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Gene regulatory mechanisms un
derlying the intestinal
innate immune response
Antonio CA Meireles-Filho1,2 and Bart Deplancke1,2
In the mammalian gastrointestinal tract, distinct types of cells,

including epithelial cells and macrophages, collaborate to

eliminate ingested pathogens while striving to preserve the

commensal microbiota. The underlying innate immune

response is driven by significant gene expression changes in

each cell, and recent work has provided novel insights into the

gene regulatory mechanisms that mediate such transcriptional

changes. These mechanisms differ from those underlying the

canonical cellular differentiation model in which a sequential

deposition of DNA methylation and histone modification marks

progressively restricts the chromatin landscape. Instead,

inflammatory macrophages and intestinal epithelial cells

appear to largely rely on transcription factors that explore an

accessible chromatin landscape to generate dynamic

stimulus-specific and spatial-specific physiological responses.
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Introduction
The gastrointestinal tract is constantly exposed to micro-

organisms that can be potentially harmful. Phylogeneti-

cally distant species have therefore evolved similar

mechanisms to maintain intestinal homeostasis. Indeed,

while the adaptive immune system only evolved in ver-

tebrates, the evolutionarily conserved innate immune

system in the gastrointestinal tract shares similarities from

insects to humans [1]. For example, epithelial cells that

line the gut provide a physical barrier between host and

commensal or invading bacteria. In addition, they are

capable of mounting an innate immune response and

produce chemokines and cytokines that signal to phago-

cytic cells such as macrophages [2,3].
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In mammals, intestinal macrophages have a strong phago-

cytotic capacity against invading bacteria whilst a low

competence to release pro-inflammatory mediators, assur-

ing tissue integrity and reducing the undesired elimination

of commensal microbes [4]. These responses are orches-

trated through the dynamic control of gene expression

levels in each of the participating cells, and the molecular

mechanisms underlying this control have been intensely

studied in recent years. One of the key insights that

emerged is that these mechanisms differ from those

mediating canonical development and differentiation.

In the latter processes, transcription factors (TFs) coordi-

nate the orderly post-translational modification of histones

to progressively specify and constrain the responsive chro-

matin landscape that is inherently linked to the develop-

mental path of the respective cell [5]. While differentiated

resident macrophages apparently follow this model

[6��,7��], inflammatory macrophages resulting from acute

differentiation have a pre-defined open chromatin land-

scape for nearly all central transcriptional regulators, irre-

spective of their actual transcription status [8]. A

comparable regulatory structure is also observed in intes-

tinal epithelial cells: despite significant differences in gene

expression levels between secretory and absorptive cells

and their common precursor, they all show similar chro-

matin accessibility landscapes [9��]. An intriguing hypoth-

esis is that an open chromatin state may enable these cells

to react quickly to various stimuli. These observations

make the gut an insightful model to study the dynamic

properties of gene regulatory networks in normal or infec-

tion conditions or in disease contexts.

In this review, we will discuss recent advances in eluci-

dating the gene regulatory mechanisms underlying the

innate immune response in mammals. We will first focus

on generic or tissue-specific macrophages, after which in a

second part we will cover intestinal epithelial cells. We

will end with a perspective on outstanding questions in

the field and highlight the importance that genetically

tractable model organisms such as Drosophila melanogaster
might have in this domain.

The temporal and spatial properties of
macrophage regulatory networks
Gene regulation is controlled by TFs within the context of

chromatin, whose fundamental subunit is the nucleosome.

Each nucleosome consists of an octamer of two copies of

different histones, around which the DNA is wrapped.

Post-translational modifications of histones and DNA

methylation regulate nucleosome compaction that facil-

itates or impedes TFs accessibility. For example, while
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histone modifications such as H3 lysine 4 mono-methyl-

ation, di-methylation and tri-methylation (H3K4me1,

H3K4me2 and H3K4me3) and H3 lysine 27 acetylation

(H3K27ac) facilitate TF binding and the access of the

transcription machinery to DNA, DNA methylation and

H3K27me3 are normally associated with reduced DNA

binding access and gene repression [5].

Macrophages are phagocytic cells of the mammalian innate

immune system that play an important role in tissue

homeostasis. In the steady state, they arise from two

distinct sources: first, continuously recruited from circulat-

ing monocytes in the gut [10], the dermis [11] and the heart

[12], and second, from fetal monocytes and yolk sac pre-

cursors that colonize the whole embryo between E8.5 and

E10.5, becoming self-renewal differentiated tissue-resi-

dent macrophages [13,14,15�]. Similar to other systems

such as mammalian forebrain, heart and liver [16] as well as

cells that arise from hematopoiesis [17�], macrophage

development involves substantial reorganization of the

chromatin landscape [6��,7��]. This is driven by the he-

matopoietic-specific TF PU.1, which acts in combination

with other TFs such as C/EBPa to establish a macrophage-

specific chromatin landscape [7,18��,19,20] (Figure 1).

Tissue-resident macrophages can be found at numerous

anatomical locations, presenting considerable phenotypic

diversity [21��]. Even after differentiation, they can self-

renew in a process mediated by the down-regulation of the

TFs MafB and cMaf and the rewiring of the embryonic

stem cell self-renewal network [22��]. During mouse em-

bryogenesis, the core macrophage program driven by PU.1

is rapidly diversified by the action of lineage-determining

TFs (LDTFs), which integrate specific cues from the

microenvironment to orchestrate the deposition of active

histone modification marks (Figure 1) [6��,7��,23–26]. Rel-

evant LDTFs involved in this process are first, C/EBPb in

lung and peritoneal cavity macrophages [27], second, nu-

clear receptor LXRa in splenic marginal zone macrophages

[28], third, GATA6 in peritoneal cavity macrophages

[24,29], four, PPARg in alveolar macrophages [23,30],

and finally, SPIC in spleen red pulp macrophages

[31,32]. The importance of the microenvironment in mac-

rophage differentiation is highlighted by the fact that

transferring macrophages from one tissue to another ex-

tensively reprograms the enhancer repertoire to a state

similar to the one of the residing cell population [6��].

Interestingly, blood monocyte-derived intestinal macro-

phages also exhibit a high degree of phenotypic diversity

[4]. For example, macrophages residing close to the fecal

contents activate a robust inflammatory response when

the epithelial barrier is damaged. On the other hand,

macrophages that are located deeper in the gut wall

efficiently eradicate microbes that breach the intestinal

epithelial barrier without mounting a potent inflammato-

ry response. This phenotypic difference is orchestrated
www.sciencedirect.com
by interleukin-10 (IL-10), which is secreted locally by T

cells, B cells, dendritic cells, and some epithelial cells to

limit inflammatory responses [33,34]. The gene regulatory

mechanisms controlling this behavior have been recently

examined, revealing that the chromatin accessibility land-

scape of IL-10 knockout intestinal macrophages was simi-

lar to that of inflammatory macrophages. This finding

suggests that IL-10-deficiency alone is sufficient to poise

chromatin for an inflammatory response [35]. Overall, this

extensive crosstalk between the microenvironment,

LDTFs and SDTFs allows macrophages to control sig-

nal-specific transcriptional outputs that are important for

their respective tissue of residency [6��,7��].

Macrophage regulatory dynamics during
inflammation
While the regulatory dynamics of tissue-resident macro-

phages’ response to infection has not yet been addressed,

the acute differentiation of blood monocytes in response

to microbial products as well as pro-inflammatory or anti-

inflammatory cytokines has been well characterized in
vitro [36�]. These signals activate Signal-Dependent TF

(SDTFs) such as NF-kB, STAT factors and nuclear

receptors [19,37]. They mainly regulate three classes of

regulatory sequences: (i) constitutive (open) enhancers

marked by both H3K4me1 and H3K27ac that require no

additional modification, (ii) poised enhancers that feature

basal H3K4me1 and no H3K27ac levels, and that upon

SDTF binding exhibit greater H3K27ac enrichment

[18��,38] and (iii) latent or de novo enhancers that are

devoid of any active marks and acquire both H3K4me1

and H3K27ac upon activation [39��,40]. Latent enhancers

constitute a smaller but important fraction of regulated

sequences as some retain the H3K4me1 mark upon

stimulus removal (i.e. they remain poised), which allows

their faster and stronger activation upon re-exposure to

identical or heterologous stimuli [39��]. Overall, SDTFs

mostly bind to their respective motifs in pre-existing,

accessible genomic regulatory sequences (classes i and ii),

which might explain why they respond so rapidly to

environmental signals [8]. SDTFs then activate directly

(class i) or recruit chromatin modifiers to inhibit (class i) or

promote (classes ii and iii) the transition of either non-

accessible or accessible but inactive (poised) states to

fully active enhancers. Thus, by combining stimulus-

driven SDTF and environment-driven LDTF activation

in an already partially pre-configured chromatin land-

scape, macrophages induce qualitative and quantitative

tissue-specific transcriptional programs [8,39��,40].

Characteristics of developmental and
inflammation-responsive regulatory networks
in intestinal epithelial cells
The mammalian intestinal epithelium is an important

component in the maintenance of gut homeostasis. An-

atomically, it is composed of a single cell layer organized in

villi and crypts. The crypt provides a protected niche for
Current Opinion in Genetics & Development 2017, 43:46–52



48 Genome architecture and expression

Figure 1
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Tissue and environmental signals shape differential gene expression programs in macrophages (a) Left — an early macrophage progenitor has

accessible chromatin landscape (H3K4me1 marked), also bound by PU.1. Middle — upon local environmental signals, the tissue-specific LDTFs

(PPARg in alveolar macrophages, SPIC in spleen macrophages, and GATA6 in peritoneal cavity macrophages) cooperate with PU.1 at H3K4me1-

marked regions and activate the expression of genes with roles in tissue-specific functional pathways. Right — after an environmental challenge, that

is, infection or injury, SDTFs such as NF-kB bind and activate open (H3K4me1 and H3K27ac) and poised enhancers (H3K4me1 and no H3K27ac) and

de novo enhancers (devoid of chromatin modifications, not shown). (b) Upon recruitment to different locations in the body, adult blood monocytes

differentiate into inflammatory macrophages by integrating the regulatory inputs of both lineage-determining TFs (LDTFs) and signal-dependent TFs

(SDTFs) using a globally accessible chromatin landscape.
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Figure 2
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Intestinal epithelial gene regulation during differentiation (a) intestinal stem cells are intercalated with Paneth cells at the crypt base, and

continuously differentiate into the various functional cells on the villi. CDX2 is a master regulator of epithelial differentiation and is present at most

open chromatin regions in all cell types. Therefore, intestinal stem cells and terminally differentiated enterocytes and secretory cells have similar

accessible (permissive) chromatin landscapes (with the H3K4me1 modification) and cell-specific gene expression is achieved by TFs such as

ATOH1 in secretory cells, while in enterocytes, Atoh1 expression is inhibited by HES1. After an environmental challenge, SDTFs such as NF-kB

may also make use of the accessible chromatin landscape to control gene expression. Question marks represent hypothesized mechanisms that

have not yet been formally assessed.
intestinal stem cells, which migrate upwards and differen-

tiate into enterocyte and secretory (enteroendocrine, gob-

let, or Paneth cells) lineages, in a process that is dependent

on Notch signaling [41]. Absorptive enterocytes constitute

around 90% of the intestine, while most of the others are

cells from the secretory lineage (Figure 2). Besides ab-

sorbing nutrients and providing a physical barrier, they

make use of innate immune receptors to sense the luminal

microbial composition. This in turn allows them to orches-

trate the recruitment of macrophages and dendritic cells,

and the migration and differentiation of lymphoid cells at

the sub-epithelial connective tissue. Moreover, intestinal

epithelial cells also fight the infection directly given their

ability to produce antimicrobial proteins and peptides,

reactive oxygen species, and several proinflammatory

cytokines [42].

There are several key TFs that regulate intestinal epithe-

lial development, maintenance, and proliferation. Among

them, CDX2 might be the most important as it is essential

for the specification of all intestinal epithelia during mouse

endoderm development [43] and required for epithelial

cell identity in the adult [44]. CDX2 binds to many regions

marked with H3K4me2, a modification associated which
www.sciencedirect.com
enhancers and promoters. In addition, mice that are defi-

cient in Cdx2 displayed overall reduced H3K4me2 levels,

which affected the binding of other partner TFs [45]. But

contrary to the canonical development model in which the

chromatin landscape of differentiating cells becomes pro-

gressively more restricted, reflecting cell identity, the

different adult intestinal epithelial cells all have similar

accessible chromatin profiles. For example, DNA meth-

ylation, which typically acts to repress gene transcription

and is widely regarded as essential for normal develop-

ment, did not change substantially between progenitor

stem cells and adult epithelial cells [46–48]. Furthermore,

adult intestinal stem cells and their progeny exhibited

similar accessible chromatin landscapes, as illustrated by

H3K4me2, H3K27ac and DNase I hypersensitivity levels

(which all reveal accessible chromatin regions) [9��]. Thus,

intestinal epithelial cell development does not seem to

require differential chromatin priming, but instead

appears to rely on the differential activity of TFs to

activate cell-type specific transcriptional programs. For

example, while the TF ATOH1 activates the transcription

of secretory genes in the secretory lineage, its expression

in the absorptive lineage is repressed by HES1 through

Notch signaling [41]. Together, these findings support the
Current Opinion in Genetics & Development 2017, 43:46–52
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notion that differentiation-related genes are already

primed for expression in the intestinal stem cell, and that

fate choices in the intestinal epithelium are rooted at the

gene expression level, as controlled by TFs that operate in

a permissive chromatin environment.

One still poorly studied, yet interesting question is how

the chromatin landscape responds to microbial coloniza-

tion and to pathogenic infection. A study of mouse

intestinal epithelial cells reared in the presence or ab-

sence of microbiota observed that although gene expres-

sion programs in these conditions were different, the

accessible chromatin landscapes were similar [49��].
These findings suggest that, as in the differentiation

process, the transcriptional response of intestinal cells

to the microbiota is regulated mainly by the differential

binding of SDTFs, independently of changes in chroma-

tin accessibility. One hypothesis is that in cells with such

a short lifespan of 3–5 days [50], it may be more effective

to have inducible TFs operating in an already accessible,

and therefore permissive, chromatin landscape to respond

to an insult. Comprehensive experimentation in other cell

types that have also a relatively medium to high turnover

and are equally capable of mounting an innate response

such as lung epithelial cells [51] or skin keratinocytes [52]

may allow us to derive a more general picture. The

elucidation of how SDTFs respond to microbial agents

to control the transcriptional programs underlying the

epithelial response to infection promises therefore to

be an exciting area for future research.

Conclusions and outlook
In recent years, much progress was made in our under-

standing of the regulatory networks that mediate the

innate immune response in the gastrointestinal tract,

leading to the emergence of interesting new questions.

For example, will tissue-resident macrophages react as

dynamically to environmental stimuli as monocyte-de-

rived macrophages? Will these responses involve epige-

nomic modifications of the chromatin landscape? It will in

this regard be interesting to examine the chromatin

dynamics of tissue-resident macrophages during devel-

opment, where TF activity may be shaped by the local

environment to establish the appropriate chromatin land-

scape that in turn may tune cell identity. Nevertheless,

studying tissue-resident macrophages from mammals as

well as the intestinal epithelial response in different

infection conditions might prove rather difficult, because

of the difficulties associated with acquiring reasonable

cell numbers for chromatin related studies, and the ex-

perimental set-up in general. In addition, when cultured

in vitro, macrophages lose their tissue-specific chromatin

signatures [7��]. Although many of the methodologies

utilized in chromatin studies have been considerably

improved in terms of efficiency and sensitivity (e.g.

[17�]), we think that more genetically tractable model

organisms such as D. melanogaster will in this regard
Current Opinion in Genetics & Development 2017, 43:46–52
continue to play an important role in elucidating innate

immunity-linked regulatory properties. Indeed, Drosoph-
ila was fundamental for the discovery of Toll surface

receptor’s role in pathogen recognition [53��], has con-

tributed to elucidate interactions between gut cells and

microbiota [54], and is gaining importance as a useful

model to study the etiology of gut-related pathologies

[55]. Importantly, the use of Drosophila allows assessing

the impact of different infection states (i.e. no, mild, or

severe infection) on distinct, but constant genetic back-

grounds through the use of inbred fly lines [56�]. In

addition, it is proving an ideal model to study the molec-

ular and physiological role of the intestinal microbiota in

post-embryonic development and homeostasis [57–59].

Finally, the Drosophila community has generated an

extensive experimental toolkit including TF clone librar-

ies [60] and TF overexpression fly lines [61], in vivo
transgenic enhancer lines [62,63] as well as genome

engineering tools such as CRISPR [64–66], rendering

the Drosophila gut an ideal model to achieve a level of

mechanistic, regulatory understanding that may currently

be unattainable for the mammalian gastrointestinal tract.
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