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Abstract
The role of pre-existing mobile and immobile dislocation densities on the
evolution of geometrical necessary dislocation densities (GNDs) during cyclic
fatigue in shear is studied using a continuum dislocation-based model incor-
porated in a crystal plasticity finite element scheme. Clusters with different
immobile dislocation densities are implemented in a homogeneous medium
containing a certain mobile dislocation density. It is found that whether GND
walls are formed around the initial immobile cluster (or not) strongly depends
on the absolute values of initial mobile dislocation density and on the ratio
between mobile and immobile densities. The results are discussed in terms of
the apparent GND densities experimentally obtained using Laue micro-
diffraction.
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1. Introduction

Cyclic fatigue of FCC metals is a phenomenon that leads to microstructural changes and
eventually to material damage as a consequence of the accumulated plastic deformation
caused by the to-and-fro motion of dislocations. These line defects interact and form dis-
location patterns, whose characteristics are strongly dependent on the loading conditions [1].
During single slip cyclic deformation at low strain amplitude, the so-called ‘vein-channel’
structure forms [2]: veins are regions with high dislocation density constituted mainly of edge
dislocations in the form of dipoles, while channels are almost empty of edge dislocations.
During early stages of fatigue, the presence of pre-existing dislocation agglomerations
represents a barrier for the motion of dislocations and opposite signed gliding dislocations can
get blocked around these ensembles. This gives rise to crystal lattice curvatures which can be
described by geometrically necessary dislocations (GND) [3]. It has been reported that in
fatigued structures the GND density deposited at the perimeter of dipolar bundles is about 1%
of the total dislocation density [4] and that they create a small misorientation around the line
direction of the primary edge dislocation [5]. There is however a lack of quantitative data on
the misorientation caused by a forming vein.

Computationally, the influence of pre-existing dislocation densities in fatigued samples
has been addressed in relation to the sample size and/or the grain size. 3D-DDD simulations
showed that there is a critical sample size of 2 μm below which no cell structures can be
obtained in multiple slip oriented cycled single crystals independently of the initial dislocation
density. For larger samples, a minimum dislocation density is required in order to form
patterning. The patterning is observed to depend on the crystal size [6]. On the other hand,
simulations performed with a reaction-diffusion 1D continuum model [7] suggested that no
clear dislocation wall pattern is formed during cycling when the grain size is below 1 μm and
the initial immobile dislocation density is 1 μm−2. Under these conditions there are no
immobile dislocations inside the grain. However, when keeping the same value of the
immobile dislocation density but increasing the grain size, i.e. including immobile disloca-
tions inside the grain, walls are formed first close to the grain boundary and then also inside
the grain. These studies indicate that the presence of initial immobile dislocations plays a role
in the early stages of fatigue; however they do not provide information on the spatial dis-
tribution of the lattice rotations.

Coupling 3D dislocation dynamics with a 3D finite element methods (FEM) allows to
simulate the crystal lattice rotation induced by plastic deformation, using the polar decom-
position of the elastic deformation gradient [8], as it has been shown for the 3D cell structures
formed after monotonic uniaxial tensile loading [9–13]. The description of GND requires a
constitutive model that takes into account the sign (positive or negative) of dislocation
densities [14]. Recently dislocation-based rate equations have been implemented in a crystal
plasticity FEM (CPFEM) scheme to reproduce dislocation structures during cyclic fatigue
starting from a perfect single crystal [15]. A systematic investigation of the effect of initial
immobile dislocation clusters on the evolution of lattice rotation during early fatigue with
CPFEM models has not been performed though. In addition quantitative experimental data
would be required to validate such simulations.

The evolution of the crystal rotation during early stages on cyclically deformed copper
single crystal oriented for single slip was analyzed with Laue micro-diffraction in transmis-
sion mode [16]. A sample with gauge thickness of 30 μm was subjected to 120 shear cycles
while applying a multiple step test methodology: the displacement amplitude was kept
constant during a certain number of cycles and subsequently increased to a higher level before
applying more cycles. Using a similar approach as in EBSD [17, 18], the local orientation
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matrix was determined by indexing each diffraction pattern collected in an area of
10×25 μm2 with a step size of 300 nm. Afterwards the distribution of lattice curvature was
calculated by computing the change in misorientation of two neighboring points as suggested
in [19]. Assuming small elastic strains, rotation and/or elastic strain gradients, Nye’s formula
was used to relate lattice curvatures to GND density components [20]. From there, the
apparent GND density [21] was calculated by summing the accessible dislocation density
tensor components divided by the Burgers vector (see figure A1). Further details about
mechanical test and data analysis can be found in [16].

Before cycling the sample contained a certain amount of dislocations due to sample
preparation and sample handling. It can be assumed that because of single slip orientation,
some of these dislocations are mobile, while others are immobile. Figure 1 shows the
evolution of misorientation and apparent GND density in three different regions during

Figure 1. Evolution of misorientation and apparent GND traces upon cycling in three
regions, reproduced with permission from [16], copyright 2016 Elsevier. For
explanation see text.
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cycling [16]. These regions are sections that are part of a larger region as in figure A1 and
in [16].

• Region 1 contains at the beginning sub-regions with only very small variations in
misorientation, whose borders are marked by non-zero values of apparent GND density
traces. These initial misorientations homogenize during cycling and the apparent GND
traces disappear.

• Region 2 includes a higher initial misoriented area of approximately 0.14° that slowly
disappears during cycling. Initially apparent GND traces mark the perimeter of this
misoriented area but there are also several other GND traces contained in region 2
connected with lower misoriented areas. After 120 cycles, the absolute values in the
misorientation map are similar to the one of region 1. There are, however, several
apparent GND traces still present and their densities are in fact higher than those before
cycling. Note that the traces are mainly located in the area with initial low misorientation.

• Region 3 shows initially a highly misoriented area of 0.22°. This area is surrounded by
high density apparent GND traces. During cycling, the misoriented area fragments but
never vanishes. During the last cycles, it reconstructs and expands, remaining marked by
high density apparent GND traces.

It is interesting to note that the three regions contain initially non-negligible apparent
GND density traces of the order of 60 μm−2 or higher. Yet the evolution in these regions after
120 cycles is very different: homogenization with no final apparent GND traces (region 1),
increase in number and density of apparent GND traces (region 2) or reorganization of traces
while keeping high density values (region 3) can be observed. The results suggest a time
evolution in dislocation patterning during the initial fatigue stages that is affected by the
presence of pre-existing dislocation structures and their mobility during cycling.

Here, the effect of pre-existing dislocation agglomerations, in the following referred as
‘cluster of immobile dislocations’, on the microstructural evolution is studied during cyclic
fatigue. A continuum dislocation-based model in CPFEM framework is employed [15, 22],
allowing access to both dislocation density and crystal lattice rotation evolution. Cyclic
simulations in a volume of 5×5×1 μm3 are carried out, showing formation and evolution
of GND walls formed around the dislocation cluster. The effect of the initial density of
immobile dislocations in the cluster and the ratio between mobile and immobile dislocation
densities on the formation and evolution of GND walls is investigated. The different simu-
lations are discussed in relation to the experimental observations shown in figure 1.

2. Computational method

2.1. The CPFEM

This computational method is based on the decomposition of the deformation gradient F into
an elastic and plastic part: = ⋅F F F .e p The plastic deformation gradient evolves based on the
activity of all the slip systems of the FCC crystal [23]:

åg⋅ = Ä
a

a a a-

=

  ( )F F m n , 1p p p
1

1

12

where am and an are the slip direction and slip plane normal of the slip system α. In
dislocation-based models, the plastic strain rate gap is given by Orowan’s law:
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g r=a a a ( )v b, 2p m

where ram is the mobile dislocation density on the slip system α, b is the Burgers vector and av
is the dislocation velocity. In this work the DAMASK subroutine is used [24], which allows
implementing user-defined rate equations for the dislocation densities.

2.2. Dislocation-based rate equations

The dislocation-based rate equations used in this work have been developed specifically for
cyclic fatigue and they are able to reproduce dislocation structures [15]. The model has eight
state variables for every slip system. Four of them (indicated by r +,e r -,e r +s and r -s )
represent straight edge and screw dislocation lines, which have no curvature. Other four
densities (indicated by r + +,e s, r + -,e s, r - +,e s, and r - -e s, ) are dislocation segments connecting
straight edge and screw dislocations and they are curved, therefore they are responsible for the
dislocation multiplication [25]. This particular choice of state variables is motivated by the
geometry of the vein-channel structure expected in fatigued single slip oriented copper single
crystals. Veins are constituted of straight edge dislocations (r +e and r -e ), while screw dis-
locations (r +s and r -s ) glide in the middle of channels and have low curvature. The dis-
location segments connecting edge and screw dislocations have the highest curvature. If rc is
the density of dislocations with character c, its time evolution equation is given by:

r r r r r= + + -  ⋅a a a a    ( ) ( )v , 3c c c c c c,mult ,ann ,CS

where each term models a specific dislocation process, such as multiplication, annihilation
and cross slip, as defined in table 1. The last term in equation (3) describes the disloation
fluxes and the direction of


vc is perpendicular to the dislocation line.

2.3. Dislocation kinetics and interactions

The relation between dislocation velocity and resolved shear stress is assumed linear [15, 26],
and the stress to move dislocations is given by the sum of Peierls stress (t = 0.5P MPa for
copper [27]) and threshold stress:

Table 1. Rate equations for the different dislocation processes considered in the model.
ce is the character of edge dislocations (e+or e−), cs is the character of screw dis-
locations (s+or s−). The bar over ce and cs indicates opposite Burgers vector. d̂e and d̂s

are the characteristic annihilation distance for edge and screw dislocations. lc is an
average dislocation segment length and b is the cross slip coefficient.

Dislocation process Rate equation
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Dislocation annihilation r r r= -a a a a
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Cross slip r
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where rh is the total dislocation density on the slip system h and the FCC interaction
coefficients xah [28] are used. The simulations in our manuscript are carried out in strain
control (see section 2.4); therefore, the characteristic length travelled by one dislocation does
not depend on the specific velocity–stress equation used according to Orowan’s law. Under
these conditions, the velocity can be approximated as linear function of the resolved shear
stress, allowing to be computationally efficient. The long-range dislocation–dislocation
interactions are also included in the CPFE method which uses dislocation fluxes [29, 30], as
described by the last term in equation (3). These are due to the motion of dislocations, which
can travel through neighboring integration points of the finite element mesh, inducing plastic
deformation. Gradients of the plastic slip are caused by obstacles for the dislocation motion
(e.g. dislocation structures). Therefore, compatible elastic strains and the corresponding
equilibrated stresses will be present in order to satisfy strain compatibility and stress
equilibrium. These stresses will correspond to the stress field of GNDs.

Several existing methods take into account the long-range internal stresses. In the model
developed by Groma et al [31], for instance, long-range dislocation–dislocation interactions are
calculated by averaging the stress field of individual dislocations over a statistical ensemble and
the model uses a constant external stress field. On the other hand, models that do not include
dislocation fluxes between integration points use a non-local backstress measure [32]. This
backstress term is subtracted from the effective shear stress in order to take into account the long
range stress induced by GNDs, and the GND density is directly calculated from the gradient of
the plastic slip. The major differences between these models and the CPFE method used in the
present paper are that here arbitrary stress fields and boundary conditions can be modelled and
that GNDs are induced by gradients of the dislocation flux.

2.4. Simulated volume and boundary condition

The representative volume used in the simulations is a parallelepiped with dimensions
10×10×1 μm3 along the x, y and z axes, as shown in figure 2(a). The central part
(5× 5× 1 μm3) is modelled using the dislocation-based plasticity model explained in
section 2.2, while the surrounding is described by von Mises plasticity [33]. In that volume,

Figure 2. (a) Representative volume and mesh. (b) Part of the representative volume
where the dislocation-based plasticity is used and position of the dislocation cluster.
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the plastic strain rate is given by:

g g=  ( ) ( )J g , 5o
n

2

where go is a reference strain rate, n is the stress exponent and J2 is the von Mises equivalent
stress. The flow stress g evolves as:

g= - -a
¥ ¥  ∣ ∣ ( ) ( )g h g g g g1 sign 1 , 6o

where h ,o a are parameters and ¥g is the saturation flow stress. The parameters of the von
Mises model for copper are reported in table 2.

The parameters of von Mises plasticity model are selected to match the hardening
behavior of the dislocation-based plasticity model, i.e. to obtain the same saturation stress
after cyclic deformation. Therefore, boundary effects may appear at the interface due to a
difference of hardening behavior of the two material models as is discussed in section 3. The
mesh size used is 200 nm. The cluster of immobile dislocations, with density r ,imm is placed
parallel to the z axis. The dimensions of the cluster are 1×1×1 μm3 along the coordinate
axes and its position in the x–y plane is displaced 0.5 μm with respect to the center of the
geometry, as shown in figure 2(b).

Periodic dislocation fluxes are used on the surface of the dislocation-based plasticity
region. The displacement is imposed along the external surface in order to induce pure shear
in the central region, as shown in figure 3. In this configuration, the crystal is oriented for
single slip with the normal of the (111) primary slip plane parallel to the x-axis and the
primary Burgers vector parallel to y-axis. The function U(t) is chosen to simulate the
experimental strain amplitudes applied in [16] and it varies linearly between two extreme
values depending on the cycle number N in a time interval Δt=0.2 s, as shown in figure 4.
The strain rate g( ˙ )xy is around 0.05÷0.1 s−1.

Simulations are carried out with different initial rimm in the cluster and different ratios of
initial mobile r( )mob to immobile dislocation densities, as reported in table 3. The different
simulations are indicated by ‘Im3-R0.33’, ‘Im3-R0.05’, ‘Im20-R0.05’ and ‘Im100-R0.05’.
The number after ‘Im’ is the initial rimm in μm−2 and the number after ‘R’ is the ratio. Initial
random fluctuations with a value up to 10% are added to the mobile dislocation densities.
These dislocation densities are chosen in order to make a systematic investigation of the effect
of initial immobile dislocation clusters during early fatigue. Besides, they create similar
rotation values (�0.2°), as the experimental values shown in figure 1 and reported in [16],
allowing easy comparison.

Table 2. Parameters of the von Mises model for copper [34, 35].

Parameter Value Unit
go ´ -1 10 10 -s 1

n 20
=( )g t 0 10 MPa

¥g 28 MPa

ho 100 MPa
a 2.5
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3. Results and discussion

3.1. Influence of the ratio between the initial mobile and immobile densities

The effect of the ratio between mobile and immobile dislocation densities on the micro-
structural evolution is investigated by examining the edge GND density r r-+ -( )e e of the
primary slip system during the early fatigue cycles where the displacement amplitude is kept
constant (N<10). The pre-existing cluster of immobile dislocations represents an initial
heterogeneity and it obstacles the motion of primary edge dislocations along the Burgers
vector direction, creating a GND wall. When the load is reversed, edge dislocations move
along opposite direction, but the GND wall does not fully disappear even if the applied
displacement is zero (U(t) =0). The reason behind is that the dislocations in the forming
GND wall increase the threshold stress t ,th

1 which during reverse loading prevents part of the
GNDs to move to their original position. That is why the evolution of t th

1 during the early
cycles is analyzed in parallel.

Figure 3. Boundary conditions.

Figure 4. Maximum and minimum values of the applied displacement as a function of
the number of cycles N.

Table 3. Initial values of the dislocation densities.

Initial dislocation densities
(t=0) (μm−2)

Im3-
R0.33

Im3-
R0.05

Im20-
R0.05

Im100-
R0.05

rimm 3 3 20 100

r +,e r -,e r +,s r -s 1 0.15 1 5

r + +,e s, r + -,e s, r - +,e s, r - -e s, 0.02 0.003 0.02 0.1
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Figure 5 shows the evolution of edge GND density r r-+ -( )e e of the primary slip

system and of t th
1 of Im3-R0.33 and Im3-R0.05, where the following is observed:

• In Im3-R0.33 GND walls are already formed after one cycle. More cycles are required to
observe wall formation in Im3-R0.05 due to a lower initial r .mob After the first cycle both
cases show that t th

1 is higher where the initial immobile cluster is located than in the
surroundings. The absolute t th

1 values in Im3-R0.33 are higher than in Im3-R0.05.
• After 3 cycles GND walls are still visible for both cases, but the GND walls in Im3-R0.33
start dissociating. The analysis of t th

1 distribution shows that in Im3-R0.33 the
surroundings of the initial cluster have patterned spots with high values. In the Im3-
R0.05 case, on the other hand, the t th

1 distribution is still higher in the immobile cluster
and rather uniform in the surroundings.

• From cycles 5 to 9 the evolution in both cases is very different. In the case of higher
initial rmob (Im3-R0.33), the GND walls completely dissociate and the values of t th

1 in the
patterns increase, as well as the average value. On the other hand, in the low initial rmob

Figure 5. Relationship between the geometrically necessary edge dislocation density
r r-+ -( )e e and the threshold stress on the primary slip system for two different values
of the mobile dislocation density.
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case (Im3-R0.05) the GND walls become very pronounced and the corresponding GND
density increases upon cycling. The threshold stress t th

1 shows maximum values at the
interfaces of the immobile cluster where edge dislocations are being accumulated. From
cycles 7 to 9, dislocation multiplication starts also getting noticeable in the initially-
cluster-free areas (distributed spots with high t th

1 values) but the pattern is less
pronounced than in Im3-R0.33 case.

These results indicate that stable GND walls form if t th
1 is higher inside the immobile

cluster and at its interface with the surrounding region (Im3-R0.05). If the initial rmob is high
enough (Im3-R0.33), dislocation multiplication leads also to higher values of t th

1 in the
surrounding region. Thus, the forming fatigue dislocation structures become the main
obstacles to the motion of mobile dislocations rather than the initial immobile dislocation
cluster.

3.2. Influence of the initial immobile density

In this section the microstructural evolution of Im3-R0.33 and Im3-R0.05 after further cycles
is investigated. Concurrently, Im20-R0.05 and Im100-R0.05 are analyzed to determine the
effect of the initial r .imm Figure 6 shows the evolution of edge GND density r r-+ -( )e e of
the primary slip system from cycle 10 to 50 in the four cases with the same scalebar and
figure 7 shows the corresponding evolution of the average and the l2 distance between the
function r r-+ -( )e e at different number of cycles. The following conclusions can be drawn:

• By comparing the averaged values after 10 cycles in figure 7, it is observed that higher
initial rmob and rimm values lead to higher GND density values. After the initial cycles,
Im100-R0.05 has the highest average edge GND density, followed by Im20-R0.05, Im3-
R0.33 and finally Im3-R0.05 (initial rmob of 5, 1, 1 and 0.15 respectively μm−2). This
trend is kept when applying further cycles. Interestingly, the evolution curves of Im20-
R0.05 and Im3-R0.33, both having same initial rmob but different r ,imm are almost
parallel.

• In all R=0.05 cases, GND walls are observed to form around the initial cluster after 10
cycles independently of initial r .imm For the low initial rimm (Im3-R0.05), the walls are
fragmented though. In the Im3-R0.33 case, the walls have already been dissociated (see
figure 5 and corresponding explanation).

• The evolution of the formed GND walls depends strongly on rimm and R. For low rimm
(Im3-R0.05) the fragmented walls show a formation of a substructure with alternating
edge GND density r r-+ -( )e e in each wall. This substructure formation occurs from 10
cycles on. For high rimm values (Im100-R0.05) a higher number of cycles is required
before observing partial dissociation of walls after 40 cycles. In the particular case of
Im20-R0.05, the formed GND walls are stable during the applied cycles.

• In all four cases, the GND distribution remains stable after the displacement jump at 40
cycles. Actually, the evolution of the curves in figure 7 show stability on all four cases.

• After 50 cycles, each case has a particular edge GND density r r-+ -( )e e distribution.

These results indicate that the initial rimm has an effect on the evolution of GNDs. In
order to gain a better understanding, the t th

1 distribution is examined. Figure 8 shows the
threshold stress t th

1 of the primary slip system as a function of the number of cycles N for
Im3-R0.33, Im3-R0.05, Im20-R0.05 and Im20-R0.05 cases from cycle 10 to 50 with the same
scalebar and the corresponding evolution of the average and the l2 distance in figure 9. It is
observed that:
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• The values of the patterned t th
1 distribution of Im3-R0.33 already observed at earlier

cycles (see figure 5 and corresponding explanation) increase upon further cycling as it can
be noticed in figure 8. On the other hand, the trend of the average curve in figure 9 is
rather steady with slight increase during the last 10–20 cycles even if there is no evident
change in the distribution.

• For the same rimm but lower initial rmob (Im3-R0.05), t th
1 has higher values at the

interface of the immobile cluster and patterning in the surrounding region becomes
observable. The averaged value is however lower than in Im3-R0.33. The applied cycles
do not change the t th

1 distribution but slightly increases the averaged values. Note that the
substructure in the GND walls forms with constant t th

1 values.

Figure 6. Geometrically necessary edge dislocations r r-+ -( )e e averaged over depth
(z-axis) at different number of cycles N and for different mobile and immobile
dislocation densities with same scalebar.
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• The qualitative behavior of Im20-R0.05 is analogue to the early stages of Im3-R0.05 (see
corresponding evolution during first cycles in figure 5). Dislocations accumulate at the
interface of the immobile cluster where t th

1 is highest and GND walls form. Patterning
also evolves in the surrounding region. In fact it is more evident than in Im3-R0.05 due to
higher initial r .mob Note that the t th

1 values inside the cluster are still high and do not
lower as it was observed in Im3-R0.05 from cycle 5 to 9 (see figure 5). Interestingly and
similar to what it was observed in figure 7, the evolution curves of Im20-R0.05 and Im3-
R0.33, both having same initial rmob but different r ,imm are almost identical.

• In the extreme case of Im100-R0.05, the behavior of t th
1 is similar to the first few cycles

of Im3-R0.05 (see figure 5) but with higher absolute values. During the 50 cycles, t th
1 is

maximum in the cluster, the surrounding region of the cluster shows low and uniform t th
1

and no pattern formation is observed. Note that the boundary effects are noticeable in this
case due to the difference of the hardening behavior of the two material models at the
interface between dislocation based plasticity and von Mises plasticity regions (as
described in section 2.4. In fact, similar boundary effects can be found in figure 6
localized on the first and/or second layer of elements, mainly close to the right and left
boundaries. The reason behind these dislocation density walls and high t th

1 is the
inhomogeneous stress field created upon cycling at the interface in the case of high initial
dislocation density, which creates an inhomogeneous dislocation velocity field as shown
and described in figure 10.

The reason behind the presence or absence of pattern formation is related to the initial
rmob and to the dislocation velocity, to satisfy the Orowan’s law—equation (2). Figure 10
shows the dislocation velocity at cycle 50 for the four studied cases. The following con-
clusions can be drawn:

Figure 7. Evolution of average (a) and l2 distance (b) of the geometrically necessary
edge dislocations r r-+ -( )e e for different mobile and immobile dislocation densities.

rD ( ( ))l 10 20e
2

,GND indicates the distance between the normalized function

r r-+ -( )e e at cycle 20 and the same function at cycle 10.

Modelling Simul. Mater. Sci. Eng. 25 (2017) 055010 A Irastorza-Landa et al

12



• In both Im3-R0.33 and Im3-R0.05, for which the initial rimm is low, the region where the
cluster is located shows non-zero velocity meaning that mobile dislocations were able to
penetrate in it. In Im3-R0.05, there are more areas in the surrounding of the cluster with
higher velocity. This can be explained with Orowan’s law in equation (2) because the
rmob in that case is lower. In fact, the presence of high velocity regions at the interface of
the cluster in Im3-R0.05 leads to the formation of substructure in the GND walls observed
in figure 6.

• The velocity field of Im20-R0.05 shows zero velocities inside the initial immobile cluster.
Thus mobile dislocations could not get inside the cluster. The velocity field in the
surrounding is however similar to that of Im3-R0.05 where patterns are formed in the
surrounding of the cluster. The velocity values at the interface of the cluster are also high
and that is why GND walls are formed, since GNDs tend to move there.

• In Im100-R0.05 most of the simulated region has an almost zero velocity due to the high
initial mobile density. In fact, Orowan’s law—equation (2)—gives a value of the
dislocation velocity which decreases if rmob is higher. This leads to regions with lower

Figure 8. Threshold stress on the primary slip system at different number of cycles N
and for different mobile and immobile dislocation densities.
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multiplication rate and less formation of dislocation structures around the immobile
cluster. As a consequence there is no pattern formation in the surroundings but only on
the walls of the cluster, which acts as main and only obstacle during fatigue.

These results show that the formation and evolution of GND walls formed around the
initial immobile cluster depends not only on the ratio between the mobile and immobile
dislocation density as shown in section 3.1, but also on the absolute values of the densities.
For a given ratio, the initial values determine the microstructural evolution: either GND walls
form and show the formation of substructure (Im3-R0.05); eventually stable GND walls form
at the interface but pattern formation in the surroundings is not prevented (Im20-R0.05); or
the cluster acts as a dominant obstacle for dislocation motion and inhibits pattern formation in
the surrounding (Im100-R0.05).

In contrast to simulations, experimentally edge GND dislocation density and threshold
stress are seldom accessible. From the 2D rotational fields measured with transmission Laue
diffraction or with EBSD, six components of the lattice curvature tensor are accessible (kix

and kiy with ={ } { }i x y z, , ). They can be used to calculate an apparent density of GNDs [21]
(see figure A1). These curvatures can be also calculated with the CPFE method. Figure 11
shows the evolution of apparent GND density as a function of the number of cycles N for the
four cases with same scalebar and figure 12 shows the corresponding evolution of the average
and the l2 distance:

• In Im3-R0.33 the traces of the apparent GND density at cycle 10 are not well defined but
rather disperse. Upon cycling the density of the traces increases but the distribution
maintains random. In fact the presence of the initial cluster remains unnoticed and after 50
cycles it has the lowest average rapp value.

• In Im3-R0.05 the initial defect cluster is predominant during the first 20 cycles: the high
density apparent GND traces are mainly localized in the surrounding of the cluster.

Figure 9. Evolution of average (a) and l2 distance (b) of the threshold stress on the
primary slip system for different mobile and immobile dislocation densities.

tD ( ( ))l 10 202
th
1 indicates the distance between the normalized function t th

1 at
cycle 20 and the same function at cycle 10.
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Figure 10. Velocity at cycle 50 and for different mobile and immobile dislocation
densities with same scale bar.

Figure 11. Apparent GND density at different number of cycles N and for different
value of the dislocation densities.
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During the last 30 cycles, the walls are still visible but the initially defect free areas also
start showing high apparent GND traces visible through patterning.

• In Im20-R0.05, the distribution of the apparent GND traces after 10 cycles resembles the
one of Im3-R0.05 at cycle 30-40 but with much lower rapp values. The presence of the
immobile cluster is noticeable by apparent GND walls but the surroundings have also
high apparent GND traces. After more cycles the area where the cluster was located stays
free of GNDs. The GND-free region is of the same size as other areas where no apparent
GND traces have been accumulated. After 50 cycles, the average rapp of Im20-R0.05 is
higher than that of Im3-R0.33. Similar to what it was observed in figure 7, during cycling
the curve is parallel though. Surprisingly, after 50 cycles, Im3-R0.05 has higher average
rapp than Im20-R0.05, in spite of the fact that the former has same R but overall lower
rimm and r .mob

• When the initial immobile dislocation density is high enough (Im100-R0.05) the initial
defect cluster is dominant during all the applied cycles. Well pronounced and high GND
apparent density walls are formed after 10 cycles which remain stable. Similar to what it
was observed in figure 8 boundary effects are evident.

• Figure 12 also shows that in all four cases the average rapp value is constantly increasing

upon cycling. On the other hand, average r∣ ∣edge and t th
1 have reached almost stationary

phase according to figures 7 and 9.

4. Conclusions

The influence of immobile dislocation clusters on the formation of lattice rotation during
fatigue has been studied with CPFEM simulations in which dislocation-based rate equations
developed specifically for cyclic fatigue had been implemented. It has been shown that both

Figure 12. Evolution of average (a) and l2 distance (b) of the apparent GND density for
different mobile and immobile dislocation densities. rD ( ( ))l 10 202

app indicates

the distance between the normalized function rapp at cycle 20 and the same function at

cycle 10.
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the initial rimm in the cluster and the ratio between rmob and rimm have an effect on the
formation of GND walls around the pre-existing defects and on their evolution. Table 4
summarizes the main results observed in this work. Briefly, the complete dissociation of edge
GND walls takes place only with high rmob to rimm ratios (R=0.33). For lower ratios
(R=0.05), the evolution of the GND walls depends on the initial values which will deter-
mine whether substructures are formed, whether the walls are stable or whether they dis-
sociate. The threshold stress t th

1 will show walls at the interface of the immobile cluster only
when GND walls are not dissociated (see all R= 0.05 cases), but similar threshold stress t th

1

distributions do not necessarily lead to same r r-+ -( )e e distribution (compare Im3-R0.05
and Im20-R0.05). On the other hand, the apparent GND density is shown to be more cor-
related with the threshold stress t th

1 than with the edge GND density: both of them exhibit
formation of patterning in the surroundings of the cluster for low rmob values (Im3-R0.33,
Im3-R0.05 and Im20-R0.05), while for high rmob values (Im100-R0.05) only walls are
observed. Depending on the initial values and ratios, the presence of the cluster in the rapp

maps can remain invisible (see Im3-R0.33 or Im20-R0.05). It is also important to notice that
the values of computed rapp are higher than the values of r r-+ -( ).e e Besides average
r r-+ -( )e e saturates while the average of rapp increases upon further cycling.

The behavior of the simulated dislocation structures gives insight into the microstructural
evolution of the three experimentally measured regions displayed in figure 1: region 1 where
pre-existing apparent GND walls disappear could be comparable to Im3-R0.33, region 2
where pre-existing apparent GND walls rearrange and pattern forms around the initially
misoriented region could be equivalent to Im20-R0.05, and region 3 where the initial high
density GND traces never vanish could be analogous to Im100-R0.05.

In summary, these findings illustrate the role of pre-existing dislocation structures in
evolution of dislocation ensembles during cyclic fatigue and they show that apparent GND
densities can be used to make a qualitative comparison with the lattice curvatures evolution
measured experimentally in samples with pre-existing dislocation content.
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Table 4. Summary of the results.

r r-+ -e e t th
1 rapp

Im3-R0.33 Wall formation and their dis-
sociation during first cycles

Pattern formation around
the initial cluster

Random pattern
formation

Im3-R0.05 Wall formation and posterior
substructure formation

Formation of walls and
pattern around the cluster

Formation of walls and
pattern around the cluster

Im20-
R0.05

Formation of stable walls Formation of walls and
pattern around the cluster

Random pattern
formation

Im100-
R0.05

Wall formation and partial
dissociation at higher cycles

Strong cluster Strong walls
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