000229732 001__ 229732
000229732 005__ 20180913064425.0
000229732 0247_ $$2doi$$a10.1002/cssc.201601632
000229732 022__ $$a1864-5631
000229732 02470 $$2ISI$$a000401165900030
000229732 037__ $$aARTICLE
000229732 245__ $$aDetermination of Conduction and Valence Band Electronic Structure of LaTiOxNy Thin Film
000229732 260__ $$aWeinheim$$bWiley-V C H Verlag Gmbh$$c2017
000229732 269__ $$a2017
000229732 300__ $$a8
000229732 336__ $$aJournal Articles
000229732 520__ $$aThe nitrogen substitution into the oxygen sites of several oxide materials leads to a reduction of the band gap to the visible-light energy range, which makes these oxynitride semiconductors potential photocatalysts for efficient solar water splitting. Oxynitrides typically show a different crystal structure compared to the pristine oxide material. As the band gap is correlated to both the chemical composition and the crystal structure, it is not trivial to distinguish which modifications of the electronic structure induced by the nitrogen substitution are related to compositional and/or structural effects. Here, X-ray emission and absorption spectroscopy are used to investigate the electronic structures of orthorhombic perovskite LaTiOxNy thin films in comparison with films of the pristine oxide LaTiOx with similar orthorhombic structure and cationic oxidation state. Experiment and theory show the expected upward shift in energy of the valence band maximum that reduces the band gap as a consequence of the nitrogen incorporation. This study also shows that the conduction band minimum, typically considered almost unaffected by nitrogen substitution, undergoes a significant downward shift in energy. For a rational design of oxynitride photocatalysts, the observed changes of both the unoccupied and occupied electronic states have to be taken into account to justify the total band-gap narrowing induced by the nitrogen incorporation.
000229732 6531_ $$aelectronic structure
000229732 6531_ $$aoxynitrides
000229732 6531_ $$apulsed laser deposition
000229732 6531_ $$asolar water splitting
000229732 6531_ $$aspectroscopy
000229732 700__ $$aPichler, Markus$$uPaul Scherrer Inst, Res Neutrons & Muons Div, CH-5232 Villigen, Switzerland
000229732 700__ $$aSzlachetko, Jakub$$uPaul Scherrer Inst, CH-5232 Villigen, Switzerland
000229732 700__ $$aCastelli, Ivano E.$$uEcole Polytech Fed Lausanne, Theory & Simulat Mat & Natl Ctr Computat Design &, CH-1015 Lausanne, Switzerland
000229732 700__ $$0246415$$aMarzari, Nicola$$g210230$$uEcole Polytech Fed Lausanne, Theory & Simulat Mat & Natl Ctr Computat Design &, CH-1015 Lausanne, Switzerland
000229732 700__ $$aDobeli, Max$$uSwiss Fed Inst Technol, Ion Beam Phys, CH-8093 Zurich, Switzerland
000229732 700__ $$aWokaun, Alexander$$uPaul Scherrer Inst, Res Neutrons & Muons Div, CH-5232 Villigen, Switzerland
000229732 700__ $$aPergolesi, Daniele$$uPaul Scherrer Inst, Res Neutrons & Muons Div, CH-5232 Villigen, Switzerland
000229732 700__ $$aLippert, Thomas$$uPaul Scherrer Inst, Res Neutrons & Muons Div, CH-5232 Villigen, Switzerland
000229732 773__ $$j10$$k9$$q2099-2106$$tChemsuschem
000229732 909C0 $$0252461$$pTHEOS$$xU12411
000229732 909CO $$ooai:infoscience.tind.io:229732$$pSTI$$particle
000229732 917Z8 $$x210230
000229732 937__ $$aEPFL-ARTICLE-229732
000229732 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000229732 980__ $$aARTICLE