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Abstract 
Certain brain disorders, resulting from brainstem infarcts, traumatic brain injury, stroke and 

amyotrophic lateral sclerosis, limit verbal communication despite the patient being fully aware. 

People that cannot communicate due to neurological disorders would benefit from a system that 

can infer internal speech directly from brain signals. Investigating how the human cortex encodes 

imagined speech remains a difficult challenge, due to the lack of behavioral and observable 

measures. As a consequence, the fine temporal properties of speech cannot be synchronized 

precisely with brain signals during internal subjective experiences, like imagined speech. This thesis 
aims at understanding and decoding the neural correlates of imagined speech (also called 

internal speech or covert speech), for targeting speech neuroprostheses.  

In this exploratory work, various imagined speech features, such as acoustic sound features, 

phonetic representations, and individual words were investigated and decoded from 

electrocorticographic signals recorded in epileptic patients in three different studies. This recording 

technique provides high spatiotemporal resolution, via electrodes placed beneath the skull, but 

without penetrating the cortex 

In the first study, we reconstructed continuous spectrotemporal acoustic features from brain signals 

recorded during imagined speech using cross-condition linear regression. Using this technique, we 

showed that significant acoustic features of imagined speech could be reconstructed in seven 

patients. 

In the second study, we decoded continuous phoneme sequences from brain signals recorded 

during imagined speech using hidden Markov models. This technique allowed incorporating a 

language model that defined phoneme transitions probabilities. In this preliminary study, decoding 
accuracy was significant across eight phonemes in one patients. 

In the third study, we classified individual words from brain signals recorded during an imagined 

speech word repetition task, using support-vector machines. To account for temporal irregularities 

during speech production, we introduced a non-linear time alignment into the classification 
framework. Classification accuracy was significant across five patients.  

In order to compare speech representations across conditions and integrate imagined speech into 

the general speech network, we investigated imagined speech in parallel with overt speech 

production and/or speech perception. Results shared across the three studies showed partial 

overlapping between imagined speech and speech perception/production in speech areas, such as 
superior temporal lobe, anterior frontal gyrus and sensorimotor cortex. 

In an attempt to understanding higher-level cognitive processing of auditory processes, we also 

investigated the neural encoding of acoustic features during music imagery using linear regression. 

Despite this study was not directly related to speech representations, it provided a unique 

opportunity to quantitatively study features of inner subjective experiences, similar to speech 
imagery.  
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These studies demonstrated the potential of using predictive models for basic decoding of speech 

features. Despite low performance, results show the feasibility for direct decoding of natural speech. 

In this respect, we highlighted numerous challenges that were encountered, and suggested new 
avenues to improve performances.  

Keywords 

electrocorticography, imagined speech, neurobiology of language, neural predictive models, machine 
learning, linear regression, hidden Markov models, support-vector machine. 
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Résumé 

Certaines personnes ne peuvent pas communiquer à cause de maladies ou traumatismes 

neurologiques, tel qu’un accident vasculaire cérébral, une sclérose amyotrophique latérale ou une 

lésion cérébrale. Ces personnes bénéficieraient d’un appareil médical qui puisse inférer le langage 

interne à partir de l’activité neuronale. Cette thèse a pour but de comprendre et décoder les 

signaux cérébraux associés au langage interne, afin d’aider les personnes dans le besoin à 

communiquer. Dans cette thèse exploratrice, nous avons étudié et décodé plusieurs 

caractéristiques différentes du langage interne, telles que les propriétés acoustiques, la 

représentation phonétique et la production de mots individuels. Pour cela, nous avons utilisé 

l’électrocorticographie, une technique d’enregistrement d’activé cérébrale dans laquelle les 

électrodes sont implantées dans la tête de patients épileptiques. Cette technique permet 

d’enregistrer l’activité cérébrale avec une grande précision spatiale et temporelle. En utilisant ce 

procédé, nous avons réalisé trois études. 

Dans la première étude, nous avons reconstruit le spectrogramme du son à partir de l’activité 

cérébrale – un utilisant une régression linéaire. Dû au manque de mesure comportementale, nous 

ne pouvions pas régresser directement l’activité cérébrale au spectrogramme. Au lieu de cela, nous 

avons utilisé une autre stratégie basée sur le fait que parler à voix haute ou parler silencieusement 

ont des mécanismes neuronaux partiellement similaires. Le décodeur a été construit à base de 

données enregistrées lors de production de langage à voix haute, et ensuite, ce décodeur a été 

appliqué à des données enregistrées à voix silencieuse. En utilisant cette technique, nous avons 

démontrer que les caractéristiques acoustiques du langage peuvent être significativement 
reconstruite chez sept patients. 

Dans la deuxième étude, nous avons décodé continuellement des séquences de phonèmes à partir 

de l’activité cérébrale – en utilisant le modèle de Markov caché (hidden Markov model). Cette 

technique permet d’intégrer un model linguistique basé sur les transitions phonémiques. Les 
performances du décodeur étaient significatives chez deux patients. 

Dans la troisième étude, nous avons classifié des mots en utilisant des caractéristiques temporelles. 

Afin de prendre en compte les irrégularités dans la production de mots, nous avons introduit un 

alignement temporel dans le model de classification. Les performances étaient significatives chez 

cinq patients. 

Dans le but de comparer ces représentations linguistiques du langage interne avec celles du langage 

oral, nous avons étudier le langage interne en parallèle avec la perception et la production oral de 

langage. Les résultats ont démontré des similarités dans diverses régions associées au langage, tel 
que le gyrus supérieur temporal, le gyrus frontal antérieur et le cortex sensorimoteur  

Finalement, nous avons aussi étudié comment le cortex humain traite les caractéristiques 

acoustiques pendant la production interne de musique. Cette étude n’est pas directement liée au 

langage; toutefois, elle fournit une opportunité unique d’étudié de façon quantitatives les 
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caractéristiques lors d’expériences subjectives, internes, tel qu’il est le cas lors production interne 
de langage. 

Ces études représentent une preuve de concept pour le décodage de diverses caractéristiques du 

langage, et soulignent bon nombre de défi à relever pour concevoir un appareil médical réaliste.  

Mots-clés 
Électrocorticographie, langage interne, neurobiologie du langage, model prédictif, machine learning, 

régression linéaire, modèle de Markov caché, support-vector machine. 
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 Introduction 

 

Certain brain disorders limit verbal communication despite the patient being fully aware of 

what he wants to say. This neurological condition may results from brainstem infarcts, traumatic 

brain injury, stroke and amyotrophic lateral sclerosis, and affect more than two million people in the 

Unites States and far more around the world (Wolpaw et al. 2002). In order to help them to 

communicate, a few brain-computer interfaces have been proven useful (Farwell and Donchin 1988; 

Perdikis et al. 2014; Vansteensel et al. 2016; Pandarinath et al. 2017), but relied on indirect actions to 

convey information, such as performing mental tasks like a rotating cube, mental calculus or 

movements attempts. As an alternative, people with speech deficits would benefit from a 

communication system that can directly infer intended speech from brain signals – allowing them to 

interact more naturally with the world. This thesis aimed at understanding and decoding the neural 

correlates associated with imagined speech, for targeting communication assistive technologies. 

Imagined speech (also called inner speech, internal speech, silent speech, speech imagery, imagined 

speech or verbal thoughts) is defined here as the ability to generate internal speech representations, 

in the absence of any external speech stimulation or self-generated overt speech. 

In this explorative work, we investigated the neural encoding mechanisms of various imagined 

speech representations, such as acoustic features in the early auditory system, phonemic features in 

intermediate levels of processing and individual words in later linguistic stages. For this, we used 

electrocorticographic (ECoG) recordings in the human cortex, a technique that allows monitoring 

brain activity with high spatial, temporal, and spectral resolution. We also evaluated the ability to 

decode these speech features for targeting communication devices. Each speech representation was 

decoded using specific machine-learning algorithms (e.g. regression, hidden Markov models and 

support-vector machines) – adapted for each task. Finally, in order to integrate imagined speech 

neural mechanisms in the general speech network, we investigated imagined speech in parallel with 
speech perception and speech production.  
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In this chapter, we introduce concepts that are general to all studies undertaken, whereas subsequent 

chapters develop aspects that are specific for each study. We first briefly describe the functional 

organization of speech – including current knowledge about imagined speech. Then, we present the 

properties of electrocorticography, together with its benefits to investigate human speech. We also 

describe neuro-computational modeling approaches used to decoding speech features, as well as the 
state-of-the-art in this field. Finally, we define precisely the objectives of this thesis. 

1.1 Functional organization of speech 

Speech is encoded in a widely distributed and complex network, whose activation depends on both 

linguistic context and brain region. It is well accepted that two main brain areas involved in speech 

comprehension and speech production are Wernicke’s area (posterior superior and middle temporal 

gyrus/superior temporal sulcus) and Broca’s area (posterior inferior frontal gyrus), respectively 
(Figure 1-1; see Price 2000; Démonet, Thierry, and Cardebat 2005; Hickok and Poeppel 2007 for 

reviews).  

Speech comprehension involves multiple stages of neural representations in order to convert sound 

to meaning. The first stage in this process involves spectrotemporal analysis of the acoustic signal in 

early auditory cortices. This is followed by phonetic and phonological processing in the superior 

temporal lobe (Hickok and Poeppel 2007), in which continuous acoustic features are projected into 

categorical representations (Chang et al. 2010). Ultimately, higher levels of speech comprehension 

transform intermediate speech representations into conceptual and semantic representations in the 

so-called ventral stream (superior middle temporal lobe).  

 
Figure 1-1 Speech network. The major brain areas involved in speech processing are depicted (Price 2000). 

Early auditory cortices (Heschl’s gyrus) involve spectrotemporal analysis of speech, and project into 

Wernicke’s area (posterior superior temporal gyrus). The arcuate fasciculus connects Wernicke’s area to 

Broca’s area, which is involved in speech preparation and planning. Finally, the ventral sensorimotor cortex 

coordinates articulatory movements to produce audible speech. 

Alternatively, the dorsal stream (posterior dorsal temporal lobe, parietal operculum and posterior 

frontal lobe) is responsible for translating speech signals into articulatory representations. This 

network projects from primary auditory cortices to more dorsal aspects of the temporal lobe, and 

then to the posterior frontal lobe (Broca’s area), as well as premotor and supplementary areas 

(Hickok and Poeppel 2007). Broca’s area, which originally was recognized to be important for speech 

motor production, has recently been challenged regarding its role. Recent work suggested that 

Broca’s area coordinates speech by mediating a cascade of activation from sensory representations to 

their corresponding articulatory gestures rather than actually providing the motor output (Flinker et 

al. 2015). Speech production itself is the result of coordinated and precise movements over rapid time 
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scales in the ventral half of the lateral sensorimotor cortex (Levelt 1993; Gracco and Löfqvist 1994; 

Brown et al. 2009), where the articulators (i.e., lips, jaw, tongue and larynx) are organized 

somatotopically.  

While actual speech perception and production have been extensively studied, the neural 

mechanisms underlying imagined speech remain poorly understood. Imagery-related brain 

activation could result from top-down induction mechanisms including memory retrieval (Kosslyn et 

al. 2001; Kosslyn 2005) and motor simulation (Tian et al. 2012; Guenther et al. 2006; Price 2011). In 

memory retrieval, perceptual experience may arise from stored information (objects, spatial 

properties and dynamics) acquired during actual speech perception and production experiences 

(Kosslyn 2005). In motor simulation, a copy of the motor cortex activity (efference copy) is forwarded 

to lower sensory cortices, enabling a comparison of actual with desired movement, and permitting 

online behavioral adjustments (Tian et al. 2012; Jeannerod 2003). Recently, functional magnetic 

resonance imaging studies have shown that imagined speech activates Wernicke’s area (superior 

temporal gyrus; Yetkin et al. 1995; McGuire et al. 1996; Palmer et al. 2001; Shergill et al. 2001; Aleman 

2004; Aziz-Zadeh et al. 2005; Geva, Correia, and Warburton 2011) and Broca’s area (inferior frontal 

gyrus; Hinke et al. 1993; Huang, Carr, and Cao 2002) (see Price 2012; Perrone-Bertolotti et al. 2014 for 

reviews). 

Although traditional brain imaging techniques have identified anatomical regions associated with 

speech, these methods lack the temporal resolution to investigate rapid temporal neural dynamics 

(Towle et al. 2008). In contrast, electrocorticography is a direct neural recording method that allows 

monitoring brain activity with high spatial, temporal, and spectral resolution (Ritaccio et al. 2014), 

and therefore is a good candidate to investigate speech processing.  

1.2 Electrocorticographic recordings in the human brain 

Electrocorticography (ECoG), also called intracranial recordings has been used for decades in 

patients with epilepsy to localize the seizure onset zone, prior to brain tissue resection. In such cases, 

clinical procedure requires temporary implantation of electrode grids or strips onto the cortical 
surface, either above (epidural) or below (subdural) the dura mater (Figure 1-2). In some cases, depth 

electrodes (stereoencephalography) are implanted in the cortex to identify epileptic sources 

functions (Halgren, Marinkovic, and Chauvel 1998). Because of its invasiveness, intracranial 

recordings are applied exclusively for clinical purposes; nevertheless, the implantation time provides 

a unique opportunity to investigate human brain functions. Electrode grids placed over the temporal 

cortex, frontal cortex and sensory motor cortex are the most relevant for investigating speech 

processes. 

 
Figure 1-2 The ECoG grid and surgical placement. (A) Radiography of electrode placement. (B) ECoG 

surgical placement. (C) Electrode positions in situ. 
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ECoG has remarkable spatial (i.e., millimeter; Flinker et al. 2011) and spectral (0-500Hz; Staba et al. 

2002) resolution, as well as higher amplitude (50-200µV) and signal-to-noise ratio – as compared to 

electroencephalography (EEG; centimeters, 0-40Hz, 10-20µV). The	 reduced	 frequency	 range	 in	 EEG	 is	

due	 to	 the	 1/f	 rule	 resulting	 in	 amplitude	 reduction	 for	 higher	 frequencies.	 It is also less sensitive to 

artifacts such as those generated by the electrical activity from skeletal muscle movements (Ball et al. 

2009). In addition, the electrodes cover broad brain areas compared to intracortical recordings. 

Although, scalp EEG has a better overall brain coverage (e.g. covers both hemispheres), it has 

increased distortion and smearing of the electrical signal through to the skull, and therefore a much 

lower spatial resolution. Finally, ECoG has much higher temporal resolution (millisecond) with 

respect to metabolic imaging techniques, such as functional magnetic resonance imaging and 
positron emission tomography (seconds).  

Previous work has demonstrated the value of the ECoG signal in neuroprosthetic applications and for 

assistive technologies (Schalk et al. 2007; Felton et al. 2007). For example, ECoG recordings have been 

used in humans to control a one-dimensional (Leuthardt et al. 2004) and three-dimensional (Wang et 

al. 2013) cursor movements. Alternatively, formant frequencies (spectral peaks in the sound 

spectrum) were decoded in real time using intracortical recordings in the human motor cortex. The 

predicted speech was synthesized, and acoustically fed back to the user with a delay under 50ms 

(Guenther et al. 2009; Brumberg et al. 2010). Thus, ECoG represents a promising recording technique 
to investigate and decode neural correlates associated with human speech.  

In particular, the high gamma frequency band (HG; 70-1200 Hz; also	 referred	 to	 as	 high	 frequency	

band) has been correlated with multiunit spike rate and asynchronous post-synaptic current of the 

underlying neuronal population (Manning et al. 2009; Lachaux et al. 2012; Buzsáki, Anastassiou, and 

Koch 2012). High gamma signal reliably tracks neural activity in many sensory modalities and 

correlates with cognitive functions, such as memory and speech (see Lachaux et al. 2012 for a review). 

The high gamma band has been correlated with spectrotemporal acoustic properties of speech in the 

superior temporal gyrus (Pasley et al. 2012; Kubanek et al. 2013), phonetic features (Chang et al. 

2010), and articulatory features in the sensorimotor cortex (Bouchard et al. 2013). These studies 

demonstrate that many aspects of speech are robustly encoded in the high gamma frequency range 
of the ECoG signal.  

Substantial efforts have aimed to develop new tools for analyzing these brain signals given the 

increasing amount of data recorded with intracranial electrode grids. The next section briefly 

introduces neural predictive models, which includes both encoding and decoding models. These 

approaches have been used as a quantitative method to test hypotheses about neural representation 
under study. 

1.3 Predictive models in cognitive electrophysiology 

Traditionally, cognitive processes have been investigated using a minimum set of stimulus type, that 

typically differ along a single dimension of interest (e.g. attended versus not attended target). Brain 

activity evoked by these two sets of stimuli are then averaged and compared in order to provide new 

insights about the neural mechanisms under study. While much has been learned about perception 

using these methods, they often rely on un realistic, natural scenarios, and do not allow reliable trial 

analysis. Predictive modeling – a relatively new alternative approach – allows researchers to apply 

multivariate neural features to rich, complex and naturalistic stimuli in the world. For instance, a 

sensory stimulus, a movement, or a cognitive state generates an electrophysiological brain response 

that is specific in time, frequency band and location. Neural encoding models attempt to characterize 

how these parameters are represented in the brain, and how they co-vary with changing patterns in 
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the world. This type of predictive model essentially asks the question, given a particular stimulus or 
behavior representation, can we predict the resulting brain response. Conversely, decoding models 

attempt to predict information about conditions in the world that evoked a particular pattern of brain 

activity. 

 
Figure 1-3 Predictive models. (A) In encoding models, the neural activity is predicted from the auditory 

representation by finding a set of electrode that minimizes the difference between true (black) and predicted 

(red) values, whereas in decoding models input and output features are reversed. (B) Discriminant features 

can also be used to predict a category among a finite number of choices.  

The simplest form of a predictive model uses a regression framework to link brain activity and a 

stimulus or mental state representation. For instance, in the case of encoding models, the neural 
activity at a given time is modeled as a weighted sum of stimulus features (Figure 1-3 A), whereas 

input/output are reversed in the case of decoding models. Classification is a special case of decoding 

models, in which the neural activity is identified as belonging to a discrete event type from a finite set 

of choices (Figure 1-3 B). Both types of predictive models can use various mathematical algorithms, 

ranging from simple regression techniques, to more complex non-linear approaches, such as hidden 

Markov models, support-vector algorithms and neural networks. Although the underlying math is 

different – and further developed in specific chapters – the general framework is common to all and 
consists in the following steps: 

1. Feature extraction: in encoding models, input and output features are extracted from the stimulus 

and from the neural activity, respectively. In decoding models, input and output features are 

reversed. Examples of speech representations typically used in predictive models are the audio 

frequencies, the modulation rates, or phonemes for natural audio (Figure 1-4). For neural 

representations, amplitudes in specific frequency bands are typically extracted from the recorded 

electrophysiological signal.  

2. Model estimation: models are estimated by mapping input features to output features. The 

weights are calculated by minimizing a metric of error between the predicted and actual output on a 

training set. Generally, these models are linear mapping, in which the output is a weighted sum of 
input features.  

3. Validation: Once a model is fit, it is then validated on new unseen data – not used for training. To 

evaluate the accuracy, the predicted output is compared directly to the original representation.  

4. Interpretation: model weights reveal the relationship between brain activity and stimulus features. 

In the case of encoding model, the weights – also called receptive fields – identify the stimulus 

features encoded by a neuron or population of neurons.  
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Both encoding and decoding models are complementary, and have several benefits over traditional 

stimulus-contrast approaches. This included the ability to make predictions about new datasets, to 

take a multivariate approach to fitting model weights, and to use multiple feature representations 

with a complex, natural stimulus set. Encoding models are useful for exploring multiple levels of 

abstraction within a complex stimulus, and investigating how each affects activity in the brain. 

Alternatively, decoding models can be used to operate neuroprosthetic devices activity from patterns 

of brain activity, in order to help disabled individuals interacting with the world. For instance, 

decoding models have been used to move a cursor on the screen (Wolpaw et al. 1991), control a 
wheelchair (Millán et al. 2009), and predict 3D trajectories of a robotic arm (Hochberg et al. 2012).  

 
Figure 1-4 Feature extraction. Several common auditory representations are shown for the same natural 

speech utterance (A). For instance, the raw audio waveform (A) can be low-pass filtered and squared to 

extract the speech envelope (B). Alternatively, a frequency decomposition of the raw auditory waveform can 

be used to generate a spectrogram that reflects spectrotemporal fluctuations over time (E). A two-

dimensional Gabor decomposition of the spectrogram itself can be used to create the Modulation Power 

Spectrum of the stimulus (F). Alternatively, one may code the auditory stimulus with a categorical variable 

corresponding to linguistic features such as the presence of phonemes (C) or words (D). These approaches 

may be used to investigate the brain’s response to higher-order features. 

In the next section, we first review ECoG studies that have employed predictive models to understand 
and decode cognitive states associated with various speech representations.  

1.4 State-of-the-art research in speech modeling 

Speech processing includes various processing steps – such as acoustic processing in the early 

auditory system, phonetic and categorical encoding in intermediate levels of processing and 

semantic and higher level of linguistic processes in later stages. In this section, we describe the 

various speech representations that were investigated using predictive models and ECoG signals 

recorded during speech perception and production. We also devote a specific section to the state-of-
the-art in modeling imagined speech. 

1.4.1 Early auditory speech representations 

A well-established role of the early auditory system is to decompose speech and complex sounds into 

their elementary time-frequency components (Aertsen, Olders, and Johannesma 1981; Eggermont, 
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Aertsen, and Johannesma 1983; Tian 2004). These spectrotemporal varying features, such as the 
envelope (Figure 1-4 B), the spectrogram (Figure 1-4 E), formant frequencies1, and time-frequency 

modulations (Figure 1-4 F) carry essential phonological information. For instance, the speech 

envelope contains key information about speech intensity, rhythmic cadence and phonetic content 

that is primordial for understanding fluent, conversational speech. Alternatively, low and 

intermediate temporal modulations in the spectrogram (<4Hz) are linked with syllable rate, whereas 

fast modulations (>16Hz) are related to syllable onsets and offsets. Similarly, broad spectral 

modulations are associated with vowel formants, whereas narrow spectral modulations are 

associated with harmonics (Shamma 2003). These features are robust under a variety of noise 

conditions, and reflect important properties of speech intelligibility (Chi et al. 1999; Elliott and 
Theunissen 2009).  

Recent studies have shown that spectrotemporal features could be reconstructed from high gamma 

frequency band using regression models. In particular, high frequency bands have been shown to 

reliably track the speech envelope (Figure 1-4 B) throughout the auditory system, and especially in 

early auditory cortices (Kubanek et al. 2013). Similarly, mel-frequency cepstral coefficients 

(Chakrabarti et al. 2013) and a spectrogram and a modulation-based representation (Pasley et al. 

2012) were successfully reconstructed from high gamma signals. In a single case study, the recorded 

brain signals successfully predicted real-time formant frequencies using intracortical depth 

electrodes in the human motor cortex (Brumberg et al. 2010; Guenther et al. 2009). The audio signal 

was synthetized from the reconstructed acoustic features and fed back aurally to the patient within 

50ms. These studies shows that neural decoding approaches can predict acoustic features of speech, 

and highlight the potential of using invasive recording techniques for building a neural-based speech 
synthesizer. 

1.4.2 Intermediate speech representations 

Linguistic elements, such as phonemes2 are extracted from a complex acoustic speech signal. For 

instance, realizations of the same speech instance are highly variable, both between speakers and 

within the same individual (Kaur and Garg 2012). Due to the lack of invariance, it is difficult to find 
constant relations between a linguistic element (e.g. phoneme; Figure 1-4 C) and its acoustic 

manifestation. As such, the brain requires the rapid and effortless extraction of meaningful and 

invariant phonetic information from a highly variable continuous acoustic signal. The superior 

temporal gyrus plays a key role in transforming acoustic sounds into discrete linguistic units during 

speech perception (Chang et al. 2010; Mesgarani et al. 2014). Similar to what happens in the superior 

temporal gyrus, phonetic features are organized along acoustic features in the ventral sensorimotor 

cortex during speech perception (Cheung et al. 2016). Alternatively, during speech production, 

phonetic features are organized somatotopically based on articulators (lips, tongue, larynx and jaw; 

Bouchard et al. 2013). This means that sounds that have similar acoustic properties, but require 

different movements to produce them (e.g. ‘b’ and ‘d’), activate the motor cortex in similar ways 

during listening, but not during speaking. 

From a decoding perspective, several studies have shown successful classification of individual 

speech units into different categories, such as vowels and consonants (Pei et al. 2011), phonemes 

(Brumberg et al. 2011; Mugler et al. 2014) and syllables (Blakely et al. 2008). Recently, studies have 

																																																																												

1	concentrations	of	acoustic	energy	around	particular	frequencies	in	the	speech	waveform.	

2	The	phoneme	is	the	smallest	speech	unit	and	represent	the	building	blocks	for	more	complex	speech	utterances,	such	as	
words	and	sentences.	
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shown the ability to decode continuous phoneme sequences from high gamma activity during speech 

perception (Moses et al. 2016) and overt speech production (Herff et al. 2015). These studies – 

inspired from the field of speech recognition – included probabilistic language models in the 

decoding framework, and allowed the identification of words and sentences.  

1.4.3 Higher levels of speech representations 

Acoustic cues and phonetic information are embedded in streams of natural speech, and are 

arranged sequentially to convey more complex linguistic and semantic meanings (Vitevitch et al. 

1999). The integration of elementary speech units into semantic objects has been found in the 

inferior frontal gyrus and superior temporal gyrus (Wang et al. 2011). In addition to bottom up 

processing streams, the neural activity associated with speech is modulated by top-down influences 

to help recognizing speech sounds. Various higher order neural mechanisms, such as expectations 

(Leonard et al. 2015; Leonard et al. 2016; Holdgraf et al. 2016), feedback monitoring loops (Chang et 

al. 2013; Houde and Chang 2015) attentional resources (Fritz et al. 2007; Mesgarani and Chang 2012) 

and lexical retrieval (Cibelli et al. 2015), allow natural verbal communication in noisy environments 
and background speech.  

Interestingly, the neural activity of a listener that perceive a specific speech sound that has been 

replaced or masked by noise is grounded in acoustic representations. This suggest that even in the 

absence of a given speech sound, the neural patterns correlates with those that would have been 

elicited by the actual speech sound. This phenomenon is deeply influenced by internal forward 

processes related to prediction and integration of contextual knowledge (Leonard et al. 2016; 

Holdgraf et al. 2016). Similarly, behavioral studies have shown that people learn the statistical 

properties of sequentially arranged units, although they are not consciously aware of the probability 

distributions (Winkler, Denham, and Nelken 2009). For instance, hearing the sound /k/ followed by 

/uw/ (“koo”) is more common than hearing /k/ followed by /iy/ (“kee”). A recent study showed that 

the neural response is modulated according to the language-level probability of surrounding sounds 
(Leonard et al. 2015).  

1.4.4 Imagined speech representations  

Mental imagery reproduces experiences and brain patterns similar to actual perception and 

production. For instance, behavioral studies have shown that structural and temporal properties of 

auditory features (Halpern 1989a; Pitt and Crowder 1992; Halpern et al. 2004; Intons-Peterson 1980; 

Halpern 1988) are preserved during auditory imagery. Brain imaging studies have demonstrated the 

activation of overlapping brain areas during speech imagery and perception (Kraemer et al. 2005; 

Yoo, Lee, and Choi 2001; Zatorre et al. 1996) and production (Palmer et al. 2001; Yetkin et al. 1995; 

Rosen et al. 2000; McGuire et al. 1996; Aleman 2004; Hinke et al. 1993). Despite these studies, it 

remains unclear what precise features – from early auditory to higher-level speech representations – 
are encoded during imagined speech.  

Very few studies have exploited the advantageous properties of intracranial recordings to characterize 

imagined speech features, and none has employed encoding models to elucidate neural mechanisms 

during such cognitive processes. A recent study described the spatiotemporal evolution of high 

gamma activity during an overt and imagined word repetition using grand average techniques (Pei, et 

al. 2011; Leuthardt et al. 2012). In particular, they revealed high gamma changes in superior temporal 

lobe and the supramarginal gyrus during imagined speech repetition. Alternatively, decoding models 

have been used to classify neural activity associated with imagined speech features into categorical 

representations, i.e., covertly articulated isolated vowels (Ikeda et al. 2014), vowels and consonants 



	

	

9		

during covert word production (Pei et al. 2011) and intended phonemes (Brumberg et al. 2011). In 

addition, a recent study compared the electrocorticographic activity related to overt versus covert 

conditions, and revealed a common network of brain regions (Brumberg et al. 2016). 

The lack of physiological studies on imagined speech emphasizes the difficulties when investigating 

imagined speech representations. A reason for this is that the fine spectrotemporal fluctuation 

property of speech cannot be monitored precisely during imagined speech, due to the lack of 

behavioral output. Indeed, there are no verifiable or observable measures during internal subjective 

experiences like imagined speech. Therefore, it is difficult to time-lock brain activity to a measurable 

stimulus or behavioral state, and build predictive models that directly regress the neural activity to 

any speech representation. In addition, speech is subject to temporal irregularities 

(stretching/compressing, onset/offset delays) across repetitions. For instance, a predictive model that 

assumes fixed time features may not recognize two trials as belonging to the same class if the neural 

patterns are not temporally aligned. As a results, this leads to problems in exploiting the temporal 
resolution of electrocorticography, and to investigate what factor is encoded during imagined speech.  

1.5 Objectives and main results 

This thesis was an initial work aimed at better understanding imagined speech using 

electrocorticographic neural signals recorded in epileptic patients. We investigated various speech 

representations, such as acoustic sound features, phonemic features, and individual words. We also 

evaluated the ability to decode these speech features for targeting communication devices. For this, 
four different studies have been performed: 

In Chapter 2, we reconstructed continuous acoustic features from high gamma neural activity 

recorded during imagined speech (Martin et al. 2014). Due to the lack of any measurable behavioral 

output, it is difficult to build a regression model that directly maps the neural activity to any 

behavioral metric or speech representation. Instead, given that speaking out loud and speaking in its 

mind share common neural mechanisms, we built the decoding model from an overt speech 

condition, and applied this decoder in the imagined speech. Using this technique, we showed that 

significant acoustic features of imagined speech could be reconstructed in seven patients. These 

findings also provided evidence that overt and imagined speech share underlying neural 
mechanisms. 

In Chapter 3, we decoded continuous phoneme sequences from the high gamma neural activity 

recorded during imagined speech (Martin et al. 2017, in preparation). Until now, isolated phonemes 

were successfully decoded during imagined speech (Ikeda et al. 2014; (Pei, Barbour, et al. 2011) 

Brumberg et al. 2011), but these study failed to decode phoneme sequences during continuous 

speech. In order to label intended phonemes more accurately during imagined speech, we designed a 

karaoke-like task, in which visual words scrolling on the screen were divided into their phonemic 

representations. Then, we implemented a hidden Markov model – a modeling technique widely used 

in the field of speech recognition – that allows incorporating a language model. Using this approach, 

we showed that decoding accuracy was significant across eight phonemes in one patient. Although, 

preliminary results were promising, these findings need to be extended to a larger pool of 
participants, in order to draw conclusions.  

In Chapter 4, we classified individual words from high gamma neural features recorded during an 

imagined speech word repetition task (Martin et al. 2016). Although words have been decoded during 

overt speech (Blakely et al. 2008), only phonemes were successfully predicted during imagined 

speech (Ikeda et al. 2014; Pei et al. 2011; Brumberg et al. 2011). To this end, we took advantage of the 
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high temporal resolution offered by ECoG, and classified neural features in the time domain using 

support-vector machine. In order to account for temporal irregularities across trials, we introduced a 

non-linear time alignment into the classification framework. Results showed that the classification 

accuracy was significant across five patients. This study represents a proof of concept for basic 

decoding of speech imagery, yet the results to date are not yet robust enough for a clinical 
communication device. 

In these studies, we investigated imagined speech in parallel with overt speech production and/or 

speech perception. This allowed comparing speech representations across conditions, and integrate 

imagined speech into the general speech network. Results revealed complex patterns of brain activity, 

that where partially overlapping across conditions. The most informative areas to decode speech 

were located in the superior temporal gyrus, inferior frontal gyrus and sensorimotor cortex, areas 

commonly associated with speech. 

In Chapter 5, we investigated the neural encoding of acoustic features during music imagery using 

linear regression (Martin et al. 2017, under revision at Cerebral Cortex). This study was not directly 

related to speech representations, yet it helped understanding features of inner subjective 

experiences, such as auditory and speech imagery. This study relied on an extremely rare clinical case 

in which a patient undergoing neurosurgery for epilepsy treatment was also an adept piano player. 

To address this challenge, we recorded his electrocorticographic neural signals in a novel task design 

that permitted robust tracking of the spectrotemporal content of the intended music imagery. This 

experiment provided a unique opportunity to apply receptive field modeling techniques to 

quantitatively study neural encoding during music imagery. We found robust similarities between 

perception and imagery – in frequency and temporal tuning properties in auditory areas. 

These studies represent a proof of concept for basic decoding of imagined speech, and delineate a 

number of key difficulties to usage of speech imagery neural representations for clinical applications. 

Accordingly, we emphasize numerous challenges that were encountered, and suggest new avenues 
that will hopefully help getting closer to a neural-based speech interface.  
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 Decoding spectrotemporal 
acoustic features of imagined speech  

2.1 Abstract 

Decoding imagined speech is complicated by the lack of any measurable behavioral or acoustic 

output that is synchronized to brain activity. Thus, it is difficult to build a decoding model that 

directly regress the neural activity to any behavioral metric or speech representation. To counter this 

issue, we proposed an alternative strategy, based on the fact that auditory perception and auditory 

imagery activate overlapping brain regions. We built the decoding model on high gamma neural 

activity (70-150 Hz), and reconstructed spectrotemporal auditory features of self-generated overt 

speech. Then, the same decoding model was applied to reconstruct auditory speech features in the 

imagined speech condition. To evaluate performances, the reconstruction in the imagined speech 

condition was compared to the representation of the corresponding original sound spoken out loud – 

using a temporal realignment algorithm. Results showed that significant acoustic features of 

imagined speech could be reconstructed in five out of seven patients. This provided evidence that 

overt and imagined speech share underlying neural mechanisms, and the relationship between both 

depended on anatomy. The superior temporal gyrus, pre- and post-central gyrus provided the 

highest reconstruction information. In addition, the ability to decode acoustic features from 

imagined speech may provide a basis for development of a brain-based communication method for 

patients with disabling neurological conditions. 

2.2 Introduction 

Mental imagery produces experiences and neural activation patterns similar to actual perception. For 

instance, thinking of moving a limb activates the motor cortex, internal object visualization activates 

the visual cortex, with similar effects observed for each sensory modality (Kosslyn, Ganis, and 

Thompson 2001; Roth et al. 1996; Stevenson and Case 2005). Behavioral and neural studies have 

suggested that structural and temporal properties of auditory features, such as pitch (Halpern 1989a), 

timbre (Pitt and Crowder 1992; Halpern et al. 2004), loudness (Intons-Peterson 1980) and rhythm 

(Halpern 1988) are preserved during music imagery (Hubbard 2013). Less is known about the neural 

substrate of speech imagery, and how it compares to overt speech production. In this study, we 

Disclaimer:	This	chapter	is	adapted	from	the	following	article	–	with	permissions	of	all	co-authors	and	journals:	

Martin	 S.,	 Brunner	 P.,	 Holdgraf	 C.,	 Heinze	 H.-J.,	 Crone	 N.E.,	 Rieger	 J.,	 Schalk	 G.,	 Knight	 R.T.,	 Pasley	 B.N.	 2014.	 “Decoding	
Spectrotemporal	 Features	 of	 Overt	 and	 Covert	 Speech	 from	 the	 Human	 Cortex.”	 Frontiers	 in	 Neuroengineering.	

doi:10.3389/fneng.2014.00014.	

My	contribution:	Conceptualization,	formal	analysis,	methodology,	visualization,	writing	–	original	draft	preparation	
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investigated neural mechanisms associated with acoustic representations during overt and imagined 
speech, and evaluated the ability to reconstruct acoustic features from imagined speech data. 

Increasing evidence suggests that speech imagery and perception activate the same cortical areas. 

Functional imaging studies have reported overlapping cortical regions during overt and imagined 

speech generation in inferior frontal lobes, sensorimotor cortex regions, supplementary motor areas, 

and anterior cingulate gyri (Palmer et al. 2001; Yetkin et al. 1995; Rosen et al. 2000). Transcranial 

magnetic stimulation over motor sites and inferior frontal gyrus induced speech arrest in both overt 

and imagined speech production (Aziz-Zadeh et al. 2005). Finally, brain lesion studies have shown 

high correlation between overt and imagined speech abilities, such as rhymes and homophones 
judgment (Geva, Bennett, et al. 2011) for patients with aphasia.  

Despite findings of overlapping brain activation during overt and imagined speech (Palmer et al. 

2001; Yetkin et al. 1995; Rosen et al. 2000; Aziz-Zadeh et al. 2005; McGuire et al. 1996; Aleman 2004; 

Hinke et al. 1993; Geva, Correia, et al. 2011), it is likely that imagined speech is not simply overt 

speech without moving the articulatory apparatus. Behavioral judgment studies showed that aphasic 

patients indicated inner speech impairment, while maintaining relatively intact overt speech abilities, 

while others manifested the reverse pattern (Geva, Bennett, et al. 2011). Similarly, imaging techniques 

showed different patterns of cortical activation during imagined compared to overt speech, namely in 

the premotor cortex, left primary motor cortex, left insula, and left superior temporal gyrus (Huang et 

al. 2002; Shuster et al. 2005; Pei et al. 2011). This suggests that brain activation maps associated with 

both tasks are dissociated at least in some cases (Geva et al. 2011; Aleman 2004; Shuster et al. 2005; 

Feinberg et al. 1986). The extent to which auditory perception and imagery engage similar underlying 
neural representations remains poorly understood. 

To compare similarities between the neural representations of overt and imagined speech, and 

investigate if acoustic features of imagined speech can be decoded from ECoG signals, we employed 

neural decoding models to predict auditory features from brain activity – a technique that was 

already successfully applied to speech perception (Pasley et al. 2012). We hypothesized that speech 

perception and imagery share a partially overlapping neural representation in auditory cortical areas. 

We reasoned that if speech imagery and perception share neural substrates, the two conditions 

should engage similar neural representations. Thus, a neural decoding model trained from overt 

speech should be able to predict speech features in the imagined condition. In this study, we used a 
high gamma (70-150Hz) based neural decoding model, trained on continuous overt speech data. This 

model was then used to decode spectrotemporal auditory features from brain activity measured 

during an imagined speech condition. We showed that significant acoustic features of imagined 

speech could be reconstructed from models that were built from overt speech data. These findings 

supported shared neural mechanisms between both tasks, and provided a basis for development of a 
brain-based communication method for patients with disabling neurological conditions.  

2.3 Material and Methods 

2.3.1 Subjects and data acquisition 

Electrocorticographic (ECoG) recordings were obtained using subdural electrode arrays implanted in 

7 patients undergoing neurosurgical procedures for epilepsy. All patients volunteered and gave their 

informed consent (approved by the Albany Medical College Institutional Review Board) before 

testing. The implanted electrode grids (Ad-Tech Medical Corp., Racine, WI; PMT Corporation, 

Chanhassen, MN) consisted of platinum–iridium electrodes (4 mm in diameter, 2.3 mm exposed) that 
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were embedded in silicon and spaced at an inter-electrode distance of 0.6-1cm. Grid placement and 

duration of ECoG monitoring were based solely on the requirements of the clinical evaluation (Figure 

2-1 Electrode location. ).  

ECoG signals were recorded at the bedside using seven 16-channel g.USBamp biosignal acquisition 

devices (g.tec, Graz, Austria) at a sampling rate of 9600 Hz. Electrode contacts distant from epileptic 

foci and areas of interest were used for reference and ground. Data acquisition and synchronization 

with the task presentation were accomplished using BCI2000 software (Schalk et al. 2004; Schalk 

2010). All channels were subsequently downsampled to 1,000 Hz, corrected for DC shifts, and band 

pass filtered from 0.5 to 200 Hz. Notch filters at 60 Hz, 120 Hz and 180 Hz were used to remove 

electromagnetic noise. The time series were then visually inspected to remove the intervals 

containing ictal activity as well as channels that had excessive noise (including broadband 

electromagnetic noise from hospital equipment or poor contact with the cortical surface). Finally, 

electrodes were re-referenced to a common average. The high gamma frequency band (70-150 Hz) 
was extracted using the Hilbert transform. 

 

Figure 2-1 Electrode location. Grid locations for each subject are overlaid on cortical surface 

reconstructions of each subject’s MRI scan. 

In addition to the ECoG signals, we acquired the subject’s voice through a dynamic microphone 

(Samson R21s) that was rated for voice recordings (bandwidth 80-12000 Hz, sensitivity 2.24 mV/Pa) 

and placed within 10 cm of the patient’s face. We used a dedicated 16-channel g.USBamp to amplify 

and digitize the microphone signal in sync with the ECoG data. Finally, we verified the patient’s 
compliance in the imagined task using an eye-tracker (Tobii T60, Tobii Sweden).  

2.3.2 Experimental paradigms 

The recording session included three conditions. In the first condition, text excerpts from historical 

political speeches or a children’s story (i.e., Gettysburg Address (Roy and Basler 1955), JFK’s Inaugural 

Address (Kennedy 1961), or Humpty Dumpy (“Mother Goose’s Nursery Rhymes” 1867) were visually 

displayed on the screen moving from right to left at the vertical center of the screen. The rate of 

scrolling text ranged between 42-76 words/min, and was adjusted based on the subject's 

attentiveness, cognitive/verbal ability, and comfort prior to experimental recordings. In the first 

condition, the subject was instructed to read the text aloud (overt condition). In the second 

condition, the same text was displayed at the same scrolling rate, but the subject was instructed to 

read it silently (imagined condition). The third condition served as the control and was obtained 

while the subject was in a resting state condition (baseline control). For each condition, a run lasted 
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between 6 and 8 min, and was repeated 2-3 times depending on the mental and physical condition of 
the subjects.  

2.3.3 Auditory speech representations 

We evaluated the predictive power of a neural decoding model to reconstruct two auditory feature 

representations: a spectrogram-based and a modulation-based representation. The spectrogram is a 

time-varying representation of the amplitude envelope at each acoustic frequency. This 

representation was generated by an affine wavelet transform of the sound pressure waveform using a 

128 channel-auditory filter bank mimicking the frequency analysis of the auditory periphery (Chi, Ru, 

and Shamma 2005). The 128 acoustic frequencies of the initial spectrograms were subsequently 

downsampled to 32 acoustic frequency bins – with logarithmically spaced center frequencies ranging 
from 180-7,000 Hz. 

The modulation representation is based on a non-linear transformation of the spectrogram. Spectral 

and temporal fluctuations reflect important properties of speech intelligibility. For instance, 

comprehension is impaired when temporal modulations (<12 Hz) or spectral modulations (4 

cycles/kHz) are removed (Elliott and Theunissen 2009). In addition, low and intermediate temporal 

modulation rates (< 4 Hz) are linked with syllable rate, whereas fast modulations (> 16 Hz) are related 

to syllable onsets and offsets. Similarly, broad spectral modulations are associated with vowel 

formants, whereas narrow spectral modulations are associated with harmonics (Shamma 2003). The 

modulation representation was generated by a 2-D affine wavelet transform of the 128 channel 

auditory spectrogram. The bank of modulation-selective filters spanned a range of spectral scales 

(0.5–8 cycle/octave) and temporal rates (1–32 Hz), and was estimated from studies of the primary 

auditory cortex (Chi et al. 1999). The modulation representation was obtained by taking the 

magnitude of the complex-valued output of the filter bank, and subsequently reduced to 60 

modulation features (5 scales x 12 rates) by averaging along the frequency dimension. These 

operations were computed using the NSL Matlab toolbox 

(http://www.isr.umd.edu/Labs/NSL/Software.htm). In summary, the neural decoding model 

predicted 32 spectral frequency features and 60 rate and scale features in the spectrogram-based and 

modulation-based speech representation, respectively. 

2.3.4 Reconstruction procedure 

Overt speech decoding 

The decoding model was a linear mapping between neural activity and the speech representation 
(Figure 2-2 A). It modeled the speech representation (spectrogram or modulation) as a linear 

weighted sum of activity at each electrode as follows: 

 ! ", $ = & ', $, ( ) " − ', ( ,
+,

  

Where ) " − ', (  is the high gamma activity of electrode ( at time " − ', where ' is the time lag 

ranging between -500ms and 500ms. ! ", $  is the estimated speech representation at time " and 

speech feature $, where $ is one of 32 acoustic frequency features in the spectrogram-based 

representation (or one of 60 modulation features (5 scales x 12 rates) in the modulation-based 

representation. Finally, & ', $, (  is the linear transformation matrix, which depends on the time lag, 

speech feature, and electrode channel. Both speech representations and the neural high gamma 
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response data were synchronized, downsampled to 100 Hz, and standardized to zero mean and unit 
standard deviation prior to model fitting. 

Model parameters, the matrix & described above, were fit using gradient descent with early stopping 

regularization – an iterative linear regression algorithm. We used a jackknife resampling technique to 

fit separately between 4 and 7 models (Efron 1982), and then averaged the parameter estimates to 

yield the final model. To deal with auto-correlated neural activity and speech features, the data were 

first divided into 7-seconds blocks. Then, 90% of the data were randomly partitioned into training set 

and 10% into testing set. Within the training set, 10% of the data were used to monitor out-of-sample 

prediction accuracy to determine the early stopping criterion and minimize overfitting. The 

algorithm was terminated after a series of 30 iterations failing to improve performance. Finally, model 

prediction accuracy was evaluated on the independent testing set. Model fitting was performed using 
the STRFLab MATLAB toolbox (http://strflab.berkeley.edu/).  

 

Figure 2-2 Reconstruction framework. (A) The overt speech condition was used to train and test the 

accuracy of a neural-based decoding model to reconstruct spectrotemporal features of speech. The 

reconstructed patterns were compared to the true original (spoken out loud) speech representation 

(spectrogram or modulation-based). (B) During imagined speech, there is no behavioral output, which 

prevents building a decoding model directly from imagined speech data. Instead, the decoding model 

trained from the overt speech condition is used to decode imagined speech neural activity. The imagined 
speech reconstructed patterns were compared to identical speech segments spoken aloud during the overt 

speech condition (using dynamic time warping realignment). 

Imagined speech decoding 

Decoding imagined speech is complicated by the lack of any measurable behavioral or acoustic 

output that is synchronized to brain activity. In other words, there is no simple ground truth by which 

to evaluate the accuracy of the model when a well-defined output is unavailable. To address this, we 

used the following approach. First, the decoding model was trained using data from the overt 

speaking condition. Second, the same model was applied to data from the imagined condition to 

predict speech features imagined by the subject (Figure 2-2 B), as follows: 
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 !-./0-+12 ", $ = & ', $, ( )345167 " − ', ( ,
+,

  

where !-./0-+12(", $) is the predicted imagined speech representation at time t and speech feature p, 

and )-./0-+12(" − ', () is the high gamma neuronal response of electrode n at time " − ', where ' is 

the time lag ranging between -500ms and 500ms. Finally, & ', $, (  is the linear model trained from 

the overt speech condition. To evaluate prediction accuracy during imagined speech, we made the 

assumption that the imagined speech representation should match the spectrotemporal content of 

overt speech. In this sense, overt speech is used as the “ground truth”. Because subjects read the 

same text segments in both overt and imagined conditions, we computed the similarity between the 

imagined reconstructions and the corresponding original speech sounds recorded during the overt 

condition. To account for timing differences between conditions, we used dynamic time warping 

(DTW) to realign the imagined reconstruction to the original overt speech sound, as described in the 
next section. 

2.3.5 Dynamic time warping 

We used a dynamic time warping algorithm to realign the imagined speech reconstruction with the 

corresponding spoken audio signal from the overt condition, allowing a direct estimate of the 

imagined reconstruction accuracy. For the overt speech reconstructions, dynamic time warping was 

not employed, unless otherwise stated. DTW is a standard algorithm used to align two sequences that 

may vary in time or speed (Sakoe and Chiba 1978; Giorgino 2009). The idea behind DTW is to find the 

optimal path through a local similarity matrix d, computed between every pair of elements in the 

query and template time series, X �RP x N and Y � RP x M as follows: 

 d n,m = f x?, yA 	, d ∈ ℝEFG,  

where d is the dissimilarity matrix at time n and m, f can be any distance metric between sequence	x 

and y at time n and m, respectively. In this study, we used the Euclidean distance, defined as d n,m =

(H+I − J.I)KL
I . Given φ, the average accumulated distortion between both warped signals is 

defined by: 

 
MN H, J = 	

M(OP Q , OR	 Q )

SN

T

UVW

, 

where OP and OR are the warping functions of length K (that remap the time indices of X and Y, 

respectively), and SN	is the corresponding normalization constant (in this case N+M), ensuring that 

the accumulated distortions are comparable along different paths. The optimal warping path φ, 
chooses the indices of X and Y in order to minimize the overall accumulated distance.  

 X Y, Z = 	[\(
N

MN Y, Z ,  

where D is the accumulated distance or global dissimilarity. The alignment was computed using 

Rabiner-Juan step patterns (type 3; Rabiner 1993). This step pattern constrained the sets of allowed 

transitions between matched pairs to: 

 [OP Q + 1 − OP Q , 	OR Q + 1 − OR Q ] ∈ 	 { 1, 2 , 2, 1 , (1, 1)} 
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In addition, we assumed that the temporal offsets between imagined speech and original overt 

speech would be less than 2 sec, and thus introduced a global constraint – the Sakoe-Chiba band 

window (Sakoe and Chiba 1978), defined as follows: 

 OP Q −	OR(Q) 	≤ e  

where T = 2 sec was the chosen value that defines the maximum-allowable width of the window. 

Finally, to reduce computational load, the entire time series was broken into 30 sec segments, and 

warping was applied on each individual pair of segments (overt, imagined, or baseline control 

reconstruction warped to original speech representation). The warped segments were concatenated 

and the reconstruction accuracy was defined on the full time series of warped data. The DTW package 

in R (Giorgino 2009) was used for all analyses.  

Baseline control condition (resting state) 

To assess statistical significance of the imagined reconstruction accuracy, we applied the same 

decoding steps to a baseline control condition taken from data recorded during a separate resting 

state recording session. The overt speech decoding model was applied to neural data from the 
baseline control, as follows: 

 !f/g1h-+1 ", $ = & ', $, ( )f/g1h-+1 " − ', ( ,
+,

  

where !f/g1h-+1(", $) is the predicted baseline reconstruction at time t and speech feature p, and 

)f/g1h-+1 " − ', (  is the high gamma neural response during resting state. Finally, g(τ,p,n) is the linear 

model trained from the overt speech condition. We also used DTW to realign the baseline control 

reconstruction with the spoken audio signal from the overt condition, allowing a direct estimate of 
the control condition decoding predictions. 

2.3.6 Evaluation 

In the overt speech condition, reconstruction accuracy was quantified by computing the correlation 

coefficient (Pearson’s r) between the reconstructed and original speech representation using data 

from the independent test set. For each cross-validation resample, we calculated one correlation 

coefficient for each speech feature over time – leading to 32 correlation coefficients (one for each 

acoustic frequency features) for the spectrogram-based model and 60 correlation coefficients (5 scale 

x 12 rate features) for the modulation-based model. Overall reconstruction accuracy was reported as 

the mean correlation over resamples and speech components (32 and 60 for the spectrogram and 

modulation representation, respectively). Standard error of the mean (SEM) was calculated by taking 

the standard deviation of the overall reconstruction accuracy across resamples. To assess statistical 

significance, overt speech reconstruction accuracy was compared to the accuracy obtained from the 
baseline control condition (resting state). 

In the imagined speech condition, we first realigned the reconstructions and original overt speech 

representations using dynamic time warping. Then, we computed the overall reconstruction 

accuracy using the same procedure as in the overt speech condition. To evaluate statistical 

significance, DTW was also applied to the baseline control condition prior to assessing the overall 
reconstruction accuracy.  

To further assess the predictive power of the reconstruction process, we evaluated the ability to 

identify specific blocks of speech utterances within the continuous recording. First, 24-140 segments 
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of speech utterances (5 sec duration) were extracted from the original and reconstructed spectrogram 

representations. Second, a confusion matrix was constructed where each element contained the 

similarity score between the target reconstructed segment and the original reference segments from 

the overt speech spectrogram. To compute the similarity score between each target and reference 

segment, DTW was applied to temporally align each pair and the mean correlation coefficient was 

used as the similarity score. The confusion matrix reflects how well a given reconstructed segment 

matches its corresponding original segment versus other candidates. The similarity scores were 

sorted, and identification accuracy was quantified as the percentile smaller than the rank of the 

correct segment (Pasley et al. 2012). At chance level, the expected percentile rank is 0.5, while perfect 
identification is 1.0.  

To define the most informative areas for overt speech decoding accuracy, we isolated for each 

electrode its corresponding decoding weights, and used the electrode-specific weights to generate a 

separate reconstruction for each electrode. This allowed calculating a reconstruction accuracy 

correlation coefficient for each individual electrode. We applied the same procedure to the baseline 

condition. Baseline reconstruction accuracy was subtracted from the overt values to generate 

subject-specific informative area maps (Figure 2-6). The same technique was used in the imagined 

speech condition, except that DTW was applied to realign separately each electrode-specific 

reconstruction to the original overt speech. Similarly, baseline reconstruction accuracy (with DTW 
realignment) was subtracted from the imagined values to define the informative areas (Figure 2-9).  

2.3.7 Statistics 

To assess statistical significance for the difference between overt speech and baseline control 

reconstruction accuracy, we used Hotelling’s t statistic with a significance level of p<10-5. This test 

accounts for the dependence of the two correlations on the same group (i.e. both correlations are 

relative to the same original overt speech representation) (Hotelling 1940; Birk 2013). It evaluates 

whether the correlations between overt speech reconstruction accuracy and baseline reconstruction 
accuracy differed in magnitude taking into account their intercorrelation, as follows:  

 
" =

(ijU−ijk) (( − 3)(1 + iUk)

2 )
 

where  is the correlation between original overt speech and reconstruction,  is the correlation 

between original overt speech and baseline reconstruction and  is the correlation between overt 

speech reconstruction and baseline reconstruction; df = n – 3 is the effective sample size (Kaneoke et 
al. 2012) and where 

 ) = 1 + 2ijUijkiUkmijUK − ijkK − iUkK  

At the population level, statistical significance was performed using Student’s t-tests (p<10-5) after 

first applying Fisher’s Z transform to convert the correlation coefficients to a normal distribution 
(Fisher 1915). 

Test of significance in the imagined speech condition was equivalent to the overt condition (p<0.05; 

Hotelling’s t test), except that the reconstructions and original overt speech representations were first 

realigned using dynamic time warping. Since DTW induces an artificial increase in correlation by 

finding an optimal warping path between any two signals (including potential noise signals), this 

procedure causes the accuracy for baseline reconstruction to exceed zero correlation. However, 

rjk rjh
rkh
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because the equivalent data processing sequence was applied to both conditions, any statistical 
differences between the two conditions were due to differences in the neural input signals.  

At the population level, we directly compared the reconstruction accuracy in all three conditions 

(overt, imagined and baseline control). DTW realignement to the original overt speech was first 

applied separately for each condition. Reconstruction accuracy was computed as the correlation 

between the respective realigned pairs. Statistical significance was performed using Fisher’s Z 

transform and one-way ANOVA (p<10-6), followed by post hoc t-test (p<10-5 for overt speech; 

p<0.005 for imagined speech). 

For individual subjects, significance of identification rank was computed using a randomization test 

(p<10-5 for overt speech; p<0.005 for imagined speech; p>0.5 for baseline control). We shuffled the 

segment label in the candidate set 10,000 times to generate a null distribution of identification ranks 

under the hypothesis that there is no relationship between target and reference speech segments. 

Time-varying speech representations are auto-correlated. To maintain temporal correlations in the 

data, and preserve the exchangeability of the trial labels, the length of the extracted segments was 

chosen sufficiently longue (5 seconds). The proportion of shuffled ranks greater than the observed 

rank yields the p-value that the observed accuracy is due to chance. Identification accuracy was 

assessed for each of the three experimental conditions (overt reconstruction, imagined 

reconstruction, baseline control reconstruction). At the population level, significant identification 

performance was tested using a one-sided, one-sample t-test (p<10-5 for overt speech; p<0.05 for 
imagined speech ; p>0.5 for baseline control). 

For the informative electrode analysis, statistical significance of overt speech reconstruction was 

determined relative to the baseline condition using Hotelling’s t statistic (Hotelling’s t test). 

Electrodes were defined as “informative” if the overt speech reconstruction accuracy was significantly 

greater than baseline (p<0.05; Hotelling’s t test with Bonferroni correction). The same procedure was 

used for imagined speech informative areas (p<0.05; Hotelling’s t test with Bonferroni correction), 
except that DTW was used in both imagined speech and baseline control condition. 

2.3.8 Coregistration 

Each subject had postoperative anterior–posterior and lateral radiographs, as well as computer 

tomography (CT) scans to verify ECoG grid locations. Three-dimensional cortical models of 

individual subjects were generated using pre-operative structural magnetic resonance (MR) imaging. 

These MR images were co-registered with the post-operative CT images using Curry software 

(Compumedics, Charlotte, NC) to identify electrode locations. Electrode locations were assigned to 

Brodmann areas using the Talairach Daemon (http://www.talairach.org, (Lancaster et al. 2000). 

Activation maps computed across subjects were projected on this 3D brain model, and were 
generated using a custom Matlab program (Gunduz et al. 2012).  

2.4 Results 

2.4.1 Overt speech reconstruction 

The overall spectrogram reconstruction accuracy for overt speech was significantly greater than 
baseline control reconstruction accuracy in all individual subjects (p<10-5; Hotelling’s t-test, Figure 

2-3 A). At the population level, mean overall reconstruction accuracy averaged across all subjects 

N = 7  was also significantly higher than baseline control condition (r=0.41, p<10-5; Fisher’s Z 

transform followed by paired two-sample t-test). The baseline control reconstruction accuracy was 
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not significantly different from zero (r=0.0, p>0.1; one-sample t-test; dashed line; Figure 2-3 A). Group 

averaged reconstruction accuracy for individual acoustic frequencies ranged between r=~0.25 – 0.5 
(Figure 2-3 B).  

 

Figure 2-3 Overt speech reconstruction accuracy for the spectrogram-based speech representation. (A) 

Overall reconstruction accuracy for each subject using the spectrogram-based speech representation. Error 

bars denote standard error of the mean (SEM). Overall accuracy is reported as the mean over all features (32 

acoustic frequencies ranging from 0.2-7 kHz).  The overall spectrogram reconstruction accuracy for the overt 

speech was greater than baseline control reconstruction accuracy in all individuals (p<10-5; Hotelling’s t-

test). Baseline control reconstruction accuracy was not significantly different from zero (p>0.1; one-sample t-

test; grey dashed line) (B) Reconstruction accuracy as a function of acoustic frequency averaged over all 

subjects (N=7) using the spectrogram model. Shaded region denotes SEM over subjects. 

An example of a continuous segment of the original and reconstructed spectrogram is depicted for a 
subject with left hemispheric coverage in Figure 2-4 A. In this subject, the reconstruction quality 

permitted accurate identification of individual decoded speech segments (Figure 2-4 B). The median 

identification rank (0.87, N=123 segments) was significantly greater than chance level (0.5, p<10-5; 

randomization test). Identification performance was significant in each individual subject (p<10-5; 

randomization test). Across all subjects, identification performance was significant for overt speech 

reconstruction (rankovert=0.91 > 0.5, p<10-6; one-sided one-sample t-test), whereas the baseline 

control condition was not significantly greater than chance level (rankbaseline = 0.48 > 0.5, p>0.5 one-
sided one-sample t-test).  
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Figure 2-4 Overt speech reconstruction. (A) Top panel:  segment of the original sound spectrogram (subject’s 

own voice), as well as the corresponding text above it. Bottom panel: same segment reconstructed with the 

decoding model. (B) Identification rank. Speech segments (5 sec) were extracted from the continuous 

spectrogram. For each extracted segment (N=123) a similarity score (correlation coefficient) was computed 

between the target reconstruction and each original spectrogram of the candidate set. The similarity scores 
were sorted and identification rank was quantified as the percentile rank of the correct segment. 1.0 

indicates the target reconstruction matched the correct segment out of all candidate segments; 0.0 indicates 

the target was least similar to the correct segment among all other candidates; (dashed line indicates chance 

level = 0.5; median identification rank = 0.87; p<10-5; randomization test). 

We next evaluated reconstruction accuracy of the modulation representation. The overall 

reconstruction accuracy was significant in all individual subjects (p<10-5; Hotelling’s t-test; Figure 2-5 
A). a population level, mean overall reconstruction accuracy averaged over all patients N = 7  was 

also significantly higher than the baseline reconstruction (r=0.55, p<10-5; Fisher’s Z transform 

followed by paired two-sample t-test). The baseline control reconstruction accuracy was not 

significantly different from zero (r=0.02, p>0.1; one-sample t-test; dashed line; Figure 2-5 A). Group 

averaged reconstruction accuracy for individual rate and scale was highest for temporal modulations 
above 2 Hz (Figure 2-5 B). 

 

Figure 2-5 Overt speech reconstruction accuracy for the modulation-based speech representation. (A) 

Overall reconstruction accuracy for each subject using the modulation-based speech representation. Error 

bars denote SEM. Overall accuracy is reported as the mean over all features (5 spectral and 12 temporal 

modulations ranging between 0.5-8 cyc/oct and -32-32 Hz, respectively). The overall modulation 
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reconstruction accuracy for the overt speech was greater than baseline control reconstruction accuracy in all 

individuals (p<10-5; Hotelling’s t-test). Baseline control reconstruction accuracy was not significantly 

different from zero (p>0.1; one-sample t-test; grey dashed line). (B) Reconstruction accuracy as a function of 

rate and scale averaged over all subjects (N=7). 

Figure 2-6 shows the significant informative areas (map thresholded at p<0.05; Bonferroni 

correction), quantified by the electrode-specific reconstruction accuracy. In both spectrogram and 

modulation-based representations the most accurate sites for overt speech decoding were localized 

to the superior temporal gyrus, pre and post central gyrus, consistent with previous spectrogram 

decoding studies (Pasley et al. 2012).  

 

Figure 2-6 Overt speech predictive power. Reconstruction accuracy correlation coefficients were computed 

separately for each individual electrode and for both overt and baseline control conditions (see section 3.1.3 

for details). The plotted correlation values are calculated by subtracting the correlation during baseline 

control from the overt condition. The informative area map was thresholded to p<0.05 (Bonferroni 

correction) (A) Spectrogram-based reconstruction accuracy (B) modulation-based reconstruction accuracy. 

2.4.2 Imagined speech reconstruction 

Figure 2-7 shows the overall reconstruction accuracy for overt speech, imagined speech, and baseline 

control after DTW realignment to the original overt speech was applied separately for each condition. 

The overall reconstruction accuracy for imagined speech was significantly higher than the control 

condition in 5 out of 7 individual subjects (p<0.05; Hotelling’s t-test; p>0.05 for the non-significant 

subjects). At the population level, there was a significant difference in the overall reconstruction 

accuracy across the three conditions (overt, imagined and baseline control; F (2, 18) = 35.3, p<10-6; 

Fisher’s Z transform followed by one-way ANOVA). Post-hoc t-tests confirmed that imagined speech 

reconstruction accuracy was significantly lower than overt speech reconstruction accuracy (rimagined = 

0.34 < rovert = 0.50, p<10-5; Fisher’s Z transform followed by paired two-sample t-test), but higher than 

the baseline control condition (rimagined = 0.34 > rbaseline = 0.30, p<0.005; Fisher’s Z transform followed 

by a paired two-sample t-test).  
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Figure 2-7 Reconstruction accuracy using DTW realignment. Overall reconstruction accuracy for each 

subject during overt speech, imagined speech and baseline control conditions after dynamic time warping 

realignment. (A) Spectrogram-based representation (B) Modulation-based representation. 

Figure 2-8 illustrates a segment of the reconstructed imagined speech spectrogram and its 

corresponding overt segment (realigned with DTW). We next evaluated identification performance 

(N=123 segments) for imagined speech and baseline control conditions in this subject (Figure 2-8 B). 

In the imagined speech condition, the median identification rank equaled 0.62, and was significantly 

higher than chance level of 0.5 (p<0.005; randomization test), whereas the baseline control condition 

was not significant (median identification rank = 0.47, p>0.5; randomization test). Several of the 

remaining subjects exhibited a trend toward higher identification performance, but were not 

significant at the p<0.05 level (Figure 2-8; randomization test). At the population level, mean 

identification performance across all subjects was significantly greater than chance for the imagined 

condition (rankimagined = 0.55 > 0.5, p<0.05; one-sided one-sample t-test), and not significant for the 

baseline control (rankbaseline = 0.48 > 0.5, p>0.5; one-sided one-sample t-test). These results provide 

evidence that neural activity during auditory speech imagery can be used to decode spectrotemporal 

features of imagined speech. 
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Figure 2-8 Imagined speech reconstruction (A) Top panel: a segment of the overt (spoken out loud) 

spectrogram representation. Bottom panel: the same segment reconstructed from neural activity during the 

imagined condition using the decoding model. (B) Identification rank. Speech segments (5 sec) were 

extracted from the continuous spectrogram. For each target segment (N=123) a similarity score (correlation 

coefficient) was computed between the target reconstruction and each original spectrogram in the candidate 

set. The similarity scores were sorted and identification rank was quantified as the percentile rank of the 

correct segment. 1.0 indicates the target reconstruction matched the correct segment out of all candidate 

segments; 0.0 indicates the target was least similar to the correct segment among all other candidates. 

(dashed line indicates chance level = 0.5; median identification rank = 0.62; p<0.005; randomization test). 

Reconstruction accuracy for the modulation-based imagined speech condition was significant in 4 

out of 7 individuals (p<0.05; Hotelling’s t-test; p>0.1 for non-significant subjects; Figure 2-7 B). At the 

population level, the overall reconstruction accuracy across the three conditions (overt, imagined and 

baseline control) was significantly different (F (2, 18) = 62.1, p<10-6; one-way ANOVA). Post-hoc t-tests 

confirmed that imagined speech reconstruction accuracy was significantly lower than overt speech 

reconstruction accuracy (rimagined = 0.46 < rovert = 0.66, p<10-5; Fisher’s Z transform followed by a 

paired two-sample t-test), but higher than the baseline control condition (rimagined = 0.46 > rbaseline = 
0.42, p<0.005; Fisher’s Z transform followed by a paired two-sample t-test).  

Significant informative areas (map thresholded at p<0.05; Bonferroni correction), quantified by the 
electrode-specific reconstruction accuracy are shown in Figure 2-9. As observed in the overt 

condition, brain areas involved in imagined spectrotemporal decoding were also concentrated 
around STG, pre and post central gyri.  

 

Figure 2-9 Imagined speech predictive power. Reconstruction accuracy correlation coefficients were 

computed separately for each individual electrode and for both imagined and baseline control conditions. 

The plotted correlation values are calculated by subtracting the correlation during baseline control from the 

imagined condition. The informative area map was thresholded to p<0.05 (Bonferroni correction) (A) 

Spectrogram-based reconstruction accuracy (B) modulation-based reconstruction accuracy. 

2.5 Discussion 

We evaluated a method to reconstruct overt and imagined speech from direct intracranial brain 

recordings. Our approach was to first build a neural decoding model from self-generated overt 

speech, and then to evaluate whether this same model could reconstruct speech features in the 

imagined speech condition at a level of accuracy higher than chance. Our results indicated that 

auditory features of imagined speech could be decoded from models trained from an overt speech 

condition, providing evidence of a shared neural substrate for overt and imagined speech. However, 

comparison of reconstruction accuracy in the two conditions also revealed important differences 

between overt and imagined speech spectrotemporal representation. The predictive power during 

overt speech was higher compared to imagined speech and this difference was largest in STG sites 
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consistent with previous findings of a partial overlap of the two neural representations (Geva et al. 

2011; Pei et al. 2011; Shuster and Lemieux 2005; Huang, Carr, and Cao 2002). In addition, we 

compared the quality of the reconstructions by assessing how well they could be identified. The 

quality of overt speech reconstruction allowed a highly significant identification, while in the 

imagined speech condition, the identification was only marginally significant. These results provide 

evidence that continuous features of imagined speech can be extracted and decoded from ECoG 

signals, providing a basis for development of a brain-based communication method for patients with 

disabling neurological conditions. In addition, this technique provided a quantitative comparison of 

the similarity between auditory perception and imagery in terms of neural representations based on 

acoustic frequency and modulation content. 

The relationship between overt and imagined speech reconstruction depended on anatomy. High 

gamma activity in the superior temporal gyrus, pre- and post-central gyrus provided the highest 

information to decode both spectrogram and modulation features of overt and imagined speech. 

However, the predictive power for imagined speech was weaker than for overt speech. This is in 

accordance with previous research showing that the magnitude of activation was greater in overt 

than in imagined speech in some perisylvian regions (Palmer et al. 2001; Pei et al. 2011; Partovi et al. 
2012) possibly reflecting a lower signal-to-noise ratio (SNR) for HG activity during imagined speech.  

While promising, these results highlight the difficulty in applying a model derived from overt speech 

data to decode imagined speech. This also indicates that the spectrotemporal neural mechanisms of 

overt and imagined speech are partly different, in agreement with previous literature (Basho et al. 

2007; Aleman 2004; Shuster et al. 2005; Pei et al. 2011). Despite these difficulties, it is possible that 

decoding accuracy may be improved by attention to several factors. First, a major difficulty in this 

approach is the alignment of imagined speech reconstructions to a reference speech segment. 

Variability in speaking rate, pronunciation, and speech errors can result in suboptimal alignments 

that may be improved by better alignment algorithms or by more advanced automatic speech 

recognition techniques (e.g., Hidden Markov Models). Second, a better scientific understanding of 

the differences between overt and imagined speech representations may provide insight into how the 

decoding model can be improved to better model imagined speech neural data. For example, the 

current study uses a simple model that assumes the auditory representation of imagined speech is 

equivalent to that of overt speech. If systematic differences in spectrotemporal encoding can be 

identified during imagined speech, then the spectrotemporal tuning of the decoding model can be 

biased to reflect these differences in order to optimize the model for imagined speech data. Further 

investigation of the differences in overt and imagined spectrotemporal neural representation offers a 

promising avenue for improving imagined speech decoding. Third, the current data sets were 

obtained with limited training which we predict will have a major impact on reconstruction accuracy. 

Fourth, improvement in recording electrodes will permit recording of ECoG activity at increasing 

spatial resolution increasing the information needed for improved speech reconstruction. 
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 Decoding phoneme sequences 
during imagined speech 

3.1 Abstract 

Behavioral studies suggest that some forms of phonemic representations occur during imagined 

speech. However, the brain mechanisms underlying phonemic encoding remain largely unknown. In 

this study, we investigated the neural correlates of phonemic representations during imagined 

speech, and evaluated the ability to decode continuous sequences of phonemes from 

electrocorticographic signals in two patients undergoing neurosurgical procedures for epilepsy. We 

also compared the results with those obtained during word perception and overt speech production. 

In order to label intended phonemes more accurately during imagined speech, we designed a 

karaoke-like task, in which visual words scrolling on the screen were divided into their phonemic 

representations. Then, we implemented a hidden Markov model (HMM), in order to decode the most 

likely phoneme sequence given the high gamma (70-150H) neural features and the phonemic 

transition probabilities. In both participants, phoneme decoding accuracy was significantly higher 

than chance across eight phonemes in the listening (mean L =27%) and in the overt speech condition 

(mean O =19%; p<0.0001). In the imagined speech condition, the decoding accuracy was only 

significant in on participant (mean I = 16%; p<0.05). Brain areas involved in the classification were 

located to the middle and superior temporal gyrus, sensorimotor cortex and inferior frontal gyrus – 

regions typically associated with speech. Using word-specific HMMs, we were able to identify words 

from the brain activity in the listening (mean=0.62) and overt speech (mean=0.63), but not in the 
imagined speech (mean=0.50), delineating a number of key challenges. 

3.2 Introduction 

Early auditory systems decompose complex speech sounds into frequency components. Subsequent 

steps in the processing stream include the extraction of invariant elements of speech from acoustic 

features. The superior temporal gyrus plays an important role in transforming these acoustic cues 

into categorical speech units (Mesgarani et al. 2014). Similarly, the ventral sensorimotor cortex 

organizes phonetic representations along acoustic features during speech perception (Cheung et al. 

2016), and somatotopically based on articulators (lips, tongue, larynx and jaw) during speech 

production (Bouchard et al. 2013; Cheung et al. 2016). Although much is known about the neural 

correlates of speech perception and production, it remains unclear if the human brain encodes 
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phonetic features during imagined speech. In this study, we investigated how phonemes, the smallest 

units of speech, are encoded in the human brain, and evaluated the ability to decode phoneme 
sequences during imagined speech. 

Behavioral studies have provided evidence that phoneme substitution errors occurred between 

phonemes that shared similar features during both overt and imagined speech (phonemic similarity 

effect; Corley, Brocklehurst, and Moat 2011). In addition, brain imaging studies have revealed 

anatomical brain regions involved in silent articulation, such as the sensorimotor cortex, the inferior 

frontal gyrus, and temporo-parietal brain areas (Pulvermuller et al. 2006). Recently, 

electrophysiological studies have shown that the neural activity of a listener that perceives a specific 

phoneme that has been acoustically degraded, replaced or masked by noise is grounded into acoustic 

representations (Leonard et al. 2016; Holdgraf et al. 2016). This phenomenon, called the phonetic 

masking effect shows that even in the absence of a given speech sound, the neural patterns correlate 

with those that would have been elicited by the actual speech sound. These findings suggest that 

phonemes are represented during imagined speech in the human cortex. From a decoding 

perspective, several studies have succeeded in classifying individual imagined speech units into 

different categories, such as covertly articulated vowels (Ikeda et al. 2014), vowels and consonants 

during covert word production (Pei et al. 2011) and intended phonemes (Brumberg et al. 2011). These 

studies represent a proof of concept for basic decoding of individual speech units, but failed to 

incorporate sequential properties during continuous speech.  

In this study, we evaluated the ability to decode continuous phoneme sequences from 

electrocorticographic neural activity, recorded while patients imagined words. We also compared the 

results with those obtained during word perception and overt production. However, phonemes are 

embedded in continuous streams of natural speech, and their boundaries are not easily delineated in 

the physical acoustic signal. This problem becomes even more difficult when investigating imagined 

speech due to the lack of any behavioral output. In order to label phonemes more accurately, we 

designed a novel protocol similar to a karaoke-like task, in which visual words scrolling on the screen 

were divided into their phonemic representations – alternating dark and light colors to indicate 

phoneme boundaries. Then, we implemented a hidden Markov model (HMM) – a statistical model 

that allows predicting the most likely phoneme sequence, given the neural activity and a language 

model. HMMs have been widely used in speech recognition (Rabiner 1993), and more recently 

applied to decode phoneme sequences from neural patterns during speech perception (Moses et al. 

2016) and production (Herff et al. 2015). In the listening and overt speech, classification accuracy was 

significant in both participants, whereas in the imagined speech, preliminary results were only 

significant in one participant. The participant that did not reach significance had trouble following 

the pace of the task, and showed discrepancies between the intended and actual phonemes in the 

overt speech. Brain areas involved in the decoding process were located to perisylvian brain areas, 

sensorimotor and inferior frontal areas. In addition to low level phoneme decoding, we were able to 

identify words in the listening and overt speech, but not in the imagined speech. These findings 
highlight the difficulty when decoding imagined speech, and delineates a number of key challenges. 

3.3 Material and methods 

3.3.1 Subjects and data acquisition 

Electrocorticographic (ECoG) signals were recorded using subdural electrodes implanted in two 

patients undergoing neurosurgical procedures for epilepsy. Both patients volunteered and gave their 

informed consent (approved by the Albany Medical College Institutional Review Board and the 
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University of California, Irvine and Berkeley Institutional Review Boards and Committees on Human 

Research) before testing. Electrode grids had center-to-center distance ranging between 4-10 mm. 

Grid placement and duration of ECoG monitoring were based solely on the requirements of the 

clinical evaluation (Figure 3-1). Localization and co-registration of electrodes was performed using 

the structural MRI and CT scans. Three-dimensional cortical models of individual subjects were 

generated using pre-operative structural magnetic resonance (MR) imaging. These MR images were 
co-registered with the post-operative CT images to identify electrode locations.  

Multi-electrode ECoG data were amplified and digitally recorded with sampling rate 3,052. ECoG 

signals were re-referenced to a common average after removal of electrodes with epileptic artifacts or 

excessive noise (including broadband electromagnetic noise from hospital equipment or poor 

contact with the cortical surface). In addition to the ECoG signals, the audio output of the 

microphone and headphones were recorded along with the multi-electrode ECoG data. This 
procedure was similar to our previous studies (Martin et al. 2014, 2016, 2017). 

 

Figure 3-1 Electrode location. Grid locations overlaid on each participant’s the cortical surface 

reconstructions. 

3.3.2 Experimental paradigms 

We used a word repetition task (overt and imagined) cued with an auditory-visual stimulus 

presentation. For each trial, words were visually displayed on the screen moving from right to left at 
the vertical center of the screen (Figure 3-2 A). A trial consisted of a sequence of 1) listening to the 

word (word displayed in blue), 2) one overt speech repetition (word displayed in red) and 3) two 

imagined speech repetitions (words displayed in orange). In-between words, there was 1sec resting 

state periods. Words displayed on the screen were divided into their phonemic representations – 

alternating dark and light colors to indicate phoneme boundaries. The timing of the audio in the 
listening condition matched the visual cue at the horizontal center of the screen (Figure 3-2 B; left 

panel). Visual cues helped pacing the subject and to repeat the phoneme sequence as close as 

possible as in the listening condition (Figure 3-2 B; middle and right panels). Thus, patients had to 

repeat (out loud or silently) a given phoneme, when its visual cue reached the horizontal center of the 

screen, similar to the listening condition. For all three conditions, we recorded the output of the 
headphones and microphone, together with the intended phoneme state as defined by the visual cue. 

The set of phoneme stimuli was carefully chosen in order to maximize chances of discriminating 

brain patterns associated with each type. To achieve this, we selected phonemes that varied in place 

and manner of articulation. Stop consonants, in which the vocal tract is blocked and all airflow 

ceases, were not considered. Instead, we took consonants that could be sustained for the time 

indicated by the visual cue, such as nasal (n), fricative (sh, s, and v) and approximant (l) consonants. 

Vowels were selected in order to have different tongue positions such as ah (open back), eh (mid 

central), ih (close front). The final set consisted of eight phonemes and one additional silence 
phoneme (sp), coming from the resting state intervals.  
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Nine words were analyzed in this task, which were selected based on the phoneme set (shovel, novel, 

seven, shin, sleeve, slosh, olive, illness, envy). Trials were randomly ordered and repeated once per 

run. Words had between 3 and 5 phonemes and lasted about 4sec. Each run lasted about 4 min, and 

was repeated 3-5 times depending on the health condition of the participants. Auditory stimuli were 

recorded from a native American speaker, and then stretched in time to adjust the timing of the task. 

This means that the temporal structure of the words was maintained, and phonemes could have 

different time length across different words. The precise task design and timing is summarized in 

Figure 3-2. The microphone recording was used to verify that subjects were not producing audible 

speech during imagery, as well as monitoring the behavior (speech delays and word length) during 

overt speech. The intended phoneme label was recorded in synchrony with the ECoG neural data – 

allowing marking the neural data and associate the neural patterns and phonetic content at each 
given time.  

 

Figure 3-2 Task design. (A) Words were displayed on the screen alternating dark and light colors to indicate 

phoneme sequences, in three conditions: 1) listening to the word, 2) one overt speech repetition and 3) two 

imagined speech repetitions. (B) In the listening condition (left panel), the audio matched the visual cue at 

the horizontal center of the screen. In the overt speech condition (middle panel), patients had to repeat out 

loud a given phoneme, when its visual cue reached the horizontal center of the screen, as close as possible as 

in the listening condition. I the imagined speech condition patients had to repeat silently a given phoneme, 

when its visual cue reached the horizontal center of the screen. In this example, at time t, the participant was 

hearing the phoneme v. About 5sec later, he had to repeat out loud phoneme v, whereas 10sec later, he had to 

repeat silently phoneme v. 

3.3.3 Feature extraction 

High gamma activity was computed using eight bandpass filters (Butterworth filter of order 4, 

logarithmically increasing center frequencies (70–150 Hz)), and extracted the envelope using the 

Hilbert transform. The power was then calculated by averaging the signal across these eight bands. 

Subsequently, the signal was down-sampled to 100 Hz and z-scored (Bouchard et al. 2013). The 

microphone, headphones and intended phoneme trigger channel were also downsampled at 100 Hz. 

3.3.4 Feature selection 

Features were selected on the training set. The first step in the process consisted in selecting 

electrodes with significant high gamma activity during phonemes perception/production. For this, 

we extracted phonemes based on the visual cue (between 117-290 phoneme trials); this corresponded 

to the actual phoneme auditory stimuli in the perception condition and the intended phoneme 

production in the overt and imagined conditions. In order to compare phonemes with different 

durations, we normalized the time scale. Then, we took the mean across trials and divided by the 
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standard deviation. Finally, we averaged across time in order to have a quantitative measure of 

activation for each electrode and phoneme class. Examples of phoneme activation time courses are 

displayed in Figure 3-4, together with the average activation map (Figure 3-5). For each cross-

validation fold, electrodes that were above the 95th percentile of the distribution of activation metrics 
were selected, and concatenated into one feature vector pq, where " represents time samples.  

In order to integrate temporal dynamics into the classification framework, we included time lags up 

to 500ms into the feature map, rq = 	 [pq, pqst, … , pqsvww]. Finally, to reduce the number of features, we 

computed Fisher’s score (Fisher 1936), a discriminability index based on the ratio of between class 

scatter to within class scatter. For each feature, the between-class scatter is defined as: 

!x =
1
y

(zj − z)(

{

jVW

zj − z)|  

where	zj  is the mean of class }, and z is the mean of the class means. The between-class scatter is 

defined as: 

!~ = �j	

{

jVW

 

�j  is the variance of class }. The reduced neural features Äq are a subset of the original data rq, defined 

using inner loop cross-validation. For this, we used forward sequential feature selection until there is 

no improvement in prediction on the validation set. The feature set that led to the best validation 

accuracy averaged across inner folds was selected. The final input data Å ∈ ℝLP|, where P is the 

number of high gamma features selected and T is the number of time samples. The number of 

selected features depends on the inner loop cross-validation and changes for each fold. 

3.3.5 Classification 

In continuous hidden Markov models, the states are not directly observed (hidden), but observations 

do depend on them. In our case, we tried to recover the sequence of hidden states (phoneme labels), 

from the observation states (continuous neural feature space). In this framework, the most likely 

sequence of phonemes was estimated by incorporating two probabilistic models: a Gaussian mixture 

model (Figure 3-3 A) and a language model (Figure 3-3 B; Rabiner 1993). The Gaussian mixture model 

evaluated the likelihood of each phoneme at any time point, given the neural features. The language 

model defined the phoneme transition probabilities. Finally, in order to find the most likely phoneme 

sequence given the combination of neural observations and both models, we used a Viterbi decoding 
algorithm (Figure 3-3 C). 

 

Figure 3-3 Elements of the decoding framework. (A) Gaussian mixture models implementing the likelihood 

of observing the neural activity given a phoneme type. Feature 1 and Feature 2 represent two dimensions of 

the neural feature. Each phoneme type is modeled by a multivariate Gaussian model with mean ÇÉ and 

covariance ÑÉ; f1, f2 and f3 represent examples of three neural feature vectors at time t=1, t=2 and t=3, 
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respectively. The right panel depicts the likelihoods of each neural feature vector to be in a given phoneme 

state (“ah”, “sh” or “n”). (B) Language model defining the probabilities of going from one phoneme state to 

another. Numbers described here do not represent true English probabilities, but are just for illustrative 

purposes. (C) Viterbi algorithm that finds recursively which is the most likely sequence of state given the 

observations and the HMM. Three examples of paths are showed, and the one with the largest joint 

probability Ö(Ü, á|â) is chosen. 

In addition to low level phoneme decoding, we also evaluated the ability to identify words from the 

decoded phoneme units. For this, we built one HMM for each type of word (N=9), and computed the 

probability that the sequence was produced by each model. The model with the best fit to the 

sequence of phonemes was selected (see section 3.4.4. Word identification).  

Finally, given the difficulty in decoding phoneme sequences during imagined speech, we also 

evaluated the ability to distinguish between speech and silence states. For this, we used the same 

feature selection and Gaussian mixture models as in the phoneme-based decoding, but modeled only 
two states: speech on (all phonemes) and speech off (silence states) (see section 3.4.2. Speech 

detection).  

Gaussian mixture model 

The Gaussian mixture model (GMM) defined the most likely phoneme (hidden state) type given the 

neural feature (continuous observation space). For this, we used multivariate Gaussian densities to 

model each class using the training set. We modeled each phoneme } with a multivariate normal 

distribution model with mean vector ÇÉ and covariance äÉ, computed from the neural feature training 

vectors associated with the class }. As such, the likelihood of the neural activity feature vector Äq given 

that the phoneme state is ã7 = } followed a normal distribution: 

Ö(å7|ã7 = })~é(ÇÉ, äÉ) 

This likelihood measure was then converted to a posterior probability that a neural feature vector was 

produced by the model é(ÇÉ, äÉ) using Bayes rule, such as: 

Ö ã7 = } å7 ∝ Ö(å7|ã7 = }) ∙ Ö(ã7 = }) 

where Ö(ã7 = }) is the prior probabilities of the being in state }. These priors were calculated from the 

relative proportion of each class in the training set, and changed across cross-validation folds. We 
normalized the posterior probability distributions as follows:  

ëj(å7) = Ö ã7 = } å7 =
Ö(å7|ã7 = }) ∙ Ö(ã7 = })

Ö(å7|ã7 = Q) ∙ Ö(ã7 = Q)U

 

bì represents the emission probabilities of HMM, and Q ∈ 1, … , î , î = 8 phoneme classes. The 

feature vector å7 was assigned to the phoneme that had the highest posterior probability: 

argmax
j

ëj(å7)  

Language model 

The language model provides the a priori phoneme transition probabilities (Rabiner 1993). Typically, 

these probabilities are estimated on large corpora containing phoneme sequences. In this study, due 

to the small and specific dictionary size, we calculated the transition probabilities on the training 

label sequence. Given the limited amount of available data, co-articulations were not modeled 
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(context-independent), and we represented each phoneme by a single HMM state, i.e. eight phoneme 
states. The probabilities of going from one phoneme state to another were defined as follows:  

ô-j = Ö(ã7sW = }|ã7 = \) 

where ã7 is the actual phoneme state at time " that can be any of the eight phoneme type, ô-j ≥ 0 and 

ô-j = 1j , ∀\. The initial state probabilities represent the probability to start the sequence (" = 1) 

with a given state: 

ù- = Ö(ãW = \) 

In this study, we used a first order Markov model, in which the probability of being at a given state at 
time " depends only on the state at time " − 1.  

Viterbi algorithm 

The problem to solve in this task is, given the sequence of neural feature vectors Å = (Ät, Äû, … , Äü) 
and the model â = {ù-, ô-j, ëj}, what is the corresponding hidden state sequence á = (ãW, ãK, … , ã|) that 

best explains the observations. The probability of observing the sequence Ü given the hidden state 
sequence á and the model â is defined as: 

Ö(Ü|á, â) 	= Ö ã7 = } å7 =

|

7

ëj(Äq)	

|

7

 

Whereas the probability of having the sequence á given the model â. 

Ö á â = Ö ã7 = } ã7mW = \ = ù†° ô†¢£§†¢

|

7

|

7

 

Finally, the probability of observing the sequence Ü, given the sequence á and the model â is given by 
the joint probability: 

Ö Ü, á|â = Ö(Ü|á, â) ∙ Ö á â = ëj(Äq) ∙	

|

7

ô†° ô†¢£§†¢

|

7

 

We used the Viterbi algorithm for searching the optimal state transition sequence (Viterbi path), that 

could have generated a given output sequence. The Viterbi algorithm is a dynamic programming 

algorithm that was conceived by Andrew Viterbi in 1967 as an error-correction scheme for noisy 

digital communication links (Forney 1973). This search algorithm finds the least cost effective path in 

a grid, by first evaluating the cost to reach every state in the grid, and then tracing back the path that 

corresponded to the overall most likely sequence. The phoneme sequence with the highest joint 

probability was selected: 

á∗ = argmax
¶

Ö(Ü, á|â) 

Word identification 

We built a specific model âß = {ô-, ô-j, ëj} per word (~ = 9), and determined the overall likelihood of 

a neural observation sequence Å = (Ät, Äû, … , Äü) being generated by each model. The predicted word 
is the one with the highest likelihood among all the words in the candidate set. 



	 	 	 	

	

34	 	

3.3.6 Evaluation 

Given data limitations, we performed leave-one-word-out cross-validation. For each condition, the 

feature selection and model fitting were performed on the training set only, and evaluated on the 

independent testing set. To define the accuracy of the system, several metrics were used. First, we 

report the overall classification accuracy as the average number of correctly classified phoneme over 

the sequence. In addition, in order to identify if the system successfully predicted each phoneme 

type, or if the classification was biased towards one class, we computed the confusion matrix between 

the actual and predicted phonemes for each cross-validation fold. We normalized the confusion 

matrices by the number of samples in each class, in order to have the rate of classification accuracy 

for each phoneme type. The phoneme confusion accuracy was the mean of the diagonal elements, 

averaged across folds. This metric weighted the classification accuracy for each phoneme equally, 

accounting for the unbalanced number of samples in each class. Finally, we computed the Area 

Under the Curve (AUC), in order to determine if the true positive rate (diagonal elements of the 

confusion matrix) was higher than the false positive rate (off-diagonal elements). An AUC coefficient 

of 1 indicates that the classifier predicts well all the samples, whereas an AUC of 0.5 corresponds to 

random predictions 

We also evaluated the ability to identify words from the decoded phoneme sequences, by computing 

the identification rank. To this end, the likelihood was computed for each word in the candidate set, 

using the specific HMMs and the neural observation sequences. Then, these likelihood scores were 

sorted, and the word identification rank was defined as the percentile of the correct word. An 

identification rank of 1 indicates that actual word has the highest likelihood among all the words in 

the candidate set, whereas an identification rank of 0 indicates that the actual word has the lowest 
likelihood. At chance level, the mean identification rank is 0.5. 

3.3.7 Statistics 

Theoretical chance level in an eight-class problem is 12.5%. However, in order to compare how well 

the language model performed without any neural information, we computed the true random level 

and evaluated statistical significance using randomization tests. For this, we shifted circularly 200 

times the training labels by a random integer, thus maintaining the phonemic transition probabilities 

of the actual model. Then, we performed the exact same feature selection and classification steps as 

in the actual classification process. The averaged accuracy across cross-validated testing set yielded 

one value in the null distribution. We tested if the mean of the surrogate null distribution was 

significantly different from the theoretical chancel level using Student’s t-test. The mean distribution 

was not significantly different from the theoretical chance level (p>0.5; two-sided one-sample t-test), 

and we therefore kept the theoretical level to compute our statistics. We computed the p-value that 

the performances across leave-one-word-out folds was higher than chance levels using non-
parametric Wilcoxon signed rank test, and applied the FDR correction for multiple comparison.  

We performed similar randomization tests to define chance levels in the speech detection task. In this 

two-class approach, the mean distribution was not significantly different from the theoretical chance 

level of 50% (p>0.5; two-sided one-sample t-test), and we therefore kept the theoretical level to 
compute our statistics. 
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3.4 Results 

3.4.1 High gamma neural activity 

We analyzed high gamma temporal dynamics at different electrode locations, and compared brain 

patterns across conditions (listening, overt, and imagined speech) for the different phoneme types. 

For this, we extracted trials for each phoneme class, normalized trials in the time domain in order to 

deal with trials of different time length, and standardized time samples across trials. Normalized 

activation time courses are depicted in Figure 3-4 for different electrodes. Neural activation patterns 

revealed distributed spatiotemporal brain responses across electrodes, phonemes and experimental 

conditions, thus highlighting the complexity of the dynamical system associated with speech 

processing. As such, it is difficult to precisely define selectivity for phonetic features from these 
results. 

 

Figure 3-4 High gamma neural activation. (A) Examples of high gamma standardized neural activity 

across trials for each phoneme (arpabet) and condition. 

In order to have a more representative overview of the activation map, we plotted the average brain 

activation across time and phonemes on the surface rendering of the patients’ cortex (Figure 3-5). 

Results showed activations in perisylvian areas during all three conditions. The sensorimotor cortex 

was active in the overt speech conditions, whereas the inferior frontal cortex in both listening and 

overt speech conditions. These are brain areas typically involved in speech processing. To assess 

similarities across conditions, we computed the correlation coefficient between the activation 

patterns of the different conditions. Results showed that the neural response in the imagined 

condition correlated to various degrees with listening and overt speech conditions across subjects. 

This may be explained by the various strategies employed to produce inner speech (e.g. auditory 

versus kinesthetic imagery), although we tried to control this aspect with the instructions given to the 

patients. These results revealed that the brain representations underlying the different conditions are 
partially overlapping and partially dissociable. 



	 	 	 	

	

36	 	

 

Figure 3-5 Neural activation map. Brain activation patterns averaged across time and phonemes, and 

plotted on the surface rendering of the patients (Map thresholded at p < 0.05). Each patient is scaled to the 

maximum value across all conditions (indicated by the number into parenthesis). We computed the 

correlation between the activation patterns of the various conditions.  

3.4.2 Speech detection 

We evaluated the ability to distinguish between speech and silence states in all three conditions 

(listening, overt and imagined speech). In order to take into account unbalanced data, we computed 

the average accuracy, as the mean between true positive rate and true negative rate. For both 

participants, results showed that the classification accuracy was significantly higher than chance 

levels in the listening (mean L = 75%) and overt speech (mean O = 72%; p<10-4; one-sided one-sample 
Wilcoxon signed rank test; Figure 3-6 A). In the imagined speech condition, the classification 

accuracy was significant in subject 2 (mean I = 61%; p<0.01), but not significant in subject 1 (mean I = 

55%; p>0.1; one-sided one-sample Wilcoxon signed rank test; FDR correction). The bias of the 

classifier across subject and condition was less than 3%. These results suggest that high gamma 

activity detects imagined speech states, and could be used as a biomarker defining an active speech 

window. However, it also emphasizes the difficulty when tackling internal processes, such as 

imagined speech.  

	

Figure 3-6 Speech detection. (A) Class average accuracy for all condition and subjects. Chance level is 50% 

(B) Comparison of the classification accuracy in the overt speech condition – when models were fit with the 

intended speech labels (visual cue) or with the actual speech labels (labeled manually from the recorded 
speech). Error bars denote standard error of the mean. 
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One major issue in the overt speech condition was the discrepancies between actual speech and 

intended speech (defined by the visual cue). These inconsistencies represented a challenge for 

building the decoding model, as the phoneme labels were not corresponding to the correct neural 

features. In order to quantitatively measure temporal irregularities across trials, we manually labeled 

the recorded overt speech, and compared it to the intended speech. The average speech onset delay 

with respect to the visual cues was -0.47s±0.57 and 0.09s±0.15 for subject 1 and subject 2, respectively. 

Subject 1 was particularly bad at keeping up the pace and following the visual cues, and only 42% of 

the labels matched between actual and intended speech (89% for subject 2). This may account for the 

poor imagined decoding in subject 1. Similar behavior were to be expected in the imagined speech 

condition, as both overt and imagined speech have been shown to be subject to similar speech 

production temporal variations (Hubbard 2010). In the listening condition, this was not a problem 

given that the auditory stimuli were time-locked across repetitions, and thus intended phonemes 

corresponded to actual phonemes.  

In order to measure the impact of speech production irregularities, we evaluated possible 

improvements in the overt speech condition, when the classifier was built on the actual speech rather 

than on the intended speech. Performances of subject 1 – who was irregular across repetitions – 

significantly improved with the actual speech (mean Oactual = 84%) over the intended speech (mean 

Ointended = 71% ; p<10-4; unpaired two-sample Wilcoxon ranksum test; FDR correction; Figure 3-6 B). 

Conversely, the classification accuracy of subject 2 – who was consistent across trials – did not 

significantly improve (mean Oactual = 72%; mean Ointended = 73%; p>0.5; unpaired two-sample 

Wilcoxon ranksum test; FDR correction). These results shows that the classification accuracy was 

degraded proportionally to the level of speech irregularity, which emphasize the importance of 

having the correct labeling in the current modeling framework.  

3.4.3 Phoneme-based decoding 

Using continuous density hidden Markov models, we evaluated the ability to decode phoneme 

sequences from the neural features in three conditions (listening, overt and imagined speech). For 

each participant, we quantified performances using the overall classification accuracy and the class 

average accuracy. Given that the silence phoneme may have inflated the classification accuracy, we 

did not model it in this section. Results showed that the overall classification accuracy was 

significantly higher than chance level in the listening (mean L = 27%) and in the overt speech (mean 

O = 19%; p<0.001; one-sided one-sample Wilcoxon signed rank test; FDR correction; Figure 3-7 A). 

While the overall classification was significant in the imagined speech for subject 2 (mean I = 16%; 

p<0.01), it did not reach the significance level in subject 1 (mean I = 12%; p>0.5). In both participants, 

the listening condition and overt speech were significantly better than the imagined speech condition 
(p<0.01; unpaired two-sample Wilcoxon ranksum test; FDR correction). 

In order to verify that individual phonemes were classified above chance, and that the classifier was 

not biased towards one class, we computed the confusion matrices. Results are displayed for subject 
2 in Figure 3-7 B for all three conditions. In the listening and overt speech conditions, the diagonal of 

the matrix stood out from the rest of the elements, suggesting that phonemes were accurately 

decoded from high gamma neural features. However, at the individual level, not all phonemes were 

better than chances; seven and six out of eight phonemes were significant for the listening and overt 

speech, respectively (p<0.05; one-sided one-sample Wilcoxon signed rank test). Conversely, at the 

group level, all eight phonemes were significantly above chance level for the listening for both 

participants (p<0.01; one-sided one-sample Wilcoxon signed rank test). In the imagined speech 

condition, phonemes were more likely to be misclassified as reflected in the confusion matrix; only 
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four out of eight phonemes were significantly above chance (p<0.05; one-sided one-sample Wilcoxon 

signed rank test). The classification accuracy in the imagined speech was significantly better than 

chance across all phonemes in this participant (p<0.05; one-sided one-sample Wilcoxon signed rank 

test; FDR correction). AUC coefficients were higher than chance level, for both participants in the 
listening and overt speech condition (Figure 3-7 C; p<0.001). In the imagined speech condition, results 

were only significant in subject 1 (p<0.05; one-sided one-sample Wilcoxon signed rank test; FDR 
correction). 

 

Figure 3-7 Phoneme classification accuracy. (A) Overall classification accuracy across leave-one-word-out 

folds for all three conditions (listening, overt and imagined speech). Error bars represents the standard error 

of the mean. (B) Confusion matrix averaged across folds for the listening, overt and imagined speech, 

respectively, for S1. (C) Area under the curve computed from the confusion matrices for S1, determined if the 

diagonal elements (correctly classified) were higher than the off-diagonal elements (wrongly classified). 

We evaluated the effect of the language model in the classification framework. For this, we compared 

the overall classification accuracy of the hidden Markov models (HMMs), which incorporated 

information about the transition probabilities, with that of the Gaussian mixture model alone 

(GMMs). By comparing both results, we measured the impact of the language model and Viterbi 

decoding on the performance of the system. At the individual level, the classification accuracy using 

the language model was not significantly better than when using only the Gaussian mixture model 

(p>0.05; paired two-sample Wilcoxon signed rank test; FDR). However, across conditions and 

subjects, the HMM-based classification was better than the GMM-based classification (p<0.05; paired 
two-sample Wilcoxon signed rank test)  

We evaluated the impact of misalignment between the intended speech and the actual speech, in the 

overt speech. The average phoneme onset delays with respect to the visual cues were -0.49s±1.01 and 

0.03s±0.27 for subject 1 and subject 2, respectively. We quantified possible improvements in the overt 

speech condition, when the decoding models were built on the actual produced phoneme rather than 

the intended phonemes. The decoding procedure was similar than in the previous analysis. Similar to 

what was observed in the speech detection, the improvement of subject 1 was significant with the 

actual phonemes (mean Oactual = 24%) compared to with the intended phonemes (mean Ointended = 

17%; p<0.05; unpaired two-sample Wilcoxon ranksum test; FDR correction), but not in subject 2 

(mean Oactual = 22% and mean Ointended = 20%; p>0.05; unpaired two-sample Wilcoxon ranksum test; 
FDR correction).  

3.4.4 Word based identification 

Finally, we also evaluated the ability to identify words from the high gamma brain activity. Examples 

of an actual phoneme sequence is shown together with the predictions from the Gaussian mixture 

models (GMMs) and hidden Markov models (HMMs) for all three conditions (Figure 3-8 A). Results 
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show that the predictions from the GMMs are bumpy, sometimes changing phoneme states at every 

time frame. Such phoneme transitions are unlikely in real, naturalistic speech production. The 

language model corrects for unlikely transitions, and allows the analysis to remain in a given 

phoneme state for a longer period of time. This behavior resembles more accurately actual speech 

properties. For the identification, we computed the likelihood that the decoded phoneme sequence 

belonged to each word in the candidate set, using word-specific HMMs and the neural observation 

sequences. These likelihood scores were sorted, and word identification was quantified as the 

percentile rank of the correct word. Results showed that the identification rank was significant for 

both subjects in the listening (mean L=0.62) and overt speech (mean O=0.63) conditions (p<0.05; one-

sided one-sample Wilcoxon signed rank test; FDR correction Figure 3-8 B). Conversely, the 

identification rank did not reach the significance level (mean I=0.49; p>0.05; one-sided one-sample 

Wilcoxon signed rank test; FDR correction). This suggests that although the phoneme classification 
was significant, it remain insufficient for word identification in the imagined speech condition. 

Figure 3-8Word identification. (A) Examples of actual phoneme sequences for the word “olive”, together 

with the sequence decoded from the Gaussian mixture model (GMM) and with the hidden Markov model 

(HMM) for all three conditions. (C) Mean word identification rank. 

3.5 Discussion 

In this study, we evaluated the ability to decoding phoneme sequences during imagined speech. By 

continuously cuing and preparing the participant, we designed a karaoke-like task that sought to 

reduce the variability in speech production (overt and imagined), and improve the labeling of 

imagined speech units. We decoded phoneme sequences from high gamma neural activity, using 

continuous density hidden Markov models – a technique widely used in speech recognition that 

allows incorporating a language model. We also compared the results with those obtained during 

word perception and overt production. Results showed that the overall classification accuracy was 

significant for the listening and overt speech in both participants. In the imagined speech condition, 

the phoneme-based classification accuracy was only significant in one participant. Although, the 

language model tended to improve the decoding accuracy compared to phoneme sequences, the 

classification accuracy was still significant when using solely the Gaussian models. This suggested 

that discriminant information was embedded in the neural features. From the decoded sequence, we 

were able to identify individual words in the listening and overt speech condition, but not in the 

imagery condition. These preliminary results represent a first step towards continuous decoding of 

phonemes from imagined speech. However, more participants are required to draw any firm 
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conclusions. This preliminary phoneme work emphasizes a number of challenges that were 
encountered.  

For instance, we designed a karaoke-like task, in which words were visually displayed on the screen 

moving from right to left, and were divided into their phonemic representations. This task design 

sought to help pacing the patient to be more consistent, and to monitor more precisely the 

production of imagined speech. However, given the difficulty of one participant (subject 1) to follow 

up with the pace in the overt speech condition, the task design was not optimal. As a consequence, 

we observed discrepancies between intended phonemes (from the visual cue) and actual phonemes 

(manually labeled from the recorded speech), and overall performances were degraded. This was 

particularly noticeable for subject 1, where the classification accuracy improved, when the model was 

fit with the actual speech labels rather than with the intended speech labels. Similar temporal 

irregularities have been observed during imagined speech (Hubbard 2010), which might have also 
precluded higher performances. 

In addition to a novel task design, we implemented a hidden Markov model – a technique that has 

demonstrated its potential in speech recognition (Rabiner 1993), and more recently in neural-based 

speech recognition (Moses et al. 2016; Herff et al. 2015). Here, we replicated the ability to decode 

phoneme sequences during speech perception and production, and extended the approach to 

imagined speech. However, the classification accuracy was only slightly improved when 

incorporating the language model compared to when using solely the Gaussian models. This suggests 

that in this particular case – where only nine words composed of eight different phonemes were 
decoded – the language model was not relevant. 

We found that some phonemes were classified at higher rates than others, and this was directly linked 

to the amount of data available and possibly other linguistic features. Due to time constraints in the 

epileptic monitoring unit, we only investigated a small subset of all English phonemes – eight 

phonemes out of 44. This provided an insight into the phonemic discriminability, but prevented 

investigating what precise phonetic features were encoded, such as place of articulation (e.g. bilabial, 

dental) or manner articulation (e.g. nasal, plosive, fricative). Despite the few number of phonemes 
investigated here, the classification accuracy remained low.   

A common hurdle in the field of speech recognition – also faced with neural pattern recognition – lies 

in the type of speech unit (phoneme, word, sentence) decoded, and the size of the dictionary needed 

to represent natural, conversational speech. Here, we decoded phonemes, the smallest units of 

speech. Although, the classification accuracy remained low – for numerous reasons cited above – 

decoding phonemes has great potential, as it allows building words by stringing units together 

sequentially. This was demonstrated in the listening and overt speech condition, where words were 

successfully identified. The advantage of this approach is that it captures the temporal structure and 

relationship, rather than using a frame-by-frame prediction model. Currently, the small dictionary 

size (nine words) represents a limitation, and the feasibility for real-time, natural speech decoding 

awaits further research.  

Another impediment to accurate classification is that co-articulations were not modeled in the 

current study, whereas in natural speech phonemes are influenced by preceding and following 

sounds. These co-articulations have been shown to be captured in the high gamma neural activity 

(Bouchard et al. 2013), and could be potentially modeled using more complex HMM structures. 

Commonly, when the signal is not uniform along its length, each phoneme is modeled with three 

states, representing the initial part, middle, final part, respectively. While the use of triphones solves 
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the problem of context dependency, it adds complexity to the model. Given the limited amount of 
data available with ECoG, this could lead to overfitting.  

Participants were cued by words scrolling on the screen. As such, this task design did not allow the 

participant to communicate freely, in terms of what and when to convey a speech instance. Further 

improvements have to be done in order to decode imagined speech in an asynchronous manner. In 

this study, results suggested that speech was discriminated from silence states, suggesting that high 

gamma neural activity could provide a reliable biomarker of speech production during imagined 

speech.  
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 Word classification during 
imagined speech 

4.1 Abstract 

In this study, we evaluated the ability to identify individual words in a binary word classification task 

during imagined speech, using high gamma (70-150Hz) features in the time domain. For this, we 

used an imagined word repetition task cued with a word perception stimulus, and followed by an 

overt word repetition, and compared the results across the three conditions. We used support-vector 

machines, and introduced a non-linear time-realignment in the classification framework – in order to 

deal with speech temporal irregularities. As expected, high classification accuracy was obtained in the 

listening (mean=89%) and overt speech condition (mean=86%), where speech stimuli were directly 

observed. In the imagined speech condition, where speech is generated internally by the patient, 

results show for the first time that individual words in single trials were classified with statistically 

significant accuracy. Classification accuracy reached 88% in a two-class classification framework, and 

average classification accuracy across fifteen word-pairs was significant across five subjects 

(mean=58%). The majority of electrodes carrying discriminative information were located in the 

superior temporal gyrus, inferior frontal gyrus and sensorimotor cortex, regions commonly 

associated with speech processing. These data represent a proof of concept study for basic decoding 

of speech imagery, and delineate a number of key challenges to usage of speech imagery neural 

representations for clinical applications. 

4.2 Introduction 

People with speech production impairments would benefit from a system that can infer intended 

speech directly from brain signals. Here, we used direct cortical recording to examine if individual 

words could be selected during imagined speech within a binary classification framework. However, 

despite intense investigation, the neural mechanisms underlying imagined speech remain poorly 

defined in part due to the lack of clear timing of inner speech, the subjective nature and inter-

individual differences in how subject imagine speech. Functional magnetic resonance imaging 

studies have shown that imagined speech activates Wernicke’s area (Yetkin et al. 1995; McGuire et al. 

1996; Palmer et al. 2001; Shergill et al. 2001; Aleman 2004; Aziz-Zadeh et al. 2005; Geva, Correia, and 

Warburton 2011) and Broca’s area (Hinke et al. 1993; Huang, Carr, and Cao 2002) – two essential 

language areas involved in speech comprehension and production, respectively (see Price 2012; 
Perrone-Bertolotti et al. 2014 for reviews). Although traditional brain imaging techniques have 
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identified anatomical regions associated with imagined speech, these methods lack the temporal 

resolution to investigate the rapid temporal neural dynamics during imagined speech (Towle et al. 

2008). In contrast, electrocorticography is a direct neural recording method that allows monitoring 

brain activity with high spatial, temporal, and spectral resolution (Ritaccio et al. 2014).  

In this study, we took advantage of the high resolution offered by ECoG classify individual during 

imagined speech, using HG features in the time domain. However, speech production (both overt 

and imagined) is subject to temporal variations (speech onset delays and local 

stretching/compression) across repetitions of the same utterance (Rabiner 1993; Vaseghi 2007). As a 

result, a classifier that assumes fixed time features may not recognize two trials as belonging to the 

same class if the neural patterns were not temporally aligned. To overcome that limitation, we 

proposed a new classification framework that accounted for temporal variations during speech 

production (overt and imagined) by introducing time realignment in the feature map generation. In 

particular, we used support-vector machines (Hastie 2009) to classify individual words in a word pair, 

and introduced a non-linear time alignment into the kernel to deal with internal speech production 

variability. We used an imagined word repetition task cued with a word perception stimulus, and 

followed by an overt word repetition, and compared the results across the three conditions (listening, 

overt and imagined speech). As expected, high classification accuracy was obtained in the listening 

and overt speech condition where speech stimuli were directly observed. In the imagined speech 

condition, where speech is generated internally by the patient, results show for the first time that 

individual words in single trials were classified with statistically significant accuracy. The majority of 

electrodes carrying discriminative information were located in the superior temporal gyrus, inferior 

frontal gyrus and sensorimotor cortex – regions commonly associated with speech processing. 

Notably, the most robust decoding effects were observed in the temporal lobe electrodes. 

4.3 Material and methods 

4.3.1 Subjects and data acquisition 

Electrocorticographic (ECoG) recordings were obtained using subdural electrode arrays implanted in 

5 patients undergoing neurosurgical procedures for epilepsy. All patients volunteered and gave their 

informed consent (experimental protocol was approved by the Albany Medical College Institutional 

Review Board and methods were carried out in accordance with the approved guidelines and 

regulations) before testing. The implanted electrode grids (Ad-Tech Medical Corp., Racine, WI; PMT 

Corporation, Chanhassen, MN) consisted of platinum–iridium electrodes (4 mm in diameter, 2.3 mm 

exposed) that were embedded in silicon and spaced at an inter-electrode distance of 4-10 mm. Grid 

placement and duration of ECoG monitoring were based solely on the requirements of the clinical 
evaluation (Figure 4-1).  

 
Figure 4-1 Electrode locations. Grid locations for each subject were overlaid on cortical surface 

reconstructions of each subject’s MRI scan. 

ECoG signals were recorded at the bedside using seven 16-channel g.USBamp biosignal acquisition 

devices (g.tec, Graz, Austria) at a sampling rate of 9,600 Hz. Electrode contacts distant from epileptic 
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foci and areas of interest were used for reference and ground. Data acquisition and synchronization 

with the task presentation were accomplished using BCI2000 software (Schalk et al. 2004; Schalk 

2010). All electrodes were subsequently downsampled to 1,000 Hz, corrected for DC shifts, and band 

pass filtered from 0.5 to 200 Hz. Notch filters at 60 Hz, 120 Hz and 180 Hz were used to remove 

electromagnetic noise. The time series were then visually inspected to remove the intervals 

containing ictal activity as well as electrodes that had excessive noise (including broadband 

electromagnetic noise from hospital equipment or poor contact with the cortical surface). Finally, 

electrodes were re-referenced to a common average. Imagined speech trials were carefully analyzed 

to remove those that were contaminated by overt speech. Overt speech trials that had grammar 

mistakes were also removed.  

In addition to the ECoG signals, we acquired the subject’s voice through a dynamic microphone 

(Samson R21s) that was rated for voice recordings (bandwidth 80-12,000 Hz, sensitivity 2.24 mV/Pa) 

and placed within 10 cm of the patient’s face. We used a dedicated 16-channel g.USBamp to amplify 

and digitize the microphone signal in sync with the ECoG data. Finally, we verified the patient’s 

compliance in the imagined task using an eye-tracker (Tobii T60, Tobii Sweden).  

4.3.2 Experimental paradigm 

We used a word repetition task (overt and imagined) cued with an auditory stimulus presentation. 

Each trial started with an auditory cue presented through a loudspeaker indicating one of six 

individual words (average length = 800 ms ± 20) to repeat; 800 ms after the end of the auditory 

stimulus a cross was displayed on the screen for 1500 ms. This indicated to the subjects to imagine 

hearing the word again in their mind. Subjects were instructed to “imagine hearing”, because we 

were interested in the auditory perceptual representation induced by imagery, rather than kinesthetic 

(imagine saying words) or visual (imagine seeing words) representations. Finally, after 500 ms of 

blank screen, a second cross was displayed for 1500 ms, and subjects had to repeat the word out loud. 

The choice of stimuli was carefully chosen to maximize variability in terms of acoustic features, 

number of syllables and semantic categories, but minimize word length variability (variance in word 

length 20 ms; ‘spoon’, ‘cowboy’, ‘battlefield’, ‘swimming’, ‘python’, ‘telephone’). Trials were repeated 
randomly between 18 and 24 times. The precise task design and timing is summarized in Figure 4-2. 

The microphone recording was used to verify that subjects were not producing audible speech during 

imagery, as well as monitoring the behavior (speech onset and word length) during overt speech. For 

each condition, we analyzed high gamma activity (HG) and built separate, independent classifiers, 

which allowed us to compare classification accuracy and discriminative information across 
perception and imagery tasks. 

 
Figure 4-2 Experimental paradigm. Subjects were presented with an auditory stimulus that indicated one 

of six individual words (average length = 800 ms ± 20). Then, a cue appeared on the screen [describe what the 

cue is and where it appeared on the screen], and subjects had to imagined hearing the word they had just 
listened to. Finally, a second cue appeared, and subjects had to say the word out loud. Shaded areas 

represent the intervals extracted for classification. For both listening and overt speech condition, we 

extracted epochs from 100 ms before speech onset to 100 ms after speech offset. For the imagined speech 

condition, we extracted fixed length 1.5sec epochs starting at cue onset, since there was no speech output. 
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4.3.3 Feature extraction 

To generate input features for the classifier, we filtered the ECoG signal in the high gamma (HG) 

frequency band (70-150 Hz; hamming window non-causal filter of order 20), and extracted the 

envelope using the Hilbert transform. Prior to model fitting, we downsampled the HG signal to 100 

Hz to reduce computational load. For both listening and overt speech condition, we extracted epochs 

from 100 ms before speech onset to 100 ms after speech offset (unless otherwise stated). For the 

imagined speech condition, because there was no speech output we extracted fixed 1.5 s epochs 
starting at cue onset.  

4.3.4 Classification 

To classify the different pairs of words, we used support-vector machines (Hastie 2009) (SVM). This 

classifier maps the original input features into a higher dimensionality non-linear feature space via a 

kernel function. Its main advantages are robustness to overfitting (due to the inclusion of a 

regularization term) and underfitting (Stanikov et al. 2011) (due to the higher-dimensional mapping 
of the features). The general approach of SVM is described as follows:  

F x = sgn α¨t¨K(x, x¨) + β∞
¨

  

where x ∈ ℝ±, with P the number of features.  is the kernel function that transforms the input data x 

into a non-linear feature map. αi � [0, C] are weights for the support vectors. The constant C is the 

soft margin parameter, and controls the trade-off between classification error on the training set and 

smoothness of the decision boundary. ti is the label of sample i, and β0 is the offset of the separating 

hyperplane from the origin. For all the computations, we used the LIBSVM package (Chang and Lin 
2011).  

4.3.5 SVM-kernel computation 

Traditionally, the Gaussian kernel is a widely used function used in SVM-classification. In this 

approach, the output of the classifier is based on a weighted linear combination of similarity 

measures (i.e., Euclidean distance) – computed between a data point and each of the support vectors 

(Hastie 2009). Speech production (overt and imagined) is subject to temporal variability (speech 

onset delays and local stretching/compression) across repetitions of the same instance. A classifier 

that assumes fixed time features might not recognize two trials as belonging to the same class if the 

neural patterns are not aligned in time. In order to deal with speech temporal irregularities, we 

developed a classification approach that incorporated non-linear time alignment in the kernel 

computation, using dynamic time warping (Sakoe and Chiba 1978; Rabiner 1993) (DTW; see section 

“Dynamic time warping” for details). The use of DTW-distances as an SVM-kernel function has 

shown its superiority over hidden Markov models for speech recognition. DTW provides a distance 
between two realigned time series that reflects how similar both are when maximally aligned (Figure 

4-3 B-C). For each electrode separately, we computed the DTW-distance between each pair of trials 

(Figure 4-3 A-C). This gave rise to one kernel matrix per electrode (Figure 4-3 D). For the final kernel 

computation, we used a multiple kernel learning approach (Gönen and Ethem 2011) (MKL; see 

section “Multiple kernel learning” for details) to deal with the multiple kernel matrices – by doing a 
weighted average of the kernels associated with each electrode (Figure 4-3 E). The weighting was 

based on the discriminative power index of each individual electrode, which quantified the difference 

between the “within” class versus “between” class distances distribution (see section “Discriminative 
power index” for details). 

K
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Figure 4-3 Neural time course alignment. (A) For each electrode separately, we extracted the high gamma 

time features. (B) We used dynamic time warping to realign the time series of each pair of trials, and (C) 

computed the DTW-distance between the pairwise realigned trials. (D) This gave rise to one similarity 

matrix per electrode (channel-specific kernel) that reflects how similar trial-pairs are after realignment. 

From the similarity matrix in d, we computed the discriminative power index (see Materials and methods 

for details). (E) The final kernel was computed as the weighted average of the individual kernels over all 

electrodes, based on their discriminative power index. 

Dynamic time warping 
The main idea behind DTW is to locally stretch or compress (i.e., warp) two time series x ∈ ℝG	and	y ∈

ℝE where M and N are the number of time samples in x and y respectively (Sakoe and Chiba 1978). 

For each electrode separately, we computed the DTW for each pair of trials as follows:  

 

Let x≥ 	 ∈ ℝG	and	y≥ 	 ∈ ℝE, be the temporal features associated with two trials from electrode e. Each 

trial corresponded to a single word in one condition, represented as its associated HG features (see 

previous subsection). Trials had different length for both listening and overt speech conditions 
(M≠N), but equal length for the imagined speech condition (M=N). First, a pattern matching matrix d 

was computed between each time point pairs (Figure 4-3 B), as follows: 

d m, n = f xA≥ , y?≥ 	, d ∈ ℝGFE  

where d m, n  is the pattern matching index between xA≥ and y?≥ at the time sample m and n, 

respectively, and f an arbitrary distance metric. In this study, we used the Euclidean distance defined 

as d m, n = (xA
≥ − yA

≥ )K. Given a warping path φ, the average accumulated distortion between both 

warped signals is defined by: 

dµ x≥, y≥ =
1
K
	 d φF k , φ∑	 k

∏

πVW

, 
 

 

where φF and φ∑ are the warping functions of length K (that remap the time indices of x≥ and y≥, 

respectively). The optimal warping path φ (white line in Figure 4-3 B), chooses the indices of x≥ and y≥ 

in order to minimize the overall accumulated distance: 

D≥ x, y = 	min
µ
dµ x, y , 

where D≥ is the optimal realigned Euclidean distance between x and y at a given electrode e. A 
dynamic programming approach was used to solve the global distance efficiently (Ellis 2003). 
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Multiple kernel learning 
Once the realigned DTW distances of each electrode were computed, we built the kernel for the SVM 

classification by summing the weighted DTW kernels (fixed-rule multiple kernel (Gönen and Ethem 
2011), as follows: 

K x, y = λ≥K≥ x, y
≥

= λ≥	exp −
D≥ x, y

γ
≥

 

where λ≥ ∈ 0,1  is the normalized discriminative power index of electrode e, λ≥≥ = 1; and γ > 0 a 
free parameter.  

Among the many ways to compute discriminative power between classes, we opted for the area 

under the receiver operating characteristic curve (Hastie 2009) (ROC), which measured the 

performance of a linear discriminant trained on the features given by the kernel K≥. This index 

reflected the difference between the “within” class versus “between” class distances. Entries of the 

distance matrices representing the within class distance had label = 0 and entries of the distance 

matrix representing the between class distance had label = 1.  For each electrode, the discriminative 

power index was calculated from the data with 0/1 labels and the corresponding realigned DTW 
distance matrices.  

4.3.6 Evaluation 

Due to the limited number of trials, the classification performance was evaluated using a leave-one-

out cross validation, where the test set was composed of one sample per class for each fold. With the 

training data, an inner leave-one-out cross validation was performed to find the optimal free 

parameters γ and C using a grid search approach, and were then fixed for the test evaluation. We also 

computed the discriminative power index λ≥ on the training set. Here, we reported the classification 

accuracy as the percentage of correctly classified trials averaged on the outer loop cross-validation. 

4.3.7 Statistics 

For each condition, we evaluated statistical significance for each pair of words using randomization 

tests. After extracting the high gamma time features, we randomly shuffled 1,000 times the trial labels, 

and applied the exact same approach as in the actual classification process; we extracted HG time 

features, split into training and testing set, applied DTW at the trial level, built the kernel function, 

performed grid search on the inner loop, built the final model and evaluated the accuracy on the 

outer loop testing set. The averaged accuracy across cross-validated testing set yielded one value in 

the null distribution. The proportion of shuffled classification accuracy values greater than the 

observed accuracy yielded the p-value that the observed accuracy was due to chance. We corrected 

for multiple comparison using False Discovery Rate (Benjamini and Hochberg 1995) (FDR). The 

average of the null distributions was not significantly different from the expected value of chance 

level (50%; p>0.5; one-sample t-test). For each individual subject, we evaluated the significance level 

of the classification accuracy across all word pairs using one-sample t-tests against chance level 

(50%). Here again, we corrected for multiple comparison using FDR. Finally, we evaluated the 

significance level of the average classification accuracy across subjects using one-sample t-test again 

chance level. To investigate possible anatomical differences between conditions, all electrodes 

carrying significant discriminative information in at least one condition (listening, overt or imagined; 

p < 0.05; Bonferroni correction) were selected for an unbalanced Two-Way ANOVA with interactions, 

with experimental condition (listening, overt and imagined) and anatomical region (superior 

temporal gyrus, inferior frontal gyrus and sensorimotor cortex) as factors. Prior to ANOVA, we 
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performed Mauchly's test to ensure the sphericity of data (Mauchly 1940). To define the significance 

level of discriminative power of each single electrode, we computed the discriminative power indices 

for the above-mentioned shuffled data. The discriminative power index yielded one value in the null 

distribution. For each electrode, the proportion of shuffled index values greater than the observed 
value yielded the p-value that the observed discriminative power of the electrode was due to chance.  

4.4 Results 

4.4.1 High gamma features 

We analyzed z-scored high gamma time courses at different electrode locations, and compared the 

different conditions (listening, overt, and imagined speech). Word perception and production (both 
overt and imagined) evoked different high-gamma neural responses across many electrodes (Figure 

4-4A) in all participants (Supplementary Figure 1). An exemplary electrode in the posterior superior 

temporal gyrus showed activation during all three conditions, while the neighboring electrode had 

activity only in the listening and overt speech conditions. An electrode in sensorimotor cortex showed 

sustained activity in the overt and imagined speech task. Finally, an electrode in the anterior 

temporal lobe, associated with speech production, exhibited activity only in the overt speech task, 

but not during listening or imagined speech. These results revealed the complex dynamics of speech 

perception and production (overt and imagined), and suggest that the neural representations 

underlying the different speech modalities are partially overlapping, yet dissociable (Yetkin et al. 
1995; Rosen et al. 2000; Palmer et al. 2001). 

In the listening condition, the auditory stimuli were time-locked across repetitions (Figure 4-4 B; 

audio envelope in red; standard deviation of the onset delay averaged over all words = 0 ms). 

Alternatively, in the overt speech condition, temporal irregularities in the speech onset and word 
duration were observed across repetitions of the same utterance (Figure 4-4 B; standard deviation of 

the onset delay averaged over all words = 220 ms). Because high gamma neural activity is known to 

track the speech envelope (Pasley et al. 2012; Mesgarani and Chang 2012; Martin et al. 2014; Kubanek 

et al. 2013), we assumed that temporal variations in overt and imagined speech would also be 

represented by the measured neural responses. As such, a classifier that assumes fixed neural 

temporal features would not recognize two trials as belonging to the same class if the neural patterns 

are not aligned in time. To overcome this limitation, we applied a temporal realignment procedure in 

the feature map generation. The procedure was applied to both overt and imagined speech, as both 

conditions have been shown to be subject to similar speech production temporal variations 

(Hubbard 2010).  
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Figure 4-4 High gamma time course. (A) High gamma neural activity averaged across trials and z-scored 

with respect to the pre-auditory stimuli baseline condition (500 ms interval). The top-most plot displays the 

designed task, an example of averaged time course for a representative electrode and the averaged audio 

envelope (red line). (B) For the given electrodes and conditions (listening, imagined and overt speech), 

examples of individual trials (black) and their corresponding audio recording (red) for three different words 

(‘battlefield’, ‘swimming’ and ‘telephone’). 

4.4.2 Classification 

We used support-vector machines (Hastie 2009) to perform pair-wise classification of different 

individual words in the three different speech conditions (overt, listening and imagined speech). We 

first extracted the high gamma using bandpass filtering in the 70-150 Hz range, extracted the 

envelope using the Hilbert transform. We then extracted epochs from 100 ms before speech onset to 

100 ms after speech offset for both listening and overt speech condition. Average word length for both 

listening and overt speech conditions were 800 ms ± 20 and 766 ms ± 84, respectively. In the imagined 

speech condition, due to the lack of speech output, we extracted 1500 ms epochs starting at cue onset 
(see Materials and methods for details).  

In the imagined speech condition, pairwise classification accuracy reached 88.3% for one 

classification pair in a subject with extensive left temporal coverage (subject 4; Figure 4-5 A). Eight out 

of fifteen word-pairs were classified significantly higher than chance level (p < 0.05; randomization 

test; FDR correction), exceeding the number of pairs expected by chance (0.05 × 15 = 0.75). As 

expected, higher classification accuracy was obtained in the listening and overt speech conditions 

where speech stimuli were directly observed. For both conditions, pairwise classification accuracy 

approached 100% in some comparisons, and twelve and fifteen out of fifteen pairs were significantly 
above chance, respectively (p < 0.05; randomization test; FDR correction).  

Classification accuracy varied across subjects and pairs of words. In 4 out of 5 subjects, classification 
accuracy over all word pairs was significant in the imagined speech condition (Figure 4-5 B; p < 0.05; 

one-sample t-test; FDR correction), while the last subject was not significantly better than chance 

level (mean = 49.8%; p > 0.5; one-sample t-test; FDR correction). For listening and overt speech 

conditions, classification accuracy over all word pairs was again significant in all four subjects, and 
ranged between 83.0% and 96.0% (p < 10-4; one-sample t-test; FDR correction).  
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Figure 4-5 Classification accuracy. (A) Pairwise classification accuracy in the testing set for the listening 

(left panel), overt speech (middle panel) and imagined speech condition (right panel) for a subject with good 

temporal coverage (S4). (B) Average classification accuracy across all pairs of words for each subject and 

condition (listening, overt and imagined speech). Error bars denote SEM. 

At the population level, average classification accuracy across all pairs was above chance level in all 

three conditions (Figure 4-5 B; listening: mean = 89.4% p < 10-4; overt speech: mean = 86.2%, p < 10-5; 

imagined speech: mean = 57.7%; p < 0.05; one-sample t-tests; FDR correction). A repeated measure 1-

way ANOVA with experimental condition as a factor confirmed a difference among conditions (F(2, 12) 

= 56.3, p < 10-5). Post-hoc t-tests showed that the mean classification accuracy for listening was not 

significantly different from the overt speech (p > 0.1; two-sample t-test; FDR correction). Both were 

significantly higher than the imagined speech classification accuracy (p < 0.005; two-sample t-test; 

FDR correction). Although the classification accuracy for imagined speech was lower than for 

listening and overt speech, the imagery classification results provide evidence that high gamma time 

course during imagined speech contained information to distinguish pairs of words. 

To assess the impact of the neural activity realignment procedure in classification accuracy, we 

evaluated the improvement of DTW alignment compared to when no alignment was applied. The 

results showed that for both the overt and imagined speech conditions, the average classification 
accuracy was y reduced when no alignment was applied (Supplementary Figure 2 A; p < 0.05; two-

sample t-test; FDR correction). On the other hand, for the listening condition – in which trials were 

time-locked to stimulus onset – the DTW procedure did not improve the classification accuracy (p> 
0.5; two-sample t-test; FDR correction).  

The inability to directly measure temporal variability in the imagery condition remains a major 

limiting factor for classification accuracy, despite the realignment procedure we employed. In the 

imagined speech condition, due to the lack of speech output, we could only extract trials at cue onset 

rather than at the true onset of speech imagery. To investigate the impact of this limitation on 
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classification accuracy, we analyzed data from the overt speech condition where the auditory 

stimulus is directly measured. The results showed that classification accuracy in the overt speech 

condition was reduced when extracting epochs at cue onset, compared to when epochs were 

extracted between speech onset and offset (Supplementary Figure 2 B; p < 0.05; two-sample t-test). 

This further highlights limitations in the realignment algorithm, and indicates that imagery 

classification accuracy may be increased by developing enhanced methods to define imagined 
speech onset and offset.  

4.4.3 Anatomical distribution of discriminant electrodes 

To assess how the brain areas important for word classification vary across experimental conditions, 

we analyzed the anatomical distribution of the electrodes carrying discriminative information in the 

three different conditions. For each electrode and condition, we computed a discriminative power 

index that reflected the predictive power of each electrode in the classification process (see Materials 
and methods for details). 

 
Figure 4-6 Discriminative information. (A) Discriminative power measured as the areas under the ROC 

curve (thresholded at p < 0.05; uncorrected; see Materials and methods for details), and plotted on each 

individual’s brain. Each is scaled to the maximum absolute value of discriminative power index (indicated 

by the number above each cortical map). (B) Average classification accuracy across all pairs of words for 

each subject using only temporal electrodes for the listening (top panel), overt speech (middle panel) and 
imagined speech (bottom panel). Error bars denote SEM. 

Figure 4-6 A shows the anatomical distribution of the discriminative power index across each 

condition (heat map thresholded at p < 0.05; uncorrected). Overall, the highest discriminative 

information was located in the temporal gyrus, inferior frontal gyrus and sensorimotor gyrus – 

regions commonly associated with speech processing. Anatomical differences between conditions 

were assessed for significant electrodes (188 electrodes significant in at least one condition; p < 0.05; 

FDR correction), using an unbalanced Two-Way ANOVA with interactions, with experimental 

condition (listening, overt and imagined speech) and anatomical region (superior temporal gyrus 

(STG), inferior frontal gyrus (IFG) and sensorimotor cortex (SMC)) as factors. The main effect of 

experimental condition was significant [F(2, 555) = 29.1, p < 10-15], indicating that the discriminative 
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information in the classification process was different across conditions. Post-hoc t-tests with 

Bonferroni correction showed that the overall discriminative power was higher in the listening (mean 

= 0.56) and overt speech condition (mean = 0.56) than in the imagined speech (mean = 0.53; p < 10-10; 

unpaired two-sample t-test; Bonferroni correction), at the level of single electrodes. The main effect 

of anatomical region was also significant [F(2, 555) = 7.18, p < 0.001]. Post-hoc t-tests indicated stronger 

discriminative information in the STG (mean = 0.55) than in the inferior frontal gyrus (mean = 0.54; p 

< 0.05; unpaired two-sample t-test; Bonferroni correction), but not than the SMC (mean = 0.54; p > 

0.05; unpaired two-sample t-test; Bonferroni correction). The interaction between gyrus and 

experimental condition was also significant [F(4, 555) = 6.7; p < 10-4]. Specifically, The discriminative 

power in the STG was higher for listening (mean = 0.57) and overt speech (mean = 0.56) than for 

imagined speech (mean = 0.53; p < 10-10; unpaired two-sample t-test; Bonferroni correction). In 

addition, the discriminative power in the sensorimotor cortex was higher in the overt condition 

(mean = 0.57), than in the listening (mean = 0.54) and imagined condition (mean = 0.53; p < 0.001; 

unpaired two-sample t-test; Bonferroni correction). Similarly, the frontal electrodes provided more 

discriminative information in the overt speech (mean = 0.55) than in the imagined speech condition 

(mean = 0.53; p < 10-4; unpaired two-sample t-test; Bonferroni correction). Post-hoc t-tests also 

showed that the discriminative power in the listening condition was higher in the STG (mean = 0.56) 

than in the IFG (mean = 0.54) and SMC (mean = 0.54; p < 0.05; unpaired two-sample t-test; FDR 

correction). Finally, no significant differences across gyri were observed in the imagined speech 

condition (p > 0.5; unpaired two-sample t-test; Bonferroni correction). 

While the anatomic locations (i.e. STG, IFG and SMC) that give rise to the best word discrimination in 

the listening and overt speech conditions were consistent across subjects, discriminative anatomic 

locations in the imagined condition varied. To further investigate brain areas and based on a number 

of previous studies demonstrating its role in auditory imagery (Yetkin et al. 1995; McGuire et al. 1996; 

Palmer et al. 2001; Shergill et al. 2001; Pei et al. 2011), we performed the classification using only 
electrodes from the superior temporal gyrus (Figure 4-6 B). In the imagery condition, classification 

accuracy using STG electrodes was significant in four out of five subjects (p < 0.05; one-sample t-test; 

FDR correction), while it was not significant in S3 (p > 0.5; one-sample t-test; FDR correction). At the 

group level, classification using only temporal electrodes was significant (mean = 58.0%; p < 0.05; 

one-sample t-test; FDR correction). For both, listening and overt speech conditions, classification 

accuracy was significant in all individual subjects when using only STG electrodes (p < 10-4; one-

sample t-test; FDR correction), as well as at the group level (mean listening = 89.5% and mean overt 

speech = 82.6%; p < 10-4; one-sample t-test; FDR correction). This provides preliminary evidence that 

superior temporal gyrus alone could drive auditory imagery decoding, but that other areas such as 
frontal cortex and sensorimotor cortex could also contribute. 

4.5 Discussion 

Our results provide the first demonstration of single-trial neural decoding of words during imagined 

speech production. We developed a new binary classification approach that accounted for temporal 

variations in the high gamma neural activity across speech utterances. We used support-vector 

machines to classify individual words in a word pair, and introduced a non-linear time alignment into 

the kernel to deal with internal speech production variability. At the group level, average 

classification accuracy across all pairs was significant in all three conditions. Two subjects that 

exhibited the lowest classification scores had right hemisphere coverage and were right handed, 

which is typically associated with left hemisphere language dominance (Toga and Thompson 2003). 

This may have contributed to differences in accuracy across left and right hemisphere grid subjects. 

However, more data are required to delineate the effect of hemisphere coverage in the decoding 
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process. The anatomic locations that led to the best word discrimination in the listening and overt 

speech conditions were consistent across subjects. All three anatomical regions (STG, IFG and SMC) 

provided information in the classification process. In the imagery condition, anatomical areas with 

the highest predictive power were more variable across subjects. The results revealed that the STG 

alone could drive auditory imagery decoding, but that other areas, such as the IFG and SMC also 
contribute.  

An important component of the study is the application of dynamic time warping in the classification 

framework to account for speech production temporal irregularities. This technique maximizes 

alignment of the neural activity time courses without knowledge of the exact onset of the events. This 

approach proved useful for studying imagined speech where no behavior or stimuli are explicitly 

observed. In contrast, DTW did not improve accuracy in the listening condition, where neural activity 

is already time-locked to stimulus events. This highlights the usefulness of a time alignment 

procedure such as using DTW for modeling the neural activity of unobserved behavioral events such 

as imagery. We also note the limitations of DTW in noisy environments suggesting that imagery 

results may be improved by developing more robust realignment techniques. We also show that overt 

speech classification accuracy was improved when epochs were selected from speech onset/offset, as 

compared to when they were extracted from cue onset. This suggests that the results may be 

improved by developing enhanced methods to define imagined speech onset and offset. Ideas for 

possible future directions would be to improve experimental paradigms (i.e. button press, karaoke-

task, etc.), define improved behavioral or neural metrics that correlates with speech onset/offset and 
increased training in imagery prior to ECOG recording. 

Despite intense investigation, it is still unclear how the content of imagined speech is processed in 

the human cortex. Different tasks – such as word repetition, letter or object naming, verb generation, 

reading, rhyme judgment, counting – involve different speech production processes, ranging from 

lexical retrieval to phonological or even phonetic encoding (Perrone-Bertolotti et al. 2014). In this 

study, we chose the set of auditory stimuli to maximize variability in several speech feature spaces 

(acoustic features, number of syllable, semantic categories), but to minimize word length variance. 

Our approach does not allow us to investigate which specific speech features provided information 

and allowed classification; i.e., if the discrimination was based on acoustic, phonetic, phonological, 

semantic or abstract features within speech perception, comprehension or production. Given that 

several brain areas were involved, it is likely that various features of speech were involved in the 
classification process.  

Several additional limitations precluded high word prediction accuracy during imagined speech. 

First, we were limited by the electrode location and duration of implantation that was not designed 

for the experiments, but solely for clinical needs. Higher density grids placed at specific locations in 

the posterior superior temporal gyrus, frontal cortex and/or sensorimotor cortex that are active 

during imagined speech would provide higher spatial resolution and potentially enhanced 

discriminating signals. Further, subjects were not familiarized with the task beforehand (i.e. no 

training), and due to time constraints in the epilepsy-monitoring unit, we were unable to monitor 

subjects’ performance or vividness during speech imagery. We also could not reject pronunciation 

and grammatical mistakes, as we did in the overt speech condition. We propose it would be beneficial 

to train subjects on speech imagery prior to surgery to enhance task performance.  

Finally, although our study is a proof of concepts for basic decoding of speech imagery, many issues 

still need to be tackled to prove the feasibility for a clinical application. Our current approach was 

limited in the set of choices available, and only tests binary classification between word pairs. In 

addition, the effect size is small, and likely not clinically significant for a communication interface. 
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Classification of individual words among multiple other words or continuous speech decoding would 

be a more realistic clinical scenario. An alternative would be classifying phonemes, which forms the 

building blocks of speech instances. Decoding vowels and consonants in overt and imagined words 

using electrocorticographic signals in humans has shown promising results (Brumberg et al. 

2011;,Herff et al. 2015), and would allow generating a larger lexicon from a fewer number of classes 

(60-80 phonemes in spoken English (Vaseghi 2007)). 

4.6 Supplementary Material 

 

 
Supplementary Figure 1. Active electrodes across all subjects. We computed the average amplitude from 

the time course described in Figure 4-4 A for all three conditions. We computed the coefficient of 

determination (r2) between baseline and active state (listening, overt and imagined speech) for each 

electrodes(Wonnacott 1990). To define the significance level of each electrode, we shuffled the labels 1,000 

times, and computed r2. The proportion of shuffled r2 greater than the observed r2 yields the p-value that the 

observed activation is due to chance. Electrodes with p<0.05 (corrected for multiple comparison with False 

Discovery Rate) were plotted on the Talairach brain. 

 

 
Supplementary Figure 2. Effect of dynamic time warping realignment. (A) Average classification accuracy 

across all pairs of words for each subject and condition (listening, overt and imagined speech) – using DTW 

(dark) and without DTW (light). Error bars denote resampling SEM. (B) Comparison of the classification 
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accuracy in the overt speech condition – when epochs were extracted at speech onset or at cue onset. Error 

bars denote SEM. 
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 Neural encoding of auditory 
features during music imagery 

5.1 Abstract 

It remains unclear how the human cortex represents spectrotemporal sound features during auditory 

imagery, and how this representation compares to auditory perception. To assess this, we recorded 

electrocorticographic signals from an epileptic patient with proficient music ability in two conditions. 

First, the participant played two piano pieces on an electronic piano with the sound volume of the 

digital keyboard on. Second, the participant replayed the same piano pieces, but without auditory 

feedback, and the participant was asked to imagine hearing the music in his mind. In both 

conditions, the sound output of the keyboard was recorded, thus allowing precise time-locking 

between the neural activity and the spectrotemporal content of the music imagery. For both 

conditions, we built encoding models to predict high gamma neural activity (70-150Hz) from the 

spectrogram representation of the recorded sound. We found robust similarities between perception 
and imagery – in frequency and temporal tuning properties in auditory areas.  

5.2 Introduction 

Auditory imagery is defined here as the mental representation of sound perception in the absence of 

external auditory stimulation. The experience of auditory imagery is common, such as when a song 

runs continually through someone’s mind. On an advanced level, professional musicians are able to 

imagine a piece of music by looking at the sheet music (Meister et al. 2004). Behavioral studies have 

shown that structural and temporal properties of auditory features (see (Hubbard 2010) for complete 

review), such as pitch (Halpern 1989b), timbre (Halpern et al. 2004; Pitt and Crowder 1992), loudness 

(Intons-Peterson 1992) and rhythm (Halpern 1988) are preserved during auditory imagery. However, 

it is unclear how these auditory features are represented in the brain during imagery. Experimental 

investigation is difficult due to the lack of observable stimulus or behavioral markers during auditory 

imagery. Using a novel experimental paradigm to synchronize auditory imagery events to neural 

activity, we investigated the neural representation of spectrotemporal auditory features during 

auditory imagery in an epileptic patient with proficient music abilities. 

Previous studies have identified anatomical regions active during auditory imagery (Kosslyn, Ganis, 

and Thompson 2001), and how they compare to actual auditory perception. For instance, lesion 
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(Zatorre and Halpern 1993) and brain imaging studies (Griffiths 1999; Halpern 1999; Halpern et al. 

2004; Kraemer et al. 2005; Rauschecker 2001; Zatorre et al. 1996) have confirmed the involvement of 

bilateral temporal lobe regions during auditory imagery (see (Zatorre and Halpern 2005) for a review). 

Brain areas consistently activated with fMRI during auditory imagery include the secondary auditory 

cortex (Griffiths 1999; Kraemer et al. 2005; Zatorre, Halpern, and Bouffard 2009), the frontal cortex 

(Halpern and Zatorre 1999; Zatorre, Halpern, and Bouffard 2009), the sylvian parietal temporal area 

(Hickok et al. 2003), ventrolateral and dorsolateral cortices (Meyer et al. 2007) and the supplementary 

motor area (Halpern and Zatorre 1999; Halpern 2001; Mikumo 1994; Petsche, von Stein, and Filz 1996; 

Brodsky et al. 2003; Schürmann et al. 2002). Anatomical regions active during auditory imagery have 

been compared to actual auditory perception to understand the interactions between externally and 

internally driven cortical processes. Several studies showed that auditory imagery has substantial, but 

not complete overlap in brain areas with music perception (Kosslyn, Ganis, and Thompson 2001) – 

e.g. the secondary auditory cortex is consistently activated during music imagery and perception 

while the primary auditory areas appear to be activated solely during auditory perception (Bunzeck et 
al. 2005; Griffiths 1999; Halpern et al. 2004; Yoo, Lee, and Choi 2001).  

These studies have helped to unravel anatomical brain areas involved in auditory perception and 

imagery. However, there is lack of evidence for the representation of specific acoustic features in the 

human cortex during auditory imagery. It remains a challenge to investigate neural processing during 

internal subjective experience like music imagery, due to the difficulty in time-locking brain activity 

to a measurable stimulus during auditory imagery. To address this issue, we recorded 

electrocorticographic neural signals (ECoG) of a proficient piano player in a novel task design that 

permitted robust marking of the spectrotemporal content of the intended music imagery to neural 

activity – thus allowing us to investigate specific auditory features during auditory imagery. In the first 

condition, the participant played an electronic piano with the sound output turned on. In this 

condition, the sound was played out loud through speakers at a comfortable sound volume that 

allowed auditory feedback (perception condition). In the second condition, the participant played the 

electronic piano with the speakers turned off, and instead imagined the corresponding music in his 

mind (imagery condition). In both conditions, the digitized sound output of the MIDI-compatible 

sound module was recorded. This provided a measurable record of the content and timing of the 

participant’s music imagery when the speakers of the keyboard were turned off and he did not hear 

the music. This task design allowed precise temporal alignment between the recorded neural activity 

and spectrogram representations of music perception and imagery – providing a unique opportunity 

to apply receptive field modeling techniques to quantitatively study neural encoding during auditory 
imagery.  

A well-established role of the early auditory system is to decompose complex sounds into their 

component frequencies (Aertsen, Olders, and Johannesma 1981; Eggermont, Aertsen, and 
Johannesma 1983; Tian 2004), giving rise to tonotopic maps in the auditory cortex (see Saenz and 

Langers 2014 for a review). Auditory perception has been extensively studied in animal models and 

humans using spectrotemporal receptive field (STRFs) analysis (Aertsen, Olders, and Johannesma 

1981; Chi, Ru, and Shamma 2005; Clopton and Backoff 1991; Pasley et al. 2012; Theunissen, Sen, and 

Doupe 2000), which identifies the time-frequency stimulus features encoded by a neuron or 

population of neurons. STRFs are consistently observed during auditory perception tasks, but the 

existence of STRFs during auditory imagery is unclear due to the experimental challenges associated 

with synchronizing neural activity and the imagined stimulus. To characterize and compare the 

spectrotemporal tuning properties during auditory imagery and perception, we fitted two encoding 

models on data collected from the perception and imagery conditions. In this case, encoding models 

describe the linear mapping between a given auditory stimulus representation and its corresponding 
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brain response. For instance, encoding models have revealed the neural tuning properties of various 

speech features, such as acoustic, phonetic and semantic representations (Pasley et al. 2012; Lotte et 

al. 2015; Mesgarani et al. 2014; Tankus, Fried, and Shoham 2012; Huth et al. 2016).  

In this study, the neural representation of music perception and imagery was quantified by 

spectrotemporal receptive fields (STRFs) that predict high gamma (HG; 70-150Hz) neural activity. 

High gamma correlates with the spiking activity of the underlying neuronal ensemble (Lachaux et al. 

2012b; Miller et al. 2007; Boonstra, Houweling, and Muskulus 2009) and reliably tracks speech and 

music features in auditory and motor cortex (Pasley et al. 2012; Towle et al. 2008; Llorens et al. 2011; 

Crone et al. 2001; Sturm et al. 2014). Results demonstrated the presence of robust spectrotemporal 

receptive fields during auditory imagery with extensive overlap in frequency tuning and cortical 

location compared to receptive fields measured during auditory perception. These results provide a 

quantitative characterization of the shared neural representation underlying auditory perception and 
the subjective experience of auditory imagery. 

5.3 Material and methods 

5.3.1 Participant and data acquisition 

Electrocorticographic (ECoG) recording was obtained using subdural electrode arrays implanted in 

one patient undergoing neurosurgical procedures for epilepsy. The participant volunteered and gave 

his informed consent before testing. The experimental protocol was approved by the University of 

California, San Francisco and Berkeley Institutional Review Boards and Committees on Human 

Research. Electrode grids had center-to-center distance of 4 mm. Grid placement and duration of 

ECoG monitoring were based solely on the requirements of the clinical evaluation. Localization and 

co-registration of electrodes was performed using the structural MRI. Multi-electrode ECoG data 

were amplified and digitally recorded with sampling rate of 3,052 Hz. ECoG signals were re-

referenced to a common average after removal of electrodes with epileptic artifacts or excessive noise 

(including broadband electromagnetic noise from hospital equipment or poor contact with the 

cortical surface). In addition to the ECoG signals, the audio output of the piano was recorded along 

with the multi-electrode ECoG data. 

5.3.2 Experimental design 

The recording session included two conditions. In the first condition, the participant played on an 

electronic piano with the sound turned on. That is, the music was played out loud through the 

speakers of the digital keyboard in the hospital room (volume at comfortable and natural sound level; 

Figure 5-1 A; perception condition). In the second condition, the participant played on the piano with 

the speakers turned off and instead imagined hearing the corresponding music in his mind (Figure 
5-1 B; imagery condition). Figure 5-1 B illustrates that in both conditions, the digitized sound output 

of the MIDI sound module was recorded in synchrony with the ECoG data (even when the speakers 

were turned off and the participant did not hear the music). The two music pieces were Chopin’s 
Prelude in C minor Op. 28 no. 20 and Bach’s Prelude in C major (BWV 846), respectively.  
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Figure 5-1 Experimental task design. (A) The participant played an electronic piano with the sound of the 

digital keyboard turned on (perception condition). (B) In the second condition, the participant played the 

piano with the sound turned off and instead imagined the corresponding music in his mind (imagery 

condition). In both conditions, the digitized sound output of the MIDI-compatible sound module was 

recorded in synchrony with the neural signals (even when the participant did not hear any sound in the 

imagery condition). The models take as input a spectrogram consisting of time-varying spectral power across 
a range of acoustic frequencies (200– 7,000 Hz, bottom left) and output time-varying neural signals. To assess 

the encoding accuracy, the predicted neural signal (light lines) is compared to the original neural signal 

(dark lines). 

5.3.3 Feature extraction 

We extracted the ECoG signal in the high gamma frequency band from eight bandpass filters 

(hamming window non-causal filter of order 20, logarithmically increasing center frequencies (70–

150 Hz) and semi-logarithmically increasing bandwidths), and extracted the envelope using the 

Hilbert transform. The power was then calculated by averaging the signal across these eight bands. 
Subsequently, the signal was down-sampled to 100 Hz and z-scored.  

5.3.4 Auditory spectrogram representation 

We evaluated the ability to reconstruct the auditory spectrogram representation of music. The 

spectrogram is a time-varying representation of the amplitude envelope at 128 acoustic frequencies – 

logarithmically spaced between 180-7,000 Hz. This representation was generated by affine wavelet 

transforms of the sound pressure waveform using auditory filter banks mimicking the frequency 

analysis of the auditory periphery (Chi, Ru, and Shamma 2005). The spectrogram was subsequently 

downsampled to 32 frequency channels (unless otherwise stated). To compute these acoustic 

representations, we used the NSL MATLAB toolbox (http://www. 
isr.umd.edu/Labs/NSL/Software.htm).  

5.3.5 Encoding model 

The neural encoding model, based on the spectro-temporal receptive field (Theunissen, Sen, and 

Doupe 2000) describes the linear mapping between the music stimulus and the high gamma neural 

response at individual electrodes. The encoding model was estimated as follows: 

) ", ( = ℎ(', å, ()!(" − ', å)
¬,

 

where ) ", (  is the predicted high gamma neural activity at time " and electrode (, !(" − ', $) is the 

spectrogram representation at time (" − ') and acoustic frequency å. Finally, ℎ(', å, () is the linear 

transformation matrix that depends on the time lag ', the frequency å and electrodes (. ℎ represents 
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the spectro-temporal receptive field of each electrode. The STRFs are commonly used to estimate 

neural tuning to a wide variety of stimulus parameters in different sensory systems (Wu, David, and 

Gallant 2006). 

We used Ridge regression to fit the encoding model (Thirion et al. 2011), and a 10-fold cross-

validation resampling procedure, with no overlap between training and test partitions within each 

resample. We performed grid search on the training set to define the penalty coefficient √ and the 

learning rate ƒ, using a nested loop cross-validation approach. We standardized the parameter 

estimates to yield the final model.  

5.3.6 Decoding model 

The decoding model linearly mapped the neural activity to the music representation, as a weighted 
sum of activity at each electrode, as follows: 

! ", å = &(', å, ())(" − ', ()
+,

 

where )(" − ', () is the high gamma neural response of electrode ( at time (" − '), where ' is the time 

lag ranging between -500 and 500ms. To reduce computational load, only electrodes that had 

significant forward predictions were taken into account for the decoding. ! ", $  is the estimated 

music representation at time " and frequency å, where å is one of 128 acoustic frequency features in 

the auditory spectrogram representation. Finally, & ', å, (  is the linear transformation matrix, which 

depends on the time lag ', frequency å, and electrode, (. The music representation and the neural 

high gamma response data were synchronized, downsampled to 100 Hz, and standardized to zero 
mean and unit standard deviation prior to model fitting. 

To fit model parameters, we used gradient descent with early stopping regularization. We used a 10-

folds cross-validation resampling scheme, and standardized the parameter estimates to yield the final 

model. Within the training set, 20% of the data were used as validation set, to monitor out-of-sample 

prediction accuracy and determine the early stopping criterion. The algorithm was terminated after a 

series of 30 iterations failing to improve performance on the validation set or after 10,000 iterations. 
Finally, model prediction accuracy was evaluated on the independent testing set.  

5.3.7 Statistical analysis 

Prediction accuracy was quantified by computing the correlation coefficient (Pearson’s r) between 

the predicted and actual HG signal using data from the independent test set for each fold and 
electrode. Overall encoding accuracy was reported as the mean correlation over folds. The z-test was 

applied for all reported mean r values. Electrodes were defined as significant if the p-value was 

smaller than the significance threshold of α=0.05 (95th-percentile; FDR correction). To define 

auditory sensory areas, we built an encoding model on data recorded while the participant listened 

passively to speech sentences from the TIMIT corpus (Garofolo 1993) during 10min. Electrodes with 
significant encoding accuracy are highlighted in Supplementary Figure 5-1. 

To further investigate the neural encoding of spectrotemporal acoustic features during music 

perception and music imagery, we analyzed all the electrodes that were at least significant in one 

condition (unless otherwise stated). Tuning curves were estimated from spectro-temporal receptive 

fields, by first setting all inhibitory weights to zero, then averaging across the time dimension and 

converting to standardized z-scores. Tuning peaks were identified as significant peak parameters in 
the acoustic frequency tuning curves (z>3.1; p<0.001) – separated by more than one third an octave.  
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Decoding accuracy was quantified by computing the correlation coefficient (Pearson’s r) between the 

reconstructed and original music representation using data from the independent test set. For each 

cross-validation resample, we calculated one correlation coefficient for each auditory feature over 

time – leading to 128 correlation coefficients for the auditory spectrogram representation. Overall 

reconstruction accuracy was reported as the mean correlation over resamples and speech 

components. Standard error of the mean (SEM) was calculated by taking the standard deviation of 
the overall reconstruction accuracy across resamples.  

To further assess the predictive power of the reconstruction process, we evaluated the ability to 

identify specific blocks within the continuous recording. First, 0.5-second segments were extracted 

from the original and reconstructed spectrogram representations. Second, a confusion matrix was 

constructed where each element contained the similarity score between the target reconstructed 

segment and the original reference segments. To compute the similarity score between each target 

and reference segment, dynamic-time warping was applied to temporally align each pair and the 

mean correlation coefficient was used as the similarity score. The confusion matrix reflects how well a 

given reconstructed segment matches its corresponding original segment versus other candidates. 

The similarity scores were sorted, and identification accuracy was quantified as the percentile smaller 

than the rank of the correct segment. At chance level, the expected percentile rank is 0.5, while perfect 
identification is 1.0.  

5.4 Results 

5.4.1 High gamma neural encoding during auditory perception and imagery 

Example auditory spectrograms from Chopin’s Prelude determined through the participant's key 
presses with the electronic piano are shown in Figure 5-2 B for both perception and imagery 

conditions. To evaluate how consistently the participant performed across perception and imagery 

tasks, we computed the realigned Euclidean distance (Ellis 2003) between the spectrograms of the 

same music pieces played across conditions (within-stimulus distance). We compared the within-

stimulus distance with the realigned Euclidean distance between the spectrograms of the different 

musical pieces (between-stimulus distance). The realigned Euclidean distance was 251.6% larger for 

the between-stimulus distance compared to the within-stimulus distance (p<10-3; randomization 

test), suggesting that the spectrograms of same musical pieces played across conditions were more 

similar than the spectrograms of different musical pieces. This indicates that the participant 

performed the task with relative consistency and specificity across the two conditions. To compare 

spectrotemporal auditory representations during music perception and music imagery tasks, we fit 

separate encoding models in each condition. We used these models to quantify specific anatomical 
and neural tuning differences between auditory perception and imagery.  

For both perception and imagery conditions, the observed and predicted high gamma neural 
responses are illustrated for two individual electrodes in the temporal lobe, respectively (Figure 5-2 

C), together with the corresponding music spectrum (Figure 5-2 B). The predicted neural response for 

the electrode shown in the upper panel of Figure 5-2 B was significantly correlated with its 

corresponding measured neural response in both perception (r=0.41; p<10-7; one-sample z-test; FDR 

correction) and imagery (r=0.42; p<10-4; one-sample z-test; FDR correction) conditions. The 

predicted neural response for the lower panel electrode was correlated with the actual neural 
response only in the perception condition (r=0.23; p<0.005; one-sample z-test; FDR correction) but 

not in the imagery condition (r=-0.02; p>0.5; one-sample z-test; FDR correction). The difference 

between both conditions was significant for the electrode in the lower panel (p<0.05; two-sample t-
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test), but not in the upper panel (p>0.5; two-sample t-test). This suggests that there is a strong 

continuous relationship between time-varying imagined sound features and neural activity, but that 

this relationship is dependent on cortical location.  

 

Figure 5-2. Encoding accuracy (A) Electrode location overlaid on cortical surface reconstruction of the 

participant’s cerebrum. (B) Overlay of the spectrogram contours for the perception (blue) and imagery 

(orange) condition (10% of maximum energy from the spectrograms). (C) Actual and predicted high gamma 

band power (70–150 Hz) induced by the music perception and imagery segment in (B). Top electrodes have 

very similar predictive power, whereas bottom electrodes are very different for perception and imagery. 

Recordings are from two different STG sites, highlighted in pink in (A). (D) Encoding accuracy is plotted on 

the cortical surface reconstruction of the participant’s cerebrum (map thresholded at p<0.05; FDR 

correction). (E) Encoding accuracy of significant electrodes of the perception model as a function the imagery 

model. Electrode-specific encoding accuracy is correlated between both perception and imagery models 

(r=0.65; p<10-4; randomization test). (F) Encoding accuracy as a function of anatomic location (pre-central 

gyrus (pre-CG), post-central gyrus (post-CG), supramarginal gyrus (SMG), medial temporal gyrus (MTG) and 

superior temporal gyrus (STG)). 

To further investigate anatomical similarities and differences between the perception and imagery 

conditions, we plotted the anatomical layout of prediction accuracy of individual electrodes. In both 

conditions, results showed that sites with the highest prediction in both conditions were located in 

the superior and middle temporal gyrus, pre- and post-central gyrus, and supramarginal gyrus 

(Figure 5-2 D; heat map thresholded to p<0.05; one-sample z-test; FDR correction), consistent with 

previous ECoG results (Pasley et al. 2012). Among the 256 electrodes recorded, 210 were fitted in the 

encoding model, while the remaining 46 electrodes were removed due to excessive noise. Within the 

fitted electrodes, while 35 and 15 electrodes were significant in the perception and imagery condition, 
respectively (p<0.05; one-sample z-test; FDR correction), of which nine electrodes were significant in 

both conditions. Anatomic locations of the electrodes with significant encoding accuracy are 
depicted in Figure 5-3 and Supplementary Figure 5-1. To compare the encoding accuracy across 

conditions, we performed additional analysis on the electrodes that had significant encoding 

accuracy in at least one condition (41 electrodes; unless otherwise stated). Prediction accuracy of 
individual electrodes was correlated between perception and imagery (Figure 5-2 E; 41 electrodes; 

r=0.65; p<10-4; randomization test). Because both perception and imagery models are based on the 
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same auditory stimulus representation, the correlated prediction accuracy provides strong evidence 
for a shared neural representation of sound based on spectrotemporal features.  

To assess how brain areas encoding auditory features varied across experimental conditions, we 
analyzed the significant electrodes in the gyri highlighted in Figure 5-2 A (pre-central gyrus (pre-CG), 

post-central gyrus (post-CG), supramarginal gyrus (SMG), medial temporal gyrus (MTG) and superior 

temporal gyrus (STG)) using Wilcoxon signed-rank test (p>0.05; one-sample Kolmogorov-Smirnov 

test; Figure 5-2 F). Results showed that the encoding accuracy in the MTG and STG was higher for the 

perception (MTG: M = 0.16, STG: M = 0.13) than for the imagery (MTG: M = 0.11, STG: M= 0.08; 

p<0.05; Wilcoxon signed-rank test; Bonferroni correction). The encoding accuracy in the pre-CG, 

post-CG and SMG was not different between the perception (pre-CG M=0.17; post-CG M=0.15; SMG 

M=0.12; p>0.5; Wilcoxon signed-rank test; Bonferroni correction) and imagery (pre-CG M=0.14; post-

CG M=0.13; SMG M=0.12; p>0.5; Wilcoxon signed-rank test; Bonferroni correction) conditions. The 

significant improvement of the perception vs. imagery model was specific to the temporal lobe, 

which may reflect underlying differences in spectrotemporal encoding mechanisms, or alternatively, 

a greater sensitivity to discrepancies between the actual content of imagery and the recorded sound 
stimulus used in the model.  

5.4.2 Spectrotemporal tuning during auditory perception and imagery 

Auditory imagery and perception are distinct subjective experiences yet both are characterized by a 

sense of sound. How does the auditory system encode sound during music perception and imagery? 

Examples of standard STRFs are shown in Figure 5-3 for temporal electrodes (Supplementary Figure 

5-2 for all the STRFs). These STRFs highlight neural stimulus preferences as shown by the excitatory 

(warm color) and inhibitory (cold color) subregions.  

 

Figure 5-3 Spectrotemporal receptive fields (STRFs). Examples of standard STRFs for the perception (left 

panel) and imagery (right panel) models (warm colors indicate where the neuronal ensemble is excited, cold 

colors indicate where the neuronal ensemble is inhibited). On the lower left corner, Electrode location 

overlaid on cortical surface reconstructions of the participant’s cerebrum. Electrodes whose STRFs are shown 

are outlined in black. Grey electrodes were removed from the analysis due to excessive noise (see Materials 

and Methods). 

Figure 5-4 A shows the latency (s) for the perception and imagery conditions, defined as the temporal 

coordinates of the maximum deviation in the STRF. The peak latency was significantly correlated 
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between both conditions (r=0.43; p<0.005; randomization test), suggesting that both perception and 

imagery are simultaneously active for most of their response durations. Then, we analyzed frequency 

tuning curves estimated from the STRFs (see Material and methods for details). Examples of tuning 

curves for both perception and imagery encoding models are shown for the electrodes indicated by 
the black outline in the anatomic brain (Figure 5-4 C). Across conditions, the majority of individual 

electrodes exhibited a complex frequency tuning profile. For each electrode, similarities between the 

tuning curves in the perception and imagery models were quantified using Pearson’s correlation 

coefficient. The anatomical distribution of tuning curve similarity is plotted in Figure 5-4 B, with the 

correlation at individual sites ranging between r=-0.3-0.6. The effect of anatomical location (pre-CG, 
post-CG, SMG, MTG and STG) on tuning curve similarity was not significant (Chi-square=3.59; p>0.1; 

Kruskal-Wallis Test). Similarities in tuning curve shape between auditory imagery and perception 

suggest a shared auditory representation, but there is no evidence that similarities depended on gyral 
area.  

Different electrodes are sensitive to different acoustic frequencies important for music processing. 

We next quantitatively assessed how frequency tuning of predictive electrodes (N=41) varied during 

the two conditions. First, to evaluate how the acoustic spectrum was covered at the population level, 

we quantified the proportion of significant electrodes with a tuning peak at each acoustic frequency 
(Figure 5-4 B). Tuning peaks were identified as significant parameters in the acoustic frequency 

tuning curves (z>3.1; p<0.001; separated by more than one third an octave). The proportion of 

electrodes with tuning peaks was significantly larger for the perception (mean = 0.19) than for the 
imagery (mean = 0.14) condition (Figure 5-4 C; p<0.05; Wilcoxon signed-rank test). Despite this, both 

conditions exhibited reliable frequency selectivity, as nearly the full range of the acoustic frequency 

spectrum was encoded. The fraction of acoustic frequency covered with peaks by predictive 
electrodes was 0.91 for the perception and 0.89 for the imagery.  

 

Figure 5-4 Auditory tuning. (A) Latency peaks – estimated from the STRFs – were significantly correlated 

between perception and imagery conditions (r=0.43; p<0.005; randomization test). (B) Examples of tuning 

curves for both perception and imagery encoding models defined as the average gain of the STRFs as a 

function of acoustic frequency. Black outline in the anatomic brain indicate electrode location. for the 

electrodes indicated by the black outline in the left panel – Correlation coefficients between the perception 
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and imagery conditions are plotted for significant electrodes on the cortical surface reconstruction of the 

participant’s cerebrum. Grey electrodes were removed from the analysis due to excessive noise. Bottom panel 

is a histogram of electrode correlation coefficients between the perception and imagery tuning. (C) 
Proportion of predictive electrode sites (N=41) with peak tuning at each frequency. Tuning peaks were 

identified as significant parameters in the acoustic frequency tuning curves (z>3.1; p<0.001) – separated by 

more than one third an octave.  

5.4.3 Reconstruction of auditory features during music perception and imagery 

To evaluate the ability to identify piano keys from the brain activity, we reconstructed the same 

auditory spectrogram representation used in the encoding models. Results showed that the overall 
reconstruction accuracy was higher than zero in both conditions (Figure 5-5 A; p < 0.001; 

randomization test), but did not differ between conditions (p > 0.05; two-sample t-test). As a function 

of acoustic frequency, mean accuracy ranged from r=0–0.45 (Figure 5-5 B).  

 

Figure 5-5 Reconstruction accuracy. (A) Right panel: Overall reconstruction accuracy of the spectrogram 

representation for both perception (blue) and imagery (orange) conditions. Error bars denote resampling 

SEM. Left panel: Reconstruction accuracy as a function of acoustic frequency. Shaded region denotes SEM 

over the resamples. (B) Examples of original and reconstructed segments for the perception (left) and the 

imagery (right) model. (C) Distribution of identification rank for all reconstructed spectrogram notes. 

Median identification rank is 0.65 and 0.63 for the perception and imagery decoding model, respectively, 

which is significantly higher than 0.50 chance level (p<0.001; randomization test). Left panel: Receiver 

operating characteristic (ROC) plot of identification performance for the perception (blue curve) and 

imagery (orange curve) model. Diagonal black line indicates no predictive power. 

We further assessed reconstruction accuracy by evaluating the ability to identify isolated piano notes 

from the test set auditory spectrogram reconstructions. Examples of original and reconstructed 
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segments are depicted in Figure 5-5 B for the perception (left) and imagery model (right). For the 

identification, we extracted 0.5-second segments at piano note onsets from the original and 

reconstructed auditory spectrogram. Onsets of the notes were defined with the MIRtoolbox (Lartillot, 

Toiviainen, and Eerola 2008). For a target segment, a similarity score (correlation coefficient) was 

computed between the reconstruction and the actual auditory spectrograms of each of the segments 

in the candidate set. The similarity scores were sorted, and identification rank was quantified as the 

percentile rank of the correct segment (1.0 indicates the target reconstruction matched the correct 

original segment out of all candidate segments; 0.0 indicates the target was least similar to the correct 

original segment among all other candidates). The expected mean of the distribution of identification 

ranks is 0.5 at chance level. Results showed that the median identification rank of individual piano 

notes was significantly higher than chance for both conditions (Figure 5-5 C; median identification 

rank perception = 0.72 and imagery = 0.69; p< 0.001; randomization test). Similarly, the area under 

the curve (AUC) of identification performance for the perception (blue curve) and imagery (orange 

curve) model was well above chance level (diagonal black dashed line indicates no predictive power; 
p<0.001; randomization test). 

5.4.4 Cross-condition analysis 

Another method to evaluate the overlapping degree between both perception and imagery conditions 

is to apply the decoding model built in the perception condition to imagery neural data, and vice-

versa. This approach is based on the hypothesis that both tasks share neural mechanisms and is 

useful when one of the models cannot be built directly, because of the lack of observable measures. 

This technique has been successfully applied to various fields, such as vision (Haynes and Rees 2005; 

Horikawa et al. 2013; Reddy, Tsuchiya, and Serre 2010), and speech (Martin et al. 2014). When the 

model was trained on the perception condition and tested on the imagined condition (r=0.28), 

decoding performances improved by 50% compared to when the perception model was applied to 

imagined data (r=0.19) (Figure 5-6). This highlight the importance of having a model that is specific to 

each condition. 

 

Figure 5-6 Cross-condition analysis. Reconstruction accuracy when the decoding model was built on the 

perception condition and applied to the imagery neural data and vis-versa. Decoding performances 
improved by 50% when the model was trained on the perception condition and tested on the imagined 

condition (r=0.28), compared to when the perception model was applied to imagined data (r=0.19). 

5.4.5 Control analysis for sensorimotor confounds  

In this study, the participant played piano in two different conditions (music perception and 

imagery). In addition to the auditory percept, arm-, hand- and finger-movements related to the active 

piano task could have presented potential confounds to the decoding process. We controlled for 

possible motor confounds in three different ways. First, the electrode grid did not cover hand or 
finger sensorimotor brain area (Figure 5-7A). This reduces the likelihood that the decoding model 
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involved hand-related motor confounds. Second, examples of STRFs for two neighboring electrodes 
show different weight patterns for both conditions (Figure 5-7B). For instance, the weights of the 

electrode depicted in the left example of Figure 5-7B are correlated between both conditions (r=0.48), 

whereas the weights are not correlated in the right example (r=0.04). Differences across conditions 

cannot be explained by motor confounds, because finger movement was similar in both tasks. Third, 

brain areas that significantly encoded music perception and imagery overlapped with auditory 

sensory areas (Supplementary Figure 5-1 and Supplementary Figure 5-1), as revealed by the encoding 

accuracy and STRFs during passive listening to TIMIT sentences (no movements). The presence of 

STRFs in the sensorimotor cortex is in accordance with previous research showing that the motor 

cortex represents acoustic features of sounds similarly to auditory cortex (Wilson et al. 2004; Cheung 

et al. 2016) These findings provide evidence against motor confounds, and suggest that the brain 

responses were induced by auditory percepts rather than motor movements associated with pressing 

piano keys. Finally, we built two additional decoding models, using 1) only temporal lobe electrodes 
and 2) only auditory-responsive electrodes (Figure 5-7C; see Material and methods for details). Both 

models showed significant reconstruction accuracy (p<0.001; randomization test) and median 

identification rate (p<0.001; randomization test). This suggests that even if we removed all electrodes 

that are potentially not related to auditory processes, the decoding model still performs above 
chance.  

 



	

	

69		

Figure 5-7 Control analysis for motor confound. (A) Electrode location overlaid on cortical surface 

reconstructions of the participant’s cerebrum. View from the top of the brain shows that hand motor areas 

not recorded with the grid. Brain areas associated with face, upper and lower limbs are depicted in green, 

blue and pink, respectively. (B) Different STRFs for two neighboring electrodes highlighted in (A) for both 

perception and imagery encoding models. (C) Overall reconstruction accuracy (left panel) and median 

identification rank (right panel) when using all electrodes, only temporal electrodes, and auditory electrodes 

(see Materials and methods for details).  

5.5 Discussion 

Music imagery studies present several obstacles due to the subjective nature and absence of verifiable 

and observable measures. Our task design allowed precise time-locking between the recorded neural 

activity and spectrotemporal features of music imagery, and provided a unique opportunity to 

quantitatively study neural encoding during auditory imagery, and compare tuning properties with 

auditory perception. Here, we provide the first evidence of spectrotemporal receptive field and 

auditory features encoding in the brain during music imagery, providing comparative measures with 

actual music perception encoding. We observed that neuronal ensembles were tuned to acoustic 

frequencies during imagined music, suggesting that spectral organization occurs in the absence of 
actual perceived sound. Supporting evidence has shown that restored speech – when a speech 

instance is replaced by noise, but the listener perceives a specific speech sound – is grounded in 

acoustic representations in the superior temporal gyrus (Leonard et al. 2016). In addition, the results 

showed substantial, but not complete overlap in neural properties – i.e. spectral and temporal tuning 

properties, and brain areas – during music perception and imagery. Such findings are consistent with 

conclusions that visual imagery involves many, but not all, of the brain areas involved in visual 

perception (e.g., Kosslyn and Thompson, 2000, 2003). We also showed that auditory features could be 

reconstructed from neural activity of the imagined music. Because both perception and imagery 

models are based on the same auditory stimulus representation, the correlated prediction accuracy 

provides strong evidence for a shared neural representation of sound based on spectrotemporal 

features. This confirms that the brain encodes spectrotemporal properties of sounds – as previously 

shown by behavioral and brain lesion studies (see Hubbard, 2010 for a review). 

Methodological issues in investigating imagery are numerous, including the lack of evidence that the 

desired mental task was operational. The current task design did not allow verifying how the mental 

task was performed, yet the behavioral index of keynote press on the piano indicated the precise time 

and frequency content of the intended imagined sound. In addition, we recorded a skilled piano 

player, and it has been suggested that participants with musical training exhibit better pitch and 

temporal acuity in auditory imagery than participants with little or no musical training (Herholz et al., 

2008; Janata and Paroo, 2006). Furthermore, tonotopic maps located in the STG are enlarged within 

trained musicians (Pantev et al. 1998). Thus, having a trained piano-player suggests improved 

auditory imagery ability (see also (Halpern 1988; Zatorre and Halpern 1993; Zatorre et al. 1996), and 
reduced issues related to spectral and temporal errors. 

Finally, the electrode grid was located on the left hemisphere of the participant. This raises the 

question of lateralization in the brain response to music perception and imagery. Studies have shown 

the importance of both hemispheres for auditory perception and imagination (Griffiths 1999; Halpern 

et al. 2004; Kraemer et al. 2005; Rauschecker 2001; Zatorre and Halpern 1993; Zatorre et al. 1996), 

although brain patterns tend to shift toward the right hemisphere during music processing (see 

Zatorre and Halpern, 2005 for a review). In our task, the grid was located on the left hemisphere, and 
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allowed significant encoding and decoding accuracy within high gamma frequency ranges. This is 
consistent with the notion that music auditory processes are also evident in the left hemisphere.  

5.6 Supplementary information 

 

Supplementary Figure 5-1 Anatomical distribution of significant electrodes. Electrodes with significant 

encoding accuracy overlaid on cortical surface reconstruction of the participant’s cerebrum. To define 

auditory sensory areas (pink), we built an encoding model on data recorded while participant listened 

passively to speech sentences from the TIMIT corpus (Garofolo 1993). Electrodes with significant encoding 

accuracy (p<0.05; FDA correction) are highlighted. 



	

	

71		

 

Supplementary Figure 5-2 Spectrotemporal receptive fields. STRFs for the perception (top panel) and 

imagery (bottom panel) models. Grey electrodes were removed from the analysis due to excessive noise. 
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Supplementary Figure 5-3 Neural encoding during passive listening. Standard STRFs for the passive 

listening model – built on data recorded while the participant listened passively to speech sentences from the 

TIMIT corpus (Garofolo 1993). Grey electrodes were removed from the analysis due to excessive noise. 

Encoding accuracy is plotted on the cortical surface reconstruction of the participant’s cerebrum (map 

thresholded at p<0.05; FDR correction). 
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 General discussion and conclusions 

 Neuroengineered technologies have made tremendous advances in decoding motor or visual 

neural signals for assisting and restoring lost functions. However, they have failed to improve natural 

communication for patients with disabling neurological conditions. A few brain-computer interfaces 

have allowed relevant communication applications, such as moving a cursor on the screen (Wolpaw 

et al. 1991) and spelling letters (Farwell and Donchin 1988; Perdikis et al. 2014; Vansteensel et al. 2016; 

Pandarinath et al. 2017). Although this type of interface has proven to be useful, patients had to learn 

to modulate their brain activity in an unnatural and unintuitive way – i.e. performing mental tasks 

like a rotating cube, mental calculus or movements attempts to operate an interface (Millán et al. 

2009) or detecting rapidly presented letter on a screen (Nijboer et al. 2008). As an alternative solution, 

we evaluated the feasibility to decoding directly neural correlates associated with internal speech as 

an input for a real-time speech prosthesis. For this, we explored various neural representations 

during imagined speech using electrocorticographic neural signals, and compared their relation to 
speech perception and production.  

Throughout the discussion, we first briefly summarize the various studies undertaken and the main 

findings achieved. Then, we discuss how this work has contributed to new advances in the field, and 

opportunities to carry out innovative research. Finally, we outline the challenges faced when 

decoding human speech, and new avenues to push the boundaries of what is currently possible in 
this field of speech decoding. 

6.1 Summary 

This thesis was an explorative work aiming at better understanding imagined speech using 

electrocorticographic neural signals recorded in epileptic patients. We investigated various speech 

representations, such as acoustic sound features, phonemic features, and individual words. We also 

evaluated the ability to decode these speech features for targeting communication devices. For this, 
four different studies have been performed. 

In Chapter 2, we reconstructed for the first time continuous acoustic features from high gamma 

neural activity recorded during imagined speech. For this, we used cross-condition linear regression, 

and thereby extended the mathematical framework used in Pasley et al. (2012) to imagined speech. 

Results showed that spectrotemporal features of imagined speech were significantly reconstructed 

from models built from overt speech data. This highlighted that overt speech and imagined speech 

Disclaimer:	This	chapter	is	adapted	from	the	following	articles	–	with	permissions	of	all	co-authors	and	journals:	

Martin	 S.,	Millán	J.d.R.,	Knight	R.T.,	and	Pasley	B.N.	2016.	 “The	Use	of	 Intracranial	Recordings	to	Decode	Human	Language:	

Challenges	and	Opportunities.”	Brain	and	Language.	doi:10.1016/j.bandl.2016.06.003.	

My	contribution:	Conceptualization,	visualization,	writing	–	original	draft	preparation	



	 	 	 	

	

74	 	

share a partially common spectrotemporal neural representation in the motor cortex and perisylvian 
areas. 

In Chapter 3, we decoded continuous phoneme sequences from high gamma neural activity 

recorded during imagined speech. In order to label intended phonemes more accurately during 

imagined speech, we designed a karaoke-like task, in which visual words scrolling on the screen were 

divided into their phonemic representations. Until now, isolated phonemes were successfully 

decoded during imagined speech (Ikeda et al. 2014; Pei et al. 2011; Brumberg et al. 2011), but these 

study failed to decode phoneme sequences during continuous speech. For this, we used hidden 

Markov models in order to incorporate both, a phoneme likelihood model and a language model. 

This approach has been widely used in the field of speech recognition (Rabiner 1993), and more 

recently in neural-based speech recognition (Moses et al. 2016; Herff et al. 2015). Here, we replicated 

these results, and extended the approach to imagined speech. Initial results in two patients were 

promising, nevertheless findings need to be extended to a larger pool of participants, in order to draw 

conclusions. 

In Chapter 4, we classified for the first time individual words from high gamma neural time features 

recorded during an imagined speech word repetition task. For this, we proposed a new approach that 

takes time features, and deals with speech production irregularities by introducing temporal 

alignment in the classification framework. Although words have been decoded during overt speech 

(Blakely et al. 2008), only phonemes were successfully predicted during imagined speech (Ikeda et al. 

2014; Pei et al. 2011; Brumberg et al. 2011). This study represents a proof of concept for basic 

decoding of speech imagery, yet the results to date are not yet robust enough for a clinical 

communication device. The major difficulties derive from the weak signal-to-noise ratio and the lack 

of temporal alignment across trials. For instance, in the overt speech condition, decoding 

performances were increased when trials were extracted at speech onset/offset compared to when 

trials where extracted at cue onset. Finding behavioral or neural metrics that help defining speech 
onset/offset in the imagined condition would improve performances. 

In these studies, we investigated imagined speech in parallel with overt speech production and/or 

speech perception. This allowed comparing speech representations across conditions, and integrate 

imagined speech into the general speech network. Results revealed complex patterns of brain activity 

across conditions and tasks. Altogether, the most informative areas to decode imagined speech units 

were located in the superior temporal gyrus, inferior frontal gyrus and sensorimotor cortex, areas 

commonly associated with speech. However, different tasks involve different speech production 

processes, ranging from lexical retrieval to phonological or even phonetic encoding (Perrone-

Bertolotti et al. 2014), making it difficult to draw any conclusion about the specific function of 

anatomic locations. In addition, the signal was significantly weaker in the imagined speech condition 

than in the listening or overt speech conditions, where speech stimuli were directly observed. Finally, 

variability across participants in the imagined condition might reflect the subjective strategy 

employed by each individual to generate internal speech. In sum, it is still unclear how the content of 

imagined speech is processed in the human cortex. 

In Chapter 5, we investigated the neural encoding of acoustic features during music imagery. This 

study relied on an extremely rare clinical case in which a patient undergoing neurosurgery for 

epilepsy treatment was also an adept piano player. Evidence has shown that music and speech share 

common brain networks (Schön et al. 2010; Callan et al. 2006), and therefore helped understanding 

features of inner subjective experiences. While previous brain imaging studies have indicated 

anatomical regions active during auditory imagery (Zatorre et al. 1996; Griffiths 1999; Halpern and 
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Zatorre 1999; Rauschecker 2001; Halpern et al. 2004; Kraemer et al. 2005), it was unknown how fine-

scale neural tuning of sound frequency were represented. This study provided a unique opportunity 

to apply receptive field modeling techniques to quantitatively study neural encoding during music 

imagery. Results showed that music perception and imagery share partial neural encoding 

mechanisms, a feature common to speech neural activity. Furthermore, these findings also 

demonstrate that receptive field and decoding models – typically applied in neuroprosthetics for 

motor and visual restoration – are now applicable to auditory imagery. This represents a major 
advance with direct application to the field of neural interfaces for restoration of communication 

6.2 Opportunities 

This line of inquiry demonstrated the potential of using neural predictive models as research tools to 

derive data driven conclusions underlying complex speech representations. In particular, we showed 

that encoding models have tremendous potential for uncovering the link between imagined speech 

representations and neural responses. Using quantitative, model-based characterizations, we 

showed for the first time that brain activity is tuned to various levels of speech descriptions, broken 
down into anatomic and functional stages.  

The potential of encoding models extends beyond its established relevance in cognitive 

neuroscience. For instance, here, we investigated speech functions in participants with no major 

language deficits. However, aphasic patients have diverse language components affected, such as 

auditory, phonological, or lexical function, and can occur in any linguistic modality. Encoding models 

offer a functional explanation for specific language disorder, and allow measuring continuous 

changes in cortical representations (Pasley and Knight 2013). Targeted rehabilitation would benefit 

from quantitative measures of plasticity for guiding training-induced changes in specific cortical 

areas, and is applicable to a variety of aphasic symptoms having different level of speech 

representation affected. Similarly, the various types of language deficits exemplify the challenge in 

building specific speech prosthesis that addresses individual needs. In this regard, encoding models 
offer a unique opportunity to identify injured neural circuits.  

Once damaged and healthy brain functions are identified with encoding models, decoding models 

can be used for the design of effective speech prostheses. In particular, we showed the feasibility to 

decode various speech representations during imagined speech, such as acoustic features, phonetic 

representations, and individual words. This suggests that various strategies and designs could be 

employed for building a natural communication device, depending on specific, residual speech 

functions. Every speech representation has pros and cons for targeting speech devices. For instance, 

decoding acoustic features opens door to brain-based speech synthesis, in which audible speech is 

synthetized directly from decoded neural patterns. This approach has already been demonstrated, 

where predicted speech was synthesized, and acoustically fed back to the user (Guenther et al. 2009; 

Brumberg et al. 2010). Yet the understandability of the produced speech sounds and the best speech 

parameters to model remain to be demonstrated. Alternatively, decoding units of speech, such as 

phonemes or words provides greater naturalness, but the optimal speech unit size to be analyzed, is 

still a matter of debate – e.g. the longer the unit, the larger the database needed to cover the required 

domain, while smaller units offer more degrees of freedom, and can build a larger set of complex 

utterances, as shown in (Moses et al. 2016; Herff et al. 2015). A tradeoff is the decoding of a limited 

vocabulary of words, which carry specific semantic information, and would be relevant in a basic 

clinical setting (‘hungry’, ‘thirsty’, ‘yes’, ‘no’, etc.). ¨ 

Although this work has revealed the potential in investigating speech with predictive models, it also 

emphasizes that performances currently remain insufficient to build a realistic brain-based device. 
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Indeed, our studies, as well as other studies on imagined speech decoding (Ikeda et al. 2014; Pei et al. 

2011; Brumberg et al. 2011), reported marginal decoding accuracy, limiting their relevance for clinical 

scenarios. Numerous challenges were encountered, such as weak signal-to-noise-ratio, lack of 

behavioral output and speech irregularities, precluding robust predictions. We address these 
concerns and potential avenues for improvements in the section 6.3 below. 

Meanwhile, an alternative to a speech-interface based solely on brain decoding is to build a hybrid 

system, which acquires sensor data from multiple elements of the human speech production system, 

and combine the different signals to optimize speech synthesis (see Brumberg et al. 2010 for a 

review). For instance, recording sensors allow characterizing the vocal tract by measuring its 

configuration directly or by sounding it acoustically using electromagnetic articulography, ultra-

sound or optical imaging of the tongue and lip. Alternatively, electrical measurements can infer 

articulation from actuator muscle signals (i.e., using surface electromyography) or signals obtained 

directly from the brain (mainly EEG and ECoG). Using different sensors and different speech 

representations allow exploiting an individual’s residual speech functions to operate the speech 
synthesis.  

Unique opportunities for targeting communication assistive technologies are offered by combining 

different research fields. Neuroscience reveals which anatomical locations and brain signals should 

be modeled. Linguistic fields support development of decoding models that incorporate linguistic, 

contextual specifications – including segmental elements and supra-segmental elements. Combining 

insights from these research fields with machine learning and speech recognition algorithms is a key 

element to improve prediction accuracies. Finally, the success of speech neuroprosthesis depends on 

the continuous technological improvements to enhance signal quality and resolution, and allow 

developing more portable and biocompatible invasive recording devices. Merging various fields 

together will allow tackling the challenges central to decoding imagined speech. 

6.3 Challenges and solutions 

In this section, we highlight numerous challenges that were encountered, such as dealing with 

internal neural representations and facing technological limitations. For each subsection, we first 

define what was the challenge, then we describe how we tried to tackle it, and finally, we provide 
possible improvements that can be made.  

Dealing with internal neural representations 

Physiological studies have unraveled many neural mechanisms of speech perception and production 

that occur at a very fine temporal scale, such as acoustic processing in the early auditory periphery, 

phonetic encoding in posterior areas of the temporal lobe and semantic and higher level of linguistic 

processes in the anterior areas of the temporal lobe (Chang et al. 2010; Mesgarani et al. 2014; 

Bouchard et al. 2013, 2013). Conversely, the limited physiological studies on imagined speech 

emphasizes the difficulties when investigating speech representations during internal subjective 
experiences like imagined speech.  

Reasons for this are numerous, and include the lack of behavioral output and impossibility of 

monitoring precisely the fine spectrotemporal fluctuation property of speech. Critically, imagined 

speech cannot be directly observed by an experimenter. As a consequence, it is complicated to time-

lock brain activity to a measurable stimulus or behavioral state, and to build predictive models that 

directly regress the neural activity to any behavioral metric or speech representation. In addition, 

natural speech expression is not just operated under conscious control, but is affected by various 
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factors, including gender, emotional state, tempo, pronunciation and dialect, resulting in temporal 

irregularities (stretching/compressing, onset/offset delays) across repetitions. As a result, this leads to 

problems in exploiting the temporal resolution of electrocorticography to investigate imagined 
speech.  

We tried alleviating these problems by designing tasks that maximize the accuracy when labeling the 

content of imagery. For instance, we tried to cue the participants in a rhythmical manner, and 

designed a karaoke-like task that allowed participants to prepare themselves, and be more consistent. 

Despite these task design efforts, results showed inconsistencies between the actual cue and the 
speech onset/offset in the overt condition.  

A key issue related to this is that patients were not familiarized with our tasks before entering in the 

epilepsy monitoring unit. Studies have shown that participants with musical training exhibited better 

pitch and temporal acuity in auditory imagery and enlarged tonotopic maps located in the STG than 

did participants with little or no musical training (Herholz et al., 2008; Janata and Paroo, 2006; Pantev 

et al. 1998). As such, we argue it would be beneficial to train subjects on speech imagery, in order for 

them to be more consistent in time and way of performing the imagined speech. A possible training 

scenario is to incorporate an online feedback in the protocol. As such, closing the loop could enhance 
the task performances, reinforce the neural signal and maximize consistency.  

In addition, finding a behavioral or neural metric that allows marking more precisely the imagined 

speech onset and offset would reduce the temporal uncertainty window and measure imagined 

performances. This will be increasingly important when we move towards asynchronous protocols, 

i.e. when patients spontaneously produce imagined speech, as opposed to current protocols in which 

they are cued. To this end, a potential biomarker is the high gamma neural activity, which 
demonstrated the ability to define an active speech window in Chapter 3. Other representative 

examples come from behavioral and psychology studies, which have relied on indirect measures to 

infer the existence and properties of the intended imagined experience. Various examples of 

behavioral measures have provided convincing evidence that internal imagery was actually 

generated, e.g. subjective report of participants or comparisons of performances on task selective 

facilitation (see Hubbard 2010 for a complete review). Therefore, monitoring performances and 

vividness during imagined speech might alleviate pronunciation and grammatical mistakes, while 
maximizing the signal-to-noise ratio.  

6.3.1 Elucidating the neurobiology of language 

Understanding speech processing is a key step to building efficient natural speech prosthesis, yet the 

complex neural mechanisms underlying speech remain largely unknown. A reason for this is that 

speech is exclusive to humans and cannot be studied in animal models, in comparison to other 

extensively studied cognitive domains, such as perception, memory and decision making. Animals 

use a system of communication that is believed to be limited to expression of a finite number of 

genetically determined utterances (Tomasello 2008). In contrast, humans can produce a large range 

of utterances from a finite set of elements (Trask 1999). Despite this, lower-level auditory and motor 

processing has been widely explored in nonhuman mammals (Georgopoulos, Kettner, and Schwartz 

1988; deCharms 1998; Depireux et al. 2001) and avians (de Boer 1967; Theunissen et al. 2001). 

Similarly, electrophysiological evidence has shown that macaques have two separate cortical 

pathways (ventral and dorsal streams) for audition (Romanski et al. 1999), resembling the human 

speech architecture. These findings emphasize how critical bidirectional interactions between animal 
and human studies are for understanding the human brain (Badre, Frank, and Moore 2015).  
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In addition to experimental barrier, speech is organized in a widely distributed and complex network 

that works along different time scales. In this work, we focused on high-gamma frequency bands, as 

they have been shown to provide the most reliable index of local cortical activity, and widely used in 

speech decoding (Pasley et al. 2012; Mesgarani and Chang 2012; Houde and Chang 2015; Moses et al. 

2016). However, other frequency ranges have been shown to carry essential information about 

various neurolinguistics features. For instance, the theta band (4-7 Hz) tracks the acoustic envelope 

of speech, correlates with syllabic rate, and discriminates spoken sentences (Luo and Poeppel 2007; 

Giraud and Poeppel 2012; Ding and Simon 2012; Zion Golumbic et al. 2013). Alternatively, the delta 

range (1-2 Hz) typically transform the signal input into lexical and phrasal units. Given the low 

performances in the various tasks investigated here, other frequency bands should be explored for 

speech decoding, and may provide complementary information to high frequency activity.  

Another difficulty when targeting speech devices is that neural activity associated with speech is not 

invariable, but modulated by top-down influences based on expectations (Leonard et al. 2015; 

Leonard et al. 2016; Holdgraf et al. 2016), feedback monitoring loops (Chang et al. 2013; Houde and 

Chang 2015) attentional resources (Fritz et al. 2007; Mesgarani and Chang 2012) and lexical retrieval 

(Cibelli et al. 2015). For instance, linguistic context refers to the factors that affect the acoustic 

realization of speech sounds, including segmental elements, such as co-articulatory features, and 

supra-segmental elements, such as stress, prosodic patterns, phonation type, and intonation. While 

context-dependent modeling is common in speech recognition (Waibel and Lee 1990) and known to 

significantly improve recognition performances, it has rarely been taken into account for neural 

decoding. One reason for this is that it remains largely unknown how the brain encodes the various 

factors affecting the production of speech sound. A key aspect for improving speech prosthetic will be 

to determine which factors significantly improve decoding performances, and how to model them. 

Finally, language is involved in a variety of modalities including writing, reading, listening and 

speaking. These four modalities share receptive and expressive areas of the brain, yet, they also have 

unique processing levels and neuroanatomical substrates (Berninger and Abbott 2010; Singleton and 

Shulman 2014). For instance, a person with a writing deficit may not be as impaired in speaking, and 

vice versa (Rapp, Fischer-Baum, and Miozzo 2015). Results have been highly variables, because 

different tasks involve different speech processes, engaging different brain modality. These 

observations exhibit the complexities of linguistic organization found in the brain (Bellugi, Poizner, 

and Klima 1989). We suggest that a complete characterization of the language network, at all the 

scales and including all forms of expressive and receptive mechanisms, will help shaping optimal 
communication devices. 

6.3.2 Integrating recent progress in machine learning  

A major challenge in neural decoding applications lies in the computational models used for 

decoding the neural features. Initial studies on speech decoding used linear decoding models to map 

the neural activity to the speech representations (Pasley et al. 2012; Mesgarani and Chang 2012; 

Mesgarani et al. 2014). However, in reality, the neural correlates of language are likely non-linearly 
related to the various speech representations.  

Recently, electrophysiological studies on speech decoding have shown promising results by 

integrating knowledge from the field of speech recognition (Moses et al. 2016; Herff et al. 2015). 

Speech recognition has been concerned with the statistical modeling of natural language for many 

decades, and has faced many problems that are similar to decoding neural pattern associated with 

speech. As such, we argue that integrating their knowledge into our field is a necessary element to 

succeed in the ultimate goal of a clinically reliable speech prosthesis. For instance, speech 
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recognition has developed methodologies that enables the recognition and translation of spoken 

language into text. This was achieved by incorporating extensive knowledge about how speech is 

produced and perceived at various phonetic levels (acoustic, auditory, articulatory features), and 

from advances in computer resources and big data management to build remarkable applications, 

such as spellcheck tool, natural speech synthesizer and translation program. Similarly, advanced 

probabilistic models might be more adapted in order to deal with problems associated with speech 

production temporal irregularities, than a deterministic approach like dynamic time warping, which 
is not robust for noisy data.  

More complex models with increasing number of parameters can be used, but require more data to 

train and evaluate the models. When using electrocorticographic recordings, available data are 

limited. Experimental paradigms usually do not last long to avoid overloading the patients. As an 

alternative to traditional protocols, researchers are slowly moving toward continuous brain 

monitoring during the electrode implantation time. This allows increasing the amount of recorded 

data and is more pleasant for the participant as he is recorded in his natural, hospital environment, 

e.g. watch television, have interaction with relatives and clinicians, read, etc. The major problem with 

this approach is how to label precisely the recordings. Indeed, while it is currently possible to monitor 

conversations with a microphone, the continuous labeling of categories or events during a movie or a 

dialogue is a tedious process, and often requires a human intervention. In addition, as mentioned 

earlier, monitoring and labeling internal mental states, such as mood, emotions, internal speech, is 

problematical. We suggest that unsupervised methods might be adapted in this context, and alleviate 

issues associated with speech segmentation. Similarly, transfer learning, which consists in 

transferring the knowledge between known speech parameters. 

6.3.3 Facing technological limitations  

Recordings in humans are generally restricted to noninvasive techniques, such as EEG, MEG or fMRI. 

These approaches give large-scale overviews of cortical activity in distributed language networks, but 

typically lack either spatial or temporal resolution. A few intracortical recordings have shown 

promising results in decoding intended phonemes (Brumberg et al. 2011) and formant frequencies 

(Guenther et al. 2009). Although intracortical recordings have higher spatial resolution than 

intracranial recordings, their spatial coverage is limited, making them less suitable to investigate 

higher speech processing levels. Given its unique spatiotemporal properties, electrocorticography is a 

promising technique to decode speech, but its opportunities are limited in humans, and dependent 

on patients with epilepsy undergoing neurosurgical procedure for brain ablation with implanted 

ECoG grids. In addition, although electrocorticography provide the opportunity to investigate speech, 

the configuration, location and duration of implantation are not designed for the experiments, but 

solely for clinical purposes. In order to deal with this, we recorded the various tasks only when the 

grids coverage was optimal, such as electrodes were lying on the temporal cortex, the inferior 
temporal cortex and the sensorimotor cortex. 

In addition to these clinical limitations, the design of the intracranial recording electrodes has been 

shown to be an important factor in motor decoding performance. Namely, the spatial resolution of a 

cortical surface electrode array depends on the size and spacing of the electrodes, as well as the 

volume of tissue to which each electrode is sensitive (Wodlinger et al. 2011). Many researchers have 

attempted to define what the optimal electrode spacing and size could be (Slutzky et al. 2010), but 

this is still an open area of research. Emerging evidence showed that decoding performances were 

improved when neural activity was derived from very high-density grids (Blakely et al. 2008; Rouse et 

al. 2013). However, although a smaller inter-electrodes spacing increases the spatial resolution, it 
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poses additional technical issues related to the electrode grid design. We are currently investigating 

into high density grids with an inter-electrode spacing of 3mm. Higher density grids placed at specific 

speech locations would provide higher spatial resolution and potentially enhanced the signal’s 

discriminability. Other researchers are working on increasing the number of recording contacts, 

having biocompatible materials and wireless telemetry for transmission of recordings from multiple 
electrode implants (Brumberg et al. 2011; Khodagholy et al. 2014).  

Finally, long-term implantation abilities in human is lacking, as compared to non-human primate 

studies that showed stable neural decoding for extended periods of time (weeks to months; Ashmore 

et al. 2012). Reasons for these technical difficulties are the increased impedance leading to loss of 

signal and increase in the foreign body response to electrodes (Groothuis et al. 2014). Indeed, device 

material and electrode-architecture influences the tissue reaction. Softer neural implants with shape 

and elasticity of dura mater increase electrode conductivity and improve the implant-tissue 
integration (Minev et al. 2015).   

 

To conclude, we demonstrated the potential of using predictive models to unravel neural 

mechanisms associated with complex cognitive functions. We also showed that various speech 

representations, such as acoustic features, phonemic features and individual words could be decoded 

from high gamma brain signals. We achieved this by designing new protocols, that ought to maximize 

consistencies across repetitions of the same speech instance. In addition, we introduced non-linear 

temporal alignments in the decoding framework, in order to deal with speech irregularities. Finally, 

we used state-of-the-art modeling techniques. Although, these results revealed a promising avenue 

for direct decoding of natural speech, they also emphasized that performance was currently 

insufficient to build a realistic brain-based device. We highlighted numerous challenges that likely 

precluded better performances, such as the low signal-to-noise-ratio, and the difficulty in monitoring 

precisely imagined speech. As such challenges are solved, decoding speech directly from neural 

activity opens the door to new communication interfaces that may allow for more natural speech-like 

communication in patients with severe communication deficits. We suggested new avenues that will 

hopefully help building a neural-based speech interface.  
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