Files

Abstract

Circadian clocks are autonomous daily timekeeping mechanisms that allow organisms to adapt to environmental rhythms as well as temporally organize biological functions. Clock-controlled timekeeping involves extensive regulation of rhythmic gene expression. To date, relatively few clock-associated promoter elements have been identified and characterized. In an unbiased search of core clock gene promoters from 12 species of Drosophila, we discovered a 29-bp consensus sequence that we designated as the Clock-Associated Transcriptional Activation Cassette or 'CATAC'. To experimentally address the spatiotemporal expression information associated with this element, we generated constructs with four separate native CATAC elements upstream of a basal promoter driving expression of either the yeast Gal4 or firefly luciferase reporter genes. Reporter assays showed that presence of wild-type, but notmutated CATAC elements, imparted increased expression levels as well as rhythmic regulation. Part of the CATAC consensus sequence resembles the E-box binding site for the core circadian transcription factor CLOCK/CYCLE (CLK/CYC), and CATAC-mediated expression rhythms are lost in the presence of null mutations in either cyc or the gene encoding the CLK/CYC inhibitor, period (per). Nevertheless, our results indicate that CATAC's enhancer function persists in the absence of CLK/CYC. Thus, CATAC represents a novel cis-regulatory element encoding clock-controlled regulation.

Details

Actions

Preview