uncertainty due to the plasma
reproducibility, averaged over the different measuring devices. The total experimental
uncertainty is given by Ae3; = (Aejf»fit)Q + (Ae%b)2 + (Aej)?.

As discussed in Chapters 3 and 4, simulations are also affected by uncertainties. These
result from two sources: (i) errors due to the numerics As?{™ and (ii) uncertainties due
to unknown or imprecise input parameters Asﬁp . As in the case of the experimental er-
ror bars, the two sources of error should be added, such that As?; = (As7¥™)*+ (As}7)>.
We note that the error bars should not take into account the uncertainties related to
model assumptions and/or to combinations of measurements, which are often needed to
deduce the validation observables from the simulation results and the raw experimental
data [166]. Evaluating rigorously those uncertainties is usually very challenging. The
idea is to take them into account approximately by organizing the observables into a
hierarchy, which is based on the number of model assumptions and combinations of
measurements necessary to obtain each observable and indicates how stringent each ob-
servable is for comparison purposes. More specifically, the higher the hierarchy level of
an observable is, the lower the importance of the observable in the comparison metric.
The overall level of agreement between simulations and experiments can be measured by
considering a composite metric, which should take into account the level of agreement
of each observable, R;, and weight it according to how constraining each observable is
for comparison purposes. This means that the hierarchy level of each observable and the
level of confidence characterizing the measurement or the simulation of each observable
have to be considered. The higher the level in the primacy hierarchy and the larger
the error affecting the observable measurement, the smaller the weight of the observable

page 125



Chapter 7. A rigorous validation: plasma shaping effects in TCV

should be. We thus define the metric x as

_ X BiH;S;

) 7.48
> H;5; (748)

where H; and S; are functions defining the weight of each observable according to its
hierarchy level and the precision of the measurement, respectively. Thanks to the defi-
nition of I;, x is normalized in such a way that perfect agreement is observed for xy = 0,
while simulation and experiment disagree completely for y = 1.

The definition of H; and S; is somewhat arbitrary. H; should be a decreasing function
of the hierarchy level. The definition we adopt is H; = 1/h;, where h; is the combined
experimental /simulation primacy hierarchy level, which takes into account the number
of assumptions or combinations of measurements used in evaluating the observable both
from the experiments and from the simulations. In practice, if no assumptions or combi-
nations of measurements are used for obtaining an observable, h; = 1, any assumption or
combination of measurement leads h; to increase of a unity (see Ref. [166] for examples
of observables and related h; values). The quantity S; should be a decreasing function
of the experimental and simulation uncertainty, and we define it as

B Yileji 4+ ASj,i) (7.49)

S =ex
! P < i lesal + 20 854l

such that S; = 1 in the case of zero uncertainty.

The validation metric should be complemented by an index, @), that assesses the “qual-
ity” of the comparison. The idea is that a validation is more reliable with a larger number
of independent observables, particularly if they occupy a low level in the primacy hier-
archy and the measurement and simulation uncertainties are low. The quality of the
comparison () can thus be defined as

Q=Y H;S;. (7.50)

7.6.2 Experimental setup

The TCV experiment is a tokamak with major and minor radii R = 0.88m and a =
0.25m [175]. By being equipped with sixteen independent set of shaping and position-
ing coils, TCV has unique capabilitities of exploring a wide range of magnetic geome-
tries, including negative triangularities, second-order X points, and more exotic plasma
shapes [195]. For this reason TCV is an ideal test bed for validating the plasma shaping
model discussed in the present chapter against experimental measurements. An experi-
mental campaign was carried out on TCV for this purpose.

In the following we consider three TCV inner-wall limited plasma discharges: #54147,
#55391, and #55394. The experimental parameters measured for the three discharges
are summarized in Table 7.2 and the poloidal cross sections of their magnetic surfaces
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Table 7.2 — Parameters for the three TCV plasma discharges #54147, #55391, and #55394 used
for the present validation.

q K d € no [10®¥ m=3] T, [eV] v
#54147 3.3 157 -0.19 0.34 6+2 3715 0.0036
#55391 34 1.07  0.00 0.30 4+1 36 +£16  0.0025
#55394 3.2 153  0.00 0.30 5=£1 41+14 0.0023
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Figure 7.12 — Poloidal cross sections of the magnetic surfaces for the three TCV plasma discharges
#54147 (left panel), #55391 (middle panel), and #55394 (right panel). The blue lines indicate the
LIUQE reconstruction, with thin continuous lines denoting the core flux surfaces, thick continuous
lines denoting the LCFS, and dashed lines denoting the open field line region. The red dashed lines
represent the reconstruction of the LCFS with the model discussed in Section 7.1.

are shown in Fig. 7.12. The plasma has an almost circular magnetic equilibrium in the
discharge #55391, an elongated equilibrium in the discharge #55394, and an elongated
equilibrium with negative triangularity in the discharge #54147. Comparing the thick
blue continuous lines, representing the LIUQE [196] reconstruction of the LCFS, with
the red dashed lines, indicating the LCFS obtained by best fitting the LIUQE recon-
struction with the model discussed in Section 7.1, we observe that the results are in good
agreement. We also see that the three discharges have similar safety factors, ¢, densities,
ng, and temperatures, T.g, at the LCFS. It results that they have also similar normalized
plasma resistivities. This allows to decouple the influence of plasma shaping on the SOL
dynamics from other effects, as shown, for example, in Eq. (7.44).

The experimental measurements discussed in the following of the present chapter are
obtained with a horizontal reciprocating manipulator located at the tokamak outer mid-
plane. This diagnostic provides high spatial resolution measurements of equilibrium and
fluctuating physical quantities. It is equipped with a probe head having ten electrostatic
pins (two are used as a swept double probe and provide measurements of Iy, n, and
T,, one is used to obtain direct measurements of I, five are used as floating Langmuir
probes to measure Vy;, and the last two are used to measure the poloidal Mach number).
Moreover, taking the difference of two of the Vy; pins, it is possible to obtain measure-
ments related to the poloidal electric field Ey. Radial profiles related to these quantities
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Figure 7.13 — Plasma density profiles for the TCV discharge #54147. The measurements obtained
from the I,4; (blue and yellow lines) and the double (red and purple lines) probes are shown, both
for the horizontal manipulator entering (blue and red lines) and exiting (yellow and purple lines)
the plasma. The averaged profile and the corresponding uncertainties are represented in black.

are obtained sampling the measured time traces in intervals of 1 ms. A detailed descrip-
tion of the reciprocating probe is presented in Ref. [197].

As an example, the measurements of the time-averaged density profile for the TCV
plasma discharge #54147 are shown in Fig. 7.13, where we present the results obtained
by using the Iy, (blue and yellow lines) and the double probes (red and purple lines),
both for the horizontal manipulator entering (blue and red lines) and exiting (yellow
and purple lines) the plasma. Assuming that the plasma equilibrium and fluctuating
properties are approximately constant throughout the two probe reciprocations, we take
the average between the four profiles as the measure of the plasma density (black line).
Moreover, we obtain an estimate of the experimental uncertainty Ae,; by computing
the maximum difference between this averaged profile and the four measured profiles.
To ensure a safe estimation of Ae,,;, we take the maximum of the relative uncertainty
over the radial position, max;(Ae,;/e,,;i), as the relative uncertainty affecting the ex-
perimental results. This is represented by the black error bars in Fig. 7.13. Since we
use two different probes to evaluate n, and we repeat twice the measurements, the two

uncertainty contributions Aef:f and Ae, 7 are taken into account by Ae, ;. We note that
fit
n,d "

The procedure illustrated to evaluate n and Ae, ; is also applied to compute the time-

we neglect Ae

averaged Iy, profile and its uncertainty. On the other hand, since the five V}; pins are
not simultaneously located on the same flux surface, it is not justified to average the
experimental measurements of the different Vy; probes. Therefore, the time-averaged Vy,
profile is evaluated by averaging a single Vy pin measurement over the data provided
by the reciprocating probe entering and exiting the plasma. The uncertainty affecting
the V}; profile are then obtained computing the maximum difference between this aver-

aged profile and the two measurements, which corresponds to neglecting the Ae"j/; Il’ﬂ- and
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Figure 7.14 — Radial profiles of time-averaged (first row) and fluctuating quantities (second row)
for the TCV discharge #54147. The results displayed are obtained from experimental measurements
(black lines), from the two-dimensional model (yellow), from the three-dimensional model and
considering circular magnetic surfaces in the infinite aspect ratio limit (red lines), and from the full
GBS model (blue lines).

fit g
Aey,, ; contributions.

7.6.3 GBS simulations and validation results

We assess the reliability of the model illustrated in Section 7.1 by rigorously validating
nonlinear GBS simulations based on the three TCV plasma discharges discussed above
against experimental TCV measurements. For each TCV plasma discharge under con-
sideration we perform: (i) a three-dimensional GBS simulation that includes shaping
effects, (ii) a three-dimensional GBS simulation considering a circular magnetic geome-
try in the infinite aspect ratio limit, and (iii) a two-dimensional GBS simulation solving
Egs. (4.51)-(4.53). To carry out the simulations we consider A = 3.2, the normalized
perpendicular diffusion coefficients Dy = 5, and we adjust the value of ny within the
experimental uncertainties reported in Table 7.2 such that the simulated plasma densi-
ties agree with the experimental measurements at the LCFS. For the three-dimensional
simulations we also consider an ion to electron temperature ratio 7 = 1. The radial do-
main extends from the inner radius x; = a — 30 to the outer radius z, = 70. We remark
that, since the three-dimensional simulations require three rather large numerical grids
(Nz, Ny, Nz) = (128,1280,196), (128,1280, 188), (128, 1280, 200), a reduced mass ratio
m;/m. = 800 and a reduced parallel electron thermal conductivity X|le = 10 are used to
considerably decrease the computational cost. For the two-dimensional simulations we
consider ¢ = R/L = 1/(27q) and we use the numerical grid (NN, NV,) = (128,512), with
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Figure 7.15 — Radial profiles of time-averaged (first row) and fluctuating quantities (second row)
for the TCV discharge #55391. The results displayed are obtained from experimental measurements
(black lines), from the two-dimensional model (yellow), from the three-dimensional model and
considering circular magnetic surfaces in the infinite aspect ratio limit (red lines), and from the full
GBS model (blue lines).

radial and vertical domains extending from x; = a — 30 to x, = 70 and from y, = 0 to
y1 = 2ma/q, respectively.

For the three plasma discharges considered here we compute L, according to Eq. (7.41),
thus obtaining L, ~ 40, 49,42 pyo ~ 2.4,2.9,2.8 cm. Moreover, fitting the three-dimensional
simulation results at the outer midplane by assuming p.(x) o peoexp|—(z — a)/L,], we
obtain L, ~ 18,23,19 py ~ 1.1,1.4,1.2cm. The L, estimate given by Eq. (7.41), ap-
proximately a factor two larger than for the three-dimensional simulations, retrieves the
same qualitative behavior given by the nonlinear results, with £ and § stabilizing the SOL
plasma turbulence. Performing the same analysis, but neglecting plasma shaping effects,
we obtain L, ~ 49,51,47 psy ~ 3.0,3.0,3.0cm and L, ~ 41, 39,45 pyy =~ 2.5,2.3,2.8 cm,
for the nonlinear simulations and the solution of Eq. (7.41), respectively. As expected,
the value of L, increases when e effects are neglected. However, plasma shaping effects
in nonlinear simulations have a stronger impact on L, than for the quasi-linear theory.
Following the procedure described in Sections 6.3.2 and 7.3, we also investigate linearly
the regime of the instability that drives most of the SOL turbulent transport in TCV.
It results that TCV SOL turbulence is driven by InDWs. This is in agreement with the
results in Ref. [145].

To validate the GBS model against experimental measurements, we consider the follow-
ing observables: (i) the radial time-averaged profiles of n, T, Vj;, and jq, (ii) the radial
profile of 655 /jea, (iii) the radial profiles of §V/M5 and 6E;M9, and (iv) the equi-
librium density gradient length L,, = — (n), /0, (n),. The time-averaged and fluctuation
radial profiles are used as validation observables since they are at the lowest available
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Table 7.3 — Values of L, [cm] obtained from the experimental measurements, from the three-
dimensional GBS simulations with and without shaping effects (Full and ¢ = 0 columns, respec-
tively), and from the two-dimensional simulations.

Experimental Full e=0 Two-dimensional
54147 1.8£0.6 1.8£0.1 3.7+£0.3 10£2
55391 4.0+ 1.0 25+03 43+£0.3 13+3
55394 1.5+0.6 20+0.1 41+04 11+1

combined primacy hierarchy level, while L, is used because of its importance in SOL
turbulence analysis (here we use L,, instead than L, because of the large experimental
uncertainties on 7).

Concerning the experimental equilibrium profiles and their uncertainties, n, Iy, and Vy
results are obtained as discussed in Section 7.6.2. The same procedure used for Vy; mea-
surements is also employed to obtain experimental quantities related to §;%M5, (5VRM e
and JEFMS. Finally, L, is estimated by fitting the time-averaged experimental dens1ty
profile assuming n(R) o ngexp|—(R— Rpcrs)/Ly], with its uncertainty provided by the
95% confidence interval of the exponential fit. This corresponds to neglecting the two
contributions Ae’iﬁf’ and Ae”, since they are expected to be considerably smaller than

Concerning the GBS simulations, the js.: and Vy; profiles are obtained assuming jg.: =
encs/2 and Vi = ¢—[A—In(1+71;/T.)/2]|T. /e. To obtain the radial profiles, we toroidally-
and time-average the numerical results at the outer midplane for the three-dimensional
simulations, while we perform an average of the numerical results along y and ¢ for
the two-dimensional simulations. Moreover, we assume As?{™ = 0.2s;;, as discussed in
Chapter 3, for all the time-averaged quantities, except for Vy; that is typically affected
by a larger numerical error (we assume Asy, ; = 0.4sy, ;). For the input parameter
uncertainty propagation, we note that typical GBS simulations indicate variations of the
time-averaged radial profiles smaller than 10% due to a tenfold increase of v. Therefore,

for the time-averaged radial profiles we neglect the Aslm”

contribution. Moreover, typi-
cal GBS simulations also indicate that the numerical error affecting 65519, SViM S and
SEFMS is approximately 10% — 15%, and that the fluctuation level increases approxi-
mately by 15% when increasing v by a factor of ten. Therefore, for §;F15 5VRM 9 and
SEFMS we assume Asj; = [(Ast™)? 4+ (As];?)?]Y? & 0.2s;,;. Finally, we note that the
same procedure used to evaluate L, from the time-averaged experimental density profile
is employed for the simulations.

The resulting radial profiles, together with the corresponding uncertainties, are displayed
for the three TCV discharges #54147, #55391, and #55394 in Figs. 7.14, 7.15, and 7.16,
respectively, while the equilibrium density gradient lengths are presented in Table 7.3.
The plasma shaping has a stronger impact on the simulation results for the two plasma
discharges #54147 and #55394. In these cases, we see that the radial time-averaged
profiles of n, T, and j,4, simulated with the full GBS model, present a better agreement
with the experimental measurements with respect to those obtained with the circular and

two-dimensional models. The same conclusions are obtained for the results presented
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Figure 7.16 — Radial profiles of time-averaged (first row) and fluctuating quantities (second row)
for the TCV discharge #55394. The results displayed are obtained from experimental measurements
(black lines), from the two-dimensional model (yellow), from the three-dimensional model and
considering circular magnetic surfaces in the infinite aspect ratio limit (red lines), and from the full
GBS model (blue lines).

in Table 7.3. For the TCV discharge #55391, the radial time-averaged profiles of n, T,
and j,.¢ simulated with the three-dimensional models are quite similar, and in better
agreement with the experimental measurements than the results obtained with the two-
dimensional model. Concerning the radial profiles of Vy;, 6575 /j .., and §EFMS | we see
that none of the models is able to correctly predict the experimental measurements. This
might be due to simulating only the open field line region, as discussed in Chapter 6.

RMS
Vi

Finally, we note that the two-dimensional model is in better agreement with the V7

experimental measurements than the three-dimensional models.

To asses quantitatively the agreement between the three models with experimental mea-
surements, we apply the methodology discussed in Section 7.6.1. This is done by assum-
ing h; = 2 for all the observables considered herein [166], except for §Ef*MS and L, for
which we assume h; = 3. The resulting validation parameters x and @) are illustrated
in Table 7.4. Concerning the full GBS model, we see that y < 0.4 for all the considered
TCV discharges, while the agreement between experimental measurements and simula-
tions decreases by assuming a circular magnetic geometry in the infinite aspect ratio limit
for the two TCV discharges #54147 and #55394. This indicates that the shaping model
implemented in GBS significantly improves the description of SOL plasma turbulence
taking into account the impact of elongation and triangularity. Moreover, considering
the two-dimensional model, we observe that x > 0.6 for all the three plasma discharges.
This indicates that the hypothesis & = 0 is not justified in the present experimental
scenario. This result is consistent with the fact that, for the three considered discharges,
the SOL turbulent transport is mostly driven by DWs. Finally, we note that @ ~ 2.5
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Table 7.4 — Validation metric, x, and validation quality, @, computed according to Eqgs. (7.48) and
(7.50), respectively, for the validation of the three-dimensional GBS simulations with and without
shaping effects (Full and € = 0 columns, respectively), and the two-dimensional simulations, against
experimental measurements.

Full e=20 Two-dimensional
X Q X Q X Q
54147 0.34 2.46 0.46 2.46 0.76 2.54
55391 0.40 2.51 0.39 2.50 0.62 2.60
55394 0.34 2.46 0.51 2.49 0.85 2.56

for all the comparisons considered herein.

7.7 Conclusions

In the present chapter, the effects of plasma shaping on SOL turbulence are discussed.
Depending on the magnetic geometry, the SOL turbulence regime is identified, and the
impact of Shafranov’s shift, finite aspect ratio, elongation, and triangularity on L, is
investigated. The results obtained from the linear theory are compared with nonlinear
simulations, which are rigorously validated against TCV experimental measurements.
The drift-reduced Braginskii equations are written in an arbitrary magnetic geometry
and, using the flux-tube and the toric coordinate systems, the coefficients characteriz-
ing the differential operators entering the model equations are computed. An analytical
equilibrium model is used to express the dependence of the magnetic equilibrium on e,
A, k, and 0. This model allows us to isolate the different shaping effects that affect SOL
turbulence and to investigate their impact on SOL instabilities.

First, the influence of the plasma shaping on RBMs and RDWs and the effect of €, A,
k, and ¢ on their growth rate are discussed. It turns out that plasma shaping strongly
impacts the RBM growth rate, while RDWs are considerably less affected. In particular,
it is observed that e, A, x, and § < 0 effects stabilize RBMs, while these are enhanced
for 6 > 0.

Second, a nonlinear saturation theory of the growth of the unstable linear modes is pre-
sented, and it is used to estimate the SOL width from a linear analysis of the main
instability driving the SOL turbulence. It is found that L, decreases for x > 1 and
0 < 0, while it increases for ¢ > 0.2. This result is used to identify the turbulent regime
depending on the shaping parameters. It turns out that, for k > 1 and § < 0, RDWs
drive the SOL dynamics, while RBMs dominate for large positive § values, or if Kk = 1
and aspect ratio effects are neglected. Moreover, assuming that RBMs are mainly af-
fected by plasma shaping through the curvature operator, an analytical scaling for L,
is deduced, taking into account s and ¢ effects. This analytical scaling generalizes the
scaling presented in Refs. [24,100,113] by including non-circular magnetic geometries.
Third, the results obtained from the linear theory are compared with nonlinear simu-
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lations carried out with the flux-driven fluid code GBS, showing good qualitative and
quantitative agreement. An intuitive explanation for the strong impact of x and § on
the RBMs growth rate is also given, showing that elongation and negative triangularity
result in a stabilization of RBMs.

Finally, in order to assess the reliability of our shaping model, we compare nonlinear
simulations of SOL plasma turbulence with TCV experimental measurements. We con-
sider: (i) three-dimensional GBS simulations carried out with €, A, k, and ¢ effects, (ii)
the three-dimensional GBS model with circular magnetic geometry in the infinite aspect
ratio limit, and (iii) the two-dimensional GBS model. A rigorous validation methodology
is applied to asses the global agreement between the three simulation models and the
experimental measurements. It is found that the model used to express the dependence
of the magnetic equilibrium on €, A, k, and ¢ is able to significantly improve the agree-
ment of simulation results with the experimental measurements. Moreover, confirming
the DW nature of the instability driving the SOL transport in the considered TCV dis-
charges, we find that the hypothesis & = 0 is not justified in the present experimental
scenario, also in agreement with previous theoretical investigations [145].
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CHAPTER

Conclusions and outlook

The present thesis is devoted to the development and the application of V&V proce-
dures to numerical simulations that are used to investigate the plasma dynamics in basic
plasma physics experiments and in the tokamak SOL. While these procedures allow us to
increase the reliability of numerical simulations, ultimately they also lead to an improve-
ment of our understanding of the phenomena at play in the SOL region. Developing and
applying rigorous V&V methodologies is now crucial in the fusion community. In fact,
with the design and the construction of increasingly larger experiments, errors affecting
simulation codes that are used to predict the performances of future fusion devices can
have far reaching consequences.

The general methodology to perform a rigorous plasma simulation code verification is
presented in Chapter 2. First, focusing on grid-based simulation codes, we propose to
use the method of manufactured solutions to assess the correct implementation of a
physical model in a simulation code. The procedure requires choosing a manufactured
solution that satisfies some reasonable conditions, adding the resulting source terms to
the model equations, and performing a number of simulations to verify that the numer-
ical solution converges to the manufactured one at the rate expected for the considered
algorithm. If it is the case, the code is verified. The methodology is then generalized to
PIC codes, accounting for the intrinsic statistical nature of PIC simulations and provid-
ing a measure between continuous analytical distribution functions and finite samples of
computational particles. Since the proposed methodology might become very demanding
in terms of computational resources, several norms of the numerical error are investi-
gated, providing a procedure that is easily generalized to a six-dimensional phase-space
with a limited computational cost. The proposed code verification methodology is then
successfully applied to verify GBS and a one-dimensional, electrostatic, collisionless PIC
code, considerably increasing the reliability of the numerical results obtained with these
two simulation codes.

In Chapter 3 we present a solution verification procedure to rigorously estimate the sta-
tistical and discretization errors affecting plasma simulations. The statistical uncertainty
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is quantified by repeating the simulation with different pseudorandom number genera-
tor seeds, while the discretization error is evaluated by approximating the exact solu-
tion with the Richarsdon extrapolation. Since simulations belonging to the asymptotic
regime are required to compute the Richardson extrapolation, condition which might
require extremely expensive simulations, the GCI is also introduced for estimating the
discretization uncertainty. The total numerical error affecting the simulation results is
then computed by summing up the different error contributions. The proposed method-
ology is applied to quantify the numerical error affecting GBS SOL turbulence simulation
results and the two-stream instability growth rate evaluated from a PIC simulation. We
remark that estimating the numerical error affecting a simulation is important not only
to ensure their reliability, but also to perform a rigorous validation of the considered
physical models against experimental data.

The impact of input parameter variations on the results of a plasma turbulence model is
investigated in Chapter 4, providing a framework for studying uncertainty propagation
and avoiding the use of a large number of expensive simulations. To reduce the com-
putational cost of the uncertainty propagation analysis, a general and simple to apply
methodology to approximate the model equation solution with a semi-analytic expression
that depends explicitly on time, spatial coordinates, and input parameters is proposed.
The procedure is based on decomposing the model equation solution in terms of Cheby-
shev polynomials. By employing a WRM, a set of nonlinear algebraic equations for the
coefficients appearing in the Chebyshev decomposition is then obtained. The methodol-
ogy is applied to a two-dimensional Braginskii model to study the impact of the input
parameter that describes the parallel losses on the simulation results. Assuming that
this input parameter is distributed according to a Gaussian probability density function,
the standard deviation that characterizes the corresponding distribution of equilibrium
density gradient lengths is evaluated. It results that a reasonable estimate of the stan-
dard deviation can be obtained with a small number of Chebyshev polynomials, i.e. with
reduced-cost simulations.

The blob dynamics in the TORPEX device is investigated in Chapter 5. Five different
models are used to carry out seeded blob simulations, which are compared with each
other and validated against experimental measurements. The models differ because of
a number of assumptions used to simplify the drift-reduced Braginskii equations, such
as the hypothesis of cold ions, isothermal electrons, or negligible electron inertia. Both
two-dimensional and three-dimensional models are considered. The comparison between
numerical and experimental results allows us to identify the most important physics
elements that play a role in setting the blob velocity. It results that parallel currents
are important in setting the radial velocity of blobs in typical TORPEX hydrogen plas-
mas, in agreement with previous experimental observations, while their vertical motion
is mostly governed by the vertical background E x B flow.

In Chapter 6 we investigate the RFX-mod SOL plasma dynamics considering low edge
safety factors. First, we identify the inertial DW as the instability driving most of the
turbulence transport in the considered RFX-mod plasma discharges, both from nonlin-
ear results and from a linear investigation of SOL instabilities. Then, we compare the
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nonlinear simulations with RFX-mod experimental measurements, showing qualitatively
and quantitatively good agreement, except for the Vj; equilibrium radial profile and the
level of js, fluctuations. The observed discrepancies are attributed to events occurring
inside the LCFS, which are not correctly described by GBS simulations.

Finally, in Chapter 7 we investigate the impact of shaping effects on the SOL plasma
dynamics. The drift-reduced Braginskii equations are written in arbitrary geometry, and
an analytical model is employed to express the dependence of the magnetic equilibrium
on aspect ratio (e), Shafranov’s shift (A), elongation (), and triangularity (6). The
influence of plasma shaping effects on the growth rate of RBMs and RDWs is analysed.
It results that e, A, k, and § < 0 strongly stabilizes RBMs, while RDWs are consider-
ably less affected. Assuming that the linear growth rate of SOL instabilities saturates
because of the gradient removal mechanism, the impact of shaping effects on the equi-
librium pressure scale length is investigated. It is found that L, decreases for x > 1 and
0 < 0, while it increases for § > 0. The nature of the SOL turbulent regime, depend-
ing on the considered magnetic geometry, is also identified. It turns out that RDWs
drive the SOL plasma dynamics for k > 1 and ¢ < 0, while RBMs dominate for large
positive values of 4. An analytical scaling for L,, which depends on x and ¢, is also de-
duced. These linear results are then compared with nonlinear simulations, finding good
agreement. Finally, the simulation results are validated against TCV experimental mea-
surements, considering three plasma discharges with different magnetic geometries. For
this purpose, three-dimensional GBS simulations with shaping effects, three-dimensional
GBS simulations in circular geometry and in the infinite aspect ratio limit, and two-
dimensional GBS simulations are considered. It is found that the model used to express
the dependence of the equilibrium magnetic geometry on €, A, x, and § significantly
improves the agreement of the simulation results with the experimental measurements.
The DW nature of the instability driving the TCV SOL turbulence dynamics is also
confirmed.

While in the present thesis rigorous methodologies to effectively increase the reliability
of the numerical tools used to investigate the tokamak plasma dynamics are proposed,
a number of issues remains open. First, since the manufactured solutions should be
smooth, we note that the proposed code verification methodology cannot be applied
to numerical codes that are used to simulate shocks or discontinuities. Techniques to
rigorously verify these codes are still under debate. Using the MMS to verify finite el-
ement and fully spectral codes constitutes also an open issue, since adding the source
terms to the model equations modifies the behaviour of the numerical error affecting
the simulations. In addition, the requirement that the degree of mesh refinement is
solely represented by the parameter h prevents the use of the proposed methodology to
the verification of simulation codes involving local mesh refinement or mesh adaptation.
Moreover, we note that the verification of numerical code packages, for which different
simulation codes are coupled together, also represents an open issue. In fact, while the
methodology presented in the present thesis can be used to verify independently each
block of the package, it is not straightforward to apply it to rigorously verify the in-
terfaces among the different codes. In general, additional work is needed to develop a
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rigorous methodology for the verification of these simulation packages.

Concerning the solution verification procedure presented in this thesis, we note that the
proposed methodology based on the Richardson extrapolation requires simulations in
the asymptotic regime, which might be very expensive. This can represent a serious
problem for the application of such a methodology. At the same time, while the GCI
allows to evaluate the discretization error also for less expensive simulations, a discussion
of its generality and its reliability is still ongoing. Therefore, progress is still necessary to
develop a reliable solution verification methodology based on less expensive simulations.
The study of uncertainty propagation through a physical model is a general and ex-
tremely interesting problem, which is being investigated in a number of scientific do-
mains. In Chapter 4 we propose a rigorous methodology to carry out uncertainty prop-
agation studies. However, the proposed approach requires the development of new fully
spectral codes. In general, the evaluation of uncertainties affecting simulation results
due to uncertainties on input parameters remains an outstanding scientific problem and
a number of techniques might be explored and applied to plasma physics simulations
(see e.g. Ref. [198] for a more complete discussion of this subject).

In the present thesis we discuss the validation of plasma simulations against experimen-
tal measurements, reporting on three validation exercises. More precisely, we investigate
SOL phenomena in a basic plasma physics experiments and in two tokamaks, improving
our understanding of the SOL plasma dynamics. Our work shows that, to improve the
reliability of the physical models used to investigate the plasma dynamics, it is important
to design and execute dedicated validation experiments that allow testing individually the
different phenomena at play in the system (an example is the blob motion in TORPEX).
Consequently, it would be useful to develop a database of experimental measurements,
accessible by the whole plasma physics community, containing the information necessary
to carry out rigorous validation exercises. Since the physical quantities obtained from
simulations typically do not coincide with the physical quantities measured in experi-
ments, additional work in developing synthetic diagnostics is required. At the same time,
an effort should be made to provide accurate measurements of observables. This will
decrease the uncertainties, thus increasing the quality factor of the validation.

The final target of V&V procedures is to increase the reliability of simulations in de-
scribing the tokamak plasma dynamics. This ultimately leads to an improvement of our
understanding of plasma physics phenomena and, at the same time, allows more reliable
predictions of the performances of future fusion devices. For this purpose, a rigorous
methodology to assess the predictive capabilities of plasma simulation codes should be
developed. This requires, for example, estimating the uncertainties on the model results
introduced by the model assumptions.

Based on the work in the present thesis it is our hope that all numerical tools used to
investigate the tokamak plasma dynamics and design fusion devices will be rigorously
verified, and the simulation results rigorously validated against experimental measure-
ments.
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APPENDIX

The SOL model and the GBS code

In the tokamak SOL the plasma is relatively cold, with temperatures usually lower than
100 eV, and the mean free path of electrons and ions between two Coulomb collisions is
typically shorter than the parallel connection length. It follows that the SOL plasma
is characterized by a relatively high collisionality, which allows the plasma to reach a
local thermodynamic equilibrium. Consequently, it is usually justified to model the SOL
plasma dynamics with only a few fluid moments.

The three lowest-order fluid moments of the a species distribution function f, are the
plasma density n,, fluid velocity v,, and temperature 7T,, which are defined as

na(x,t) = /RS fa(x,v,t)dv, (A1)
Vo (x,t) = ni u.@ via(x,v,t)dv, (A.2)
Tu(x,t) = ni /R 3 % (v — va)? fulx, v, £)dv. (A.3)

In order to express the evolution of the fluid moments, one has to start from the Boltz-
mann equation, which describes the time evolution of f, as
Ofu . 0fa 0.

Qo _
E‘Fv'aixﬁ‘mia(E—f‘VXB) W—Sa+§c(favfﬁ)v (A4)

where S, is a source/sink of particles and C(f,, f3) the collisional operator describing
Coulomb collisions between the a and 3 plasma species. Equation (A.4) can be properly
integrated over the velocity space, thus obtaining a set of equations able to describe the
evolution of the fluid moments. It turns out that the time evolution of each moment
depends on a moment that is one order higher. To avoid solving for an infinite number
of moments, a closure has to be introduced, i.e. an assumption on the moment one order
higher than the highest order evolved moments.

Among the different two-fluid models derived to describe the plasma dynamics, we con-
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sider here the one that was introduced by Braginskii in 1965 [13]. This model was deduced
assuming that the electron and ion distribution functions are close to a Maxwellian, which
is justified for strongly collisional plasmas, thus obtaining a closed set of equations for
Na, Vo, and T,,.

Because of the wide range of spatial and temporal scales covered by these equations,
which makes their numerical simulation extremely challenging, several approximations
were introduced to obtain more suitable models, which have been implemented in a
number of simulation codes. In particular, the drift approximation of the Braginskii
model [14] was implemented into GBS, a simulation code developed in the last few years
to simulate plasma turbulence in the open field region of basic plasma physics experi-
ments and magnetic confinement devices, evolving the full plasma profiles without any
separation between equilibrium and perturbation quantities [20,177].

In this appendix we present the physical model that is implemented in GBS and the
details of this code. The Braginskii equations are illustrated in Section A.1, and their
drift-reduced limit is deduced in Section A.2. The main features of the GBS code are
then summarized in Section A.3.

A.1 Braginskii equations

It is a general result of statistical mechanics that the particles of any gas in thermal
equilibrium have a Maxwellian distribution [13]

3/2
0 __ M — o (y—v,)?
=n e 2Ta A5
fa <27TT,1> (4.5)
and, as stated by the H-theorem, if a distribution function evolves only by virtue of
collisions, it will approach a Maxwellian regardless of the initial condition. This process,
called relaxation, occurs on a time-scale of the order of the collision time. In a plasma
the electron and ion collision times can be written as

_ 3ymI _ 3ymT” (A.6)
e 4/ Z%n; e 4/TNe* Z4n;’ ’

where A is the Coulomb logarithm and we define ¢; = Ze the ion electric charge.

We focus our attention on phenomena occurring on time scales larger than the collision
times and on spatial scales longer than both the Larmor radius and the distance traversed
by particles between two Coulomb collisions. More precisely, we consider a plasma for
which

T > Ta, L1 > pa, Ly > e, (A7)

where )\;”f” = UipaTa is the mean free path between two Coulomb collisions, p, =
Uth,a/Wea the Larmor radius, vy, = 1/Ta/m, the thermal velocity, wen = ¢oB/mag
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A.1. Braginskii equations

the cyclotron frequency, 7, Lj and L, are the characteristic time and lengths for the
variation of macroscopic quantities, and the symbols || and L refer to the direction
parallel and perpendicular to the magnetic field, respectively. In this case, it results that
the solution of the Boltzmann equation, Eq. (A.4), is locally close to a Maxwellian. In
addition, we focus on strongly magnetized plasmas, i.e. w.,7o > 1. In this scenario,
the equations that describe the behaviour of the macroscopic quantities n,, v, and T,
which are called transport equations, were obtained by Braginskii in 1965 as described
in the following. First, the distribution functions f, are written as f, = f° + f!, where
it is assumed |f!]/f% < 1 and f! is treated as a small perturbation on the Maxwellian
distribution function f2. Second, the Boltzmann equation, Eq. (A.4), is linearised around
/Y. Finally, multiplying the linearised Boltzmann equation by 1, v, and v?, respectively,
and integrating over velocities, one obtains

a;a + V. (nava) = Sn,om (A8)

mana% =—Vpo = V- 7+ qana (E+ vy x B) + Ry, (A.9)
do Ty

gna e —PaV Vo —=Vido—7, Vv +Qu+ Sqa- (A.10)

Here p,, = n4T, is the scalar pressure, 7 the stress tensor, qqo(X,t) = m, [ VAV fa(x, v, t)dv /2
the heat flux, S, , and Sg, are sources and/or sinks of particles and heat for the «
species, A : B the Frobenius inner product between the two tensors A and B, and

do O

ol vy (A1)

the material derivative. Equation (A.8) is the continuity equation and it ensures mass
conservation. Equation (A.9) states the conservation of momentum, where R, = —R;
represents the transfer of momentum due to the collisional friction between electrons and
ions. Finally, Eq. (A.10) is an energy conservation equation, where -, Vv and Q,
represent the viscous heat losses and the heat generated because of collisions between
particles of different species, respectively. The set of equations (A.8)-(A.10) is closed by
providing an expression for Ry, 7, qa, and (), as function of n,, v, and T,,, which
Braginskii obtained by assuming that the plasma is made by electrons and one single
ion species, and that the plasma is quasi-neutral, i.e. n. = Zn;. In the following, we
illustrate the expressions of R, T, qa, and Q,, and we briefly discuss the underlying
physics. For a detailed discussion we refer to Ref. [13].

The term R, = R, + Ry is the sum of the two contributions

R, =en, (']' + Jl) ; (A.12)
0'” g
3 nNe
RT = —0.71n6v“Teb - = b x VTe, (A.lg)
2 WeeTe
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where j| = en, (v”i — v”e) b and j, = en. (vy; — vi.) are the parallel and perpendicular
current densities, o = 1.960, and o, = e?n.7e/m. are the parallel and perpendicular
electrical conductivities, and b is the unit vector parallel to the magnetic field. Here R,
and Ry represent the force of friction due to a nonzero relative velocity u = v, — v; and
due to the presence of electron temperature gradients, respectively.

The electron heat flux is made of two analogous terms: q. = ¢, + qe 7, Where

eTe
=0.71n.T, u + § b x u, (A.14)
2 WeeTe
5nd,
der = X[V Te = X1 V1T — 3.p 1% VT, (A.15)

with V; =V —b(b-V) and V|| = bV the perpendicular and parallel gradients. Here
X|e = 3.16n.T,7, /me and x . = 4.66n.T./(m.w%7.) are the parallel and perpendicular
electron thermal conductivities, respectively. The first term, q. ,, is related to the friction
force R, whereas the second one, q. 7, is related to the presence of electron temperature
gradients.

The ion heath flux is defined in a similar way. However, since the ion momentum loss
characteristic time for collisions against electrons is very large, it is justified to neglect
the term q;,. Thus, we obtain

5n
Q= = —XiV|Ti — xuViTi + - (A.16)

2 Z B v
where x|; = 3.9n;T;7;/m; and x1; = 2n;T;/(mw?7;) are the parallel and perpendicular
ion thermal conductivities.

Choosing a coordinate system with the z axis along the magnetic field, the components
of the stress tensor m  for a given species write

Ty = —770sz; (A17)
Tow = T;O(Wm +W,,) — & B (Wew = W) = 1Woy, (A.18)
77
Ty = Ty = =1 Way + 5 (War = W), (A.20)
Mgz = Tzg = *772sz - 774Wy27 (A21)
Tyz = Ty = —1)2 + 774sz7 (A22)
where
0 0 2
Wi = 20 4 2% 25V v (A.23)

dry  Ox; 3’

page 142



A.2. Drift-reduced Braginskii equations

are the components of the rate-of-strain tensor,

e = 0.73nTo7., (A.24)
ned,

Me = 0'51(,02 - s T2e = 477167 (A25)
nel s

N3e = —0.5 o Nae = 27736 (A26)

the electron viscosity coefficients, and

Noi = 0.96n,T;7;, (A.27)
n;T;

mi = 0.3—45—, N2i = 4, (A.28)
WeiTi
n;T;

N3 = 0.5 o N1 = 213 (A.29)

the ion viscosity coefficients.
Finally, the heat exchanged through collisions is expressed as
3MeNe
Qi = (T. = T3) (A.30)

m;Te

for ions and
Qe - _Re u— Qz (A31)

for electrons, where the Joule heating is neglected for ions since it is about m,/m; times
smaller than —R; - u.

A.2 Drift-reduced Braginskii equations

Although much simpler that the kinetic equation, the Braginskii equations, Eqs. (A.8)-
(A.10), still cover an extremely wide range of spatial and temporal scales. It is therefore
necessary to simplify the Braginskii equations to obtain a model suitable for the nu-
merical investigation of SOL plasma turbulence. This is achieved by adopting the drift
ordering, according to which [14]

d
— A.32
5 < we (A.32)

This is equivalent to assume that p;/L; < 1 and that 0/0t < w,;, since

VoV~ EXE L (A.33)
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where ps = ¢;/we; is the ion sound Larmor radius, ¢ = /T./m; the sound speed, and
vexp the equilibrium E x B drift. These assumptions are justified for the study of the
SOL plasma dynamics, since SOL turbulence occurs on timescales much slower than the
fast gyromotion and it is usually characterized by spatial variations that occur on scale
lengths longer than p,.

The drift-reduced approximation allows us to split the particle dynamics into parallel
and perpendicular directions with respect to the magnetic field, and avoids to evolve a
momentum equation to evaluate the ion and electron perpendicular velocities. Formally,
it expresses the electron and ion velocities as

Ve = Vb + v i, (A.34)
vV, = UHlb + V. <A35)

The perpendicular (to B) electron and ion velocities, v . and v_;, are obtained by
crossing Eq. (A.9) with B/(en,B?). Assuming that the viscous terms are small and
applying the ordering in Eq. (A.32), it is found that the leading order contribution to
Vi, is given by

Via0 = VExB t Via, (A.36)

with vpyxp = E x B/B? the E x B velocity and v., = B X Vp,/(q.n.B?) the diamag-
netic drift velocity. The first-order correction on v g, of order p%/L? or proportional
to 7Moa, constitutes the polarization velocity, vpe .. To compute v, ., it is useful to
simplify Eq. (A.9) as follows. First, the perpendicular momentum transfer vector R, is
neglected. Second, the stress tensor = = QS LR 4 ggfs is split into a finite Larmor radius
(FLR) part and a viscous part, such that

V-1t = —mang (Vea - V) Va + Da [(VX wb ) 'V} Vo

Pa Pa
FVL |V va)} +bxV ( VL va> (A.37)
and
| 1 G,
V5 = Gor — sVGo + B(b V) (E) , (A.38)

where kK = b - Vb is the field line curvature and G, = =300 (V|Vja — K- Va — V- V4/3)
is the stress function (a complete derivation of these terms is discussed in Ref. [182] and
references therein). The polarization velocity is finally evaluated as the leading terms in
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b
) : VVJ_OLO:|
Wea

Via — Via0, i.e.

b de 1
Vpola =—— X —Ovmo—&— —————— b X |p, |V X
’ Wea dt NaMaWeq

Pao

+b><V¢[ V- (b X Vi) —VL(pa VJ_'VJ_aO)
2wca 2wca
b x (Ga& _ V?"‘) } (A.39)
where
daO
E = at + (VEXB + UHab) . V (A4O)

[Vpol,a 1s dropped because of the drift ordering, while the diamagnetic drift contribution
is cancelled out by the first term of Eq. (A.37)]. To further simplify the model, it is
possible to neglect v,y . with respect to v, ;, since m./m; < 1. Moreover, as detailed
in Ref. [182], it is possible to neglect the second, the third, and the fourth terms of
Eq. (A.39), thus obtaining the final expressions of the perpendicular electron and ion

velocities,
Vie = VExB t Vie, (A41)
V1i = VExB T Vii T Vpoli, (A42)
with
Vp L Wes x dt VLo * n;Mmy;We; ” ( K, 3 ) ( )

As pointed out earlier, the transport coefficients used in the Braginskii equations are
derived under the assumption that the plasma is quasi-neutral. This is justified since
the typical characteristic scale lengths for the turbulence are much larger than the Debye
length A\p = \/eoT:./(€?n.). In the following of this appendix we consider singly charged

ions, i.e. we set Z =1, and we write n =n, =n; and ¢; = —q. = e.

A.2.1 The semi-electrostatic limit

It is useful to remove the compressional Alfvén wave dynamics from a turbulence model,
as the timescale of this mode is considerably faster than the turbulent timescales of
interest. This is achieved by assuming the perpendicular component of the electric field
as electrostatic, thus writing E; = —V ¢, with ¢ the electrostatic potential. In other
terms, we assume that the perturbed potential vector is parallel to the background
magnetic field, 0A = —1¢bgy, where bg is the unit vector parallel to the unperturbed
magnetic field. In fact, within the assumptions that the plasma to magnetic pressure ratio
is small, i.e. f = 2puo(pe +p;)/B* < 1, that L| < L, and neglecting the displacement

page 145



Appendix A. The SOL model and the GBS code

current, the perturbed magnetic field is written as
0B =-Vx (wbo) ~ bo X VJ_'(XJ (A44)

The electric field is consequently given by

E=-Vo¢+ boi;f, (A.45)

where the perturbed poloidal flux ¢ satisfies Ampere’s law,

V2 = . (A.46)

We note that, besides entering in Eq. (A.45), magnetic fluctuations play also a role in
the evaluation of the parallel gradient

b
vnzb-vzbo.v+§°xvm-v, (A.47)

where B denotes the norm of the equilibrium magnetic field. Finally, we also note that,
within the semi-electrostatic approximation, the E x B velocity can be approximated as

by x V¢

VExB = B (A48)
and the diamagnetic drift velocities as
by x Vp. by x Vp;
*62777 *izi. A49
M enB v enB ( )

A.2.2 Continuity and vorticity equations

Within the drift-reduced approximation considered above, the continuity equation, Eq. (A.8),
for the electron and ion species is written as

on

a +V. [TL (VE><B + Vie + UHebOﬂ = Sy, (A50)
ZZL +V- [n (VE><B + Vi + Vpol,i T UHibO)} = Sn, (A.51)

where we use n = n, = n; and we assume S, . = S,,; = 5, because of quasi-neutrality.
By subtracting Eq. (A.50) from Eq. (A.51), we obtain the so-called vorticity equation,
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written as
1 AV (ijO)
3MWeg (bo x k) VG + V- [n(Vi — Vie)| + —
1 dio 1 B

where we neglect the inhomogeneity of the magnetic field in computing the divergence
of Vpe1,i, we assume j| ~ j- by, valid within the semi-electrostatic approximation, and we
use

bO VGZ bo X K
v. {B x <GZ-/<.:— . )} S (A.53)

which is justified when local current densities are negligible. Within these assumptions,
the gyroviscous terms reduce to

Gi = —noi [QVHUW —K: Vno} ; (A.54)
Ge = —1oe [QVHUHe — K- VLE] . (A.55)

Equation (A.52) ensures charge conservation, and it is equivalent to a current continuity
equation V - j = 0, where we account for parallel, diamagnetic, and polarization currents.
A common approximation typically employed to further simplify Eq. (A.52) is the Boussi-
nesq approximation (the validity of this assumption in modelling the SOL plasma dy-
namics is discussed in Refs. [91-93]), which states

V.. {nfi; (Vio+ jnwi)} ~ 0% (Vio+ Vin). (A.56)
In several cases this approximation allows us to considerably decrease the computational
cost of solving the drift-reduced Braginskii equations. While sometimes useful for sim-
plifying Eq. (A.52), and used in all the simulations described in the present thesis, in
the following of the present appendix we do not make use of this approximation.

A.2.3 Generalized Ohm’s law and parallel momentum equation

The parallel component of the electron momentum equation, Eq. (A.9), yields the gen-
eralized Ohm’s law
deoVyje _ 2

J oY
= —Vp. +enVd — 0.71nV T, + en?l — 2V, G, — en. .
MeN 7 |Pe +enV ¢ — 0.71nV | T, + en 3 |Ge —en ; (A.57)

Here we use b+ (V- z") ~ —m.n(v.. - V)vj. and b- (V-1°%) ~ 2V G, /3, assuming
that the modulus of B varies slowly along b. We remark that the evolution of ¢, ap-
pearing in Eq. (A.57), is described by Ampere’s law, Eq. (A.46).
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To deduce the parallel momentum equation, we sum the parallel ion and electron mo-
mentum equations. Neglecting electron inertia and the FLR contribution of electrons,
since they are lighter with respect to ions by a factor m;/m., as well as the viscous con-
tribution in the electron stress tensor, which is smaller by a factor y/m;/m,. with respect
to the ion contribution, we obtain

_ndiOvHi
odt

2
= -V (pe + i) — éVHGi, (A.58)

where again we assume that the modulus of B varies slowly along b and we neglect the
Vpol,i contribution to the material derivative because of the drift-ordering.

A.2.4 Temperature equations

The ion temperature equation is derived within the drift reduced approximation from
Eq. (A.10) by assuming w.7; > 1 and neglecting the electron-ion collisional heating
term @); and the viscous heat losses, thus obtaining

3 diT;

-n

2 dt

5 Ppibo o
+piVevi = V- (V) T) + 5V (B X v:n-) = Sqi- (A.59)
Because of the drift ordering, Eq. (A.59) is simplified neglecting the v,y ;- V1; term.
On the other hand, the term V - v,y ; should be retained in the model. Therefore, using
the electron and ion continuity equations, we eliminate this term by writing p;V - v; ~
iV Ve + T;(vje — vji) - Vin + Ti(Vie — Vi) - Vn, thus obtaining

3 diOTi jH
g TV - (nvie) +piV - (VEXB + Unebo) - Tia -Vjn
op; by .
where we use v,; - Vp; = 0 to express nv,,; - VT, = =T;v,; - Vn.

The electron temperature equation is obtained within the drift-reduced approximation
in the limit w..7. > 1 by neglecting the viscous heat losses, the frictional heating related
to Ry, and the electron-ion heat transfer, and it is written as

3 deoTe T, .
571 i + T,V (nVie) 4+ peV - (VExg -I-vHebo) — 0.71?V- (]Hbo)
5pe bO _
-V (XHevHTe) e <V X B) VT, = Sp., (A.61)
where, similarly to the ion temperature equation, we use v,.-Vp. = 0 to express

NV VI, = —T.v,.-Vn.
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A.3 The GBS code

The GBS code makes use of the set of drift-reduced Braginskii equations described above,
which are valid for high collisional plasmas. To develop GBS, increasingly complex
magnetic configurations were considered. First, the code was developed to describe the
plasma dynamics in basic plasma physics experiments, in particular linear devices such
as LAPD [199] and simple magnetized toroidal devices such as TORPEX [161,200,201].
GBS was then extended to the tokamak geometry, and it is now able to model the
tokamak SOL region in limited plasmas [100,113,145,157]. In this section we discuss
the model implemented in GBS and the algorithm used to numerically solve the GBS
equations.

A.3.1 The GBS differential operators

In order to express the drift-reduced Braginskii equations discussed above in an easy-to-
implement form, we introduce here two differential operators. The curvature operator
C(—) is introduced to simplify the expressions of VB and curvature drifts, and of plasma
compressibility, and it is written as

C(A) = g (v < 5’;) VA, (A.62)

with A a scalar field. On the other hand, the E x B convection is introduced in the
equation by defining the Poisson’s brackets operator

{6.4) =bg- (Vo x VA). (A.63)

With these definitions it is possible to write

2

V- (nv.,) = B

o). V- (is) = (6.1} + 2 C(0). (A.64)
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A.3.2 The GBS model

Making use of the curvature and Poisson’s brackets operators, the drift-reduced Bragin-
skii equations are written in normalized units as

on RO 2
= g lent -V (nvjebo) + 5 [Cpe) =nC(@)] + Du(n) + Su, (A.65)
09} R
Fri OV {¢p,w} -V M (Uuz )} Gy)
+ B*V .- <j“b0) +2BC(pe + mpi) + DQ( ) (A.66)
U, R
(‘Tt” =—=2 {Qﬁvue} — Ve V|[Ve
m; V] V|pe 2
+ ﬁe |: -+ VH¢ —_— = O?lVHTe - 3nv|Ge:| + IDUHE (thE) ’ (A67)
T = B 10 Ve = g ViG = DV (et 7p) + Dy (1)
(A.68)
0. Ry AT, [Cpe) | 5
== (o m) -nT+ g [9) 4 Sem -
2T, V- (J)bo
+ 3 0.71(71) - V- (UHebO) + V” (XHeVHTe) + Dy, (Te) + S,
(A.69)
ol Ry N o AL Cpe) BT
= o) - g | €0 - Ty - o
2T | V- (J1bo
+ KN (n) -V (U||ib0> +V (X\Iivl\Ti) + Dr,(T;) + St
(A.70)

Here @ = V-w = V-(nV1¢ + 7V p;) is the scalar vorticity, j; = n(v; — vje) the
parallel current, U = vje + Beomi¥0/(2m,) the sum of electron inertial and electromag-
netic flutter contributions, v is the normalized plasma resistivity, and V|jA = by-V +
RoBeo{t, A}/(2B) the parallel derivative of A, with A a scalar field. The system is closed
by the Poisson and Ampere’s equations, which are respectively written as

V- (nVi¢)=Q—7Vip, (A.71)
/66 m; 56 m;
<Vi — 5| vje = ViU — Sty (A.72)

with the magnetic flux deduced from ¢ = Begm;(Uje — vje)/(2m.) and V3 = =V - [by x
(bg x V)] the perpendicular Laplacian operator.

The source terms S, St, = 25¢./(3n), and S;, = 2S,/(3n) are used to mimic the
outflow of hot plasma from the closed flux surface into the SOL region. These sources
are assumed poloidally and toroidally constant, with a Gaussian shape in the radial
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direction. Small perpendicular diffusion terms of the form D4(A) = DaV32 A, with Dy a
constant coefficient, are added for the numerical solution of the equations. The quantities
appearing in the present section are normalized according to (tilde denotes a physical
quantity in SI units): ¢t = £/ (R/ESQ), n = /iy, T, = To/Tuo, Ty = T3 /Tho, ¢ = €d/Tro,
Ve = @ﬂe/éso, Ule = (17|\ej- e&/me)/6307 v = )i/ Cs0, B = B/By, 1 = 261;/(59,077%550)7
Ry = R/ps, v = (€*noR) [ (mid¢s0 ), where ) is the parallel conductivity, 7, Tro,
T, and By are reference density, electron temperature, ion temperature, and magnetic
field, R is the tokamak major radius, and ¢, and pgy are given by ¢y = \/Teo/mi
and pgo = Csomi/ <6§0). Distances perpendicular to B are normalized to pyy, while
parallel and toroidal distances are normalized to R. Moreover, we have 7 = T} / T.o and
Beo = 240710 T 0o / Bg . Finally, the gyroviscous terms are written

1

Gi = —noi {QVHUW + EC (¢) + TTBC (pz)] ) (A.73)
1 1

G = — 1o, {WHUHG +2C(6) - —C (pe)} , (A.74)

with 7y = 0.96ﬂofi/(miROéso) and 79, = 0.73T607‘e/(me}~2650). We note that, while
a discussion of plasma-neutral interactions is outside the scope of the present thesis,
a model that includes ionization, charge-exchange, and recombination processes, and
couples plasma and neutral physics, is implemented in GBS, as detailed in Ref. [202].

A.3.3 Boundary conditions

Equations (A.65)-(A.70) are completed by a set of boundary conditions at the magnetic
pre-sheath (MP) entrance, where the validity of the drift approximation breaks down.
Their derivation is detailed in Refs. [94, 158,177] and the results are summarized here
for completeness.

Since at the MP entrance plasma gradients in the direction normal to the walls domi-
nate with respect to other directions, the plasma dynamics can be approximated as one
dimensional. Under this condition, one obtains that at the MP entrance

V)i = :tCS\/FT, (A75)

Ve = FCs exp (A - ?), (A.76)
n

sl = +———=-UsV||qs A.

Osn :chma V)| ( 77)
c

as - :Fisasv i A78
O =F 70 (A.78)
Q = Fegny/ Frcos® x02vy;, (A.79)
05T, ~ 0, (A.80)
8,1, ~ 0, (A.81)
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where the upper (lower) sign refers to the case of a magnetic field directed towards (away
from) the wall, ¢, = /T, is the ion sound speed, Fr = 1+7T;/T., A = log \/m;/(27m.) ~
3 for hydrogen plasmas, and s is a coordinate normal to the wall, which coincides with
the poloidal angle in the infinite aspect ratio limit. Here we neglect the drift corrections
from radial plasma gradients. The symbol y represents the angle between the magnetic
field lines and the wall, with cosy = 1 for a toroidal limiter in the infinite aspect ratio
limit. Finally, we note that electromagnetic effects are intrinsically three-dimensional,
and therefore costly full kinetic simulations would be required to apply the boundary
conditions to ¢». These simulations have not been performed yet and we impose ¥ = 0
at the MP entrance.

A.3.4 Geometry

The differential operators used to express the GBS model equations are written for arbi-
trary magnetic geometries. Therefore, in order to implement the drift-reduced Braginskii
equations in GBS, one has to express the magnetic field in a chosen coordinate system,
and compute the corresponding metric tensor coefficients.

The GBS code makes use of the toric (0,7, ¢) coordinate system, where r is a flux
coordinate, ¢ is the toroidal angle, and 6, is the straight field line angle defined as

1 "B- Ve
9*(T70)_q(7’)/() Bt (A.82)

with 6 and ¢ the poloidal angle and

_i QWB‘VQO
“2rJo B-V#

q(r) de (A.83)
the safety factor. This toric coordinate system is rescaled as y = ab,, v = r, and
z = Ry, where a is the tokamak minor radius in ps units.

For a toroidal limiter at the high field side, with circular magnetic flux surfaces in the
infinite aspect ratio limit, the differential operators used in GBS in normalized units are
written as

{¢, A} = 8,00,A — 0,40, A, (A.84)
C(A) = sin 0,8, A + cos 0,0,A, (A.85)
VIA=0lA+9A, (A.86)
VA = 0.4+ gayA-i-ﬁeo {v,A}/(2B), (A.87)

where 6, = y/a and 0, = —m and 6, = 7 at the inner midplane. Here the magnetic
geometry is treated with the approximation of being radially local, i.e. geometric coef-
ficients are assumed not to depend on x in the simulated domain. This approximation
corresponds to assume a constant safety factor ¢ in the radial direction and that L, < a,
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with L, the SOL width. We note that magnetic shear effects are included in GBS by
performing the change of coordinate 6, = 6, + 80,(r — a)/a, with 8 = (r/q)dq/dr the
magnetic shear, and assuming dy =~ 0y, , as detailed in Ref. [179]. We also note that GBS
is able to handle circular magnetic geometries with finite aspect ratios, as detailed in
Ref. [179], and that we illustrate the work done to generalize the GBS magnetic geometry
to non-circular plasma shapes in Chapter 7.

Figure A.1 — Snapshot of a section of the three-dimensional p. profile obtained from a nonlinear
GBS simulation. The domain evolved by GBS is shown, together with the toroidal limiter on the
high-field side (in blue).

A.3.5 Numerics

Herein we summarize the main aspects of the numerical implementation of the GBS
model within the GBS code, whereas for a more detailed description we refer to Ref. [177].
The GBS model equations are integrated in time with a fourth order Runge-Kutta algo-
rithm. The toroic coordinates are discretized on a Cartesian grid, with spatial derivatives
on the right-hand side of Egs. (A.65)-(A.70) evaluated using second order finite differ-
ence schemes, except for the Poisson’s brackets, which are computed using the Arakawa
scheme [132]. In order to take advantage of the strong anisotropy of SOL turbulence,
the grid is aligned to the magnetic field and the parallel gradient is computed along the
field line using a second order finite difference approach. The Poisson and Ampere’s
equations can be solved using second order sparse matrix methods, or using a second
order stencil-based multigrid solver, as detailed in Ref. [177] (the multigrid is necessary
to avoid the use of the Boussinesq approximation and to perform electromagnetic simu-
lations). The numerical grid where (Uje, v, v|;, 1) are evaluated is displaced by half a
grid point in the toroidal direction with respect to the (n, €, ¢, ., T;) grid for numerical
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stability. The code is parallelized using a domain decomposition technique based both on
Message Passing Interface (MPI) and OpenMP approaches, allowing to run a simulation
on thousands of CPUs.

An example of the results obtained from a GBS simulation is shown in Fig. A.1. The
domain evolved by GBS, together with the toroidal limiter (in blue) are shown. The hot
plasma outflowing from the core into the SOL is transported radially outwards because
of turbulence, while flowing along the magnetic field and being ultimately lost at the
limiter plates. Since a set of boundary conditions describing the plasma interaction with
the outer wall and the plasma dynamics at the core does not exist yet, ad hoc boundary
conditions are applied at the inner and outer radial boundaries of the simulated domain.
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APPENDIX

Estimate of the equilibrium pressure
gradient length

The time-averaged plasma pressure gradient scale length L, = —p./Vp, in the tokamak
SOL originates from a balance between the turbulent perpendicular transport of parti-
cles and heat, resulting from the nonlinear development of the unstable modes, and the
parallel losses at the end of the magnetic field lines. In the limit of a negligible E x B
shear flow and for typical SOL parameters, it is justified to assume that the gradient re-
moval turbulence saturation mechanism, i.e. the local nonlinear flattening of the plasma
pressure profile and the resulting removal of the instability drive, is the mechanism that
regulates the amplitude of SOL turbulence [100].

The main features of the theory are summarized here. Note that in the following of
the present appendix all the equations are expressed in normalized units. The funda-
mental hypothesis is that the saturation of the growth rate of the linear modes occurs
when these are able to remove their own drive, namely, the amplitude of the gradient
associated with the fluctuation, kxdp., is comparable to the gradient of the background
pressure, peo/L, (kx ~ \/ky/L, is the radial extension of BMs or DWs obtained from
a non-local linear theory [160,161]). This provides an estimate for the amplitude of the
fluctuations dp,, given by

p. = —L0 (B.1)

Jky L,

Then, the leading terms in the linearised pressure continuity equation,

~Ope + Rokyégﬁ% ~ 0, (B.2)

p
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provide an estimate of the electromagnetic potential fluctuations

YOpe Ly
0 ~ —— B.3
¢ Ropeoky ( )

and therefore of the turbulent E x B flux,

T = ky6¢0p, ~ gopk(; (B.4)

Finally, the balance between the perpendicular turbulent transport,

r YPeo
RooxT' ~ Ry— ~ B.5
1€ OLP kYLp7 ( )

and the parallel losses at the end of magnetic field lines,

Pe0Cs
Vi(pevye) ~ =, (B.6)
q
gives
qa (7
L,=—|-— B.7
P Cs <kl/>rrlan)c7 ( )

where v/ky should be maximized over the unstable modes present in the system. As
detailed in Ref. [150], Eq. (B.7) was validated against a large number of inner-wall
limited tokamak discharges, showing good agreement between theoretical predictions
and experimental measurements. We finally remark that + and ky depend on L, and,
therefore, Eq. (B.7) is an implicit equation in L, that, in most cases, has to be solved
numerically.
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Differential operators for an
axisymmetric magnetic field

To obtain the coefficients of the differential operators presented in Section 7.1.2, we
proceed as follows. First, we define the covariant basis V&', being {£'} = {€1, €%, &%}
an arbitrary set of coordinates, and we write B = B; V¢!, where B; are the covariant
components of B and the Einstein’s summation convention is employed. Note that the
contravariant components of the vector B are evaluated as B* = B- V¢!, the covariant
components as B; = giij , the contravariant components of the metric tensor associ-
ated with the covariant basis V&' as ¢¥ = VE'- V¢, and the covariant metric tensor
is defined as the inverse of the contravariant metric tensor. The Jacobian associated
with the coordinate transformation {£'} is Jeg2es = 1/4/det(g¥), where det(g%) is the
determinant of the contravariant metric tensor ¢g.

Then, to compute the contravariant metric tensor g% of the toroic and flux tube coordi-
nate systems, we introduce the standard cylindrical coordinate system (R., ¢, Z.), with
the Z. axis coinciding with the tokamak symmetry axis and R, the distance from this
axis. Assuming axisymmetry, that is R. = R.(r,0) and Z. = Z.(r,0), the components
of the covariant metric tensor associated with the coordinate system (0,7, ¢) are defined

OR.\>  [(02.\°
999:<%>+(89>’
_ OR.OR, 07,07,
9" ="or 20 " or 00

_(oRN (02’ (C.1)
gTT‘ - 67" 87" )
oo = R37
9ro = Gop = 0.

as
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These expressions allow us to express the contravariant metric tensor components asso-
ciated with the toric and flux-tube coordinate systems, which are

o0 90, 50 90, \>
0.0, _ [ Z7* 00 * * _Or * rr
9 _<69>9 2% 999 +<8r> g

Our __ 80* rr + 80* or
- or g o6 g
(A -0 ( )
C.2
R r) o, »
g = —S(T)Q*q(r )96* q(r)g**,
ra ~ q\r) . o
= —3(r. 2 (r)g™",
25 2
9" =97 Al QWge” + [3(r)6.)* Q(Q

where §(r) = rd,q(r)/q(r) is the magnetic shear.

Writing the axisymmetric magnetic field as B = F(¢¥)Vp 4+ Vi x Vi, where ¢ is the
poloidal flux and F(¢) is the current function, in the toric coordinate system one can
write B = B,V + JB%*Vr x Vi, while in flux-tube coordinates B = JB%*Vr x Va,
with J = Jg.ro = Jras.. The contravariant components of the magnetic field are then

given by
Y'(r) F()
B = B =0 Bf = C.3
j 9 9 RC(T7 0*)2 ( )
in toric coordinates, while they write as
!/
B =B~ =0, o = ¥0) (C.4)

J

in flux-tube coordinates. Moreover, the norm of the magnetic field is computed as

F(Y¥)
R.(r,0,)

B(r,0,) = 1+ zﬁ'(r S (C.5)
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The coefficients in Eqgs. (7.9)-(7.12) are then given by

. bea »e Do, . bra
A A e
DY = aRyb”, D*=0, D? = Ryb?,
- _ROB dc, v aROB% . RoB (307 B 809*)
270 06, 27 or’ 27 \o90, or )’
NET — g”, N = 2&9“9*, NV = a? [99*0* - (be*)z] : (C'6)
NE =V N = (), N = g% — (192,

10
J 00,

NY = —2ab% 4% NV = a {V% {J(be*ﬂ} ,

where ¢; = b;/B, b; = B;/B, and b* = B'/B. Since turbulence is characterized by
V1A/V A > 1, it is possible to make the following approximations when evaluating the
z derivatives

o_ 1 g _ed  ad
9z Robe ' qoy  qoy’
¢ _ Lo 1 . ad  ad
ayaz - Rob‘p 8y I (LRO (b‘P)Q 00, I q ayQ - qay27 (C?)
0? 1 , a* 0? b ob¥ ab™ 9 a? 9*

022 (Rob?)? A (b%)? 06, I Ro (b°)2 Oy 1= 2 02

where we neglect the parallel derivatives with respect to the y derivatives. Consequently,
the coefficients of Eq. (C.6) can be simplified into

yr _ @ Tz _ pAY
P Toe’ P 0,
. RoB dcy, v alRoB |0c, 1 [0cy, Oc, .
¢ = 27 ae*’c 27 |or g\ or 08, ¢ =0,
P
Nﬂcac _ gr'r” Nary — 2agr9*’ Nyy _ a2 <99*6’* + qu) ,
N® =V?r, NY = aV?h,, NZ =0,
NV = N# =0,
(C.8)
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For the (X,Y, Z) coordinate system, the geometric coefficients are

rPXY:_bQ*a YZ:_Lbr PZX:_%
Jq’ J’ J’

DY =DY =0, D?=qR",

\ RyB 0Oc,, o aRyB ((%T 809*> o7 _ qRoB Ocq

27 00, 2Jq \96. Oor 27 or’
NXX = g NXY _ 290”‘17 NYY — ‘129;&7
q q
NY =9 N =092 NZ = gy dv2g, - L9 {j(bg*)ﬂ
’ ¢ J 9. ’
NYZ = 9qg0a NXZ = 9qq0« NZZ — 2 [99*9* _ (be*)ﬂ '

(C.9)

Assuming V A/V|A > 1, it is possible to simplify the coefficients listed in Eq. (C.9)
and neglect the Z derivatives with respect to the X and Y derivatives.
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Derivation of a shaped magnetic
equilibrium

The magnetic equilibrium presented in Section 7.1.3 is obtained by solving the Grad-
Shafranov equation in the € — 0 limit, being € = r/Ry the local inverse aspect ratio.
The main steps of the derivation are summarized here, while for a detailed discussion
we refer to Ref. [176]. Note that in the remainder of this appendix we work in SI units.
The magnetic surfaces (R., Z.) are modelled by

r 3 r T
Re(r,0) = Ry {1 + ecosf + AB(’O) + 2_2 ST;%E) ) cos[(m — 1)0] — PB(’O) cos 9} )
) (D.1)
Z.(r,0) = Ry {Esin0 - }_:2 S”;zir) sin[(m — 1)0] — P}g) sine} , (D.2)

where A(r) is the Shafranov’s shift, being A(a) = 0, Sy(r) and S3(r) shaping coefficients
related to x and ¢ according to kK = [a — Sa(a)]/[a + Sz(a)] and § = 4S5(a)/a, and
P(r) is a correction factor used to ensure ¢'(r)/F(¢) = &/q(r) + O(¢'). Assuming
A(r)/Ry ~ Su(r)/Ry ~ P(r)/r ~ O(e?), with m = {2,3}, we expand Jy,,/R> =
(0,R09Z.— g R:0,Z.) | R.. to third order in €, and, imposing ¢/ (r) = eF (¢)/q(r)+O(e),
we obtain

T R

In cylindrical coordinates (R., ¢, Z.), the Grad-Shafranov operator A* is given by

* Vo
A% = R’V - <R2> (D.4)
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and, using the (0, ¢) coordinate system, it can be written as

. Re(r,0)> [0 (¢'(r)ges (' (r)gre
A= [a< Tors )‘%( Tors ﬂ (D:5)

Combining Egs. (D.1)-(D.2) with Eq. (D.5), expanding the result to first order in €, and
writing separately each one of the m Fourier components, we obtain

o1 (PO + o3 () + FW)F () =
A(r) + A'(r) { w((:)) n } + - QROZZ:)(;” o, (D.6)
i PR i

where p(1) is the plasma pressure at the flux surface 1. Assuming F(r) = ByRo[l +
Fy(r)], where Fy(r) ~ €%, and expanding Eq. (D.6) to first order in €, we obtain

Fir) = g -
Al(r) = —¢ (ﬁp + Llr) ) (D7)
r2S" (r) + r[3 — 25(r)]S!, (r) m*)S,, =0,
with
R ) = -2 [ywar (03

Equation (D.7) is solved assuming a safety factor with parabolic profile and neglecting
the plasma pressure contribution, i.e assuming q(r) = qo + (¢ — qo)(r/a)? and p/(r) = 0.
This gives

|
2(r)? 2 1
0= iy a0 ()~ 1) D9
5,(r) = Su(a) <£>m Lg(r 313(+)2J;02ngfﬂ
The Shafranov’s shift is therefore
A(r) = —2;30/; Fli (F) 7. (D.10)

Equations (D.1)-(D.3), (D.9)-(D.10), and (7.23)-(7.24) define the magnetic equilibrium
used in Chapter 7.
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Curvature operator in the ¢ =0 limit

To obtain an analytical expression for the curvature operator C(A) = B[V x(by/B)]-VA/2
that takes into account shaping effects in the € = 0 limit, we simplify the C¥ coefficient

in Eq. (7.17) as follows. First, we assume C¥ ~ —0, R.(r,0)
ical investigation of the leading order term in the curvature operator. Second, having

g., according to a numer-

observed that BMs are mainly destabilized at 6, = 0 (as discussed in Section 7.2), we
assume C¥ ~ —0,R.(r,0)|g,—o. Third, combining Eq. (D.1) with Eq. (D.3), expanding
the result in ¢, and retaining € zeroth and first order terms only, we obtain

3

3
R.(r,0) = Ry {1+RCOS9 Z cos ->

= m=2

1-— m 9
27“R0 m(r)]” cos 9} :

(E.1)

0x=0 — a’V’RC(Ty 0)+89Rc(7', 0)07»9

Fourth, expressing 0, R,.(r, 0) 9.—0 and noting that 9,09, —g =

0 for e = 0, we have

e =14 300 - 1 [su@sp(o) - et

m=2 m=2

0, R.(r,0) (E.2)

Finally, substituting the S,,(r) expression given in Eq. (D.9) into Eq. (E.2) and using
the definition of x and d, we deduce
dq 6%(7q¢ — 1) k—1 (k —1)(5qg —2)

9*:‘3:1+1+qJr 16(1+q) 2k+1) (k+122+q) (E-3)

0, R.(r,0)

This is the result presented in Eq. (7.43).

163






1]
2]

3]

Bibliography

V. Smil. Energy Transitions: History, Requirements, Prospects. Praeger (2010).

D. Ahuja and M. Tatsutani. Sustainable energy for developing countries. Surveys
and Perspectives Integrating Environment and Society 2, 1-16 (2009).

J. D. Lawson. Some Criteria for a Power Producing Thermonuclear Reactor. Pro-
ceedings of the Physical Society. Section B 70, 6-10 (1957).

G. H. Miller, E. I. Moses, and C. R. Wuest. The National Ignition Facility: enabling
fusion ignition for the 21st century. Nuclear Fusion 44, S228-S238 (2004).

T. Klinger et al. Performance and properties of the first plasmas of Wendelstein
7-X. Plasma Physics and Controlled Fusion 59, 014018 (2017).

J. Jacquinot. Fifty years in fusion and the way forward. Nuclear Fusion 50, 014001
(2010).

M. Shimada et al. Chapter 1: Overview and summary. Nuclear Fusion 47, S1-S17
(2007).

J. Wesson and D. Campbell. Tokamaks. International Series of Monographs on
Physics. OUP Oxford (2011).

F. Wagner and U. Stroth. Transport in toroidal devices-experimentalist’s view.
Plasma Physics and Controlled Fusion 34, 1803-1803 (1992).

J. Ongena, R. Koch, R. Wolf, and H. Zohm. Magnetic-confinement fusion. Nature
Physics 12, 398-410 (2016).

A. Loarte et al. Chapter 4: Power and particle control. Nuclear Fusion 47, S203—
5263 (2007).

A. Fasoli et al. Computational challenges in magnetic-confinement fusion physics.
Nature Physics 12, 411-423 (2016).

S. I. Braginskii. Transport Processes in a Plasma. Reviews of Plasma Physics 1,
205 (1965).

165



Bibliography

[14]

[25]

[26]

A. Zeiler, J. F. Drake, and B. Rogers. Nonlinear reduced Braginskii equations with
ion thermal dynamics in toroidal plasma. Physics of Plasmas 4, 2134 (1997).

0. E. Garcia, V. Naulin, A. H. Nielsen, and J. J. Rasmussen. Computations of
Intermittent Transport in Scrape-Off Layer Plasmas. Physical Review Letters 92,
165003 (2004).

V. Naulin, T. Windisch, and O. Grulke. Three-dimensional global fluid simulations
of cylindrical magnetized plasmas. Physics of Plasmas 15, 012307 (2008).

T. T. Ribeiro and B. Scott. Gyrofiuid turbulence studies of the effect of the poloidal
position of an axisymmetric Debye sheath. Plasma Physics and Controlled Fusion
50, 055007 (2008).

B. D. Dudson et al. BOUT++: A framework for parallel plasma fluid simulations.
Computer Physics Communications 180, 1467-1480 (2009).

P. Tamain et al. TOKAM-3D: A 3D fluid code for transport and turbulence in
the edge plasma of Tokamaks. Journal of Computational Physics 229, 361-378
(2010).

P. Ricci et al. Simulation of plasma turbulence in scrape-off layer conditions: the
GBS code, simulation results and code validation. Plasma Physics and Controlled
Fusion 54, 124047 (2012).

F. D. Halpern et al. Three-dimensional simulations of blob dynamics in a simple
magnetized torus. Physics of Plasmas 21, 13-16 (2014).

J. Loizu et al. Effect of the limiter position on the scrape-off layer width, radial
electric field and intrinsic flows. Nuclear Fusion 54, 083033 (2014).

J. Loizu et al. Intrinsic toroidal rotation in the scrape-off layer of tokamaks. Physics
of Plasmas 21, 062309 (2014).

F. D. Halpern et al. Theory of the scrape-off layer width in inner-wall limited
tokamak plasmas. Nuclear Fusion 54, 043003 (2014).

W. L. Oberkampf and T. G. Trucano. Verification and validation in computational
fluid dynamics. Progress in Aerospace Sciences 38, 209-272 (2002).

W. L. Oberkampf and C. J. Roy. Verification and Validation in Scientific Com-
puting. Cambridge University Press, New York, NY, USA (2010).

P. J. Roache. Verification and Validation in Computational Science and Engineer-

ing. Hermosa Publishers, Albuquerque, NM, USA (1998).

A. M. Dimits et al. Comparisons and physics basis of tokamak transport models
and turbulence simulations. Physics of Plasmas 7, 969 (2000).

page 166



Bibliography

[29]

[30]

[31]

[40]

[41]

J. Birn et al. Geospace Environmental Modeling (GEM) Magnetic Reconnection
Challenge. Journal of Geophysical Research 106, 3715-3719 (2001).

P. Ricci, J. U. Brackbill, W. Daughton, and G. Lapenta. Collisionless magnetic
reconnection in the presence of a guide field. Physics of Plasmas 11, 4102 (2004).

G. L. Falchetto et al. The European turbulence code benchmarking effort: tur-
bulence driven by thermal gradients in magnetically confined plasmas. Plasma
Physics and Controlled Fusion 50, 124015 (2008).

R. V. Bravenec et al. A verification of the gyrokinetic microstability codes GEM,
GYRO, and GS2. Physics of Plasmas 20, 104506 (2013).

C. S. Chang et al. Whole-volume integrated gyrokinetic simulation of plasma
turbulence in realistic diverted-tokamak geometry. Journal of Physics: Conference
Series 180, 012057 (2009).

D. Twarog, R. Stankiewicz, and K. Drozdowicz. Test of the European Transport
Solver in the frame of Integrated Tokamak Modelling. Technical Report 2051/AP,
Institute of nuclear physics, Polish Academy of Sciences (2011).

C. Holland et al. Advances in validating gyrokinetic turbulence models against L-
and H-mode plasmas. Physics of Plasmas 18, 056113 (2011).

N. T. Howard et al. Measurement of plasma current dependent changes in impu-
rity transport and comparison with nonlinear gyrokinetic simulation. Physics of
Plasmas 19, 056110 (2012).

A. E. White et al. Multi-channel transport experiments at Alcator C-Mod and
comparison with gyrokinetic simulations. Physics of Plasmas 20, 056106 (2013).

N. Howard et al. Validation of the gyrokinetic model in ITG and TEM dominated
L-mode plasmas. Nuclear Fusion 53, 123011 (2013).

P. W. Terry et al. Validation in fusion research: Towards guidelines and best
practices. Physics of Plasmas 15, 062503 (2008).

M. Greenwald. Verification and validation for magnetic fusion. Physics of Plasmas
17, 058101 (2010).

C. Holland. Validation metrics for turbulent plasma transport. Physics of Plasmas
23, 060901 (2016).

S. Steinberg and P. J. Roache. Symbolic manipulation and computational fluid
dynamics. Journal of Computational Physics 57, 251-284 (1985).

P. J. Roache. Code Verification by the Method of Manufactured Solutions. Journal
of Fluids Engineering 124, 4 (2002).

page 167



Bibliography

[44]

[45]

[46]

[47]

[48]

[53]

[54]

[55]

[56]

C. J. Roy. Review of code and solution verification procedures for computational
simulation. Journal of Computational Physics 205, 131-156 (2005).

L. F. Richardson. The Approximate Arithmetical Solution by Finite Differences
of Physical Problems Involving Differential Equations, with an Application to the
Stresses in a Masonry Dam. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 210, 307-357 (1911).

L. F. Richardson and J. A. Gaunt. The Deferred Approach to the Limit. Part I.
Single Lattice. Part I1. Interpenetrating Lattices. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences 226, 299-361
(1927).

P. J. Roache. Perspective: A Method for Uniform Reporting of Grid Refinement
Studies. Journal of Fluids Engineering 116, 405 (1994).

A. Fasoli et al. Electrostatic turbulence and transport in a simple magnetized
plasma. Physics of Plasmas 13, 055902 (2006).

I. Furno et al. Plasma turbulence, suprathermal ion dynamics and code validation
on the basic plasma physics device TORPEX. Journal of Plasma Physics 81,
345810301 (2015).

P. Sonato, R. Piovan, and A. Luchetta. Control of non-axisymmetric magnetic
fields for plasma enhanced performances: The RFX contribution. Fusion Engi-
neering and Design 74, 97-107 (2005).

M. M. Turner et al. Simulation benchmarks for low-pressure plasmas: Capacitive
discharges. Physics of Plasmas 20, 013507 (2013).

J. Brackbill. On energy and momentum conservation in particle-in-cell plasma
simulation. Journal of Computational Physics 317, 405-427 (2016).

W. L. Oberkampf and T. G. Trucano. Verification and validation benchmarks.
Nuclear Engineering and Design 238, 716-743 (2008).

F. Riva et al. Verification methodology for plasma simulations and application to
a scrape-off layer turbulence code. Physics of Plasmas 21, 062301 (2014).

F. Riva, C. F. Beadle, and P. Ricci. A methodology for the rigorous verification of
Particle-in-Cell simulations. Physics of Plasmas 24, 055703 (2017).

B. D. Dudson et al. Verification of BOUT++ by the method of manufactured
solutions. Physics of Plasmas 23, 062303 (2016).

P. Tamain et al. The TOKAM3X code for edge turbulence fluid simulations of toka-
mak plasmas in versatile magnetic geometries. Journal of Computational Physics
321, 606-623 (2016).

page 168



Bibliography

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[67]

[68]

[69]

[72]

[73]

F. Harlow. The particle-in-cell computing method for fluid dynamics. Methods in
Computional Physics 3, 319-343 (1964).

J. Dawson. One-Dimensional Plasma Model. Physics of Fluids 5, 445 (1962).

C. K. Birdsall and A. B. Langdon. Plasma physics via computer simulation. Series
in plasma physics. Taylor & Francis, New York (2005).

R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. Taylor
& Francis, Inc., Bristol, PA, USA (1988).

Y. Grigoryev, V. Vshivkov, and M. Fedoruk. Numerical "Particle-in-Cell" Methods:
Theory and Applications. De Gruyter (2002).

J. M. Dawson. Computer modeling of plasma: Past, present, and future. Physics
of Plasmas 2, 2189 (1995).

J. Villasenor and O. Buneman. Rigorous charge conservation for local electromag-
netic field solvers. Computer Physics Communications 69, 306-316 (1992).

G. Chen, L. Chacén, and D. Barnes. An energy- and charge-conserving, implicit,
electrostatic particle-in-cell algorithm. Journal of Computational Physics 230,
7018-7036 (2011).

G. Lapenta and S. Markidis. Particle acceleration and energy conservation in
particle in cell simulations. Physics of Plasmas 18, 072101 (2011).

H. Denavit. Time-Filtering Particle Simulations. Jouranl of Computational Physics
366, 337-366 (1981).

R. J. Mason. Implicit moment particle simulation of plasmas. Journal of Compu-
tational Physics 41, 233-244 (1981).

J. Brackbill and D. Forslund. An implicit method for electromagnetic plasma
simulation in two dimensions. Journal of Computational Physics 46, 271-308
(1982).

A. Langdon, B. I. Cohen, and A. Friedman. Direct implicit large time-step particle
simulation of plasmas. Journal of Computational Physics 51, 107-138 (1983).

G. Lapenta, J. U. Brackbill, and P. Ricci. Kinetic approach to microscopic-
macroscopic coupling in space and laboratory plasmas. Physics of Plasmas 13,
055904 (2006).

D. W. Forslund and C. R. Shonk. Formation and Structure of Electrostatic Colli-
sionless Shocks. Physical Review Letters 25, 1699-1702 (1970).

D. W. Forslund, K. B. Quest, J. U. Brackbill, and K. Lee. Collisionless dissipation
in quasi-perpendicular shocks. Journal of Geophysical Research 89, 2142 (1984).

page 169



Bibliography

[74]

[75]

[31]

[82]

[83]

[84]

[85]

[36]

[87]

B. Lembege and J. M. Dawson. Formation of double layers within an oblique
collisionless shock. Physical Review Letters 62, 2683-2686 (1989).

P. L. Pritchett. Geospace Environment Modeling magnetic reconnection challenge:
Simulations with a full particle electromagnetic code. Journal of Geophysical Re-
search: Space Physics 106, 3783-3798 (2001).

J. F. Drake et al. Formation of electron holes and particle energization during
magnetic reconnection. Science 299, 873-877 (2003).

C. Joshi et al. Ultrahigh gradient particle acceleration by intense laser-driven
plasma density waves. Nature 311, 525-529 (1984).

S. P. D. Mangles et al. Monoenergetic beams of relativistic electrons from intense
laser-plasma interactions. Nature 431, 535-538 (2004).

S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon. Absorption of ultra-
intense laser pulses. Physical Review Letters 69, 1383-1386 (1992).

D. Tskhakaya and S. Kuhn. Particle-in-cell simulations of the plasma-wall transi-
tion with a magnetic field almost parallel to the wall. Journal of Nuclear Materials
313-316, 1119-1122 (2003).

J. Loizu, P. Ricci, and C. Theiler. Existence of subsonic plasma sheaths. Physical
Review E - Statistical, Nonlinear, and Soft Matter Physics 83, 016406 (2011).

A. Y. Aydemir. A unified Monte Carlo interpretation of particle simulations and
applications to non-neutral plasmas. Physics of Plasmas 1, 822 (1994).

S. Allfrey and R. Hatzky. A revised 6f algorithm for nonlinear PIC simulation.
Computer Physics Communications 154, 98-104 (2003).

G. Hu and J. A. Krommes. Generalized weighting scheme for f particle-simulation
method. Physics of Plasmas 1, 863 (1994).

F. James. Statistical Methods in Fxperimental Physics. World Scientific Publishing
Co Inc (2006).

L. Lista. Statistical Methods for Data Analysis in Particle Physics. Lecture Notes
in Physics. Springer International Publishing (2015).

A. N. Kolmogorov. Sulla Determinazione Empirica di una Legge di Distribuzione.
Giornale dell’Istituto Italiano degli Attuari 4, 83-91 (1933).

J. A. Peacock. Two-dimensional goodness-of-fit testing in astronomy. Monthly
Notices of the Royal Astronomical Society 202, 615627 (1983).

R. H. C. Lopes, P. R. Hobson, and I. D. Reid. Computationally efficient algorithms
for the two-dimensional Kolmogorov—Smirnov test. Journal of Physics: Conference
Series 119, 042019 (2008).

page 170



Bibliography

[90]

[91]

[102]

103]

G. Fasano and A. Franceschini. A multidimensional version of the Kolmogorov-
Smirnov test. Monthly Notices of the Royal Astronomical Society 225, 155-170
(1987).

D. A. Russell, D. A. D’Ippolito, and J. R. Myra. On relaxing the Boussinesq
approximation in scrape-off layer turbulence (SOLT) model simulations. Bulletin
of the American Physical Society, 54th Annual Meeting of the APS Division of
Plasma Physics, vol 57, BP8.159. Providence, Rhode Island, USA (2012).

G. Q. Yu, S. I. Krasheninnikov, and P. N. Guzdar. Two-dimensional modelling of
blob dynamics in tokamak edge plasmas. Physics of Plasmas 13, 042508 (2006).

K. Bodi et al. Impact of the Boussinesq approximation in tokamak scrape—off layer
turbulence. 38th EPS Conference on Plasma Physics, P1.121. Strasbourg, France
(2011).

J. Loizu, P. Ricci, F. D. Halpern, and S. Jolliet. Boundary conditions for plasma
fluid models at the magnetic presheath entrance. Physics of Plasmas 19, 122307
(2012).

W. Research, Inc. Mathematica. Champaign, Illinois (2010).

P. J. Roache. Quantification of Uncertainty in Computational Fluid Dynamics.
Annual Review of Fluid Mechanics 29, 123-160 (1997).

F. Stern, R. V. Wilson, H. W. Coleman, and E. G. Paterson. Comprehensive Ap-
proach to Verification and Validation of CFD Simulations—Part 1: Methodology
and Procedures. Journal of Fluids Engineering 123, 793 (2001).

P. J. Roache and P. M. Knupp. Completed Richardson extrapolation. Communi-
cations in Numerical Methods in Engineering 9, 365-374 (1993).

S. A. Richards. Completed Richardson extrapolation in space and time. Commu-
nications in Numerical Methods in Engineering 13, 573-582 (1997).

P. Ricci and B. N. Rogers. Plasma turbulence in the scrape-off layer of tokamak
devices. Physics of Plasmas 20, 010702 (2013).

W. L. Oberkampf, T. G. Trucano, and C. Hirsch. Verification, validation, and
predictive capability in computational engineering and physics. Applied Mechanics
Reviews 57, 345 (2004).

B. Peherstorfer, K. Willcox, and M. Gunzburger. Optimal Model Management for
Multifidelity Monte Carlo Estimation. SIAM Journal on Scientific Computing 38,
A3163-A3194 (2016).

R. Myers, D. Montgomery, and C. Anderson-Cook. Response Surface Methodology:
Process and Product Optimization Using Designed Experiments. Wiley Series in
Probability and Statistics. Wiley (2016).

page 171



Bibliography

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117)

[118]

P. Ricci et al. Methodology for turbulence code validation: Quantification of
simulation-experiment agreement and application to the TORPEX experiment.
Physics of Plasmas 18, 032109 (2011).

J. Mason and D. Handscomb. Chebyshev Polynomials. CRC Press (2002).

V. Naulin, O. Garcia, A. Nielsen, and J. Rasmussen. Statistical properties of
transport in plasma turbulence. Physics Letters A 321, 355-365 (2004).

C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A Zang. Spectral Methods in
Fluid Dynamics. Scientific Computation. Springer Berlin Heidelberg (2012).

V. Naulin and A. H. Nielsen. Accuracy of Spectral and Finite Difference Schemes
in 2D Advection Problems. SIAM Journal on Scientific Computing 25, 104-126
(2003).

J. Scheffel. A Spectral Method in Time for Initial-Value Problems. American
Journal of Computational Mathematics 02, 173-193 (2012).

B. Finlayson. The Method of Weighted Residuals and Variational Principles:.
Classics in Applied Mathematics. Society for Industrial and Applied Mathematics
(2013).

K. W. Gentle and H. He. Texas Helimak. Plasma Science and Technology 10,
284-289 (2008).

MATLAB. wersion 9.1 (R2016b). The MathWorks Inc., Natick, Massachusetts
(2016).

F. D. Halpern et al. Theory-based scaling of the SOL width in circular limited
tokamak plasmas. Nuclear Fusion 53, 122001 (2013).

D. A. D’Ippolito, J. R. Myra, and S. J. Zweben. Convective transport by inter-
mittent blob-filaments: Comparison of theory and experiment. Physics of Plasmas
18, 060501 (2011).

S. I. Krasheninnikov, D. A. D’Ippolito, and J. R. Myra. Recent theoretical progress
in understanding coherent structures in edge and SOL turbulence. Journal of
Plasma Physics 74, 679-717 (2008).

O. E. Garcia et al. Mechanism and scaling for convection of isolated structures in
nonuniformly magnetized plasmas. Physics of Plasmas 12, 090701 (2005).

A. Y. Aydemir. Convective transport in the scrape-off layer of tokamaks. Physics
of Plasmas 12, 062503 (2005).

N. Bian, S. Benkadda, J.-V. Paulsen, and O. E. Garcia. Blobs and front propaga-
tion in the scrape-off layer of magnetic confinement devices. Physics of Plasmas
10, 671 (2003).

page 172



Bibliography

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127)

[128]

[129]

[130]

[131]

[132]

[133)

D. A. D’Ippolito and J. R. Myra. Blob stability and transport in the scrape-off-
layer. Physics of Plasmas 10, 4029 (2003).

G. Q. Yu and S. I. Krasheninnikov. Dynamics of blobs in scrape-off-layer /shadow
regions of tokamaks and linear devices. Physics of Plasmas 10, 4413 (2003).

S. Sugita, M. Yagi, S. I. Ttoh, and K. Itoh. Propagation Velocity Analysis of a
Single Blob in the SOL. Plasma and Fusion Research 3, 040-040 (2008).

I. Furno et al. Blob current structures in TORPEX plasmas: experimental mea-
surements and numerical simulations. Plasma Physics and Controlled Fusion 53,
124016 (2011).

L. Easy et al. Three dimensional simulations of plasma filaments in the scrape off
layer: A comparison with models of reduced dimensionality. Physics of Plasmas
21, 122515 (2014).

A. H. Nielsen et al. Simulation of transition dynamics to high confinement in fusion
plasmas. Physics Letters A 379, 3097-3101 (2015).

J. J. Rasmussen et al. Numerical modeling of the transition from low to high con-
finement in magnetically confined plasma. Plasma Physics and Controlled Fusion
58, 014031 (2016).

P. Tamain et al. 3D Properties of Edge Turbulent Transport in Full-Torus Simula-
tions and their Impact on Poloidal Asymmetries. Contributions to Plasma Physics
54, 555-559 (2014).

F. Riva et al. Blob dynamics in the TORPEX experiment: a multi-code validation.
Plasma Physics and Controlled Fusion 58, 044005 (2016).

C. Theiler et al. Cross-Field Motion of Plasma Blobs in an Open Magnetic Field
Line Configuration. Physical Review Letters 103, 065001 (2009).

I. Furno et al. Mechanism for blob generation in the TORPEX toroidal plasma.
Physics of Plasmas 15, 055903 (2008).

I. Furno et al. Experimental Observation of the Blob-Generation Mechanism from
Interchange Waves in a Plasma. Physical Review Letters 100, 055004 (2008).

P. Stangeby. The Plasma Boundary of Magnetic Fusion Devices. Series in Plasma
Physics and Fluid Dynamics. Taylor & Francis (2000).

A. Arakawa. Computational design for long-term numerical integration of the
equations of fluid motion: Two-dimensional incompressible flow. Part 1. Journal
of Computational Physics 1, 119-143 (1966).

G. D. Byrne and A. C. Hindmarsh. PVODE, an ODE Solver for Parallel Comput-
ers. Int. J. High Perform. Comput. Appl. 13, 354-365 (1999).

page 173



Bibliography

[134]

[135)

[136]

[137]

[138]

[139)]

[140]

[141]

[142]

[143]

[144]

[145)

[146]

[147]

[148]

C. G. Theiler. Basic Investigation of Turbulent Structures and Blobs of Relevance
for Magnetic Fusion Plasmas. Ph.D. thesis, SB, Lausanne (2011).

G. E. Karniadakis, M. Israeli, and S. A. Orszag. High-order splitting methods for
the incompressible Navier-Stokes equations. Journal of Computational Physics 97,

414-443 (1991).

R. Donat and A. Marquina. Capturing Shock Reflections: An Improved Flux
Formula. Journal of Computational Physics 125, 42-58 (1996).

W. Fundamenski et al. Dissipative processes in interchange driven scrape-off layer
turbulence. Nuclear Fusion 47, 417-433 (2007).

I. Furno et al. Pre-sheath density drop induced by ion-neutral friction along plasma
blobs and implications for blob velocities. Physics of Plasmas 21, 012305 (2014).

J. R. Myra, D. A. D’Ippolito, S. I. Krasheninnikov, and G. Q. Yu. Convective
transport in the scrape-off-layer by nonthermalized spinning blobs. Physics of
Plasmas 11, 4267 (2004).

C. Theiler et al. Blob motion and control in simple magnetized plasmas. Physics
of Plasmas 18, 055901 (2011).

I. Furno et al. Direct Two-Dimensional Measurements of the Field-Aligned Current
Associated with Plasma Blobs. Physical Review Letters 106, 245001 (2011).

J. T. Omotani, F. Militello, L. Easy, and N. R. Walkden. The effects of shape
and amplitude on the velocity of scrape-off layer filaments. Plasma Physics and
Controlled Fusion 58, 014030 (2016).

R. Pitts et al. Physics basis and design of the ITER plasma-facing components.
Journal of Nuclear Materials 415, S957-S964 (2011).

G. Arnoux et al. Scrape-off layer properties of ITER-like limiter start-up plasmas
in JET. Nuclear Fusion 53, 073016 (2013).

A. Mosetto et al. Turbulent regimes in the tokamak scrape-off layer. Physics of
Plasmas 20, 092308 (2013).

A. Mosetto, F. D. Halpern, S. Jolliet, and P. Ricci. Low-frequency linear-mode
regimes in the tokamak scrape-off layer. Physics of Plasmas 19, 112103 (2012).

F. Nespoli et al. Non-linear simulations of the TCV Scrape-Off Layer. Nuclear
Materials and Energy 0, 1-4 (2016).

F. D. Halpern et al. Comparison of 3D flux-driven scrape-off layer turbulence
simulations with gas-puff imaging of Alcator C-Mod inner-wall limited discharges.
Plasma Physics and Controlled Fusion 57, 054005 (2015).

page 174



Bibliography

[149]

[150]

[151]

[152]

[153)]

[154]

[155]

[156]

[157]

158

[159]

[160]

161]

162]

163

R. Jorge et al. Plasma turbulence in the scrape-off layer of the ISTTOK tokamak.
Physics of Plasmas 23, 102511 (2016).

F. D. Halpern, J. Horacek, R. A. Pitts, and P. Ricci. A theoretical interpretation
of the main scrape-off layer heat-flux width scaling for tokamak inner-wall limited
plasmas. Plasma Physics and Controlled Fusion 58, 084003 (2016).

P. Martin et al. Overview of the RFX fusion science program. Nuclear Fusion 51,
094023 (2011).

P. Piovesan et al. RFX-mod: A multi-configuration fusion facility for three-
dimensional physics studies. Physics of Plasmas 20, 056112 (2013).

M. Spolaore et al. H-mode Achievement and Edge Features in REFX-mod Toka-
mak Operation. 26th IAEA Fusion Energy Conference, EX/P5-24. Kyoto, Japan
(2016).

M. Spolaore et al. Magnetic and electrostatic structures measured in the edge
region of the RFX-mod experiment. Journal of Nuclear Materials 390-391, 448—
451 (2009).

N. Vianello et al. Drift-Alfvén vortex structures in the edge region of a fusion
relevant plasma. Nuclear Fusion 50, 042002 (2010).

H. Y. W. Tsui et al. A new scheme for Langmuir probe measurement of transport
and electron temperature fluctuations. Review of Scientific Instruments 63, 4608—
4610 (1992).

F. D. Halpern et al. Ideal ballooning modes in the tokamak scrape-off layer. Physics
of Plasmas 20, 052306 (2013).

A. Mosetto et al. Finite ion temperature effects on scrape-off layer turbulence.
Physics of Plasmas 22, 012308 (2015).

B. D. Scott. Free-energy conservation in local gyrofluid models. Physics of Plasmas
12, 102307 (2005).

B. N. Rogers and W. Dorland. Noncurvature-driven modes in a transport barrier.
Physics of Plasmas 12, 062511 (2005).

P. Ricci, B. N. Rogers, and S. Brunner. High- and Low-Confinement Modes in
Simple Magnetized Toroidal Plasmas. Physical Review Letters 100, 225002 (2008).

F. Halpern and P. Ricci. Velocity shear, turbulent saturation, and steep plasma
gradients in the scrape-off layer of inner-wall limited tokamaks. Nuclear Fusion
57, 034001 (2017).

E. Sanchez et al. Statistical characterization of fluctuation wave forms in the
boundary region of fusion and nonfusion plasmas. Physics of Plasmas 7, 1408—
1416 (2000).

page 175



Bibliography

[164]

[165]

[166]

[167]

[168]

169

[170]

[171]

[172]

[173]

[174]

[175]

[176]

Y. H. Xu, S. Jachmich, R. R. Weynants, and the TEXTOR team. On the properties
of turbulence intermittency in the boundary of the TEXTOR tokamak. Plasma
Physics and Controlled Fusion 47, 1841-1855 (2005).

I. Nanobashvili, J. Gunn, and P. Devynck. Radial profiles of plasma turbulent
fluctuations in the scrape-off layer of the Tore Supra tokamak. Journal of Nuclear
Materials 363-365, 622—627 (2007).

P. Ricci et al. Langmuir probe-based observables for plasma-turbulence code vali-
dation and application to the TORPEX basic plasma physics experiment. Physics
of Plasmas 16, 055703 (2009).

C. P. Ritz et al. Advanced plasma fluctuation analysis techniques and their im-
pact on fusion research (invited). Review of Scientific Instruments 59, 1739-1744
(1988).

C. A. F. Varandas et al. Engineering Aspects of the Tokamak ISTTOK. Fusion
Technology 29, 105-115 (1996).

Y. Camenen et al. Impact of plasma triangularity and collisionality on electron
heat transport in TCV L-mode plasmas. Nuclear Fusion 47, 510-516 (2007).

J. E. Kinsey, R. E. Waltz, and J. Candy. The effect of plasma shaping on turbulent
transport and ExB shear quenching in nonlinear gyrokinetic simulations. Physics
of Plasmas 14, 102306 (2007).

E. A. Belli, G. W. Hammett, and W. Dorland. Effects of plasma shaping on
nonlinear gyrokinetic turbulence. Physics of Plasmas 15, 092303 (2008).

A. Marinoni et al. The effect of plasma triangularity on turbulent transport: mod-
eling TCV experiments by linear and non-linear gyrokinetic simulations. Plasma
Physics and Controlled Fusion 51, 055016 (2009).

W. Wan, Y. Chen, S. E. Parker, and R. J. Groebner. Effects of the magnetic
equilibrium on gyrokinetic simulations of tokamak microinstabilities. Physics of
Plasmas 22, 062502 (2015).

J. Horacek et al. Multi-machine scaling of the main SOL parallel heat flux width
in tokamak limiter plasmas. Plasma Physics and Controlled Fusion 58, 074005
(2016).

F. Hofmann et al. Creation and control of variably shaped plasmas in TCV. Plasma
Physics and Controlled Fusion 36, B277-B287 (1994).

J. P. Graves. Toroidal drift precession and wave-particle interaction in shaped
tokamaks with finite beta and neoclassical equilibrium effects. Plasma Physics
and Controlled Fusion 55, 074009 (2013).

page 176



Bibliography

[177) F. D. Halpern et al. The GBS code for tokamak scrape-off layer simulations.
Journal of Computational Physics 315, 388-408 (2016).

[178] F. Riva, E. Lanti, S. Jolliet, and P. Ricci. Plasma shaping effects on tokamak
scrape-off layer turbulence. Plasma Physics and Controlled Fusion 59, 035001
(2017).

[179] S. Jolliet et al. Aspect ratio effects on limited scrape-off layer plasma turbulence.
Physics of Plasmas 21, 022303 (2014).

[180] B. Scott. Three-dimensional computation of drift Alfvén turbulence. Plasma
Physics and Controlled Fusion 39, 1635-1668 (1997).

[181] J. W. Connor, R. J. Hastie, H. R. Wilson, and R. L. Miller. Magnetohydrodynamic
stability of tokamak edge plasmas. Physics of Plasmas 5, 2687 (1998).

[182] A. Zeiler. Tokamak Edge Turbulence. Technical Report IPP 5/88, Max-Planck-
Institut fiir Plasmaphysik (1999).

[183] J. R. Myra, D. A. D’Ippolito, X. Q. Xu, and R. H. Cohen. Resistive modes in the
edge and scrape-off layer of diverted tokamaks. Physics of Plasmas T, 4622 (2000).

[184] D. D. Ryutov and R. H. Cohen. Instability Driven by Sheath Boundary Conditions
and Limited to Divertor Legs. Contributions to Plasma Physics 44, 168-175 (2004).

[185] J. W. Connor, R. J. Hastie, and J. B. Taylor. Shear, Periodicity, and Plasma
Ballooning Modes. Physical Review Letters 40, 396-399 (1978).

[186] G. Bateman and D. B. Nelson. Resistive-Ballooning-Mode Equation. Physical
Review Letters 41, 1804-1807 (1978).

[187] D. R. McCarthy et al. Stability of resistive and ideal ballooning modes in the
Texas Experimental Tokamak and DIII-D. Physics of Fluids B: Plasma Physics
4, 1846 (1992).

[188] S. V. Novakovskii et al. New unstable branch of drift resistive ballooning modes
in tokamaks. Physics of Plasmas 2, 781 (1995).

[189] T. Rafiq, G. Bateman, A. H. Kritz, and A. Y. Pankin. Development of drift-
resistive-inertial ballooning transport model for tokamak edge plasmas. Physics of
Plasmas 17, 082511 (2010).

[190] K. Mima and A. Hasegawa. Nonlinear instability of electromagnetic drift waves.
Physics of Fluids 21, 81 (1978).

[191] M. Wakatani and A. Hasegawa. A collisional drift wave description of plasma edge
turbulence. Physics of Fluids 27, 611 (1984).

page 177



Bibliography

[192] H. Sugama, M. Wakatani, and A. Hasegawa. Study of resistive drift and resistive
interchange modes in a cylindrical plasma with magnetic shear. Physics of Fluids
31, 1601 (1988).

[193] W. Horton. Drift waves and transport. Reviews of Modern Physics T1, 735-778
(1999).

[194] P. H. Diamond, A. Hasegawa, and K. Mima. Vorticity dynamics, drift wave tur-
bulence, and zonal flows: a look back and a look ahead. Plasma Physics and
Controlled Fusion 53, 124001 (2011).

[195] S. Coda for the TCV Team. Overview of recent and current research on the TCV
tokamak. Nuclear Fusion 53, 104011 (2013).

[196] J.-M. Moret et al. Tokamak equilibrium reconstruction code LIUQE and its real
time implementation. Fusion Engineering and Design 91, 1-15 (2015).

[197] J. A. Boedo et al. Fast scanning probe for the NSTX spherical tokamak. Review
of Scientific Instruments 80, 123506 (2009).

[198] R. Smith. Uncertainty Quantification: Theory, Implementation, and Applications.
Computational Science and Engineering. STAM (2013).

[199] B. N. Rogers and P. Ricci. Low-Frequency Turbulence in a Linear Magnetized
Plasma. Physical Review Letters 104, 225002 (2010).

[200] P. Ricci and B. N. Rogers. Transport scaling in interchange-driven toroidal plas-
mas. Physics of Plasmas 16, 062303 (2009).

[201] P. Ricci and B. N. Rogers. Turbulence Phase Space in Simple Magnetized Toroidal
Plasmas. Physical Review Letters 104, 145001 (2010).

[202] C. Wersal and P. Ricci. A first-principles self-consistent model of plasma turbulence
and kinetic neutral dynamics in the tokamak scrape-off layer. Nuclear Fusion 55,
123014 (2015).

page 178



Fabio Riva

Birth date: 06 February 1988

Phone: +41(21)6934560

Cell phone: +41(79)6488509

E-mail: fabio.riva@epfl.ch

Web: http://people.epfl.ch/fabio.riva

Address: EPFL SB SPC, Station 13, CH-1015 Lausanne

EMPLOYMENT

Doctoral Assistant at the Swiss Plasma Center (SPC) of the 05/2013 — 06/2017
Ecole Polytechnique Fédérale de Lausanne (EPFL)

EDUCATION

PhD in plasma physics at the SPC of the EPFL 05/2013 — 07/2017

- PhD thesis title: “Verification and validation procedures with applications to plasma-edge
turbulence simulations”. Advisor: Prof. Paolo Ricci.

Master of Science MSc in Physics at the EPFL, accredited 09/2011 — 02/2013
with a European Fusion Master's Certificate

- Master thesis title: “Experimental investigation of filamentary current structures associated with
blobs in TORPEX plasmas”. Grade: 6/6. Advisor: Dr. M.E.R. Ivo Furno.

Bachelor of Science BSc in Physics at the EPFL 09/2007 — 07/2011

Matura (Swiss university entrance qualification), Liceo di Lugano 2 2007

TEACHING EXPERIENCE

Co-supervision of a Master student during the 4 months Research Internship 2015
“Rigorous Verification of Particle-in-Cell Codes”

Co-supervision of a Master student during the 9 months Research Project 2014 — 2015
“Development of a fully-spectral Global Braginskii Solver”

Co-supervision of the Master thesis “Shaping effects on tokamak scrape-off layer turbulence” 2014

Teaching assistantship for the following Bachelor and Master courses: 2013 — 2016
- General Physics I, Prof. Ansermet

- General Physics Il, Prof. Ricci

- Plasma physics Il, Prof. Ricci

Prize for exceptional assistantship work at EPFL 2016

LANGUAGE KNOWLEDGE

Italian native speaker
French fluent

English fluent

German basic knowledge

179



Curriculum Vitae

JOURNAL PUBLICATIONS

* First author

- F. Riva, C. Beadle and P. Ricci, “A methodology for the rigorous verification of Particle-in-Cell
simulations”, Physics of Plasmas 24, 055703 (2017);

- F. Riva, E. Lanti, S. Jolliet and P. Ricci, “Plasma shaping effects on tokamak scrape-off layer
turbulence”, Plasma Physics and Controlled Fusion 59, 035001 (2017);

- F. Riva, C. Colin, J. Denis, L. Easy, I. Furno, J. Madsen, F. Militello, V. Naulin, A.H. Nielsen, J.M.B.
Olsen, J.T. Omotani, J.J. Rasmussen, P. Ricci, E. Serre, P. Tamain and C. Theiler, “Blob dynamics in
the TORPEX experiment: a multi-code validation”, Plasma Physics and Controlled Fusion 58,
044005 (2016);

- F. Riva, P. Ricci, F.D. Halpern, S. Jolliet, J. Loizu and A. Mosetto, “Verification methodology for
plasma simulations and application to a scrape-off layer turbulence code”, Physics of Plasmas 21,
062301 (2014).

» Co-author

- F. Nespoli, F. Avino, |. Furno, F.D. Halpern, B. Labit, F. Musil, P. Ricci and F. Riva, “Blob properties in
nonlinear simulations of the TCV Scrape-Off Layer”, Plasma Physics and Controlled Fusion 59,
055009 (2017);

- F. Nespoli, I. Furno, F.D. Halpern, B. Labit, J. Loizu, P. Ricci and F. Riva, “Non-linear simulations of
the TCV Scrape- Off Layer”, Nuclear Materials and Energy 0, 1 (2016);

- F. Militello, N.R. Walkden, T. Farley, W.A. Gracias, J. Olsen, F. Riva, L. Easy, N. Fedorczak, I. Lupelli,
J. Madsen, A.H. Nielsen, P. Ricci, P. Tamain and J. Young, “Multi-code analysis of Scrape-Off Layer
filament dynamics in MAST”, Plasma Physics and Controlled Fusion 58, 115002 (2016);

- F.D. Halpern, P. Ricci, S. Jolliet, J. Loizu, J. Morales, A. Mosetto, F. Musil, F. Riva, T.M. Tran and C.
Wersal, “The GBS code for tokamak scrape-off layer simulations”, Journal of Computational
Physics 315, 388 (2016);

- P. Ricci, F. Riva, C. Theiler, A. Fasoli, |. Furno, F.D. Halpern and J. Loizu, “Approaching the
investigation of plasma turbulence through a rigorous verification and validation procedure: A
practical example”, Physics of Plasmas 22, 055704 (2015);

- S. Jolliet, F.D. Halpern, J. Loizu, A. Mosetto, F. Riva and P. Ricci, “Numerical approach to the parallel
gradient operator in tokamak scrape-off layer turbulence simulations and application to the GBS
code”, Computational Physics Community 188, 21 (2015);

- A. Fasoli, F. Avino, A. Bovet, |. Furno, K. Gustafson, S. Jolliet, J. Loizu, D. Malinverni, P. Ricci, F.
Riva, C. Theiler, M. Spolaore and N. Vianello, “Basic investigations of electrostatic turbulence and
its interaction with plasma and suprathermal ions in a simple magnetized toroidal plasma”, Nuclear
Fusion 53, 063013 (2013).

CONFERENCE CONTRIBUTIONS AND INVITED TALKS (15t AUTHOR)

» “A methodology for the rigorous verification of plasma simulation codes”, invited talk presented at the
58th Annual Meeting of the APS Division of Plasma Physics, 2016, San Jose, California;

* “Progress in simulating SOL plasma turbulence with the GBS code”, poster presented at the 21st EU-
US Transport Task Force Meeting, 2016, Leysin, Switzerland;

» “Effects of plasma shaping on tokamak scrape-off layer turbulence”, poster presented at the 16th
European Fusion Theory Conference, 2015, Lisbon, Portugal;

* “Verification methodology for plasma simulations and application to a scrape-off layer turbulence
code”, poster presented at the 19th Joint EU-US Transport Task Force Meeting, 2014, Culham, UK.

Books

Co-author of the chapter “Verification and Validation in plasma physics” in “Plasma Modeling: Methods
and Application”, edited by Gianpiero Colonna and Antonio D’Angola, IOP Publishing Ltd of Temple
Circus, Temple Way, Bristol (2016).

page 180






