000229555 001__ 229555
000229555 005__ 20181203024742.0
000229555 0247_ $$2doi$$a10.1016/j.biomaterials.2017.03.047
000229555 022__ $$a0142-9612
000229555 02470 $$2ISI$$a000401210000005
000229555 037__ $$aARTICLE
000229555 245__ $$aVaccine nanocarriers: Coupling intracellular pathways and cellular biodistribution to control CD4 vs CD8 T cell responses
000229555 260__ $$bElsevier Sci Ltd$$c2017$$aOxford
000229555 269__ $$a2017
000229555 300__ $$a11
000229555 336__ $$aJournal Articles
000229555 520__ $$aNanoparticle delivery systems are known to enhance the immune response to soluble antigens (Ags) and are thus a promising tool for the development of new vaccines. Our laboratory has engineered two different nanoparticulate systems in which Ag is either encapsulated within the core of polymersomes (PSs) or decorated onto the surface of nanoparticles (NPs). Previous studies showed that PSs are better at enhancing CD4 T cells and antibody titers, while NPs preferentially augment cytotoxic CD8 T cells. Herein, we demonstrate that the differential activation of T cell immunity reflects differences in the modes of intracellular trafficking and distinct biodistribution of the Ag in lymphoid organs, which are both driven by the properties of each nanocarrier. Furthermore, we found that Ags within PSs promoted better CD4 T cell activation and induced a higher frequency of CD4 T follicular helper (Tfh) cells. These differences correlated with changes in the frequency of germinal center B cells and plasma cell formation, which reflects the previously observed antibody titers. Our results show that PSs are a promising vector for the delivery of Ags for B cell vaccine development. This study demonstrates that nanocarrier design has a large impact on the quality of the induced adaptive immune response. (C) 2017 Published by Elsevier Ltd.
000229555 6531_ $$aVaccine design
000229555 6531_ $$aAntigen presentation
000229555 6531_ $$aT follicular helper cells
000229555 6531_ $$aGerminal center
000229555 6531_ $$aDendritic cells
000229555 700__ $$uEcole Polytech Fed Lausanne, Inst Bioengn, Lausanne, Switzerland$$aRincon-Restrepo, Marcela
000229555 700__ $$uEcole Polytech Fed Lausanne, Inst Bioengn, Lausanne, Switzerland$$aMayer, Aaron
000229555 700__ $$uEcole Polytech Fed Lausanne, Inst Bioengn, Lausanne, Switzerland$$aHauert, Sylvie
000229555 700__ $$uEcole Polytech Fed Lausanne, Inst Bioengn, Lausanne, Switzerland$$aBonner, Daniel K.
000229555 700__ $$uEcole Polytech Fed Lausanne, Inst Bioengn, Lausanne, Switzerland$$aPhelps, Edward A.
000229555 700__ $$0240350$$g141360$$uEcole Polytech Fed Lausanne, Inst Bioengn, Lausanne, Switzerland$$aHubbell, Jeffrey A.
000229555 700__ $$0242992$$g160091$$uEcole Polytech Fed Lausanne, Inst Bioengn, Lausanne, Switzerland$$aSwartz, Melody A.
000229555 700__ $$aHirosue, Sachiko$$uEcole Polytech Fed Lausanne, Inst Bioengn, Lausanne, Switzerland
000229555 773__ $$j132$$tBiomaterials$$q48-58
000229555 909C0 $$0252196$$pLMRP$$xU11032
000229555 909C0 $$xU11747$$0252115$$pLLCB
000229555 909CO $$particle$$ooai:infoscience.tind.io:229555
000229555 937__ $$aEPFL-ARTICLE-229555
000229555 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000229555 980__ $$aARTICLE