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Preface

High-head steel lined pressure tunnels and shafts may be considered as critical infrastructures
especially when rock overburden is small. In the case of lining failure, catastrophic damages can
occur when a large amount of water can reach the steep valley slopes and induce dangerous mud
and debris flow. In the last decades, high-strength steel has been used more frequently for such
high-head pressure tunnels and shafts mainly for economic and construction reasons. Under the
more and more rough operation conditions of storage hydropower plants, high-strength steels
which are generally thinner than lower grade steels are more prone to fail by fatigue. Design
guidelines for the application of high-strength steel for steel liners are still missing. With his
research project Dr Alexandre Pachoud made an important and novel contribution for the design
of pressure tunnels and shafts considering the influence of anisotropic behavior of rock as well as
the geometrical imperfections and flaws at welds on the fatigue resistance of the steel liners.

For the first time, Dr Pachoud studied systematically the influence of rock anisotropy on the
deformation of the lining system comprising steel liner, backfill concrete and near as well as
far field rock mass. He performed an extensive parametric study with the finite element method
(FEM) over a wide range of geometrical and material parameters. Normalized stresses and
displacements were analyzed in the steel liner and the far-field rock mass and correction factors
to be included in the analytical solution for isotropic rock conditions could be derived. For
transversely anisotropic rock mass the analytical solution allows a simple and fast estimation of
the maximum stresses in the steel liner by a correction applied to the isotropic analytical solution
with a high accuracy.

Based on extensive FEM simulations Dr Pachoud derived in a further step parametric correction
factors which allow to estimate stress concentrations and structural stresses in steel liners con-
sidering geometrical imperfections. Dr Pachoud obtained also Stress Intensity Factors (SIF) for
axial cracks in the weld material of the longitudinal joints by means of computational Linear
Elastic Fracture Mechanics (LEFM) and could propose new parametric equations for the weld
shape correction. For fatigue assessment, a probabilistic model for steel liner crack growth and
fracture was developed by using the above mentioned new parametric equations for considering
geometrical imperfections.
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Finally, Dr Pachoud illustrated the implementation of all the developed parametric equations
in a probabilistic model for crack growth in the steel liner under dynamic loading with a case
study for a high-head power plant. The probabilistic model allows to determine the acceptable
undetected initial crack sizes in the steel liner depending on the choice of the steel grade, which
is crucial for engineering practice using high-strength steels for pressure tunnels and shafts.

We would like to thank the members of the jury, Prof. Georg Anagnostou from ETH Zurich,
Dr Olivier Chène from ALPIQ Suisse SA, Lausanne and Prof. Alain Nussbaumer from EPFL
for their helpful suggestions. Finally, we also thank gratefully the Swiss Competence Center of
Energy and Mobility (CCEM) under the project HydroNet 2 and the Swiss Committee on Dams
for their financial support.

Lausanne, April 2017 Dr Pedro Manso & Prof. Dr Anton Schleiss
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[...] if we do discover a complete theory, it should in time be understandable in broad principle
by everyone, not just a few scientists. Then we shall all, philosophers, scientists, and just

ordinary people, be able to take part in the discussion of the question of why it is that we and the
universe exist. If we find the answer to that, it would be the ultimate triumph of human reason –

for then we would know the mind of God.
— Stephen Hawking, in A Brief History of Time, 1988.





Abstract

The recent development of high-strength (HSS) weldable steels has enlarged the range of design
alternatives for the optimization of high-head steel-lined pressure tunnels and shafts (SLPT&S)
in the hydropower industry. With the liberalization of the European energy market and increasing
contribution of new renewable volatile energies in the electricity grid due to high subsidies,
storage hydropower and pumped-storage plants are subject to more and more severe operation
conditions resulting in more frequent transients. The use of HSS allows the design of thinner and
thus more economic steel liners. However, welded HSS do not provide higher fatigue resistance
than lower steel grades, and may be particularly subject to the risk of cold cracking in the weld
material as dramatically illustrated by the failure of the Cleuson–Dixence pressure shaft in 2000.
Fatigue behavior may become the leading limit state criterion.

This research project aims at improving the comprehension of the mechanical behavior of
SLPT&S and at developing a framework for probabilistic fatigue crack growth and fracture
assessment of crack-like flaws in the weld material of longitudinal butt welded joints, considering
all possible steel grades for high-head hydropower schemes.

The influence of anisotropic rock behavior and geometrical imperfections at the longitudinal joints
on the structural stresses have been studied by means of the finite element method accounting for
the interaction with the backfill concrete–rock multilayer system. Parametric correction factors
have been derived to estimate stress concentrations and structural stresses in steel liners with ease
in practice, allowing the use of S–N based engineering fatigue assessment approaches. Stress
intensity factors (SIF) for axial cracks in the weld material of the longitudinal joints have also
been obtained by means of computational linear elastic fracture mechanics (LEFM). The use of
the previously developed parametric equations in the classical formulas for SIF in cracked plated
structures has been validated, and new parametric equations for the weld shape correction have
been proposed.

A probabilistic model for fatigue crack growth assessment has been developed in the framework
of LEFM in combination with the Paris–Erdogan law. The probability of failure is estimated
by means of the Monte Carlo simulation procedure, in which the crack growth rate parameters
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and the crack shape ratio are defined as stochastic variables. A week-long normalized loading
spectrum derived from prototype measurements on an alpine pumped-storage hydropower plant in
Switzerland is used. This approach provides relative and quantitative results through parametric
studies, giving new insights on the fatigue behavior of steel liners containing cracks in the weld
material of the longitudinal joints.

Finally, a fatigue assessment case study is presented, detailing the entire calculation procedures
developed in this research. It aims at ensuring the transfer of knowledge toward practitioners.

KEYWORDS: steel liners, pressure tunnels and shafts, finite element method, anisotropy, welded
joints, stress concentration factors, stress intensity factors, linear elastic fracture mechanics,
variable amplitude loading, probabilistic fatigue crack growth.
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Résumé

Le développement des aciers à haute-résistance (HSS, high-strength steel) ainsi que des turbines
Pelton à haute-chute ont permis le dimensionnement de puits et tunnels blindés (SLPT&S, steel-
lined pressure tunnels and shafts) sous haute pression. La conjonction de la libéralisation du
marché européen de l’énergie et de l’augmentation de la contribution des énergies renouvelables
volatiles dans le réseau électrique soumet les aménagements hydroélectriques, particulièrement
de pompage-turbinage, à des événements transitoires de plus en plus sévères (coups de bélier).
L’utilisation des HSS permet de dimensionner des blindages plus fins et donc plus économiques.
Cependant, les HSS soudés ne présentent pas une meilleure résistance à la fatigue que les
nuances plus basses, et sont par ailleurs soumis à un risque plus élevé de fissuration à froid. Cela
fut dramatiquement illustré par l’accident de Cleuson–Dixence en 2000. Dans ce contexte, le
comportement à la fatigue peut devenir l’état limite ultime prépondérant pour le dimensionnement.

Ce projet de recherche a pour but d’améliorer la compréhension du comportement mécanique
des SLPT&S ainsi que de développer un cadre d’application pour une approche probabiliste de la
propagation de fissures situées dans le cordon de soudure des joints longitudinaux des blindages,
jusqu’à la rupture.

L’influence du comportement anisotrope du rocher ainsi que des imperfections géométriques dans
le blindage, et plus particulièrement aux soudures longitudinales, a été étudiée par la méthode
des éléments finis, en tenant compte de l’interaction entre le blindage et le système béton–
rocher. Des facteurs de correction ont été dérivés afin d’estimer avec facilité dans la pratique les
concentrations de contrainte ainsi que les contraintes structurelles dans le blindage. Ces résultats
peuvent être utilisés pour appliquer les approches locales de vérification à la fatigue basées sur les
courbes S–N. Les facteurs d’intensité de contrainte (SIF, stress intensiy factor) pour des fissures
axiales dans les cordons de soudures longitudinales ont également été étudiés par la méthode des
éléments finis appliquée à la mécanique de la rupture linéaire élastique (LEFM, linear elastic
fracture mechanics). L’utilisation des expressions analytiques précédemment développées dans
les solutions classiques pour les SIF dans les plaques soudées contenant des fissures a été vérifiée.
Enfin, des facteurs de correction afin de considérer l’influence du profil de soudure ont été
proposés.
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Résumé

Un modèle probabiliste pour la propagation de fissures a été développé dans le cadre de la LEFM
en combinaison avec la loi de Paris–Erdogan. La probabilité de rupture a été estimée par la
méthode de simulation de Monte Carlo, dans laquelle les paramètres de l’acier liés au taux de
propagation ainsi que la géométrie des fissures ont été définis de façon stochastique. Un spectre
de chargement adimensionnel lors d’une semaine type d’opération a été déterminé grâce à des
mesures effectuées dans un aménagement de pompage-turbinage dans les Alpes suisses. Cette
approche a permis d’obtenir des résultats relatifs et quantitatifs à travers des études paramétriques,
donnant de nouvelles indications sur le comportement à la fatigue des blindages contenant des
fissures dans les cordons de soudures longitudinaux.

Enfin, un cas d’étude d’évaluation à la fatigue a été présenté. L’entière procédure de calcul déve-
loppée dans cette recherche y est présentée, avec pour but d’assurer le transfert de connaissance
vers la pratique.

MOTS CLÉS : revêtements en acier, tunnels et puits en charge, méthode des éléments finis, ani-
sotropie, joints soudés, facteurs de concentration de contrainte, facteurs d’intensité de contrainte,
mécanique de la rupture linéaire élastique, chargement à amplitude variable, propagation proba-
biliste de fissures de fatigue.
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Zusammenfassung

Wasserkraftwerke mit grossen Fallhöhen und Peltonturbinen haben meist mit hochbelastbarem
Stahl ausgekleidete Druckstollen und Schächte (SLPT&S, steel-lined pressure tunnels and shafts).
Für diese Stahlpanzerung kommt vermehrt hochfester (HSS, high-strength steel) schweissbarer
Stahl zum Einsatz. Mit der Liberalisierung des europäischen Strommarktes und dem steigenden
Anteil an stark volatilen neuen erneuerbaren Energien im Elektrizitätsnetz, gefördert durch hohe
Subventionen, änderten sich die Betriebsbedingungen für Speicherkraftwerke und Pumpspei-
cherwerke. Mittlerweile stellen diese vermehrt die Netzstabilität sicher. Die Verwendung von
HSS ermöglicht dünnere und somit günstigere Stahlpanzerungen. Jedoch verbessert HSS die
Materialermüdung nicht, wenn verglichen mit Stahl von geringerer Qualität. Deshalb kann ein er-
höhtes Risiko der Kaltrissanfälligkeit auftreten. Der dramatische Panzerungsbruch im Kraftwerk
Cleuson-Dixence im Jahre 2000 veranschaulicht dies. Materialermüdung kann ein limitierendes
Kriterium bei HSS sein kann.

Dieses Forschungsprojekt hat zum Ziel, das mechanische Verhalten von SLPT&S besser zu
verstehen. Des weiteren soll ein Probabilistisches Modell der Ausbreitung von Materialermü-
dungsrissen und eine Bruchbeurteilung von rissartigen Imperfektionen im Schweissmaterial von
stumpfgeschweissten Längsnähten entwickelt werden.

Der Einfluss von anisotropem Felsverhalten sowie geometrischen Mangelhaftigkeit von Längsnäh-
len wurde mit der finite-Elemente Methode untersucht, welche die Interaktionen des Füllbetons
mit den verschiedenen Felsschichten berücksichtigt. Für die Praxis hilfreich sind parametrische
Korrekturfaktoren welche die Spannungskonzentrationen und strukturelle Belastungen in der
Stahlpanzerung ab schätzen. Das erlaubt die Verwendung von S–N basierten, Ermüdungsansätzen.
Spannungsintensitätsfaktoren (SIF, stress intensity factor) für axiale Risse im Schweissmaterial
der Längsnähte wurden ebenfalls mittels rechnergestülzter linear-elastischer Bruchmechanik
(LEFM, linear elastic fracture mechanics) untersucht. Die vorgängig entwickelten parametrischen
Gleichungen in den klassischen Formeln der SIF in gerissenen beschichteten Strukturen wurden
validiert und neue parametrische Gleichungen für die Korrektur der Schweissnant vorgeschlagen.

Ein Probabilistisches Modell der Ausbreitung von Rissen aufgrund Materialermüdung wurde
mit LEFM in Kombination mit dem Paris–Erdogan Gesetz entwickelt. Die Versagenswahrschein-
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Zusammenfassung

lichkeit wurde mit Hilfe des Monte Carlo Simulationsverfahrens, bei dem die Parameter der
Rissausbreitungsrate und das Rissformverhältnis als stochastische Variablen definiert sind un-
tersucht. Ein normalisiertes wöchentliches Belastungsspektrum wurde von Prototypmessungen
eines Schweizer Pumpspeicherkraftwerks abgeleitet. Dieser Ansatz gab mittels Parameterstudien
relative und quantitative Resultate, was einen vertieften Einblick in das Ermüdungsverhalten von
Stahlpanzerungen mit Rissen im Schweissmaterial der Längsnähte gab.

Abschliessend wird eine Fallstudie zur Ermittlung der Materialermüdungsbewertung vorgestellt,
welche die gesamte Berechnungsmethode, die im Rahmen dieser wissenschaftlichen Arbeit
entwickelt wurde anwendet, und dies mit dem Ziel den Wissenstransfer in die Praxis zu gewähr-
leisten.

STICHWÖRTER: Stahlpanzerung, Druckstollen und Schächte, Finite Elemente Methode, Aniso-
tropie, Schweissnähte, Spannungskonzentrationsfaktoren, Spannungsintensitätsfaktoren, linear-
elastische Bruchmechanik, variable Belastungsamplituden, probabilistische Materialermüdungs-
rissausbreitung.
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Sommario

Lo sviluppo di materiali in acciaio saldabili ad alta resistenza (HSS, high-strength steel) e di
turbine Pelton ad alta prevalenza ha portato alla progettazione di condotte forzate in pressione
rinforzate con acciaio ad alta resistenza (SLPT&S, steel-lined pressure tunnels and shafts). Con
la liberalizzazione del mercato energetico europeo e l’aumento di produzione elettrica ad opera
di altre fonti rinnovabili non accumulabili, dovuta ai recenti finanziamenti, gli impianti di pro-
duzione idroelettrica sono soggetti a sempre piu’ numerose e difficili condizioni di produzione
caratterizzate da sempre piu’ importanti e frequenti transitori idraulici. L’uso di materiali in
acciaio ad alta resistenza consente la realizzazione di condotte di minor spessore e di conseguenza
piu’ economiche. Tuttavia, rispetto ad acciai di minor qualità, gli acciai saldabili ad alta resistenza
non offrono maggiore resistenza alla fatica e, in corrispondenza alla saldatura, potrebbero essere
particolarmente soggetti al rischio di fratturazione a freddo come testimonia il drammatico inci-
dente avvenuto nel 2000 nell’impianto Cleuson–Dixence. In questo contesto, il comportamento a
fatica potrebbe rappresentare un limite nell’applicazione degli acciai saldabili ad alta resistenza.

Questo progetto di ricerca mira a migliorare la comprensione del comportamento meccanico
di condotte forzate rinforzate con acciaio ad alta resistenza (SLPT&S) e a sviluppare un qua-
dro di riferimento per la verifica probabilistica della propagaziona a fatica delle fratture in
corrispondenza dei giunti longitudinali.

L’influenza del comportamento anisotropico della roccia e delle imperfezioni geometriche in
corrispondenza dei giunti longitudinali è stata studiata grazie a metodi agli elementi finiti conside-
rando l’interazione con il riempimento multistrato in cemento e roccia. Sono stati derivati fattori
di correzione parametrici utili per ottenere una semplice e pratica stima della concentrazione e
dell’ entità degli sforzi strutturali, utilizzando per la verifica a fatica, metodi ingegneristici basati
su curve S–N. Secondo le leggi di meccanica lineare elastica della frattura, sono stati studiati i
fattori di intensità dello sforzo (SIF, stress intensity factor) in fratture assiali in corrispondenza
dei giunti longitudinali. È stato validato l’uso delle equazioni parametriche precedentemente
utilizzate nel calcolo dei fattori di entità dello sforzo (SIF) in strutture piane fratturate. Sono state
proposte nuove equazioni parametriche relative alla geometria delle saldature.

È stato sviluppato un modello probabilistico per la verifica della propagazione della frattura
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a fatica secondo la legge di Paris–Erdogan nell’ambito della meccanica lineare elastica. La
probabilità di rottura è stata stimata grazie alla procedura statistica di Monte Carlo in cui la
rapidità di propagazione della frattura e il coefficiente di forma della frattura sono definite
come variabili stocastiche. Uno spettro normalizzato di carico è stato derivato in seguito a una
settimana di misure in un prototipo di impianto idroelettrico nelle alpi Svizzere. Tale approccio,
grazie a studi parametrici, ha fornito risultati relativi e quantitativi fornendo nuove nozioni sul
comportamento a fatica di condotte forzate caratterizzate da fessure in corrispondenza delle
saldature dei giunti longitudinali.

Infine è stata effettuata la verifica di un caso studio che presenta nel dettaglio le procedure di
calcolo sviluppate in questa tesi. Essa assicura l’applicazione delle nozioni teoriche acquisite in
ambito pratico.

PAROLE CHIAVE: condotte forzate, tunnele pozzi in pressione, metodo agli elementi finiti,
anisotropia, giunti saldati, fattori di concentrazione degli sforzi, fattori di intensità degli sforzi,
meccanica lineare elastica della frattura, carico di ampiezza variabile, propagazione probabili-
stica della frattura a fatica.
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The main nomenclature adopted in this report is presented hereafter.
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(m)
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crack-tips
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(–)
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(–)
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(–)

Sub- and superscripts
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1, 2, 3 Subscripts for principal stress/strain directions
I, II, III Subscripts for fracture modes
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SYS
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corr Subscript for corrected value
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eq Subscript for equivalent
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1 Introduction

1.1 Context of hydropower and recent developments of high-head
hydroelectric power plants

Steel-lined pressure tunnels and shafts (SLPT&S) are the high pressure conduits of the waterway
system connecting dam reservoirs to hydropower plants (HPP) (Schleiss 2012). Figure 1.1
presents the longitudinal schematic view of a typical high-head plant. Steel-lined pressure tunnels
and shafts are multilayer structures made of a steel liner, a backfill concrete layer, and generally a
cracked or loosened near-field rock zone and a sound far-field rock zone (see Fig. 1.1). Steel liners
are manufactured from steel plates that are rolled and welded longitudinally, i.e., out-of-plane in
Fig. 1.1, Section A-A. These longitudinal butt welded joints have to be considered with great care,
as they are perpendicular to the major principal stresses direction (i.e., circumferential direction).

Pressure tunnels and shafts of high-head HPP usually have a major influence on the economic
feasibility of the project (Vigl 2013; Schleiss 2013). Despite their importance, limited effort has
been dedicated to study the design of liners of pressure tunnels in general, compared to other
types of tunnels (Bobet & Nam 2007).

The contribution of new renewable highly volatile energies is growing fast in the European
electricity grid due to high subsidies, while the demand for energy is still increasing. As a result
storage hydropower as well as pumped-storage plants, which are used to balance the electricity
grid on an intra-daily time scale, are subject to more and more severe operation conditions
resulting in highly dynamic pressures in SLPT&S, called water hammer. The issue of fatigue
thus becomes a new and significant concern for SLPT&S (see, e.g., Hachem & Schleiss 2009;
Nicolet et al. 2010; Hachem & Giovanola 2013; Demal & Moser 2013; Duparchy et al. 2013;
Greiner & Lechner 2013a,b; Greiner et al. 2013a,b,c), which was not traditionally considered
relevant for the design in the past.

The recent development of high-strength (HSS) weldable steels has enlarged the range of design
alternatives for the optimization of high-head SLPT&S. In new high-head hydroelectric projects
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internal water pressure

near-field rock mass 
(loosened by excavation
or grouted)

backfill concrete

steel liner

far-field rock mass 
(undisturbed by 
excavation)

reservoir

intake
pressure tunnel

pressure 
shaft

air tunnel

surge tank

powerhouse

tailwater

max.

min.

initial gap

A-A: Section of the shaft

A
A

Longitudinal butt welded joint

Figure 1.1: Longitudinal schematic view of a typical high-head power plant (head > 200 m) and
sectional view of the standard multilayer system for steel-lined pressure tunnels and shafts. The
relative dimensions are distorted for the sake of presentation.

as well as in existing plants the internal water pressure on SLPT&S can be higher than 150 bar
(Benson 1989; Schleiss & Manso 2012), and dynamic pressures can cause additional loading
in the system of about 15 to 25% of the static head (Brekke & Ripley 1987). In 1998, the
Cleuson–Dixence shaft attained world record conditions with a discharge of 75 m3/s and a
dynamic internal water pressure of more than 200 bar (Ribordy 1998).
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1.2. Problem statement

1.2 Problem statement

1.2.1 Sensitivity of high-strength steels

High-strength steels have allowed thinner and thus more economic liners. However, although the
high mechanical performance of HSS can address the working stress criterion in the design, it
is often assumed that welded HSS do not provide a higher fatigue strength than lower (and in
general more ductile) grades. They exhibit a higher notch sensitivity (Nykänen et al. 2013) and
are as prone to contain initial defects (e.g., hydrogen induced cold cracking, undercuts, lack of
fusion, stress corrosion cracks, porosity, incomplete penetration, slag inclusion) as lower welded
steel grades, which makes the initiation period of the fatigue life negligible. This assertion is
still under extensive investigation (see, e.g., Kaufmann et al. 2008; Pijpers et al. 2009; Sonsino
2009b; de Jesus et al. 2012; Nykänen et al. 2013).

A better comprehension of the behavior of the multilayer system and the possible presence
of crack-like flaws in the weld material is required for an accurate fatigue assessment of the
longitudinal butt welded joints (which are normally the critical parts) by means of engineering
procedures.

1.2.2 Interaction with the concrete–rock system

When the rock conditions are adequate (depending on the rock overburden and the in situ stress
field) the design can consider that a significant part of the internal water pressure can be transfered
to the concrete–rock system. Thereby, the thickness of the steel liner can be decreased. This also
facilitates welding when using HSS. However, the mechanical behavior of SLPT&S considering
the interaction between the steel liner and the concrete–rock system is still not fully understood,
particularly when the surrounding rock mass does not have an isotropic behavior.

1.2.3 Requirements for fatigue assessment by means of local stresses approaches

The recent development of local stresses concepts for fatigue life estimation such as the structural
hot-spot stress and the effective notch stress methods (Niemi et al. 2006; Radaj et al. 2009;
Fricke 2012; Radaj et al. 2013) provides designers with a higher accuracy than the traditional
nominal stress concept, proposed by commonly used standards (EN 1993-1-9 2005; Koçak
et al. 2008; EN 13445-3 2014). Numerous applications can be found in the literature, and the
latest recommendations of the International Institute of Welding (IIW) cover the current local
approaches (Hobbacher 2008, 2016). However, these methods are more time-consuming and
often require finite element (FE) computations when analytical solutions for stress concentration
factors (SCF) are not available.

Global geometrical imperfections (inherent to the manufacturing and erection processes) and the
local geometry of the weld have a great influence on the SCF at welded shells. Some studies
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on SCF at longitudinally welded cylindrical shells can be found in the literature. Parametric
formulas, from various sources, are also proposed in standards (Hobbacher 2016; EN 13445-3
2014; API 2007). Nevertheless, the specific case of SLPT&S with contact between the steel liner
and the concrete–rock system was never studied. The latter feature may greatly contribute to the
overall structural behavior of SLPT&S.

In SLPT&S the geometrical imperfections and the concrete–rock confinement are often consid-
ered for buckling analysis (Valdeolivas & Mosquera 2013, 2015a,b). In Europe, the C.E.C.T.
(1980) recommendations are used for the design of SLPT&S; they give tolerances on geometrical
imperfections and weld geometries, but do not provide specific formulas for SCF estimation.
Moreover, these recommendations have not been originally developed for HSS and the changing
operating conditions of HPP.

1.2.4 Requirements for fatigue assessment by means of the fracture mechanics
approach

The risk of hydrogen induced cold cracking (HICC) together with harsh loading spectra on
SLPT&S emphasize the need for an optimized engineering fatigue and fracture assessment. The
traditional nominal and local stresses approaches do not cover fatigue failure from such crack-like
flaws due to actual cracking mechanisms such as HICC (Maddox 2011). These defects are
considered as unacceptable and are repaired if detected by nondestructive testing. However, the
absence of such flaws cannot be ensured with an absolute certainty as nondestructive techniques
usually have a lower crack size limit of detectability, as well as a probability of detection (POD).

For fatigue crack growth and fracture analysis, linear elastic fracture mechanics (LEFM) is a
widespread method (see, e.g., McFadyen et al. 1990; Maddox 2011; Zerbst et al. 2014), which is
formulated in well recognized standards in association with the Paris–Erdogan law. In the latter,
the crack growth rate is related to the stress intensity factor (SIF), denoted KI in Mode I (opening
mode). For an accurate estimation of the SIF during the crack propagation, the global behavior of
the welded structure as well as the local geometry, including the welded joint, should be known.

1.2.5 Justification for a probabilistic approach for fatigue crack growth

Although reaching absolute results from probabilistic models in engineering are unrealistic for
most practical applications, the relative and quantitative results from such approaches provide
valuable information on the influence of each stochastic input, and allow identifying the weak-
nesses of a design. Moreover, it may, in certain cases, produce results showing satisfactory
boundaries to the studied problem (Besuner 1987).

Probabilistic approaches for reliability assessment have been extensively developed in engineering
fields such as the nuclear power generation industry and aeronautics. Structural engineering
was also early involved in the scope of offshore and earthquake engineering. First steps toward
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a comprehensive probabilistic approach for fatigue crack growth analysis in welded joints of
steel liners of pressure tunnels and shafts, in the aforementioned context, are of great interest for
practice.

1.3 Objectives and practical relevance of the research project

This research project aims at providing a better comprehension of the mechanical behavior of
SLPT&S, and developing a comprehensive model and a methodology for fatigue and reliability
assessment of SLPT&S. The objectives can be enumerated as follows.

1. By means of the finite element method (FEM), the mechanical behavior of SLPT&S is
investigated through the following steps:

(a) study the influence of anisotropic rock behavior on stresses and displacements in
SLPT&S;

(b) study the structural and notch stress concentrations at longitudinal butt welded joints
of SLPT&S, considering the global geometrical imperfections, the local weld shape,
and the interaction with the backfill concrete–rock system;

(c) evaluate the applicability of the aforementioned contributions to the computation of
stress intensity factors for crack-like flaws in the weld material at longitudinal butt
welded joints of SLPT&S and study the influence of the weld shape.

2. Based on this step-by-step approach where complexity is added stepwise, new empirical
analytical equations or correction factors will be derived allowing the estimation of:

(a) maximum nominal stresses in steel liners of SLPT&S;

(b) stress concentrations at longitudinal butt welded joints of SLPT&S; and

(c) stress intensity factors for three-dimensional crack-like flaws in the weld material at
the longitudinal butt welded joints of SLPT&S.

3. Finally, a comprehensive methodology for fatigue and reliability assessment of SLPT&S
will be proposed using this new analytical model, allowing to:

(a) assess the fatigue life by means of local stresses approaches; and

(b) develop a probabilistic fatigue crack growth model for crack-like flaws in the weld
material at the longitudinal butt welded joints of SLPT&S.

This research project has a high practical relevance by addressing the need for a framework
adapted to the specific use of engineering fatigue and reliability assessment procedures to
SLPT&S. The methodologies developed herein may be practically useful for the design of steel
liners in new hydropower plants, as well as for the rehabilitation of existing plants.
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1.4 Finite element method (FEM)

In this research project, the FEM was used by means of the commercial code ANSYS R©
MechanicalTM software of the product ANSYS R© Academic Research, Release 14.0 (ANSYS
Inc 2011, Chapters 4–5), and ANSYS R© Academic Research, Release 16.1 (ANSYS Inc 2015,
Chapters 6–8). The FE models developed within this work will be described in the corresponding
chapters. Although some specific details on the FEM procedures used herein will be briefly
developed when necessary, the basics of the FEM will not be presented in this document. The
reader not familiar with the FEM may find interest in fundamental books introducing the FE
procedures such as Hughes (1987), Bathe (1996) and Zienkiewicz et al. (2005). Some literature
is also available in French see, e.g., Gmür (2007), Gmür (2008) and Frey (2006). Finally, some
specific applications with ANSYS R© can be found, e.g., in Nakasone et al. (2006), Madenci &
Guven (2006), Alawadhi (2010) and Dill (2012).

1.5 Structure and methodology of the study

The structure of the present report is presented in Fig. 1.2. The main objectives of each part and
chapter can be summarized as follows.

• Part I presents a literature review of the scientific and technical fields that are related to this
research project. Chapter 2 focuses on SLPT&S, and presents in particular the standard
model for the design, the use of HSS for steel liners, transients phenomena and the last
advances in non-intrusive monitoring methods. Chapter 3 provides technical background
for fatigue assessment of welded joints and fracture mechanics, introduces probabilistic
approaches in engineering and reviews stress concentration factors as well as stress intensity
factors for cracks in butt welded joints.

• In Part II, the influence of anisotropic rock behavior on stresses in the steel liners of
SLPT&S is studied by means of the FEM. Chapter 4 presents the constitutive models
adopted for the materials, the FE model and an extensive systematic parametric study. In
Chapter 5, parametric correction factors to be included in the analytical solution in isotropic
rock are derived in order to estimate the maximum stresses in the steel liner accounting for
the anisotropic rock behavior.

• Part III is dedicated to the study of the influence of the geometrical imperfections and the
weld profile on the stress concentrations at the longitudinal butt welded joints of the steel
liners, by means of the FEM. At first, notch stress concentration factors are studied at butt
welded straight plates in Chapter 6. Then, in Chapter 7, structural stress concentration
factors at the longitudinal butt welded joints of SLPT&S are studied, accounting for
geometrical imperfections and the interaction with the backfill concrete–rock system. New
correction factors to be included in formerly published expressions allowing to estimate
notch and structural stress concentration factors at the longitudinal butt welded joints of
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Figure 1.2: Structure of the report.

7



Chapter 1. Introduction

SLPT&S are proposed.

• Part IV, constituted of Chapter 8, presents the study of SIF for axial cracks in the weld
material of the longitudinal butt welded joints of SLPT&S. By means of the FEM, it is
first verified that the previously developed parametric equations to estimate membrane and
bending stresses at the longitudinal butt welded joints can successfully predict SIF for 3D
axial cracks by using published formulas. Finally, a new parametric equation is proposed
to account for the influence of the weld shape.

• Part V aims at developing a framework for the fatigue assessment of the steel liners of
SLPT&S. In Chapter 9, a week-long loading spectrum under normal operation conditions
of a pumped-storage HPP is derived from prototype measurements performed by Hachem
& Schleiss (2012c). This spectrum is normalized with respect to the mean internal water
pressure and is considered as an input for the engineering fatigue assessment procedures
used in this research project. A parametric study of fatigue assessment by means of the
effective notch stress approach is performed in Chapter 10, using the parametric equations
previously developed. In Chapter 11, a probabilistic model for fatigue crack growth and
fracture is developed. The crack propagation is based on LEFM and the Paris–Erdogan law.
The ranges of SIF are computed by means of the previously developed parametric equations
or correction factors, and the probability of failure is assessed by means of the Monte Carlo
simulation procedure. Similarly to Chapter 10, a parametric study is performed. Finally,
a case study is presented in Chapter 12. While Chapters 10 and 11 focus on proposing
a framework for the application of the aforementioned fatigue assessment engineering
procedures and performing parametric studies, Chapter 12 synthesizes all the procedure
proposed in this research project to compute stresses, SCF and SIF at the longitudinal
butt welded joints of SLPT&S. Through the case study, additional comparative fatigue
assessment results are provided.

• Finally, Chapter 13 of Part VI summarizes the conclusions of this research project, gives
recommendations, and provide an outlook toward future research.

1.6 Project framework

This research project was conducted at the Laboratory of Hydraulic Constructions (LCH), at the
Ecole Polytechnique Fédérale de Lausanne (EPFL), within the consortium named HydroNet 2:
Modern methodologies for design, manufacturing and operation of hydropower plants. This
research project was funded by the Swiss Competence Center Energy and Mobility (CCEM).
The consortium partners are illustrated in Figure 1.3. This multidisciplinary consortium aims at
addressing various aspects of hydropower generation to improve the design, manufacturing and
operation of hydropower plants.

The project also took part in the Swiss Competence Center for Energy Research–Supply of
Electricity (SCCER-SoE), which aims at carrying out innovative and sustainable research in the
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areas of geo-energy and hydropower.

Finally, this study also received a contribution from the Swiss Committee On Dams (SwissCOD).
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Figure 1.3: Project objectives, main tasks and partners.
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The ancient structures that are still standing today obviously represent successful designs. There
were undoubtedly many more unsuccessful designs with much shorter life spans. Because

knowledge of mechanics was limited prior to the time of Isaac Newton, workable designs were
probably achieved largely by trial and error. The Romans supposedly tested each new bridge by

requiring the design engineer to stand underneath while chariots drove over it. Such a practice
would not only provide an incentive for developing good designs, but would also result in the

social equivalent of Darwinian natural selection, where the worst engineers were removed from
the profession.

– Anderson (2005)





2 Steel-lined pressure tunnels and shafts

2.1 Axisymmetrical multilayer model in isotropic rock

The standard model as well as the nomenclature for the calculation of stresses and displacements
in steel-lined pressure tunnels and shafts (SLPT&S) in isotropic rock are illustrated in Fig. 2.1. It
represents an axisymmetrical multilayer system where five zones are commonly distinguished
(see e.g., Brekke & Ripley 1987; Schleiss 1988; USACE 1997; ASCE 2012): (1) the steel liner;
(2) an initial gap denoted ∆r0 between the steel liner and the backfill concrete; (3) the backfill
concrete; (4) the near-field rock; and (5) the far-field rock, of infinite thickness.

steel liner

gap

backfill 
concrete

ts

ri

rcrm
rrm

tc
tcrm

pi

near-field rock mass 
(loosened by excavation
or grouted)

pc

pcrm

prm

backfill concrete

steel liner

far-field rock mass 
(undisturbed by 
excavation)

Figure 2.1: Definition sketch of the standard multilayer system for pressure tunnels and shafts
embedded in elastic, isotropic rock mass (axisymmetrical case).
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Chapter 2. Steel-lined pressure tunnels and shafts

2.1.1 The steel liner

The steel liner is regarded as a linear and isotropic material, of elastic modulus Es and Poisson’s
ratio νs. It is impervious, and its internal surface is in contact with the pressurized water with
pressure pi (Fig. 2.1).

2.1.2 The initial gap

The initial gap ∆r0 is an annular space at the interface between the steel liner and the backfill
concrete (Fig. 2.1). It results from the thermal shrinking of the steel as a consequence of the
contact with cold water and the non-recoverable deformations of the backfill concrete and the
rock system (Brekke & Ripley 1987). Hachem & Schleiss (2009) summarize several assumptions
made by designers to estimate ∆r0.

2.1.3 The backfill concrete

Concrete is a quasi-brittle material with low tensile strength (1–2 MPa). Therefore, for the
design of SLPT&S, the backfill concrete is regarded as a radially cracked material (as major
principal stresses are tensile stresses in the tangential direction). The result is that the backfill
concrete cannot transmit tangential stresses. It is regarded as a linear elastic material and its
elastic modulus and Poisson’s ratio are denoted Ec and νc, respectively.

2.1.4 The near-field rock

The near-field rock is a loosened (distressed, cracked) zone of the rock mass as a result of the
excavation method (e.g., blasting effects), the rock properties, etc. Similarly to the backfill
concrete, the near-field rock is regarded as radially cracked, and thus cannot transmit tensile
stresses. The depth tcrm of this loosened zone (Fig. 2.1) is variable and is important to be
determined because of its influence on the global deformability of the system. For instance,
Benson (1989) states that excavation in hard rock with tunnel boring machines induces a low
damage on the rock, resulting in a loosened layer generally restricted to 0.3–0.5 m depending on
tunnel diameter. For excavation with the drill and blast method, the loosened layer is generally
less than 1 m in good rock, although it can reach 2–3 m in brittle rock. Another important
parameter to be determined is the elastic modulus Ecrm of the loosened layer. It is in general lower
than the sound rock modulus of elasticity, e.g., found to be reduced by 40% by measurements
during the initial filling of a steel-lined pressure tunnel by Bowling (2010). The characteristics of
the loosened rock zones for several projects can be found for example in Brekke & Ripley (1987).
The Poisson’s ratio for the near-field rock is denoted νcrm. This near-field zone may be grouted to
increase the stress transfer from the lining to the sound rock as well as to decrease irreversible
deformations. Then, Ecrm may reach or even exceed the modulus of the far-field rock.
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2.2. Closed-form solution in isotropic rock

2.1.5 The far-field rock

The far-field rock is a non-disturbed zone of the rock mass, assumed as a homogeneous, isotropic
and elastic material. Its elastic modulus and Poisson’s ratio are denoted Erm and νrm, respectively.
The far-field rock layer is normally considered as infinite for deep tunnels. The estimation of the
mechanical parameters of the rock mass is very important as they have a significant influence
on the global deformability of the system and its capability to withstand transmitted load. The
deformability of the rock mass should be measured in the vicinity of the tunnel with in situ
testings as for example large plate load tests. Furthermore, in situ stresses have to be known in
order to verify the capability of the rock to absorb the transmitted internal water pressure (Seeber
1985). Deformations in SLPT&S can be monitored for a limited time during operation with
instruments installed during the construction (Bowling 2010; Chène 2013).

2.2 Closed-form solution in isotropic rock

2.2.1 Compatibility conditions

The displacements in the axisymmetrical multilayer system (Fig. 2.1) are derived from the
compatibility conditions on the displacements at the interfaces between the layers (Hachem &
Schleiss 2011c). The radial displacement at rc must be equal in the steel liner and the backfill
concrete, as between the backfill concrete and the near-field rock and between the near- and
far-field rocks. This is expressed as follows, taking into account a positive initial gap between the
steel liner and the backfill concrete:

us
r(r = rc)−∆r0 = uc

r(r = rc)

with ∆r0 ≥ 0;

uc
r(r = rcrm) = ucrm

r (r = rcrm);

ucrm
r (r = rrm) = urm

r (r = rrm).

(2.1)

The superscript s is related to the steel, c to the backfill concrete, crm to the near-field rock mass
(cracked) and rm to the far-field rock mass. The subscript r indicates the radial direction.

The steel liner is modeled according to the thick-walled cylinder theory (Timoshenko & Goodier
1970). As already mentioned before, it is assumed that tensile stresses cannot be transmitted in
the cracked layers (backfill concrete and near-field rock). The far-field rock is modeled as an
infinite homogeneous, elastic and isotropic layer. In the case of pressure tunnels and shafts, the
longitudinal dimension is very large (out-of-plane in Fig. 2.1) and the assumption of plane strain
condition is made.

Some conventions are used herein: (i) pressures are always positive; (ii) tensile stresses are
denoted with positive values and compressive stresses are denoted with negative values; and (iii)
the sign convention for the displacements are according to the corresponding coordinate axes.
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Chapter 2. Steel-lined pressure tunnels and shafts

Considering the aforementioned assumptions, the radial displacements at the layers’ interfaces
can be expressed analytically (Hachem & Schleiss 2011c):

1. in the steel liner:

us
r(rc) =

1+νs

Es

rc

r2
c − r2

i
·
[
(1−2νs)(pir2

i − pcr2
c)+(pi− pc)r2

i
]

; (2.2)

2. in the backfill concrete:

uc
r(rcrm) = uc

r(rc)+
(1−ν2

c )pcrc

Ec
ln
(

rc

rcrm

)
(2.3)

with

pcrc = pcrmrcrm; (2.4)

3. in the near-field rock:

ucrm
r (rrm) = ucrm

r (rcrm)+
(1−ν2

crm)pcrmrcrm

Ecrm
ln
(

rcrm

rrm

)
(2.5)

with

pcrmrcrm = prmrrm; (2.6)

4. and in the infinite far-field rock:

urm
r (rrm) =

1+νrm

Erm
prmrrm. (2.7)

Combining Eqs. 2.3–2.7, and assuming a tied contact between the steel liner and the backfill
concrete (∆r0 = 0), the pressure pc taken by the concrete–rock system can be obtained as:

pc =

1+νs

Es

rc

r2
c − r2

i

[
(1−2νs)pir2

i + pir2
i
]

1+νs

Es

rc

r2
c − r2

i

[
(1−2νs)r2

c + r2
i

]
+ rc

1
Eeq

(2.8)

where

1
Eeq

=
1−ν2

c

Ec
ln
(

rcrm

rc

)
+

1−ν2
crm

Ecrm
ln
(

rrm

rcrm

)
+

1+νrm

Erm
. (2.9)
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2.2. Closed-form solution in isotropic rock

2.2.2 Displacements

Given pc, the radial displacements in the steel liner can be computed by

us
r(r) =

1+νs

Es

r
r2

c − r2
i
·
[
(1−2νs)(pir2

i − pcr2
c)+(pi− pc)

r2
i r2

c

r2

]
. (2.10)

In the backfill concrete and the near-field rock, the radial displacements are, respectively

uc
r(r) = us

r(rc)+
(1−ν2

c )pcrc

Ec
ln
(rc

r

)
(2.11)

and

ucrm
r (r) = uc

r(rcrm)+
(1−ν2

crm)pcrmrcrm

Ecrm
ln
(rcrm

r

)
. (2.12)

Finally, the radial displacements in the far-field rock are expressed by:

urm
r (r) =

1+νrm

Erm

r2
rm

r
prm. (2.13)

2.2.3 Stresses

The tangential, radial and longitudinal stresses in the steel liner are given, respectively, by

σ s
θ (r) =

1
r2

c − r2
i

[
r2

i pi− r2
c pc−

r2
i r2

c

r2 (pc− pi)

]
, (2.14)

σ s
r (r) =

1
r2

c − r2
i

[
r2

i pi− r2
c pc +

r2
i r2

c

r2 (pc− pi)

]
, (2.15)

and

σ s
z (r) = νs [σ s

θ (r)+σ s
r (r)] =

2νs

r2
c − r2

i
(r2

i pi− r2
c pc). (2.16)

For the backfill concrete, σ c
θ = 0 and

σ c
r (r) =−

rc

r
pc. (2.17)
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Chapter 2. Steel-lined pressure tunnels and shafts

Similarly, for the near-field rock, σ crm
θ = 0 and

σ crm
r (r) =−rcrm

r
pcrm. (2.18)

Finally, for the far-field rock

σ rm
θ (r) =

(rrm

r

)2
prm (2.19)

and

σ rm
r (r) =−

(rrm

r

)2
prm. (2.20)

2.3 Basic design criteria

Pressure tunnels and shafts drilled in rock may be steel-lined where rock confinement is not
sufficient or when leakage into the rock mass is not acceptable (Brekke & Ripley 1987). Steel
linings address these issues by providing greater stiffness, strength, and impermeability. The
basic design criteria for the steel liners are summarized by Schleiss (1988) as follows:

1. the working stress and deformation in the steel liner:

(a) stability of the steel liner under external water pressure (buckling);

(b) limiting working stresses in the steel liner under internal water pressure;

(c) limiting local deformation of the steel liner (crack bridging); and

2. the load-bearing capacity of the rock mass.

The second criterion refers to the verification of the load-sharing assumed for the limiting working
stresses in the steel liner and to ensure the required security against the rock mass failure. The
portion of the internal water pressure taken by the rock should not exceed the in situ stress or the
tensile strength of the rock material (Schleiss 1988; Olsson et al. 1997).

In Europe, the C.E.C.T. (1980) recommendations for the design of SLPT&S have been developed
for both the design and the construction. Load combinations and allowable equivalent stresses in
steel liners according to the Hencky–Von Mises theory in triaxial state of stresses are discussed
in these recommendations.

For the design it is common practice to consider an isotropic rock behavior, with the most
unfavorable elastic modulus measured in situ. This is usually a conservative assumption in the
quasi-static case.
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2.4. Pressure tunnels and shafts in anisotropic rock
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Chapter 2. Steel-lined pressure tunnels and shafts

2.4 Pressure tunnels and shafts in anisotropic rock

Several authors have studied pressure tunnels and shafts subject to internal water pressure
considering the rock mass anisotropy. Experimental studies of linings in anisotropic media and an
analytical method of the lining behavior in elastic orthotropic media by partitioning the lining into
beam elements were published by Éristov (1967a,b). The latter analytical method is similar to the
FEM approach presented in USACE (1997), as noted by Hachem & Schleiss (2009). Baslavskii
(1973) derived an analytical solution for the stresses in the lining of a pressure tunnel in a linear
elastic rock which is inhomogeneous within a thick ring around the liner. This inhomogeneity
was characterized by a slight variation of the shear modulus around the opening. Postol’skaya
(1986) performed a series of parametric investigations on the stresses in crack-resistant linings in
different anisotropic media using the FEM. Kumar & Singh (1990) studied the effect of jointed
rocks on reinforced concrete linings in pressure tunnels by means of the FEM. Their approach
is particularly interesting as they introduced a reduction factor in the analytical expression for
load-sharing between a lining and an isotropic and homogeneous rock mass to include the effect
of joints. They used a continuous constitutive relation according to Singh (1973) to characterize
the jointed rock mass. More recent analytical developments were carried out to compute stresses
and deformations in unlined and lined tunnels in anisotropic rock subject to in situ loadings (e.g.,
Hefny & Lo 1999; Bobet 2011; Tran Manh et al. 2014).

Nevertheless, in these studies, the particular case of SLPT&S made of four layers with different
properties and the assumption of cracked layers was not considered. To the authors’ knowledge,
there are neither analytical, experimental nor numerical published extensive parametric studies
characterizing the influence of anisotropic rock behavior on stresses and deformations in SLPT&S
under quasi-static internal water pressure.

2.5 High-strength steels for steel-lined pressure tunnels and shafts

2.5.1 High-strength steels (HSS)

For structural applications, steels can be roughly classified in three categories, namely mild steels
( fy < 300 MPa), high-strength steels (HSS, 300 < fy < 600 MPa) and very high-strength steels
(600 < fy < 1100 MPa) (Pijpers 2011). In general, high-strength steels exhibit a lower tensile to
yield strength ratio fu/ fy. Examples of stress–strain curves are shown in Fig. 2.3, plotted using
the stress–strain relation of Ramberg & Osgood (1943). In this report, the term high-strength
steel (HSS) refers to steel grades up to S960 for simplification.

The types of steel that are commonly used in hydropower construction are given in Table 2.1,
particularly up to grade S700 M in Europe. Types S890 and S960 are also presented as they will
be considered in this research project.

Although the mechanical performances of HSS allow for thinner and thus more economic steel
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Figure 2.3: Qualitative examples of engineering stress–strain curves for different steel grades,
with typical ultimate to yield strengths fu/ fy ratios.

Table 2.1: Minimum yield strengths for different steel grades used in hydropower construction.

Grade Standard Yield strength fy Thickness range
(MPa) (mm)

S355 J2/J2+N(*) EN 10025-2 (2005) 355 ts ≤ 16(*/**)
S355 N/NL(*) EN 10025-3 (2005) 345 16 < ts ≤ 40(*/**)
S355 M/ML(*) EN 10025-4 (2005) 335 40 < ts ≤ 63(*/**)
P355 N(**) EN 10028-3 (2009) 325 63 < ts ≤ 80(*)

315 60 < ts ≤ 100(**)

S500 ML EN 10025-4 (2005) 500 ts ≤ 16
490 16 < ts ≤ 50
490 50 < ts ≤ 75

S690 QL EN 10025-6 (2009) 690 ts ≤ 50
650 50 < ts ≤ 100

S700 M EN 10149-2 (2013) 700 8 < ts ≤ 15
(according to 680 15 < ts ≤ 50
ALFORM R©, Voestalpine) 650 50 < ts ≤ 60

S890 QL EN 10025-6 (2009) 890 ts ≤ 50
830 50 < ts ≤ 100

S960 QL EN 10025-6 (2009) 960 ts ≤ 50

liners with respect to the working stress criterion, welded HSS do not provide higher fatigue
strength than lower welded grades (Nykänen et al. 2013). Indeed, the tensile strength has only
little effects on the crack growth rate (Maddox 1991). As a consequence, if there is an initial
crack-like flaw in the weld, the fatigue life is only determined by the crack propagation period
and HSS does not provide an advantage.
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Chapter 2. Steel-lined pressure tunnels and shafts

The combination of lean alloying concepts and thermomechanical treatment significantly en-
hanced the weldability of HSS, as well as ensured excellent strength and toughness properties
(Cerjak et al. 2013a). However, although it has been drastically reduced, welded HSS are particu-
larly subject to the risk of hydrogen induced cold cracking (HICC) (Cerjak et al. 2005; Cerjak
2008; Cerjak et al. 2013a,b, 2015; Enzinger & Cerjak 2006; Enzinger et al. 2006; Enzinger
& Cerjak 2007, 2009; Enzinger et al. 2009; Roos et al. 2005). In the late 1950s when the
application of quenched and tempered (Q+T) fine grain steels was initiated, HICC issue occurred
in the heat-affected zone (HAZ) (Cerjak 2008; Cerjak et al. 2013b). With the development of
grades S690 and S890 Q+T, the risk of HICC was shifted from the HAZ to the weld deposit
(Cerjak 2008; Cerjak et al. 2013b). Despite the extensive research on welding procedures and
the qualification programs used in practice, the HICC issue is still not satisfactorily solved today
(Cerjak 2008). Although most cracks may appear transversally to the weld, some can also occur
in the longitudinal direction, i.e., transversally to the major principal stress in pressurized steel
liners. Examples of hydrogen induced cold cracks are shown in Figs. 2.4–2.5.

approx. 40 mm

Figure 2.4: Cross section of longitudinal hydrogen induced cold crack in the weld deposit of steel
grade S890 Q+T (modified after Cerjak et al. 2013a).

A tragic example of failure consequently to HICC occurred in December 2000, with the accident
of the Cleuson–Dixence shaft, made of S890 (Cerjak et al. 2005). The release of high-pressure
water into the surrounding rock mass provoked hydraulic jacking, resulting in a mudslide killing
three people (see Fig. 2.6). S890 (see Table 2.1) was used for the first time in Europe for steel-
lined pressure shafts. Although it was proved to fulfill the welding requirements, the rehabilitation
of the shaft was then performed with lower grades (Cerjak et al. 2009).
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2.5. High-strength steels for steel-lined pressure tunnels and shafts

500 μm 

(a) Embedded crack.

2 mm 500 μm 

(b) Surface crack.

Figure 2.5: Examples of hydrogen induced cold cracks in the original material of the Cleuson–
Dixence shaft (modified after Enzinger & Cerjak 2006, 2009).

2.5.2 Constructional aspects

Steel liners are straight-seam products manufactured from steel plates that are edge-broken
(crimped), and rolled by means of a plate-bending roll in order to obtain a continuous and
uniform curvature yielding a cylindrical shape (ASCE 2012). The crimped edges are then welded
in the longitudinal direction (i.e., out-of-plane in Fig. 1.1, Section A-A). When manufactured
from two rolled plates, a section may feature two longitudinal seams (see Fig. 2.7a). Once
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24

The fracture in the steelThe fracture in the steel

(a) Scaled model reproducing the fracture in the steel liner.

26

View on the mudslideView on the mudslide

(b) View on the mudslide after the failure.

Figure 2.6: Cleuson–Dixence: the accident of the 12th of December 2000 (from Hagin 2005).
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2.6. Transient pressure phenomena

welded longitudinally, the section is erected in the excavated shaft and welded circumferentially
(girth weld) to the next reach. For the general quality level of the welds, the provisions of the
European standard ISO 5817 (2014) are generally adopted, requiring class B, the highest. The
acceptance levels for the non-destructive testing of the welds are given in the European standards
EN ISO 11666 (2011) and EN ISO 23278 (2015) for ultrasonic and magnetic particle testing,
respectively. The fabrication of the steel liners, from the plate manufacture to erection, including
the welding procedures, must be performed in accordance with the relevant standards. In general,
the choice of steel grades, filler materials and welding processes is assessed through extensive
qualification programs (Cerjak et al. 2009; Chène 2009). Of particular interest in this research
project, the C.E.C.T. (1980) recommendations give tolerances for the geometrical and weld
imperfections. Some photographs taken on the construction site of the Nant de Drance project, in
Switzerland, are presented in Fig. 2.5 and illustrate some selected constructional aspects. More
details can be found, e.g., in Zerjeski (2007); ASCE (2012).

2.6 Transient pressure phenomena

Pressurized waterways are subject to transient phenomena. In hydroelectric power plants, these
transients are due to an alteration of the flow velocity at any cross section, e.g., the sudden opening
or closure of a valve, a sudden start-up or shutdown of a pump or turbine, etc. Such events generate
a pressure wave propagating along the system with a high acoustic speed a. The induced dynamic
forces are of primary importance on the design of the waterways. This pressure fluctuation is the
so-called water hammer. Reviews of fluid-transients and water hammer theories are available in
the literature, see, e.g., Jaeger (1977); Tijsseling (1996); Popescu et al. (2003); Ghidaoui et al.
(2005). The usual dimensions of pipes justify a 1D-approach including the assumptions that
flow properties such the pressure, velocity and density are uniform in a cross section. Assuming
compressibility of water and neglecting the terms related to transport phenomena compared to
propagating phenomena, the mass and momentum conservation equations yields the classical
1D-approach for water hammer flows, often solved by the Methods of Characteristics (MOC)
(Popescu et al. 2003; Boillat & de Souza 2004; Ghidaoui et al. 2005; Kwon 2007; Bergant &
Tijsseling 2008, other methods are also introduced, e.g., by Nicolet 2007). This classical theory
predicts a quasi-static (i.e. without fluid-structure interaction) wave speed.

Fluid-Structure Interaction (FSI) characterizes the phenomenon when pressure waves in water
produce dynamic forces in the steel liner and trigger vibrations, the latter causing water pressure
waves in return (Hachem & Schleiss 2011c). According to Kuiken (1988), FSI may lead to higher
or lower extreme dynamic pressures and so for the stresses in the liner, change in the natural
frequencies of the system, more damping and dispersion of the waves. Numerous works have
contributed to the comprehension of wave propagation in pressurized pipes considering FSI (see,
e.g., Atabek 1968; Kuiken 1984, 1988; Lavooij & Tijsseling 1991; Heinsbroek 1997; Zhang
1999; Li et al. 2003; Tijsseling 2003; Kochupillai et al. 2005; Tijsseling 2007; Keramat et al.
2012; Moussou 2013).
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Chapter 2. Steel-lined pressure tunnels and shafts

(a) Two rolled plates before welding and erection.

(b) Welding of an anchor ring.
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2.6. Transient pressure phenomena

(c) Grinding of the welded joints.

(d) Post-weld heat treatment of a grouting nipple.
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Chapter 2. Steel-lined pressure tunnels and shafts

(e) Steel liner with temporary bracing.

(f) Void between the steel liner and the surrounding rock (with shotcrete), before backfilling with concrete.

Figure 2.5: Photographs taken at the Nant de Drance project in Switzerland ( c©A. J. Pachoud,
2016). The author acknowledges the authorization provided by ANDRITZ and Nant de Drance
to use these photographs herein.
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2.6. Transient pressure phenomena

(a) Transverse profile of the model for
FSI.

(b) Longitudinal profile of the
model for FSI.

Figure 2.6: Computation model used for the frequency-dependent wave speed: (a) transverse
profile and (c) longitudinal profile (figures from Hachem & Schleiss 2011c).

To model the steel–concrete–rock system of SLPT&S, Hachem & Schleiss (2011c) proposed a
model shown in Fig. 2.6 for the computation of the frequency-dependent wave speed calculation,
and thereby take into account FSI. In this model, the effect of backfill concrete and the surrounding
rock mass is mechanically modeled by a spring, a dashpot and a lumped additional mass (Kelvin
model). The spring stiffness (per unit area) is denoted Ksr, the frictional coefficient of the dashpot
Cr and the additional mass Mr. For the longitudinal interaction, an equivalent model is considered
with coefficients Ksl , Cl and Ml . It yields a six-equation (3-mode) model of the FSI problem,
i.e., four equations for the fluid without body forces (two linearized equations of motion in axial
and radial directions, equation of continuity and the thermodynamic constitutive equation for
the density), and two equations of motion in an initially stressed field for the liner (axial and
radial directions). The unknowns to be solved are u, v, p, us

l and us
r, i.e., the axial and radial

water velocities, the water pressure, and the axial and radial displacement of the steel liner,
respectively. Combining these equations yields a dispersion equation, and more specifically a
quadratic dispersion by considering water as a compressible non-viscous fluid and by neglecting
the initial longitudinal stress in the liner. The unknowns u, v, p, us

l and us
r are assumed to vary

harmonically over the axial distance x and time t, with a real constant frequency ω . By denoting
c the complex propagation velocity, and the hat superscript standing for the amplitude of the
periodic quantities, the unknowns are expressed as:

[u,v, p] = [û(r), v̂(r), p̂i(r)]eiω(t−x/c), (2.21)

[us
l ,u

s
r] = [ûs

l , û
s
r]e

iω(t−x/c). (2.22)

The solutions of the dispersion equation yield two modes that can only propagate at low frequen-
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cies (the so-called tube modes) and an infinite number of acoustic modes that propagate at high
frequencies. The tube mode with the lowest velocity is the longitudinal compression mode in
water (water hammer or Young mode), the tube mode with the highest velocity is the axial stress
wave in the steel walls (called precursor or Lamb mode, resulting from the coupling of the radial
expansion and contraction of the liner walls and the Poisson’s ratio of the steel).

2.7 Changed operational conditions

High-head hydropower plants with storage and with/without pumping are increasingly being
requested to provide ancillary services to the electrical grid. They guarantee that the network’s
frequencies remain within a narrow acceptable band around the standard frequency (e.g., 50 Hz in
West and Central Europe). This is possible due to their ability to rapidly (within seconds–minutes)
supply additional power to the grid, or in case of pumped-storage, absorb exceeding production
in case of demand drop. From the infrastructure standpoint, this has led to the increase of the
number of powerhouse starts per year, in particular for large-hydropower plants equipped with
Francis groups, as depicted in Fig. 2.7.

Two major context changes of the last 30 years have contributed to the increase number of annual
starts:

1. penetration of new renewable power plants using rapidly-varying natural resources (in time
and space), like wind and solar radiation; and

2. the contractual mechanisms created by both Transmission System Operators (TSOs) and
electricity market regulators to remunerate hydropower plants for their readiness to step-in
(increase power supply).

The situation is not necessarily similar in hydropower plants equipped with Pelton groups, which
can operate for a given head in a much larger range of discharges (and power) with acceptable
efficiencies, than the Francis units can. Operators presently tend to keep Pelton units synchronized,
varying the flow discharge and avoiding full stoppage if possible (and properly remunerated, e.g.,
secondary grid regulation), whereas Francis units are more often stopped and restarted.

The increased number of starts raises several challenges to the operator in terms of long-term
fitness-for-service of the assets. More maneuvers accelerate wear and fatigue, passing more often
by unstable and unfavorable operation paths for the turbines. More rapid maneuvers may cut
corners in terms of start and stop procedures. Steel-lined pressure tunnels and shafts are more
frequently under operation transient loading conditions. Despite having lower amplitude than
extreme transient load cases used for structural design of the steel lining, the cumulated number
of load rejection cycles increases faster these last few years than before, raising doubts about the
residual fatigue life of the steel-lined structures.

Different innovative solutions are being developed worldwide to mitigate load rejection pressure
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Figure 2.7: Number of cumulated annual starts of a typical high-head storage hydropower plant
in Switzerland equipped with Francis turbines and multistage pumps (after Manso et al. 2016a).

rises (Li et al. 2014) and mitigate instabilities during start/stop maneuvers (Manso et al. 2016b)
by means of modified technologies or operation procedures.

In terms of steel-lined structures, however, the increased frequency of these maneuvers and the
accelerated rise of cumulated loading cycles merits further research in terms of the corresponding
structural stresses, crack propagation (if any) and residual fatigue life, both for mild as for
high-strength steels.

2.8 New and innovative non-intrusive monitoring methods

Within the context of harsh operational conditions described in Sect. 2.7, non-intrusive monitoring
techniques are of special interest for SLPT&S. The latest developments in this matter are presented
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hereafter. Most of the content of this Section has been published in a scientific article entitled
"Signal analysis of an actively generated cavitation bubble in pressurized pipes for detection of
wall stiffness drops", by E. Mazzocchi, A. J. Pachoud, M. Farhat, F. E. Hachem, G. De Cesare
and A. J. Schleiss, in the Journal of Fluids and Structures (Mazzocchi et al. 2016). The study
was carried out in the framework of a Master thesis conducted by Mazzocchi (2014) at the
Laboratory of Hydraulic Constructions (LCH, EPFL) in collaboration with the Laboratory for
Hydraulic Machines (LMH, EPFL) within the scope of HydroNet 2. The author of the present
report followed closely this Master thesis.

2.8.1 Historical development

Hydraulic assessment methods for pipelines failure and leak detection have been developed
recently, especially in the fields of water-supply, gas and oil networks (see, e.g., Ferrante &
Brunone 2003a,b; Covas et al. 2005; Beck et al. 2005; Misiunas et al. 2005; Shamloo & Haghighi
2009; Stephens et al. 2008). The general principle of these methods is based on the analysis
of the system response to pressure transients. When a pressure wave is generated at a point of
the pipeline, it propagates through the entire system. Each time it goes through features such
as changes in section, resistances or junctions, the incident wave is partially reflected, partially
transmitted and partially absorbed. Any new reflection boundary appearing in a network, is
indicative of a new singularity.

2.8.2 Water hammer signals

Hachem (2011) developed a new non-intrusive monitoring method to detect and locate local
drops of wall stiffness in SLPT&S. This method is based on the analysis of water hammer
measurements, recorded by two pressure transducers placed at the ends of a steel test pipe,
divided into several reaches. A local drop in the wall stiffness was modeled by replacing steel
reaches with so-called weak reaches, made of aluminum or PVC. The water hammer waves were
generated through closure maneuvers of a valve located at the downstream end of the pipe. When
the incident wave encounters the weak reach, which is characterized by a lower propagation
speed, it is partially reflected and partially transmitted (and partially absorbed in the case of
viscoelastic materials, such as PVC).

Every time a rectangular pressure wave of magnitude (hi− h0) goes through changes in the
pipe wall stiffness or flow area, it is partially transmitted and partially reflected. For branching
junctions, the theoretical transmission ratio of the incident wave through the nth junction is given
by (Wylie et al. 1993):

htn−h0

hi−h0
= 2n

n

∏
j=i

1

1+
a j+1A j

a jA j+1

(2.23)
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where, h0, hi and htn are the piezometric heads of the steady-state, incident and transmitted waves,
while a j and A j are the wave speed and flow area of each pipe reach j.

The experiments showed that the location and the stiffness of the weak reach can be estimated
through the analysis of the reflected pressure signals. Nevertheless the analysis was proved to
be effective only for significant stiffness reductions, around 98% (PVC reaches). When this
value drops to approximately 63% (aluminum reaches), the location of the weak reach is no
longer possible. Results of this research project were published in Hachem & Schleiss (2011a,b,d,
2012a,b).

2.8.3 Actively generated cavitation bubble signals

Hachem (2011) has shown in his work that the monitoring method could be significantly more
effective when pressure waves characterized by a steep wavefront are analyzed. The objective
of the study performed by Mazzocchi et al. (2016) was to improve the sensitivity and precision
of the monitoring method by replacing water hammer with a more suitable pressure signal. An
underwater spark generator was used to generate very steep shock waves, characterized by an
extremely short wave period. These properties allowed for a much more precise estimation of the
wave propagation celerity. A reduction of this wave celerity was clearly identified when a weak
reach was introduced in the test pipe. This implies that the measure of the wave propagation
speed, derived from hydrophones records at both ends of the pipe, can be used to detect changes
in the overall wall stiffness. If a sufficiently powerful spark generator could be installed in a
real pressure shaft, regular and precise measures of the wave speed could be recorded. Any
significant deterioration of the structure should then be detected by a reduction of the measured
wave celerity.

The spectral analysis of the signals was then carried out in order to estimate the position of
the weak reach. The wave reflections caused by the aluminum reaches with a stiffness drop
of 63.5% are relatively small and therefore the corresponding spectra are almost identical to
those obtained from the steel pipe. In the case of the PVC reaches instead, the frequency content
of the signal changes completely and two major peaks can be easily identified. Assuming that
the corresponding frequencies are related to reflected waves, traveling back and forth between
the weak reach and the pipe ends, the incident-reflection travel time can be derived. Using the
estimated wave speed, it was therefore possible to compute the length of the reflection path. This
analysis was showed to be able to locate the PVC reaches with a maximum relative error of 6.4%
from the upstream sensor and 13.2% from the downstream one, with more explicit spectra than
with the water hammer signal approach developed by Hachem (2011).

Spark-induced shock waves may represent a significantly more convenient pressure signal
than water hammers. Remarkable precision improvements may be possible regarding both the
detection and the location of local drops in the pipe wall stiffness. Nevertheless a challenge is
still to generate cavitation bubbles in steel-lined conduits with several hundreds of meters internal

35



Chapter 2. Steel-lined pressure tunnels and shafts

pressure.

2.8.4 Ranges of application

At the scale of SLPT&S, the objective of non-intrusive monitoring methods is to detect relatively
small changes in the stiffness (and thus a small amount of damages) before a significant risk of
failure occurs. According to Eq. 2.23, the wave reflection ratio is proportional to the drop of the
wave speed inside the weak reach compared to the rest of the pipeline.

In order to estimate the wave speed reduction caused by local damages in a real SLPT&S, one
can for instance study the effect of the modulus of elasticity of the rock mass on the wave
speed. Substituting the backfill concrete, the near- and far-field rock masses with an equivalent
homogeneous rock mass with an apparent modulus of elasticity Eapp, and considering that the
liner is in contact with the concrete–rock system, the wave speed can be expressed as follows
(Hachem & Schleiss 2011c):

a =





1

ρw

[
1

Kw
+

4
(
ν2

s −1
)
(1+νrm)rcri

Eapp (1+νs)
[
(2νs−1)r2

c − r2
i

]
−Es (1+νrm)

(
r2

c − r2
i

)
]





1/2

(2.24)

where ρw and Kw are the unit mass and the bulk modulus of water, respectively, and

Eapp =
ErmEcrm

Ecrm−Erm (1−νrm) ln
(

rc

rrm

) . (2.25)

The subscripts s, c, crm and rm refer to the steel-liner, backfill concrete, the near- and far-field
rock zones, respectively, and rc = ri + ts (also see Fig. 2.1).

In the case of open-air penstock, the wave propagation speed is given by (Hachem & Schleiss
2011c):

a =





1

ρw

(
1

Kw
+

2riλ3

Ests

)





1/2

(2.26)

where Es is the elastic modulus of steel, ts is the steel thickness, and λ3 is defined as:

λ3 =





1−0.5νs if the penstock can freely slip in the longitudinal direction;
1 if the penstock has expansion joints over its entire length;
1−ν2

s if the penstock is blocked in the longitudinal direction;
(2.27)
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with νs the Poisson’s ratio of steel.

Figure 2.8a gives the wave speed as a function of the ratio of the internal radius of the liner to the
thickness of the liner for different levels of rock mass stiffness. The wave speed of an open-air
steel penstock is also given (Eq. 2.26). The curves have been computed considering the parameters
proposed by Hachem & Schleiss (2011c), namely Es = 2.1 ·105 MPa, Ec = 2.1 ·104 MPa,
Ecrm = 0.5Erm, νs = 0.3, νc = 0.20, νrm = 0.25, rcrm = 1.2 ·ri, rrm = 1.25 ·rcrm,
Kw = 2.2 ·103 MPa and ρw = 1 ·103 kg/m3.
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Figure 2.8: Wave speeds in real SLPT&S (modified after Mazzocchi et al. 2016).

One could now consider a steel-lined pressure tunnel or shaft embedded in a very good quality
rock mass (e.g., Erm/Es = 0.20) with local damage represented by a drop of the rock mass
stiffness or, the extreme scenario of complete absence of rock mass participation (i.e., open-air
steel penstock). Figure 2.8b gives the ratios between the wave speed inside the damaged zones
and the rest of the pressure tunnel. As it can be seen, a very important local drop of the rock
stiffness, in an overall good quality rock mass, can cause a wave speed reduction of up to around
55%. A more probable value would be from 85 to 95%.

Such damages can now be compared to the weak reaches used in the experimental pipeline by
computing the wave reflection ratio as a function of the wave speed reduction inside the weak
reach. As it can be seen from Fig. 2.9, the severity of the kind of damages that would occur in
real SLPT&S are much better reproduced by the aluminum reaches (wall thickness of 5 mm)
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et al. 2016).

than the PVC (wall thickness of 5 mm) and PVCT (wall thickness of 10 mm) ones. In order to be
effective, the sensitivity of the monitoring methods developed by Hachem (2011) and Mazzocchi
et al. (2016) would therefore need to be improved for practical applications.

2.9 Conclusions

From the literature review on SLPT&S presented in this chapter, the following conclusions can
be outlined.

1. The design of SLPT&S is normally done considering isotropic rock behavior with the
lowest elastic modulus measured in situ.

2. There are neither analytical, experimental nor numerical published solutions to estimate
the stresses in the steel liners of SLPT&S in anisotropic rock.

3. Hydropower plants, and particularly pumped-storage, operate presently under more fre-
quent transients and thus faster cumulative number of cycles, raising the issue of fatigue at
the welded joints of steel liners of SLPT&S.

4. The use of HSS, within the standard design procedure, allows reducing the liner’s thickness
and thus the economical costs. However, welded HSS do not provide a higher fatigue
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strength than mild steels. As a consequence, for an optimized use of HSS, the issue of
fatigue should be treated systematically.

5. Promising developments have been recently proposed for non-intrusive monitoring of
SLPT&S, by means of water hammer transients and of actively generated cavitation bubble
signals. These methods need to the further optimized, and a great technological challenge
remains in their practical implementation.

In this research project, the gaps in knowledge related to the design of SLPT&S in anisotropic
rock and the issue of fatigue will be addressed. However, the development of the non-intrusive
monitoring methods is out of the scope of the project.

39





3 Fatigue and fracture assessment of
welded joints

3.1 Introduction to fatigue

According to Maddox (1991),

in the context of engineering, fatigue is the process by which a crack can form and
then grow under repeated or fluctuating loading. [...] The magnitude of the loading
required to produce fatigue cracking in a component may be much less that needed
to break the component in a single application of load.

Therefore, fatigue crack may initiate and propagate under applied loads lower than the ultimate
strength because of stress concentration zones into a component, induced by geometrical features
such as notches, or from initial defects located into the component. Welded joints are particularly
sensitive to fatigue phenomenon, as the weld shape produces stress concentrations, and welding
may introduce initial flaws into the welded component. Fatigue is a dangerous process leading
to final fracture and failure as it generally happens under elastic nominal stress (at least from
medium to very-high cycle fatigue), and the high localization of the damage (cracks) makes it
difficult to observe.

The total number of cycles NT during the fatigue life of a component is often assumed to the
sum of the number of cycles to crack initiation Ni and the number of cycles during the crack
propagation period Np, as (Ho & Lawrence 1984; Pijpers 2011)

NT = Ni +Np. (3.1)

Typically, the initiation stage is completed when the microcrack growth (dislocation, crack
nucleation) is no longer dependent on the microstructure (Baptista 2016). The transition from
microcrack to long crack regime (see also Fig. 3.3) typically occurs at crack depth a ≈ 0.1–
0.2 mm (Pijpers 2011; Baptista 2016). If an initial crack-like flaw is present in a welded
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component (e.g., lack of fusion, undercuts, HICC, stress corrosion cracking), the fatigue life is
generally dominated by the propagation stage (Borges 2008).

3.2 Fatigue assessment methods for welded steel structures

Fatigue assessment of welded steel structures is generally performed under two approaches, as
enumerated hereafter (after, e.g., the reviews of Radaj 1996; Chryssanthopoulos & Righiniotis
2006; Radaj 2006; Fricke 2011, 2013).

1. The so-called S–N approach, where the S–N curves (or Wœhler curves) are based on
statistics of experimental fatigue testing. S–N curves give a direct relationship between the
fatigue life and constant amplitude load cycles N, in terms of nominal (Sect. 3.2.1) or local
stresses (Sects. 3.2.2–3.2.3), S. For variable amplitude loading, the fatigue life is obtained
indirectly using a damage accumulation law, e.g., the widespread Palmgren–Miner rule
(Sect. 3.3). The S–N curves implicitly accounts for initiation and propagation stages.

2. The crack propagation approach, based on linear elastic fracture mechanics (LEFM)
and the Paris–Erdogan law (Sect. 3.2.4). This approach assumes that an initial crack-like
flaw is present (typically for welded joints), and thus estimate the propagation stage only.
Initiation stage can be considered in combination with a local elastoplastic strain-based
approach (Baptista 2016).

The main related approaches are introduced hereafter.

3.2.1 Nominal stress approach

The nominal stress approach (also called the classification of structural details) is the simplest and
somehow traditional method, where the fatigue strength is obtained in terms of range of nominal
stress. In this method, local stresses are disregarded and welded structural details are classified
into different detail categories, associated to S–N curves. According to the recommendations of
the International Institute of Welding (IIW, Hobbacher 2016), the S–N curves are characterized by
their fatigue strength at 2 ·106 cycles with the probability of survival ps = 97.7% (so-called FAT
classes, in MPa), and a slope exponent k = 3 above and k = 22 below the knee point at 10 ·106

cycles for constant amplitude fatigue loading, as shown in Fig. 3.1. For variable amplitude fatigue
loading (see also Sect. 3.3), S–N curves are modified with a slope exponent k = 5 below the knee
point at 10 ·106. The modified S–N curves are plotted in Fig. 3.2.

The nominal stress approach is implemented in most structural codes for fatigue assessment, such
as EN 1993-1-9 (2005) (Eurocode 3) in Europe. This approach is the easiest to use if the nominal
stress can be defined. The S–N curves were derived experimentally in as-welded conditions, and
the influence of geometrical imperfections such as linear misalignment are taken into account in
the prescribed limits of the classification of the structural details.

42



3.2. Fatigue assessment methods for welded steel structures

10
4

10
5

10
6

10
7

10
8

10
9

10
1

10
2

10
3

Number of cycles, N

S
tr
es
s
ra
n
g
e,

∆
σ
(M

P
a
)

36

50

100

160

225

160 ×Kw

N
c
=

2
×

10
6

∆σnom

∆σhs

∆σn

S–N curves for steel
at constant amplitude loading

Figure 3.1: S–N curves for steel at constant amplitude loading (reproduced after Hobbacher
2016).

3.2.2 Structural hot-spot stress approach

The structural hot-spot stress approach, contrary to the nominal stress approach, includes the
effect of the structural configuration, i.e., the stress increase caused by the structure-related
stress concentration (Fricke 2013). This approach enables the treatment of weldments where
a nominal stress cannot be defined meaningfully, and also reduces the number of FAT (Mann
2006), called hot-spot S–N curves (Niemi et al. 2006). Within this approach, the S–N curves are
related to the type of weld (Hobbacher 2009). The structural hot-spot stress is a combination of
membrane and bending stresses, excluding the nonlinear peaks induced by the weld shape, e.g.,
by the weld toes (see Fig. 3.9). The hot-spot S–N curves are therefore used in terms of range of
structural hot-spot stress, that can be estimated by means finite element analysis (see Sect. 6.1.2)
or analytical formulas provided in standards. Numerous application can be found in the literature,
e.g., in Aygül et al. (2012, 2013); Doerk et al. (2003); Lotsberg & Sigurdsson (2006a); Lotsberg
(2006); Poutiainen et al. (2004); Stenberg et al. (2015).
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Figure 3.2: Modified S–N curves for steel at variable amplitude loading for Palmgren–Miner
summation.

3.2.3 Effective notch stress approach

The so-called notch stress approaches add a degree of precision by considering the nonlinear
peak induced by the presence of the weld, e.g., at weld toes or roots, which reduces the fatigue
strength for high-cycle fatigue lives. The increase in local stress and its effect on fatigue strength
can be expressed by a fatigue notch factor K f , which can be determined from the elastic notch
stress concentration factor Kt from different methods (Fricke 2012; Nykänen et al. 2013), e.g.,
the stress averaging approach, used under the form of fictitious notch rounding (Fricke 2012).

The notch rounding approach is based on the Neuber’s concept of microsupport effect at notches,
which consists in averaging the maximum notch stress in a small material volume by introducing
an enlarged, fictitious radius ρ f as (Fricke 2012; Radaj et al. 2013)

ρ f = ρ + sρ∗ (3.2)
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where ρ is the actual notch radius, s is a factor for stress multiaxiality and strength criterion
and ρ∗ is the microsupport length. Radaj (1990) proposed, for structural steel welded joints,
that s≈ 2.5 (plane strain conditions at notches combined with the von Mises multiaxial strength
criterion for ductile materials), ρ∗ = 0.4 mm (welded structural steels) and ρ = 0 mm (worst case
scenario), yielding a so-called reference radius ρ f = rref = 1 mm (Fricke 2012; Radaj et al. 2013).
This results in a maximum possible fatigue notch factor K f ,max ≈ Kt(rref = 1 mm) (Nykänen et al.
2013). The related elastic notch stress is the fatigue-effective stress, from where the approach
takes its name, so-called effective notch stress approach. In this approach, the fatigue strength
in terms of range of effective notch stress is related to a single S–N curve of material, namely,
for steel, FAT 225 limited1 to FAT 160 ×Kw with Kw ≥ 1.6, under principal stress hypothesis
(Sonsino 2009a; Radaj et al. 2009). The definition of Kw is given in Sect. 3.7.2. The FAT
class is shown in Figs. 3.1 and 3.2 for fatigue assessment under constant and variable loading,
respectively. This approach is described in the recommendations of the IIW (Hobbacher 2008,
2016), and applicable for structural steels up to fy = 960 MPa. For ultra-high strength steels, the
correspondence between K f and Kt is no longer guaranteed (Nykänen et al. 2013). The notch
rounding approach is also interesting as the effective notch stress can be estimated by means of
finite element analysis (FEA), e.g., through the guidelines of the IIW (Fricke 2012). More details
and applications of the method can be found in numerous publications see, e.g., Fricke (2011);
Kranz & Sonsino (2010); Maddox (2011); Park & Miki (2008); Pedersen et al. (2010b); Schijve
(2012); Sonsino (2009a); Sonsino et al. (2010); Sonsino (2011); Sonsino et al. (2012); Stenberg
et al. (2015).

3.2.4 Fracture mechanics (crack propagation) approach

In the fracture mechanics approach, the behavior of fatigue crack growth in steels (and more
generally in metals) can be depicted on a log-log plot of crack growth rate da/dN versus stress
intensity range ∆K, as shown in Fig. 3.3. The propagation mainly occurs in accordance with the
opening mode I (see Sect. 3.4), as superimposed modes II and III are negligible (Radaj 1990) if
the crack grows perpendicularly to the principal tensile stress direction. In region I (also called
near-threshold behavior region), cracks do not propagate below the threshold stress intensity
factor range ∆Kth. In the region II, namely of stable crack growth, the linear part of the log-log
plot can be described by the power law relation of Paris & Erdogan (1963)

da
dN

=C∆Km (3.3)

1This limitation comes from non-conservative results observed for mild weld notches, namely when Kw ≤ 1.6.
In those cases, the fatigue resistance of the weld notch is also limited to the resistance of the base material. This
implies that both hot-spot and weld notch stresses σhs and σn, respectively, have to be evaluated in the effective notch
stress approach. More details can be found, e.g., in Pedersen et al. 2010a; Hobbacher 2008, 2009, 2016; Fricke 2012;
Stenberg et al. 2015. See the calculation example in Chapter 12.
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where C and m are material constants that can be determined experimentally. The stress intensity
factor K is a linear elastic fracture parameters, that is described in Sect. 3.4. The Paris–Erdogan
law is used within the framework of linear elastic fracture mechanics (LEFM). In region III, also
called unstable crack growth region, the crack growth rate increases until failure.
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Figure 3.3: Typical behavior of fatigue crack growth in steels: log-log plot of crack growth rate
da/dN versus stress intensity range ∆K.

The LEFM approach and the use of the Paris–Erdogan law is well suited to fatigue crack growth
analysis of welded joints as the crack initiation period is negligible compared to the propagation
period (Fricke 2013). Assuming an initial crack size, the LEFM approach can be used to model
crack growth in region II, by integrating or summing Eq. 3.3 over the fatigue life. Compared to
the local stresses approaches previously described, this is the highest level of analysis effort but
generally provides the best fatigue life estimation when LEFM hypotheses are valid.

The Paris–Erdogan law has been modified by numerous authors to model a better fatigue behavior
in regions I and III, as well as to consider the effects on crack growth rate of parameters such as
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3.3. Damage and fatigue life calculation for variable amplitude loading

the stress intensity threshold ∆Kth, the fracture toughness KC or the stress ratio R = σmax/σmin =

Kmax/Kmin (see, e.g., reviews such as Radaj 1990; Barsom & Rolfe 1999; Anderson 2005).

Variable amplitude loading and particularly overloads can also induce crack retardation, due to
load interaction effects caused by plasticity-induced crack closure that influence the growth rate
(Anderson 2005). Numerous crack retardation models have been proposed in the literature, based
on the concept of effective stress intensity factor Keff (see, e.g., Wheeler 1972; Willenborg et al.
1971; Borrego et al. 2003; Cui & Huang 2003; Huang & Moan 2007; Wang & Cui 2009).

Important feature of welded joints, the presence of residual stresses may also be of importance
and have either a beneficial or detrimental effect depending on the studied case. The role of
residual stresses is still a controversial issue, regularly discussed in the literature (Casavola &
Pappalettere 2009). In the approaches based on S–N curves derived in as-welded conditions,
the influence of residual stresses is implicitly considered. In the fracture mechanics approach,
considering the presence of residual stresses is a tedious task, particularly if their distribution is
not known. In this work, residual stresses are disregarded when using the LEFM approach, i.e.,
assumed detrimental in tension and ∆K = ∆Keff.

A large number of applications of the LEFM approach for fatigue crack growth, both in determin-
istic and probabilistic frameworks, can be found in, e.g., Lukić & Cremona (2001); Lassen &
Sorensen (2002); Righiniotis & Chryssanthopoulos (2003, 2004); Nykänen et al. (2007); Barsoum
& Jonsson (2008); Liu & Mahadevan (2009); Chapetti & Jaureguizahar (2012); Maljaars et al.
(2012); Kocańda & Jasztal (2012); Leander et al. (2013); Mikkola et al. (2015); Baptista (2016).
Guidelines for fatigue crack growth analysis are given, e.g., in the British Standard 7910 (2005)
or in the IIW recommendations (Hobbacher 2008, 2016).

A more detailed theoretical background on fracture mechanics is proposed in Sect. 3.4.

3.3 Damage and fatigue life calculation for variable amplitude load-
ing

For any procedure based on S–N curves (namely nominal, structural hot-spot and notch stresses
approaches) for variable amplitude loading, the fatigue verification in terms of stresses should be
performed with a cumulative damage calculation such as the Palmgren–Miner rule as suggested
in the IIW recommendations (Hobbacher 2008, 2016).

Assume a variable amplitude spectrum of Np cycles such as

Np = n1 +n2 + ...+nk, (3.4)

where n j is the number of cycles under stress range ∆σ j. Defining N j as the number of cycles to
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Chapter 3. Fatigue and fracture assessment of welded joints

failure at stress range ∆σ j from the modified fatigue resistance S–N curve (Fig. 3.2), then the
(linear) cumulative damage rule suggest that the calculated damage sum Dcalc should remain
below the specified damage sum Dspec as

Dcalc =
n1

N1
+

n2

N2
+ ...+

nk

Nk
=

k

∑
j=1

n j

N j
≤ Dspec. (3.5)

For an assessment based on the major principal stress and a proportional loading, the IIW
recommendations suggest, e.g., Dspec = 1.0 for constant amplitude, Dspec = 0.5 for variable
amplitude loading, and Dspec possibly down to 0.2 for spectra with significant mean pressure
fluctuations (thus R fluctuations). The values of Dspec are adapted on the load cases because the
conventional value D = 1.0 was revealed to be unsafe in many investigations, when compared to
the real damage sum Dreal derived from experiments. More details can be found, e.g., in Sonsino
(2004, 2007); Svensson et al. (2005); Zhang & Maddox (2009).

Consider that the stress intensity factor KI , associated with the crack propagation leading to
the same failure mode than the one observed experimentally for the derivation of the S–N, can
be written as KI = Y σ

√
πa (see Sect. 3.9) with Y the shape and crack size correction factor,

and a the crack size. The Palmgren–Miner rule can then be demonstrated by means of fracture
mechanics (development after Gurney 2006). Rearranging and integrating Eq. 3.3 yields

∫ a j

a j−1

da
(Y
√

πa)m =C(∆σ j)
mn j (3.6)

where n j is the number of cycles required for a crack to grow from size a j−1 until size a j under
constant amplitude ∆σ j. Let consider a spectrum defined by Eq. 3.4. Applying Eq. 3.6 to each
cycles block n j gives





∫ a1

ai=a0

da
(Y
√

πa)m =C(∆σ1)
mn1

∫ a2

a1

da
(Y
√

πa)m =C(∆σ2)
mn2

...

∫ a f =ak

ak−1

da
(Y
√

πa)m =C(∆σk)
mnk.

(3.7)
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Now, assuming different constant amplitude loadings leading to failure, one can write

∫ a f

ai

da
(Y
√

πa)m =C(∆σ1)
mN1 =C(∆σ2)

mN2 = ...=C(∆σk)
mNk (3.8)

Then, dividing for instance the first term of Eq. 3.7 by Eq. 3.8, one obtains

∫ a1

ai

da
(Y
√

πa)m
∫ a f

ai

da
(Y
√

πa)m

=
C(∆σ1)

mn1

C(∆σ1)mN1
=

n1

N1
. (3.9)

Finally, applying Eq. 3.9 to all cycles blocks n j and adding them yields

Dcalc =
k

∑
j=1

n j

N j
=

k

∑
j=1

{∫ j

j−1

da
(Y
√

πa)m

}

∫ a f

ai

da
(Y
√

πa)m

. (3.10)

This development shows the consistency of the Palmgren–Miner with fracture mechanics, under
a certain number of assumptions, namely that the propagation period describes the entire fatigue
life of the studied welded joint and that the loading sequence does not affect the result. The latter
assumption may be a major source of non-validity of this development, leading to damage sums
differing from 1.0.

Modifications of the Palmgren–Miner rule have been proposed in the literature see, e.g., Gurney
(2006).

3.4 Theoretical background on fracture mechanics

3.4.1 Linear elastic fracture mechanics (LEFM)

Within the hypotheses of LEFM, the presence of a crack produces a 1/
√

r singularity in the stress
field at the crack front, where r is the distance from the latter. The nomenclature of a 3D cracked
body is shown in Fig. 3.4.

In 2D LEFM, the crack front is reduced to a so-called crack-tip. The 1/
√

r singularity is produced
by each mode of loading, depicted in Fig. 3.5. The opening mode I is the most severe loading,
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Chapter 3. Fatigue and fracture assessment of welded joints

that makes cracks propagate (Karihaloo & Xiao 2003).

Figure 3.4: Some nomenclature in a cracked body (figure from Gross & Seelig 2011).

Mode I
Opening

Mode II
Sliding

Mode III
Tearing

Figure 3.5: Fracture modes (adapted from Gross & Seelig 2011).

The intensity of the stress and displacement fields in the vicinity of a crack-tip can be approxi-
mated using the stress intensity factors (SIF), denoted K, depending on each mode of loading.
The general expressions of these fields in the vicinity of the crack-tip (see Fig. 3.6) are given
under the following form (see, e.g., Anderson 2005; Barsom & Rolfe 1999):

σi j =
KI√
2πr

f I
i j(θ); (3.11)

and

ui =
KI

2µ

√
r

2π
gI

i (θ); (3.12)

where σi j are the stresses, ui the displacements, µ the shear modulus, r the distance from the
crack-tip, and f and g are functions of θ in the local polar coordinates at the crack-tip, and of the
considered mode.
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x

y

ds

Γ

r

θ

σyy

σxx

τxy

0

Figure 3.6: Local coordinate system at crack-tip and example of an arbitrary counterclockwise
path Γ around the crack-tip.

Stress and displacement fields ahead of a crack-tip in Cartesian coordinates for Mode I are
expressed as

σxx =
KI√
2πr

cos
(

θ
2

)[
1− sin

(
θ
2

)
sin
(

3θ
2

)]
;

σyy =
KI√
2πr

cos
(

θ
2

)[
1+ sin

(
θ
2

)
sin
(

3θ
2

)]
;

σxy =
KI√
2πr

cos
(

θ
2

)
sin
(

θ
2

)
cos
(

3θ
2

)
;

(3.13)

and

ux =
KI

2µ

√
r

2π
cos
(

θ
2

)[
κ−1+2sin2

(
θ
2

)]
;

uy =
KI

2µ

√
r

2π
sin
(

θ
2

)[
κ +1−2cos2

(
θ
2

)]
;

(3.14)

with κ = 3−4ν in plane strain and κ = (3−ν)/(1+ν) in plane stress, ν the Poisson ratio and
µ the shear modulus. More information about LEFM can be found in monographs such as, e.g.,
Lawn (1993), Kanninen & Popelar (1985), Barsom & Rolfe (1999), Anderson (2005), Gross &
Seelig (2011), or François et al. (2013).

3.4.2 Plasticity of the crack-tip

Linear elastic fracture mechanics predicts an asymptotic solution for stress fields at sharp crack-
tips, with stresses tending toward infinity. However, in real materials, stresses are finite as
yielding occurs. As the yielding zone extends, LEFM becomes inaccurate. Linear elastic fracture
mechanics remains accurate within the hypothesis of small-scale yielding (SSY), i.e., when the
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Chapter 3. Fatigue and fracture assessment of welded joints

size of the plastic zone is very small compared to crack size and the finite dimensions of the
cracked components (see, e.g., Anderson 2005; Acevedo 2011). In the scope of LEFM, the
fracture in governed by the KIC (or GIC) criterion.

The determination of the plastic zone ahead of a crack-tip (or front in 3D) in a nonlinear material
is a complex task. However, as a first approximation, one can use the simplified approach
proposed by Irwin. The redistribution of the asymptotic stress field is approximated assuming
perfect plasticity (no strain hardening), i.e., the stress singularity is truncated by yielding in the
vicinity of the crack-tip (see Fig. 3.7). In mode I, σyy at the crack plane is given by (σyy from
Eq. 3.13 evaluated for θ = 0):

σyy =
KI√
2πr

. (3.15)

Imposing Tresca’s yield condition at the boundary between the plastic and the elastic zones (see
Fig. 3.7), one obtains (Gross & Seelig 2011)

ry =
1

2π

(
KI

α fy

)2

, (3.16)

called the first-order estimate of the plastic zone after Anderson (2005), where 1/α = (1−2ν)
in plane strain, and α = 1 in plane stress.

r

σyy

fy

ry

rp

LEFM

elastic-plastic

(θ = 0 deg)

σ

Figure 3.7: Crack-tip with first- and second-order estimates of plastic zone sizes ry and rp,
respectively.

This calculation is not strictly correct as it is based on the linear elastic solution. The LEFM
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3.4. Theoretical background on fracture mechanics

asymptotic stress field and the elastic–plastic stress distribution should ensure equilibrium, which
is expressed as (Anderson 2005)

α fyrp =
∫ ry

0
σyydr =

∫ ry

0

KI√
2πr

dr, (3.17)

where rp is the second-order estimate size of the plastic zone, as depicted in Fig. 3.7. Integrating
and solving for rp in Eq. 3.17 yields

rp =
1
π

(
KI

α fy

)2

. (3.18)

To account for the translation of the elastic stress field, Irwin defined an effective crack length
aeff, corrected by ry as

aeff = a+ ry. (3.19)

One can observe that for the same loading, the plastic zone in plane strain is significantly smaller
than in plane stress, due to the fact that α > 1 in plane strain, e.g., α = 2.5 with ν = 0.3 for
steels.

Anderson (2005) compared Irwin’s correction with LEFM analysis. He roughly predicted that
LEFM theory is applicable in mode I when the applied tension σ remains below half of the
cracked material’s yield strength, i.e., σ ≤ 0.5 fy (see also, e.g., Schwalbe & Zerbst 2003). This
is also in accordance with the correction from the more refined Strip-Yield Model proposed by
Dugdale. In the scope of steel-lined pressure tunnels and shafts, this rule of thumb is generally
verified due to the safety factors prescribed by the C.E.C.T. (1980) recommendations and the
limitation of the rock mass participation, as it will be shown in Part V.

3.4.3 Elastic–plastic fracture mechanics (EPFM)

J-integral

The J-integral is a widely accepted parameter for elastic–plastic fracture mechanics (EPFM).
Considering an arbitrary counterclockwise path Γ around the crack-tip, J is defined as (Rice
1968; Shih et al. 1986)

J =
∫

Γ

[
wdy−σi jn j

∂ui

∂x
ds
]

(3.20)
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where w and Ti = σi jn j are the strain energy density and the components of the traction vector
respectively, σi j and ui are the Cartesian components of the stress and displacement vector
components, n j is the unit vector normal to Γ and ds is the length increment along Γ (see
Fig. 3.6). The value of J is independent of the path of integration (Rice 1968), and is thus called
a path-independent integral.

SIF and J-integral

In a linear elastic cracked material, the J-integral represents the energy release rate and is
associated to the SIF as

J = G =
K2

I

E ′
(3.21)

where G is the energy-release rate, and E ′ = E in plane stress conditions and E ′ = E/(1−ν2) in
plane strain conditions.

HRR solution

Similarly to LEFM and the use of K to characterize the stress and strain fields, the J-integral
characterizes the stress and strain fields in the vicinity of a crack-tip under yielding conditions.
Assuming the small strain deformation theory of plasticity and a pure power stress–strain relation
as

ε
ε0

= α
(

σ
σ0

)N
(3.22)

where σ0 is the yield stress, ε0 the yield strain and N the hardening exponent, Hutchinson (1968)
and Rice & Rosengren (1968) proposed the so called HRR solution (also referred as fully plastic
solution), which approximates the fields as

σi j = σ0

(
J

ασ0ε0INr

)1/(N+1)

σ̃i j(θ ,N); (3.23)

ui = αε0

(
J

ασ0ε0INr

)N/(N+1)

ũi(θ ,N). (3.24)

IN is a dimensionless constant function of N, σ̃i j and ũi are functions of θ and N. More details
can be found, e.g., in Karihaloo & Xiao (2003), Pineau & Pardoen (2007) or François et al.
(2013).
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3.4. Theoretical background on fracture mechanics

Elastic–plastic solution

When crack problems are in the elastic–plastic regime, an estimation procedure is proposed by
Kumar et al. (1981), interpolating over the range from small-scale yielding (SSY) to fully plastic
conditions. For a material characterized by the Ramberg-Osgood stress–strain relation (Ramberg
& Osgood 1943) as

ε
ε0

=
σ
σ0

+α
(

σ
σ0

)N

, (3.25)

the interpolation to compute J combines the linear elastic and the fully plastic participations as

J = Je(ae)+ Jp(a,N) (3.26)

where Je is the linear elastic contribution corrected for an adjusted crack length ae, and Jp is the
plastic contribution based on the hardening exponent N. In SSY, Je >> Jp and J reduces to the
linear elastic solution adjusted to ae. In fully plastic conditions, Jp >> Je and J ≈ Jp.

The estimation procedure proposed by Kumar et al. (1981) is the so-called EPRI Handbook, and
was later expanded to a (limited) number of additional configurations (Zahoor 1989, 1990, 1991).
This procedure features some important limitations in its application, that were partly overcome
by the development of the Reference stress method applied to EPFM (Zerbst et al. 2003). Further
details on EPFM are out of the scope of the state-of-the-art of this research project.

3.4.4 Fracture strength

In traditional design, assuming the absence of flaws in steel structural members, the applied
stress (e.g., in terms of the von Mises equivalent stress σeq) should remain below the appropriate
material resistance (e.g., the yield strength fy). As a structure may contain crack-like flaws, this
failure criterion is not sufficient. In the early 1920s, Griffith (1920) already studied the difference
between the theoretical tensile strength and the (lower) real strength in brittle materials containing
flaws, such as scratches. In fracture mechanics, similarly to continuum mechanics, a simplified
failure criterion states that the crack driving force should remain below fracture toughness, which
represents the ability of a material to absorb energy prior to fracture.

Assuming, after Anderson (2005), that failure occurs locally at a crack-tip in a material, then
crack propagation must occur at a critical value KC, which measures the fracture toughness and
is a material constant of a cracked body. Depending on crack-tip’s conditions, KC may not only
depend on stress intensity.

Considering that the size of the plastic zone is small compared to the specimen’s dimensions and
the crack size, its size only depends on loading and material properties. The plastic zone thus
only depends on KI , although the linear elastic stress field does not apply within the yielding zone.
Within the hypotheses of LEFM, the critical value of KI beyond which a crack may propagate
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is referred to as plane strain fracture toughness and is denoted KIC, which is a specimen-size
independent material property (Anderson 2005). As a consequence, the plane strain fracture
toughness can only be used as a fracture criterion within the framework of LEFM.

As the size of the plastic zone increases, the region with the 1/
√

r stress variation vanishes, and
the K–characterization of the crack-tip conditions is no longer valid. In this case, the fracture
toughness can be described by the J-integral, or the crack-tip opening displacement (CTOD)
(Anderson 2005).

KIC can be measured performing laboratory tests (see, e.g., Schwalbe et al. 2003), respecting the
following size condition:

min{a,(ts−a),B} ≥ 2.5
(

KIC

fy

)2

, (3.27)

where B is the specimen’s thickness in the direction of the crack front, and ts the thickness in the
direction of the crack propagation2. The qualitative effect of the specimen’s dimensions on KC

is illustrated in Fig. 3.8. In steels, KIC typically stands in the range 25–100 MPa
√

m (Gross &
Seelig 2011).

KC

KIC

Sample thickness

Figure 3.8: Qualitative representation of the effect of thickness on fracture toughness.

Within the framework of LEFM and after Gross & Seelig (2011), a rough estimation of the
admissible size of the plastic zone can be assessed combining Eqs. 3.18 and 3.27, which yields

ry,c ≤ 0.02 ·min{a,(ts−a),B}. (3.28)

2This dimension is often denoted W in the literature (see, e.g., Schwalbe et al. 2003; Anderson 2005; Gross &
Seelig 2011). ts was adopted herein for consistency with the nomenclature of steel liners.
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This condition is naturally fulfilled by linear elastic materials, and in general also by high-strength
elastoplastic metals such as HSS with a yield strength fy greater than 500 MPa (Karihaloo &
Xiao 2003). Indeed, these high-strength materials generally exhibit low plastic deformations.

3.5 Failure and fatigue assessment procedures

Beyond the brief development on fracture strength in the framework of LEFM in Sect. 3.4.4, en-
gineering procedures for the assessment of structures containing crack-like flaws were developed.
They often provide different levels of refinements considering elastoplasticity as well as features
of weldments such as, for instance, secondary stresses and strength mismatch. There are two
main approaches for failure assessment, namely the Failure Assessment Diagram (FAD) methods
(Ainsworth 2003), and the Crack Driving Force (CDF) methods (Schwalbe & Zerbst 2003).

The FAD is an interaction diagram between the two principal failure criteria, namely LEFM and
plastic collapse, proposing a failure line independent from components’ geometries. Failure is
assessed based on the relative location of the component–dependent point with respect to the
failure line. Conversely to the FAD method, the CDF treats separately the crack driving force and
the fracture resistance.

Some widespread engineering procedures are listed in Table 3.1. For each document, when
available, references summarizing or detailing specific aspects of the corresponding procedure
are proposed. Zerbst et al. (2003) reviews failure assessment methods, as well as their inclusion
in codes and standards. An overview on some standards and codes for fatigue assessment is given
in Table 3.2.

3.6 Reliability assessment

3.6.1 Probabilistic approaches in engineering

With the presence of uncertainties both on the demand and resistance sides of a structure, modern
design methodologies tend to develop probabilistic approaches to assess reliability, instead of,
for instance, using deterministic methods with empirically determined safety factors (Roos et al.
2011). Provan (1987) gives a general definition of reliability in structural engineering, that may
be applied universally (nomenclature is adapted):

Reliability is the probability P(T ) that a component (or a system) will not fail in a
time T . What is meant by the probability of failure-free operation is the probability
that under definite operating conditions and within limits of operating duration, no
failure will occur.
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Chapter 3. Fatigue and fracture assessment of welded joints

The time T is the time during which the probability of failure-free operation is determined, and
is also named lifespan herein. Introducing t the time of operation until the first failure, then the
above definition yields

P(T ) = P(t > T ). (3.29)

Probabilistic approaches were developed at first for the needs of the nuclear power industry
(Cameron et al. 1987; Wellein 1987; Bullough et al. 1999; Kanto et al. 2010), and aeronautics
(Palmberg et al. 1987; Hooke 1987; Yang et al. 1987; Manning et al. 1987). It was then more
and more extended to several fields of engineering such as, e.g., bridge engineering (Walbridge
2005; Kang et al. 2012; D’Angelo & Nussbaumer 2015), offshore engineering (Kirkemo 1988),
pressure vessels and piping (Tsai & Wu 1994; Rahman 1997), or geomechanical engineering
(Lü et al. 2011; Baecher 2003). To the author’s best knowledge, a probabilistic approach for
reliability assessment of SLPT&S was never published in the open literature.

3.6.2 Probabilistic fracture mechanics

Fatigue crack growth and fracture assessment particularly requires a large amount of inputs,
which are rarely known with accuracy (Besuner & Tetelman 1977). Probabilistic approaches
in fracture mechanics are thus very attractive, as evidenced by the prolificacy of the field in
the scientific literature (see, e.g., reviews such as Johnston 1982; Besuner & Tetelman 1977;
Dillström & Nilsson 2003). Welding components add even more uncertainties into the problem
of fatigue and fracture analysis, particularly related to the geometrical and material parameters
(Engesvik & Moan 1983). Uncertainties justifying the use of probabilistic fracture mechanics
(PFM) can be enumerated after Besuner (1987) (non-exhaustive list):

1. Initial crack size:

(a) depth a,

(b) length c,

(c) location,

(d) orientation;

2. Probability of crack detection:

(a) probability of detection (POD),

(b) crack characterization;

3. Material properties:

(a) crack growth rate da/dN,
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3.6. Reliability assessment

(b) fracture toughness (e.g., KIC),

(c) tensile properties;

4. Service conditions:

(a) loading (frequency, amplitude),

(b) environment;

5. Misdiagnosis of failure mode.

Assuming, for instance, a case where the failure mode is governed by KIC, then the strength
margin is defined as Y = KIC−KI , and the probability of failure p f is expressed as

p f = P(Y < 0). (3.30)

3.6.3 Monte Carlo simulation technique

When a failure analysis problem is defined with several random (uncertain) variables, solving
Eq. 3.30 is not trivial, if not impossible. The Monte Carlo simulation technique was developed to
evaluate Eq. 3.30 numerically, by trying stochastic variables in a deterministic model (Provan
1987). The procedure can be summarized in six main steps (Haldar & Mahadevan 2000):

1. defining the random variables;

2. determining the distributions of the random variables in terms of their probability density
functions;

3. generating the values of the random variables;

4. evaluating the problem (Y ) through the deterministic model for each trials, i.e., for each
set of the NMC realizations of the random variables;

5. extracting the failure probability from the NMC trials; and

6. determining the accuracy and efficiency of the simulation.

The probability of failure p f can be estimated as

p f = n f /NMC, (3.31)

where n f is the number of failures (Y < 0) observed among the NMC trials. As NMC tends to
infinity, p f converges to the true probability of failure ptrue

f . One way to evaluate the accuracy
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Chapter 3. Fatigue and fracture assessment of welded joints

of Eq. 3.31 is proposed, e.g., by Haldar & Mahadevan (2000) or Dillström & Nilsson (2003).
Considering that each trial constitutes a Bernoulli trial, and thus n f in NMC trials can be considered
to follow a binomial distribution and the error can be estimated as

ε ≈

√
(1− p f )p f

NMC
p f

. (3.32)

Equation 3.32 can be used to compute the error of a Monte Carlo analysis, or to estimate the
necessary number of trials NMC to reach a desired accuracy for a given probability of failure.

As a problem may require a large number of trials, Monte Carlo analysis may become inefficient
due to the large associated computational time to ensure the convergence of p f . Nevertheless,
several methods are available to reduce NMC by selective sampling. Other more efficient numerical
methods were developed, e.g, the First-Order Reliability Methods (FORM) and the Second-Order
Reliability Methods (SORM), but are more complex to implement than the Monte Carlo analysis
(Brückner 1987; Dillström & Nilsson 2003).

3.7 Review of formulas for stress concentration factors at butt welded
plates with linear misalignment

3.7.1 Decomposition of stress components

At the weld toe of a butt welded joint subject to membrane and bending stresses (due, e.g., to linear
misalignment), the stress profile is nonlinear and composed of three components, namely the
membrane stress σm, the bending stress σb and the nonlinear stress peak σnl. The decomposition
of the notch stress σn is depicted in Fig. 3.9.

= + +

σm σb σnlσn = + +

ts

Figure 3.9: Decomposition of the nonlinear stress profile in a butt welded joint with linear
misalignment.
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3.7. Review of formulas for stress concentration factors at butt welded plates with linear
misalignment

The structural stress σs is defined as the combination of the membrane and bending components
(Niemi et al. 2006):

σs = σm +σb. (3.33)

In this report, the so-called nominal stress σnom refers to the applied pure tension in the case of
butt welded joints of straight plates. In the case of steel-lined pressure tunnels or shafts subject to
internal water pressure, the nominal stress refers to the major principal stress computed at the
internal fiber of the cylindrical steel liner.

3.7.2 Definition of the stress concentration factors (SCF)

The structural stress σs, due for example to a misalignment of the plate’s axes, is related to the
nominal σnom by the structural SCF denoted Km as:

σs = Kmσnom. (3.34)

The combination of several types of misalignments can be approximated as (see, e.g., Niemi et al.
2006; Remes & Varsta 2010; Chattopadhyay et al. 2011; Nykänen et al. 2013; Nykänen & Björk
2015):

σs =

[
1+∑

i
(Km,i−1)

]
σnom (3.35)

where i denotes a misalignment type. The weld SCF Kw considering the magnification of the
weld shape is defined as the ratio between the notch stress σn and the structural stress σs as
(Fricke 2012):

σn = Kwσs. (3.36)

The notch SCF Kt considering all sources of magnifications relates the nominal stress σnom to the
notch stress σn as (Fricke 2012):

σn = Ktσnom. (3.37)
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Chapter 3. Fatigue and fracture assessment of welded joints

Without misalignment, Kt = Kw. An additional nomenclature for the general notch SCF Kt,m

(equivalent to Kt) is introduced for the analysis performed in Chapter 6. It can also be expressed
as the following multiplicative combination of the structural SCF and the weld SCF (Remes &
Varsta 2010; Nykänen et al. 2013), combining Eqs. 3.34 and 3.36:

σn = Kt,mσnom = KmKwσnom. (3.38)

3.7.3 Structural SCF due to linear misalignment

The structural SCF due to linear misalignment can be derived from the classical plate theory (Cui
et al. 1999). If the joint is unrestrained, in plane stress conditions Km can be computed as (see,
e.g., for welded plates, British Standard 7910 2005; Radaj 2006; Hobbacher 2008, 2009; Koçak
et al. 2008; Lotsberg 2008, 2009a,b; Nussbaumer et al. 2011; Fricke 2013)

Km = 1+3
e
ts
. (3.39)

For axial misalignment at longitudinal welds in cylindrical shells, the following formula is
proposed to compute the structural SCF (British Standard 7910 2005; Hobbacher 2008):

Km = 1+3
e

(1−ν2
s )ts

, (3.40)

where ts is the plate thickness and νs the Poisson’s ratio of steel. To the best authors’ knowledge,
the presence of the factor (1−ν2

s ) in Eq. 3.40 is no further explained in the literature.

3.7.4 Notch SCF due to weld shape

A notch factor for double-V butt welded joint was proposed by Lawrence et al. (1981):

Kt = 1+A(ts/ρ)0.5 (3.41)

where ρ is the weld toe radius (see Fig. 6.2). A is a constant for a given flank angle β and a given
edge preparation angle α (see Fig. 6.2). A similar approach is proposed by Cerit et al. (2010) for
single-V butt welded joints:

Kt = 1+A(ts/ρ)α (3.42)
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3.7. Review of formulas for stress concentration factors at butt welded plates with linear
misalignment

where α here depends on β and ts/ρ . Another expression with a similar approach was proposed
by Ho & Lawrence (1984) and Yung & Lawrence (1985):

Kt = 1+0.27tan(β )0.25(ts/ρ)0.5 (3.43)

where the former coefficient A is a continuous function of β . This expression is for example used
by Nykänen et al. (2013).

A more refined expression was proposed by Anthes et al. (1993) in the following form:

Kt = B(β ) [1+A(ts/ρ)α ] (3.44)

with

B(β ) = 1+
[
B0 +B1 sin(β )+B2 sin2(β )+B3 sin3(β )

]( ts
ρ

)C(β )
(3.45)

and

C(β ) = γ1 + γ2 sin(β + γ3) (3.46)

where A, α , the Bi and the γi are constant coefficients and exponents. This formula is for example
used by Demofonti et al. (2001), Mecozzi et al. (2010) and Nykänen & Björk (2015). Reducing
the range of application, the expression was simplified as (Anthes et al. 1993):

Kt = 1+Asin(β )α1(ts/ρ)α2 (3.47)

where A and the αi are constant coefficients.

A formula was proposed by Remes (2008) and Remes & Varsta (2010) for the notch factor at
laser-based joints, where the weld bead is modeled as a trapezoidal protuberance:

Kt = 1+
(

δ
ts

)0.30( lw
ts

)0.30

sin
(

β
2

)0.30( ts
ρ

)0.33

(3.48)

where δ is the weld reinforcement height and lw the weld length.
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Chapter 3. Fatigue and fracture assessment of welded joints

Another formula was reported by Radaj (2006) after Lehrke for double-V butt welded joints as

Kt =

4
[

2 · tan
(

β
2

)]1−2m

2β + sin(2β )

(
ts
4ρ

)m

. (3.49)

The notch factor at a trapezoidal protuberance on a tension member that can be approximated to
a weld bead was also proposed by Pilkey & Pilkey (2008) in a chart representing Kt as

Kt = 1+ f
(

δ
lw
,
ts +2δ

ts
,

ρ
lw
,θ
)
. (3.50)

Finally, SCF at butt welded joints were also studied by He & Zhang (2011), where a parametric
equation was proposed for a single thickness and a single weld toe radius only.

3.7.5 Comparison of published notch SCF equations

Some of the aforementioned formulas were evaluated against finite element analysis (FEA)
performed with the FE model presented in Chapter 6, Sect. 6.1. The selected formulas were
separated in two groups, depending on their behavior. Group 1 contains Eqs. 3.41, 3.42 and 3.43,
while Group 2 gathers Eqs. 3.44–3.46, 3.47, 3.48 and 3.49.

The formulas were evaluated, when possible, for three plate thicknesses, namely 12, 30 and
60 mm, without linear misalignment, and for a constant weld toe radius ρ = rref = 1 mm. The
flank angle β was varied, when possible, between 5◦ and 45◦. The parameters of the FE model
presented herein (see Sect. 6.1) were varied accordingly. However, as the FE model also includes
variable weld reinforcement height δ (see Fig. 6.2a), it was varied correspondingly with β as
reported in Table 3.3. The edge preparation angle α is set to 60◦. The same weld reinforcements
were chosen to evaluate Eq. 3.48, as well as α , yielding lw (see Fig. 6.2a).

Table 3.3: Variation of the relative weld reinforcement δ/ts accordingly to the flank angle β for
the FEA results shown in Figs. 3.10 and 3.11.

β (◦) 5 10 15 20 25 30 35 40 45
δ/ts (–) 0.015 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100

The FEA performed with the proposed FE model (see Sect. 6.1) is compared with the estimation
obtained by the equations of Group 1 in Fig. 3.10. The same FE results are plotted versus the
estimation provided by the equations of Group 2 in Fig. 3.11. One can observe a large scatter in
the estimation depending on the chosen formula. Considering the proposed hypotheses on the
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Figure 3.10: Notch SCF as a function of the flank angle β , estimated with the equations of
Group 1. Legend: (−◦−) FEA; (- -◦- -) Eq. 3.41; (−4−) Eq. 3.42; and (−�−) Eq. 3.43.

geometry of the butt welded joint in this work (see Sect. 6.1), the equations of Group 1 seems
more suited to estimate SCF with large flank angles, namely larger than 25–30◦. Conversely, the
equations of Group 2 show good agreement when estimating SCF with low flank angles. Also,
all the reported formulas generally overestimate SCF compared with the proposed FEA. This
trend becomes more significant with increasing thickness ts.

One may note that the FE results presented in Figs. 3.10 and 3.11 depends on the variation of
the weld reinforcement δ for each given flank angle β . However, Figs. 3.10 and 3.11 show
that the published formulas are imprecise, as the influence of δ is not explicitly considered,
except in Eq. 3.48. The influence of the weld length lw is also not considered in most of the
notch SCF formulas for standard butt-welded joints. The influence of these parameters will be
studied in Sect. 6.2. One may note that in standards, the influence of lw is related to the plate
thickness reduction factor (Hobbacher 2016) when using the nominal or structural hot-spot stress
approaches.

3.8 Review of formulas for structural stress concentration factors
in steel cylindrical structures

Numerous analytical and empirical formulas for structural SCF at welded plates and shells have
been published in the literature and included in standards (e.g., API 2007; British Standard 7910
2005; EN 13445-3 2014; Hobbacher 2008; Koçak et al. 2008). More specifically, numerous
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Figure 3.11: Notch SCF as a function of the flank angle β , estimated with the equations of
Group 2. Legend: (−◦−) FEA; (- -×- -) Eqs. 3.44–3.46; (- -O- -) Eq. 3.47; (- -♦- -) Eq. 3.48;
and (−+−) Eq. 3.49.

studies on SCF at longitudinally welded cylindrical shells can be found in the literature, see, e.g.,
Ohtani et al. (1991a,b); Böck & Zeman (1994); Zeman (1944); Ong & Hoon (1996); Schwarz &
Zeman (1997). Selected formulas used in this work which can be applied to open-air penstock
and pipelines are summarized in Table 3.4.

3.9 Review of formulas for stress intensity factors for cracks in
plates and shells

3.9.1 General formulation

The general formulation for SIF under Mode I loading conditions KI can be written as

KI = Y σ
√

πa (3.51)

where a is the minor semi-axis for an elliptical crack (crack depth for a semi-elliptical surface
crack), σ the applied stress and Y is a general correction factor which depends on the structure
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Chapter 3. Fatigue and fracture assessment of welded joints

and crack geometries. For welded plated structures, Y can be detailed as

Y =
Mw ·M0√

Q
(3.52)

where M0 is the correction factor not accounting for the weld and Mw is the correction factor
accounting for the presence of the weld only. M0 typically accounts for correction terms for finite
thickness or free surface at the mouth of the crack, for semi-elliptical surface cracks for instance.
Q is the complete elliptical integral of the second kind (Anderson 2003), also called flaw shape
parameter, and is expressed as:

Q =
∫ π/2

0

[
1−
(

1− a2

c2

)
sin2 φ

]
dφ . (3.57)

Equation 3.57 does not have a closed-form solution, but can be approximated by Eq. B.2.

Published empirical solutions can be used to estimate SIF for cracks in plates (Anderson et al.
2002; Newman Jr 1973; Newman Jr & Raju 1981a,b, 1984; Raju & Newman Jr 1979; Shen et al.
1991; Shen & Glinka 1991; Wang & Lambert 1995b,a, 1997) and cylinders (Anderson et al. 2002;
Newman Jr & Raju 1980; Raju & Newman Jr 1982; Li & Yang 2012; Wang & Lambert 1996).
Some solutions are also available in fracture mechanics handbooks (Tada et al. 1985; Murakami
1987a,b) and reliability assessment standards (British Standard 7910 2005; API 2007; Koçak
et al. 2008).

Hereafter, only the solutions considered herein are reported, namely for semi-elliptical surface
cracks and embedded elliptical cracks in plates.

3.9.2 Axial semi-elliptical surface cracks in plates

Although parametric equations were published for axial semi-elliptical surface cracks in cylinders
(see, e.g., Newman Jr & Raju 1980; Raju & Newman Jr 1982; Murakami 1987b), the solutions
either cannot account for geometrical imperfections inducing bending stresses, or require knowing
the stress distribution on the crack faces. As steel liners of SLPT&S typically have a high
slenderness (high internal radii ri and small relative thicknesses ts/ri), solutions for semi-elliptical
surface cracks in plates can be considered. The solution chosen herein for its accuracy and
widespread use is the one of Newman Jr & Raju (1981a), which can be expressed as

KI = [Mm (σm + pcr)+Mbσb]

√
πa
Q

(3.58)
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3.9. Review of formulas for stress intensity factors for cracks in plates and shells

where Mm and Mb are the shape correction factors applied to membrane and bending stresses,
respectively, and pcr is the pressure applied on the crack face, equal to the internal pressure pi in
the case of internal surface cracks. The complete empirical solution is reported in Appendix B.1.

3.9.3 Axial embedded elliptical cracks in plates

Similarly to semi-elliptical surface cracks, a solution for embedded elliptical cracks in plates can
be considered herein. The solution reported in the standard API 579 (API 2007) and attributed to
an unpublished work of Anderson (2005) is chosen, and is expressed as

KI = [Mm (σme + pcr)+Mbσbe]

√
πa
Q

, (3.59)

with

σme = {σm + pcr}+σb

(
1− 2d2

ts

)
(3.60)

where d2 is defined in Fig. 8.3, and

σbe = σb

(
2a
ts

)
. (3.61)

The complete parametric equations for Mm and Mb are given in Appendix B.2.

3.9.4 Influence of the weld shape

In fracture mechanics of weldments literature, numerous studies have been published studying
weld toe correction factors for cracked welded plates (Bowness & Lee 2000a,b; Brennan et al.
1999; Fu et al. 1993; Han et al. 2014; Hobbacher 1993; Lie et al. 2000, 2015; Niu & Glinka
1987, 1989; Wang & Lambert 1998). On the contrary, there are only few works assessing SIF
for cracks in the weld deposit. Nykänen et al. (2005) studied SIF for root cracks in transverse
penetration butt welds. Wang et al. (2012b) proposed parametric equations to estimate the SIF for
2D single-edge cracks at butt welded joints, and Wang et al. (2012a) proposed SIF solutions for
2D center cracks in undermatched butt joints. To the best author’s knowledge, there is however
no published work assessing the influence of the weld shape on SIF for 3D cracks in the weld
material of butt welded joints with the specific features of SLPT&S.
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3.10 Conclusions

From the literature review on fatigue and fracture assessment presented in this chapter, the
following conclusions can be outlined.

1. The S–N approaches are well established in standards and guidelines for fatigue assessment.
In the case of fully penetrated welded joints, these methods account for fatigue crack
initiation and propagation from notches, in particular weld toes for butt welded joints.

2. Among the S–N approaches, the effective notch stress approach is the highest level of
refinement. This method is still a subject of research, particularly concerning the parameters
describing the curves after the knee point, namely in the high- to very-high cycle fatigue.

3. The fatigue crack growth analysis by means of LEFM is very widespread, particularly
when the crack initiation period can be neglected because of the presence of an initial
crack-like flaw.

4. To implement S–N or LEFM approaches, structural and notch stress concentration factors
are required. Some parametric solutions are available in the literature. If no appropriate
solution does exist, they have to be determined by means of the FEM.

5. In the case of SLPT&S, the complex interaction between all geometrical imperfections and
the contact between the steel liner and the backfill concrete–system has never been studied.

6. Probabilistic approaches in engineering can provide great advantages for the design, as
they measure uncertainty. Although they are widely used in engineering fields such as in
the nuclear power generation industry or in aeronautics, they are not commonly used in the
scope of SLPT&S.

In this research study, parametric equations or correction factors will be derived by means of the
FEM for an optimized application of the fatigue assessment engineering procedures to the specific
case of SLPT&S. A probabilistic model for fatigue crack growth and fracture at the longitudinal
butt welded joints of steel liners of SLPT&S will be developed, providing a framework for fatigue
analyses in practice and therefore addressing the issues presented in Chapter 2.
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Anisotropy is everywhere. Isotropy is rare. Round stones are collectors’ item, and any almost
cubic blocks are photographed, as they are the exception.

– Barton & Quadros (2014)

Most of the content of this part (together with Sects. 2.1, 2.2, 2.3 and 2.4 of Chapter 2 in the
literature review) has been published in a scientific article entitled "Stresses and displace-
ments in steel-lined pressure tunnels and shafts in anisotropic rock under quasi-static internal
water pressure" by Pachoud & Schleiss (2016) in Rock Mechanics and Rock Engineering
49(4), pp. 1263–1287. The finite element model, the parametric study (Chapter 4), the
parametric correction factors (Chapter 5) and the respective analyses are original and were
developed by the author of the present report.





4 Parametric study
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Figure 4.1: Definition sketch of the standard multilayer system for pressure tunnels and shafts
embedded in: (a) elastic, isotropic rock mass (axisymmetrical case); (b) transversely isotropic,
elastic rock mass; and (c) transversely isotropic, elastic rock mass with two sets of discontinuities.

4.1 Constitutive modeling of anisotropic rock

The definition sketch of steel-lined pressure tunnels and shafts in anisotropic rock is shown in
Fig. 4.1. In engineering problems, when the rock is inhomogeneous or highly discontinuous,
the latter is often modeled with a continuum approach (Jing 2003). A jointed rock mass is thus
regarded as a continuum with equivalent properties taking into account the effects of the fabric
patterns. In the particular cases of excavations in jointed rock masses, the continuum approach

77



Chapter 4. Parametric study

is justified when the opening diameter is large compared to the spacing of the discontinuities
(Gerrard 1982; Jing 2003).

Amadei et al. (1987) states that the anisotropic behavior of rocks is often related to their fabric
pattern in the form of bedding, stratification, layering, schistosity planes, foliation, fissuring or
jointing. According to them, this is a general characteristic for rocks such as foliated metamorphic
rocks, stratified sedimentary rocks and rocks cut by one or several regular and closely spaced joint
sets. To model such discontinuities in rocks, one may consider an elastic transversely isotropic
behavior for the constitutive law (Wittke 1990), i.e., with a plane of isotropy which is parallel to
the foliation for example. Good introductions to transverse isotropy in rocks can be found in rock
mechanics books, e.g., in Derski et al. (1989), Wittke (1990) or Brady & Brown (2006).

4.1.1 Definition of stress and strain vectors in the Cartesian coordinate system

In the Cartesian coordinate system, the stress and strain tensors are defined by nine components,
respectively, at a given point (Lekhnitskii 1963):




σx τxy τxz

τyx σy τyz

τzx τzy σz


 (4.1)

and



εx
1
2 γxy

1
2 γxz

1
2 γyx εy

1
2 γyz

1
2 γzx

1
2 γzy εz


 . (4.2)

These tensors are always symmetric. This implies τi j = τ ji and γi j = γ ji. γi j are the engineering
shear strains and are related to the strain tensor εi j as γi j = 2εi j, (i 6= j). The following definition
of stress and engineering strain vectors σσσ and εεε is considered in this work:

σσσ = [σx, σy, σz, τyz, τxz, τxy]
T (4.3)

and

εεε = [εx, εy, εz, γyz, γxz, γxy]
T , (4.4)

respectively.

4.1.2 Stress–strain relations in an orthotropic medium

A continuous elastic body is assumed to satisfy the generalized Hooke’s law. For the most general
anisotropic case in Cartesian coordinates, the relations between the components of stress and
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strain are expressed in the so-called stiffness form as

σσσ = [Ai j]εεε; (4.5)

or in the so-called compliance form as

εεε = [ai j]σσσ , (4.6)

where [Ai j] is the matrix of elasticity and [ai j] = [Ai j]
−1. They are (6× 6) matrices. The 36

coefficients Ai j are called the moduli of elasticity, and the ai j are called the elastic constants.

When studying problems of stability, stresses and deformations, the use of technical constants is
convenient, i.e., the elastic moduli, the Poisson’s ratios and the shear moduli.

A medium which has three orthogonal planes of elastic symmetry is called orthotropic. Assuming
that the Cartesian axes are perpendicular to these planes, stress–strain relations are described with
nine independent constants. The constitutive law for orthotropic materials can thus be written as
(Lekhnitskii 1963)





εx

εy

εz

γyz

γxz

γxy





=




1
Ex

−νyx

Ey

−νzx

Ez
0 0 0

−νxy

Ex

1
Ey

−νzy

Ez
0 0 0

−νxz

Ex

−νyz

Ey

1
Ez

0 0 0

0 0 0
1

Gyz
0 0

0 0 0 0
1

Gxz
0

0 0 0 0 0
1

Gxy








σx

σy

σz

τyz

τxz

τxy





(4.7)

where:

νi j

Ei
=

ν ji

E j
(4.8)

and the Ei are the moduli of elasticity, the Gi j are the shear moduli, and the νi j are the Poisson’s
ratios.

4.1.3 Stress–strain relations in a transversely isotropic medium

Transverse isotropy is a particular case of orthotropy, i.e., with a plane of isotropy. To characterize
a transversely isotropic material, five independent constants denoted E, E ′, ν , ν ′ and G′ (G =

E/[2+2ν ]) are required. E and E ′ are the elastic moduli in the plane of isotropy and perpendicular
to it, respectively, ν and ν ′ are the Poisson’s coefficients which characterize the reduction in
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Chapter 4. Parametric study

the plane of isotropy for the tension in the same plane and the tension in a direction normal
to it respectively, and G and G′ are the shear moduli for the planes parallel and normal to the
plane of isotropy, respectively, (Amadei et al. 1987). G′ is also called the cross-shear modulus.
Assuming that the isotropic plane is parallel to the xz-coordinates plane, the stress–strain relation
in Cartesian coordinates is expressed as (Lekhnitskii 1963)





εx

εy

εz

γyz

γxz

γxy





=




1
E

−ν ′

E ′
−ν
E

0 0 0
−ν ′

E ′
1
E ′

−ν ′

E ′
0 0 0

−ν
E

−ν ′

E ′
1
E

0 0 0

0 0 0
1
G′

0 0

0 0 0 0
1
G

0

0 0 0 0 0
1
G′








σx

σy

σz

τyz

τxz

τxy





. (4.9)

4.1.4 Admissible values for the elastic constants

Thermodynamic considerations require that the strain energy of an elastic material is always
positive definite. It implies conditions on the admissible elastic constants (Amadei et al. 1987,
1988):

E, E ′, G′, G > 0;

−1 < ν < 1;

−
√

E ′

E
1−ν

2
< ν ′ <

√
E ′

E
1−ν

2
.

(4.10)

4.1.5 Ranges of properties of transversely isotropic rocks

The elastic properties of transversely isotropic rocks are usually assessed by in situ and laboratory
tests, sometimes associated with numerical modeling (Hakala et al. 2007). However, despite
the simplicity of the constitutive relations, the determination of these elastic properties is not
simple due to the lack of standardization for the measurement methods (Gonzaga et al. 2008).
The cross-shear modulus G′ is the most difficult parameter to assess (Batugin & Nirenburg 1972;
Homand et al. 1993).

Amadei et al. (1987) discuss the ranges of properties for transversely isotropic rocks which can
be found in nature. For most transversely isotropic rocks, the values of the degree of anisotropy
E/E ′ and the ratio of the shear moduli G/G′ are between 1 and 3, the Poisson’s ratio ν and
ν ′ are between 0.15 and 0.35, and the value of ν ′E/E ′ is between 0.1 and 0.7. However, in
exceptional cases, E/E ′ may reach values between 4 and 6. Gerrard (1977) gathered a large bank
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4.2. Constitutive modeling of the cracked layers

of published data of anisotropic rocks, including specific cases of transversely isotropic rocks.
He also indicates, as it can be observed in numerous studies providing transversely isotropic rock
properties, that the lowest stiffness is usually observed in the direction normal to the bedding,
stratification, layering, foliation, schistosity planes, etc.

Gercek (2007) discusses in detail the Poisson’s ratios’ values for rocks. He outlines that for most
rocks, the Poisson’s ratios may be between 0.05 and 0.45. However, for most rock engineering
applications with poor field data, most probable values between 0.2 and 0.3 are often assumed.

For the estimation of G′, the following empirical relation first introduced by Saint-Venant is
widely considered in the literature:

G′S-V =
E ′

1+E ′/E +2ν ′
. (4.11)

However, although most of the published data support the validity of this empirical equation, there
are still major exceptions (Gonzaga et al. 2008) and measured values do not always correspond
to G′S-V (Hakala et al. 2007).

4.2 Constitutive modeling of the cracked layers

As assumed in Sect. 2.1, the backfill concrete and the near-field rock layers are radially cracked
and thus cannot transfer tensile stresses in the tangential direction. A simple continuum damage-
based approach is considered to model this effect of radial cracks in the backfill concrete and
in the near-field rock. A scalar damage parameter Di that measures the effect of damage is
introduced (Cauvin & Testa 1999):

1−Di = Ri, (4.12)

where the subscript i denotes a material parameter and Ri is a scalar factor to be applied to a
material property. This approach does not aim at modeling an evolution of damage depending
on the internal pressure. Instead it considers an already highly radially damaged material for
a pseudo-static analysis. Due to the axisymmetrical nature of the problem, the stress–strain
relations are considered in polar coordinates. In accordance with the assumption that the radially
cracked materials do not transmit tangential tensile stresses, the elastic modulus in the tangential
direction should be decreased as

REθ =
Ẽθ

Eθ
, (4.13)

where Ẽθ is the elastic modulus of the damaged material in the tangential direction. Accordingly,
other elastic parameters are also affected by the drop of stiffness in the tangential direction, and
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other scalar factors are defined to take into account the effect of damage:

RGθr = RGθz =
G̃θr

Gθr
=

G̃θz

Gθr
, (4.14)

and

Rνθr = Rνθz =
ν̃θr

νθr
=

ν̃θz

νθr
. (4.15)

The radially damaged materials are regarded as transversely isotropic materials in polar coordi-
nates, i.e., with the plane of isotropy parallel to the rz-plane. The values of the degrees of damage
Ri are discussed in Sect. 4.3.

4.3 Finite element model

4.3.1 Model

The 10 variables used in the FE model are presented in Table 4.1 and the parameters kept constant
are given in Table 4.2.

Table 4.1: Variable parameters of the FE model.

Parameter Definition

ri Internal radius of the steel liner
ts Thickness of the steel liner
tcrm Thickness of the near-field rock zone
pi Internal quasi-static water pressure
E Elastic modulus of the far-field rock in the plane of isotropy
E ′ Elastic modulus of the far-field rock in the plane perpendicular to the plane of isotropy
G′ Cross-shear modulus of the far-field rock
ν Poisson’s ratio of the far-field rock related to the plane of isotropy
ν ′ Poisson’s ratio of the far-field rock related to the planes perpendicular to the plane of isotropy
Ecrm Elastic modulus of the near-field rock

Table 4.2: Constant parameters of the FE model.

Parameter Unit Value

Es GPa 210
νs (–) 0.30
Ec GPa 20
νc (–) 0.20
tc m 0.5
νcrm (–) 0.20

The FE model (see Fig. 4.2) follows the same assumptions as the analytical solution in isotropic
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4.3. Finite element model

rock (Sect. 2.2), and some additional hypotheses, namely:

1. the opening has a circular cross-section;

2. all the layers, including the backfill concrete and near-field rock zones have a circular
cross-section;

3. 2D plane strain conditions;

4. high tunnel overburden, i.e., the dimensions of the far-field rock are large enough to be
considered as infinite (equal to rrm +30× ri in this study) and thus full load transmission
occurs through the layers;

5. tied contact between every layer, without initial gap ∆r0; and

6. all materials are linear elastic.

The constitutive laws for the far-field rock and cracked materials are implemented as described in
Sect. 4.1 (Eq. 4.9) and in Sect. 4.2 respectively. REθ , RGθr and RGθz are set equal to 10−4 which
is the largest order of magnitude ensuring convergence toward the analytical solution for the
isotropic cases. Rνθr and Rνθz are set to zero.

The elements used are PLANE183, 8-node squares for the steel liner and the beginning of the
far-field rock (for post-processing convenience) and 6-node triangles for all the other zones of
the model. The FE model, depending on the geometrical parameters, is meshed with a variable
number of elements to ensure convergence toward the corresponding analytical solution in the
isotropic case. The steel liner, for instance, is discretized by 400 elements along 90deg in the
circumferential direction and 12 elements in the radial direction. An example of a mesh around
the opening is shown in Fig. 4.2.

4.3.2 Nomenclature

The nomenclature used in this study is illustrated in Fig. 4.3. The plane of isotropy is along
the xz-plane in Cartesian coordinates. E denotes the elastic moduli along the x- and z-axis
(out-of-plane). E ′ denotes the elastic moduli along the y-axis. The angles of location θ = 0
and 90deg in polar coordinates are shown, as well as the locations of the so-called internal and
external fibers of the steel liner.

4.3.3 Validation in isotropic rock

Two thousands isotropic cases were generated and solved (see the ranges of variation of the
parameters in Sect. 5.1.1). The relative error on the maximum major principal stress σ s

1,max and
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Figure 4.3: Nomenclature used for the discussion of the results.

the maximum radial displacement us
r,max in the steel liner (both at the internal fiber for r = ri) was

computed as

Error =
Numerical result−Analytical result

Analytical result
·100% (4.16)

where the numerical result was obtained with ANSYS and the theoretical result from the analytical
solution (Sect. 2.2, Eqs. 2.8, 2.9, 2.10 and 2.14). The mean relative error on σ s

1,max considering the
two thousands simulations is −0.38%, with a minimum of −0.17% and a maximum of −0.81%.
The mean relative error on us

r,max is −0.33%, with a minimum of −0.13% and a maximum of
−0.78%. These results are in very good agreement with the analytical solution. In addition,
results along paths in radial directions were studied for several cases and showed a very good
behavior of the FE solution compared to the analytical solution.

4.4 Parametric study

4.4.1 Preliminary discussion on the parameters

Similarly to the methodology described in the following Sect. 4.4.2, preliminary systematic
parametric studies, not detailed herein, were performed in order to assess the influence of the
variable parameters of the problem. It was shown that material parameters such as Ecrm, ν and
ν ′ cause minor, if any, variations in the results. Concerning the geometrical parameters, for
dimensional reasons the stresses and normalized displacements only depend on the ratio ts/ri.
Finally, because of the assumption of elasticity, the internal pressure pi is not investigated.
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4.4.2 Set of calculation cases

Considering the aforementioned observations, a systematic parametric study was performed in
order to assess the influence of the relevant variable parameters. A so-called reference set of
cases was defined with fixed parameters presented in Table 4.3.

Table 4.3: Variation of the dimensionless parameters with respect to the reference set of cases.

Parameter Reference value Value 1 Value 2

tcrm/ri 0.33 0.00 0.66
E/Es 0.024 0.071 0.119
G′/G′S-V 1.00 0.70 1.30

With respect to the reference set of cases, three dimensionless parameters were changed, namely:

1. the near-field rock thickness to steel liner’s internal radius ratio tcrm/ri;

2. the rock mass elastic modulus to steel elastic modulus ratio E/Es; and

3. the cross-shear modulus to Saint-Venant empirical relation ratio G′/G′S-V.

They are shown in Table 4.3. For each set of cases (reference and others), the liner’s thickness
to its internal radius ratio ts/ri and the degree of anisotropy E/E ′ were changed as reported in
Table 4.4. For all the simulations, ri = 2 m, ν = ν ′ = 0.20 and Ecrm/E ′ = 0.80.

Table 4.4: Variation range of the variable dimensionless parameters for each set of cases.

Parameter Min. value Max. value Increment

ts/ri 0.008 0.035 0.005 (from 0.010)
E/E ′ 1.00 3.50 0.25

As a consequence, there were seven sets of simulated cases (including the reference set), each
one containing 77 cases, for a total of 1078 simulated cases in anisotropic rock. Every simulated
case respected the following thermodynamic constraint and practical range of variation of the
ν ′E/E ′ term (see Sect. 4.1):

ν ′ <
√

E ′

E
1−ν

2
;

0.1 < ν ′
E
E ′

< 0.7.
(4.17)

4.4.3 Normalized results

All the results are normalized by the results obtained considering an isotropic rock with an elastic
modulus equal to that prevailing perpendicularly to the bedding or schistosity plane. The latter
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represents the most conservative isotropic model and is called hereafter as the reference isotropic
case. For example, considering an anisotropic rock of parameters E, E ′ < E, ν , ν ′ < ν and G′,
the reference isotropic case will be the case in isotropic rock of parameters E ′ and ν , i.e. Erm = E ′

and νrm = ν correspondingly to Eqs. 2.8 and 2.9. Normalized results are denoted with a caret
character, as for instance the major principal stress in the steel liner:

σ̂ s
1 =

σ s
1,aniso

σ s
1,iso

(4.18)

where the subscript aniso refers to the results considering anisotropic rock behavior, and iso
refers to the results in the corresponding reference isotropic case.

4.4.4 Stresses and displacements in the steel liner

Maximum stresses

Maximum normalized major principal stresses in the steel liner σ̂ s
1,max as a function of the degree

of anisotropy E/E ′ are shown in Fig. 4.4. As σ̂ s
1,max always occurs at the internal fiber of the

steel liner in the plane of isotropy (see Sect. 4.4.4), the normalized results are computed as

σ̂ s
1,max =

σ s
1,aniso(r = ri,θ = 0)

σ s
1,iso(r = ri)

. (4.19)

Figure 4.4, in quadrant (a), shows the influence of the relative thickness of the near-field rock
compared to the internal radius tcrm/ri on σ̂ s

1,max. The greater tcrm/ri and the greater ts/ri, the
lower the variation σ̂ s

1,max. The influence of ts/ri can be explained by the notion of relative
stiffness between the steel liner and the rest of the system. Indeed a stiff liner will limit the
deformations induced by the internal pressure pi, and will withstand large stresses. The influence
of anisotropic behavior of the far-field rock compared to the reference isotropic case on σ̂ s

1,max is
thus less significant if the relative stiffness of the liner is large compared to the rest of the system.
The role of tcrm/ri can be explained with similar considerations. An extended near-field rock
zone (large tcrm/ri) decreases the relative stiffness of the concrete-rock system compared to the
steel liner and results in the same conclusions. One may also consider an additional effect due to
the hypothesis of a cylindrical anisotropy in the cracked near-field zone with a constant elastic
modulus in the radial direction. Such an axisymmetrical layer is thus expected to mitigate the
effect of far-field anisotropy in terms of variations of σ̂ s

1,max in the steel liner.

In the quadrant (b) of Fig. 4.4, the influence of the relative stiffness of the far-field rock compared
to the stiffness of the steel E/Es is shown. The greater E/Es, the lower σ̂ s

1,max compared to the
corresponding reference isotropic case. These results depend on the relative stiffness between the
steel liner and concrete–rock system. The stiffer the far-field rock (high relative stiffness E/Es)
the larger the part of pi that the latter withstands, and thus considering anisotropic behavior yields
a larger change in the estimation of σ̂ s

1,max in the steel liner. In other words, the lower the relative
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Figure 4.4: Maximum normalized major principal stresses in the steel liner σ̂ s
1,max as a function

of the degree of anisotropy E/E ′ for different: (a) near-field rock thickness to steel liner’s internal
radius ratios tcrm/ri; (b) rock mass elastic modulus to steel elastic modulus ratios E/Es; and (c)
cross-shear modulus to Saint-Venant empirical relation ratios G′/G′S-V, and by varying the steel
liner’s thickness to the internal radius ratio ts/ri.

stiffness of the steel liner, the more conservative the consideration of the reference isotropic case
in terms of σ̂ s

1,max.

The third quadrant (c) of Fig. 4.4 represents the influence of the deviation of the cross-shear
modulus G′ from the empirical formula of Saint-Venant G′S-V. The effect of G′/G′S-V on σ̂ s

1,max
has a different pattern, although the results may also depend on the concept of relative stiffness.
For low values of E/E ′, a low cross-shear modulus G′ (i.e., lower than the value of G in an
isotropic case), σ̂ s

1,max is larger than in the corresponding reference isotropic case. This is due
to the fact that the far-field rock is globally softer than the corresponding reference isotropic
case, and thus induces larger stresses in the steel liner to withstand pi. This effect is canceled
and even reversed for higher E/E ′, where the influence of the latter becomes more significant.
Conversely, a large cross-shear modulus G′ for low degrees of anisotropy will increase the ability
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of the far-field rock to attract stresses, and therefore σ̂ s
1,max is lower than in the corresponding

reference isotropic case. This effect is moderated for larger E/E ′.

Major principal stresses and radial displacements

Normalized major principal stresses in the steel liner at the internal fiber σ̂ s
1,int and at the external

fiber σ̂ s
1,ext as a function of the angle θ with respect to the plane of isotropy are shown in Fig. 4.4.

For all the tested cases, σ̂ s
1,max always occurs in the plane of isotropy (θ = 0), at the internal fiber

(r = ri). The normalized results at internal and external fibers are computed with respect to the
maximum major principal stress σ s

1,max in the steel liner for the reference isotropic case as:

σ̂ s
1,int(θ) =

σ s
1,aniso(r = ri,θ)
σ s

1,iso(r = ri)
(4.20)

and

σ̂ s
1,ext(θ) =

σ s
1,aniso(r = ri + ts,θ)

σ s
1,iso(r = ri)

. (4.21)

To illustrate the deformed shapes of the steel liners, the corresponding normalized radial displace-
ments in the steel liner ûs

r (at the internal fiber) are shown in Fig. 4.3. The normalized results
are computed with respect to the maximum radial displacement of the corresponding reference
isotropic case as

ûs
r(θ) =

us
r,aniso(r = ri,θ)
us

r,iso(r = ri)
. (4.22)

Figures 4.5a–4.5c shows the influence on σ̂ s
1 of the relative thickness of the near-field rock

compared to the internal radius tcrm/ri, the relative stiffness of the far-field rock compared
to the stiffness of the steel E/Es, and the deviation of the cross-shear modulus G′ from the
empirical formula of Saint-Venant G′S-V respectively. Figure 4.5a–4.4c shows the influence of the
dimensionless parameters on ûs

r, respectively.

The same observations on the influence of each parameter on σ̂ s
1,max as in Fig. 4.4 can me made.

However as Fig. 4.4 shows the normalized major principal stresses on the perimeter of the steel
liner both at the internal and external fibers, one can obtain information about the occurrence of
bending in the steel liner. Some general observations can be made:

• the maximum major principal stress σ̂ s
1,max always occurs at the internal fiber at θ = 0 deg,

along the springline (i.e., in the plane of isotropy of the far-field rock, see Fig. 4.4);

• the minimum major principal stress always occurs at the external fiber at θ = 90 deg, along
the crown (in the plane perpendicular to the plane of isotropy of the far-field rock, see
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Fig. 4.4);

• the liner is subject to bending which tends to increase the tension at the internal fiber at
θ = 0 deg and to decrease the tension at the internal fiber at θ = 90 deg; and

• the larger E/E ′, the larger the bending effect.

The aforementioned observations are consistent with the ellipse-like deformed shapes observed
in Fig. 4.3, as the maximum radial displacement ûs

r,max always occurs at θ = 90 deg along the
crown (the direction of the lowest modulus of elasticity E ′), and the minimum radial displacement
ûs

r,min always occurs at θ = 0 deg, along the springline (the stiffest direction with the modulus of
elasticity E).

Figure 4.5a shows that an increasing thickness of the near-field rock zone attenuates the effect
of the degree of anisotropy: the larger the extent of the near-field rock, the smaller the effect on
anisotropy in terms of major principal stresses in the steel liner, and thus the effect of bending.
This is in accordance with the radial displacements ûs

r depicted in Fig. 4.5a and the observations
made from the quadrant (a) of Fig. 4.4. This effect, although observable, is not significant.

One can observe in Fig. 4.5b that the relative stiffness of the far-field rock E/Es have no or
minor effect on bending. Only σ̂ s

1,max is significantly affected, as discussed in Sect. 4.4.4. Indeed,
Fig. 4.5b shows minor variations of ûs

r for different values of E/Es.

The influence of G′/G′S-V depicted in Fig. 4.5c is also minor, if any, on the bending effect. This
corresponds to the minor variations in the radial displacements ûs

r in Fig. 4.4c.

4.4.5 Stresses in the far-field rock

Maximum stresses

Maximum normalized major principal stresses in the far-field rock σ̂ rm
1,max as a function of the

degree of anisotropy E/E ′ are shown in Fig. 4.4, at the interface between the near- and the
far-field rock masses (at r = rrm). Unlike in the steel liner, σ̂ rm

1,max at r = rrm does not occur at a
constant angle of location (see Sect. 4.4.5). The normalized results are thus computed as

σ̂ rm
1,max =

σ rm
1,aniso(r = rrm,θ = θ̃)

σ rm
1,iso(r = rrm)

(4.23)

where θ̃ is the angle of location of the maximum stress for each case. From Fig. 4.4 it can be
seen that, contrary to σ̂ s

1,max in most cases, σ̂ rm
1,max is amplified compared to the reference isotropic

case by considering the influence of the anisotropic rock behavior. The following analysis is
complementary to the observations made on the variations of σ̂ s

1,max in Sect. 4.4.4.

The quadrant (a) of Fig. 4.4 illustrates the influence of tcrm/ri on σ̂ rm
1,max. It is shown that the lower
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Figure 4.4: Maximum normalized major principal stresses in the far-field rock σ̂ rm
1,max as a function

of the degree of anisotropy E/E ′ for different: (a) near-field rock thickness to steel liner’s internal
radius ratios tcrm/ri; (b) rock mass elastic modulus to steel elastic modulus ratios E/Es; and (c)
cross-shear modulus to Saint-Venant empirical relation ratios G′/G′S-V, and by varying the steel
liner’s thickness to the internal radius ratio ts/ri.

ts/ri and the larger tcrm/ri, the smaller the increase of σ̂ rm
1,max. The role of tcrm/ri can be explained

referring to the reference isotropic case. Considering Eqs. 2.4 and 2.6 yields prm = (rc/rrm)pc.
As a consequence, the larger tcrm (and thus rrm), the smaller the pressure transmitted to the
far-field rock. The variation of σ̂ rm

1,max compared to the corresponding reference isotropic case is
therefore smaller with a more extended cracked near-field rock, which mitigates the effect of the
far-field anisotropy.

The influence of E/Es on σ̂ rm
1,max is shown in the quadrant (b) of Fig. 4.4. One observes that the

larger E/Es and the smaller ts/ri, the smaller the variation of σ̂ rm
1,max. Similarly to the analysis of

the stresses in the steel liner, this phenomenon can be explained by the notion of relative stiffness.
A relatively stiff far-field rock (high E/Es ratio and low ts/ri ratio) attracts a larger part of the
internal pressure pi and therefore will be less affected by the consideration anisotropic behavior
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compared to the reference isotropic case. Considering the far-field anisotropy introduces a larger
elastic modulus E in the plane of isotropy which makes the rock withstand a larger part of pi

at the expense of larger σ̂ rm
1,max compared to the reference isotropic case, and a smaller σ̂ s

1,max
consistently to the observations in Sect. 4.4.4.

The quadrant (c) of Fig. 4.4 illustrates the influence of G′/G′S-V on σ̂ rm
1,max. Some general

observations can be made:

• The larger the deviation of the cross-shear modulus G′ from the empirical formula of
Saint-Venant G′S-V (either softer or stiffer), the more σ̂ rm

1,max is underestimated considering
the reference isotropic case;

• The lower ts/ri, the the lower the change of σ̂ rm
1,max (except for low E/E ′ and low G′/G′S-V,

although not significant), similarly to the previous observations of quadrants (a) and (b).

The explanation of the magnitude of the variations of σ̂ rm
1,max due to high or low G′/G′S-V ratios

would require further investigations, out of the scope of this research.

Major and minor principal stresses

Normalized major and minor principal stresses in the far-field rock σ̂ rm
1 and σ̂ rm

3 as a function of
the angle θ with respect to the plane of isotropy are shown in Figs. 4.3 and 4.2, respectively, at
the interface between the near- and the far-field rock masses (at r = rrm). Normalized stresses at
r = rrm are computed as

σ̂ rm
1 (θ) =

σ rm
1,aniso(r = rrm,θ)
σ rm

1,iso(r = rrm)
(4.24)

and

σ̂ rm
3 (θ) =

σ rm
3,aniso(r = rrm,θ)
σ rm

3,iso(r = rrm)
. (4.25)

The plots of σ̂ rm
1 and σ̂ rm

3 versus θ give more information on the stress repartition in the far-field
rock. From Fig. 4.3 it can be seen that for all cases where G′ = G′S-V, σ̂ rm

1 is maximum in
the plane of isotropy along the springline and in the perpendicular direction of lowest stiffness
along the crown, with minor differences. The higher the degree of anisotropy E/E ′, the larger
the variation along the perimeter at the near- and far-field interface compared to the reference
isotropic case. For low values of G′ (see Fig. 4.4c), σ̂ rm

1,max occurs at θ = 0 deg and there is a large
variation of σ̂ rm

1 along the perimeter, with the lowest major principal stress in the shear plane.
Indeed, a low cross-shear modulus indicates that the rock attracts less stresses in this direction.
Conversely, σ̂ rm

1,max occurs in the shear plane when G′ is larger than G′S-V (see Fig. 4.4c). This is
illustrated in a xy-plane from r = rrm to 2rrm in Fig. 4.3 for a specific configuration. The isotropic
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case is shown in Fig. 4.3a, and the anisotropic cases with different G′/G′S-V ratios are shown in
Fig. 4.3b–4.3d.

Fig. 4.2 shows the corresponding normalized minor stresses in the far-field rock σ̂ rm
3 . One

can only observe a minor variation around the perimeter. These results are given herein for
completion.
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(a) σ̂ rm
1,iso.
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(b) σ̂ rm
1,aniso for G′/G′S-V = 0.7.
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(c) σ̂ rm
1,aniso for G′/G′S-V = 1.0.
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(d) σ̂ rm
1,aniso for G′/G′S-V = 1.3.

Configuration: ri = 1.5 m, ts = 0.055 m, tcrm = 0.5 m, pi = 150 bar, E = 10 GPa, E ′ = 4 GPa, ν = 0.2,
ν ′ = 0.15 and Ecrm = 3.2 GPa

Figure 4.3: Normalized major principal stresses in the far-field rock shown up to 2rrm: (a) σ̂1 in
the isotropic case; σ̂1 in the anisotropic case for cross-shear moduli ratios of (b) G′/G′S-V = 0.7;
(c) G′/G′S-V = 1.0; and (d) G′/G′S-V = 1.3.
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4.5 Discussion

The assumptions concerning the extent, shape and the characteristics of the loosened near-field
rock zone (as a result of the excavation process) may be questionable in certain cases. In the
isotropic case, the near-field rock zone is commonly assumed as circular, radially cracked with
no tension transmitted in the tangential direction (see e.g., Schleiss 1988; USACE 1997; Sharma
et al. 1997; Hachem & Schleiss 2009, 2011c; ASCE 2012), which was also considered herein for
transversely isotropic rock. This was done considering a constant radial elastic modulus based
on the weakest direction of the transversely isotropic rock. However, the damage may not be
axisymmetrical considering the different characteristics of the far-field rock in the two principal
directions of anisotropy, as the shape may not be circular. In addition, even if the damage would
be radial, one may expect a varying stiffness with orientation, and a less conservative assumption
on the tangential stiffness. Some discussions are enumerated below.

1. The latter point was for example treated analytically by Bobet (2009) in isotropic rock. The
damaged zone was modeled with cylindrical transverse isotropy, as in this study, but with a
tangential modulus of elasticity not equivalent to zero. It seems reasonable to state that
considering a constant significant value for the damaged tangential elastic modulus in this
work would probably mitigate the effect of anisotropy, as it was discussed in Sect. 4.4.4.
The higher the tangential stiffness, the higher this effect would be expected.

2. Should a more complex constitutive law for the damaged near-field rock (e.g., non-radial
cracks, varying stiffness) be considered, when the far-field is regarded as transversely
isotropic, such a consideration would considerably increase the complexity of its definition.
Cylindrical transverse isotropy defined via 5 constants could no longer be used, and 10
constants would be necessary to define such an anisotropic material in 2D (ANSYS Inc
2011), thus introducing new parameters to be varied independently.

3. The qualitative probable influence of these parameters can be discussed a priori. As men-
tioned previously, a significant damaged tangential modulus of elasticity should diminish
the effect of anisotropy in terms of maximum major principal stresses in the steel liner.
Conversely, varying radial stiffness in the near-field rock correspondingly to the principal
directions of the far-field rock (within the hypothesis of radial cracks) would increase the
effect of anisotropy on the steel liner. However, in the case of grouted near-field rock zone,
the properties of the rock tend to be homogenized, and the aforementioned effects would
be a less significant limitation.

4. It also seems reasonable to state that loosened near-field rock shapes with little variations
from the circular shape may not induce significant effect on the results. However, discussing
a priori the effects of a highly non circular loosened near-field rock zone due to the
formation of plastic deformations during excavation may be controversial, and would
require further investigation, e.g., nonlinear numerical analysis. Such considerations would
have the serious drawbacks to make the systematic analysis very complicated. Nevertheless,
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such extensive plastic zone has to be avoided with appropriated primary support measures
during excavation.

The assumption of linear elasticity of the far-field rock also limits theoretically the applicability of
the proposed approach. It requires that there are no plastic deformations further than the loosened
near-field rock zone due to the excavation method. This does not have a strong limitation for
good-quality rocks, i.e., if adequate primary support measures are implemented during excavation
in weaker regions. Also, maximum stresses due to the internal water pressure in the far-field rock
shall not exceed the in situ stresses surrounding the tunnel not to put the rock into tension. This
requirement refers to the design criteria (2) in Sect. 2.3 regarding a minimum required overburden
for steel-lined pressure shafts (Schleiss 1988). In most cases, the tangential stresses around the
opening are compressive due to natural in situ stresses in the rock mass. At large depth, this
requirement is therefore not a serious limitation.

4.6 Conclusions

For the design of steel-lined pressure tunnels and shafts, anisotropic rock behavior is rarely taken
into account. Designers rather use a conservative model considering an unfavorable isotropic
rock behavior in terms of maximum stresses in the steel liner. As a consequence, the mechanical
behavior of the steel–concrete–rock system in anisotropic rock is still not fully understood. In
this chapter, the behavior of steel-lined pressure tunnels and shafts in transversely isotropic rock
was systematically studied by means of the FEM.

An extensive systematic parametric study was performed over a wide range of geometrical and
material parameters, and significant results in terms of normalized stresses and displacements
were investigated in the steel liner and the far-field rock mass. It was shown that the results
mainly depend on the relative stiffness between the steel liner and the concrete–rock system.

In the steel liner, considering the reference isotropic case generally induces an overestimation
of the maximum major principal stresses, except for low degrees of anisotropy when the cross-
shear modulus is weaker than the empirical relation of Saint-Venant. It was also shown that in
anisotropic rock, the steel liner is subject to bending (although this effect remains small, partic-
ularly for low degrees of anisotropy, e.g., E/E ′ = 1.0–2.0), which explains that the maximum
stresses occur at the internal fiber of the steel liners in the plane of isotropy. Nevertheless, the
main effect of anisotropy is to change the nominal tension is the steel liner.

In the far-field rock mass, it was observed that the maximum major principal stresses are
underestimated compared to the isotropic solution, as a part of the stiffness is not taken into
account.
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5 Estimation of the maximum stresses

5.1 Derivation of correction factors to be included in the isotropic
closed-form solution

5.1.1 Database

In order to calibrate and test the validity of the proposed correction factors, a large database of
numerical results for anisotropic rock behavior was created by using the FE model described in
Sect. 4.3 and the Probabilistic Design System in ANSYS. A user-defined-sampling of 2000 cases
was generated accordingly to the ranges introduced in Table 5.1 for 9 geometrical and material
parameters. The parameters of each case were randomly sampled with a uniform distribution
of values under the constraints described by Eq. 4.17. Every sampled case not included in the
aforementioned set of constraints was re-sampled until they were satisfied.

Table 5.1: Variation range of the parameters for the random user-defined sampling.

Parameter Unit Min. value Max. value

ri m 1.00 3.50
ts m 0.010 0.080
tcrm/ri (–) 0.00 0.66
E GPa 5.0 25.0
E/E ′ (–) 1.1 3.5
G′/G′S-V (–) 0.70 1.30
ν (–) 0.10 0.35
ν/ν ′ (–) 1.0 3.5
Ecrm/E ′ (–) 0.60 1.00

5.1.2 Derivation of the correction factors

According to Eq. 2.9, the three terms in the expression for E−1
eq refer, respectively, to the

participation of the cracked backfill concrete, the cracked near-field rock and the far-field rock to
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withstand the internal pressure pi. As a consequence, the expression for pc (Eq. 2.8) physically
represents the ratio of the global stiffness of the system divided by the stiffness of the steel liner.
Once pc is known, the maximum stresses in the liner can be calculated with Eq. 2.14 for r = ri.

From a physical insight, correction factors that multiply the term of the far-field rock participation
in Eq. 2.9 were chosen in order to take into account the influence of the anisotropic behavior of
the rock mass. The correction factors have to be physically correct, i.e., equal to unity in the
isotropic cases, and were defined from dimensionless material parameters of the far-field rock
mass. The so-called corrected E−1

eq was introduced as

E−1
eq,corr =

1−ν2
c

Ec
ln
(

rcrm

rc

)
+

1−ν2
crm

Ecrm
ln
(

rrm

rcrm

)
+

3

∏
i=1

Xαi
i ·

1+ν
E ′

(5.1)

where the Xαi
i are the correction factors; the Xi are the dimensionless parameters X1 = E/E ′,

X2 = G/G′, and X3 = (1+ν)/(1+ν ′); and the αi are free exponents to be optimized. In this
aim, the objective function was to minimize the fitness measure as

α̂αα = argmin
ααα

MSE
[
σ̂σσ s

1,num, σ̂σσ
s
1,corr(XXX ,ααα)

]
(5.2)

where MSE is the mean squared error; α̂αα = {α1,α2,α3} is the argument of the minimum;
XXX = {XXX111,XXX222,XXX333}; σ̂σσ s

1,num is computed with the normalized numerical maximum major principal
stresses in the steel liner in the isotropic and anisotropic cases; and σ̂σσ s

1,corr is computed with the
normalized analytical solution including the corrected expression for E−1

eq (Eq. 5.1).

The α̂αα leading to the minimum mean squared error was determined using genetic algorithm.
From the database, a training group containing 90% of the results was randomly sampled, and
the rest of the samples were contained in a test group. The generation of the training and test
groups and the optimization of α̂αα was repeated 100 times, and the mean values of the αi were
computed as

α̂αα = {−0.65,+0.50,−0.56}, (5.3)

with standard deviations equal to 0.03, 0.04 and 0.07, respectively.

The regression between the normalized corrected maximum major principal stresses σ̂ s
1,corr and

the normalized numerical maximum major principal stresses σ̂ s
1,num is plotted in Fig. 5.1a for one

example of test group. A coefficient of determination R2 = 0.994 and a root mean squared error
RMSE = 0.005 were obtained.

When designing steel liners of pressure tunnels and shafts, the working stresses criterion usually
suggests allowable equivalent stresses in steel liners according to the Hencky–Von Mises theory
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(c) Maximum major principal stresses in the far-field
rock (cases in which G′/G′S-V = 1).
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(d) Maximum major principal stresses in the far-field
rock (all cases 0.7≤ G′/G′S-V ≤ 1.3).
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Figure 5.1: Regression plots of the normalized corrected maximum stresses σ̂corr vs. the normal-
ized numerical maximum stresses σ̂num with ααα = {−0.65,+0.50,−0.56}. The maximum (a)
major principal stresses σ̂ s

1,corr and (b) equivalent stresses σ̂ s
eq,corr in the steel liner are represented

for a test group of 10% of the 2000 cases. The maximum major principal stresses σ̂ rm
1,corr in the

far-field rock are represented in (c) for all the 155 generated cases in which G′/G′S-V = 1 and in
(d) for all the 2000 cases.
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in triaxial state of stresses, generally expressed as

σ s
eq =

√
1
2
(σ s

1−σ s
2)

2 +
1
2
(σ s

2−σ s
3)

2 +
1
2
(σ s

3−σ s
1)

2. (5.4)

A corrected maximum equivalent stress in the steel liner considering anisotropy, denoted σ s
eq,corr,

would thus be useful for designers. It can be obtained from Eq. 5.4, by substituting:

• σ s
1 by the corrected value σ s

1,corr (Eq. 2.14, together with Eqs. 2.8 and 5.1);

• σ s
3 by its analytical value in the reference isotropic rock (Eq. 2.15, together with Eqs. 2.8

and 2.9); and

• σ s
2 by the corrected value denoted σ s

2,corr computed from Eq. 2.16 with σ s
1,corr and σ s

3.

The regression between the normalized corrected maximum equivalent stresses σ̂ s
eq,corr and the

normalized numerical maximum equivalent stresses σ̂ s
eq,num is plotted in Fig. 5.1b for the same

test group than in Fig. 5.1a, and shows the same accuracy.

The applicability of these correction factors (Eq. 5.3) to estimate the normalized maximum major
principal stresses in the far-field rock was investigated. The regression between the normalized
corrected maximum major principal stresses σ̂ rm

1,corr (computed with Eqs. 2.19 and 5.1 ) and the
normalized numerical maximum major principal stresses σ̂ rm

1,num is plotted in Fig. 5.1d for all
the 2000 cases. It can be observed that the correction factors are only applicable to estimate the
maximum major principal stresses in the cases where G′/G′S-V = 1, plotted in Fig. 5.1c which
shows a very good accuracy.

5.1.3 Synthesis

The conceptual formulas for the corrected maximum major principal stresses in the steel liner
and in the far-field rock and the corrected maximum equivalent stresses in the steel liner with
correction factors are summarized in Table 5.2. The proposed approach is therefore very efficient
as it allows to assess maximum stresses in steel liners in anisotropic rock by introducing only three
dimensionless correction factors multiplying the term related to the far-field rock participation in
the analytical solution for isotropic rock. It is independent of the variable geometrical parameters
and of the relative stiffness between the steel liner and the rest of the system. This approach,
however, is not capable of representing the behavior of far-field rocks with a cross-shear modulus
G′ deviating from the empirical relation of Saint-Venant in terms of maximum major principal
stresses in the far-field rock.
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Chapter 5. Estimation of the maximum stresses

5.2 Examples of application

In order to illustrate the applicability of the conceptual formulas, two examples are treated below.

5.2.1 Example 1

In this example, a transversely isotropic far-field rock with the elastic properties presented by
Tonon & Amadei (2003) is considered, with E = 7.80 GPa, E ′ = 2.40 GPa, G′ = 0.83 GPa,
ν = 0.22, ν ′ = 0.07 and G/G′ = 3.85. The degree of anisotropy is E/E ′ = 3.25. A steel-
lined pressure tunnel is considered in this rock with the following characteristics: ri = 1.5 m,
ts = 0.030 m, tcrm = 0.5 m, pi = 100 bar, Ecrm = 2 GPa. Other steel, backfill concrete and
near-field rock characteristics are according to Table 4.2.

For comparison purposes, two other far-field rocks are considered: (1) the reference isotropic
case with E = 2.40 GPa, G = 0.98 GPa and ν = 0.22 correspondingly to the conventions of
this study; and (2) the rock mass presented by Tonon & Amadei (2003) by substituting G′ by
G′S-V = 1.66 GPa.

The numerical results and the results obtained with the conceptual formulas are presented in
Table 5.3a. One can observe that the conceptual formulas estimate the maximum major principal
stresses in the steel liner σ s

1,corr and in the far-field rock σ rm
1,corr with a high accuracy for the

anisotropic rock with G′ = G′S-V. In the case where the rock is exactly the one presented by Tonon
& Amadei (2003) however, the maximum stress in the far-field rock σ rm

1,max is underestimated by
27.5% by the conceptual formula for σ rm

1,corr. In this case G′ deviates from G′S-V by 50%, thus
this result is consistent with the analysis presented in Sect. 5.1.2. The maximum stresses in the
steel liner σ s

1,max are estimated with accuracy for every case (error < 1%). Since the cross-shear
modulus is relatively low compared to the empirical relation of Saint-Venant in the rock described
by Tonon & Amadei (2003), considering anisotropy does not affect significantly the maximum
major principal stress in the steel liner σ s

1,max (lowered by 3%). Nevertheless, in the case with
G′ = G′S-V, σ s

1,max is 10% lower than in the reference isotropic case.

5.2.2 Example 2

In this example, a transversely isotropic far-field rock with the elastic properties presented by
Amadei (1996) is considered, with E = 29.30 GPa, E ′ = 23.90 GPa, G′ = 6.20 GPa, ν = 0.18,
ν ′ = 0.13 and G/G′ = 2. The degree of anisotropy is E/E ′ = 1.23. A steel-lined pressure
tunnel is considered in this rock with the following characteristics: ri = 2.5 m, ts = 0.020 m,
tcrm = 0.7 m, pi = 150 bar, Ecrm = 20 GPa. Other steel, backfill concrete and near-field rock
characteristics are according to Table 4.2.

Similarly to example 1, two other far-field rocks are considered: (1) the reference isotropic case
with E = 23.90 GPa, G = 10.13 GPa and ν = 0.18; and (2) the rock mass presented by Amadei

110



5.2. Examples of application

Ta
bl

e
5.

3:
M

ax
im

um
m

aj
or

pr
in

ci
pa

ls
tr

es
se

s
in

th
e

st
ee

ll
in

er
an

d
in

th
e

fa
r-

fie
ld

ro
ck

fo
rt

he
ca

se
s

of
ex

am
pl

es
1

an
d

2.

(a
)E

xa
m

pl
e

1.

C
as

es
σ

s 1,
m

ax
(A

N
SY

S)
σ

s 1,
co

rr
(T

ab
le

5.
2)

E
rr

or
σ

rm 1,
m

ax
(A

N
SY

S)
σ

rm 1,
co

rr
(T

ab
le

5.
2)

E
rr

or
(M

Pa
)

(M
Pa

)
(%

)
(M

Pa
)

(M
Pa

)
(%

)

R
ef

er
en

ce
is

ot
ro

pi
c

ca
se

37
3

37
4

<
1

1.
51

1.
53

1.
4

A
ni

so
tr

op
ic

ro
ck

fr
om

To
no

n
&

A
m

ad
ei

(2
00

3)
36

4
36

1
<

1
2.

34
1.

69
27

.5

A
ni

so
tr

op
ic

ro
ck

fr
om

To
no

n
&

A
m

ad
ei

(2
00

3)
w

ith
G
′ =

G
′ S-

V

33
4

33
2

<
1

2.
00

2.
03

1.
1

(b
)E

xa
m

pl
e

2.

C
as

es
σ

s 1,
m

ax
(A

N
SY

S)
σ

s 1,
co

rr
(T

ab
le

5.
2)

E
rr

or
σ

rm 1,
m

ax
(A

N
SY

S)
σ

rm 1,
co

rr
(T

ab
le

5.
2)

E
rr

or
(M

Pa
)

(M
Pa

)
(%

)
(M

Pa
)

(M
Pa

)
(%

)

R
ef

er
en

ce
is

ot
ro

pi
c

ca
se

20
4

20
4

<
1

8.
87

8.
99

1.
3

A
ni

so
tr

op
ic

ro
ck

fr
om

A
m

ad
ei

(1
99

6)
23

2
23

2
<

1
9.

92
8.

84
10

.9

A
ni

so
tr

op
ic

ro
ck

fr
om

A
m

ad
ei

(1
99

6)
w

ith
G
′ =

G
′ S-

V

18
7

18
9

<
1

8.
97

9.
07

1.
1

111



Chapter 5. Estimation of the maximum stresses

(1996) by substituting G′ by G′S-V = 11.51 GPa.

The numerical results and the results obtained with the conceptual formulas are presented in
Table 5.3b. In the case where G′ = G′S-V, the maximum stresses in the steel liner σ s

1,max and in
the far-field rock σ rm

1,max are estimated with a high accuracy. In the case where the rock is exactly
the one reported by Amadei (1996) with G′ 53% softer than G′S-V, the maximum major principal
stress in the far-field rock σ rm

1,corr is underestimated by 10.9%. Since the degree of anisotropy is
low (E/E ′ = 1.23) and the cross-shear modulus is relatively soft, the maximum major principal
stress in the steel liner σ s

1,max is underestimated (by 14%) in the reference isotropic case, which
corresponds to the trend presented in Sect. 4.4.4. In the case where G′ = G′S-V, and despite the low
degree of anisotropy, the maximum major principal stress in the steel liner σ s

1,max is significantly
lower (by 8%) than in the isotropic case as the relative stiffness of the rock is high. This is in
accordance with the trend observed in Sect. 4.4.4.

5.3 Discussion

No initial gap between the steel liner and the backfill concrete was considered in this study. How-
ever, before such a gap, if any, is closed, the steel liner takes solely a part of the internal pressure.
Considering a linear elastic behavior of the materials and that the tangential displacements in the
liner are very small, the proposed solution could be superimposed to the initial elastic stresses
due to the presence of such a gap as a first approach.

The proposed method also relies on an accurate knowledge of the transversely isotropic rock
mass properties, i.e., E, E ′, G′, ν , and ν ′. However, as outlined by Jing & Hudson (2002),
in rock mechanics and engineering design, having insufficient data is a way of life, rather
than a local difficulty. This lack of information may be due to economical factors (costs of
measurements campaigns), lack of standard procedures for the estimation of the rock mass
parameters, etc. When facing such issues, uncertainties on the rock mass parameters should be
assessed and a sensitivity analysis should be performed on the proposed conceptual formulas.
In practice, relatively high security factors are applied for the working stresses in the liner (see
e.g., Schleiss 1988). Despite these uncertainties, in the case of a steel-lined pressure tunnel
and shaft embedded in anisotropic rock, it may worth using a model closer to reality than the
axisymmetrical assumption, which can in certain case either overestimate the stresses in the
steel liner (which is the main element) and underestimate the stresses in the rock mass (whose
participation is ensured by enough overburden).

5.4 Conclusions

Correction factors to be included in the analytical solution for isotropic rock conditions were
derived. This conceptual approach allows a simple and fast estimation of the maximum major
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5.4. Conclusions

principal stresses and the maximum equivalent stresses in the steel liner by a correction of the
isotropic analytical solution with a high accuracy if the transversely isotropic rock parameters are
known. These correction factors are also applicable to estimate the maximum major principal
stresses in the far-field rock when the cross-shear modulus is equivalent to the empirical relation
of Saint-Venant.

Although the assumption of linear elasticity and the hypothesis on the extent and the properties
of the loosened near-field rock limit the applicability of the results presented in this study for
certain conditions in practice, it has the strong advantage to propose a rational framework to carry
out a systematic parametric analysis with the relevant parameters.

Further investigation is necessary to study the effects of parameters such as the shape and
properties of the loosened near-field rock or nonlinear behaviors.
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Part IIIGeometrical imperfections and weld
profile at longitudinal butt welded

joints of steel liners

115





Universality is a hypothesis, capable of being falsified every time it is applied. Every time it
survives falsification – a fancy way to say it gives good results – the justification for using it

becomes a little stronger. If [as in the case of gravitational forces] it survives thousands of such
tests, the justification becomes very strong indeed. However, the hypothesis can never be proved

true: for all we know, the next experiment might produce incompatible results.
– Ian Stewart,

in Seventeen Equations that Changed the World, 2012.

Most of the content of Chapter 6 of this part (together with Sect. 3.7) has been published in
a scientific article entitled "New parametric equations to estimate notch stress concentration
factors at butt welded joints modeling the weld profile with splines" by Pachoud et al. (2017a)
in Engineering Failure Analysis 72(February), pp. 11–24. The finite element model, the
parametric study, the proposed parametric equations and the respective analyses are original
and were developed by the author of the present report.





6 Stress concentration at butt welded
joints of straight plates

6.1 Finite element analysis

6.1.1 FE model description and hypotheses

The chosen static system is shown is Fig. 6.1. The butt welded joint is submitted to a nominal
tension σnom, and the plates on both sides of the weld have a length of 20 times the thickness ts.
The material is isotropic linear elastic steel of elastic modulus of Es = 210 GPa and Poisson’s
ratio νs = 0.3. The self weight is not considered. The FEA assumes plane strain conditions, as
recommended by Fricke (2012) for 2D models as a biaxial stress state occurs at the notch surface,
where in 3D the high stress concentration at the notch is restrained in the out-of-plane direction
(see Figs. 6.1–6.2).

20×ts

ts σnom

Figure 6.1: Static scheme of the model.

The geometry of the weld and the studied parameters are shown in Fig. 6.2. The parameters are
listed as:

• ts: plate thickness;

• ρ: weld toe radius;

• β : flank angle;

• α: edge preparation angle;

119



Chapter 6. Stress concentration at butt welded joints of straight plates

y
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ρ

α/2

π-β

(a) Without misalignment.

y

x

e

δ

lw

δ

ts

ρ

α/2

π-β

(b) With misalignment e.

Figure 6.2: Definition sketch of butt welded joints (a) without linear misalignment and (b) with
linear misalignment e.

• δ : weld reinforcement height;

• lw: weld length (as a function of α , the gap between the plate edges is set to 3 mm, see,
e.g., ISO 9692-1 2013);

• e: linear misalignment (eccentricity) between the two plates.

The geometry of the weld reinforcement was generated from a spline fit to three keypoints (see
the command BSPLIN in ANSYS Inc 2015), namely the weld toes (extremities of the weld
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6.1. Finite element analysis

toes arcs of radius ρ) and the crown point of the reinforcement. A tangent was imposed at each
keypoint. At the weld toes, the spline has an angle with plate equal to the flank angle β . At
the crown, the tangent is parallel to the plates in the case without linear misalignment, and is
parallel to the segment linking the weld toes in the case with linear misalignment. More details
on the mathematical modeling of the geometry are given in Appendix A. The FE model was
built parametrically as a function of all the variables defined in Fig. 6.2. The geometry was
split in different zones for the meshing. The convergence of the mesh was tested. In the case of
ρ = rref = 1 mm for example, the mesh density was superior to what is recommended by Fricke
(2012). Some mesh examples are shown in Fig. 6.2 without linear misalignment and in Fig. 6.2
with linear misalignment.

The integration of the aforementioned hypotheses on the geometrical parameters in the FE model
are illustrated in Figs. 6.2–6.2. Figures 6.3a and 6.3a shows the example of a butt welded joint
with a relatively low reinforcement and a low flank angle. The reinforcement in this case does not
exhibit inflexion points in between the weld toes’ arcs. Figures 6.3c and 6.3c presents the example
of a relatively large reinforcement and of a low flank angle. In this case, the reinforcement may
exhibit up to two inflexion points, on each side of the crown point. Finally, an example of a
relatively large reinforcement associated to a large flank angle is shown in Figs. 6.3e and 6.3e. In
this case, the reinforcement does not exhibit inflexion points. These three examples show the
main types of geometries that can be covered by the approach presented in this chapter.

According to the principal stress hypothesis (see, e.g., Sonsino 2009a) the SCF are computed
by dividing the maximum major principal stress by the applied nominal tension as (Terán et al.
2013):

SCF =
σmax

σnom
(6.1)

where σmax is the maximum major principal stress. Notch SCF are computed with σmax at
the notch, while structural SCF are computed with the corresponding structural stress (see
Sect. 6.1.2).

6.1.2 Validation of the FE model

As there is no specific published solution for the notch SCF considering the hypotheses made in
this chapter, the FE model was validated by its ability to reproduce structural SCF due to linear
misalignments. Several methods of structural stress evaluation were considered.

1. The structural hot-spot stress evaluation by linear surface stress extrapolation (see, e.g.,
Niemi et al. 2006; Doerk et al. 2003):

σhs = 1.5σ0.5ts−0.5σ1.5ts (6.2)
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Chapter 6. Stress concentration at butt welded joints of straight plates

and

σhs = 1.67σ0.4ts−0.67σ1.0ts , (6.3)

where σxts is the major principal stress at the surface at a distance of x · ts from the notch
(i.e., the weld toe).

2. The structural stress evaluation according to Dong (2001):

σm =
1
ts

∫ ts

0
σx(y) ·dy (6.4)

and

σm
t2
s

2
+σb

t2
s

6
=
∫ ts

0
σx(y) ·y ·dy+d

∫ ts

0
τxy(y) ·dy, (6.5)

where σm and σb are the membrane and bending parts of the stress profile (see Fig. 3.9),
respectively. In Eqs. 6.4 and 6.5, the x-axis is along the plate, i.e., parallel to the nominal
tension, and the y-axis is through the section.

Structural stresses were evaluated for three thicknesses, namely ts = 20, 35 and 50 mm, and
for a relative eccentricity e/ts from 0.00 to 0.07 (–). The other parameters were kept constant,
namely β = 30◦, ρ = 1 mm, δ/ts = 0.060, and α = 60◦. The analysis was linear elastic, without
considering the effect of large deflections. In Fig. 6.3 a very good agreement with the theoretical
solution given by Eq. 3.39 can be seen.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.8

1

1.2

1.4

1.6

e/ts (-)

K
m
(-
)

Figure 6.3: Evaluation of the structural SCF Km for different relative eccentricities e/ts ac-
cording to Eq. 6.2 (- · -), Eq. 6.3 (- -) and Eqs. 6.4–6.5 (−); and for three different thicknesses
ts = 20 mm (◦), ts = 35 mm (+) and ts = 50 mm (�). The theoretical values of Km are
evaluated according to Eq. 3.39 (−×−).
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Figure 6.4: Major principal stress profiles at different distances from the right weld toe (accord-
ingly to Fig. 6.2), for a butt welded joint (a) without misalignment and (b) with misalignment.
Parameters: ts = 20 mm, ρ = rref = 1 mm, δ/ts = 0.060, β = 30◦, and lw = 13 mm.

Two examples of major stress profiles at different distances from the weld toe are shown in
Fig. 6.4. Without linear misalignment (Fig. 6.4a), the nonlinear peaks of σ1 at the upper and
lower weld toes are symmetric. At approximately 0.5 · ts, the influence of the notch vanishes and
σ1 is constant through the thickness and equal to σnom. Figure 6.4b shows the same results with a
large linear misalignment. In this case, the nonlinear peak of σ1 is larger at the upper right weld
toe, as this part is subject to tensile structural stresses (see also Fig. 6.2). This is consistent with
literature (see, e.g., Fricke 2011). At approximately 0.5 · ts, the influence of the notch vanishes
and a bending stress profile is observed. The maximum value of σ1/σ1,nom at the upper surface is
equal to the structural SCF of the weldment.
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Chapter 6. Stress concentration at butt welded joints of straight plates

6.2 Parametric study

A systematic parametric study was performed to assess the influence of five geometrical parame-
ters on the SCF at weld toes of butt welded joints, namely (see also Fig. 6.2):

1. the flank angle β (from 5◦ to 30◦),

2. the weld toe radius ρ (from 0.4 to 1.9 mm),

3. the edge preparation angle α (from 60◦ to 100◦) which gives the weld length lw,

4. the relative weld reinforcement height δ/ts (from 0.04 to 0.1), and

5. the relative eccentricity e/ts (from 0 to 0.07).

Each parameter was varied for three different thicknesses (ts = 20, 35 and 50 mm), keeping the
four others constant.

The notch SCF Kt as a function of β is plotted in Fig. 6.5. One can observe a great influence on
the SCF. The greater β , the greater the SCF.

Figure 6.6 represents Kt as a function of the weld toe radius ρ . It also shows that ρ is a determinant
parameter influencing the SCF. The smaller ρ , the greater Kt . Together with the flank angle β ,
the weld toe radius ρ is the most important parameter considered in the parametric equations
found in the literature (Eqs. 3.41–3.49) since they greatly influence the SCF (see Sect. 3.7.4).
This observation is also reported, e.g., by Teng et al. (2002).

Figure 6.7 represents Kt as a function of the relative weld reinforcement height δ/ts. The greater
δ/ts, the greater the SCF. This is a somewhat interesting result as δ is rarely taken into account
the parametric equations for SCF found in the literature. As β and ρ , it acts as a significant stress
concentration raiser.

The influence of α on Kt is presented in Fig. 6.8. One can observe a slight influence on the SCF as
a stress raising parameter. The weld length lw (directly linked to α) is not commonly considered
in parametric equations in the literature. According to Teng et al. (2002), the influence of lw is
mainly related to residual stresses. However, the influence of lw on the fatigue life is claimed to
be insignificant compared to the aforementioned parameters by Teng et al. (2002).

Finally, Fig. 6.9 represents Kt as a function of the relative eccentricity e/ts. The greater e/ts, the
greater the SCF. This is largely due to the increase of the structural SCF. Indeed, one may note
that the use of splines with imposed tangents to describe the weld reinforcement surface also
introduces a role of the misalignment in slightly changing the weld geometry. The corresponding
structural SCF Km were shown in Fig. 6.3.
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Figure 6.5: Notch SCF Kt as a function of flank angle β for three thicknesses ts. Constant
parameters: ρ = rref = 1 mm, δ/ts = 0.060, e/ts = 0.00, and α = 90◦.
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Figure 6.6: Notch SCF Kt as a function of the weld toe radius ρ for three thicknesses ts. Constant
parameters: β = 20◦, δ/ts = 0.040, e/ts = 0.00, and α = 60◦.
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Figure 6.7: Notch SCF Kt as a function of the relative weld reinforcement height δ/ts for three
thicknesses ts. Constant parameters: β = 20◦, ρ = rref = 1 mm, e/ts = 0.00 and α = 70◦.

6.3 Parametric equations

Simple parametric equations were published in the literature (e.g., Radaj & Zhang 1991; Radaj
2006; Remes 2008; Remes & Varsta 2010) for notch SCF at welded plates under the form of
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Figure 6.8: Notch SCF Kt as a function of the edge preparation angle α for three thicknesses ts.
Constant parameters: β = 25◦, ρ = rref = 1 mm, δ/ts = 0.055 and e/ts = 0.00.

−0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
1.8

2

2.2

2.4

2.6

2.8

3

3.2

ts = 20 mm

ts = 35 mm

ts = 50 mm

e/ts (-)

K
t
(-
)

Figure 6.9: Notch SCF Kt as a function of the relative eccentricity e/ts for three thicknesses
ts. Constant parameters: β = 30◦, ρ = rref = 1 mm, δ/ts = 0.50 and α = 60◦. The
corresponding structural SCF Km are shown in Fig. 6.3.

products of dimensionless parameters with constant coefficient and exponents as

Kt = 1+α0

n

∏
i=1

λ αi
i , (6.6)

where the λi are dimensionless parameters and the αi are constant coefficient and exponents to
be fitted. This approach is also considered herein for its simplicity and efficiency. Four new
parametric equations for notch SCF are proposed hereafter:

• for SCF at butt welded joints considering linear misalignment Kt,m, under the form

Kt,m = KmKw; (6.7)
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6.3. Parametric equations

• for SCF at butt welded joints without linear misalignment Kt ;

• for SCF at butt welded joints considering only a constant ρ = rref = 1 mm and linear
misalignment Kρ=rref

t,m under the form

Kρ=rref
t,m = KmKρ=rref

w ; (6.8)

and

• for SCF at butt welded joints considering only a constant ρ = rref = 1 mm without linear
misalignment Kρ=rref

t .

The influence of misalignment is accounted by means of Eq. 3.39 for Km. Concerning the
influence of the weld geometry, the general form of Eq. 6.6 was considered for Kw. The four
proposed parametric equations have the following forms:

Kt,m =

[
1+3

e
ts

][
1+α0

(
δ
ts

)α1
(

ρ
ts

)α2

tan
(

β
2

)α3
]

; (6.9)

Kt = 1+α0

(
δ
ts

)α1
(

ρ
ts

)α2

tan
(

β
2

)α3

; (6.10)

Kρ=rref
t,m =

[
1+3

e
ts

][
1+α0

(
δ
ts

)α1
(

rref

ts

)α2

tan
(

β
2

)α3
]

; (6.11)

and

Kρ=rref
t = 1+α0

(
δ
ts

)α1
(

rref

ts

)α2

tan
(

β
2

)α3

. (6.12)

In order to fit the constant coefficient and exponents αi, four series of FEA were performed, each
composed of 138 cases of butt welded joints. The design of the variation of ts, δ/ts, β and α (and
thus lw) remained unchanged for all series, and was performed arbitrarily to cover a large extent
of cases. The design of the variation of ρ remained unchanged for the series of Kt,m and Kt , as
the variation of e/ts for Kt,m and Kρ=rref

t,m , correspondingly.

Considering the aforementioned method to construct the geometry of the weld, not any pair of
values for β and δ were allowed. For instance, a large value of β with a relatively low value of δ
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Chapter 6. Stress concentration at butt welded joints of straight plates

may induce undesired weld profiles (e.g., with a local cavity at the crown). A visual inspection of
all the cases was performed. When such a combination was detected, the values were adapted
arbitrarily. The ranges of variation of the parameters are presented in Table 6.1.

Table 6.1: Ranges of variation of the parameters in the series of simulations used to derive the
parametric equations.

Parameter Unit Minimum value Maximum value Increment

ts (mm) 15 60 1
ρ (mm) 0.2 2.0 0.1
δ/ts (–) 0.010 0.100 0.010
e/ts (–) 0.00 0.07 0.01
β (◦) 3 45 1
α (◦) 60 100 5

To fit the constant coefficient and exponents αi an objective function was defined, for each series,
as:

α̂αα = argmin
ααα

MSE [SSSCCCFFFnum,SSSCCCFFFemp(ΛΛΛ,ααα)] (6.13)

where MSE is the mean squared error; α̂αα = {αi} is the argument of the minimum; ΛΛΛ = {ΛΛΛiii}
contains the dimensionless parameters; SSSCCCFFFnum contains the values of SCFs obtained by FEA
(namely 138 cases per series); and SSSCCCFFFemp contains the corresponding values computed via
the corresponding proposed parametric equations, i.e., Eqs 6.9–6.12. The sets of αi, for each
equation, were determined by means of genetic algorithm (GA) with a training group containing
90% of the database. The other 10% were used as a test group to test the results. The obtained αi

are presented in Table 6.2 for Kt,m and Kt and in Table 6.3 for Kρ=rref
t,m and Kρ=rref

t .

Table 6.2: Coefficient and exponents αi for the parametric equations for the notch SCF Kt,m and
Kt .

SCF α0 α1 α2 α3

Kt,m 1.16 0.23 -0.38 0.46
Kt 0.81 0.11 -0.40 0.59

Table 6.3: Coefficient and exponents αi for the parametric equations for the notch SCF Kρ=rref
t,m

and Kρ=rref
t .

SCF α0 α1 α2 α3

Kρ=rref
t,m 0.95 0.06 -0.35 0.56

Kρ=rref
t 0.99 0.06 -0.34 0.59

The regression between the numerical SCF and the empirical SCF for the training and test groups
are plotted in Fig. 6.10 for Kt,m and Kt , and in Fig. 6.11 for Kρ=rref

t,m and Kρ=rref
t . One can observe
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good coefficients of determination R2 for all the expressions, with relatively low root mean
squared error RMSE.
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(d) Test group for Kt .

Figure 6.10: Regression plots of the numerical SCF Kt,m and Kt obtained by FEA vs. the empirical
SCF fitted by GA.

6.4 Conclusions

In Sect. 3.7, notch SCF were estimated by means of some published formulas and a significant
scatter was observed. New and detailed hypotheses on the geometry of the weld were presented
in this chapter, i.e., modeled with splines, and a parametrically-built FE model was used. This
model is able to model different types of weld geometries that were shown by means of selected
examples.
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Figure 6.11: Regression plots of the numerical SCF Kρ=rref
t,m and Kρ=rref

t obtained by FEA vs. the
empirical SCF fitted by GA.
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6.4. Conclusions

A parametric study was performed by means of FEA and outlined the importance of the influence
of the reinforcement height of the weld δ , which is often absent in the parametric equations as
found in the literature.

Finally, four new parametric equations were derived which allow to estimate SCF at butt welded
joints, namely without and without linear misalignment, and with variable weld toe radius ρ , or
set to ρ = rref = 1 mm for a straight forward use within the effective notch stress approach.

The hypotheses adopted in this chapter to model the weld shape as well as the derived parametric
equations will be considered in the subsequent Chapters 7 and 8.
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7 Stress concentration at longitudinal
butt welded joints of steel liners

7.1 Conceptual model

7.1.1 Types of geometrical imperfections

Out-of-roundness

Out-of-roundness (or ovality) is characterized by a deviation η of the steel liner from the circular
shape, i.e., with a no longer constant diameter. This defect is illustrated in Fig. 7.1 and may
have various origins (erection, transportation, welding). To maintain roundness within tolerances,
temporary bracing may be installed during the erection of the steel liner, as shown in Fig. 2.6e.
C.E.C.T. (1980) recommend that the out-of-roundness parameter η should not exceed 1% of the
internal radius ri. The tolerated η is thus defined herein as

ηtol = 0.01 ·ri. (7.1)

Peaking

Peaking (or roof-topping) is a deviation from the circular shape which is local to the longitudinal
welded joints and induced by two straight edges of length lu (which are thus unrolled), inherent to
the rolling process. It may result in a radial deviation ∆h from the circular shape as illustrated in
Fig. 7.1. C.E.C.T. (1980) recommend a tolerance that can be related to this defect. The harshest
is given for joints of Class I, as (dimensions in mm)

∆htol =

(
2ri

1000
+

20
ts

+0.5
)
. (7.2)

It is the tolerance considered herein.
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Figure 7.1: Definition sketch of the geometrical imperfections and the local butt welded joints’
geometry at steel liners of pressure tunnels and shafts. The geometrical imperfections and the
thickness of the liner are magnified for presentation purposes.
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7.1. Conceptual model

Axial misalignment

Axial misalignment (or eccentricity) is a common misalignment for butt welded plates or shells.
It is characterized by an eccentricity e between the mean axes of the welded plates. It is illustrated
at the top of Fig. 7.1, in the detail of the longitudinal weld. For joints of Class I, C.E.C.T. (1980)
recommend a tolerance as (dimensions in mm)

etol =
( ts

50
+1
)
. (7.3)

7.1.2 Global geometry

To model the global geometry of the steel liner, the following assumptions are made (also see
Fig. 7.1, and more details are given in Appendix A).

1. To model the out-of-roundness, the shape of the steel liner is modeled by an ellipse of
minimum axis a = ri,min = ri−η and maximum axis b = ri,max = ri +η .

2. The peaking is modeled by two straight edges of length lu that are tangent to the elliptic
parts of the liner. The so-called angular misalignment angle γ is approximated as γ = 2lu/ri

in radians.

3. The linear misalignment at the butt welded joint is modeled by separating the ellipse in
two, with respect to a vertical axis passing by the longitudinal butt welded joint. The axes
of the left ellipse are increased by e/4. For the right ellipse, the axes are decreased by e/4
and the vertical coordinate of the center of the ellipse is displaced by e/2 in the opposite
direction of the joint. This way a linear misalignment e occurs at the longitudinal butt
welded joint, and the origin of the defect is thus apportioned over all the liner. The straight
edges can remain tangent to the elliptic parts. To keep the presentation simple, this feature
is not represented on the global geometry in Fig. 7.1.

Some nomenclature is introduced hereafter in order to relate the values of the geometrical
imperfections to the tolerance values given by C.E.C.T. (1980) or to the relevant physical
parameter. The length of the straight edges lu is defined relatively to the thickness of the steel
liner ts by the factor ψu as

lu = ψuts. (7.4)
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The linear misalignment e is defined proportionally to the tolerance value by the factor ψe as

e = ψeetol. (7.5)

Similarly, the out-of-roundness η is defined through the factor ψη as

η = ψηηtol. (7.6)

These definitions are useful for a comprehensive and systematic description of the forthcoming
analyses.

7.1.3 Local geometry of the longitudinal butt welded joints

The local geometry of the longitudinal joints is presented in the upper part of Fig. 7.1. The
parameters are listed as follows:

• the weld toe radius ρ;

• the flank angle β ;

• the edge preparation angle α; and

• the weld reinforcement height δ .

The weld length lw is related to α as (dimensions in mm)

lw = 2bw =
ts
2

sin(α/2)+1.5 (7.7)

where bw is the half-length of the weld and 1.5 ·2 = 3 mm is the separation between the welded
edges. The tolerance for the weld reinforcement height is defined in C.E.C.T. (1980) for Class I
joints as (dimensions in mm)

δtol =

[
1+

3
100

(ts + lw)
]
. (7.8)

Similarly to the geometrical imperfections, the factor ψδ is introduced as

δ = ψδ δtol. (7.9)
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7.2. Finite element model

The construction of the geometry of the weld reinforcement is given in Sect. 7.2.

7.2 Finite element model

7.2.1 Assumptions

The finite element (FE) model follows the assumptions of the conceptual model described in
Sect. 7.1. Some additional hypotheses are listed below.

1. The internal interface of the backfill concrete perfectly fits the geometry of the external
fiber of the steel liner, shifted by the initial gap ∆r0.

2. All the other layers’ interfaces are circular.

3. 2D plane strain conditions are assumed given the large dimension of SLPT&S in the axis
of the tunnel.

4. The tunnel is at great depth and thus has a high overburden. The far-field rock dimensions
are regarded as infinite (30× ri ensures convergence of the results in this study) and full
load transmission can occur.

5. All materials are linear elastic.

6. The constitutive model for the crack layers is according to previously described in Chapter 4,
Sect. 4.2, using a scalar damage parameter Ri. In Chapter 4 Ri was set to 10−4. In this
chapter Ri was set to 10−3 for convergence issues with the contact technology. This
value still ensure a behavior of the cracked layer that reproduces very well the theoretical
assumptions.

7. Large-deflection effects are considered.

8. Surface-to-surface contact technology was used to model the contact between the steel liner
and the backfill concrete. Ranges for the friction coefficient µ between steel and concrete
can be found, e.g., in Rabbat & Russell (1985); Baltay & Gjelsvik (1990); Johansson &
Gylltoft (2002); Anderson (2008). In this model, changing µ from 0 to 0.7 did not have
any influence on the results, probably due to the very low circumferential displacements
and the fact that the backfill concrete cannot transmit circumferential stresses. µ was thus
fixed to 0.6.

9. The local weld geometry was modeled with the approach described in Chapter 6. The weld
reinforcement was generated from a spline (BSPLIN command in ANSYS Inc 2015) with
three tangents imposed at three keypoints, namely the two weld toes where the tangent
is defined by the flank angle β , and the crown of the reinforcement where the tangent is
defined parallel to the segment linking the two weld toes (also see Fig. 7.1).
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10. The boundary conditions (BC) are shown in Fig. 7.2a. In order to verify that the BC on the
steel liner shown in Fig. 7.2a were appropriate, comparative open-air penstock simulations
were performed with an alternative set of BC, as shown in Fig. 7.2b, i.e., considering an
horizontal displacement restriction at the inner fiber and a vertical displacement restriction
on the outer fiber at the invert level. Both sets of BC gave the same results at the longitudinal
butt-welded joints. The first above-mentioned BC (Fig. 7.2a) were retained since they are
the only set compatible with the physics involved in embedded liners: in fact, restraining a
vertical displacement would not allow for load sharing with the rock mass.

The FE model was built parametrically. For all the simulations of this study, some parameters
remained constant, namely Es = 210 GPa, νs = 0.3, Ec = 20 GPa, νc = 0.2, tc = 0.5 m, and
νcrm = 0.2.

7.2.2 Mesh

8-node squares and 6-node triangles elements PLANE183 were used to mesh the materials.
The surface-to-surface contact was modeled via the target elements TARGE169 and the contact
elements CONTA172 (ANSYS Inc 2015). The contact stiffness was set to 0.6 after the validation
process conducted in a Master thesis performed in the framework of the present research project
(Senn 2014). The contact stiffness is highly dependent on the mesh density. In this case however,
as the refinement of the mesh is relatively high, the determination of the contact stiffness is not
very sensitive. The mesh density was parametrized with respect to the geometrical dimensions.
Most importantly, for the notch stresses convergence, the dimension of the elements at the
fictitious rounding of the weld toes was set to 0.05 mm, which is, for the considered values of ρ
and β , finer than the recommendations of Fricke (2012) for ρ = rref = 1 mm. An example of a
mesh in the vicinity of the longitudinal butt welded joint is given in Fig. 7.3.

7.2.3 Validation for open-air steel liners (penstocks)

Stresses and displacements in SLPT&S in isotropic rock

To validate the global behavior of the multilayer system and the FE contact technology, results
on radial paths through the thicknesses of the layer were analyzed and compared with analytical
solutions presented in Chapter 2. The FE model was successfully validated, but the results are
skipped herein for the sake of concision.

Methods for structural stresses evaluation

Several methods are available to evaluate structural stresses, such as the linear stress extrapolation
methods (see, e.g., Doerk et al. 2003; Poutiainen et al. 2004; Niemi et al. 2006) and the approach
proposed by Dong (2001) (see Sect. 6.1.2). In this study, the approach of Dong (2001) is used
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7.2. Finite element model

for all the calculations. For the structural stresses at the weld toes of the longitudinal joints, the
method of Dong is applied directly to the through-thickness stress profile between the internal
and external weld toes.

Structural SCF at longitudinal butt welded joints in open-air steel liners (penstocks)

The implementation of the geometrical imperfections in the steel liner was validated through
the study of open-air steel liners (penstocks), thus neglecting the surrounding concrete and rock.
Three slenderness ratios were considered, namely ri/ts = 100, 60 and 43 (–) for two radii ri = 1.5
and 2.5 m. The weld geometry was fixed to ρ = rref = 1 mm, ψδ = 0.40, β = 10◦ and α = 90◦.
The results are plotted in Fig. 7.4 and compared with the corresponding analytical solutions
presented in Table 3.4. The BC on the steel liner were the same than the ones shown in Fig. 7.2a.

Fig. 7.4a shows the influence of the out-of-roundness factor ψη on the structural SCF Km,η . The
weld is located at the largest radius, the worst case. The analytical solution is given by Eq. 3.53,
where dmax−dmin = 4η , and Φ = 0. One can observe a very good agreement between the FE
model and the analytical solution, and therefore a good reproduction of the nonlinear geometrical
behavior as a function of the nominal stress σnom, even until an out-of-roundness of 200% of the
tolerance given by C.E.C.T. (1980).

The influence of the peaking factor ψu on Km,p is plotted in Fig. 7.4b. The analytical solution is
evaluated with the approximation l ≈ lu in Eqs. 3.54–3.55 and ∆h was computed directly from the
geometry of the FE model, and was verified to correspond to ∆h = ri [1/cos(γ/2)−1] proposed
by Böck & Zeman (1994). Until ψu = 2 (and thus lu = 2 · ts), the FE model and Eqs. 3.54–3.55
gives sensibly the same results. For larger peaking as lu = 3 · ts, there is a slight divergence of the
FE model from the proposed analytical solution. However, one may expect that the FE model
is a better representation of the problem studied herein. Indeed, the BC considered to derive
Eqs. 3.54–3.55 are less representative of the real structure and thus yield inaccuracies, as pointed
out by Ong & Hoon (1996).

Finally, Fig. 7.4c presents the influence of the relative eccentricity e/ts on the structural SCF
Km,e. The analytical solution corresponds to Eq. 3.56. The agreement is very good, and the slight
overestimation of Km,e by Eq. 3.56 for large e/ts ratios can be explained because it does not
consider the nonlinear geometrical effects.

Maximum stresses in SLPT&S in anisotropic rock

The ability of the model including the FE contact technology to reproduce the effect of the
anisotropic rock behavior obtained in Chapter 5 is also investigated. A new correction coefficient
describing the influence of the anisotropic rock mass on the nominal stresses in the steel liner
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Figure 7.4: Structural SCF Km,i for open-air penstocks as a function of the nominal stress σnom for
different: (a) out-of-roundness factors ψη ; (b) peaking factors ψu; and (c) relative eccentricities
e/ts.
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(i.e., the maximum stress at the internal fiber) is defined as

K∗rm,aniso =
σnom,aniso

σnom,iso
(7.10)

where σnom,iso is the nominal stress considering isotropic rock (i.e., of parameters E ′ and ν) and
σnom,aniso is the maximum stress considering transversely isotropic rock (i.e., of parameters E, E ′,
G′, ν and ν ′). The superscript ∗ stands for the interaction with the rock mass.

Two slenderness ratios were considered, namely ri/ts = 100 and 43 (–) for two radii ri = 1.5 and
2.5 m. The weld geometry was fixed as aforementioned (in Sect. 7.2.1), and the initial gap was
reduced to zero (set to ∆r0 = 10−6 ·ri in the FE model). The influence of the degree of anisotropy
E/E ′ on K∗rm,aniso is shown in Fig. 7.5. The empirical solution proposed in Chapter 5 is also
plotted. One can observe a very good agreement.
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Figure 7.5: Correction coefficient K∗rm,aniso for embedded steel liners as a function of the degree
of anisotropy E/E ′ for different lowest rock moduli E ′, and for σnom = 300 MPa.

7.3 Parametric study

The influence of the interaction between the steel liner and the concrete–rock system on the
structural SCF due to geometrical imperfections was first assessed through a systematic parametric
analysis.

7.3.1 Parameters

The three geometrical imperfections, namely out-of-roundness, peaking and linear misalignment,
were considered, each interacting with three different isotropic rocks of elastic modulus E = 2.5,
5.0 and 7.5 GPa and Poisson’s ratio ν = 0.2. The elastic modulus of the near-field rock was
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Chapter 7. Stress concentration at longitudinal butt welded joints of steel liners

defined as Ecrm = 0.8 ·E and the Poisson’s ratio as νcrm = 0.20. The ranges of variations of
ψη , ψu and e/ts were the same than in Sect. 7.2 for the validation of open-air steel liners for
comparison purposes. The weld geometry was fixed as aforementioned, and the initial gap was
reduced to zero (set to ∆r0 = 10−6 ·ri in the FE model).

7.3.2 Structural SCF in the steel liner

The influence of the interaction with the concrete–rock system on steel liners with out-of-
roundness imperfections is plotted in Fig. 7.6a. One can observe that the confinement induced by
the concrete–rock system completely eliminates the SCF yielded by the out-of-roundness in open-
air steel liners. This effect can be explained by the fact that the confinement completely avoids the
flattening of the deformed shape at the largest radii of the elliptic steel liner. As a consequence,
no additional bending stresses occur at the longitudinal butt welded joint. This effect, however,
comes at the price of larger stresses in the far-field rock (see Sect. 7.3.3). Figure 7.6 represents
the through-thickness major principal stress σ1 profiles at the weld toes of the longitudinal butt
welded joint. In Figs. 7.7a–7.7d, the stresses are represented in open-air steel liners, while in
Figs. 7.7e–7.7h, in steel liners embedded in the concrete–rock system. One can see that the higher
ψη , the higher additional tension is induced at the internal fiber of the steel liner in open-air. On
the contrary, unchanging σ1 profiles are observed in the embedded steel liners.

Figure 7.6b presents the effect in steel liners with peaking imperfections1. Compared to open-air
penstocks, one can observe a mitigation effect on the structural SCF K∗m,p when embedded in the
concrete–rock system. This effect remains the same for all tested rock elastic moduli. This effect
may be due to the fact that confinement reduces the flattening of roof-topping, that creates larger
bending stresses in open-air, as the internal pressure ensure full contact with the surrounding
materials.

Finally, the effect of linear misalignment is shown in Fig. 7.6c. It can be seen that the structural
SCF K∗m,e is only slightly mitigated compared to Km,e in open-air. This effect is constant for all
the tested elastic moduli. This slight mitigation can be explained by the constraint that the contact
with the backfill concrete induces at the longitudinal butt welded joint.

Figure 7.6 presents the major principal stress σ1 profiles at the weld toes of the longitudinal butt
welded joint of steel liners embedded in the concrete-rock system are presented. In the subplots
of the left column, one can observe the results in steel liners with peaking imperfections. The
larger is ψu, the larger are the bending stresses yielding additional tension at the internal fiber.
Unlike peaking and out-of-roundness, linear misalignment does not induce a symmetrical effect
on the stress profiles at the weld toes, as shown on the subplots of the right column. The larger
e/ts, the larger the additional tensile stresses at the left weld toe at the internal fiber, where the
maximum major principal stress occur with the geometrical convention adopted herein.

1Two symbols for ψu = 3 are missing because of convergence issues of the FE model that were not resolved in the
scope of this study.
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Figure 7.6: Structural SCF from FEA as a function of the magnitude of the corresponding
geometrical imperfections for different lowest rock moduli E ′, and for σnom = 300 MPa.
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(c) ψη = 1.5 (open-air steel liner).

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

1.48

1.5

1.52

1.54

1.56

σ1

x (m)

y
(m

)

(d) ψη = 2.0 (open-air steel liner).
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Figure 7.6: Major principal stress profiles at weld toes in steel liners (ri = 1.5 m and ts = 35 mm)
with out-of-roundness in open-air (a, b, c, d) and embedded in isotropic rock of elastic modulus
E = 5 GPa (e, f, g, h). The gray solid lines (—) on the mean axis of the steel liners represent the
length of the straight edges, and the gray dashed lines (- - -) are the circular internal and external
fibers. The stress profiles are scaled so that ts/2 represents the magnitude of the membrane stress
σm in the xy plan.
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(c) ψu = 2.0.
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Figure 7.6: Major principal stress profiles at weld toes in steel liners (ri = 1.5 m and ts = 35 mm)
with peaking defects (a, b, c, d) and linear misalignment defects (e, f, g, h) considering the
interaction with isotropic rock of elastic modulus E = 5 GPa. The gray solid lines (—) on
the mean axis of the steel liners represent the length of the straight edges, and the gray dashed
lines (- - -) are the circular internal and external fibers. The stress profiles are scaled so that ts/2
represents the magnitude of the membrane stress σm in the xy plan.

153



Chapter 7. Stress concentration at longitudinal butt welded joints of steel liners

7.3.3 Pressure transmitted to the far-field surrounding rock mass

The mitigation of the effects of the embedment on the geometrical imperfections on the structural
SCF in the steel liners has the counter effect of increasing the stresses transmitted to the far-field
rock.

For peaking and linear misalignment, an increase of the major principal stresses in the far-filed
rock at r = rrm is observed only locally, in the same circumferential location than the longitudinal
welded joint. They are not presented herein for the sake of concision. For ψu = 3 or e/ts = 0.08,
the local increase can be up to 10%.

Figure 7.7 presents the influence of the out-of-roundness of the steel liner on the correction
coefficient Krm

m,η at the circumference of the far-field rock mass at r = rrm. It can be observed
that the far-field rock has to withstand increased major principal stresses at the circumferential
location of the largest radii of the elliptic steel liners, up to 20% for ψu = 2.
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Figure 7.7: Correction coefficient at far-field rock Krm
m,η as a function of the circumferential

location θ for different out-of-roundness factors ψη .

7.3.4 Remarks on the initial gap

As aforementioned, the systematic parametric study was performed with a closed initial gap
∆r0 = 10−6 ·ri. This choice was made in order to reach a faster convergence and thus reasonable
time consuming simulations in the scope of this study. However, several simulations were run
changing the initial gap to values as observed in practuce such as ∆r0 = 0.010–0.025% of ri,
adapting pi to obtain the same nominal stress σnom. No difference has been obtained in the SCF,
either in isotropic or anisotropic rocks, for every type of imperfections. As a consequence, the
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initial gap can be included directly in the computation of σnom if assumed constant along the
circumference.

7.4 Derivation of parametric equations

This section aims at deriving parametric equations for both structural and notch SCF at longitudi-
nal butt welded joints of SLPT&S, that can be used by designers for fatigue life estimation by
means of local approaches as well as for estimating the maximum equivalent stress to be consid-
ered for the working stress criterion in the steel liner (Schleiss 1988). To fit the coefficients and
exponents of the parametric equations proposed in the following, a database of 161 simulations’
results was built. Only the worst combinations of geometrical imperfections and rock anisotropy
were considered, i.e., the longitudinal welded joints are located at the circumferential direction of
the largest axis of the elliptic liner (Ψ = 0 in Eq. 3.53) and the isotropic plane is in the yz plan
(see also Fig. 7.2a). This assumption was verified a posteriori in some cases to exclude some
unexpected behavior leading to higher SCF.

The design of the simulations was performed varying 15 parameters covering arbitrarily a large
extent of cases. The ranges of variation of the parameters are detailed in Table 7.1. One can
see that the out-of-roundness, the linear misalignment and the weld reinforcement were tested
until 150% of the tolerance given by C.E.C.T. (1980). The peaking ∆h induced by ψu, however,
was not tested compared to the tolerance as it does not produce per se a significant amount of
roof-topping. As a consequence, straight edges’ lengths lu were tested until ψu = 2.0 only, which
is already quite large in practical applications.

Table 7.1: Variation ranges (minimum and maximum values) of the parameters for the 161
simulations used to derive structural and notch SCF at longitudinal butt welded joints of SLPT&S.

ri ts ψδ ψe ψη ψu β α
(m) (mm) (–) (–) (–) (–) (deg) (deg)

1.5 15 0.1 0.0 0.0 0.6 5 45
2.5 45 1.5 1.5 1.5 2.0 30 80

E ν E/E ′ G′/G′S-V Ecrm/E ′ tcrm/ri σnom
(GPa) (–) (–) (–) (–) (–) (MPa)

2 0.10 1.00 0.80 0.60 0.33 200
20 0.35 3.00 1.20 1.00 0.66 630

The initial gap was set to ∆r0 = 10−6 ·ri for faster convergence as it does not have any influence
on the results, and the Poisson’s coefficient ν ′ of the anisotropic rock was a function of ν as
ν ′ = νE ′/E. The weld toes’ radius was fixed to the so-called reference radius ρ = rref = 1 mm,
effective radius for steels according to the Neuber concept of fictitious notch rounding (Radaj et al.
2013) and current recommendation of the IIW for the application of the notch stress approach
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for fatigue assessment (Hobbacher 2008, 2016; Fricke 2012). The other parameters were kept
constant as aforementioned. The conceptual models and the results are presented in the following
sections.

7.4.1 Structural SCF at the longitudinal butt welded joints for major principal
stresses

A structural SCF denoted K∗m is defined, characterizing the structural stress concentration at the
longitudinal butt welded joints considering the interaction with the concrete–rock system. The
structural stress σs is thus related to the nominal stress σnom as

σs = K∗mσnom (7.11)

where

σnom = σnom,isoK∗rm,aniso (7.12)

and

K∗m =
[
1+(K∗m,e−1)+(K∗m,p−1)

]
. (7.13)

One may note that although the out-of-roundness was simulated, the influence of η is not
considered in the proposed conceptual model, accordingly to the observations made in Sect. 7.3.
K∗m,p and K∗m,e are defined by introducing a constraint coefficient αi in Eqs. 3.54 and 3.56 as

K∗m,p = 1+
3α1∆h

ts(1−ν2
s )
· tanh(φ/2)

φ/2
(7.14)

and

K∗m,e = 1+
3α2e

ts(1−ν2
s )
. (7.15)

The constraint coefficients α1 and α2 were fitted by means of genetic algorithm (GA), with a
training group of 80% of the results and a test group with the other 20%. The separation was
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7.4. Derivation of parametric equations

performed by random sampling. The objective function was defined as

α̂αα = argmin
ααα

MSE [KKK∗num
m ,KKK∗emp

m (ααα)] (7.16)

where MSE is the mean squared error, and α̂αα = {α1,α2} is the argument of the minimum. KKK∗num
m

contains the values of the structural SCF obtained by finite elements analysis (FEA), and KKK∗emp
m

contains the corresponding values computed via Eq. 7.11. The following αi coefficients were
obtained:

α̂αα = {1.05,0.87}. (7.17)

Although the derived αi coefficients do not characterize a significant change, one may note that
their values does not correspond to the trend depicted in Sect. 7.3 (see also Fig. 7.6). This result
could be due to the interaction effect between the studied geometrical imperfections (which have
been studied separately in Sect. 7.3). A more extensive parametric study considering interactions
between the geometrical imperfections should be conducted, but it was out of the scope of this
project.

The regression between the empirical and the numerical structural SCF K∗m are shown in Fig. 7.8a
for the training group, and in Fig. 7.8b for the test group. One can observe very good coefficients
of determination R2, with low root mean squared error RMSE.
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Figure 7.8: Regression plots of the numerical results vs. the empirical results fitted by GA.
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7.4.2 Notch SCF at longitudinal butt welded joints for major principal stresses

Similarly to the structural SCF, a notch SCF K∗t is defined, characterizing the maximum notch
stress concentration at the longitudinal butt welded joints’ toes considering the interaction with
the concrete–rock system, relating the notch stress σn to σnom as

σn = K∗t σnom (7.18)

with

K∗t = K∗mKw (7.19)

where Kw is the notch SCF due to the weld geometry. It is defined under the form of Eq. 6.6, and
as presented in Chapter 6 using the same approach to model the weld geometry:

Kw = 1+α0

(
δ
ts

)α1
(

ρ
ts

)α2

tan
(

β
2

)α3

(7.20)

where the αi are coefficients that were fitted using the same procedure than previously described,
yielding:

α̂αα = {1.08,0.24,−0.41,0.41}. (7.21)

The regression plots are shown in Figs. 7.9a and 7.9c for the training groups. The test groups are
in Figs. 7.9b and 7.9d. A very good correlation between the FEA and the empirical formula can
be observed.

7.4.3 Extrapolation to equivalent stresses

The equivalent stresses concentrations at longitudinal butt welded joints may also be of interest.
The SCF K∗t previously defined can be applied to obtain the equivalent notch stress σn,eq as

σn,eq = K∗t σnom,eq. (7.22)
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In Eq. 7.22, K∗t is defined by Eq. 7.19, with the same fitted coefficients. The nominal equivalent
stress σnom,eq can be computed as

σnom,eq = σnom,eq,isoK∗rm,eq,aniso (7.23)

where

K∗rm,eq,aniso =
σnom,eq,aniso

σnom,eq,iso
, (7.24)

which can be computed by the empirical equation proposed in Chapter 5. Eq. 7.22 was applied
to all the results obtained by FEA. The regression is shown in Fig. 7.10, where a very good
agreement can be observed between the FE results and the empirical equation.
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Figure 7.10: Numerical equivalent notch stresses σnum
n,eq obtained by FEA vs. the empirical σ emp

n,eq
obtained via Eq. 7.22.

7.4.4 Application examples

The application of the proposed parametric equations is illustrated through four examples with
realistic parameters as shown in Table 7.2a. The relevant results are presented in Table 7.2b,
where the errors e are computed as

eSCF =
SCFnum−SCFemp

SCFnum . (7.25)

One can observe the good accuracy of the proposed parametric equations. Particular attention
may be paid to cases 3 and 4, which are identical except for the initial gap ∆r0, which does not
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Chapter 7. Stress concentration at longitudinal butt welded joints of steel liners

influence the accuracy of the prediction.

7.5 Application limits

Some assumptions made in this chapter are discussed hereafter.

1. Three geometrical imperfections were investigated, namely the out-of-roundness, peaking
and linear misalignment. Peaking was considered due to straight edges at the longitudinal
butt welded joints, resulting from the rolling process. However, the tolerance given by
C.E.C.T. (1980) (Eq. 7.2) can also refer to flattening imperfections adjacent to the welds,
inducing a shift of the mean axis of the steel liner inward the perfectly circular shape.
Although this is an important issue for buckling analysis, this geometrical defect was not
treated herein. Under internal pressure, it is expected to create bending stresses yielding
compression at the internal fiber of the steel liner, where all maximum SCF occur for
the studied imperfections. For future research, the influence of this defect at the external
fiber of the longitudinal welded joints, relatively to the other imperfections, should be
investigated. Some cases may shift the maximum SCF at the external fiber, which could
become critical for fatigue life estimation.

2. Notch SCF were only proposed for constant weld toe radii ρ = rref = 1 mm. If one needs to
evaluate K∗t for other radii (e.g., for the use of other local approaches, or future refinements
of the notch stress approach), Kw in Eq. 7.19 can be substituted by the parametric equations
proposed in Chapter 6 as a reasonable approximation.

7.6 Conclusions

Several published formulas for SCF in steel-lined structures were reported in Sect. 3.8. Geometri-
cal imperfections such as linear misalignment, peaking or out-of-roundness are treated, but the
interaction with surrounding materials, to the best author’s knowledge, was never studied. In this
chapter, the influence of the contact with the backfill concrete–rock system on the SCF at the
longitudinal butt welded joints of steel liners was investigated.

The main result is that the effect of out-of-roundness is completely vanished under the effect of
embedment. Therefore, only the effects of peaking and linear misalignment remain. To provide
designers with fast computational tools to estimate SCF at the longitudinal butt welded joints of
SLPT&S, some published expressions have been modified to compute structural and notch SCF
accounting for the interaction with the concrete–rock system.
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Part IVCrack-like flaws at longitudinal butt
welded joints of steel liners
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Iron may be stronger than a tree, but this impression of strength may be misleading since the
products of the art of forging are not as safe as the trees produced by mother nature.

– Cristopher Polhem (1661–1751),
reported by Jonsson (2011).

Most of the content of Chapter 8 of this part (together with Sect. 3.9) has been published in a
scientific article entitled "Stress intensity factors for axial semi-elliptical surface cracks and
embedded elliptical cracks at longitudinal butt welded joints of steel-lined pressure tunnels
and shafts considering weld profile" by Pachoud et al. (2017b) in Engineering Fracture
Mechanics 179(June), pp. 93–119. The finite element model, the parametric study, the
proposed parametric equations and the respective analyses are original and were developed
by the author of the present report.





8 Stress intensity factors (SIF) for axial
cracks in the weld material

internal water pressure

near-field rock mass 
(loosened by excavation
or grouted)

backfill concrete

steel liner

far-field rock mass 
(undisturbed by 
excavation)

initial gap

Longitudinal butt welded joint 
with crack-like flaw

Figure 8.1: Definition sketch of the standard multilayer system for SLPT&S. The longitudinal
butt welded joint is emphasized in the upper right corner, with an axial surface crack in the weld
material.

8.1 Types of studied cracks

In this chapter, SIF are studied by means of the finite element method (FEM) for two types of
cracks at the longitudinal butt welded joints of steel liners (see Fig. 8.1), namely:

1. semi-elliptical surface cracks (Fig. 8.2); and

2. embedded elliptical cracks (with d1 = d2 = ts/2, see Fig. 8.3).
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8.2. Definition of weld shape correction factor Mw for axial cracks at longitudinal butt
welded joints of SLPT&S
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Chapter 8. Stress intensity factors (SIF) for axial cracks in the weld material

8.2 Definition of weld shape correction factor Mw for axial cracks
at longitudinal butt welded joints of SLPT&S

8.2.1 Membrane and bending stresses in steel liners of pressure tunnels and shafts

Nominal stress in anisotropic rock

SLPT&S embedded in anisotropic rock (in the special case of transverse isotropy) were studied
in Part II. Empirical correction factors included in the analytical closed-form solution in isotropic
rock were derived, allowing to estimate maximum major principal stresses in the steel liners. It
was found that the influence of transversally isotropic rock on steel liners is mainly to change the
nominal stress, inducing negligible bending stresses. The latter can be neglected when studying
SCF at the longitudinal butt welded joints in the worst case scenario when the joint is located in
the area of maximum major principal stresses, as considered in Chapter 7.

In Chapter 7, a correction coefficient denoted K∗rm,aniso accounting for the change of nominal
stress due to anisotropic rock behavior was defined and expressed as

σnom,aniso = K∗rm,anisoσnom,iso (8.1)

where σnom,aniso is the corrected nominal stress when the steel liner is in anisotropic rock, and
σnom,iso is the nominal stress obtained through the analytical closed-form solution in isotropic
rock (with the steel liner considered with the thick-walled pipe theory, i.e., the nominal stress is
defined as the maximum stress at the internal fiber). The superscript ∗ stands for the interaction
with the rock mass.

Geometrical imperfections

As described in detail in Chapter 7, steel liners of SLPT&S are subject to unavoidable geometrical
imperfections that may raise stress concentrations, particularly at the welds. The most important
are recalled hereafter.

1. Out-of-roundness (or ovality), which is characterized by a deviation η from the perfectly
circular shape due to the erection process, transportation or welding methods. The resulting
elliptical shape of the liner is illustrated in Fig. 8.4.

2. Peaking (or roof-topping), which is induced by two straight edges of length lu inherent to
the rolling process of the original manufactured plates. It yields a radial deviation ∆h from
the perfectly circular shape at the longitudinal butt welded joint, as shown in Fig. 8.4.

3. Axial misalignment (or eccentricity), which is characterized by an eccentricity between the
mean axes of the welded plates.
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γ
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ri
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lu l

Figure 8.4: Definition sketch of the geometrical imperfections of pressure tunnels and shafts. The
geometrical imperfections and the thickness of the liner are magnified for presentation purposes.

Influence of the concrete–rock system

The structural SCF at longitudinal butt welded joints of steel liners considering the interaction
with the surrounding concrete–rock system was studied in Chapter 7. It was found that the
structural stress concentration due to the out-of-roundness vanishes because of the embedment,
while the influence of peaking and linear misalignment remains. Empirical constraint coefficients
to be included in published solutions for SCF accounting for the embedment effect were proposed.
The obtained structural SCF was denoted K∗m.

8.2.2 Definition of weld shape correction factor Mw

As aforementioned, structural stresses at longitudinal butt welded joints of steel liners embedded
in rock can be estimated by SCF empirical developed in the preceding chapters. The remaining
lack of knowledge is thus the weld shape correction factor Mw. As it will be presented below,
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empirical equations to estimate SIF will only be derived for semi-elliptical surface cracks.

Even if linear misalignment has a great influence on notch SCF at the weld toes and thus on
the fatigue growth of cracks emanating from these notches (Ferreira & Branco 1991), it is not
expected to have a strong influence on a crack located in the vicinity of the edges of the welded
plates in the weld deposit (see Figs. 8.2 and 8.3), as outlined, e.g., by Ho & Lawrence (1984).
Indeed, structural stresses induced by an eccentricity between the mean axes of the plates change
sign through the weld (see Fig. 7.6). As a consequence, only peaking will be accounted for in
this study. For this case, it is proposed to rewrite and complete Eq. 3.58 as

KI = Mw [Mm (σm + pcr)+Mbσb]

√
πa
Q

(8.2)

= Mw
[
Mm
(
σm,isoK∗rm,aniso + pcr

)
+Mbσm,isoK∗rm,aniso

(
K∗m,p−1

)]√πa
Q

, (8.3)

where:

• Mw is the weld shape correction factor to be determined;

• K∗m,p is the structural SCF due to peaking accounting for the interaction with the concrete–
rock system (see Chapter 7); and

• the membrane component σm,iso is approximated by the analytical solution in isotropic
rock considering the thin-walled pipe theory.

8.3 Finite element model

8.3.1 Conceptual model

Consequently to the discussion conducted in Sect. 8.2, solely the steel liner was modeled herein
in order to study semi-elliptical surface cracks and embedded elliptical cracks. Moreover, only
peaking was considered, and modeled by two straight edges of length lu that are tangent to
the circular parts of the liner. The so-called angular misalignment angle γ is approximated as
γ = 2lu/ri (rad) to construct the model (see Fig. 8.4). The parameter ψu defined in Chapter 7 is
used to relate the length of the straight edges lu to the liner’s thickness ts as

lu = ψuts. (8.4)

For practical applications, ψu may typically vary between 0 and 2 with good workmanship. One
may note that in this study, no imperfection is approximated to ψ = 0.6, because of the weld
length.

The geometry of the longitudinal butt welded joints is depicted in Figs. 8.2 and 8.3. The main
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parameters are the weld reinforcement height δ , the flank angle β , the edge preparation angle
α and the weld toe radius ρ . The weld length lw is related to the edge preparation angle as
(dimensions in mm)

lw = ts sin(α/2)+3 (mm) (8.5)

where the 3 mm in the right-hand end is the separation between the crimped edges. The geometry
of the weld was modeled according to the approach proposed in Part III, namely by the use of
splines (BSPLIN command in ANSYS) for the weld reinforcement. Three tangents are imposed
at three keypoints, i.e., at the weld toes with an imposed flank angle β , and at the highest point of
the reinforcement where the tangent is parallel to the segment linking the two weld toes. More
details are given in Appendix A.

8.3.2 Assumptions of the FE model

The geometry of the FE model follows the aforementioned conceptual model. Additional
hypotheses are undertaken and listed hereafter.

1. The constitutive law for steel is linear elastic with an elastic modulus Es = 210 GPa and a
Poisson’s ratio νs = 0.3, following the requirement of LEFM to compute SIF.

2. The symmetrical conditions allow modeling only half of the steel liner, as shown in Fig. 8.5.

3. Large-deflections effects are considered when necessary (see Tables 8.1 and 8.2), namely
for large surface cracks inducing a deflection at the longitudinal butt welded joint, or for a
large geometrical imperfection, in order to avoid inconsistent results.

4. The boundary conditions are shown in Fig. 8.5 (also used, e.g., by Kou & Burdekin 2006).
As SLPT&S are very long structures in the z direction, plane strain conditions are assumed.
To impose pseudo-plane strain conditions in 3D, the nodes on the xy planes of the two
extreme sections of the steel liner were constrained in the z direction.

5. The length of the FE model along the z direction should be large enough so that there is
no length effects on the results along the crack. Newman Jr & Raju (1980) and Raju &
Newman Jr (1982) used for instance 10× c. In this study several cases were tested and it
was found that 3× c already ensures a satisfying convergence (threshold at 1%). For the
sake of fast computational time, the dimension of the model along the z direction was thus
set to 3× c.
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butt welded joint
y

x

pi

Figure 8.5: Boundary conditions of the model.

8.3.3 Mesh

In LEFM, the presence of a crack front produces a 1/
√

r singularity in the stress field (where
r is the distance from the crack front). To capture this asymptotic behavior, Barsoum (1976)
developed singular elements, namely quadratic isoparametric elements with mid-side nodes
shifted to the quarter points. These elements are widely used in LEFM, and are available in
ANSYS by skewing 2D quadratic elements (PLANE183). To mesh the crack front, a torus
volume is created along the crack front (see Figs. 8.6d and 8.5d), and meshed with 3D 20-node
quadratic solid elements (SOLID186, as recommended in ANSYS Inc 2015). The 1st row of
elements in contact with the crack front are skewed using the generation of volume elements
from skewed PLANE183. The remaining volumes in the steel liner are meshed with high order
3D 10-node quadratic elements (SOLID187). The length of the elements along the crack front
varied between 0.10 to 1.00 mm depending on the crack length. This is a very dense refinement
with respect to most published studies in computational LEFM.

A mesh example of a steel liner with a semi-elliptical surface crack is presented in Figs. 8.6a–8.6d.
Under internal pressure pi inducing circumferential major principal stresses in the steel liner
and pcr = pi on the crack face, the crack is loaded in mode I. The deformed mesh is shown
in Figs. 8.5e–8.5f. Similarly, a mesh example for an embedded elliptical crack is shown in
Figs. 8.5a–8.5d, and the deformed mesh in Figs. 8.4e–8.4f.
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8.3. Finite element model

(a) Mesh: section of the welded joint.

(b) Mesh: 3D view focused on the butt welded joint with semi-elliptical surface crack.
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(c) Mesh: 3D view focused on the crack face and front.

(d) Mesh: torus around crack front, meshed with quadratic isoparametric elements.
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(e) Deformed mesh: sectional view.

(f) Deformed mesh: 3D view of crack face and front.

Figure 8.4: FE mesh and deformed mesh of a steel liner with a semi-elliptical surface crack in
the weld material of the welded joint.
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(a) Mesh: section of the welded joint.

(b) Mesh: 3D view focused on the butt welded joint with embedded elliptical crack.
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(c) Mesh: 3D view focused on the crack face and front.

(d) Mesh: torus around crack front, meshed with quadratic isoparametric elements.
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(e) Deformed mesh: sectional view.

(f) Deformed mesh: 3D view of crack face and front.

Figure 8.3: FE mesh and deformed mesh of a steel liner with an embedded elliptical crack in the
weld material of the welded joint.
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8.3.4 Evaluation of stress intensity factors

As described in Sect. 3.4, in LEFM the SIF can be calculated from the J-integral (Rice 1968;
Shih et al. 1986) as

J =
K2

I

E ′
(8.6)

where E ′ = Es in plane stress and E ′ = Es/(1−ν2
s ) in plane strain conditions (Anderson 2005).

In ANSYS, the J-integral is computed via a discretization (on the elements) of the domain integral
representation given by Shih et al. (1986).

The chosen FE code offers two approaches to compute the SIF, namely the Interaction Integrals
Method (Walters et al. 2005) computing J, and the Displacement Extrapolation Method (Guinea
et al. 2000) computing directly KI . In this study, both were implemented and compared. It
was verified that they gave the same results using Eq. 8.6 in plane strain from the 2nd to the 4th

contours. The 1st contour was omitted consistently with other studies (see, e.g., Bowness & Lee
2000a), giving slightly different results. It was also observed that both methods gave constant
results through the 3 studied contours. In the following, the results from the Displacement
Extrapolation Method are used, averaged on the 3 contours (although negligible variation was
observed).

This agreement between the two methods is better than sometimes reported in other studies (see,
e.g., Bowness & Lee 2000a). This might be due to the high mesh density that was implemented
herein, or the ranges of variation of the crack sizes. This was not further investigated.

8.3.5 Normalization

The forthcoming analyses are performed with normalized results. The normalized SIF denoted
K̂I is computed as

K̂I =
Knum

I

K0
I

(8.7)

where Knum
I is obtained from the finite element analysis (FEA) and K0

I is the analytical solution
obtained from Eqs. B.1–B.16 for surface cracks and from Eqs. B.17–B.31 for embedded cracks.
The choice of where to evaluate K0

I along the crack front differs with respect to the performed
analysis, and will be specified when needed.
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8.3.6 Validation

The FE models were validated against the corresponding analytical solutions of Newman Jr &
Raju (1981a) (Eqs. B.1–B.16) and Anderson (2005) (reported in API 2007, Eqs. B.17–B.31). The
validation was performed in so-called base studies (see Tables 8.1–8.2). The error was computed
as

error =
Knum

I −K0
I

K0
I

, (8.8)

at the deepest point of the crack for surface cracks (φ = π/2), and at the point of maximum SIF
for the embedded crack (φ =−π/2, i.e., at the inner side of the steel liner).

The bending stresses σb to be inserted in the analytical solutions were computed using the
following SCF (British Standard 7910 2005; Hobbacher 2008; Koçak et al. 2008):

Km,p = 1+
3∆h

ts(1−ν2
s )
· tanh(φ/2)

φ/2
(8.9)

with fixed ends boundary conditions where

φ =
2l
ts

√
3(1−ν2

s )σm

Es
. (8.10)

The length l is the projection of the straight edge as shown in Fig. 8.4. This equation was proved
to estimate correctly the bending stresses in open-air steel liners (penstocks) until ψu = 2.0 in
Chapter 7.

The errors of prediction of the FE model of the surface crack are plotted in Figs. 8.4a–8.4b. One
can observe a good agreement, within the claimed range of accuracy of the analytical solution. It
was found that the largest errors correspond to the smallest tested cracks. Although the agreement
is fairly good, this can partly be due to the fact that the FE models of the base studies already
include a small relative weld reinforcement δ/ts = 0.005 influencing the results with the same
trend that will be outlined in Sect. 8.4. Some examples of normalized SIF along crack fronts
are presented in Fig. 8.5, where K̂I was computed with the maximum analytical SIF K0

I along
crack front. One can observe that the FE model reproduces the variation of the SIF with a good
accuracy along the crack front.

Figures 8.4c–8.4d present the errors of prediction of the FE model of the embedded crack,
and Fig. 8.6 shows some examples of variation of normalized SIF along crack fronts. A good
agreement is also observed.
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(a) Semi-elliptical surface cracks, ψu = 0.6.
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(b) Semi-elliptical surface cracks, ψu = 2.0.
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(c) Embedded elliptical cracks, ψu = 0.6.
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(d) Embedded elliptical cracks, ψu = 2.0.

Figure 8.4: Error histograms of the prediction of the FE models compared to the corresponding
analytical solutions.
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(a) ψu = 0.6 (ri = 2 m, ts = 40 mm, ρ = 10 mm, δ/ts = 0.005, β = 2 deg,
α = 50 deg).
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(b) ψu = 2.0 (ri = 2 m, ts = 40 mm, ρ = 10 mm, δ/ts = 0.005, β = 2 deg,
α = 50 deg).

Figure 8.5: Normalized SIF K̂I along the crack front of semi-elliptical surface cracks.
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(a) ψu = 0.6 (ri = 2 m, ts = 25 mm, ρ = 10 mm, δ/ts = 0.005, β = 2 deg, α = 50 deg).
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(b) ψu = 2.0 (ri = 2 m, ts = 25 mm, ρ = 10 mm, δ/ts = 0.005, β = 2 deg, α = 50 deg).

Figure 8.6: Normalized SIF K̂I along the crack front of embedded elliptical cracks.
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8.3.7 Applicability of the analytical solutions

The results presented previously show that the analytical solutions of Newman Jr & Raju (1981a)
and Anderson (2005) are well suited to estimate SIF at surface and embedded cracks, respectively,
in the longitudinal butt welded joints of steel liners where the bending stresses can be estimated
with the SCF proposed by in Chapter 7 for SLPT&S.

8.4 Parametric study

The influence of the weld shape parameters such as the relative weld reinforcement δ/ts, the
flank angle β and edge preparation angle α (and thus the weld length lw) was assessed by means
of systematic parametric FEA for both surface and embedded cracks. The radius ρ of the weld
toes were not included in this parametric study as preliminary simulations showed that it has a
negligible influence, if any, as far as it remains a short transition (i.e., only considered to model
the notch), not changing significantly the global shape of the weld reinforcement described by
the splines. Therefore the local notch stress concentration does not influence a crack in the weld
material. This observation is consistent with the tendency presented by Wang et al. (2012b),
although in their case the circle of radius ρ was used to model a longer transition between the
base plate and the weld reinforcement that one may not consider as a notch in terms of local
stresses approaches in fatigue assessment.

8.4.1 Semi-elliptical surface cracks

Approximately 2100 cases of steel liners with semi-elliptical surface cracks were simulated
according to the matrix of simulations presented in Table 8.1. The weld toe’s radius ρ was
adapted to the variation of the flank angle β to allow a reasonable meshing as well as not
to influence the weld shape as aforementioned. The FE model may present two sources of
geometrical nonlinearities that require running nonlinear analyses, namely deep cracks or large
roof-topping. After preliminary tests, it was concluded that all simulations with relative crack
depth a/ts ≥ 0.5 or with roof-topping with ψu ≥ 1.0 required to consider large-deflections effects.
They are marked with the superscript ∗ in Table 8.1.

In the following, the normalized SIF K̂I (thus equivalent to the weld shape correction factor Mw)
are computed at the deepest point of the cracks as

K̂I =
Knum

I (φ = π/2)
K0

I (φ = π/2)
= Mw. (8.11)

The influence of the relative weld reinforcement height δ/ts is shown in Fig. 8.7a. One can
observe that the larger δ/ts, the smaller the weld shape correction factor Mw (i.e., the SIF
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Table 8.1: Matrix of performed simulations for steel liners with axial semi-elliptical surface
cracks at longitudinal butt welded joints (total of approximately 2100 simulations). The so-called
base studies are highlighted in bold. The superscript ∗ indicates that large-deflections effects
were considered.

ψu α δ/ts β ρ a/ts ri/ts a/c
(–) (deg) (–) (deg) (mm) (–) (–) (–)

0.6 50 0.005 2 10 0.025, 0.05, 0.1, 0.2, 0.4, 0.5*, 0.6* 50, 80, 86, 100 0.2, 0.3, 0.6, 0.8
0.010 2 10 0.025, 0.05, 0.1, 0.2, 0.4, 0.5*, 0.6* 50, 80, 86, 100 0.2, 0.3, 0.6, 0.8
0.010 5 10 0.025, 0.05, 0.1, 0.2, 0.4, 0.5*, 0.6* 100 0.2, 0.3, 0.6, 0.8
0.020 2 10 0.025, 0.05, 0.1, 0.2, 0.4, 0.5*, 0.6* 50, 80, 86, 100 0.2, 0.3, 0.6, 0.8
0.020 5 10 0.025, 0.05, 0.1, 0.2, 0.4, 0.5*, 0.6* 100 0.2, 0.3, 0.6, 0.8
0.020 10 5 0.5*, 0.6* 80, 100 0.2, 0.3, 0.6, 0.8
0.040 2 10 0.025, 0.05, 0.1, 0.2, 0.4, 0.5*, 0.6* 50, 80, 100 0.2, 0.3, 0.6, 0.8
0.040 5 10 0.025, 0.05, 0.1, 0.2, 0.4,0.5*, 0.6* 100 0.2, 0.3, 0.6, 0.8
0.040 10 5 0.5*, 0.6* 80, 100 0.2, 0.3, 0.6, 0.8
0.040 15 3 0.5*, 0.6* 80, 100 0.2, 0.3, 0.6, 0.8
0.060 2 10 0.025, 0.05, 0.1, 0.2, 0.4, 0.5*, 0.6* 50, 80, 100 0.2, 0.3, 0.6, 0.8
0.060 5 10 0.025, 0.05, 0.1, 0.2, 0.4, 0.5*, 0.6* 100 0.2, 0.3, 0.6, 0.8
0.060 10 5 0.025, 0.05, 0.1, 0.2, 0.5*, 0.6* 80 0.2, 0.3, 0.6, 0.8
0.060 15 3 0.025, 0.05, 0.1, 0.2, 0.5*, 0.6* 80 0.2, 0.3, 0.6, 0.8
0.060 20 2 0.025, 0.05, 0.1, 0.2, 0.4, 0.5*, 0.6* 50, 80 0.2, 0.3, 0.6, 0.8
0.080 2 10 0.025, 0.05, 0.1, 0.2, 0.4, 0.5*, 0.6* 50, 80, 100 0.2, 0.3, 0.6, 0.8
0.080 5 10 0.5*, 0.6* 80, 100 0.2, 0.3, 0.6, 0.8
0.080 10 5 0.025, 0.05, 0.1, 0.2, 0.5*, 0.6* 100 0.2, 0.3, 0.6, 0.8
0.080 15 3 0.5*, 0.6* 80, 100 0.2, 0.3, 0.6, 0.8
0.080 20 2 0.025, 0.05, 0.1, 0.2, 0.4, 0.5*, 0.6* 50, 80, 86, 100 0.2, 0.3, 0.6, 0.8
0.080 25 1 0.025, 0.05, 0.1, 0.2, 0.5*, 0.6* 100 0.2, 0.3, 0.6, 0.8
0.080 30 1 0.025, 0.05, 0.1, 0.2, 0.5*, 0.6* 100 0.2, 0.3, 0.6, 0.8

60, 70 0.040 5 10 0.025, 0.05, 0.1, 0.2 100 0.2, 0.3, 0.6, 0.8
0.060 5 10 0.025, 0.05, 0.1, 0.2 100 0.2, 0.3, 0.6, 0.8
0.060 10 5 0.025, 0.05, 0.1, 0.2 80 0.2, 0.3, 0.6, 0.8
0.060 15 3 0.025, 0.05, 0.1, 0.2 80 0.2, 0.3, 0.6, 0.8
0.060 20 2 0.025, 0.05, 0.1, 0.2 80 0.2, 0.3, 0.6, 0.8

1.0 50 0.005 2 10 0.025*, 0.05*, 0.1*, 0.2*, 0.4*, 0.5*, 0.6* 50, 80, 100 0.2, 0.3, 0.6, 0.8
0.010 5 10 0.025*, 0.05*, 0.1*, 0.2*, 0.4*, 0.6* 50, 80 0.2, 0.3, 0.6, 0.8
0.020 10 5 0.025*, 0.05*, 0.1*, 0.2*, 0.4*, 0.6* 50 0.2, 0.3, 0.6, 0.8

60, 70 0.010 5 10 0.025*, 0.05*, 0.1*, 0.2* 50 0.2, 0.3, 0.6, 0.8
0.020 10 5 0.025*, 0.05*, 0.1*, 0.2* 50 0.2, 0.3, 0.6, 0.8

1.5 50 0.005 2 10 0.025*, 0.05*, 0.1*, 0.2*, 0.4*, 0.5*, 0.6* 50, 80, 100 0.2, 0.3, 0.6, 0.8
0.010 5 10 0.025*, 0.05*, 0.1*, 0.2*, 0.4*, 0.6* 50, 100 0.2, 0.3, 0.6, 0.8
0.020 10 5 0.025*, 0.05*, 0.1*, 0.2*, 0.4* 50 0.2, 0.3, 0.6, 0.8

60, 70 0.010 5 10 0.025*, 0.05*, 0.1*, 0.2* 50 0.2, 0.3, 0.6, 0.8
0.020 10 5 0.025*, 0.05*, 0.1*, 0.2* 50 0.2, 0.3, 0.6, 0.8

2.0 50 0.005 2 10 0.025*, 0.05*, 0.1*, 0.2*, 0.4*, 0.5*, 0.6* 50, 80, 86, 100 0.2, 0.3, 0.6, 0.8
0.010 5 10 0.025*, 0.05*, 0.1*, 0.2*, 0.4*, 0.6* 50, 80, 100 0.2, 0.3, 0.6, 0.8
0.020 10 5 0.025*, 0.05*, 0.1*, 0.2*, 0.4*, 0.6* 50, 80, 100 0.2, 0.3, 0.6, 0.8
0.040 15 3 0.025*, 0.05*, 0.1*, 0.2*, 0.4*, 0.6* 50, 100 0.2, 0.3, 0.6, 0.8
0.060 20 2 0.025*, 0.05*, 0.1*, 0.2*, 0.4*, 0.6* 50, 100 0.2, 0.3, 0.6, 0.8
0.080 30 1 0.025*, 0.05*, 0.1*, 0.2*, 0.4*, 0.6* 100 0.2, 0.3, 0.6, 0.8

60, 70 0.040 15 3 0.025*, 0.05*, 0.1*, 0.2* 100 0.2, 0.3, 0.6, 0.8
0.060 20 2 0.025*, 0.05*, 0.1*, 0.2* 100 0.2, 0.3, 0.6, 0.8
0.080 30 1 0.025*, 0.05*, 0.1*, 0.2*, 0.4* 100 0.2, 0.3, 0.6, 0.8
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decreases compared to the analytical solution). The decrease of Mw is approximately linear with
respect to δ/ts. Also, the aspect ratio has no influence for small cracks (a/ts ≤ 0.2) and a not
significant influence for larger cracks (a/ts > 0.2). To explain these observations, the major
principal stress σ1 profiles are plotted in Fig. 8.6. The influence of δ/ts is depicted in Figs. 8.8a,
8.8b, 8.8c, and 8.8d. It can be seen that the greater δ/ts, the smaller σ1 in the weld reinforcement
area, due to the enlargement of the thickness of the steel liner. The influence of δ/ts on two crack
sizes along the crack fronts is shown in Fig. 8.7.

Figure 8.7b presents the influence of the edge preparation angle α (and thus the weld length
lw). It can be observed that the greater α , the greater Mw (and thus the smaller the influence
of the weld shape). The increase of Mw is approximately linear with respect to α . This can be
explained by the fact that a larger weld length allows for a smoother stress gradient through the
weld material, and thus a more homogeneous stress profile through the thickness and the weld
reinforcement. This is illustrated in Figs. 8.7i, 8.7j, 8.7k, and 8.7l.

Finally, the influence of the flank angle β is plotted in Fig. 8.7c. Similarly to the influence of α ,
one can see that the greater β , the greater Mw. A great β indeed yields more weld material (for a
fixed δ and lw), allowing a more homogeneous stress profile and thus a smoother stress gradient.
This effect is also illustrated in Figs. 8.8e, 8.8f, 8.8g and 8.8h.

8.4.2 Embedded elliptical cracks

For steel liners with embedded elliptical cracks, approximately 330 cases were simulated accord-
ing to the matrix of simulations given in Table 8.2. As for the semi-elliptical surface cracks, the
influence of the weld shape parameters were studied as shown in Fig. 8.7 (Eq. 8.11 was evaluated
for φ =−π/2 in this case). One can observe that for the studied ranges of relative crack depths
a/ts, the influence of the weld shape is negligible. This observation is consistent with the analysis
performed previously. Indeed, in the case of embedded cracks with d1 = d2 (cracks centered on
the mean axis of the welded plates), the crack front is located in a zone where the major principal
stress profile is not affected by the weld shape (see Fig. 8.6).

8.4.3 Commentaries on the results

The parametric study has shown that the weld reinforcement mitigates SIF by diminishing the
major principal stresses acting on crack fronts located in the region near the reinforcement
surface. This effect is mitigated with increasing weld length lw or flank angle β . Therefore it
strongly affects semi-elliptical surface cracks at early stages of growth. The further the crack
front advances through the thickness, the less the influence of the weld shape. For the simulated
embedded elliptical cracks centered to the mean axis of the plates, the weld shape has a negligible
influence as the crack front remains in regions where the stress profile is not affected. This may
not be true for very long cracks reaching the weld reinforcement region. However, in the scope
of fatigue crack growth analysis by means of LEFM approach, the influence of the weld shape on
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β = 2 deg, α = 50 deg).
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Figure 8.6: Normalized SIF K̂I at the deepest point of semi-elliptical surface cracks.
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Figure 8.7: Influence of relative weld reinforcement on the normalized SIF K̂I along the crack
front of semi-elliptical surface cracks.
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(d) δ/ts = 0.080.
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Figure 8.6: Major principal stress profiles in the weld material (ri = 2 m, ts = 25 mm,
ρ = 1 mm): (a,b,c,d) influence of the relative weld reinforcement δ/ts (β = 2 deg,
α = 50 deg); (e,f,g,h) influence of the flank angle β (δ/ts = 0.060, α = 50 deg); and
(i,j,k,l) influence of the edge preparation angle α (δ/ts = 0.060, β = 20 deg). The stress
profiles are scaled so that ts/2 represents the magnitude of the membrane stress.
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Figure 8.7: Maximum normalized SIF K̂I (at φ =−π/2) of embedded elliptical cracks.
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Table 8.2: Matrix of performed simulations for steel liners with axial embedded elliptical cracks
at longitudinal butt welded joints (total of approximately 330 simulations). The so-called base
studies are highlighted in bold. The superscript ∗ indicates that large-deflections effects were
considered.

ψu α δ/ts β ρ a/ts ri/ts a/c
(–) (deg) (–) (deg) (mm) (–) (–) (–)

0.6 50 0.005 2 10 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3 50, 80 0.2, 0.3, 0.6, 0.8
0.010 2 10 0.025, 0.3 80 0.2, 0.3, 0.6, 0.8
0.020 2 10 0.025, 0.3 80 0.2, 0.3, 0.6, 0.8
0.040 2 10 0.025, 0.3 80 0.2, 0.3, 0.6, 0.8
0.040 5 10 0.025, 0.3 80 0.2, 0.3, 0.6, 0.8
0.040 10 5 0.025, 0.3 80 0.2, 0.3, 0.6, 0.8
0.040 15 3 0.025, 0.3 80 0.2, 0.3, 0.6, 0.8
0.060 2 10 0.025, 0.3 80 0.2, 0.3, 0.6, 0.8
0.080 2 10 0.025, 0.3 80 0.2, 0.3, 0.6, 0.8
0.080 5 10 0.025, 0.3 80 0.2, 0.3, 0.6, 0.8
0.080 10 5 0.025, 0.3 80 0.2, 0.3, 0.6, 0.8
0.080 15 3 0.025, 0.3 80 0.2, 0.3, 0.6, 0.8
0.080 20 2 0.025, 0.3 80 0.2, 0.3, 0.6, 0.8
0.080 25 1 0.025, 0.3 80 0.2, 0.3, 0.6, 0.8
0.080 30 1 0.025, 0.3 80 0.2, 0.3, 0.6, 0.8

60, 70 0.040 10 5 0.025, 0.3 80 0.2, 0.3, 0.6, 0.8
0.080 10 5 0.025, 0.3 80 0.2, 0.3, 0.6, 0.8
0.080 20 2 0.025, 0.3 80 0.2, 0.3, 0.6, 0.8
0.080 30 1 0.025, 0.3 80 0.2, 0.3, 0.6, 0.8

2.0 50 0.005 2 10 0.025*, 0.05*, 0.075*, 0.1*, 0.15*, 0.2*, 0.3* 50, 80 0.2, 0.3, 0.6, 0.8
0.010 5 10 0.025*, 0.3 * 80 0.2, 0.3, 0.6, 0.8
0.020 10 5 0.025*, 0.3 * 80 0.2, 0.3, 0.6, 0.8
0.040 15 3 0.025*, 0.3 * 80 0.2, 0.3, 0.6, 0.8
0.060 20 2 0.025*, 0.3 * 80 0.2, 0.3, 0.6, 0.8
0.080 30 1 0.025*, 0.3 * 80 0.2, 0.3, 0.6, 0.8

SIF for embedded cracks can be neglected, as most of the fatigue life would be consumed before
the cracks reach sizes which may be influenced by the weld shape.

8.5 Parametric equation to estimate the weld shape correction fac-
tor Mw for semi-elliptical surface cracks

In order to derive a parametric equation to estimate Mw for SIF at the deepest point of semi-
elliptical surface cracks in steel liners of SLPT&S, all the data generated in the parametric
study (see Table 8.1) are considered, i.e., 2100 cases. Based on the observations made in the
parametric study (see Fig. 8.6), it is proposed to express the weld shape correction factor Mw as a
combination of three functions fi describing the influence of δ/ts, β and α , as

Mw = f1

(
a
ts
,
δ
ts

)
f2

(
a
ts
,
lw
ts
,
δ
ts

)
+ f3

(
a
ts
,
lw
ts
,
δ
ts
,β
)
, (8.12)
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semi-elliptical surface cracks

where f1 is a linear function of δ/ts with a slope depending on the crack depth a/ts, f2 is a linear
function of lw/ts with a slope depending on a/ts and δ/ts, and f3 is part a trigonometric function
of β , with an amplitude depending on a/ts, δ/ts and lw/ts. The fi are defined as

f1 = 1+χ1g11

(
δ
ts

)
, (8.13)

f2 = 1+χ3g21g22

(
lw
ts

)
, (8.14)

f3 =
χ6g31g32g33

2
[1+ cos(π +6β )] ; (8.15)

with the following functions gi j:

g11 =

(
a
ts

)χ2

; (8.16)

g21 =

(
a
ts

)χ4

, (8.17)

g22 =

(
δ
ts

)χ5

; (8.18)

and

g31 =

(
a
ts

)χ7

, (8.19)

g32 =

(
δ
ts

)χ8

, (8.20)

g33 =

(
lw
ts

)χ9

. (8.21)

The 9 coefficients and exponents χi are to be fitted against the results obtained by FEA. One
should note that Eq. 8.12 tends toward unity when δ and β tend to zero, which has a meaningful
physical sense.

The coefficients and exponents χi were fitted by means of genetic algorithm (GA), with a so-
called training group of 80% of the results from FEA, and a test group regrouping the other 20%.
The groups were constituted by random sampling. The objective function was defined as:

χ̂χχ = argmin
χχχ

MSE
[
K̂KK

num
I , K̂KK

emp
I (χχχ)

]
(8.22)

where MSE is the mean squared error function, χ̂χχ = {χ1, ...,χ9} is the argument of the minimum,
K̂KK

num
I is a vector containing the results from FEA normalized with the analytical solution of New-
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man Jr (1981) and K̂KK
emp
I contains the results to be fitted with the proposed empirical parametric

equation for Mw. The obtained coefficients and exponents χi are given in Table 8.3.

Table 8.3: Coefficients and exponents χi for the parametric equation of Mw fitted by GA.

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9
-1.79 -0.45 2.63 1.08 0.79 0.37 -1.10 0.88 4.84

The regression between the normalized results from FEA and the proposed empirical parametric
equation for Mw is presented in Fig. 8.8, both for training and test groups. One can observe a
good coefficient of determination R2 and a low root mean squared error (RMSE), as well as a
good agreement between both groups. The errors computed as

error =
K̂emp

I − K̂num
I

K̂num
I

(8.23)

are presented in histograms in Fig. 8.9. One can observe a fairly good prediction of the proposed
parametric equation. Most of the predictions are in the range of an underestimation and an
overestimation of -10% and +10%, respectively, with a mean absolute error of 2.7%. The extreme
underestimations and overestimations can reach -20% and +20% for few cases.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

K̂num
I (-)

K̂
em

p
I

(-
)

R2 = 0.977; RMSE = 0.025

(a) Training group.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

K̂num
I (-)

K̂
em

p
I

(-
)

R2 = 0.977; RMSE = 0.025

(b) Test group.

Figure 8.8: Regression plots of the empirical results against the numerical results fitted by GA.

8.6 Application limits

To consider the weld shape correction factor to estimate SIF for semi-elliptical surface cracks, it
was proposed herein to derive a global factor Mw to be applied to the equation of Newman Jr &
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Figure 8.9: Error histograms of the predictions of the parametric equation compared to the FE
results.

Raju (1981a), as described by Eq. 8.2. In literature, correction factors are often derived separately
for membrane and bending stresses. In this study, no significantly enhanced accuracy could be
reached for the tested parametric equations by applying specific factors to membrane and bending
stresses. This can be explained by the relatively low degree of bending (DOB) that is applied to
the longitudinal butt welded joints of steel liners of SLPT&S. By defining the DOB as

DOB =
σb

σm +σb
, (8.24)

and by considering a roof-topping varying from ψu = 0.6 to 2.0, the maximum tested DOB was of
12%, with a mean value of 3.1% over the 2100 tested cases (see Table 8.1). As consequence, the
proposed parametric equation specifically applies to longitudinal butt welded joints of SLPT&S
featuring roof-topping in typical ranges found in practice. The derivation of a weld shape
correction factor for semi-elliptical surface cracks at butt welded plates with a high DOB would
require further investigations.

One may also note that the tested crack aspect ratios are in the range a/c = 0.2 to 0.8. Although
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this range is often representative of the cracks found in practical applications and studied in
the literature, probabilistic approaches for fatigue crack growth by means of LEFM requires
probability density functions for a/c that may be defined beyond these limits (Lukić & Cremona
2001; Maljaars et al. 2012), e.g., from 0 to 1. To confirm the applicability of the proposed
parametric equations, further analysis would be required, and in particular the implementation of
a 2D FE model to simulate a/c = 0, i.e., edge cracks.

However, the parametric study performed herein indicated that for low relative crack depth a/ts
(the most affected by the weld shape), the crack aspect ratio in the studied range does not have an
influence. For larger cracks (less affected), the influence is less clear but remains low. Moreover,
when plotting the solution of Newman Jr & Raju (1981a) against the solution of Newman Jr
(1973) in Fig. 8.10, one can see that the solution for a/c = 0.8 has already almost converged to
the solution for a/c = 1.0 (by 11%), and the solution for a/c = 0.2 toward the single-edge crack
(by 8%). In the light of these observations, the use of the proposed parametric equations could be
extended to a/c = 0 to 1 as a first approximation.
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Figure 8.10: Convergence of the 3D solution for normalized SIF K̂I along semi-elliptical surface
crack for different aspect ratios a/c toward the 2D single-edge crack solution in a plate.

8.7 Conclusions

For an accurate engineering fatigue and fracture assessment of the longitudinal butt welded
joints of steel liners of SLPT&S by means of LEFM, the SIF for typical axial cracks such as
semi-elliptical surface cracks and embedded elliptical cracks should be known.

In this chapter, it was first verified that the solutions for surface and embedded cracks in plated
structures could be used for steel liners of SLPT&S, including the SCF due to geometrical
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imperfections studied in the previous chapters. In order to determine the influence of the weld
shape on the SIF, a parametric study was then performed over the main weld shape parameters,
namely the weld reinforcement height δ , the flank angle β and the edge preparation angle α (and
thus the weld length lw). It was found that the weld shape has a major influence on small semi-
elliptical surface cracks relative depth a/ts, i.e., when they are located in the weld reinforcement
region. It results in a mitigation of the SIF due to the local distribution of major principal stresses
(i.e., Mw ≤ 1). On the contrary, embedded elliptical cracks were not significantly affected by the
weld shape within the relative crack sizes of interest for fatigue crack growth in the scope of
LEFM.

Finally, an empirical parametric equation was derived to estimate weld shape correction factors
for SIF at the deepest point of axial semi-elliptical surface cracks at longitudinal butt welded
joints of steel liners of SLPT&S that can be used for engineering fatigue and fracture assessment
with the LEFM approach, given crack aspect evolution curves. The proposed equation has the
advantage to be easy to implement and is physically meaningful.
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Inherent variability is relative to a level of refinement of the model. Except for quantum
mechanical phenomena inherent variability is reducible by more detailed modeling combined

with corresponding gathering of information. For example, this is the case for material properties
like stress–strain relationships. Thus, the inherent variability of material properties in structural
reliability is relative to the "usual" level of modeling material behavior. The same applies to the

loads. For example, the inherent variability of the wind load on a structure can in principle be
reduced as the abilities of meteorologists to predict wind velocities from geophysical models

become better and better. Philosophically it does not make sense to claim that wind velocities are
random. Randomness is not a property of nature but a property of the model.

– Ove Ditlevsen,
in a correspondence with Arman Der Kiureghian in 1988,

reported by the latter in Der Kiureghian (2008).





9 Loading spectra

9.1 Introduction

Real structures are rarely subject to constant amplitude loading, which would allow the direct use
of S–N curves for fatigue-life assessment (Gurney 2006). On the contrary, they may be subject to
rather complex variable amplitude loadings, raising the tedious task of determining the spectra
under normal operation conditions.

Pressure tunnels and shafts are typically subject to random variable amplitude loadings (Hachem
& Giovanola 2013). They are caused by frequent pressure fluctuations in the system (also called
water hammers), e.g., induced by pump and turbine start-up and shut-down in pumped-storage
hydroelectric power plants (HPP), or by any rapid change of flow velocity causing pressure
surges.

The estimation of load cycles can either be done a priori, if the normal operation conditions can
be forecast and the load cycles simulated with a model (analytical or numerical), or measured
directly on prototype. In the scope of online monitoring of steel-lined pressure tunnels and
shafts (SLPT&S), Hachem & Schleiss (2012c) have equipped the pressure shaft of the Grimsel II
pumped-storage HPP with high sensitivity pressure sensors allowing to capture water hammer
transients generated during the course of one week under normal operation conditions. In
subsequent research, Hachem & Giovanola (2013) extended the use of these data by deriving a
pressure amplitudes series with a cycle-counting method for fatigue-life assessment of SLPT&S.

The aim of this chapter is to re-analyze these data and to propose a normalized loading spectrum,
that may be extrapolated to other HPP with different static heads. In the absence of site-specific
data, the proposed approach can then be considered as a preliminary hypothesis for fatigue-life
assessment of any HPP whose normal operation conditions may be considered similar to the ones
at the origin of these data, thus yielding new spectra scaled with respect to the mean pressure.
Nevertheless, the proposed loading spectrum remains specific to the pumped-storage power plant
Grimsel II, equipped with ternary groups with Francis turbines.
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The analysis presented in this chapter is based on a Master thesis conducted in the framework of
the present research project (Muller 2016).

9.2 Prototype measurements under normal operation conditions

The measurement campaign of Hachem & Schleiss (2012c) was performed on the Grimsel II
pumped-storage HPP, owned by Kraftwerke Oberhasli AG (KWO), located in the Canton of Bern,
Switzerland. The pressure fluctuations were recorded at the downstream reach of the shaft, i.e.,
at the location with maximum mean static pressure. The detailed description of the measurement
site, the instrumentation and the data acquisition system can be found in Hachem (2011) and
Hachem & Schleiss (2012c). Based on the data collected during a typical week of operation,
Hachem & Giovanola (2013) filtered and assembled all the records triggered by maneuvers
repeated many times per day according to the grid’s demand, namely pump and turbine start-up
and shut-down. The absolute pressure history in bar is shown in Fig. 9.1a, and the pressure
history normalized with the mean internal pressure pi,mean computed from the series is presented
in Fig. 9.1b. It represents 672’600 samples.

9.3 Cycle-counting

A load cycle is defined as a closed hysteresis loop in a stress (σ )–strain (ε) diagram (Kondo
2003; Klemenc & Fajdiga 2004). The goal of cycle-counting is to reduce a loading history
into elementary load cycles. There are several cycle-counting methods available for variable
amplitude loading, such as the rainflow counting1 (RFC), peak counting, range counting and
the range-pair counting (Kondo 2003). The RFC is the most widely used and accepted method
(Amzallag et al. 1994), as the extracted load cycles correspond to the closed hysteresis loop
in a σ–ε diagram, closely related to the fatigue damage mechanism (Kondo 2003). The peak
and range methods result in a conservative (largest damage) and nonconservative evaluation,
respectively, due to a different definition of the load cycle. The range-pair method is similar to
the RFC in the definition of the load cycle, with the feature of discarding the small amplitude
load cycles which do not produce damage. In this study, the RFC is used for the wide consensus
on its applicability and its ease of implementation. As mentioned in the introduction, the RFC is
applied to the normalized pressure history, shown in Fig. 9.1b. The principle of cycle extraction
of the RFC is not illustrated herein for the sake of concision. One may refer, e.g., to Downing &
Socie (1982) or Amzallag et al. (1994) for a didactic description of the principle.

The RFC method requires only the peaks and valleys of the analyzed signal. The first step of the
analysis is thus to discard the pressure samples between the peaks and valleys of the normalized
pressure history presented in Fig. 9.1b. From 672’600 samples, only 167’774 remain.

1According to Gurney (2006), the rainflow counting technique gets its name from an analogy with the flow of
drops of rain down a pagoda roof.
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(a) Pressure history assembled by Hachem & Giovanola (2013).
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(b) Normalized pressure history.

Figure 9.1: Pressure history for a normal week of operation.

In this study, the RFC so-called Algorithm I proposed by Downing & Socie (1982) was imple-
mented into the MATLAB R© (2012) numerical calculation software. The obtained normalized
loading spectrum is shown in Fig. 9.2. A total number of 83’887 cycles (closed hysteresis loops)
has been counted during the course of a week under normal operation conditions.

Although HPP are all site specific (general lay-out, head, role in the electric grid, type of
electromechanical units), their procedures for maneuvers are subject to constraints from the
electric grid (e.g., unit inertia) as well as from design considerations (e.g., maximum allowable
overpressure to be withstood by the steel liner in case of SLPT&S, overspeed of the hydraulic
machines). As a consequence, in a large majority of cases the ratio between fluctuating parts of
the pressure history and the mean static pressure is similar. This allows the extrapolation of the
spectrum presented in Fig. 9.2, scaled with respect to the mean pressure.
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(c) Part of the spectrum between 5 to 16% of relative pressure amplitude.

Figure 9.2: Loading spectrum histogram obtained with RFC. The ordinates axis representing the
number of occurrences N is in logarithmic scale for presentation purposes.
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9.4 Conclusions

The pressure fluctuations were measured by Hachem & Schleiss (2012c) at the downstream reach
of a steel-lined pressure shaft of pumped-storage HPP in Switzerland during the course of a
week under normal operation conditions. The assembled sample data from Hachem & Giovanola
(2013) were re-analyzed and the RFC method was applied in order to obtain a normalized loading
spectrum with respect to the mean static pressure that may be extended to hydroelectric power
plants with different heads, as a preliminary hypothesis, for fatigue-life analyses. One has to keep
in mind that the derived loading spectrum remains specific to the pumped-storage hydropower
plant of Grimsel II, equipped with ternary groups with Francis turbines.
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10 Fatigue assessment with the effective
notch stress approach

10.1 Effective notch stress approach

10.1.1 S–N curves

As described in Sect. 3.2.3, the effective notch stress approach refers to a single FAT value related
to a material, namely FAT 225 for steel. However, FAT 225 is limited to FAT 160 ×Kw with
Kw ≥ 1.6 under principal stress hypothesis (to avoid underestimation in the case of mild weld
notches), and to the resistance of the parent material, i.e., related to FAT 160 for steel (Hobbacher
2008, 2016; Sonsino 2009a; Radaj et al. 2009; Fricke 2012). As a consequence, both structural
hot-spot1 and notch stresses (with weld toe radius set to ρ = rref = 1 mm) have to be computed,
and the minimum N j given by the aforementioned FAT values is retained to evaluate the linear
damage sum (see Eq. 10.5). The S–N curves under consideration are shown in Fig. 10.1.

10.1.2 Stress ranges

Maximum and minimum values of the transient loading

For each cycle, the maximum and minimum values are computed as





pi,max = pi,mean +0.5 ·∆pi

pi,min = pi,mean−0.5 ·∆pi

(10.1)

where ∆pi is given by the spectrum derived in Chapter 9, scaled to the assumed mean internal
water pressure pi,mean. As a consequence, for each cycle, the absolute maximum and minimum
pressures are approximated by adding and subtracting 50% of positive variation to the mean

1For this verification, it is assumed herein that the hot-spot stress is equivalent to the structural stress.
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Figure 10.1: Modified S–N curves for steel at variable amplitude loading for Palmgren–Miner
summation using the effective notch stress approach.

pressure, respectively. In the S–N approaches, this assumption of symmetric variation with
respect to the mean pressure does not influence the result as the stress range is not affected.

Structural stress range

From the maximum and minimum internal water pressures pi,max and pi,min, the structural stresses
are computed as





σs,aniso,max = K∗m,maxK∗rm,anisoσnom,iso,max

σs,aniso,min = K∗m,minK∗rm,anisoσnom,iso,min

(10.2)
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where2





K∗m,max =
[
1+(K∗m,p,max−1)+(K∗m,e−1)

]

K∗m,min =
[
1+(K∗m,p,min−1)+(K∗m,e−1)

]
.

(10.3)

The factor K∗rm,aniso transforming the nominal stress computed in the isotropic case is defined by
Eq. 7.24, the structural stress concentration factor (SCF) K∗m,max considering the interaction with
the backfill concrete–rock system is defined by Eq. 7.13. The nominal stresses are computed
assuming full load sharing between the layers, i.e., that the rock cover is sufficient with a safety
factor of 2.0 (see Fig. 2.2). As described in Chapter 7, the worst combinations of geometrical
imperfections and rock anisotropy were considered, i.e., the longitudinal welded joints are located
at the circumferential direction of the largest nominal stress in the liner, namely in the direction
of the plane of isotropy.

Notch stress range

From the maximum and minimum structural stresses obtained above, the notch stresses are
computed as





σn,aniso,max = Kwσs,aniso,max

σn,aniso,min = Kwσs,aniso,min

(10.4)

where the weld SCF is described by Eq. 7.20.

10.1.3 Linear damage calculation by means of the Palmgren–Miner rule

The damage sum Dcalc is calculated according to the Palmgren–Miner rule

Dcalc =
n1

N1
+

n2

N2
+ ...+

nk

Nk
=

k

∑
j=1

n j

N j
≤ 0.5 (10.5)

2The structural stress concentration due to peaking Km,p is computed for the maximum and minimum membrane
stresses (approximated by the nominal stresses), according to Eq. 3.54, whence the differentiation between maximum
and minimum values. However, one may note that as the elastic modulus of steel is greater than the nominal stress in
steel liners typically by a factor of the order of 103 (see Eqs. 3.54–3.55). As a consequence, Km,p could be considered
as constant and computed, e.g., with pi,max.
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where n j is the number of cycles under stress range ∆σ j, and N j is the number of cycles to
failure at stress range ∆σ j from the limiting modified fatigue resistance S–N curve (see Fig. 10.1).
According to the IIW recommendations (Hobbacher 2008, 2016), Dcalc should remain below 0.5
for variable amplitude loading and proportional loading.

10.2 Parametric study

A parametric study is performed to assess the influence of the parameters enumerated below.

• The mean head of the hydropower plant (3 values from 5 to 15 MPa, i.e., 50 to 150 bar),
defining the mean internal water pressure pi,mean at the lowest point of the shaft. This
pressure is directly the one considered to use the loading spectrum proposed in Chapter 9.
In reality, this pressure would represent the static head minus the linear and local head
losses along the pressurized waterways. It may also vary through the weeks/seasons, but
this is not considered herein.

• The steel grades used for the design, from S355 to S960, as defined in Table 10.1.

• The safety factor SF to be considered for the design of the thickness ts according to the
working stress criterion (see Sect. 2.3 and Fig. 2.2). The C.E.C.T. (1980) recommendations
suggest SF = 2.0 if the rock mass participation is considered. Three values were tested,
namely SF = 1.8, 2.0 and 2.2. Herein the rock mass participation was limited to 50%
for the design3, but the real participation was used to compute the stresses for fatigue
assessment. The thickness ts was computed according to a simplified criterion σ1 ≤ fy/SF
in this chapter. This is slightly conservative compared to the criteria recommended by the
C.E.C.T. (1980) with the equivalent stress. The rock cover is assumed to be sufficient in all
cases.

• The far-field rock mass elastic modulus E ′ = 5.0 and 10.0 GPa.

• The degree of anisotropy E/E ′ = 1.0 to 2.0 (considering transverse isotropy). The design
of ts was performed considering the isotropic case with the lowest elastic modulus E ′.

• Two loading spectra are tested, namely the spectrum proposed in Chapter 9, and a so-called
magnified loading spectrum, by defining a frequency factor γfreq and an amplitude factor
γampl. Denoting nwl the number of weeks in the lifespan of 100 years, then the magnified
loading spectrum is repeated nwl ·γfreq times in the lifespan. The amplitude factor γampl

applies directly on ∆pi, and it is always verified that the maximum range remains below
the overpressure used for the design ∆p+ (see Table 10.2). One should also note that only
the part of the spectrum above the threshold [∆pi/pi,mean]th = 1% was considered for the
cumulative damage sum, as Dcalc already converged. Approximately 1080 cycles per week
remain in the loading spectra.

3This is an arbitrary rule used in practice, so that the worst case scenario where the rock participation would be
inexistent would not cause stresses beyond the yield strength.
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Table 10.1: Minimum yield strengths for different steel grades used in hydropower construction
considered for the parametric analysis of fatigue assessment by means of the effective notch
stress approach.

Grade Standard Yield strength fy Thickness range
(MPa) (mm)

S355 M/ML EN 10025-4 (2005) 355 ts ≤ 16
345 16 < ts ≤ 40
335 40 < ts ≤ 63
325 63 < ts ≤ 80

S500 ML EN 10025-4 (2005) 500 ts ≤ 16
490 16 < ts ≤ 50
490 50 < ts ≤ 75

S690 QL EN 10025-6 (2009) 690 ts ≤ 50
650 50 < ts ≤ 100

S890 QL EN 10025-6 (2009) 890 ts ≤ 50
830 50 < ts ≤ 100

S960 QL EN 10025-6 (2009) 960 ts ≤ 50

Table 10.2: Constant parameters (or depending on constants) of the parametric analysis of fatigue
assessment by means of the effective notch stress approach.

Parameter Definition Value Unit

ri Internal radius of the steel liner 1.5 (m)
∆p+/pi,mean Maximum overpressure ratio considered for the design 0.10 (–)
∆r0 Initial gap between steel liner and backfill concrete 0.025% ·ri (m)
ψu Straight edge factor (inducing peaking) 2.0 (–)
ψe Linear misalignment factor 1.0 (–)
ψδ Weld reinforcement factor 1.0 (–)
β Flank angle 30 (deg)
α Edge preparation angle 50 (deg)
Es elastic modulus of steel 210 (GPa)
νs Poisson’s ratio of steel 0.3 (–)
tc Thickness of the backfill concrete layer 0.5 (m)
Ec Elastic modulus of the backfill concrete 20 (GPa)
νc Poisson’s ratio of backfill concrete 0.2 (–)
ν Poisson’s ratio of the far-field rock related to the plane of isotropy 0.2 (–)
ν ′ Poisson’s ratio of the far-field rock related to the planes perpendicular 0.2 (–)

to the plane of isotropy
G′ Cross-shear modulus of the far-field rock Eq. 4.11 (GPa)
Ecrm Elastic modulus of the near-field rock 0.8 ·E ′ (GPa)
νcrm Poisson’s ratio of the near-field rock 0.2 (–)
tcrm Thickness of the near-field rock layer 0.5 (m)

The constant parameters of the study are given in Table 10.2. It should be mentioned that the
weld reinforcement and the linear misalignment are set to 100% to the tolerances recommended
by the C.E.C.T. (1980) (ψe = ψδ = 1.0). The peaking was modeled by considering ψu = 2.0,
maximum value studied in Chapter 7. The out-of-roundness is not considered as it was shown in
Chapter 7 that its effect is vanished with embedment (in terms of SCF at the longitudinal butt
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weld). Finally, the flank angle β was set to 30 deg, as recommended by the IIW for butt welded
joints when no other value is specified.

10.3 Results

The results with the normal and magnified loading spectra are presented in Tables 10.3 and 10.4,
respectively. The load sharing considered for the design (either the real or limited to 50% of the
internal water pressure) is indicated by pc/pi. The real concrete–rock system participation is
indicated by pc,real/pi.

Table 10.3: Results from the effective notch stress approach (γfreq = 1.0, γampl = 1.0).

pi,mean fy SF E
E
E ′

ts
pc

pi

pc,real

pi
ψu ψe ψδ β Dcalc

(MPa) (MPa) (–) (GPa) (–) (mm) (%) (%) (–) (–) (–) (deg) (–)

5 355 1.8 5.0 1.0 28.0 34 34 2.0 1.0 1.0 30 0.000178
2.0 28.0 34 37 2.0 1.0 1.0 30 0.000138

10.0 1.0 21.0 50 55 2.0 1.0 1.0 30 0.0000449
2.0 21.0 50 58 2.0 1.0 1.0 30 0.0000319

2.0 5.0 1.0 33.6 29 29 2.0 1.0 1.0 30 0.000127
10.0 2.0 33.6 29 32 2.0 1.0 1.0 30 0.000120

2.2 5.0 1.0 39.3 25 25 2.0 1.0 1.0 30 0.0000962
10.0 2.0 26.5 48 48 2.0 1.0 1.0 30 0.0000352

500 1.8 5.0 1.0 14.4 50 53 2.0 1.0 1.0 30 0.000596
2.0 14.4 50 56 2.0 1.0 1.0 30 0.000404

10.0 1.0 14.4 50 65 2.0 1.0 1.0 30 0.0000673
2.0 14.4 50 68 2.0 1.0 1.0 30 0.000045

2.0 5.0 1.0 17.1 48 48 2.0 1.0 1.0 30 0.000437
10.0 2.0 16.3 50 62 2.0 1.0 1.0 30 0.0000585

2.2 5.0 1.0 21.0 42 42 2.0 1.0 1.0 30 0.000301
10.0 2.0 18.0 50 60 2.0 1.0 1.0 30 0.0000527

690 1.8 5.0 1.0 10.4 50 61 2.0 1.0 1.0 30 -
2.0 x - - 2.0 1.0 1.0 30 -

10.0 1.0 x - - 2.0 1.0 1.0 30 -
2.0 x - - 2.0 1.0 1.0 30 -

2.0 5.0 1.0 11.5 50 58 2.0 1.0 1.0 30 -
10.0 2.0 x - - 2.0 1.0 1.0 30 -

2.2 5.0 1.0 x - - 2.0 1.0 1.0 30 -
10.0 2.0 x - - 2.0 1.0 1.0 30 -

10 690 1.8 5.0 1.0 24.8 41 41 2.0 1.0 1.0 30 0.00616
2.0 24.8 41 45 2.0 1.0 1.0 30 0.00485

10.0 1.0 21.0 50 60 2.0 1.0 1.0 30 0.00143
2.0 21.0 50 63 2.0 1.0 1.0 30 0.000932

2.0 5.0 1.0 30.0 36 36 2.0 1.0 1.0 30 0.00481
10.0 2.0 23.0 50 57 2.0 1.0 1.0 30 0.00128

2.2 5.0 1.0 35.2 32 32 2.0 1.0 1.0 30 0.00371
10.0 2.0 25.7 50 55 2.0 1.0 1.0 30 0.00116
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890 1.8 5.0 1.0 16.2 50 53 2.0 1.0 1.0 30 0.0106
2.0 16.2 50 56 2.0 1.0 1.0 30 0.00783

10.0 1.0 16.2 50 66 2.0 1.0 1.0 30 0.00189
2.0 16.2 50 69 2.0 1.0 1.0 30 0.00118

2.0 5.0 1.0 18.3 49 49 2.0 1.0 1.0 30 0.00906
10.0 2.0 18.0 50 63 2.0 1.0 1.0 30 0.00168

2.2 5.0 1.0 22.3 44 44 2.0 1.0 1.0 30 0.00703
10.0 2.0 19.9 50 62 2.0 1.0 1.0 30 0.00152

15 690 1.8 5.0 1.0 46.8 27 27 2.0 1.0 1.0 30 0.0113
2.0 46.8 27 31 2.0 1.0 1.0 30 0.0096

10.0 1.0 31.6 50 51 2.0 1.0 1.0 30 0.00615
2.0 31.6 50 55 2.0 1.0 1.0 30 0.00465

2.0 5.0 1.0 54.6 24 24 2.0 1.0 1.0 30 0.00937
10.0 2.0 37.6 47 47 2.0 1.0 1.0 30 0.00542

2.2 5.0 1.0 62.4 21 21 2.0 1.0 1.0 30 0.00799
10.0 2.0 45.7 41 41 2.0 1.0 1.0 30 0.00469

890 1.8 5.0 1.0 31.2 37 37 2.0 1.0 1.0 30 0.0191
2.0 31.2 37 41 2.0 1.0 1.0 30 0.0152

10.0 1.0 24.5 50 58 2.0 1.0 1.0 30 0.0074
2.0 24.5 50 61 2.0 1.0 1.0 30 0.00546

2.0 5.0 1.0 37.2 33 33 2.0 1.0 1.0 30 0.0152
10.0 2.0 27.0 50 55 2.0 1.0 1.0 30 0.00685

2.2 5.0 1.0 43.1 29 29 2.0 1.0 1.0 30 0.0125
10.0 2.0 29.9 50 53 2.0 1.0 1.0 30 0.00639

960 1.8 5.0 1.0 27.3 40 40 2.0 1.0 1.0 30 0.0224
2.0 27.3 40 44 2.0 1.0 1.0 30 0.0178

10.0 1.0 22.7 50 60 2.0 1.0 1.0 30 0.00782
2.0 22.7 50 63 2.0 1.0 1.0 30 0.00571

2.0 5.0 1.0 32.8 36 36 2.0 1.0 1.0 30 0.0179
10.0 2.0 25.2 50 57 2.0 1.0 1.0 30 0.00724

2.2 5.0 1.0 38.3 32 32 2.0 1.0 1.0 30 0.0146
10.0 2.0 27.7 50 55 2.0 1.0 1.0 30 0.00675

Table 10.4: Results from the effective notch stress approach with magnified loading spectra
(γfreq = 1.2, γampl = 1.2).

pi,mean fy SF E
E
E ′

ts
pc

pi

pc,real

pi
ψu ψe ψδ β Dcalc

(MPa) (MPa) (–) (GPa) (–) (mm) (%) (%) (–) (–) (–) (deg) (–)

5 355 1.8 5.0 1.0 28.0 34 34 2.0 1.0 1.0 30 0.000531
2.0 28.0 34 37 2.0 1.0 1.0 30 0.000411

10.0 1.0 21.0 50 55 2.0 1.0 1.0 30 0.000134
2.0 21.0 50 58 2.0 1.0 1.0 30 0.0000951

2.0 5.0 1.0 33.6 29 29 2.0 1.0 1.0 30 0.000381
10.0 2.0 33.6 29 32 2.0 1.0 1.0 30 0.00306

2.2 5.0 1.0 39.3 25 25 2.0 1.0 1.0 30 0.000287
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10.0 2.0 26.5 48 48 2.0 1.0 1.0 30 0.000105

500 1.8 5.0 1.0 14.4 50 53 2.0 1.0 1.0 30 0.00178
2.0 14.4 50 56 2.0 1.0 1.0 30 0.00121

10.0 1.0 14.4 50 65 2.0 1.0 1.0 30 0.000201
2.0 14.4 50 68 2.0 1.0 1.0 30 0.000134

2.0 5.0 1.0 17.1 48 48 2.0 1.0 1.0 30 0.00131
10.0 2.0 16.3 50 62 2.0 1.0 1.0 30 0.000175

2.2 5.0 1.0 21.0 42 42 2.0 1.0 1.0 30 0.000898
10.0 2.0 18.0 50 60 2.0 1.0 1.0 30 0.000157

690 1.8 5.0 1.0 10.4 50 61 2.0 1.0 1.0 30 -
2.0 x - - 2.0 1.0 1.0 30 -

10.0 1.0 x - - 2.0 1.0 1.0 30 -
2.0 x - - 2.0 1.0 1.0 30 -

2.0 5.0 1.0 11.5 50 58 2.0 1.0 1.0 30 -
10.0 2.0 x - - 2.0 1.0 1.0 30 -

2.2 5.0 1.0 x - - 2.0 1.0 1.0 30 -
10.0 2.0 x - - 2.0 1.0 1.0 30 -

10 690 1.8 5.0 1.0 24.8 41 41 2.0 1.0 1.0 30 0.014
2.0 24.8 41 45 2.0 1.0 1.0 30 0.011

10.0 1.0 21.0 50 60 2.0 1.0 1.0 30 0.00427
2.0 21.0 50 63 2.0 1.0 1.0 30 0.00278

2.0 5.0 1.0 30.0 36 36 2.0 1.0 1.0 30 0.0109
10.0 2.0 23.0 50 57 2.0 1.0 1.0 30 0.00383

2.2 5.0 1.0 35.2 32 32 2.0 1.0 1.0 30 0.00889
10.0 2.0 25.7 50 55 2.0 1.0 1.0 30 0.00347

890 1.8 5.0 1.0 16.2 50 53 2.0 1.0 1.0 30 0.0241
2.0 16.2 50 56 2.0 1.0 1.0 30 0.0179

10.0 1.0 16.2 50 66 2.0 1.0 1.0 30 0.00549
2.0 16.2 50 69 2.0 1.0 1.0 30 0.00351

2.0 5.0 1.0 18.3 49 49 2.0 1.0 1.0 30 0.0207
10.0 2.0 18.0 50 63 2.0 1.0 1.0 30 0.00496

2.2 5.0 1.0 22.3 44 44 2.0 1.0 1.0 30 0.016
10.0 2.0 19.9 50 62 2.0 1.0 1.0 30 0.00451

15 690 1.8 5.0 1.0 46.8 27 27 2.0 1.0 1.0 30 0.0257
2.0 46.8 27 31 2.0 1.0 1.0 30 0.022

10.0 1.0 31.6 50 51 2.0 1.0 1.0 30 0.014
2.0 31.6 50 55 2.0 1.0 1.0 30 0.0106

2.0 5.0 1.0 54.6 24 24 2.0 1.0 1.0 30 0.0214
10.0 2.0 37.6 47 47 2.0 1.0 1.0 30 0.0123

2.2 5.0 1.0 62.4 21 21 2.0 1.0 1.0 30 0.0182
10.0 2.0 45.7 41 41 2.0 1.0 1.0 30 0.0107

890 1.8 5.0 1.0 31.2 37 37 2.0 1.0 1.0 30 0.0413
2.0 31.2 37 41 2.0 1.0 1.0 30 0.0337

10.0 1.0 24.5 50 58 2.0 1.0 1.0 30 0.0169
2.0 24.5 50 61 2.0 1.0 1.0 30 0.0124

2.0 5.0 1.0 37.2 33 33 2.0 1.0 1.0 30 0.0336
10.0 2.0 27.0 50 55 2.0 1.0 1.0 30 0.0156

2.2 5.0 1.0 43.1 29 29 2.0 1.0 1.0 30 0.0282
10.0 2.0 29.9 50 53 2.0 1.0 1.0 30 0.0146
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10.3. Results

960 1.8 5.0 1.0 27.3 40 40 2.0 1.0 1.0 30 0.0484
2.0 27.3 40 44 2.0 1.0 1.0 30 0.0388

10.0 1.0 22.7 50 60 2.0 1.0 1.0 30 0.0179
2.0 22.7 50 63 2.0 1.0 1.0 30 0.013

2.0 5.0 1.0 32.8 36 36 2.0 1.0 1.0 30 0.0389
10.0 2.0 25.2 50 57 2.0 1.0 1.0 30 0.0165

2.2 5.0 1.0 38.3 32 32 2.0 1.0 1.0 30 0.0324
10.0 2.0 27.7 50 55 2.0 1.0 1.0 30 0.0154

The first general observation that can be made is that all the tested cases, for both normal and
magnified spectra, exhibit very low damage sums compared to the limit Dcalc ≤ 0.5. Beside this
observation, one can assess the influence of each parameter.

The parameter that has the most significant influence is the mean internal water pressure pi,mean.
Indeed, one can observe that for the normal spectra, Dcalc is roughly of the order of 10−4 for
pi,mean = 5 MPa, 10−3 for pi,mean = 10 MPa and 10−2 for pi,mean = 15 MPa. For the magnified
spectra, the cumulative damage sums are of the same order of magnitude, approximately multi-
plied by a factor of 3. This can be explained because of the fact that although the relative variation
of pressure with respect to pi,mean is similar for all cases, the resulting variation of absolute
pressure ranges (and thus stress ranges in the steel liner) increases with increasing pi,mean. It can
be illustrated by selecting four cases with the same SF = 2.0. The variation of nominal pressure
with respect to the yield strength is shown in Fig. 10.2 and is identical for the 4 cases. This is true
only as the rock participation remains below 50% of pi for all 4 cases.
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Figure 10.2: Variation of the nominal stress during one week under normal loading spectrum
with [∆pi/pi,mean]th = 1%, representative of all cases presented in Figs. 10.3 and 10.4.

Figure 10.3 presents the relative variation of the notch stress σn with respect to the mean nominal
stress σnom,mean. The mean value of the variation in each subplot indicates the notch stress
concentration factor K∗t = K∗mKw in each case. One can observe that the thicker the steel liner,
the greater K∗t . For a given weld toe radius ρ = rref = 1 mm, this is explained by the induced
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Chapter 10. Fatigue assessment with the effective notch stress approach

stress gradient at the fictitious rounding, increasing with thickness. The weld reinforcement
height δ also influences this result, as the tolerance suggested by the C.E.C.T. (1980) is not
linear, but this is not further investigated in the scope of this analysis. Beside this observation,
it can be seen that for the same pi,mean, the damage sum is greater for higher steel grade. As a
consequence, although great thickness increases the notch concentration, higher yield strength
induces a smaller thickness which increases the stresses variation in the steel liner, which seems
to be the most significant effect. This is confirmed by plotting the variation of the notch stress
ranges in Fig. 10.4. The influence of pi,mean is also depicted in Fig. 10.4.

The influence of the other parameters results from the aforementioned observations. Greater rock
elastic modulus induces more rock participation, and thus smaller stress variation in the steel
liner. The same effect is observed when anisotropy is considered, as extra rock participation is
neglected when the design is performed with the lowest elastic modulus E ′. Finally, increasing
SF also reduces the damage sum, as it reduces the stress variation in the steel liner.

The influence of the loading spectra can also be analyzed. According to Eq. 10.5, the number
of cycles characterized by γfreq has a linear influence on the result. This is not the case for γampl.
The factor 3 between the results of both spectra is thus mostly due to the increase of γampl from
1.0 to 1.2. With the calculated damage sums Dcalc of both Tables 10.3 and 10.4, one can calculate
the critical γfreq,c with respect to the normal spectrum to reach the critical damage sum as

γfreq,c =
0.5

γfreq ·Dcalc
. (10.6)

For the normal spectrum, pi,mean = 15 MPa and using S960, γfreq,c is of the order of 20–100. In
the corresponding cases with the magnified spectrum, γfreq,c is of the order of 10–30.

10.4 Commentaries on the results

Demal & Moser (2013) also presented a fatigue assessment study of a penstock using the
effective notch stress approach. In their study, the cumulative damage sum could reach the critical
value of 0.5 in some cases, which is a major difference with the results presented herein. In
Demal & Moser (2013), a single case study was presented, namely a penstock (in open-air) with
pi,mean = 1.7 MPa, using S690 QL, a radius ri = 1.85 m and a thickness ts = 14 mm. Considering
SF = 1.7 according to the C.E.C.T. (1980), one can roughly assume that this penstock was
designed to withstand a water hammer inducing ∆p+ ≈ 50% of pi,mean (or limited by another
criterion). Within this context, the fatigue assessment was performed with a loading spectrum
that is described quantitatively but its origin is not detailed. With notch concentrations very
similar to the one computed herein, the notch stress ranges induced by the loading spectrum
used by Demal & Moser (2013) goes up to ∆σn = 500 MPa, with significantly more occurrences
of ranges from 100 to 400 MPa than in the loading spectrum considered herein. This explains
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(a) pi,mean = 5 MPa, S355 ML, ts = 33.6 mm, Dcalc = 0.000127.

100 200 300 400 500 600 700 800 900 1000

3

3.5

4

Cycles (-)

σ
n
/
σ
n
om

,m
ea
n
(-
)

(b) pi,mean = 5 MPa, S500 ML, ts = 17.1 mm, Dcalc = 0.000437.
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(c) pi,mean = 15 MPa, S690 QL, ts = 54.6 mm, Dcalc = 0.000937.
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(d) pi,mean = 15 MPa, S960 QL, ts = 32.8 mm, Dcalc = 0.0179.

Figure 10.3: Variation of the notch stress during one week under normal loading spectrum with
[∆pi/pi,mean]th = 1%. In all cases, SF = 2.0, E ′ = 5 MPa, and E/E ′ = 1.0.
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(a) pi,mean = 5 MPa, S355 ML, ts = 33.6 mm, Dcalc = 0.000127.
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(b) pi,mean = 5 MPa, S500 ML, ts = 17.1 mm, Dcalc = 0.000437.
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(c) pi,mean = 15 MPa, S690 QL, ts = 54.6 mm, Dcalc = 0.000937.
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(d) pi,mean = 15 MPa, S960 QL, ts = 32.8 mm, Dcalc = 0.0179.

Figure 10.4: Variation of notch stress ranges during one week under normal loading spectrum
with [∆pi/pi,mean]th = 1%. In all cases, SF = 2.0, E ′ = 5 MPa and E/E ′ = 1.0.
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the major differences with the results presented in the present chapter. This is also illustrated in
Fig. 10.5, where the maximum Nmax in Eq. 10.5 is found with the maximum notch stress range
∆σmax

n observed in the case characterized by pi,mean = 15 MPa, S960 QL, SF = 2.0, E ′ = 5 MPa,
E/E ′= 1.0 and ts = 32.8 mm, yielding Dcalc = 0.0179. Considering the corresponding spectrum
shown at the bottom of Fig. 10.4, one can rapidly see that the damage sum 0.5 cannot be reached
within the hypothesis made herein, as more than 2 millions cycles would be required at this level
over the lifespan.
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Figure 10.5: Maximum number of cycles to failure Nmax associated to the maximum notch stress
range ∆σmax

n for the case characterized by pi,mean = 15 MPa, S960 QL, SF = 2.0, E ′ = 5 MPa,
E/E ′ = 1.0 and ts = 32.8 mm.

This brief comparison also outlines the major influence of the loading spectrum, which should be
case specific in practice.
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10.5 Conclusions

In this chapter, fatigue assessment of longitudinal butt welded joints of steel-lined pressure
tunnels and shafts was performed by means of the effective notch stress approach. This procedure
thus assesses the failure from crack initiation and propagation from the weld toe. A parametric
study was performed for a large range of high-head hydropower plants where the participation of
the rock mass is considered. It could be shown that the cumulative damage sum, calculated with
the Palmgren–Miner rule and the parametric equations proposed in Chapters 5 and 7 for the notch
SCF, is only a few percents of the critical value of 0.5 recommended by the IIW recommendations
(Hobbacher 2008, 2016) for variable amplitude loading.

With the pressure amplitudes of the spectrum proposed in Chapter 10, the critical value could
be reached for occurrences 10 to 100 times higher, in the worst cases with high mean pressures
and the highest steel grades. However, it was also discussed that the results highly depend on the
loading spectrum. One has to keep in mind that the spectrum was derived from measurements on
the pumped-storage power plant Grimsel II, with specific hydraulic machines (ternary groups
with Francis turbines), and might not be representative of weekly transients occurring, e.g., in a
very high-head hydropower plant with Pelton turbines.
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11 Probabilistic model for fatigue crack
growth and fracture

11.1 LEFM approach for fatigue crack growth and fracture

11.1.1 Fatigue crack growth

The fatigue crack growth is modeled by the Paris–Erdogan law, expressing the crack growth rate
da/dN as a function of the stress intensity factor range ∆K in mode I as (see also Sect. 3.2.4)

da
dN

=

{
0 for ∆K ≤ ∆Kth

C (∆K)m for ∆K > ∆Kth
(11.1)

where C and m are material parameters and ∆Kth is the stress intensity factor threshold below
which propagation does not occur. In this study, an initial crack-like flaw of minor semi-axis ai is
assumed, due, e.g., to hydrogen induced cold cracking. Under variable amplitude loading, the
final crack size after Nlifespan cycles over the defined lifespan is thus calculated by the nonlinear
summation of all the crack increments yielding

a f = ai +
Nlifespan

∑
j=1

(
da
dN

)

j
(11.2)

where (da/dN) j is equivalent to an increment ∆a j under the jth cycle.

11.1.2 Types of studied cracks

In this chapter, the fatigue propagation of two types of cracks is studied, namely semi-elliptical
surface cracks (Fig. 11.1) and embedded elliptical cracks (with d1 = d2 = ts/2, see Fig. 11.2).
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Chapter 11. Probabilistic model for fatigue crack growth and fracture

11.1.3 Failure criteria

Two failure criteria are considered, namely:

1. failure associated with fracture; and

2. failure associated with the crack length reaching a size equal to the liner’s thickness, i.e.,
through-thickness crack.

At cycle N, the first criterion is verified if the maximum crack driving force remains below the
fracture toughness KIC (see Sect. 11.1.4), i.e., that

KN
I,max < KIC. (11.3)

The second criterion is verified if

aN < ts. (11.4)

11.1.4 Fracture toughness

Due to the absence of fracture mechanics data in the scope of this research project allowing
an estimate of the fracture toughness for each tested case, it is chosen to adopt the true plane
strain fracture toughness KIC as a fracture criterion, thus remaining in the framework of linear
elastic fracture mechanics. Based on the size condition imposed in the experimental procedure to
measure KIC (Schwalbe et al. 2003)

ts ≥ 2.5
(

KIC

fy

)2

, (11.5)

for each tested case the fracture toughness KIC is assumed to be expressed as

KIC = fy

√
ts

2.5
, (11.6)

which represents the maximum plane strain fracture toughness that can be validated for a given
thickness ts, and should be a conservative assumption. It yields fracture toughness values from
approximately 40 to 120 MPa

√
m within the tested cases. The values obtained by Hachem &

Giovanola (2013) from a deterministic correlation formula converting notch impact energy KV

are of the same order of magnitude.
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11.2. Monte Carlo procedure

Some data from Charpy V-notch impact tests performed by an undisclosed swiss hydroelectric
company on steel welded joints were used to assess the aforementioned hypothesis. The test were
performed according to EN ISO 148-1 (2011) for steels S500 ML, S690 QL and ALFORM 700 M.
Three different values for the absorbed energy KV were measured at different temperatures in
the weld material for each type of joints. The fracture toughness was estimated from the Charpy
V-notch tests by means of the procedure described in SINTAP (Bannister 1998) and in the
British Standard 7910 (2005). It was verified that the proposed hypothesis to estimate KIC

is a conservative assumption when compared to the probabilistic distributions of the fracture
toughness obtained from this procedure (Muller 2016).

Moreover, with the failure criteria adopted in Sect. 11.1.3, the choice of the fracture toughness
value may only have a limited influence on the fatigue life, if any, as the crack growth rate
increases exponentially with crack size before failure (Maljaars et al. 2012).

11.2 Monte Carlo procedure

The preliminary development of the probabilistic model presented in this chapter was performed
in a Master thesis in the framework of the present research project (Muller 2016).

11.2.1 Stochastic variables

Crack shape ratio a/c

In welded joints, one can consider that the crack shape ratio a/c (see Figs. 11.1–11.2) varies
from 0 to 1 (Lukić & Cremona 2001). During fatigue life, the crack shape may evolve depending
on parameters such as the weld geometry, the crack size, the loading spectrum or the effect
of coalescence between several flaws. For the sake of simplicity, some authors assume a
constant crack shape ratio during crack propagation. Other approaches may be to study the
crack propagation along the two axes of the 3D plane crack, or to assume a crack shape evolution
function, e.g., as a function of a.

In this study, the simple approach of a constant a/c ratio during the crack propagation is adopted
both for semi-elliptical surface cracks and embedded elliptical cracks, following the lognormal
distribution proposed by Yamada & Nagatsu (1989). The proposed distribution is truncated so
that the crack shape ratio a/c remains below 1 as (Dillström & Nilsson 2003)

F t
a/c(x) =

{
0 for x > 1
cFa/c(x) for x≤ 1

(11.7)
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Chapter 11. Probabilistic model for fatigue crack growth and fracture

with

c =
1

Fa/c(xt = 1)
, (11.8)

where Fa/c is the cumulative density function of a/c. The probability density function (PDF) and
the cumulative density function (CDF) of a/c are plotted in Fig. 11.3. Following the nomenclature
of the lognormal distribution presented in Appendix C, a/c is thus distributed as

a/c∼ lognormal(µ =−1.01;σ = 0.40). (11.9)

Threshold stress intensity factor ∆Kth

For deterministic analyses, the recommendations of the International Institute of Welding (IIW,
Hobbacher 2008, 2016) and the British Standard 7910 (2005) suggest the use of ∆Kth =

63 Nmm−3/2, or ∆Kth = 2 MPa
√

m. In this study, the distribution proposed by Walbridge
(2005) is adopted, i.e.,

∆Kth(Nmm−3/2)∼ lognormal(µ = 4.6044;σ = 0.0387). (11.10)

The lognormal random ∆Kth is thus characterized by the mean value m = 100 Nmm−3/2 and
the variance v = 15 Nmm−3/2. The distributions in (Nmm−3/2) and in (MPa

√
m) are plotted in

Fig. 11.4.

Paris law parameter C

According to Maddox (1991), the crack growth rate da/dN is quasi-independent from the material
tensile strength, and Baptista (2016) reports, after the same author in a previous study, that it does
not significantly vary through the different regions of the welded joint, namely the base material,
the heat-affected zone (HAZ) or the weld material. The exponent m in Eq. 11.1 is commonly
assumed as deterministic, and the uncertainty in the crack growth rate da/dN is considered
by assuming a lognormal distribution for the coefficient C (see, e.g., Lassen & Sorensen 2002;
Righiniotis & Chryssanthopoulos 2003, 2004; Maljaars et al. 2012; Baptista 2016). The following
distribution is adopted herein for C in inert environment after Baptista (2016):

C(Nmm−3/2)∼ lognormal(µ = 29.84;σ = 0.55), (11.11)
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Figure 11.3: Truncated lognormal distribution for the crack shape ratio a/c. The histogram was
generated from a sampling of 104 values, and its number of bins was defined according to the
Freedman & Diaconis (1981) rule for the sake of presentation.
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Figure 11.4: Lognormal distribution for the threshold stress intensity factor ∆Kth of the Paris–
Erdogan law. The histograms were generated from a sampling of 104 values, and their number of
bins was defined according to the Freedman & Diaconis (1981) rule for the sake of presentation.
The unit change is performed as ∆Kth(MPa,m) = 1/31.62 ·∆Kth(N,mm).
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Chapter 11. Probabilistic model for fatigue crack growth and fracture

yielding a mean value m = 1.2785 ·10−13 Nmm−3/2 of C. The deterministic value for the
exponent is assumed to be m = 3.

At longitudinal butt welded joints of steel-lined pressure and shafts, a semi-elliptical surface
crack might be subject to aggressive environment because of the presence of water, although
the coating of the internal surface of the steel liner aims at protecting the latter from corrosion.
To assess the eventual effect of an aggressive environment on the fatigue crack growth, a more
detrimental distribution of C is proposed as

C(Nmm−3/2)∼ 5 · lognormal(µ = 29.84;σ = 0.55), (11.12)

yielding a mean value m = 6.3599 ·10−13 Nmm−3/2 of C. This assumption was made based on
engineering judgment after the British Standard 7910 (2005), which recommends deterministic
values for C in both inert and aggressive (marine) environments, differing by a factor of the order
of 5. The exponent m remains equal to 3 in both environments. The aforementioned distributions
for C in both inert and aggressive environments are shown in Fig. 11.5. Beside its simplicity,
this hypothesis has to be considered with care, as it is not physically meaningful. Indeed, the
multiplicative factor of 5 should have been applied only to the mean value of the distribution.
The distribution proposed in Eq. 11.12 also enlarges the variance with respect to the distribution
in inert environment, which may not be realistic in nature.

11.2.2 Deterministic model to compute ∆K

Maximum and minimum values of the transient loading

The loading spectrum proposed in Chapter 9 is adopted. Similarly to Chapter 10, the maximum
and minimum pressures for each cycle are computed as





pi,max = pi,mean +0.5 ·∆pi

pi,min = pi,mean−0.5 ·∆pi.

(11.13)

Unlike the S–N approach, the absolute values of pi,max does have an effect on the fracture criterion.
One can note that this assumption of the repartition of ∆pi around pi,mean is conservative. Within
the framework of LEFM, the crack growth rate is not affected.
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Figure 11.5: Lognormal distributions for the parameter C of the Paris–Erdogan law in inert and
aggressive environments. The histograms were generated from a sampling of 104 values, and
their number of bins was defined according to the Freedman & Diaconis (1981) rule for the sake
of presentation. The unit change is performed as C(MPa,m) = 31.62 ·C(N,mm), valid only for
m = 3.
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Chapter 11. Probabilistic model for fatigue crack growth and fracture

Membrane stress in the steel liner

Similarly to Chapter 10, the membrane stress (here equivalent to the nominal stress) acting at the
longitudinal butt welded joint is computed by means of K∗rm,aniso (see Chapter 7) as

σm,aniso = K∗rm,anisoσm,iso, (11.14)

assuming the worst case in which the joint is located in the direction of maximum major principal
stress in the steel liner in the case of anisotropic rock behavior.

Stress concentration at longitudinal butt welded joints

After the discussion conducted in Sect. 8.2, only the structural stress concentration due to peaking
is expected to induce a bending stress across the longitudinal butt welded joint, thus estimated as

σb,aniso = (K∗m,p−1)σm,aniso (11.15)

considering the effect of the interaction with the concrete–rock system.

Stress intensity factors for semi-elliptical surface cracks

With the previously computed membrane and bending stresses, the stress intensity factors for
semi-elliptical surface cracks can be computed as

KI = Mw [Mm (σm,aniso + pcr)+Mbσb,aniso]

√
πa
Q

(11.16)

where Mm and Mb are the shape correction factors applied to membrane and bending stresses,
respectively (see Appendix B.1), and pcr is the pressure applied on the crack face, equal to the
applied internal pressure. As the longitudinal butt welded joints are normally ground flush at the
internal surface of the steel liner, mostly to facilitate coating, the weld shape correction factor Mw

derived in Chapter 8 is taken equal to 1.0. This is a conservative assumption, as it was shown that
the weld reinforcement mitigates the stress intensity factors for semi-elliptical surface cracks in
the weld material.
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11.2. Monte Carlo procedure

Stress intensity factors for embedded elliptical cracks

The stress intensity factors for embedded elliptical cracks can be computed as

KI = [Mm (σme + pcr)+Mbσbe]

√
πa
Q

, (11.17)

with

σme = {σm,aniso + pcr}+σb,aniso

(
1− 2d2

ts

)
(11.18)

where d2 is defined in Fig. 11.2, and

σbe = σb,aniso

(
2a
ts

)
. (11.19)

The shape correction factors applied to the stress components are given in Appendix B.2.

The complete development of the deterministic model is presented in Chapter 12 for practical
implementation. For the sake of concision, it is only summarized in the present chapter.

11.2.3 Flowchart of the procedure

The proposed Monte Carlo procedure is described in Fig. 11.6 by means of a flowchart. For each
trial, the random variables are sampled and the fatigue crack propagation is simulated through
the deterministic model until failure, or until the end of the lifespan. An important parameter to
optimize the computational time is the relative pressure range threshold [∆pi/pi,mean]th. Indeed,
the loading spectrum derived in Chapter 9 approximately contains 84’000 cycles. However, it
appeared through preliminary studies that only a little fraction of the highest cycles can cause
crack propagation according to Eq. 11.1. For the studied cases, [∆pi/pi,mean]th = 0.04, namely
4% of the mean water pressure, is generally a good assumption to begin with. However, it has to
be verified a posteriori that no cycle were neglected. Defining Nw the number of cycles per week
that are kept into the loading spectrum and Nw,p the number of cycles causing crack propagation
each week, the ratio Nw,p/Nw has to remain below 1.0 each week of lifespan. If this condition is
not fulfilled, an unknown number of propagating cycles has been neglected and the result may
be nonconservative. However, in some cases this criterion is too harsh and would induce too
much computational time with lower thresholds, without influencing, or in a negligible manner,
the probability of failure. The reliability of a Monte Carlo simulation exhibiting some Nw,p/Nw

ratios equal to unity at the end of the lifespan can, e.g., be assessed by assuming the worst case
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Figure 11.6: Flowchart of the proposed Monte Carlo simulation procedure.
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11.2. Monte Carlo procedure

scenario in which each trial resulting in failure is not a trial with Nw,p/Nw = 1. If the order of
magnitude of the n trials with Nw,p/Nw = 1 is lower than the number of failure n f by an order of
magnitude, the result can be considered as reliable. Moreover, one can note that in most of the
observed trials where Nw,p/Nw = 1, it occurs only the last few weeks/months of life due to the
exponential crack growth leading to failure.

11.2.4 Probability of failure and accuracy

Defining NMC as the total number of trials in one Monte Carlo simulation and n f the number of
observed failures, the probability of failure p f is finally computed as

p f =
n f

NMC
. (11.20)

Moreover, the accuracy of each Monte Carlo simulation is quantified using Eq. 3.32 with respect
to p f as

εp f ≈

√
(1− p f )p f

NMC
p f

, (11.21)

and with respect to 10−5 (very severe target probability of failure for non-redundant component
according to the British Standard 7910 2005, and commonly adopted in Switzerland) as

ε10−5 ≈

√
(1−10−5)10−5

NMC

10−5 . (11.22)

For an accuracy ε = 1% with respect to a probability of failure of 105, it is required to perform
109 simulations. However, performing such a number of trials was not realistic in the scope of this
project. The Monte Carlo procedure presented in Fig. 11.6 was implemented into the MATLAB R©
(2012) numerical calculation software. To provide an order of magnitude, performing one Monte
Carlo simulation of 106 trials required a computational time of 24 hours with parallel computing
on a personal computer equipped with an Intel R© CoreTM i7-3770 CPU @ 3.40 GHz processor,
and considering [∆pi/pi,mean]th = 0.04. As a consequence, the number of trials NMC was estimated
for each case based on preliminary analyses, previous complete analyses, and/or engineering
judgment.
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Chapter 11. Probabilistic model for fatigue crack growth and fracture

11.3 Parametric study

The design of the parametric study is identical to the one performed in Chapter 10, with the
exception that a new parameter is included, namely the initial crack size ai. The parameters are
briefly repeated and completed hereafter.

• The mean head of the hydropower plant, defining the mean internal water pressure pi,mean

at the lowest point of the shaft for the loading spectrum.

• The initial crack size ai, tested for the values 2 and 4 mm. This parameter is a fundamental
hypothesis in fatigue crack growth analyses by means of the LEFM approach. The initial
crack size ai is often defined as the threshold crack size under which a crack cannot be
detected by the nondestructive testing procedures adopted in a project.

• The steel grades characterized by their yield strength fy as defined in Table 11.1.

Table 11.1: Minimum yield strengths for different steel grades used in hydropower construction
considered for the parametric analysis of fatigue assessment by means of linear elastic fracture
mechanics approach.

Grade Standard Yield strength fy Thickness range
(MPa) (mm)

S355 M/ML EN 10025-4 (2005) 355 ts ≤ 16
345 16 < ts ≤ 40
335 40 < ts ≤ 63
325 63 < ts ≤ 80

S500 ML EN 10025-4 (2005) 500 ts ≤ 16
490 16 < ts ≤ 50
490 50 < ts ≤ 75

S690 QL EN 10025-6 (2009) 690 ts ≤ 50
650 50 < ts ≤ 100

S890 QL EN 10025-6 (2009) 890 ts ≤ 50
830 50 < ts ≤ 100

S960 QL EN 10025-6 (2009) 960 ts ≤ 50

• The safety factor SF to be considered for the design of the thickness ts according to a
simplified criterion σ1 ≤ fy/SF, which is slightly conservative compared to the criteria
recommended by the C.E.C.T. (1980) with the equivalent stress. The rock cover is assumed
to be sufficient in all cases.

• The far-field rock mass elastic modulus E ′ and the degree of anisotropy E/E ′. The design
of ts was performed considering the isotropic case with the lowest elastic modulus E ′.

The loading spectra are generated from the normalized spectrum proposed in Chapter 9, without
magnifying factors. The constant parameters (or depending on other constants) of the study are
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11.4. Results

given in Table 11.2. The out-of-roundness is not considered as it was shown in Chapter 7 that its
effect is vanished with embedment (in terms of SCF at the longitudinal butt welded joint). Finally,
the flank angle β and the weld reinforcement height factor ψδ are set to zero as the longitudinal
butt welded joints are assumed to be flush ground.

11.4 Results

The results from the Monte Carlo simulations are reported in Appendix D, in Tables D.1, D.2 and
D.3 for semi-elliptical surface cracks in inert and aggressive environments, and for embedded
elliptical cracks in inert environment, respectively. From the results presented in Appendix D,
some general observations are made hereafter.

• The most detrimental crack type is the semi-elliptical surface crack, particularly in aggres-
sive environment.

• For all the tested cases, embedded elliptical cracks never led to failure, i.e., p f = 0 after a
100 years lifespan.

• For semi-elliptical surface cracks, aggressive environment drastically increase the probabil-
ity of failure, from 1 to 3–4 orders of magnitude.

• The thickness ts of the steel liner is a fundamental parameter. Indeed, thinner liners will
be more sensitive to the presence of initial cracks as the relative crack depth ratio a/ts has
a major influence on the stress intensity factor within the scope of the hypotheses made
herein. Thicker liners induce smaller initial relative crack depth, and larger critical sizes
with respect to the fracture toughness criterion1. In all tested cases, it was observed that
the larger SF (and thus ts), the smaller p f .

• Another determinant parameter is the range of variation of the stresses in the steel liner,
and thus the range of variation of the stress intensity factor ∆K. The greater the amplitudes
of ∆K, the faster the crack propagation. Regarding the Paris–Erdogan law, this statement is
trivial. However, the combinations of parameters leading to large stress amplitudes in the
steel liner are not evident to determine prior to calculation. For instance, large rock elastic
modulus allows for thinner steel liners, which tends to be detrimental for fatigue, but load
sharing reduces the liner’s participation at the same time, which is favorable in terms of
stress variations. The following remarks are related to this point.

• In general, the risk of failure increases with the mean internal water pressure, as the
pressure variation is relative to the latter. As a consequence, high head induces larger
absolute stress ranges, as shown in Chapter 10.

1These observations have to be considered with care, as they are only meaningful in the scope of the hypotheses
made in this study, namely that the initial crack sizes take absolute values, independently from the thickness of the
steel liner, and that the fracture toughness is expressed by Eq. 11.6. In practical applications, the risk of occurrence
of initial crack-like flaws may, e.g., be larger in thicker welded joints. Also, the hypothesis made on the fracture
toughness is particularly detrimental for small thicknesses and low steel grades.
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11.5. Discussion

• The risk of failure increases with the steel yield strength, allowing thinner liners according
to the design criterion, and larger stress ranges.

• The risk of failure decreases with good rock quality, namely with increasing elastic modulus,
as a larger part of pi is shared with the concrete–rock system. The limitation of the rock
participation to 50% of the design pressure is particularly favorable in cases where full
load sharing is beyond this limitation, as computations were performed considering the
real rock participation.

• Inherently to the isotropic assumption for the design, the presence of rock anisotropy is
also favorable as stresses are overestimated in the standard design procedure.

• One should also note that within the assumption made for KIC in the present study, thinner
thicknesses induce lower fracture toughnesses. For instance, the series of simulations with
pi,mean = 10 MPa, ai = 4 mm and fy = 980 MPa exhibit numerous failures before the crack
growths at an exponential rate. In those cases, the failure criterion with respect to fracture
toughness may have a significant influence on p f .

To illustrate some of the aforementioned observations and the model’s behavior, the series of
simulations of steel liners made of S890 QL and S960 QL with semi-elliptical surface cracks
in aggressive environment for pi,mean = 15 MPa and ai = 4 mm (see results in Table D.2)
are analyzed more into detail hereafter. The evolution of the probability of failure over the
lifespan is shown in Fig. 11.7 for all the tested cases. One can observe that by increasing SF,
the probability of failure decreases (as ts increases), although the rock participation diminishes
(compare Figs. 11.8, 11.9 and 11.10). Also, good quality rocks are favorable in terms of fatigue
behavior for the tested cases. Although it allows thinner liners, the increase in rock participation
seems to be more efficient as it reduces the stress amplitude in the steel liner (compare Figs. 11.8
and 11.11).

The rock anisotropy, inherently to the isotropic model considered for the design, has a similar
favorable effect as shown in Fig. 11.7. Figures 11.8–11.10, although quite representative of the
selected cases, represent the results from the associated Monte Carlo simulations performed with
1000 trials only, for presentation purposes.

11.5 Discussion

Although quantitative, the results presented herein should be considered with care. Several
remarks can be made, both concerning the model and the interpretation of the results.

• As the model is not calibrated with experimental or prototype data, the probabilities of
failure obtained in the present chapter are only rough estimates. In order to tend toward
the real probability of failure, more variables should be considered as stochastic, e.g., the
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Figure 11.7: Probability of failure along lifespan of steel liners with semi-elliptical surface cracks
in aggressive environment for pi,mean = 15 MPa and ai = 4 mm.
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(a) Weekly variation of the major principal stress with respect to the yield strength σ1/ fy
at the longitudinal butt welded joint (threshold of ∆pi/pi,mean set to 3.2%).

(b) Relative crack a/ts growth as a function of time (× = failure).

(c) Ratio of weekly propagating cycles Nw,p/Nw as a function of time.

Figure 11.8: Results from the probabilistic fatigue crack growth and fracture model (for random
1000 trials) of semi-elliptical surface cracks in aggressive environment for pi,mean = 15 MPa,
ts = 27.3 mm, ai = 4 mm, fy = 960 MPa, SF = 1.8, E ′ = 5.0 GPa and E/E ′ = 1.
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(a) Weekly variation of the major principal stress with respect to the yield strength σ1/ fy
at the longitudinal butt welded joint (threshold of ∆pi/pi,mean set to 3.2%).

(b) Relative crack a/ts growth as a function of time (× = failure).

(c) Ratio of weekly propagating cycles Nw,p/Nw as a function of time.

Figure 11.9: Results from the probabilistic fatigue crack growth and fracture model (for random
1000 trials) of semi-elliptical surface cracks in aggressive environment for pi,mean = 15 MPa,
ts = 32.8 mm, ai = 4 mm, fy = 960 MPa, SF = 2.0, E ′ = 5.0 GPa and E/E ′ = 1.

246



11.5. Discussion

10 20 30 40 50 60 70 80 90

0.35

0.4

0.45

0.5

0.55

1/SF = σ1,max/fy

Cycles (-)

σ
1
/
f y

(-
)

(a) Weekly variation of the major principal stress with respect to the yield strength σ1/ fy
at the longitudinal butt welded joint (threshold of ∆pi/pi,mean set to 3.2%).

(b) Relative crack a/ts growth as a function of time (× = failure).

(c) Ratio of weekly propagating cycles Nw,p/Nw as a function of time.

Figure 11.10: Results from the probabilistic fatigue crack growth and fracture model (for random
1000 trials) of semi-elliptical surface cracks in aggressive environment for pi,mean = 15 MPa,
ts = 38.3 mm, ai = 4 mm, fy = 960 MPa, SF = 2.2, E ′ = 5.0 GPa and E/E ′ = 1.
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(a) Weekly variation of the major principal stress with respect to the yield strength σ1/ fy
at the longitudinal butt welded joint (threshold of ∆pi/pi,mean set to 3.5%).

(b) Relative crack a/ts growth as a function of time (× = failure).

(c) Ratio of weekly propagating cycles Nw,p/Nw as a function of time.

Figure 11.11: Results from the probabilistic fatigue crack growth and fracture model (for random
1000 trials) of semi-elliptical surface cracks in aggressive environment for pi,mean = 15 MPa,
ts = 22.7 mm, ai = 4 mm, fy = 960 MPa, SF = 1.8, E ′ = 10.0 GPa and E/E ′ = 1.

248



11.6. Conclusions

material parameters, the fracture toughness, the loading spectrum, the effect of corrosion
on the thickness of the steel liner, the accuracy of the deterministic model, or the initial
crack sizes (also in relation with the probability of detection, POD). Also, the distributions
adopted herein were taken from reasonable assumptions from the literature, but not from
actual data specific to SLPT&S. Particularly, the distribution of a/c was derived from
flawed at weld toes of welded joints.

• The failure criterion adopted herein is very conservative. If hydraulic jacking is prevented
by rock cover, a crack propagating through the thickness does not necessarily deteriorates
the short-term service operations of the hydropower plant. The through-crack may continue
to propagate along the the longitudinal joint before service operations are threatened. This
more realistic failure criterion would have required a more complex model and experimental
data for the fracture toughness, which was out of the scope of this project.

• The obtained probabilities of failure highly depend on the loading spectrum, which may
not be transferable to other operational conditions than those in which it was derived. It
remains an hypothesis allowing to run the proposed probabilistic model through parametric
studies in this project.

• The accuracy of the Monte Carlo simulations was only estimated for the probability of
failure p f at the end of the lifespan. One should keep in mind that it actually evolves along
lifespan. For an increasing probability of failure along lifespan, the accuracy of p f at, e.g.,
30 years, will be typically lower than the accuracy at 100 years.

11.6 Conclusions

In this chapter, a probabilistic model for fatigue crack growth and fracture of initial axial cracks
in the weld material of longitudinal butt welded joints of SLPT&S was proposed. The parametric
equations developed along Parts II to IV to compute ranges of stress intensity factors for surface
and embedded cracks was implemented in the framework of the Monte Carlo simulation pro-
cedure. Possible distributions for the assumed stochastic parameters, particularly for the crack
shape ratio a/c and the parameters of the Paris–Erdogan law C and ∆Kth, were discussed and
adopted from reasonable hypotheses taken from the literature. The loading spectra were derived
from the normalized spectrum proposed in Chapter 9.

By means of a parametric study, it was shown that semi-elliptical surface cracks in aggressive
environment (i.e., with harsher growth rates) can become the leading limit state for SLPT&S
made of HSS in high-head hydropower plants. Although the proposed probabilistic model cannot
be calibrated against experimental or prototype data, it gives valuable quantitative results that
can be incorporated into a fitness-for-service philosophy for the design of SLPT&S when fatigue
phenomena arise.
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12 Case study

12.1 Case description

The studied case is presented in Fig. 12.1. The mean head is Hmean = 1300 m, thus inducing a
mean internal water pressure pi,mean = 13 MPa (130 bar), at the lowest point of the steel-lined
pressure shaft. The deterministic parameters of the case study are given in Table 12.1. The
loading spectrum is derived from the normalized spectrum derived in Chapter 9, without any
magnification factor. It is assumed that the thickness is preliminarily designed with respect to
the working stress criterion using the allowable equivalent stress in steel liners according to
the Hencky–Von Mises theory in triaxial state of stresses as suggested in the C.E.C.T. (1980)
recommendations (see Sect. 12.2).

The aim is to study the crack propagation (semi-elliptical internal surface cracks and embedded
elliptical cracks) from three different initial crack sizes, namely ai = 2, 3 and 4 mm, for different
designs depending on the use of the three different types of high-strength steels given in Table 12.2,
and on varying the global safety factor to assess the influence on the thickness of the steel liner
on the failure probability. For the design of steel liners embedded in concreted tunnels or shafts,
the C.E.C.T. (1980) recommend SF = 1.1 if no load sharing is considered, and SF = 2.0 if load
sharing is assumed. Moreover, the practical rule stating that the rock mass load sharing is limited
to 50% of the internal water pressure is adopted.

Chapters 10 and 11 focused on developing a framework for the use of fatigue assessment
engineering procedures to steel liners of pressure tunnels and shafts and on comparing the
relative results obtained through a parametric study. On the contrary, the objective of the present
chapter is to present in detail all the calculation procedures using the model developed along
Parts II to IV to estimate the stress concentration factors and the stress intensity factors for
cracks at the longitudinal butt welded joints of steel-lined pressure tunnels and shafts. For
completion, the detailed calculation procedure to apply the effective notch stress approach is
also presented. This synthesis aims at guaranteeing the transfer of these developments toward
practical implementation.
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near-field rock mass 
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Figure 12.1: Longitudinal schematic view of the studided alpine high-head power plant and
sectional view of the steel-lined pressure shaft. The relative dimensions are adapted for the sake
of presentation.
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Chapter 12. Case study

Table 12.2: Minimum yield strengths for the different studied steel grades.

Grade Standard Yield strength fy Thickness range
(MPa) (mm)

S690 QL EN 10025-6 (2009) 690 ts ≤ 50
650 50 < ts ≤ 100

S890 QL EN 10025-6 (2009) 890 ts ≤ 50
830 50 < ts ≤ 100

S960 QL EN 10025-6 (2009) 960 ts ≤ 50

12.2 Standard design with the working stress criterion

In this study, only the working stress criterion is regarded for the design. The equivalent stress in
the steel liner, under the maximum allowable internal water pressure, has to remain below the
steel yield strength corrected by SF as

σeq ≤
fy

SF
. (12.1)

Buckling and crack bridging criteria (see Sect. 2.3) are assumed to be non determining. The
thickness of the steel liner is designed with respect to the maximum allowable overpressure
characterized by ∆p+/pi,mean = 0.10 for this case study. As a consequence, the maximum
allowable internal water pressure in calculated as

pi,max =

(
1+

∆p+

pi,mean

)
· pi,mean. (12.2)

According to Hencky–Von Mises yield criterion,

σeq,max =

√
1
2
(σ1,max−σ2,max)2 +

1
2
(σ2,max−σ3,max)2 +

1
2
(σ3,max−σ1,max)2 (12.3)

where:

1. the maximum major principal stress is computed considering the lowest elastic modulus of
the anisotropic rock E ′ (transverse isotropy) as

σ1,max =
1

r2
c − r2

i

[
r2

i pi,max− r2
c pc,max− r2

c(pc,max− pi,max)
]

(12.4)
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with

pc,max =

1+νs

Es

rc

r2
c − r2

i

[
(1−2νs)pi,maxr2

i + pi,maxr2
i
]
−∆r0

1+νs

Es

rc

r2
c − r2

i

[
(1−2νs)r2

c + r2
i

]
+ rc

1
Eeq

(12.5)

and

1
Eeq

=
1−ν2

c

Ec
ln
(

rcrm

rc

)
+

1−ν2
crm

Ecrm
ln
(

rrm

rcrm

)
+

1+ν
E ′

; (12.6)

2. the maximum minor principal stress is computed as

σ3,max =
1

r2
c − r2

i

[
r2

i pi,max− r2
c pc,max +

r2
i r2

c

r2
i
(pc,max− pi,max)

]
; (12.7)

3. and the stress in the second principal direction is computed as

σ2,max = νs [σ1,max +σ3,max] =
2νs

r2
c − r2

i
(r2

i pi,max− r2
c pc,max). (12.8)

12.3 Fatigue assessment

Fatigue crack growth and fracture is studied according to the linear elastic fracture mechan-
ics (LEFM) approach with the Paris–Erdogan law, using the probabilistic model presented in
Chapter 11 (see particularly Fig. 11.6). The stochastic variables are as described in the latter
chapter.

12.4 Detailed example of the calculation of the crack growth for the
kth cycle

In this example, let’s assume a crack size ak resulting from the propagation due to the (k−1)
preceding cycles from an initial crack size ai:

ak = ai +
k−1

∑
j=1

(
da
dN

)

j
. (12.9)

From the kth cycle of the loading spectrum (Chapter 9), the associated maximum and minimum
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pressures pk
i,max and pk

i,min are computed as





pk
i,max = pi,mean +0.5 ·∆pk

i

pk
i,min = pi,mean−0.5 ·∆pk

i .

(12.10)

12.4.1 Compute K∗rm,aniso (Chapter 5)

In this case study, the rock exhibits transverse isotropy. In order to compute the greatest nominal
stress at each cycle in the steel liner, the K∗rm,aniso factor is approximated for the mean internal
water pressure pi,mean. Because of the presence of the initial gap, ∆r0, K∗rm,aniso varies with
pressure. However, this variation can be neglected.

Considering an isotropic model with the lowest rock elastic modulus E ′, the part of the internal
water pressure taken by the concrete–rock system can be computed as

pc,iso,mean =

1+νs

Es

rc

r2
c − r2

i

[
(1−2νs)pi,meanr2

i + pi,meanr2
i
]
−∆r0

1+νs

Es

rc

r2
c − r2

i

[
(1−2νs)r2

c + r2
i

]
+ rc

1
Eeq

, (12.11)

where

1
Eeq

=
1−ν2

c

Ec
ln
(

rcrm

rc

)
+

1−ν2
crm

Ecrm
ln
(

rrm

rcrm

)
+

1+ν
E ′

. (12.12)

Then, the mean major principal stress at the internal fiber of the steel liner is computed as

σiso,mean =
1

r2
c − r2

i

[
r2

i pi,mean− r2
c pc,iso,mean−

r2
i r2

c

r2
i
(pc,iso,mean− pi,mean)

]
. (12.13)

Similarly, considering rock anisotropy by means of the correction factors proposed in Chapter 5
gives the following expression for pc,aniso,mean:

pc,aniso,mean =

1+νs

Es

rc

r2
c − r2

i

[
(1−2νs)pi,meanr2

i + pi,meanr2
i
]
−∆r0

1+νs

Es

rc

r2
c − r2

i

[
(1−2νs)r2

c + r2
i

]
+ rc

1
Eeq,corr

, (12.14)
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with

1
Eeq,corr

=
1−ν2

c

Ec
ln
(

rcrm

rc

)
+

1−ν2
crm

Ecrm
ln
(

rrm

rcrm

)
...

...+

[(
E
E ′

)−0.65( G
G′

)0.50( 1+ν
1+ν ′

)−0.56
]

1+ν
E ′

.

(12.15)

The corresponding mean major principal stress is computed as

σaniso,mean =
1

r2
c − r2

i

[
r2

i pi,mean− r2
c pc,aniso,mean−

r2
i r2

c

r2
i
(pc,aniso,mean− pi,mean)

]
. (12.16)

Finally, K∗rm,aniso is defined by the ratio of the mean stresses calculated above as

K∗rm,aniso =
σaniso,mean

σiso,mean
. (12.17)

12.4.2 Compute maximum and minimum membrane and bending stresses (Chap-
ter 7)

The membrane stresses (equivalent to the nominal stresses herein) in anisotropic rock associated
with cycle k can be approximated as





σ k
m,aniso,max = K∗rm,anisoσ k

m,iso,max

σ k
m,aniso,min = K∗rm,anisoσ k

m,iso,min.

(12.18)

As previously, σ k
m,iso,max and σ k

m,iso,min are computed from





pk
c,iso,max =

1+νs

Es

rc

r2
c − r2

i

[
(1−2νs)pk

i,maxr2
i + pk

i,maxr2
i

]
−∆r0
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Es
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c − r2

i

[
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c + r2
i

]
+ rc

1
Eeq

pk
c,iso,min =

1+νs

Es

rc

r2
c − r2

i

[
(1−2νs)pk

i,minr2
i + pk

i,minr2
i

]
−∆r0

1+νs

Es

rc

r2
c − r2

i

[
(1−2νs)r2

c + r2
i

]
+ rc

1
Eeq

(12.19)
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with

1
Eeq

=
1−ν2

c

Ec
ln
(

rcrm

rc

)
+

1−ν2
crm

Ecrm
ln
(

rrm

rcrm

)
+

1+ν
E ′

, (12.20)

allowing to compute





σ k
m,iso,max =

1
r2

c − r2
i

[
r2

i pk
i,max− r2

c pk
c,iso,max−

r2
i r2

c

r2
i
(pk

c,iso,max− pk
i,max)

]

σ k
m,iso,min =

1
r2

c − r2
i

[
r2

i pk
i,min− r2

c pk
c,iso,min−

r2
i r2

c

r2
i
(pk

c,iso,min− pk
i,min)

]
.

(12.21)

To compute the bending stresses, only peaking is considered, as discussed in Sect. 8.2.2. The
maximum and minimum bending stresses σ k

b,aniso,max and σ k
b,aniso,min at cycle k can be computed

as





σ k
b,aniso,max = (K∗km,p−1)σ k

m,aniso,max

σ k
b,aniso,min = (K∗km,p−1)σ k

m,aniso,min

(12.22)

with

K∗m,p = 1+
3 ·1.05 ·∆h
ts(1−ν2

s )
· tanh(φmean/2)

φmean/2
(12.23)

where φmean can be computed with σaniso,mean as suggested in Sect. 10.1.2 and thus

φmean =
2l
ts

√
3(1−ν2

s )σm,aniso,mean

Es
. (12.24)

12.4.3 Compute maximum and minimum stress intensity factors (Chapter 8)

Once maximum and minimum membrane and bending stresses are known for cycle k, one can
compute the range of stress intensity factor (SIF) for cycle k.
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For semi-elliptical surface crack

The pressure acting on the crack faces is





pk
cr,max = pk

i,max

pk
cr,min = pk

i,min.

(12.25)

The maximum and minimum SIF Kk
I,max and Kk

I,min, respectively, are computed according to the
following expressions:





Kk
I,max = Mk

w

[
Mk

m

(
σ k

m,aniso,max + pk
cr,max

)
+Mk

bσ k
b,aniso,max

]√πak

Q

Kk
I,min = Mk

w

[
Mk

m

(
σ k

m,aniso,min + pk
cr,min

)
+Mk

bσ k
b,aniso,min

]√πak

Q
.

(12.26)

Q is approximated as

Q = 1.0+1.464
(

ak

ck

)1.65

. (12.27)

As a/c is constant in each trial, the terms only function of ak/ck are independent from the cycle
k.

The membrane correction factor is expressed as

Mk
m =

[
M1 +M2

(
ak

ts

)2

+M3

(
ak

ts

)4
]

gk fφ fw, (12.28)

where

M1 = 1.13−0.09
(

ak

ck

)
(12.29)

M2 =
0.89

0.2+
ak

ck

−0.54 (12.30)
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M3 = 0.5− 1

0.65+
ak

ck

+14
[

1− ak

ck

]24

(12.31)

and (with φ = π/2, i.e., deepest point of the crack)

gk = 1+

[
0.1+0.35

(
ak

ts

)2
]
(1− sinφ)2 (12.32)

fφ =

[(
ak

ck

)2

cos2 φ + sin2 φ

]0.25

(12.33)

fw = 1. (12.34)

The bending correction factor is calculated as

Mk
b = Mk

mHk (12.35)

where

Hk = Hk
1 +(Hk

2 −Hk
1)(sinφ)qk

; (12.36)

Hk
1 = 1−0.34

(
ak

ts

)
−0.11

(
ak

ck

)(
ak

ts

)
(12.37)

Hk
2 = 1+G1

(
ak

ts

)
+G2

(
ak

ts

)2

(12.38)

qk = 0.2+
(

ak

ck

)
+0.6

(
ak

ts

)
; (12.39)

and

G1 =−1.22−0.12
(

ak

ck

)
; (12.40)

G2 = 0.55−1.05
(

ak

ck

)0.75

+0.47
(

ak

ck

)1.5

. (12.41)

Finally, the weld shape correction factor, if it is to be considered, is calculated as

Mk
w = f k

1

(
ak

ts
,
δ
ts

)
f k
2

(
ak

ts
,
lw
ts
,
δ
ts

)
+ f k

3

(
ak

ts
,
lw
ts
,
δ
ts
,β
)

(12.42)
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where the f k
i are given by

f k
1 = 1−1.79 ·gk

11

(
δ
ts

)
(12.43)

f k
2 = 1+2.63 ·gk

21g22

(
lw
ts

)
(12.44)

f k
3 =

0.37 ·gk
31g32g33

2
[1+ cos(π +6β )] ; (12.45)

and the gk
i j by

gk
11 =

(
ak

ts

)−0.45

; (12.46)

gk
21 =

(
ak

ts

)1.08

(12.47)

g22 =

(
δ
ts

)0.79

; (12.48)

and

gk
31 =

(
ak

ts

)−1.10

(12.49)

g32 =

(
δ
ts

)0.88

(12.50)

g33 =

(
lw
ts

)4.84

. (12.51)

For embedded elliptical crack

Similarly to surface cracks, the maximum and minimum SIF for embedded elliptical cracks,
Kk

I,max and Kk
I,min, respectively, are computed as





Kk
I,max =

[
Mk

m
(
σ k

me,max +0
)
+Mk

bσ k
be,max

]√πak

Q

Kk
I,min =

[
Mk

m

(
σ k

me,min +0
)
+Mk

bσ k
be,min

]√πak

Q

(12.52)

where there is no pressure on the crack faces, as they are not in contact with internal water
pressure.
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The maximum and minimum values of σ k
me and σ k

be are computed from the membrane and
bending stresses as





σ k
me,max = {σ k

m,aniso,max +0}+σ k
b,aniso,max

(
1− 2ts/2

ts

)

σ k
me,min = {σ k

m,aniso,min +0}+σ k
b,aniso,min

(
1− 2ts/2

ts

) (12.53)

and





σ k
be,max = σ k

b,aniso,max

(
2ak

ts

)

σ k
be,min = σ k

b,aniso,min

(
2ak

ts

)
.

(12.54)

Assuming that





α = ak/ck

β k
1 = ak/d1

β k
2 = ak/d2,

(12.55)

the membrane correction factor can be computed as

Mk
m = Hk

φ fφ fw (12.56)

where (with φ =−π/2, i.e., most detrimental point along crack front toward the internal fiber)

Hk
φ =

1
2

sin2 φ
[
Hk

90 (1+ sinφ)+Hk
270 (1− sinφ)

]
+Hk

0 cos2 φ , (12.57)

fφ =

[(
ak

ck

)2

cos2 φ + sin2 φ

]0.25

, (12.58)

fw = 1; (12.59)

Hk
90 = hk

1(α,β k
1 )h

k
3(α,β k

2 ), (12.60)

Hk
0 = hk

2(α,β k
1 )h

k
2(α,β k

2 ), (12.61)

Hk
270 = hk

3(α,β k
1 )h

k
1(α,β k

2 ); (12.62)
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and

hk
1(α,β k

i ) = 1+
(
−0.04+

0.085
0.34+α

)
(β k

i )
2 +(0.05−0.03α)(β k

i )
4, (12.63)

hk
2(α,β k

i ) = 1+
(
−0.03+

0.075
0.30+α

)
(β k

i )
2 +

(
0.08− 0.024

0.1+α

)
(β k

i )
4, (12.64)

hk
3(α,β k

i ) = 1+
(
−0.06+

0.070
0.25+α

)
(β k

i )
2 +(0.643−0.343α)(β k

i )
4; (12.65)

and the bending correction factor is expressed as

Mk
b =−

[
0.5+0.2591α1.5−0.09189α2.5] fφ fw f k

β sinφ (12.66)

where

f k
β =

f k
270 + f k

90
2

− f k
270− f k

90
2

sinφ , (12.67)

f k
90 = 1+ exp

[
−1.9249−3.9087α0.5 +4.1067(β k

2 )
3
]
, (12.68)

f k
270 = 1+ exp

[
−1.9249−3.9087α0.5 +4.1067(β k

1 )
3
]
. (12.69)

12.4.4 Compute the new crack size

Finally, for both crack types, the crack increment at cycle k is computed using the range of SIF

∆Kk = Kk
I,max−Kk

I,min, (12.70)

and from the Paris–Erdogan law one obtains

(
da
dN

)

k
= ∆ak =C

(
∆Kk

)m
. (12.71)

The crack size for the (k+1)th cycle is then

ak+1 = ak +∆ak. (12.72)
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12.5 Detailed example of the calculation of the kth term of the cu-
mulative damage sum

At the kth cycle, the damage sum is expressed according to the Palmgren–Miner rule as

Dcalc =
n1

N1
+

n2

N2
+ ...+

n j

N j
+ ...+

nk

Nk
=

k

∑
j=1

n j

N j
. (12.73)

Similarly to Sect. 12.4, the maximum and minimum nominal stresses σ k
nom,aniso,max and σ k

nom,aniso,min
at cycle k are computed as1





σ k
nom,aniso,max = K∗rm,anisoσ k

nom,iso,max

σ k
nom,aniso,min = K∗rm,anisoσ k

nom,iso,min.

(12.74)

From the nominal stresses, the structural stresses are calculated as





σ k
s,aniso,max = K∗mσ k

nom,aniso,max

σ k
s,aniso,min = K∗mσ k

nom,aniso,min

(12.75)

where

K∗m =
[
1+(K∗m,p−1)+(K∗m,e−1)

]
. (12.76)

The peaking stress concentration factor (SCF) can be computed as

K∗m,p = 1+
3 ·1.05 ·∆h
ts(1−ν2

s )
· tanh(φmean/2)

φmean/2
(12.77)

1The nominal stress σ k
nom,aniso defined herein is equivalent to σ k

m,aniso used in Sect. 12.4. The nomenclature
difference is only related to the conventions adopted through the related chapters.
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with

φmean =
2l
ts

√
3(1−ν2

s )σnom,aniso,mean

Es
; (12.78)

and the linear misalignment SCF as

K∗m,e = 1+
3 ·0.87 ·e
ts(1−ν2

s )
. (12.79)

From the structural stresses, one can obtain the notch stresses as





σ k
n,aniso,max = K∗t σ k

nom,aniso,max = K∗mKwσ k
nom,aniso,max

σ k
n,aniso,min = K∗t σ k

nom,aniso,min = K∗mKwσ k
nom,aniso,min

(12.80)

where the weld SCF is expressed as

Kw = 1+1.08
(

δ
ts

)0.24(ρ
ts

)−0.41

tan
(

β
2

)0.41

. (12.81)

Finally, the structural hot-spot2 and notch stresses ranges at cycle k are calculated as





∆σ k
hs = σ k

s,aniso,max−σ k
s,aniso,min

∆σ k
n = σ k

n,aniso,max−σ k
n,aniso,min.

(12.82)

The determination of Nk = min{Nk,225;Nk,160×Kw ;Nk,160} is illustrated in Fig. 12.2 according to
the recommendations of the IIW (Hobbacher 2008, 2016).

2For this verification, it is assumed herein that the hot-spot stress is equivalent to the structural stress.
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Figure 12.2: Determination of Nk = min{Nk,225;Nk,160×Kw ;Nk,160} for a given ∆σ k
n (and ∆σ k

hs)
with modified S–N curves for steel at variable amplitude loading within the effective notch stress
approach. In this example, K∗m = 1.3, Kw = 1.7, and ∆σ k

nom = 90 MPa.

12.6 Results from the LEFM approach for fatigue propagation of
cracks in the weld material

The results from the Monte Carlo simulations are reported in Appendix E, in Tables E.1, E.2 and
E.3 for semi-elliptical surface cracks in inert and aggressive environments, and for embedded
elliptical cracks in inert environment, respectively. One can see that with respect to the target
probability of failure p f = 10−5, only semi-elliptical surface cracks within the hypothesis of
aggressive environment exhibit a significant risk of failure. The evolution of the probability
of failure along lifespan is presented in Fig. 12.3 for all the tested cases. The design choice
would depend on the nondestructive testing capabilities and on the adopted fitness-for-service
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philosophy. Assuming no inspection plan during lifespan, and that the hypothesis of aggressive
environment cannot be avoided, the acceptable designs in terms of surface crack propagation are
summarized hereafter according with Fig. 12.3 and Table E.2.

• If S890 QL is used:

– SF = 2.0 if ai = 2 mm;

– SF = 2.2 if ai = 3 mm;

– SF = 2.4 if ai = 4 mm.

• If S960 QL is used:

– SF = 2.0 or 1.1 without rock participation if ai = 2 mm;

– SF = 2.4 if ai = 3 mm;

– ai = 4 mm is not acceptable or larger SF has to be assessed.

• S690 QL is adequate at least for ai ≤ 4 mm.

12.7 Conclusions

This chapter aimed at detailing the calculation procedures in the model developed in this research
project within the framework of the Monte Carlo simulation method. The probabilistic model
for fatigue crack growth and fracture was then applied to a case study, an hypothetic high-head
hydropower plant with Hmean = 1300 m. The application of the model in order to determine
acceptable undetected initial crack sizes depending on the design (steel grade, SF) was presented,
for an easier transfer toward practical implementation.
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Figure 12.3: Probability of failure considering initial semi-elliptical surface cracks in aggressive
environment.
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13 Conclusions

13.1 Summary and conclusions

The literature review has emphasized that for the design of steel-lined pressure tunnels and shafts
(SLPT&S), when made of high-strength steel (HSS) and subject to harsher transient loading,
the issue of fatigue behavior arises. An accurate use of engineering fatigue assessment methods
requires to estimate local stresses at the welded joints of the steel liners, which normally requires
finite element analysis (FEA) if empirical or analytical equations are not known.

The main objectives of this research project were:

1. the enhancement of the comprehension of the mechanical behavior of SLPT&S accounting
for rock anisotropy, geometrical imperfections in the steel liners, and the presence of
crack-like flaws in the weld material; and

2. the construction of a crack propagation and fracture model based on the first objective, using
the linear elastic fracture mechanics (LEFM) approach combined with the Paris–Erdogan
law in a probabilistic framework by means of the Monte Carlo simulation procedure.

These objectives have been fulfilled through the following steps.

Anisotropic behavior

The influence of anisotropic rock behavior, and more particularly transverse isotropy, was studied
by means of FEA. It was shown that considering an isotropic case for the design with the lowest
elastic modulus measured in situ is a conservative assumption. The extent of this result mainly
depends on the relative stiffness between the steel liner and the concrete–rock system. The
maximum major principal stress in a steel liner in transversely isotropic rock occurs in the
direction of the plane of isotropy. It was also shown that the main change when considering
anisotropy is a shift of the nominal stress in the steel liner, up to 15–20% lower than in isotropic
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cases with realistic material and geometrical parameters. Finally, correction factors to be included
in the analytical solution in isotropic rock to account for the influence of anisotropy were derived.
One may note that this study was already extended by Bobet & Yu (2016), who analytically
solved the stress and displacement fields in SLPT&S in transversely isotropic rock. The proposed
approach remains highly relevant for practical engineering applications where only the maximum
stresses are required. Furthermore, the proposed empirical solution highlights clearly the relative
importance of the involved parameters.

Geometrical imperfections

The influence of geometrical imperfections in the steel liners was studied by means of FEA,
considering rock anisotropy and the contact between the external fiber of the steel liner and
the backfill concrete–rock system. Imperfections such as out-of-roundness, peaking and linear
misalignment were considered. The main result if that embedment completely vanishes the effect
of the out-of-roundness, while the effect of peaking and linear misalignment remains. To estimate
the stress concentration factors at the longitudinal butt welded joints of SLPT&S in anisotropic
rock, correction factors were derived to be included in widespread empirical equations for SCF
in welded plates and shells. With these correction factors, membrane and bending stresses at
the longitudinal joints considering anisotropic rock behavior, geometrical imperfections and the
initial gap between steel and concrete can be estimated.

Crack-like flaws in the weld material of the longitudinal butt welded joints

When using the LEFM approach for fatigue assessment, stress intensity factors (SIF) for the
studied cracks must be known. Two types of cracks in the weld material of the longitudinal butt
welded joints of SLPT&S were studied by means of FEA, namely axial semi-elliptical surface
cracks and axial embedded elliptical cracks. At first, the applicability of SIF solutions in cracked
plated structures to steel liners was verified using the previously developed parametric equations
to estimate membrane and bending stresses at the longitudinal joints. Finally, the influence of the
weld shape on the SIF for axial cracks was studied. It could be shown that the weld reinforcement
has a mitigation effect on the SIF for semi-elliptical surface cracks, while it has no effect for
embedded elliptical cracks in the tested ranges. This mitigation effect is particularly large for
small cracks, i.e., with crack depth within the weld reinforcement height. A new parametric
equation was derived for the weld shape correction factor. However, weld shape correction factors
were not considered for crack propagation as the internal surface of the longitudinal joints may
be flush ground in some cases, and considering this mitigation effect is not conservative.

Fatigue assessment

A probabilistic model for fatigue crack growth and fracture was established, using the previously
developed deterministic model in the framework of the Monte Carlo simulation technique.

272



13.1. Summary and conclusions

Parameters such as the crack shape ratio a/c, the material parameter C characterizing the crack
growth rate in the Paris–Erdogan law and the threshold stress intensity factor range ∆Kth were
considered as stochastic. Reasonable hypotheses on their distributions were made based on the
literature of probabilistic fracture mechanics of welded joints. A normalized loading spectrum
was derived based on the measurements during a week of normal operation performed by Hachem
& Schleiss (2012c) and Hachem & Giovanola (2013) on a pumped-storage hydropower plant
(HPP) in Switzerland, namely Grimsel II, equipped with ternary groups with Francis turbines.
Although loading spectra may be case specific (general waterway lay-out, head, role in the electric
grid, type of electromechanical units), it was assumed to be transferable and scaled to other HPP
in this study.

Although there were no data available to calibrate the model in the scope of this research study,
the proposed probabilistic approach can provide very informative quantitative results, relatively
to the hypotheses adopted for the deterministic parameters. An extensive parametric study was
performed considering steel liners designed under the so-called basic criteria herein (i.e., isotropic
case, rock participation limited to 50% of the internal pressure, use of global safety factor SF for
the steel resistance as recommended in the C.E.C.T. 1980 recommendations). It could be shown
that high heads and the use of high-strength steels (i.e., allowing thinner steel liners with respect
to the working stress criterion) yields a higher risk of failure in case of the presence of initial
cracks below detection limits in the weld material. However, the results may highly depend on
the loading spectra, which should be determined case by case.

Initiation and propagation of cracks from notches (weld toes) of the longitudinal butt welded
joints was assessed by means of the effective notch stress approach, which is an S–N based
engineering procedure. Within the hypotheses made herein, the calculated damage sums by
means of the Palmgren–Miner rule have shown a considerable margin of security with respect to
the recommendations of the IIW (Hobbacher 2008, 2016). To reach the critical damage sum, the
main peaks of the proposed loading spectrum would require to occur at least 10–20 times more
frequently for the worst tested cases. However, a probability of rupture is not assessed when
using the effective notch stress approach and the cumulative damage sum, and as a consequence
the risk of failure from the latter verification is not directly comparable with the results from the
LEFM approach for the analysis of the fatigue propagation of initial flaws in the weld material.
The application of the LEFM approach to cracks emanating from weld toes would allow such a
comparison.

In the light of the application of these engineering fatigue assessment procedures, one can
conclude that when HSS are considered for the design and particularly if harsh operational
conditions are expected, the Good Workmanship philosophy should be substituted by the Fitness-
for-Service philosophy, based on fracture mechanics. This work is a first attempt to develop a
framework for this design philosophy specific to steel-lined pressure tunnels and shafts.
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13.2 Recommendations

Based on the conclusions of this research project, it is recommended to complete the standard
design procedure presented in Sect. 2.3, Fig. 2.2. In cases were fatigue phenomena may arise, a
third criterion should be included, namely the fatigue resistance of the longitudinal butt welded
joints. The completed standard design flowchart is presented in Fig. 13.0, were the so-called
Condition III is added. The latter condition could also be implemented in a deterministic
framework.

For instance, Condition III could be implemented in the scope of a Damage Tolerant Design
philosophy, as shown in Fig. 13.1, modified after Zerbst et al. (2007). In the scope of this
design philosophy, the proposed probabilistic approach can also provide a quantitative basis
for the planning of the nondestructive testing (NDT) inspections, and for the assessment of the
acceptability of the cracks detected during lifespan.

13.3 Future research

The discussions driven in the present research project enable to propose an outlook for future
research in the scope of the design of SLPT&S subject to fatigue phenomenon.

Loading spectra

• Loading spectra are a fundamental input for fatigue assessment procedures. In the case of
storage and pumped-storage hydropower plants, very few data are available. For a wider
and more accurate application of the proposed methodology, more data should be acquired
from prototypes.

• When stress cycles vary in a random manner, it may also be beneficial to describe their
distribution by a continuous probability distribution function (PDF) (Klemenc & Fajdiga
2004). The normalized spectrum based on the original measurements of Hachem & Schleiss
(2012c), although it can be scaled to different mean pressures, has the drawback neither to
be able to predict different relative pressure amplitudes (either larger or within unobserved
ranges during the measurement period) nor to change the weekly frequency of load cycles.
To allow reasonable modifications of the original spectrum and a wider use in practical
applications, modeling the distribution of the load cycles with the best-fitting continuous
PDF can address these issues.

Online and non-intrusive monitoring

• As outlined in Sect. 2.8, the development of non-intrusive monitoring techniques based
on the analysis of pressure transients in SLPT&S is very promising but still faces great
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scientific and technological challenges. Further research should be conducted in order to
detect damage evolution (e.g., loss of stiffness in one or several layers, through-thickness
crack in the steel liner) in the waterways with accuracy.

• The proposed methodology for fatigue crack propagation could be implemented in com-
bination with online monitoring (providing real loading history) in order to assess the
remaining lifetime of SLPT&S of HPP, based on forecast.
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Chapter 13. Conclusions

Initial crack size ai

Is ai already
critical?

Yes

No

Apply another design philosophy

Simulation of fatigue crack
propagation and fracture Initial crack size is replaced by

the detected subcritical crack

Determination of
residual lifetime

Is critical crack
size ac detectable
with a prescribed

safety margin under
service conditions?

No

Yes
Is another NDT
technique with
lower detection
limit and better
POD possible?

No

Establish inspection plan
Yes

Is inspection plan
realistic under

service conditions?

No

Yes
Implement inspection plan

Apply another design philosophy

When a crack is de-
tected during inspection

Are subcritical
cracks allowable?

Yes

No

Establish new inspection plan

Repair

CONTRIBUTION OF THIS
RESEARCH PROJECT

Figure 13.1: Fatigue and fracture analysis within the framework of Damage Tolerant Design
(modified after Zerbst et al. 2007). POD: probability of detection; NDT: nondestructive testing.
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A Mathematical model for geometrical
imperfections of steel liners

This Appendix presents the mathematical model for the geometry of the steel liners. At
first the parameters of the model firstly used in Part III are recalled and completed. The
coordinates of the points used to construct the model are described mathematically. The
approach described hereafter is also used for the FE models used in Part IV.

A.1 Parameters and nomenclature

The variable parameters of the model are listed hereafter:

• ri: internal radius (m);

• ts: liner’s thickness (m);

• ψη : factor for out-of-roundness η (–);

• ψu: factor for straight edge’s length1 (–) ;

• ψe: factor for linear misalignment (–);

• ψδ : factor for weld reinforcement/concavity (–);

• β : weld flank angle (deg);

• α: edge preparation angle (deg).

The calculated or constant parameters of the model are itemized hereafter:

1This parameter controls the peaking, i.e., the deviation ∆h from the circular shape.
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Appendix A. Mathematical model for geometrical imperfections of steel liners

• bw: half weld reinforcement length (m), expressed as (dimensions in m):

bw = · ts
2

sin(α/2)+0.0015 (A.1)

where the angle α results from the fact that the plates are edge-broken (crimped) prior to
welding (ASCE 2012), and 0.0015 m is half of the gap between the plates recommended,
e.g., in ISO 9692-1 (2013);

• lw = 2bw: weld reinforcement length (m);

• ∆htol: C.E.C.T. (1980) tolerance for the roof-topping (m);

∆htol =

(
2ri

1000
+

20
ts

+0.5
)
/103 (input in mm) (A.2)

• etol: C.E.C.T. (1980) tolerance for linear misalignment (m);

etol =
( ts

50
+1
)
/103 (input in mm) (A.3)

• δtol: C.E.C.T. (1980) tolerance for weld reinforcement/concavity (m);

δtol =

[
1+

3
100

(ts + lw)
]
/103 if ψd ≥ 0 (input in mm) (A.4)

δtol =

(
ts + lw
100

)
/103 if ψd < 0 (input in mm) (A.5)

• ηtol: C.E.C.T. (1980) tolerance for out-of-roundness (m);

ηtol = 0.01ri (A.6)

• lu = ψuts: length of straight edges (m);

• γ = 2lu/ri: angular misalignment (rad);

• e = ψeetol: linear misalignment (m);

• η = ψηηtol: out-of-roundness (m);

• δ = ψδ δtol: weld reinforcement/concavity (m);

• rmax = ri +η : maximum axis of the liner (ellipse) (m);

• rmin = ri−η : minimum axis of the liner (ellipse) (m);

• x0,l = 0: x-coordinate of the center of the ellipse representing the left part of the liner (m);
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A.2. Rolled plates

• y0,l = 0: y-coordinate of the center of the ellipse representing the left part of the liner (m);

• x0,r = 0: x-coordinate of the center of the ellipse representing the right part of the liner
(m);

• y0,r =−e/2: y-coordinate of the center of the ellipse representing the right part of the liner
(m);

• al = rmin + e/4: horizontal internal axis of the left ellipse (m);

• bl = rmax + e/4: vertical internal axis of the left ellipse (m);

• ar = rmin− e/4: horizontal internal axis of the right ellipse (m);

• br = rmax− e/4: vertical internal axis of the right ellipse (m).

A point located by coordinates xi and yi is denoted PPPi. The geometry of the steel liners described
by the mathematical model developed hereafter is presented in Fig. A.1, where the main points
are shown.

A.2 Rolled plates

In order to combine both the out-of-roundness and the linear misalignment at the longitudinal
butt welds, the left and right circular (or elliptical) parts of the steel liner are modeled with four
ellipses (two for the internal fiber and two for the external fiber, see Fig. A.1) whose points’
coordinates are functions of θ as

{
xr,int,l = x0,l +al cos(θl)

yr,int,l = y0,l +bl sin(θl)
(A.7)

{
xr,ext,l = x0,l +(al + ts)cos(θl)

yr,ext,l = y0,l +(bl + ts)sin(θl)
(A.8)

with θl ∈ [π/2+ γ/2,3/2π] for the left part and
{

xr,int,r = x0,r +ar cos(θr)

yr,int,r = y0,r +br sin(θr)
(A.9)

{
xr,ext,r = x0,r +(ar + ts)cos(θr)

yr,ext,r = y0,r +(br + ts)sin(θr)
(A.10)

with θr ∈ [−π/2,π/2− γ/2] for the right part.
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Appendix A. Mathematical model for geometrical imperfections of steel liners

Pn,int,r

Pn,ext,r

φint

γ

P0,l

P0,r

Pr,int,l(θ=π)

Pr,ext,l(θ=π)

Pr,int,l(θ=3π/2)

Pr,ext,l(θ=3π/2)
Pr,int,r(θ=-π/2)

Pr,ext,r(θ=-π/2)

Pr,int,r(θ=0)

Pr,ext,r(θ=0)

Pr,int,l(θ=π/2+γ/2)

Pr,ext,l(θ=π/2+γ/2) Pr,ext,r(θ=π/2-γ/2)

Pr,int,r(θ=π/2-γ/2)

Pu,int,r(2)

Pu,ext,r(2)
Pu,ext,l(2)

Pu,int,l(2) Pn,int,l

Pn,ext,l

Pw,ext(4)

Pw,ext(2)
Pw,ext(3)

Pw,ext(6)

Pw,ext(5)

Pw,ext(2)

Pw,ext(3)

Pw,ext(4)
Pw,ext(5)

Pw,ext(6)

e

e/2al

br

ar

bl

θ

Figure A.1: Definition sketch of the geometrical imperfections and the local butt welded joint’s
geometry at steel liners presenting the main points of the mathematical model for the geometry.
The geometrical imperfections and the thickness of the liner are distorted for presentation
purposes.
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A.3. Straight edges

A.3 Straight edges

The straight edges of the steel plates are inherent to the rolling process and are considered
as tangential to the respective ellipses. As a consequence, the internal and external fibers are
assumed to follow the equations of the tangents to the respective ellipses, until x =−bw for the
left edge and until x = bw for the right edge. The left edge is thus modeled by two straight lines
between the following coordinates both for internal and external fibers:





XXXu,int,l =[xr,int,l(π/2+ γ/2),−bw]

YYY u,int,l(1) =
b2

l
(yr,int,l(π/2+ γ/2)− y0,l)

...

...− b2
l

a2
l
· xr,int,l(π/2+ γ/2)− x0,l

yr,int,l(π/2+ γ/2)− y0,l
· [XXXu,int,l(1)− x0,l]+ y0,l

YYY u,int,l(2) =
b2

l
(yr,int,l(π/2+ γ/2)− y0,l)

...

...− b2
l

a2
l
· xr,int,l(π/2+ γ/2)− x0,l

yr,int,l(π/2+ γ/2)− y0,l
· [XXXu,int,l(2)− x0,l]+ y0,l,

(A.11)

and




XXXu,ext,l =[xr,ext,l(π/2+ γ/2),−bw]

YYY u,ext,l(1) =
(bl + ts)2

(yr,ext,l(π/2+ γ/2)− y0,l)
...

...− (bl + ts)2

(al + ts)2 ·
xr,ext,l(π/2+ γ/2)− x0,l

yr,ext,l(π/2+ γ/2)− y0,l
· [XXXu,ext,l(1)− x0,l]+ y0,l

YYY u,ext,l(2) =
(bl + ts)2

(yr,ext,l(π/2+ γ/2)− y0,l)
...

...− (bl + ts)2

(al + ts)2 ·
xr,ext,l(π/2+ γ/2)− x0,l

yr,ext,l(π/2+ γ/2)− y0,l
· [XXXu,ext,l(2)− x0,l]+ y0,l.

(A.12)

For the right edge, similarly:





XXXu,int,r =[xr,int,r(π/2− γ/2),bw]

YYY u,int,r(1) =
b2

r

(yr,int,r(π/2− γ/2)− y0,r)
...

...− b2
r

a2
r
· xr,int,r(π/2− γ/2)− x0,r

yr,int,r(π/2− γ/2)− y0,r
· [XXXu,int,r(1)− x0,r]+ y0,r

YYY u,int,r(2) =
b2

r

(yr,int,r(π/2− γ/2)− y0,r)
...

...− b2
r

a2
r
· xr,int,r(π/2− γ/2)− x0,r

yr,int,r(π/2− γ/2)− y0,r
· [XXXu,int,r(2)− x0,r]+ y0,r,

(A.13)

and
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Appendix A. Mathematical model for geometrical imperfections of steel liners





XXXu,ext,r =[xr,ext,r(π/2− γ/2),bw]

YYY u,ext,r(1) =
(br + ts)2

(yr,ext,r(π/2− γ/2)− y0,r)
...

...− (br + ts)2

(ar + ts)2 ·
xr,ext,r(π/2− γ/2)− x0,r

yr,ext,r(π/2− γ/2)− y0,r
· [XXXu,ext,r(1)− x0,r]+ y0,r

YYY u,ext,r(2) =
(br + ts)2

(yr,ext,r(π/2− γ/2)− y0,r)
...

...− (br + ts)2

(ar + ts)2 ·
xr,ext,r(π/2− γ/2)− x0,r

yr,ext,r(π/2− γ/2)− y0,r
· [XXXu,ext,r(2)− x0,r]+ y0,r.

(A.14)

A.4 Notches

A.4.1 Weld reinforcement δ > 0

Left notch

The angle φl between the straight edge and the horizontal is expressed as

φl = atan
[

YYY u,int,l(2)−YYY u,int,l(1)
XXXu,int,l(2)−XXXu,int,l(1)

]
. (A.15)

According to the fictitious notch rounding definition at weld toes (Hobbacher 2008; Radaj et al.
2013), the notches are modeled by arcs of radius ρ . The coordinates of the center of the left
internal notch are expressed as

{
x0,n,int,l = XXXu,int,l(2)+ρ sin(φl)

y0,n,int,l = YYY u,int,l(2)−ρ cos(φl).
(A.16)

The equation of the notch’s points is then expressed as
{

xn,int,l = x0,n,int,l +ρ cos(θ)
yn,int,l = y0,n,int,l +ρ sin(θ)

(A.17)

with θ ∈ [π/2+φl,π/2+φl−β ]. Similarly, for the external notch:
{

x0,n,ext,l = XXXu,ext,l(2)−ρ sin(φl)

y0,n,ext,l = YYY u,ext,l(2)+ρ cos(φl)
(A.18)

and
{

xn,ext,l = x0,n,ext,l +ρ cos(θ)
yn,ext,l = y0,n,ext,l +ρ sin(θ)

(A.19)
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A.4. Notches

with θ ∈ [−π/2+φl,−π/2+φl +β ].

Right notch

The angle φr between the straight edge and the horizontal is expressed as

φr = atan
[

YYY u,int,r(2)−YYY u,int,r(1)
−XXXu,int,r(2)+XXXu,int,r(1)

]
. (A.20)

The coordinates of the center of the right internal notch are expressed as
{

x0,n,int,r = XXXu,int,r(2)−ρ sin(φr)

y0,n,int,r = YYY u,int,r(2)−ρ cos(φr).
(A.21)

The equation of the notch’s points is then expressed as
{

xn,int,r = x0,n,int,r +ρ cos(θ)
yn,int,r = y0,n,int,r +ρ sin(θ)

(A.22)

with θ ∈ [π/2−φr,π/2−φr +β ]. Similarly, for the external notch:
{

x0,n,ext,r = XXXu,ext,r(2)+ρ sin(φr)

y0,n,ext,r = YYY u,ext,r(2)+ρ cos(φr),
(A.23)

and
{

xn,ext,r = x0,n,ext,r +ρ cos(θ)
yn,ext,r = y0,n,ext,r +ρ sin(θ)

(A.24)

with θ ∈ [−π/2−φr,−π/2−φr−β ].

A.4.2 Weld reinforcement δ = 0

The angles between the internal and external fibers of the welds (represented as a straight line
between left and right notches when δ = 0) with the horizontal are given by:

φext = atan
[

YYY u,ext,l(2)−YYY u,ext,r(2)
−XXXu,ext,l(2)+XXXu,ext,r(2)

]
(A.25)

and

φint = atan
[

YYY u,int,l(2)−YYY u,int,r(2)
−XXXu,int,l(2)+XXXu,int,r(2)

]
. (A.26)
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Left notch

The angle φl between the straight edge and the horizontal is expressed as

φl = atan
[

YYY u,int,l(2)−YYY u,int,l(1)
XXXu,int,l(2)−XXXu,int,l(1)

]
. (A.27)

The coordinates of the center of the left internal notch are expressed as
{

x0,n,int,l = XXXu,int,l(2)+ρ sin(φl)

y0,n,int,l = YYY u,int,l(2)−ρ cos(φl).
(A.28)

The equation of the notch’s points is then expressed as
{

xn,int,l = x0,n,int,l +ρ cos(θ)
yn,int,l = y0,n,int,l +ρ sin(θ)

(A.29)

with θ ∈ [π/2+φl,π/2−φint]. Similarly, for the external notch:
{

x0,n,ext,l = XXXu,ext,l(2)+ρ sin(φl)

y0,n,ext,l = YYY u,ext,l(2)−ρ cos(φl),
(A.30)

and
{

xn,ext,l = x0,n,ext,l +ρ cos(θ)
yn,ext,l = y0,n,ext,l +ρ sin(θ)

(A.31)

with θ ∈ [π/2+φl,π/2−φext].

Right notch

The angle φr between the straight edge and the horizontal is expressed as

φr = atan
[

YYY u,int,r(2)−YYY u,int,r(1)
−XXXu,int,r(2)+XXXu,int,r(1)

]
. (A.32)

1. If φext ≥ φr:

The coordinates of the center of the right internal notch are expressed as
{

x0,n,int,r = XXXu,int,r(2)+ρ sin(φr)

y0,n,int,r = YYY u,int,r(2)+ρ cos(φr).
(A.33)
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A.4. Notches

The equation of the notch’s points is then expressed as
{

xn,int,r = x0,n,int,r +ρ cos(θ)
yn,int,r = y0,n,int,r +ρ sin(θ)

(A.34)

with θ ∈ [−π/2−φr,−π/2−φint]. Similarly, for the external notch:
{

x0,n,ext,r = XXXu,ext,r(2)+ρ sin(φr)

y0,n,ext,r = YYY u,ext,r(2)+ρ cos(φr),
(A.35)

and
{

xn,ext,r = x0,n,ext,r +ρ cos(θ)
yn,ext,r = y0,n,ext,r +ρ sin(θ)

(A.36)

with θ ∈ [−π/2−φr,−π/2−φext].

2. Else if φext < φr:

The coordinates of the center of the right internal notch are expressed as
{

x0,n,int,r = XXXu,int,r(2)−ρ sin(φr)

y0,n,int,r = YYY u,int,r(2)−ρ cos(φr).
(A.37)

The equation of the notch’s points is then expressed as
{

xn,int,r = x0,n,int,r +ρ cos(θ)
yn,int,r = y0,n,int,r +ρ sin(θ

(A.38)

with θ ∈ [π/2−φr,π/2−φint]. Similarly, for the external notch:
{

x0,n,ext,r = XXXu,ext,r(2)−ρ sin(φr)

y0,n,ext,r = YYY u,ext,r(2)−ρ cos(φr),
(A.39)

and
{

xn,ext,r = x0,n,ext,r +ρ cos(θ)
yn,ext,r = y0,n,ext,r +ρ sin(θ)

(A.40)

with θ ∈ [π/2−φr,π/2−φext].
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A.4.3 Weld reinforcement δ < 0

Left notch

The angle φl between the straight edge and the horizontal is expressed as

φl = atan
[

YYY u,int,l(2)−YYY u,int,l(1)
XXXu,int,l(2)−XXXu,int,l(1)

]
. (A.41)

The coordinates of the center of the left internal notch are expressed as
{

x0,n,int,l = XXXu,int,l(2)−ρ sin(φl)

y0,n,int,l = YYY u,int,l(2)+ρ cos(φl).
(A.42)

The equation of the notch’s points is then expressed as
{

xn,int,l = x0,n,int,l +ρ cos(θ)
yn,int,l = y0,n,int,l +ρ sin(θ)

(A.43)

with θ ∈ [−π/2+φl,−π/2+φl +β ]. Similarly, for the external notch:
{

x0,n,ext,l = XXXu,ext,l(2)+ρ sin(φl)

y0,n,ext,l = YYY u,ext,l(2)−ρ cos(φl),
(A.44)

and
{

xn,ext,l = x0,n,ext,l +ρ cos(θ)
yn,ext,l = y0,n,ext,l +ρ sin(θ)

(A.45)

with θ ∈ [π/2+φl,π/2+φl−β ].

Right notch

The angle φr between the straight edge and the horizontal is expressed as

φr = atan
[

YYY u,int,r(2)−YYY u,int,r(1)
−XXXu,int,r(2)+XXXu,int,r(1)

]
. (A.46)

The coordinates of the center of the right internal notch are expressed as
{

x0,n,int,r = XXXu,int,r(2)+ρ sin(φr)

y0,n,int,r = YYY u,int,r(2)+ρ cos(φr).
(A.47)
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A.5. Control points for the weld profile

The equation of the notch’s points is then expressed as
{

xn,int,r = x0,n,int,r +ρ cos(θ)
yn,int,r = y0,n,int,r +ρ sin(θ)

(A.48)

with θ ∈ [−π/2−φr,−π/2−φr−β ]. Similarly, for the external notch:
{

x0,n,ext,r = XXXu,ext,r(2)−ρ sin(φr)

y0,n,ext,r = YYY u,ext,r(2)−ρ cos(φr),
(A.49)

and
{

xn,ext,r = x0,n,ext,r +ρ cos(θ)
yn,ext,r = y0,n,ext,r +ρ sin(θ)

(A.50)

with θ ∈ [π/2−φr,π/2−φr +β ].

A.5 Control points for the weld profile

For the sake of concision, some nomenclature is introduced hereafter.

1. If weld reinforcement δ > 0:

• Left notch:
{

θint,l =+π/2+φl−β
θext,l =−π/2+φl +β ;

(A.51)

• Right notch:
{

θint,r =+π/2−φr +β
θext,r =−π/2−φr−β .

(A.52)

2. If weld reinforcement δ = 0:

• Left notch:
{

θint,l = π/2−φint

θext,l = π/2−φext;
(A.53)

• Right notch:

(a) if φext ≥ φr:
{

θint,r =−π/2−φint

θext,r =−π/2−φext;
(A.54)
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(b) if φext < φr:
{

θint,r = π/2−φint

θext,r = π/2−φext.
(A.55)

3. If weld reinforcement δ < 0:

• Left notch:
{

θint,l =−π/2+φl +β
θext,l =+π/2+φl−β ;

(A.56)

• Right notch:
{

θint,r =−π/2−φr−β
θext,r =+π/2−φr +β .

(A.57)

A.5.1 Internal weld surface

The distance between the two internal notches is expressed as

lw,int =
{
[xn,int,l(θint,l)− xn,int,r(θint,r)]

2 +[yn,int,l(θint,l)− yn,int,r(θint,r)]
2
}1/2

. (A.58)

The coordinates of the arbitrarily defined control points for the B-splines are defined as follows:

XXXw,int =[xn,int,l(θint,l),

xn,int,l(θint,l)+0.02 · lw,int cos
{

atan
[

xn,int,l(θint,l)

yn,int,l(θint,l)

]}
,

XXXu,int,l(2)+XXXu,int,r(2)
2

−0.05 · [xn,int,r(θint,r)− xn,int,l(θint,l)]...

...−δ sin
{

atan
[

yn,int,l(θint,l)− yn,int,r(θint,r)

xn,int,r(θint,r)− xn,int,l(θint,l)

]}
,

XXXu,int,l(2)+XXXu,int,r(2)
2

−δ sin
{

atan
[

yn,int,l(θint,l)− yn,int,r(θint,r)

xn,int,r(θint,r)− xn,int,l(θint,l)

]}
,

XXXu,int,l(2)+XXXu,int,r(2)
2

+0.05 · [xn,int,r(θint,r)− xn,int,l(θint,l)]...

...−δ sin
{

atan
[

yn,int,l(θint,l)− yn,int,r(θint,r)

xn,int,r(θint,r)− xn,int,l(θint,l)

]}
,

xn,int,r(θint,r)−0.02 · lw,int cos
{

atan
[

xn,int,r(θint,r)

yn,int,r(θint,r)

]}
,

xn,int,r(θint,r)] ,

(A.59)
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and

YYY w,int =[yn,int,l(θint,l),

y0,n,int,l +
ρ2

yn,int,l(θint,l)− y0,n,int,l
− xn,int,l(θint,l)− x0,n,int,l

yn,int,l(θint,l)− y0,n,int,l
· [XXXw,int(2)− x0,n,int,l],

YYY u,int,l(2)+YYY u,int,r(2)
2

+0.05 · [yn,int,l(θint,l)− yn,int,r(θint,r)]...

...−δ cos
{

atan
[

yn,int,l(θint,l)− yn,int,r(θint,r)

xn,int,r(θint,r)− xn,int,l(θint,l)

]}
,

YYY u,int,l(2)+YYY u,int,r(2)
2

−δ cos
{

atan
[

yn,int,l(θint,l)− yn,int,r(θint,r)

xn,int,r(θint,r)− xn,int,l(θint,l)

]}
,

YYY u,int,l(2)+YYY u,int,r(2)
2

−0.05 · [yn,int,l(θint,l)− yn,int,r(θint,r)]...

...−δ cos
{

atan
[

yn,int,l(θint,l)− yn,int,r(θint,r)

xn,int,r(θint,r)− xn,int,l(θint,l)

]}
,

y0,n,int,r +
ρ2

yn,int,r(θint,r)− y0,n,int,r
− xn,int,r(θint,r)− x0,n,int,r

yn,int,r(θint,r)− y0,n,int,r
· [XXXw,int(6)− x0,n,int,r],

yn,int,r(θint,r)] .

(A.60)

A.5.2 External weld surface

The distance between the two external notches is expressed as

lw,ext =
{
[xn,ext,l(θext,l)− xn,ext,r(θext,r)]

2 +[yn,ext,l(θext,l)− yn,ext,r(θext,r)]
2
}1/2

. (A.61)
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The coordinates of the arbitrarily defined control points for the B-splines are defined as follows:

XXXw,ext =[xn,ext,l(θext,l),

xn,ext,l(θext,l)+0.02 · lw,ext cos
{

atan
[

xn,ext,l(θext,l)

yn,ext,l(θext,l)

]}
,

XXXu,ext,l(2)+XXXu,ext,r(2)
2

−0.05 · [xn,ext,r(θext,r)− xn,ext,l(θext,l)]...

...−δ sin
{

atan
[

yn,ext,l(θext,l)− yn,ext,r(θext,r)

xn,ext,r(θext,r)− xn,ext,l(θext,l)

]}
,

XXXu,ext,l(2)+XXXu,ext,r(2)
2

−δ sin
{

atan
[

yn,ext,l(θext,l)− yn,ext,r(θext,r)

xn,ext,r(θext,r)− xn,ext,l(θext,l)

]}
,

XXXu,ext,l(2)+XXXu,ext,r(2)
2

+0.05 · [xn,ext,r(θext,r)− xn,ext,l(θext,l)]...

...−δ sin
{

atan
[

yn,ext,l(θext,l)− yn,ext,r(θext,r)

xn,ext,r(θext,r)− xn,ext,l(θext,l)

]}
,

xn,ext,r(θext,r)−0.02 · lw,ext cos
{

atan
[

xn,ext,r(θext,r)

yn,ext,r(θext,r)

]}
,

xn,ext,r(θext,r)] ,

(A.62)

and

YYY w,ext =[yn,ext,l(θext,l),

y0,n,ext,l +
ρ2

yn,ext,l(θext,l)− y0,n,ext,l
− xn,ext,l(θext,l)− x0,n,ext,l

yn,ext,l(θext,l)− y0,n,ext,l
· [XXXw,ext(2)− x0,n,ext,l],

YYY u,ext,l(2)+YYY u,ext,r(2)
2

+0.05 · [yn,ext,l(θext,l)− yn,ext,r(θext,r)]...

...+δ cos
{

atan
[

yn,ext,l(θext,l)− yn,ext,r(θext,r)

xn,ext,r(θext,r)− xn,ext,l(θext,l)

]}
,

YYY u,ext,l(2)+YYY u,ext,r(2)
2

+δ cos
{

atan
[

yn,ext,l(θext,l)− yn,ext,r(θext,r)

xn,ext,r(θext,r)− xn,ext,l(θext,l)

]}
,

YYY u,ext,l(2)+YYY u,ext,r(2)
2

−0.05 · [yn,ext,l(θext,l)− yn,ext,r(θext,r)]...

...+δ cos
{

atan
[

yn,ext,l(θext,l)− yn,ext,r(θext,r)

xn,ext,r(θext,r)− xn,ext,l(θext,l)

]}
,

y0,n,ext,r +
ρ2

yn,ext,r(θext,r)− y0,n,ext,r
− xn,ext,r(θext,r)− x0,n,ext,r

yn,ext,r(θext,r)− y0,n,ext,r
· [XXXw,ext(6)− x0,n,ext,r],

yn,ext,r(θext,r)] .

(A.63)
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A.6. Splines for weld’s profile in ANSYS R© MechanicalTM

A.6 Splines for weld’s profile in ANSYS R© MechanicalTM

In the FE models of this project, the weld’s profile is built using the command BSPLIN (ANSYS
Inc 2011). For the internal weld’s fiber, the spline is generated to fit the keypoints PPPw,int(1),
PPPw,int(4) and PPPw,int(7) (see Fig. A.1). Tangents are imposed at each keypoint. At PPPw,int(1), the
tangent vector is defined by PPPw,int(1) and PPPw,int(2), at PPPw,int(4) by PPPw,int(3) and PPPw,int(5), and at
PPPw,int(7) by PPPw,int(6) and PPPw,int(7).

Similarly, for the external fiber, the spline is generated to fit the keypoints PPPw,ext(1), PPPw,ext(4) and
PPPw,ext(7) (see Fig. A.1), with the tangents imposed correspondingly.

A.7 Splines for weld’s in MATLAB R© for presentation purposes,
using the NURBS Libraries (based on Dedè 2015 and Cottrell
et al. 2009)

For presentation purposes, some figures herein were plotted with MATLAB R© (2012), using the
NURBS Libraries, as described below.

Both internal and external weld fibers are plotted with NURBS curves in Rd as:

CCC(ξ ) =
n

∑
i=1

Ri,p(ξ )PPPi (A.64)

where:

• Ri,p(ξ ) = NURBS basis functions in R;

• PPPi = control points in Rd which define a control polygon.

NURBS basis functions are built from B-spline basis functions Ni,p(ξ ) by associating to each of
them weights wi ∈ R (assuming wi > 0) as

RRRi,p(ξ ) =
Ni,p(ξ )wi

∑n
j=1 N j,p(ξ )w j

, i = 1, ...,n. (A.65)

The B-spline basis functions Ni,p(ξ ), i = 1, ...,n, are built with the Cox - de Boor recursion
formula:
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• for p′ = 0:

Ni,0(ξ ) =





1 if ξi ≤ ξ ≤ ξi+1

0 otherwise
(A.66)

• for p′ = 1,2,3, ..., p:

Ni,p′(ξ ) =
ξ −ξi

ξi+p′−ξi
Ni,p′−1(ξ )+

ξi+p′+1−ξ
ξi+p′+1−ξi+1

Ni+1,p′−1(ξ ) (A.67)

The knot vector, for both internal and external surfaces, is chosen as

Ξ =

{
0,0,0,

1
10

,
1
2
,
1
2
,

9
10

,1,1,1
}
. (A.68)

The control points are defined as

PPPi,int = [XXXw,int(i),YYY w,int(i)] (A.69)

for the internal weld surface and as

PPPi,ext = [XXXw,ext(i),YYY w,ext(i)]. (A.70)

In this case, p = 2 and n = 7. The physical domain is R2 (d = 2). The weights wi are all equal to
1 (i.e., the NURBS reduces to a B-spline).
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B Stress intensity factors solutions

This appendix presents the analytical solutions published by Newman Jr & Raju (1981a)
and Anderson (2005) (reported in API 2007) for stress intensity factors for axial semi-
elliptical surface crack and embedded elliptical cracks in plates. These solutions are used
and extended to compute stress intensity factors for cracks at the longitudinal butt welded
joints of steel-lined pressure tunnels and shafts in Parts IV and V.

B.1 Axial semi-elliptical surface crack in plates subject to mem-
brane and bending stresses (a/c≤ 1)

The SIF for semi-elliptical surface cracks in plates can be computed according to Newman Jr &
Raju (1981a) as

KI = [Mm (σm + pcr)+Mbσb]

√
πa
Q

(B.1)

where the flaw shape parameters Q can be approximated as

Q = 1.0+1.464
(a

c

)1.65
. (B.2)

B.1.1 Membrane correction factor

The membrane correction factor is expressed as

Mm =

[
M1 +M2

(
a
ts

)2

+M3

(
a
ts

)4
]

g fφ fw (B.3)
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where:

M1 = 1.13−0.09
(a

c

)
; (B.4)

M2 =
0.89

0.2+
a
c

−0.54; (B.5)

M3 = 0.5− 1

0.65+
a
c

+14
[
1− a

c

]24
; (B.6)

and

g = 1+

[
0.1+0.35

(
a
ts

)2
]
(1− sinφ)2 ; (B.7)

fφ =

[(a
c

)2
cos2 φ + sin2 φ

]0.25

; (B.8)

fw = 1. (B.9)

The finite width correction factor have been set to fw = 1 because of the assumed infinite
dimension along the tunnel axis.

B.1.2 Bending correction factor

The bending correction factor is expressed as

Mb = MmH (B.10)

with

H = H1 +(H2−H1)sinq φ (B.11)

where:

H1 = 1−0.34
(

a
ts

)
−0.11

(a
c

)( a
ts

)
; (B.12)

H2 = 1+G1

(
a
ts

)
+G2

(
a
ts

)2

; (B.13)

q = 0.2+
(a

c

)
+0.6

(
a
ts

)
; (B.14)
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B.2. Axial embedded elliptical crack in plates subject to membrane and bending stresses
(a/c≤ 1)

and

G1 =−1.22−0.12
(a

c

)
; (B.15)

G2 = 0.55−1.05
(a

c

)0.75
+0.47

(a
c

)1.5
. (B.16)

B.2 Axial embedded elliptical crack in plates subject to membrane
and bending stresses (a/c≤ 1)

The SIF for embedded elliptical cracks in plates can be computed according to Anderson (2005)
(reported in API 2007) as

KI = [Mm (σme + pcr)+Mbσbe]

√
πa
Q

(B.17)

where Q is approximated by Eq. B.2.

B.2.1 Membrane correction factor

Defining α = a/c, β1 = a/d1 and β2 = a/d2, the membrane correction factor is expressed as

Mm = Hφ fφ fw (B.18)

with

Hφ =
1
2

sin2 φ [H90 (1+ sinφ)+H270 (1− sinφ)]+H0 cos2 φ ; (B.19)

fφ =

[(a
c

)2
cos2 φ + sin2 φ

]0.25

; (B.20)

fw = 1. (B.21)

where:

H90 = h1(α,β1)h3(α,β2); (B.22)

H0 = h2(α,β1)h2(α,β2); (B.23)

H270 = h3(α,β1)h1(α,β2); (B.24)

and

h1(α,βi) = 1+
(
−0.04+

0.085
0.34+α

)
β 2

i +(0.05−0.03α)β 4
i ; (B.25)
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h2(α,βi) = 1+
(
−0.03+

0.075
0.30+α

)
β 2

i +

(
0.08− 0.024

0.1+α

)
β 4

i ; (B.26)

h3(α,βi) = 1+
(
−0.06+

0.070
0.25+α

)
β 2

i +(0.643−0.343α)β 4
i . (B.27)

B.2.2 Bending correction factor

The bending correction factor is expressed as

Mb =−
[
0.5+0.2591α1.5−0.09189α2.5] fφ fw fβ sinφ (B.28)

where

fβ =
f270 + f90

2
− f270− f90

2
sinφ ; (B.29)

f90 = 1+ exp
[
−1.9249−3.9087α0.5 +4.1067β 3

2
]

; (B.30)

f270 = 1+ exp
[
−1.9249−3.9087α0.5 +4.1067β 3

1
]
. (B.31)
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C Lognormal distribution

This appendix introduces the lognormal distribution used to characterize some of the
stochastic variables in Chapters 11 and 12. The nomenclature used in this report for the
parameters is therefore clarified, allowing a straight forward interpretation.

The lognormal distribution is often used is engineering stochastic applications where a random
variable X cannot have a negative value, considering the natural logarithm of X (Haldar &
Mahadevan 2000). The normal and lognormal distributions are closely related as if a random
variable X follows a lognormal distribution, then lnX has a normal distribution. The lognormal
probability density function is expressed as

fX(x) =
1

xσ
√

2π
exp
[−(lnx−µ)2

2σ2

]
(C.1)

where µ and σ are the mean and standard deviation, respectively, of the associated normal
distribution. The mean m and the variance v of the lognormal random variable can be calculated
as

m = exp
(

µ +
σ2

2

)
(C.2)

and

v = exp
(
2µ +σ2)[exp(σ2)−1

]
, (C.3)
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respectively. From the above equations, one can also express the parameters µ and σ as functions
of m and v, as

µ = ln
[

m2
√

v+m2

]
, (C.4)

and

σ =

√
ln
[ v

m2 +1
]
. (C.5)
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Appendix D. Results from the Monte Carlo simulations conducted in Chapter 11
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Appendix E. Results from the Monte Carlo simulations conducted in Chapter 12

Table E.1: Results from the Monte Carlo simulations of semi-elliptical internal surface cracks
in inert environment.

ai fy SF ts
pc

pi

pc,real

pi
NMC p f ε10−5 εp f

[
∆pi

pi,mean

]

th
Occurrences

of
Nw,p

Np
= 1

(mm) (MPa) (–) (mm) (%) (%) (–) (–) (%) (%) (%) (–)

2 690 1.1 - - - - - - - - -
2.0 - - - - - - - - -
2.2 - - - - - - - - -
2.4 - - - - - - - - -

890 1.1 - - - - - - - - -
2.0 22.9 50.0 51.7 - - - - - -
2.2 - - - - - - - - -
2.4 - - - - - - - - -

960 1.1 23.4 0.0 51.1 - - - - - -
2.0 21.2 50.0 53.7 - - - - - -
2.2 23.6 49.5 50.9 - - - - - -
2.4 - - - - - - - - -

3 690 1.1 - - - - - - - - -
2.0 37.9 37.1 38.4 - - - - - -
2.2 - - - - - - - - -
2.4 - - - - - - - - -

890 1.1 25.3 0.0 49.0 - - - - - -
2.0 22.9 50.0 51.7 - - - - - -
2.2 27.8 45.2 46.6 - - - - - -
2.4 33.1 40.6 42.0 - - - - - -

960 1.1 23.4 0.0 51.1 - - - - - -
2.0 21.2 50.0 53.7 1 ·106 0.00 32 ∞ 3.8 0
2.2 23.6 49.5 50.9 - - - - - -
2.4 28.5 44.6 46.0 - - - - - -

4 690 1.1 - - - - - - - - -
2.0 37.9 37.1 38.4 6 ·105 0.00 41 ∞ 3.8 0
2.2 - - - - - - - - -
2.4 - - - - - - - - -

890 1.1 25.3 0.0 49.0 - - - - - -
2.0 22.9 50.0 51.7 6 ·105 1.67 ·10−6 41 100 3.8 0
2.2 27.8 45.2 46.6 - - - - - -
2.4 33.1 40.6 42.0 - - - - - -

960 1.1 23.4 0.0 51.1 6 ·105 0.00 41 ∞ 3.8 0
2.0 21.2 50.0 53.7 5 ·105 2.00 ·10−6 45 100 3.8 0
2.2 23.6 49.5 50.9 - - - - - -
2.4 28.5 44.6 46.0 - - - - - -
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Table E.2: Results from the Monte Carlo simulations of semi-elliptical internal surface cracks
in aggressive environment.

ai fy SF ts
pc

pi

pc,real

pi
NMC p f ε10−5 εp f

[
∆pi

pi,mean

]

th
Occurrences

of
Nw,p

Np
= 1

(mm) (MPa) (–) (mm) (%) (%) (–) (–) (%) (%) (%) (–)

2 690 1.1 - - - - - - - - -
2.0 - - - - - - - - -
2.2 - - - - - - - - -
2.4 - - - - - - - - -

890 1.1 - - - - - - - - -
2.0 22.9 50.0 51.7 1 ·106 4.00 ·10−6 32 50 3.8 0
2.2 - - - - - - - - -
2.4 - - - - - - - - -

960 1.1 23.4 0.0 51.1 1 ·106 2.00 ·10−6 32 71 3.8 0
2.0 21.2 50.0 53.7 8 ·105 1.25 ·10−5 35 32 3.8 0
2.2 23.6 49.5 50.9 1 ·106 0.00 32 ∞ 3.8 0
2.4 - - - - - - - - -

3 690 1.1 - - - - - - - - -
2.0 37.9 37.1 38.4 5 ·105 0.00 45 ∞ 3.8 0
2.2 - - - - - - - - -
2.4 - - - - - - - - -

890 1.1 25.3 0.0 49.0 6 ·105 7.67 ·10−5 41 15 3.8 2
2.0 22.9 50.0 51.7 6 ·105 3.82 ·10−4 41 7 3.8 0
2.2 27.8 45.2 46.6 8 ·105 1.38 ·10−5 35 30 3.8 4
2.4 33.1 40.6 42.0 1 ·106 0.00 32 ∞ 3.8 0

960 1.1 23.4 0.0 51.1 6 ·105 1.78 ·10−4 41 10 3.8 25
2.0 21.2 50.0 53.7 5 ·105 7.06 ·10−4 45 5 3.8 7
2.2 23.6 49.5 50.9 8 ·105 1.55 ·10−4 35 9 3.8 36
2.4 28.5 44.6 46.0 1 ·106 7.00 ·10−6 32 38 3.8 10

4 690 1.1 - - - - - - - - -
2.0 37.9 37.1 38.4 5 ·105 6.00 ·10−6 45 58 3.8 0
2.2 - - - - - - - - -
2.4 - - - - - - - - -

890 1.1 25.3 0.0 49.0 3 ·105 1.57 ·10−3 58 5 3.8 14
2.0 22.9 50.0 51.7 1 ·105 8.04 ·10−3 100 4 3.8 0
2.2 27.8 45.2 46.6 4 ·105 2.60 ·10−4 50 10 3.8 39
2.4 33.1 40.6 42.0 6 ·105 1.00 ·10−5 41 41 3.8 14

960 1.1 23.4 0.0 51.1 2 ·105 2.74 ·10−3 70 4 3.8 134
2.0 21.2 50.0 53.7 1 ·105 1.30 ·10−2 100 3 3.8 32
2.2 23.6 49.5 50.9 3 ·105 2.64 ·10−3 58 4 3.8 231
2.4 28.5 44.6 46.0 5 ·105 1.40 ·10−4 45 12 3.8 100
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Appendix E. Results from the Monte Carlo simulations conducted in Chapter 12

Table E.3: Results from the Monte Carlo simulations of embedded elliptical cracks in inert
environment.

ai fy SF ts
pc

pi

pc,real

pi
NMC p f ε10−5 εp f

[
∆pi

pi,mean

]

th
Occurrences

of
Nw,p

Np
= 1

(mm) (MPa) (–) (mm) (%) (%) (–) (–) (%) (%) (%) (–)

2 690 1.1 - - - - - - - - -
2.0 - - - - - - - - -
2.2 - - - - - - - - -
2.4 - - - - - - - - -

890 1.1 - - - - - - - - -
2.0 22.9 50.0 51.7 - - - - - -
2.2 - - - - - - - - -
2.4 - - - - - - - - -

960 1.1 23.4 0.0 51.1 - - - - - -
2.0 21.2 50.0 53.7 - - - - - -
2.2 23.6 49.5 50.9 - - - - - -
2.4 - - - - - - - - -

3 690 1.1 - - - - - - - - -
2.0 37.9 37.1 38.4 - - - - - -
2.2 - - - - - - - - -
2.4 - - - - - - - - -

890 1.1 25.3 0.0 49.0 - - - - - -
2.0 22.9 50.0 51.7 - - - - - -
2.2 27.8 45.2 46.6 - - - - - -
2.4 33.1 40.6 42.0 - - - - - -

960 1.1 23.4 0.0 51.1 - - - - - -
2.0 21.2 50.0 53.7 - - - - - -
2.2 23.6 49.5 50.9 - - - - - -
2.4 28.5 44.6 46.0 - - - - - -

4 690 1.1 - - - - - - - - -
2.0 37.9 37.1 38.4 1 ·106 0.00 32 ∞ 3.5 0
2.2 - - - - - - - - -
2.4 - - - - - - - - -

890 1.1 25.3 0.0 49.0 - - - - - -
2.0 22.9 50.0 51.7 - - - - - -
2.2 27.8 45.2 46.6 - - - - - -
2.4 33.1 40.6 42.0 - - - - - -

960 1.1 23.4 0.0 51.1 - - - - - -
2.0 21.2 50.0 53.7 1 ·106 0.00 32 ∞ 3.5 0
2.2 23.6 49.5 50.9 - - - - - -
2.4 28.5 44.6 46.0 - - - - - -
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KOCAŃDA, D. & JASZTAL, M. (2012). Probabilistic predicting the fatigue crack growth under
variable amplitude loading. International Journal of Fatigue 39(June), 68–74.

KOÇAK, M. (2007). FITNET fitness-for-service procedure: an overview. Welding in the World
51(5), 94–105.

KOÇAK, M., SEIB, E. & MOTARJEMI, A. (2007a). Treatments of structural welds using FITNET
fitness-for-service assessment procedure. Welding in the World 51(5/6), 106–118.

KOÇAK, M., WEBSTER, S. & HADLEY, I. (2007b). Fracture assessment of flaws in weldments
using FITNET FFS procedure: an overview. Key Engineering Materials 345-346, 401–409.

KOÇAK, M., WEBSTER, S., JANOSCH, J. J., AINSWORTH, R. A. & KOERS, R. (2008).
FITNET Fitness-for-Service (FFS) Procedure. Tech. rep. Revision MK8.

KOCHUPILLAI, J., GANESAN, N. & PADMANABHAN, C. (2005). A new finite element
formulation based on the velocity of flow for water hammer problems. International Journal
of Pressure Vessels and Piping 82(1), 1–14.

KOFLER, W., SCHNEIDER, K. & SCHULER, X. (2015). Guideline for the assessment of fatigue
loaded components in hydropower plants. WasserWirtschaft 1, 99–103.

KONDO, Y. (2003). 4.10 - Fatigue under variable amplitude loading. In: Comprehensive
Structural Integrity, vol. 4. Pergamon, pp. 253–279.

KOU, K. P. & BURDEKIN, F. M. (2006). Stress intensity factors for a wide range of long-deep
semi-elliptical surface cracks, partly through-wall cracks and fully through-wall cracks in
tubular members. Engineering Fracture Mechanics 73(2), 1693–1710.

KRANZ, B. & SONSINO, C. M. (2010). Verification of FAT values for the application of the
notch stress concept with the reference radii rref = 1.00 and 0.05 mm. Welding in the World
54(7/8), R218–224.

KUIKEN, G. D. C. (1984). Wave propagation in fluid lines. Applied Scientific Research 41(2),
69–91.

KUIKEN, G. D. C. (1988). Amplification of pressure fluctuations due to fluid-structure interaction.
Journal of Fluids and Structures 2(5), 425–435.

KUMAR, P. & SINGH, B. (1990). Design of reinforced concrete lining in pressure tunnels, con-
sidering thermal effects and jointed rockmass. Tunnelling and Underground Space Technology
5(1/2), 91–101.

332



Bibliography

KUMAR, V., GERMAN, M. D. & SHIH, C. F. (1981). An engineering approach for elastic-plastic
fracture analysis. EPRI-Report NP-1931, Electric Power Research Institute (EPRI), Palo Alto,
CA.

KWON, H. J. (2007). Analysis of transient flow in a piping system. KSCE Journal of Civil
Engineering 11(4), 209–214.

LASSEN, T. & SORENSEN, J. D. (2002). A probabilistic damage tolerance concept for welded
joints. Part 1: data base and stochastic modelling. Marine Structures 15(6), 599–613.

LAVOOIJ, C. S. W. & TIJSSELING, A. S. (1991). Fluid-structure interaction in liquid-filled
piping systems. Journal of Fluids and Structures 5(5), 573–595.

LAWN, B. R. (1993). Fracture of Brittle Solids. Cambridge Solid State Science, 2nd ed.

LAWRENCE, F. V., HO, N.-J. & MAZUMDAR, P. K. (1981). Predicting the fatigue resistance of
welds. Annual Review of Materials Science 11(1), 401–425.

LEANDER, J., AYGÜL, M. & NORLIN, B. (2013). Refined fatigue assessment of joints with
welded in-plane attachments by LEFM. International Journal of Fatigue 56, 25–32.

LEKHNITSKII, S. G. (1963). Theory of elasticity of an anisotropic elastic body. Holden-Day,
Inc., San Francisco.

LI, C. Q. & YANG, S. T. (2012). Stress intensity factors for high aspect ratio semi-elliptical
internal surface cracks in pipes. International Journal of Pressure Vessels and Piping 96-
97(August-September), 13–23.

LI, Q. S., YANG, K. & ZHANG, L. (2003). Analytical solution for fluid-structure interaction
in liquid-filled pipes subjected to impact-induced water hammer. Journal of Engineering
Mechanics 129(12), 1408–1417.

LI, X., CHANG, J. & LI, C. (2014). Guide vane asynchronous closure mode for improving
the transient quality of hydroturbine. Chinese Journal of Hydroelectric Engineering 33(1),
202–206.

LIE, S. T., VIPIN, S. P. & LI, T. (2015). New weld toe magnification factors for semi-elliptical
cracks in double-sided T-butt joints and cruciform X-joints. International Journal of Fatigue
80(November), 178–191.

LIE, S. T., ZHAO, Z. & YAN, S. H. (2000). Two-dimensional and three-dimensional magnifi-
cation factors, Mk, for non-load-carrying fillet welds cruciform joints. Engineering Fracture
Mechanics 65(4), 435–453.

LIU, Y. & MAHADEVAN, S. (2009). Probabilistic fatigue life prediction using an equivalent
initial flaw size distribution. International Journal of Fatigue 31(3), 476–487.

333



Bibliography

LOTSBERG, I. (2006). Fatigue design of plated structures using finite element analysis. Ships
and Offshore Structures 1(1), 45–54.

LOTSBERG, I. (2008). Stress concentration factors at welds in pipelines and tanks subjected to
internal pressure and axial force. Marine Structures 21(2-3), 138–159.

LOTSBERG, I. (2009a). Stress concentrations at butt welds in pipelines. Marine Structures 22(2),
335–337.

LOTSBERG, I. (2009b). Stress concentrations due to misalignment at butt welds in plated
structures and at girth welds in tubulars. International Journal of Fatigue 31(8-9), 1337–1345.

LOTSBERG, I. & SIGURDSSON, G. (2006a). Hot spot stress S-N curve for fatigue analysis of
plated structures. Journal of Offshore Mechanics and Arctic Engineering 128(November),
330–336.

LÜ, Q., SUN, H.-Y. & LOW, B. K. (2011). Reliability analysis of ground-support interaction in
circular tunnels using the response surface method. International Journal of Rock Mechanics
& Mining Sciences 48(8), 1329–1343.
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