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Abstract
In this work, we focus on the development and analysis of numerical techniques for the

propagation of uncertainty through a large-scale dynamical system with random parameters.

In this context, the numerical simulation of the random dynamics typically requires a large

computational cost at each time, leading to a total effort which is often computationally

unaffordable. Model order reduction techniques offer a remedy to overcome this difficulty,

by deriving models of lower dimension, thus solvable at a relatively low computational cost,

which accurately replicate the relation between input random parameter and solution dy-

namic. This idea relies on the observation that in many cases the collection of all solutions at

all times, corresponding to all possible outcomes of the input random processes, can be well

approximated in a low dimensional (low-rank) subspace. The main practical difficulty is that

such subspace is, in general, not easy to characterize a priori and might significantly change

during the evolution of the system. To overcome this problem we investigate a Dynamical

Low Rank (DLR) approach, in which the approximation subspace is not fixed a priori and

evolves in time by following the trajectory of the solution. The DLR can be interpreted as a

reduced basis method, where the approximate solution is expanded in separable form over a

set of few deterministic basis functions (modes) at each time, with the peculiarity that both

the deterministic modes and the stochastic coefficients are computed on the fly and are free

to adapt in time so as best describe the structure of the random solution.

Our first goal is to generalize and reformulate in a variational setting the Dynamically Orthog-

onal (DO) method, proposed by Sapsis and Lermusiaux (2009-2012) for the approximation

of fluid dynamic problems with random initial conditions. The DO method is reinterpreted

as a Galerkin projection of the governing equations onto the tangent space along the approx-

imate trajectory to the manifold MS , given by the collection of all functions which can be

expressed as a sum of S linearly independent deterministic modes combined with S linearly

independent stochastic modes. Depending on the parametrization of the tangent space, one

obtains a set of nonlinear differential equations, suitable for numerical integration, for both

the coefficients and the basis functions of the approximate solution. By formalizing the DLR

variational principle for parabolic PDEs with random parameters we establish a precise link

with similar techniques developed in quite different contexts such as the Multi-Configuration

Time-Dependent Hartree method (MCTDH) in quantum dynamics and the Dynamical Low-

Rank approximation in a finite dimensional setting. On the other hand, the DLR approach

gives a unified formulation for the DO method and other dynamical low-rank techniques
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such as the DyBO and the DDO method, recently proposed in the UQ context. By the use

of curvature estimates for the approximation manifold MS , we derive a theoretical bound

for the approximation error of the S−terms DO solution by the corresponding S-terms best

approximation, i.e. the truncated S−terms Karhunen-Loève expansion at each time instant.

The bound is applicable for full rank DLR approximate solutions on the largest time interval in

which the best S−terms approximation is continuously differentiable in time.

Secondly, we focus on parabolic equations, especially incompressible Navier Stokes equations,

with random Dirichlet boundary conditions and we propose a DLR technique which allows

for the strong imposition of such boundary conditions. We show that the DLR variational prin-

ciple can be set in the constrained manifold of all S rank random fields with a prescribed value

on the boundary, expressed in low-rank format, with rank M smaller than S. We characterize

the tangent space to the constrained manifold by means of the Dual Dynamically Orthogonal

(Dual DO) formulation, in which the stochastic modes are kept orthonormal and the deter-

ministic modes satisfy suitable boundary conditions, consistent with the original problem.

The same formulation is also used to conveniently include the incompressibility constraint

when dealing with incompressible Navier Stokes equations with random parameters. Hence

the latter is reduced to a set of S coupled PDEs for the evolution of the deterministic modes

(M of which with non-homogeneous boundary conditions) coupled with S−M ODEs for the

evolution of the stochastic modes. The Dual DO method has been tested on two fluid dynam-

ics problems: the classical benchmark of a laminar flow around a cylinder with random inflow

velocity, and a biomedical application for simulating blood flow in a realistic carotid artery

reconstructed from MRI data, where the inflow boundary conditions are taken as random due

to the uncertainty and large errors in Doppler measurements.

Finally, we extend the DLR approach for the approximation of wave equations with random

parameters. We propose the Symplectic DO method, according to which the governing equa-

tion is rewritten in Hamiltonian form and the approximate solution is sought in the low

dimensional manifold of all complex-valued random fields with fixed rank. Recast in the

real setting, the approximate solution is expanded over a set of few dynamical symplectic

deterministic modes and satisfies the symplectic projection of the (real) Hamiltonian system

into the tangent space of the approximation manifold along the approximate trajectory. As a

result, the approximate solution preserves the mean Hamiltonian energy and continuously

adapts in time to the structure of the solution.

Key words: Dynamical Low Rank, Dynamically Orthogonal approximation, Reduced Basis

method, Uncertainty Quantification, Navier Stokes equations, wave equations
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Résumé
Dans ce travail, nous nous concentrons sur le développement et l’analyse de techniques

numériques concernant la propagation de l’incertitude par un système dynamique à grande

échelle comportant des paramètres aléatoires. Dans ce contexte, chacune des simulations

numériques des dynamiques aléatoires exige généralement un coût computationnel élevé,

générant un effort total considérable. Les modèles d’ordre réduit offrent une solution pour

surmonter cette difficulté, en proposant des modèles de plus petites dimensions, résolubles à

un coût computationnel relativement faible et qui répliquent avec précision la relation entre

les paramètres aléatoires et la dynamique de la solution. Cette idée repose sur l’observation

que, dans de nombreux cas, la collecte de toutes les solutions en tout temps, correspondant à

tous les résultats possibles des processus aléatoires en entrée, peut être approximée effica-

cement dans un sous-espace de faible dimension (bas rang). La difficulté pratique provient

de la difficulté à caractériser a priori ce type de sous-espaces, qui peuvent de plus changer

considérablement avec l’évolution du système. Pour surmonter ce problème, nous étudions

une approche Dynamical Low Rank (DLR), dans laquelle le sous-espace d’approximation n’est

pas fixé a priori et évolue dans le temps en suivant la trajectoire de la solution. Le DLR peut être

interprété comme une méthode de base réduite, où la solution approximée est développée de

manière séparable sur un ensemble de quelques fonctions (modes) de base déterministes à

chaque instant, avec la particularité que les modes déterministes et les coefficients stochas-

tiques sont calculés à la volée et sont libres de s’adapter dans le temps afin de mieux décrire la

structure de la solution aléatoire.

Notre premier objectif est de généraliser et de reformuler dans un contexte variationnel la

méthode dite Dynamique Orthogonale (DO), proposée par Sapsis et Lermusiaux (2009-2012)

pour l’approximation de problèmes liés à la dynamique des fluides avec des conditions ini-

tiales aléatoires. La méthode DO est réinterprétée comme une projection de Galerkin des

équations gouvernantes du problème sur l’espace tangent le long de la trajectoire approximée

à la surface MS , donnée par la collection de toutes les fonctions, qui peut être exprimée par la

somme de S modes déterministes linéairement indépendants combinée à S modes stochas-

tiques linéairement indépendants. En fonction du paramétrage de l’espace tangent, on obtient

un ensemble d’équations différentielles non linéaires, adaptées à l’intégration numérique, tant

pour les coefficients que pour les fonctions de base de la solution approximée. En formalisant

le principe variationnel DLR pour les EDP paraboliques avec des paramètres aléatoires, nous

établissons un lien précis avec des techniques similaires développées dans des contextes

ii
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différents, tels que la méthode Multi-Configuration Time Dependent Hartree (MCTDH) en

dynamique quantique et l’approximation DLR en dimension finie. D’autre part, l’approche

DLR donne une formulation unifiée pour la méthode DO et d’autres techniques DLR telles

que la DyBO et la méthode DDO, récemment proposées dans le contexte UQ. En utilisant les

estimations de courbure pour la surface approximée MS , nous dérivons une borne théorique

pour l’erreur d’approximation de la solution de DO à S-termes par la meilleure approximation

S-termes, c’est-à- dire l’expansion tronquée S-Karhunen-Loève à chaque instant. La borne

est applicable pour les solutions approximées DLR de rang plein au niveau du plus grand

intervalle de temps dans lequel la meilleure approximation S-termes est différentiable en

continu dans le temps. Deuxièmement, nous nous concentrons sur les équations parabo-

liques, en particulier les équations Navier- Stokes incompressibles, avec des conditions aux

limites de Dirichlet aléatoires et nous proposons une technique DLR qui permet d’imposer

ces conditions aux limites. Nous montrons que le principe variationnel DLR peut être défini

dans une surface contrainte de tous les champs aléatoires de rang S avec une valeur prescrite

sur la frontière, exprimée en format de rang faible, avec le rang M plus petit que S. Nous carac-

térisons l’espace tangent de la surface contrainte au moyen de la formulation Dual Dynamic

Orthogonal (Dual DO), dans laquelle les modes stochastiques sont maintenus orthonormés et

les modes déterministes satisfont des conditions de limites appropriées, compatibles avec le

problème d’origine. La même formulation est également utilisée pour inclure commodément

la contrainte d’incompressibilité, lorsqu’il s’agit d’équations Navier-Stokes incompressibles

avec des paramètres aléatoires. Par conséquent, ce dernier est réduit à un ensemble S de PDE

couplées pour l’évolution des modes éterministes (dont M avec des conditions aux limites non

homogènes) associé aux S-M ODEs pour l’évolution des modes stochastiques. La méthode

Dual DO a été testée sur deux problèmes de dynamique des fluides : la référence classique

d’un flux laminaire autour d’un cylindre avec une vitesse d’entrée aléatoire et une application

biomédicale, pour simuler le flux sanguin dans une artère carotide réaliste reconstituée à partir

de données IRM, où les conditions limites d’entrée sont définies comme aléatoires en raison

de l’incertitude et des erreurs importantes liées aux mesures Doppler. Enfin, nous étendons

l’approche DLR pour l’approximation des équations des ondes avec des paramètres aléatoires.

Nous proposons la méthode DO Symplectique, selon laquelle l’équation gouvernant du pro-

blème est réécrite sous forme hamiltonienne et la solution approximée est recherchée dans

la surface de faible dimension de tous les champs aléatoires à valeur complexe de rang fixe.

Dans une configuration réelle, la solution approximée est développée sur un ensemble de

quelques modes déterministes symplectifs dynamiques et satisfait la projection symplectique

du système hamiltonien (réel) dans l’espace tangent de la surface approximée le long de la

trajectoire approximée. En conséquence, la solution approximée préserve l’énergie hamilto-

nienne moyenne et s’adapte en permanence à la structure de la solution.

Mots clefs : Dynamical Low Rank, Dynamically Orthogonal approximation, méthode de base

réduite, quantification de l’incertitude, équations Navier-Stokes, équations des ondes
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Introduction

0.1 Forward UQ Problem: motivations and scopes

The last decades have witnessed a growing demand for mathematical modelling and numer-

ical simulations in engineering applications across science and technology. Typically, the

problem of interest is described by differential equations, discretized and approximated by

numerical techniques and finally reproduced by computer simulations.

Reliable mathematical models need to take into account the presence of variability and/or

lack of precise characterization of the input data. As an example, one may think for instance

to biomedical applications simulating blow flow by means of computational fluid dynamics

(e.g. Navier Stokes equations). In this context, numerical simulations can be used as a virtual

platform to support the diagnosis of many cardiovascular diseases by predicting/quantifying

hemodynamics indicators such as cardiac functional parameters affecting the cardiovascular

anomalies. The input data of the corresponding mathematical model include physical pa-

rameters, as for instance flow viscosity, but also initial and boundary conditions, obtained in

terms of flow rates and stresses after Doppler ultrasound tests, and computational domains,

typically reconstructed from magnetic resonance images (MRI), acquired in vivo. The exact

quantification of most of those parameters is typically compromised by measurement errors,

reduced amount of data, for invasive data collections, intrinsic variability of the parameter

itself and oversimplification of the model.

Uncertainty quantification offers a possible solution to overcome the limitations of determinis-

tic mathematical models. The approach that we consider in this thesis consists in recasting the

underlying (deterministic) problem in a probabilistic framework: the sources of uncertainty

are included into the model with the goal of quantifying the variability of predicted output

quantities, and perform robust and reliable simulations. In this context one can distinguish

two main areas:

• the forward uncertainty propagation which aims to assess the impact of uncertain

inputs into the model outputs,

• inverse problem in which the aim is to reduce the uncertainty in some input, by com-

paring the outputs of the model with experimental measurements.
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In this thesis, we analyze only the first problem. We consider dynamical systems which are

described by time-dependent partial differential equations (PDEs), including parabolic dif-

fusion equations, Navier Stokes equations and second order wave equations, in which the

uncertainty may affect the coefficients of the differential operator (e.g. diffusion, advection,

reaction terms in elliptic PDEs) as well as initial and boundary conditions and forcing terms.

Understanding how uncertainty propagates through a dynamical system is an important

engineering problem, and it is currently the focus of many significant research efforts. Cases

of interest come from diffusion and transport phenomena in highly heterogeneous porous

media; propagation of seismic waves from unknown/uncertain sources and/or in randomly

heterogeneous media; internal flows such as blood flow in an artery with uncertain inflow

boundary conditions, just to name a few.

We always assume that the uncertainty in the parameters is known and properly described

in terms of its probability distribution. In other words, the parameters of the model which

are subject to uncertainty, are modelled as random variables or random fields with well know

probabilistic law. The aim is to quantify the induced variability on outputs quantities, at each

time. The numerical challenges in this context are several, especially when the distribution of

the input parameters is complex or high dimensional, and when the parameters-to-solution

map is non linear. In these cases, efficient numerical techniques are needed to guarantee

accurate approximations with affordable computational cost.

The Monte Carlo (MC) method [46, 21] is the most straightforward and popular technique to

solve forward UQ problems. In this method, the statistics of the solution are approximated

by generating a sample of M independent realizations of the random data, solving the cor-

responding M deterministic PDEs, and averaging over all the realizations. The drawback of

this method is the slow rate of convergence, meaning that large sample sizes M are needed

for accurate approximations of output statistics. For practical problems, this often leads to a

prohibitive computational effort.

In the last decades, many efforts have been devoted to build, upon the classic Monte Carlo

method, improved versions with better convergence rate. We name here the Quasi Monte

Carlo [51, 98] and the Multilevel Monte Carlo versions [37].

Contrarily to sampling methods of MC type, spectral methods aim at reconstructing the func-

tional dependence of the solution on the input parameters. This strategy, which relays on

the assumption that the parameters-to-solution map is smooth, consists in expanding the

random solution over a suitable basis, e.g. of orthogonal polynomials with respect to the

probability density function of the input parameters. Hence, practical approximations can

be computed by Galerkin projection [6, 49, 89, 11] or collocation on tensor or sparse grids of

Gauss points [5, 135, 75], with a computational cost which is drastically lower than that of

sampling techniques, provided that the assumption of regularity is satisfied. On the other

hand, this procedure becomes numerically challenging when the stochastic space has high

(infinite) dimension or the parameter-to-solution map features low regularity. Indeed, despite
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the great improvements obtained with the use of sparse techniques, spectral methods are

often exposed to the so called curse of dimensionality, i.e. an error versus cost performance

that is negatively affected by the high dimension of the underlying stochastic space and degen-

erates in the limit of infinite dimension. Moreover, independently from the gPC procedure one

chooses, the propagation of the uncertainty through dynamical systems remains a challeng-

ing task, especially for long time integrations, essentially due to the fact that the probability

distribution of the solution evolves as a function of time and might significantly deviate from

the probability distribution of the input data. Roughly speaking, at early times the solution

typically “remembers” the input parameters and its density functions stays close to that of the

random data, while for later times might start to move away from the distribution of the input

and develop its own stochastic characteristics. This implies that an approximation with fixed

(in time) polynomial basis might become more and more demanding, in the sense that more

and more terms have to be included during the evolution to properly approximate the solution.

Such difficulty arises even when dealing with simple linear systems, a classical example are

acoustic or elastic waves with uncertain random speed, as exhaustively discussed in [128, 48].

A different approach, recently proposed for the quantification of the uncertainty, is instead

based on model order reduction techniques. In this context, the approximation strategy

relays on the observation that, for certain classes of problems, the solution manifold U , i.e.

the collection of all solutions at all times and for all possible values of the input parameters,

can be well approximated by a linear subspace US of small dimension S. Roughly speak-

ing, this means that the solution of the original PDE problem, which belongs to an infinite

dimensional space, can be well approximated by a linear combination of S terms, with S

small. Assuming to be able to parametrize the approximation manifold US in terms of S

orthogonal functions, called reduced basis, then the approximation problem reduces to solve

a S dimensional system, obtained by the Galerkin projection of the governing equation onto

US . In practice, this means that the potentially high dimensional (forward) UQ problem is

reduced in the on-line stage to low-cost reduced-order simulations, which, as a consequence,

are not (deeply) affected by the curse of dimensionality. The main practical difficulty in this

approach is that the approximation subspace US is, in general, not easy to characterize a

priori. A technique widely used in the applications is the Proper Orthogonal Decomposition

(POD) [75, 20, 132, 23], according to which the reduced basis is extracted by a singular value

decomposition of the correlation matrix of the collected snapshots, i.e. a certain number

of precomputed solutions corresponding to several values of the input parameters. When

dealing with time-dependent problems, the snapshots typically need to be collected at sev-

eral time instants and the constructed reduced basis is meant to work for all times. This

negatively affects both the off-line stage, i.e. the precomputation of the snapshots and the

SVD decomposition, which here requires a considerable computational cost, and the on-line

stage, since the reduced basis typically needs to be quite rich to effectively approximate the

solution at all times. Greedy algorithms to construct the reduced basis by optimizing the

computational cost in the off-line stage, for both time-dependent and steady-state equations,
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have been recently proposed in literature and successfully applied to large classes of problems

[52, 97, 54, 43, 26, 18, 10]. However, the approximation of random dynamics, for which the

solution might significantly change over time, remains a challenging task. In this situations,

despite the use of greedy techniques, the number of reduced basis still needs to be sufficiently

large to be able to approximate the solution manifold at each time. This is in some sense

the same issue affecting the gPC approach (long time integration), if one reinterprets the

set of multivariate polynomial functions which are used in the expansion of the solution, as

a stochastic (reduced) basis with deterministic coefficients, symmetrically to the RB/POD

methods which use deterministic reduced bases with stochastic coefficients. More generally

this means that long time-integration negatively influences any low-rank methods which

make use of (a fixed number of) basis functions which are constant in time. Applications

which need to face such numerical difficulty can be found for instance in seismic engineering,

to describe the wave propagation with random source location, or in atmospheric flows and

weather forecasting, using fluid dynamic equations with random initial conditions.

The most direct attempt to overcome the limitations related to expansions of the solution on

a fixed basis, either deterministic or stochastic, consists in developing dynamical low-rank

techniques, by using time evolving basis. Roughly speaking the corresponding methods aim at

evolving the low-rank approximate solution in time, hence adapting the spatial and stochastic

basis so as to best describe the structure of the solution at each time instant, in order to

preserve both the low-rank format and the approximation accuracy. Such approach, initially

proposed in finite dimensional setting by Lubich [66, 56] with the name of Dynamical Low

Rank (DLR) approximation, and widely used in quantum mechanics for the approximation of

deterministic time-dependent Schrödinger equations, has been independently introduced

in UQ context by Sapsis and Lermusiaux [116, 117] (Dynamically Orthogonal (DO) method)

and successfully applied to problems in ocean dynamics with random data. The DLR can be

essentially seen as a reduced basis method, thus solvable at a relatively low computational

cost, in which the solution is expanded as a linear combination of few deterministic modes

with random coefficients. Its peculiarity is that both the spatial and the stochastic bases are

computed on the fly and are free to evolve, thus adjusting at each time to the current structure

of the random solution. The computational saving of the DLR method is however contrasted

by more complex implementation requirements. Contrary to sampling or collocation methods,

which take the underlying deterministic model as a black box and can directly use available

solvers, the implementation of DLR techniques depends on the structure of the governing

equation and the computational cost is made heavier by the continuous update in time of the

reduced bases. On the other hand, this allows obtaining a suitable approximation of the whole

set of solutions corresponding to all possible realizations of the input random parameters, at

each time.

From a variational point of view the approximate solution is sought in the low dimensional

manifold of all S rank random fields (functions which can be expressed as sums of S linearly

independent deterministic modes combined with S linearly independent stochastic modes);
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it is obtained by performing a Galerkin projection of the governing equations onto the (time-

dependent) tangent space to the manifold along the solution trajectory. After an explicit

parametrization of the manifold, one obtains a set of nonlinear differential equations, suitable

for numerical integration, for both the coefficients and the basis functions of the approximate

solution.

In this work, we thoroughly investigate Dynamically Low-Rank techniques for the propagation

of uncertainty through a large-scale dynamical system with random parameters. Specific types

of equations that will be considered include parabolic diffusion equations, incompressible

Navier Stokes equations, and second order wave equations.
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1 Thesis Overview

1.1 Problem setting

In this thesis, we focus on time-dependent partial differential equations (PDEs) with random

input parameters as e.g. initial or boundary conditions, model coefficients and forcing terms.

Specific types of equations that will be considered include parabolic diffusion equations,

incompressible Navier Stokes equations and second order wave equations.

We introduce here the problem setting that will be addressed in Chapter 3 and Chapter 4. The

discussion about the problem analyzed in Chapter 5 is postponed to Section 1.4.3.

Let D be an open and bounded physical domain in Rd , 1≤ d ≤ 3, with Lipschitz continuous

boundary ∂D, and let (Ω,A ,P ) be a complete probability space, where Ω is the set of out-

comes, A a σ-algebra and P : A → [0,1] a probability measure. We consider the following

general real valued problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u̇(x, t ,ω)=L (u(x, t ,ω), t ,ω), x ∈D, t ∈ (0,T ], ω ∈Ω,

u(x,0,ω)=u0(x,ω) x ∈D, ω ∈Ω,

B(u(x, t ,ω),ω)= g (x, t ) x ∈D, t ∈ (0,T ], ω ∈Ω,

(1.1)

where t and x are respectively the time variable in [0,T ] and the spatial variable in D , L is a

linear or non-linear differential operator, and B an operator defining the boundary conditions.

Here ω ∈Ω represents a random elementary event which may affect the operator L (as e.g. a

coefficient of a forcing term), the boundary conditions or the initial conditions. (The case of a

random domain can be recast to form (1.1) after introducing a mapping onto a fixed reference

configuration, but this will not be discussed in the thesis.)

We denote by L2(D) the Hilbert space of square integrable real valued functions defined in D :

L2(D)= {
u : D →R s.t.

∫
D
|u(x)|2d x <∞}
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Without further specifications, hereafter we assume that the solution u(·, t ,ω) to problem

(1.1) is in a certain real Hilbert space H ⊂ L2(D) for (almost) all t ∈ [0,T ] and ω ∈Ω and that

L (u, t ,ω) ∈H ′ for all u ∈H and almost everywhere in [0,T ] and Ω, with H ′ denoting the

dual of H .

1.2 Reduced Order Models: state of the art

The quantification of uncertainty for large scale problems is often a computationally chal-

lenging task, complicated by the typically high (infinite) dimension of the stochastic space

and made even more prohibitive when dealing with time-dependent problems. In this Sec-

tion, we describe approaches proposed in the literature, which accelerate the computation

of the approximate solution by deriving low complexity (reduced) models of the governing

equation. These are solvable at relatively low computational cost and accurately preserve the

relation between input parameters and outputs. Typically the reduction is achieved via state

projection onto a low dimensional spectral basis. In this spirit, we include here the generalized

Polynomial Chaos approach, in which the solution is approximated by a truncated expansion

over a set of stochastic global multivariate polynomial functions, as a stochastic reduced basis

with deterministic coefficients, symmetrical to the “classical” reduced order methods which

use deterministic reduced bases with stochastic coefficients.

1.2.1 Reduced Basis models

The Reduced Basis (RB) is a class of reduced order techniques that has been initially intro-

duced to approximate parametrized problems and used to speed up the computational cost

in real-time simulations and many-query contexts (e.g. optimization, control or parame-

ter identification), see e.g. [58, 110] and references therein. More recently, RB models have

also been applied to UQ problems for the computation of statistics of random solutions

[44, 28, 29, 17, 27].

The central idea of the RB approach is to approximate the potentially infinite dimensional

problem onto a linear subspace spanned by few, well chosen, deterministic basis functions.

When applied to problem (1.1), the approximate solution is sought in the form:

uRB
S (x, t ,ω)=

S∑
i=1

Ui (x)Yi (t ,ω) (1.2)

and satisfies for each ω ∈Ω, the governing equation (1.1) projected on the subspace U RB
S ,

spanned by U1, ...,US , at each time, i.e.

〈u̇RB
S (x, t ,ω)−L (uRB

S , t ,ω), v〉 = 0, ∀v ∈U RB
S , ∀(t ,ω) ∈ (0,T ]×Ω (1.3)

where 〈·, ·〉 denotes the duality paring between H and H ′, completed with proper imposition
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of the initial and boundary condition.

Computationally speaking, the key idea of this approach is to split the computations into two

parts: off-line stage and an on-line stage. The former is computationally the most expensive

and consists in the selection of the deterministic modes U1, ....,US . Depending on the strategy

used to select the reduced basis, we distinguish the proper orthogonal decomposition (POD)

[75, 20, 132, 23] and the greedy reduced basis (greedy-RB) methods [52, 97, 54, 43, 26, 18, 10].

The first is based in a “brute-force” sampling of the random parameters, which are used

to generate the set of snapshots, i.e approximate solutions to the corresponding problems

stored at several time instants (typically computed by some very accurate Finite Element

discretization). The reduced basis is then extracted by performing a truncated Singular Value

Decomposition (SVD) of the matrix collecting all snapshots. In the greedy-RB the sampling is

instead calibrated by greedy and goal oriented algorithms, usually based on some specific a

posteriori error estimators of residual type. Typically, the random parameter space is explored

in an iterative way and at each iteration, a new solution is computed for the values of the

input parameters which maximize, in some proper norm, the predicted error. Such solution is

then added into the set of collected snapshots, and the procedure is repeated until satisfying a

prescribed error tolerance. For time-dependent problems, a POD-greedy technique, which

at each greedy step is invoking a POD compression in time, is usually preferred to a pure

greedy approach in both the time and the parameter space, as the latter may generally “stall”

before arriving at convergence [53]. The on-line stage consists in the assembly of the reduced

order system (1.3), which is then solved with a computational cost that is independent of the

dimension of the algebraic full order system, obtained by the discretization of the governing

equation. In a UQ framework, the computation of statistics of the solution, and hence of the

coefficients Y1, ...,YS , still requires many solutions of the system (1.3) (generally obtained by

Monte Carlo or Stochastic Collocation method) which is however much cheaper than the

original problem (1.1).

Even if very effective in may situations, RB approximations may still require a high compu-

tational cost for certain classes of potentially compressible problems, for which the exact

solution is “nearly low rank” at any fixed time. In these cases, the computational efficiency of

the reduced model is compromised by the fact that the solution manifold at time t , i.e. the

collection U (t)= {u(t ,ω), ω ∈Ω} of all solutions at time t for all parameters ω ∈Ω, although

being nearly contained in a low dimensional subspace, may significantly change over time.

This implies that the (fixed in time) reduced basis (U1, ...,US) has to be sufficiently rich to be

able to approximate U (t ) at all time, leading to a fairly large reduced model.

9
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1.2.2 Generalized Polynomial Chaos expansion

An alternative approach that has been proposed in literature consists in first parametrizing

the randomness in terms of a finite dimensional random vector y : Ω→RN , possibly through

some truncation step, and then approximating the functional dependence of the solution

u(t , x,y(ω)) on the random vector y by deterministic approximation strategies. Widely used is

the generalized Polynomial Chaos (gPC) expansion, in which the solution is expanded over

a fixed stochastic basis of global multivariate polynomial functions which are orthogonal

with respect to the density function of the input random parameters. This idea is motivated

by the fact that the parameters-to-solution map is often very smooth for several types of

random PDEs. More precisely, under the assumption that the random solution u(t ) belongs

to H ⊗L2(Ω) for all t ∈ [0,T ], where L2(Ω) denotes the space of all square integrable random

variables, the gPC-approximate solution is sough in the form:

ug PC
S (x, t ,ω)=

S∑
i=1

Ui (x, t )Yi (y(ω)) (1.4)

where Y1, ...,YS ∈ [L2(Ω)]S is a set of polynomial basis functions in the variables y orthonor-

mal with respect of the underlying (joint) probability measure of the random vector y. The

coefficients U1, ...,US can be computed e.g. by Stochastic Collocation on tensor or sparse

grids of Gauss points [5, 135, 75] or Galerkin projection [6, 49, 89, 11]. The first consists in

collocating the governing equation (1.1) into a set of points, such as tensor or sparse grids

of Gauss points, computing the corresponding solutions and building a global polynomial

approximation using such solutions. The second is a projection strategy which aims at com-

puting the coefficients in the gPC expansion by Galerkin projection in the stochastic variables.

This generally yields to a large coupled system of differential equations.

The Polynomial Chaos (PC) was first proposed in [131, 22] to discretize Gaussian densities

with Hermite polynomials, lately generalized in [136] to any arbitrary random distribution,

and successfully used e.g. [121, 135]. Approximation methods based on the gPC expansion

work effectively for many classes of problems for which the solution features an analytical

dependence with respect to y, see [38] for (steady) elliptic problems and [100, 118] for linear

parabolic equations with random coefficients. On the other hand, numerically challenging are

problems for which the parameter-to-solution map has low regularity and the stochastic space

has high (infinite) dimension. Indeed, despite the great improvements obtained with the use of

sparse techniques, spectral methods are often exposed to the so called curse of dimensionality,

i.e. an error versus cost performance that is negatively affected by the high dimension of the

underlying stochastic space, and degenerates in the limit of infinite dimension. An additional

issue concerning the effectiveness of the gPC approach is due to long time integrations. Indeed,

as reported in literature [128], for certain classes of evolution equations, the dependence of

the solution on the random parameters may significantly vary in time, and the approximation

on a fixed polynomial basis might need an increasing number of terms in the expansion

10
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(1.4), to keep an acceptable accuracy level for long time integration. Traveling waves with

random speed are a classical example in which the gPC approximation with fixed number of

terms, generally fails to provide acceptable solutions after short times. To fix ideas consider

the following simple problem describing a random wave in the physical domain [0,2π], with

periodic boundary conditions and a sinusoidal initial condition:⎧⎨
⎩∂t t u− y2(ω)∂xx u = 0,

u|t=0 = ei kx , k ∈N, ∂t u|t=0 = 0,
in [0,2π] (1.5)

where we assume y to be a uniformly distributed random variable in [−1,1], meaning that

the wave travels with a velocity which may uniformly vary between −1 and 1. The analytical

solution is given by u(x, t ,ω) = 1
2

(
ei k(x+y(ω)t )+ei k(x−y(ω)t )

) = ei kx cos(k y(ω)t). In order to

effectively approximate the solution at time t on a spatial grid of size h and on a polynomial

space of degree p, one should choose h ≈ k−1 and p ≈ kt/π. Hence the total number of degrees

of freedom is N ≈ p/h = k2t/π which shows that the simulation might become unfeasible

for large t and k. This phenomenon has been well highlighted in [128]. Several adaptive

techniques have been proposed in the literature to (partially) overcome this problem, e.g.

time-dependent gPC [48, 59].

1.2.3 Proper Generalized Decomposition

The Proper Generalized Decomposition (PGD) [4, 33, 72, 104, 106] is a model reduction

methodology for the approximation of multidimensional PDEs, based on the use of sep-

arated representations. Generally, the solution, which is defined in a M-dimensional domain,

is approximated by iteratively building a sum of products of M one-dimensional functions,

each one defined in a different space dimension. These functions are not known a priori, but

constructed iteratively on-line.

The PGD approach was initially introduced in [72] and used to approximate time dependent

deterministic PDEs by using a separated representation of the space and time coordinates, i.e.

u(x, t )≈ uS =∑S
i=1 Ui (x)Ti (t ), with x= (x1, ..., xM ) ∈DM ⊂RM . This technique has been lately

extended in [4] to the following more general separated representation:

u(x1, ...xM , t )≈uS =
S∑

i=1

(
αi

[ M∏
k=1

Uk,i (xk )
]
UM+1,i (t )

)

where Uk,i is the i th basis function which depends only on the kth coordinate. The same

approach has been adopted in [32] for the approximation of parameter-dependent problems

in the R-dimensional parameter space ΩR ⊂RR . The solution procedure consists in assuming

a space-time-parameter separated representation, i.e.

u(x1, ..., xM , t , y1, ..., yR )≈ uS =
S∑

i=1

(
αi

[ M∏
k=1

Uk,i (xk )
]
UM+1,i (t )

[ R∏
j=1

Y j ,i (y j )
])

,

11
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where y1, ..., yR denote the variables in the parameter spaceΩR and Y j ,i is the i th basis function

which depends only on the j th parameter y j . The numerical scheme consists of an iterative

procedure, each Sth iteration aims at build the new set of bases functions US+1,1, ...US+1,M+1,

YS+1,1, ...YS+1,R and consists of the following 3 steps:

• projection of the solution onto a discrete basis: assumed that the bases US,1, ...US,M+1

and YS,1, ...YS,R are known, the coefficients α1, ...,αS are computed by performing a

Galerkin projection of the governing equation into the space-time-parameter subspace

spanned by US,1, ...,US,M+1, YS,1, ...YS,R ;

• checking the convergence: this is done by computing the residual of the governing

equation; if the residual if smaller then the required level of accuracy the process stops;

• enrichment of the approximation basis: this is achieved by considering the weak form

of the governing equation in the space-time-parameter domain. As the problem of

calculating the new basis US+1,1, ...US+1,M+1, YS+1,1, ...YS+1,R is nonlinear, the use of an

appropriate linearization scheme is needed. The simplest consists of using an alternated

direction fixed point algorithm.

In UQ context, the PGD method was introduced in [102] and initially called Generalized Spec-

tral Decomposition (GSD). In this context the approximate solution is sought in a separated

form of the stochastic and deterministic variables and the problem of the enrichment of the

approximation basis has been interpreted as a pseudo eigenproblem. This interpretation

has led to the development of dedicated algorithms inspired from solution techniques for

classical eigenproblems [103]. More recently, the PGD has been applied to the solution of high

dimensional stochastic/parametric problems, with the introduction of suitable hierarchical

tensor representations and associated algorithms [105].

1.2.4 Dynamical Low-Rank approximations

The Dynamically Orthogonal (DO) method is a reduced order technique which aims at over-

coming the numerical challenges due to the course of dimensionality and long time inte-

gration. It has been first proposed in [116] for the approximation of problems governed by

differential equations of type (1.1) and applied in the context of ocean dynamics [117, 127].

Equivalent approximations, with different formulations of the approximate solution, have

been derived in [30, 31, 35], (Dynamically double orthogonal (DDO) and Bi-Orthogonal (BO)

approximations). Further developments and adaptive strategies are currently under study

[36, 14].

The DO approximate solution to problem (1.1) is written as a linear combination of S terms

and has the following general form:

uS(x, t ,ω) = ūS(x, t )+∑S
i=1 Ui (x, t )Yi (t ,ω) (1.6)

12
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where:

• ūS(x, t ) ∈H is an approximation of the mean of the exact solution;

• U1, ...,U1 are L2(D)-orthonormal deterministic functions in H , at each t ;

• Y1, ...,YS are square integrable random variables with zero mean and full rank covariance

matrix.

By imposing the following constraints to the dynamics of the deterministic modes:

〈U̇i (t ),U j (t )〉 = 0 i , j = 1, ...,S (1.7)

one can derive a set of nonlinear differential equations which is solved (on line) at each time,

to determine the evolution of all the terms in (1.6). Thus, uS provides an approximation

to the whole set of solutions corresponding to all possible realizations of the input random

parameters, at each time. In contrast with reduced order methods of type RB or gPC, both the

deterministic and stochastic modes evolve in time in order to guarantee more flexibility to

the approximation. The analysis and development of reduced order approximations of type

DO is the central subject of this thesis. The mathematical details about the DO formulation

will be briefly introduced in Section 1.4.1 and exhaustively discussed in the following Chapters.

Low-rank approximations with dynamical modes have been widely studied and used in quan-

tum mechanics to approximate deterministic time-dependent Schrödinger equations. In this

context, we recall the time-dependent Hartree method in which the wave functionψ(x1, . . . , xd )

is approximated in separable form as ψ≈α(t )φ1(x1) · · ·φd (xd ) and its generalization, known

as multi-configuration time-dependent Hartree (MCTDH) method [92, 12, 65, 138] in which

the solution is sought as a linear combination of terms in separable form.

In the finite dimensional setting, the same approach is known as Dynamical Low Rank ap-

proximation and used in [66, 56] for low rank approximation of evolution matrix equations.

Similarly in [67, 39, 68] the same approach is used for the low rank approximation of evolution

tensor equations in Tucker format, with a construction closely related to the one used for

the MCTDH method in quantum physics. Extensions to other low-rank formats as Hierarchi-

cal Tucker (HT) or Tensor Train (TT) have also been investigated [84, 81]. We mention also

the link with the algorithm proposed in [9] for updating singular value decompositions of

time-varying matrices and the structured low-rank approximation considered in [71, 19] for

time-independent matrices. Related formulations have been investigated in [69] for optimiza-

tion problems with Low-rank tensor structure, arising for example in the reconstruction of

high-dimensional data set.
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1.3 Notation

In this section, we introduce the main notations which will be employed hereafter.

Let D be an open and bounded physical domain in Rd , 1≤ d ≤ 3 with Lipschitz continuous

boundary ∂D, and let x stand for the spatial deterministic variable. We denote by L2(D) the

Hilbert space of all square integrable (according the Lebesgue measure) real valued functions

defined in D :

L2(D)= {
u : D →R s.t.

∫
D
|u(x)|2d x <∞}

endowed with the L2 inner product defined as:

〈u, v〉 :=
∫

D
u(x)v(x)d x ∀u, v ∈ L2(D)

and associated L2-norm: ‖u‖2 =�〈u,u〉. Similarly, H 1(D) denotes the space of square inte-

grable, real valued functions with square integrable partial derivatives in D :

H 1(D) := {
u : D →R |

∫
D
|u(x)|2+|∇u(x)|2d x <∞}

.

and H 1
0 (D) the subspace of H 1(D)- functions which vanish on the boundary ∂D .

A vector-valued random field will be denoted by small bold letters u := (u1, ..,uN )T and is

conventionally a column vector. In particular, H 1
di v (D) denotes the following space:

H 1
di v (D) := {

v ∈ [H 1(D)]d : ∇·v= 0
}
,

In analogy with the real case, we denote by L2(D,C)
(
H 1(D,C)

)
the Hilbert space of square

integrable, complex valued functions (with square integrable partial derivatives) on D . We use

the notation 〈·, ·〉h to distinguish the Hermitian product of L2(D,C), defined as:

〈û, v̂〉h := 〈uq , v q〉+〈up , v p〉+i (〈up , v q〉−〈uq , v p〉) ∀û = uq+i up , v̂ = v q+i v p ∈ L2(D,C),

(1.8)

from the real L2 product.

Let F stand for R or C, we introduce the following definitions, given for any S ∈N:

Definition 1.3.1. We call Stiefel manifold, denoted by St(S, H 1(D,F)), the collection of all L2(D)-

orthonormal frames of S functions in H 1(D,F), i.e.:

St(S, H 1(D,F))= {
V= (V1, ...,VS) : Vi ∈H 1(D,F) and 〈Vi ,Vj 〉∗ = δi j ∀i , j = 1, ...,S

}
(1.9)

where 〈·, ·〉∗ is the real L2 product if F=R and the hermitian product if F=C.

Observe that any element of V ∈ St(S, H 1(D,F)) is a S-dimensional basis in H 1(D,F) which
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is orthonormal with respect to the L2(D,F)-product. For non orthonormal bases we use the

notation

B(S, H 1(D,F))= {
U= (U1, ...,US) : Ui ∈H 1(D,F) and M ∈ FS×S , Mi j =<Ui ,U j >∗,

with rank(M)= S
}

with the same convention on 〈·, ·〉∗.

Definition 1.3.2. We define G (S, H 1(D,F)) the Grassmann manifold of dimension S in H 1(D,F),

which consists of all the S−dimensional linear subspaces of H 1(D,F).

When F is omitted, we always assume F=R.

We recall that the Poisson operator in [H 1(D)]2, here denoted by J2, is the linear map:

J2 : [H 1(D)]2 → [H 1(D)]2

u �→J2(u)=J2

[
u1

u2

]
:=

[
0 Id

−Id 0

][
u1

u2

]
=
[

u2

−u1

]

where Id is the identity operator in [H 1(D)]2.

Definition 1.3.3. We denote U(S, [H 1(D)]2) the manifold of all L2-orthonormal symplectic bases

in [H 1(D)]2, i.e.:

U(S, [H 1(D)]2)=
{

U ∈ [H 1(D)×H 1(D)]2S such that 〈U j ,Ui 〉 = δi j

〈Ui ,J2U j 〉 = (J2S)i j

}
,

(1.10)

where J2S ∈ R2S×2S is the Poisson matrix, i.e. J2S =
(

0 IS

−IS 0

)
and IS is the identity matrix in

RS×S .

Let (Ω,A ,P ) be a complete probability space, where Ω is the set of outcomes, A a σ-algebra

and P : A → [0,1] a probability measure. Let y : Ω→ F be an integrable random variable; we

define the mean of y as:

ȳ = E[y]=
∫
Ω

y(ω)dP (ω).

The symbol L2(Ω,F) (respectively L2
0(Ω,F)) denotes the Hilbert space of F-valued square inte-

grable random variables (respectively with zero mean), that is:

L2(Ω,F) := {
y : Ω→ F : E[y2]=

∫
Ω

(y(ω))2dP (ω)<∞}
In this thesis we always assume that the stochastic space can be accurately parametrized in

terms of a finite dimensional vector y : Ω→RN .
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We also recall that L2(D×Ω,F) denotes the space of all square integrable random fields:

L2(D×Ω,F) :=
{

u : D×Ω→ F s.t. E
[‖u‖2

L2(D,F)

]<∞}
,

and it is isometrically isomorphic to the tensor product space L2(D,F)⊗L2(Ω,F).

In analogy to Definition 1.3.1 and Definition 1.3.2, we define:

Definition 1.3.4. We call Stiefel manifold, denoted by St(S,L2(Ω)), the collection of all L2(Ω)-

orthonormal frames of S functions in L2(Ω), i.e.:

St(S,L2(Ω,F))= {
Y= (Y1, ...,YS) : Yi ∈ L2(Ω,F) and E[Yi Y j ]= δi j ∀i , j = 1, ...,S

}
(1.11)

For non orthonormal bases we use the notation

B(S,L2(Ω,F))= {
Y= (Y1, ...,YS) : Yi ∈ L2(Ω,F) s.t. rank

(
E[YYT ]

)= S
}
.

Definition 1.3.5. We define G (S,L2(Ω,F)) the Grassmann manifold of dimension S in L2(Ω)

which consists of all the S−dimensional linear subspaces of L2(Ω,F).

1.4 Overview and main results

1.4.1 Variational Formulation for the DLR approximation

The first goal of this thesis has been the formalization of the variational setting of the DO

method proposed [116, 117]. The aim has been to provide the basis for a suitable mathematical

analysis of the DO method. By formalizing the link between the DO and the DLR method

[66, 56], we reinterpreted the DO approximation as a Galerkin projection onto the tangent

space to the approximation manifold (collection of all functions which can be expressed as a

sum of S linearly independent deterministic modes combined with S linearly independent

stochastic modes) along the approximate trajectory of the solution. This formulation has

allowed us to set in a unified framework, different variants of the DO method that have been

proposed in the literature as e.g. the DyBO method [30, 31]. The main achievement obtained

in this direction is a quasi-optimal theoretical bound for the DO approximation of linear

parabolic equations with random data. The result is inspired by the analogous one obtained

in [39] for the MCTDH method (or in [66] for the DLR approximation), and adapted to the

context of parabolic PDEs with random parameters.

We introduce here the DLR variational problem, which will be fully discussed in Chapter 3,

and the Dual DO formulation which will be used in Chapter 4. For this aim, in this section, we

assume that problem (1.1) is completed with Dirichlet homogeneous boundary conditions.

Consider the following manifold MS , for some fixed S ∈N.
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Definition 1.4.1. We call manifold of rank S the subset MS ⊂H ⊗L2(Ω) defined as:

MS =
{
uS ∈H ⊗L2(Ω) : uS =∑S

i=1 Ui Yi | span(U1, ...,US) ∈G (S,H ),

span(Y1, ...,YS) ∈G (S,L2(Ω))
} (1.12)

and S rank random field any element uS ∈MS.

We define Dynamical Low Rank (DLR) approximation of rank S of problem (1.1) a function

uS ∈MS which satisfies the following variational principle at any time:

DLR Variational Principle. At each t ∈ (0,T ], find uS(t ) ∈MS such that: uS(0)=u0,S and

E [〈u̇S(·, t , ·) −L (uS(·, t , ·), t ,ω), v〉]= 0, ∀v ∈TuS (t )MS (1.13)

where u0,S is a suitable S rank approximation of u0 by e.g. a truncated Karhunen-Loève

expansion and TuS (t )MS is the tangent space to MS at uS(t ).

The DLR variational problem is essentially a Galerkin projection of the governing equation

(1.1) onto the tangent space to MS at uS(t ) at any time. In quantum mechanic this is known

as Dirac-Frenkel time-dependent variational principle (see e.g. [80]) and leads to the MCTDH

method [39, 67, 7] for the approximation of deterministic time-dependent Schrödinger equa-

tions.

What we have defined in (1.12) and (1.13) is an abstract manifold and an abstract variational

principle. For computational reasons we need to:

• represent any elements of MS in terms of deterministic (U) and stochastic (Y) modes,

e.g. by using form (1.6);

• make sure that such representation is unique.

This is obtained by equipping MS with a differential structure of quotient manifold. In partic-

ular, the choice of the equivalent relation (defining the quotient operation) should guarantee

a unique parametrization of the tangent space to MS at uS in terms of separable variations

in U and Y. The prerequisite of differential geometry and the differential construction of the

approximation manifold MS are discussed in Chapter 2.

Essentially, MS admits many equivalent differential structures, which depend on the choice

of the equivalent relation, and which lead to different parametrizations of the tangent space

TuS (t )MS . Based on the parametrization of TuS (t )MS , one can derive from (1.13) different

reduced systems, which however lead to the same approximate solutions.

In this thesis we use two alternative formulations:
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• DO decomposition with orthonormal deterministic modes as proposed in [116, 117] in

which any S rank random field is written as:

uS(x,ω)=
S∑

i=1
Ỹi (ω)Ũi (x)= ŨỸ (1.14)

where:

– Ũ is a row vector of L2(D)−orthonormal deterministic functions in H ,

– Ỹ is a column vector of S random variables with full rank covariance matrix C=
E[ỸỸT ].

Let OS be the subspace of all the orthogonal matrices of dimension S: OS = {O ∈RS×S :

OT O =OOT = I}. By using the diffeomorphism between MS and
(
St(S, H 1(D))/OS

)×
B(S,L2(Ω)), one recovers the dynamical constraints (1.7) which allow to uniquely parametrize

the tangent space to MS at each point.

• Dual DO decomposition with uncorrelated stochastic modes, in which any S rank

random field is written as:

uS(x,ω)=
S∑

i=1
Yi (ω)Ui (x)=UY (1.15)

where:

– U is a row vector of S linearly independent deterministic functions. Namely, M ∈
RS×S , defined as Mi j = 〈U j ,Ui 〉, is a full rank matrix.

– Y is a column vector of S L2(Ω)−orthonormal random variables.

By using the diffeomorphism between MS and B(S,H )× (
St(S,L2(Ω))/OS

)
, one gets the

following dynamical constraints:

E[Ẏi (t )Y j (t )]= 0 ∀i , j = 1, ...,S (1.16)

which allow to uniquely parametrize the tangent space to MS at each point.

For convenience here, the DO or the Dual DO decompositions are defined without isolating

the mean (i.e. uS =UY instead of uS = ūS +UY). However, for problems with homogeneous

Dirichlet boundary conditions, both the formulations, by isolating the mean or without isolat-

ing the mean, can be adopted and lead to similar mathematical constructions. In practice, the

formulation by isolating the mean implies that the stochastic mode associated to ūS is fixed “a

priori” equal to 1. Thus the term ūS is extracted from the approximation manifold MS and

is determined by performing a Galerkin projection into the subspace spanned by Y0 = 1, i.e.

the subspace of all deterministic functions in H , which simply corresponds to averaging the

governing equation. For the term UY everything applies as discussed before, with the only
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change that the stochastic modes are now constrained to have zero mean. This formulation

may be worth in UQ context as we are typically interested in computing centered statistics of

the solution.

According to the parametrization of the tangent space, one derives from (1.13) a set of non-

linear differential equations for the deterministic and stochastic bases (U,Y), suitable for

numerical integration. For instance, for the dual DO formulation we have:

Proposition 1.4.1. Let (U(t),Y(t)) ∈ B(S, H 1(D))×St(S,L2(Ω)) be a solution of the following

system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U̇i (x, t )= E [L (uS(x, t , ·))Yi (t , ·)] (x, t ) ∈ ∂D× (0,T ], i = 1, · · ·,S

Ui (x, t )= 0 (x, t ) ∈ ∂D× (0,T ], i = 1, ...,S∑S
i=1 M j i (t )Ẏi (t ,ω)=Π⊥

Y
〈L (uS(·, t ,ω)),Ui (·, t )〉 (t ,ω) ∈ (0,T ]×Ω, j = 1, · · ·,S

(1.17)

with U1(x,0) =U0i , Yi (t ,ω) = Yi 0(ω) and u0S =
S∑

i=1
Ui 0Yi 0 the truncated Karhunen-Loève ex-

pansion of u0, then uS(t )=
S∑

i=1
Ui (t )Yi (t ) ∈MS satisfies the DLR variational principle (1.13) at

any t ∈ (0,T ].

Here ΠY is the orthogonal projection operator from the space L2(Ω) to the S dimensional sub-

space Y = span{Y1, · · ·,YS} and Π⊥
Y

v = (I−ΠY )(v) denotes the projection onto the orthogonal

complement of Y . We call (1.17) Dual DO reduced system.

In Chapter 3 we propose an error analysis for DLR approximation, by following the analogous

one obtained in [39] for the MCTDH method. In particular we show that the DLR approxima-

tion error for a linear parabolic equation with random input data can be bounded in terms of

the best rank S approximation of the solution (truncated Karhunen-Loève expansion), at each

time instant. More precisely, under mild extra requirements on the data of the problem, the

following holds:

Theorem. Suppose that the best S-rank approximation zS(t) of the exact solution u(t) is

continuously differentiable in time for 0 ≤ t ≤ t̄ and the smallest singular value of zS(t) is

uniformly bounded from below, with lower bound σ(zS(t ))≥ ρ > 0,∀t ∈ [0, t̄ ]. Then there exists

0< t̂ ≤ t̄ such that the approximation error of the DO approximate solution uS, with initial

value uS(0)= zS(0), is bounded by

‖uS(t )− zS(t )‖2
0+ami n

∫t

0
|uS(τ)− zS(τ)|21dτ≤ 2αe2β(t )

∫t

0
‖zS(τ)−u(τ)‖2

1dτ, (1.18)
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for all 0< t ≤ t̂ , with

β(t )= 4ρ−1
∫t

0

(
4‖L (zS(τ))‖0+‖L (u(τ))‖0+‖L (uS(τ))‖0+‖żS(τ)‖2

0

)
dτ,

α=max
{

a2
max

2ami n
, 4ρ−1

}
,

where ami n, amax are the coercivity and continuity constants of the elliptic operator L and

‖.‖1, |.|1 denote respectively the norm and semi-norm in H 1(D)⊗L2(Ω).

The central ingredient for the proof is the use of curvature estimates for approximation man-

ifold MS , which have been derived in [39]. The error bound is applicable for full rank DLR

approximate solutions on the largest time interval in which the best S−terms approximation

is continuously differentiable in time. The request on time differentiability is actually unavoid-

able and corresponds to asking that certain eigenvalues of the Karhunen-Loève decomposition

do not cross in time.

The possibility of extending the error analysis to approximate solutions with deficient rank

remains an open issue. The problem of the rank-deficiency is also the main obstacle in the

analysis of the existence and uniqueness of the approximate solution. The only results avail-

able in literature concern the approximation of deterministic Schrödinger equations [67, 126]

by the MCTDH method. Global in time results have been derive in [8, 7] by explicitly exploiting

the fact that the conservation of energy guarantees the full rank condition for the approximate

solution of Schrödinger equations, property that does not apply to our setting. In this work, we

have not dealt with the analysis of well-posedness of the reduced model and we have simply

assumed that a DLR approximate solution exists.

Similarly the stability of the DO reduced system is an open problem due to the fact that the

correlation matrix of the deterministic modes Mi j =<Ui ,U j > in 1.17 (similarly the covariance

matrix C = E[YYT ] by adopting the DO formulation), that has to be inverted, may become

singular or nearly singular at some time instant t . This problem appears immediately if one

considers, for instance, a parabolic equation with random coefficients and deterministic initial

condition as the correlation matrix at time t = 0 will be identically zero. Despite the lack of

theory on how to formulate the problem in the case of rank deficiency, we propose in Chapter

3 a numerical strategy to overcome this problem, that leads to satisfactory results. Other

approaches have been proposed in [82, 36].

1.4.2 Dual DO approximation for PDEs with random Dirichlet boundary condi-
tions

In Chapter 4 we extend the DLR variation approximation to problems with random boundary

conditions of Dirichlet type. The Dual DO formulation recalled in the previous section turns

out to be well suited in this context as it allows easily for a strong imposition of the non-

homogeneous boundary conditions. The numerical results that we have obtained show that

strong imposition of Dirichlet boundary conditions improves considerably the performance of

the DLR method with respect to the simple projection of the boundary conditions, as proposed
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in [116, 117].

In the analysis of random boundary conditions, we explicitly assume that L in (1.1) is a

second order elliptic operator of the form

L (u)=−di v(A(x,ω)∇u)−b(x,ω) ·∇u+c(x,ω)u− f (x, t ,ω)

where Ai j (x,ω),bi (x,ω),c(x,ω), i , j = 1, ...,d , are bounded random variables in the open

bounded Lipschitz domain D ⊂ Rd and under the assumptions that A(x,ω) is uniformly

coercive almost surely and f ∈ L2((0,T ),L2(D×Ω)). The problem is set in H 1(D)⊗L2(Ω) and

completed with random Dirichlet boundary conditions u|∂D = g . This setting has been gener-

alized to vector-valued PDEs.

Problems of this type can be encountered for instance in fluid dynamics, in which small

variations on inflow boundary conditions can have a strong impact on the dynamics of the

flow. Applications can be found both in engineering and biomedical problems.

In dealing with random boundary data, the issue consists in establishing which boundary

conditions should be satisfied by the low rank approximate solution and if and how the ran-

domness coming from the boundary should be compressed. The difficulty is related to the

fact that we are not able to say “a priori” which parameters have the strongest impact on

the dynamics and at which time the dynamics of the solution is influenced by the uncertain

parameters in the boundary data.

We propose in Chapter 4 a modified version of the DLR method which enforces the ap-

proximate solution to satisfy the same boundary conditions as the exact solution, or a well

controlled approximation of them. This is obtained by setting the DLR variational principle

in the constrained manifold of all S rank random fields which satisfy a prescribed value on

the boundary, expressed in low rank format. After showing that this set is actually a manifold

we characterize its tangent space at each point. The starting assumption in our model is

that g , the datum on the boundary, is “almost low rank”, which is not very restrictive in our

context: since we are looking for an approximate solution uS of rank S such that uS ≈ u, it is

reasonable to ask that the boundary value u|∂D = g is properly approximated in separable form

by gM =∑M
i=1 Zi (ω)vi (t , x) with M ≤ S.

The constrained manifold is constructed according to the following definition:

Definition 1.4.2. A S rank random field under constraint gM is a S rank function which is

written as:

ugM

S (x,ω)=
S∑

i=1
Ui (x)Yi (ω)=UY (1.19)

and satisfies:

• uS|∂D = gM a. s.,

• U1, ...,US linearly independent deterministic functions.
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• Y1, ...,YS L2(Ω)-orthonormal random variables.

We denote by M
gM

S the set of all S rank random fields under constraint gM .

In other words, M
gM

S is the collection of all S rank random fields which satisfy the condition

uS = gM on the boundary.

We show that M
gM

S is actually a differential manifold and that any element ugM

S ∈M
gM

S can be

written as:

ugM

S (x,ω)=
R∑

i=1
Ui (x)Yi (ω)+

M∑
i=1

Vi (x)Zi (ω) (1.20)

where:

• R+M = S,

• ugM

S (x,ω)= gM (x,ω)=∑M
i=1 vi (x)Zi (ω) for x ∈ ∂D a.s.,

• all the random variables are mutually L2(Ω)-orthonormal:

– E[Zi Z j ]= δi j for all i , j = 1, ..., M ;

– E[Yi Y j ]= δi j for all i , j = 1, ...,R;

– E[Zi Y j ]= 0 for all i = 1, ..., M and for all j = 1, ...,R.

• U1, ...,UR are linearly independent.

Once M
gM

S is equipped with a manifold structure, we are allowed to write the DLR variational

principle on M
gM

S .

In this setting, the Dual DO formulation allows to derive the proper boundary conditions

for each deterministic mode and leads to “strong” imposition of random Dirichlet boundary

conditions.

The Dual DO reduced system results in a set of S coupled PDEs for the evolution of the

deterministic modes (M of which with non homogeneous boundary conditions) coupled with

S−M ODEs for the evolution of the stochastic modes.

1.4.3 DLR approximation for Navier Stokes equations

We have focused on the application of DLR techniques to the incompressible Navier Stokes

equations with random parameters. In this context, we propose again the Dual-DO formu-

lation, which is very convenient to include the incompressibility constraint. The Dual DO

reduced system results in S deterministic problems of Navier Stokes type, coupled to a system
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of (at most) S stochastic ODEs. The DLR formulation for Navier Stokes equations and numeri-

cal tests are discussed in Chapter 4 of this thesis.

The problem under study is governed by incompressible Navier Stokes equations with random

parameters:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇(x, t ,ω)−ν(x, t ,ω)Δu(x, t ,ω)+u(x, t ,ω) ·∇u(x, t ,ω)+∇p(x, t ,ω)= f(x, t ,ω) (x, t ) ∈D× (0,T ]

∇·u(x, t ,ω)= 0

u(x,0,ω)=u0(x,ω) x ∈D

u(x, t ,ω)= g(x, t ,ω) x ∈ ΓD , t ∈ (0,T ]

ν∂nu(x, t ,ω)−p(x, t ,ω) ·n=h(x, t ,ω) x ∈ ΓN , t ∈ (0,T ]

(1.21)

where u is the velocity (column) vector field, p is the scalar pressure and ν is the kinematic

viscosity that may eventually be modeled as a random variable or random field. ΓD and ΓN are

disjointed parts of the boundary ∂D , such that ΓD ∪ΓN = ∂D , on which we impose Dirichlet

and Neumann boundary conditions respectively. The randomness may affect the parameters

of the equation such as the fluid viscosity, or the forcing term, initial or boundary conditions.

Our goal is to find a low rank approximation of the velocity field.

The DLR approximate solution is sought in the constrained manifold of all S rank random

fields with divergence free modes, and which satisfy the condition uS = gM on the Dirichlet

boundary, with gM (x, t ,ω)=∑M
i=1 v i (x, t )Zi (ω)≈ g(x, t ,ω), i.e.:

M
gM (t )
S,di v =

{
uS =∑S

i=1 Ui Yi s.t. uS|ΓD
(t )= gM (t ), and Ui ∈H 1

di v (D),

E[Yi ]= 0, E[Yi Y j ]= δi j , rank(M)=R
} (1.22)

where R = S−M and M is the full rank correlation matrix of the first R deterministic modes:

Mi j =<Ui ,U j >=∑d
k=1 <Ui ,k ,U j ,k >.

We write the DLR variational principle for problem (1.21) in M
gM (t )
S,di v . In deriving the Dual DO

dynamical system, the divergence free constraint is then imposed on each deterministic mode

by introducing S Lagrange multipliers p1, ..., pS . This leads to the following reduced system:

U̇i +∇pi = E
[(
νΔuS −uS ·∇uS + f

)
Yi

]
∇·Ui = 0 ∀i = 1, ...,S

Mi k Ẏk =<Ui ,Π⊥<Y1,...,YS>
[
νΔuS −uS ·∇uS + f

]> ∀i = 1, ...,R

(1.23)

with initial conditions given by the best S rank approximation of u0 in M
gM

S,di v and boundary
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Figure 1.1 – The Dual DO method has been applied to simulate the blood flow in a carotid
artery, where the uncertainty affects the flow rate imposed at the inlet. On the left the standard
deviation of the solution at time t = 1.6 during the second heart beat simulated. On the
right we compare the mean of the Dual DO approximate solution computed with 5 modes
(right) (S = 5) to the mean of the reference solution at the same time. We observe that the
approximate solution effectively describes the dynamics and allow to accurately quantify the
variability of the solutions.

conditions given by:

Ui (x, t )= v i (x, t ) (x, t ) ∈ ΓD × (0,T ], ∀i = 1, ...,R

Ui (x, t )= 0 (x, t ) ∈ ΓD × (0,T ], ∀i =R+1, ...,S

ν∂nUi (x, t )−pi (x, t ) ·n= E[h(x, t , ·)Yi ] (x, t ) ∈ ΓN × (0,T ], ∀i = 1, ...,S.

The Dual DO method has been tested on two fluid dynamics problems. In the first one, our

goal is to test the performance of the Dual DO approximation in the challenging case in which

the rank of the solution continues to increase in time. We consider the classical benchmark 2D

problem of an incompressible viscous fluid flowing around a cylindrical obstacle in a channel

at moderate Reynolds numbers.

In the second we address a hemodynamic problem for biomedical applications. In this context,

simulations of blood flow using image-based models of the computational domain and com-

putational fluid dynamics has found widespread application to quantifying hemodynamic

factors relevant to the initiation and progression of cardiovascular diseases and for planning

surgical interventions. In particular, numerical simulations of parameter dependent PDEs

can be used as a virtual platform for the prediction of input/output response of biological

values. To this aim, the speed up of the computational time is a crucial issue. We consider the

problem of simulating blood flow in a realistic carotid artery reconstructed from MRI data,

where the inflow boundary conditions are taken as random due to the uncertainty and large

errors in Doppler measurements of the inflow velocity profile. See Figure 1.1 for an illustration

of some numerical results.
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1.4.4 Symplectic DLR for wave equations with random parameters

In Chapter 5 we extend and modify the DLR approach to the approximation of second order

wave equations with random parameters.

A critical issue in the context of low-rank approximation of hyperbolic equations is how to

construct reduced order systems which preserve the stability and the geometrical properties of

the original problem. It has been reported in literature [109], that a POD-based reduced system

may indeed become unstable even if the original hyperbolic systems was not. This highlights

the need for developing “novel” reduced order techniques, built ad hoc to deal with hyperbolic

problems. In Chapter 5 we propose a reduced order method with symplectic and dynamical

deterministic basis which enjoys the conservation of energy, as the original problem. This

approach, which we name Symplectic Dynamical Low Rank (Symplectic DLR) method, is

based on recasting the governing wave equation in Hamiltonian form and is designed as a

combination of:

• the DLR approximation, which is suited for the approximation of parabolic equations

(first order time derivative),

• the symplectic reduced basis technique proposed in [107, 86] for the approximation of

parametric Hamiltonian systems, in which the approximate solution is expanded over a

set of symplectic deterministic bases, and the reduced system preserves the symplectic

structure of the full order system.

The aim is both to preserve the Hamiltonian structure of the original problem and provide

adaptivity for long time integration.

We consider the following initial boundary value problem:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ü(x, t ,ω)=∇·
(
c(x,ω)∇u(x, t ,ω)

)
+ f (u(x, t ,ω),ω) x ∈D, t ∈ (0,T ], ω ∈Ω,

u(x,0,ω)= p0(x,ω) x ∈D, ω ∈Ω,

u̇(x,0,ω)= q0(x,ω) x ∈D, ω ∈Ω,

u(σ, t ,ω)= 0 σ ∈ ∂D, t ∈ (0,T ], ω ∈Ω,

(1.24)

with homogeneous Dirichlet boundary conditions. Here the randomness may affect the

wave speed c as well as the initial conditions p0, q0 and the (possibly non linear) source

term f . We assume that c is bounded and uniformly coercive and the initial data satisfy:

q0 ∈ L2(Ω, H 1
0 (D)), p0 ∈ L2(Ω,L2(D)). This guarantees the existence and uniqueness of the

solution u ∈ L∞((0,T ), H 1
0 (D)⊗ L2(Ω)) having time derivative u̇ ∈ L∞((0,T ),L2(D)⊗ L2(Ω))

[118, 94].

By introducing the phase space variables (p, q) = (u, u̇), problem (1.24) can be recast in
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Hamiltonian form as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇(x, t ,ω)= p(x, t ,ω) x ∈D, t ∈ (0,T ], ω ∈Ω,

ṗ(x, t ,ω)=∇· (c(x,ω)∇q(x, t ,ω)
)− f (q(x, t ,ω),ω) x ∈D, t ∈ (0,T ], ω ∈Ω,

q(x, t ,ω)= q0(x,ω) x ∈D, ω ∈Ω,

p(x,0,ω)= p0(x,ω) x ∈D, ω ∈Ω,

q(x, t ,ω)= 0 x ∈ ∂D, t ∈ (0,T ], ω ∈Ω,

(1.25)

The Hamiltonian energy associated to (1.25) can be defined pointwise in ω as:

Hω(q, p)= 1

2

∫
D

(
|p|2+c(ω)|∇q|2+F (q)

)
, F ′(q)= f (q).

Let ∇q Hω, ∇p Hω denote functional derivatives of Hω with respect to q and p respectively, i.e.

〈∇q Hω,δq〉 =∫
D c∇q∇δq+∫

D f (q)δq and 〈∇p Hω,δp〉 =∫
D pδp.

=∫
D

(−∇· (c∇·q)+ f (q)
)
δq,

Then, for any δq ∈H 1
0 (D), δp ∈ L2(D), the Hamiltonian system is written in canonical form

with respect to u= (q, p) as:⎧⎨
⎩u̇(x, t ,ω)=J2∇Hω

(
u(x, t ,ω),ω

)
,

u(x,0,ω)= (q0(x,ω), p0(x,ω)))T
(1.26)

for almost every x ∈D and ω ∈Ω.

The symplectic DLR approximate solution is sought in the following low rank manifold:

Definition 1.4.3. We call symplectic manifold of rank S, denoted by M
s ym
S , the collection of all

random fields uS = (qS , pS)T ∈ [H 1
0 (D)]2⊗L2(Ω) that can be written as: uS =UY where

• U ∈U(S, [H 1(D)]2) (L2(D)-orthogonal symplectic basis),

• Y= Y1, ...,Y2S is a 2S dimensional vector of square integrable random variables Yi ∈ L2(Ω),

such that rank(E[YYT ]+ JT
2SE[YYT ]J2S)= 2S.

We call symplectic S rank random field any function uS ∈M
s ym
S . This can be written component-

wise as follows:

qS(x,ω)=
S∑

i=1
Qi (x)Yi (ω)−

S∑
i=1

Pi (x)YS+i (ω), pS(x,ω)=
S∑

i=1
Pi (x)Yi (ω)+

S∑
i=1

Qi (x)YS+i (ω).

(1.27)

We impose the following:
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Symplectic DLR Variational Principle. At each t ∈ (0,T ], find uS(t ) ∈M
s ym
S such that:

E
[〈

J2u̇S +∇Hω(uS , ·),v
〉]= 0, ∀v ∈TuS (t )M

s ym
S , ∀t ∈ (0,T ], (1.28)

with initial conditions given by the symplectic projection of the initial data into M
s ym
S .

The term E
[〈∇Hω(uS , ·),v

〉]
in (1.28) is interpreted as d

d t |t=0
E[Hω(γS(t ))], i.e. directional deriva-

tive along the curve γS(t ) ∈M
s ym
S with γS(0)=uS and γ̇S(0)= v.

The Symplectic Variational Principle corresponds to a symplectic projection of the governing

equation onto the tangent space to M
s ym
S of rank S, along the trajectory of the approximate

solution, and has the desirable property of conserving the mean Hamiltonian energy. In

Chapter 5 we show that the Symplectic DLR coincides with the complex DRL approximation

of Hamiltonian system (1.26) rewritten in complex variables. Thus, recast in complex setting,

the symplectic DLR approximation is very closed to the MCTDH method. The necessary

prerequisites of symplectic geometry are provided in Section 5.4.

We show that M
s ym
S can be equipped with a structure of differential manifold and we parametrize

the tangent space in term of dynamical constraints on the deterministic modes. This is

achieved by identifying M
s ym
S with the S rank manifold of complex valued functions. Then by

means of the parametrization of the tangent space in real setting, we derive the dynamical

equations for the evolution of the bases U,Y. Let us denote by Bs ym(2S,L2(Ω))⊂ [L2(Ω)]2S the

set of all 2S-vectors Y= (Y1, ...,Y2S) ∈ [L2(Ω)]2S which satisfy rank(E[YYT ]+ JT
2SE[YYT ]J2S)= 2S,

and H̃ω the function:
H̃ω : [L2(Ω)]2S → L2(Ω)

Y→Hω(
2S∑

i=1
Ui Yi ,ω),

then we have:

Proposition 1.4.2. Let (U(t),Y(t)) ∈U(S, [H 1
0 (D)]2)×Bs ym(2S,L2(Ω)) be a solution of the fol-

lowing system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ẏ= J2S∇YH̃ω

(
Y
)

U̇(E[YYT ]+ JT
2SE[YYT ]J2S)=P ⊥

U+
[
E[∇Hω(uS)YT J2S]+E[J∇Hω(uS)YT ]

] (1.29)

where Hω ◦φU with initial conditions given by the complex singular value decomposition of

the initial data (q0, p0). Then uS(t )=U(t )Y(t ) ∈M
s ym
S satisfies the DLR variational principle

(1.28) at any t ∈ (0,T ].

The symplectic DO system (1.29) consists of 2S random ODEs coupled to 2S deterministic

PDEs. However, exploiting the unitary structure of U, we actually need to solve only S PDEs to

completely characterize the deterministic basis at any time.
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1.5 Outline of the thesis

• Chapter 2: we derive the geometrical construction of the approximation manifold MS of

S rank random fields. After recalling the necessary prerequisites of differential geometry,

we discuss how to equip MS with a structure of differential manifold.

• Chapter 3: we define the Dynamical Low-Rank variational principle for the approxima-

tion of PDEs with random data and we derive a theoretical bound for the approximation

error of the S−terms DLR approximate solution by the corresponding S-terms best

approximation. This chapter is based on the paper "Error Analysis of the Dynamically

Orthogonal Approximation of Time Dependent Random PDEs", published in SIAM

Journal on Scientific Computing, in January 2015.

• Chapter 4: we extend the Dynamical Low-Rank approach to parabolic PDEs, in particu-

lar, incompressible Navier Stokes equations, with random Dirichlet boundary condi-

tions. We propose the Dual DO formulation which is more suited to deal with problems

with non-homogeneous random Dirichlet boundary conditions and allows for a strong

imposition of them, as well as the incompressibility constraint. We test the method on

the classical benchmark of a laminar flow around a cylinder with random inflow veloc-

ity, and a biomedical application for simulating blood flow in realistic carotid artery

reconstructed from MRI data with random inflow conditions coming from Doppler

measurements. This chapter is based on the paper "Dual Dynamically Orthogonal

approximation of incompressible Navier Stokes equations with random boundary con-

ditions", appeared as Mathicse report n. 03.2017, in January 2017, and submitted for

publications.

• Chapter 5: we propose a reduced order technique, Symplectic Dynamical Low-Rank

method, for the approximation of wave equations with random parameters. We rewrite

the governing equation in a Hamiltonian framework and we expand the approximate

solution over a set of few symplectic and dynamical deterministic modes. This satisfies

the symplectic projection of the governing Hamiltonian equations into the tangent space

to the approximation manifold, along the approximate trajectory. By parametrizing the

tangent space, we derive a reduced system of dynamical equations which enjoys the

conservation of Hamiltonian energy.
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2 Differential Manifolds

In this chapter, we set up the geometrical framework underling the Dynamical Low-Rank

approximation. We start by recalling some standard definitions and results of Differential

Geometry for Hilbert manifolds and principle fiber bundles. Our focus is the characterization

of the tangent space to quotient and abstract manifolds. In particular, we detail how to equip

the Grassmann G (S,H ) , i.e. the collection of all S dimensional subspaces of a Hilbert space

H , with a structure of differential quotient manifold. This construction allows to uniquely

characterize the tangent space to the Grassmann in terms of variations in [H ]S and thus locally

parametrize G (S,H ) in terms of S dimensional orthonormal bases in H . These tools are

then used to equip the manifold of all fixed rank random fields, with a structure of differential

quotient manifold. In particular, in Section 2.1, we recover the orthogonal constraints used

[116], and employed hereafter, to derive the Dynamically Orthogonal approximation.

In a nutshell, a differential manifold M is a set endowed with a differentiable structure.

Intuitively, a smooth manifold modeled on some space H can be regarded as a smoothly

curved space, which locally looks like H , but globally may have a much richer structure.

This means that every point of M has a neighborhood that can be identified with (uniquely

described by) a subset of H by means of bijective maps, called charts. One needs the ensemble

of those charts to get a global description of the manifold. Lines and surfaces are the simplest

examples manifolds, respectively of dimension one and two.

Differential manifolds are the suitable underlying framework for several numerical algorithms.

In this thesis we consider only manifolds modeled on a (infinite dimensional) Hilbert space

H . For a more general setting we refer to [70, 74, 16].

Definition 2.0.1. Let I be an indexing set and H a Hilbert space. A set M is called manifold

of class Cp (p ≥ 0) modeled on H if it is equipped with a Cp -atlas, i.e. a collection of pairs

{Ui ,φi }i∈I which satisfy:

• Ui ⊂M for all i ∈ I and the union of Ui covers M , i.e.: M ⊆ ⋃
i∈I

Ui ;

• φi (Ui ) is an open subset of H and the map φi : Ui →φi (Ui ) is a bijection, for all i ∈ I .
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M

φ2φ1

φ1(U1)
φ2(U2)

U2
U1

φ1 ◦ φ−1
2

φ2 ◦ φ−1
1

Figure 2.1 – Illustration of charts on a manifold. The charts φ1 and φ2 map U1 and U2

respectively in φ1(U1) and φ2(U2) and φ1 ◦φ−1
2 , φ2 ◦φ−1

1 are the transition maps defined in
U1∩U2.

• φi (Ui ∩U j )⊂H is open and the map:

φ j ◦φ−1
i : φi (Ui ∩U j )→φ j (Ui ∩U j )

is a Cp -diffeomorphism (called transition map), for all i , j ∈ I .

It is easy to show that the atlas induces an unique topology in M , according to which a subset

V ⊂M is open if and only if φi (V ∩Ui ) ⊂H is open for all i ∈ I . With this in mind we can

equivalently define a manifold M as a topological space equipped with a Cp -atlas {Ui ,φi }

such that:

• Ui ⊂M is open for all i ∈ I and M ⊆⋃
i Ui ;

• φi : Ui →φi (Ui ) is a diffeomorphism into a open subspace of H , for all i ∈ I ;

• for all i , j ∈ I the map:

φ j ◦φ−1
i : φi (Ui ∩U j )→φ j (Ui ∩U j )

is a Cp -diffeomorphism.

As the definition shows, a manifold is always characterized by a set M and an atlas {Ui ,φi }

that gives to M a manifold structure. We say that two atlas {Ui ,φi } and {Vi ,ψi } are compatible

if φ j ◦ψ−1
i is a transition map, for any i , j . The union of all compatible atlas is called maximal

atlas. An arbitrary set M may admit more than one maximal atlas or do not admit any atlas, in

this case we say that M can not be equipped with a manifold structure (see Figure 2.2 right).

Example 2.0.1. Consider the real space R and the two maps φ1,φ2 : R→R defined as φ1 : x → x

and φ2 : x → x3, which cover the whole space. One can easily see that the atlas generated by

the two maps are not compatible between each others, since φ1 ◦φ−1
2 is not differentiable in the
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origin. It follows that φ1,φ2 generate to different maximal atlas. ( This shows that R may admits

more than one maximal atlas, However, in this case, the corresponding differential structures

are isomorphic.)

Example 2.0.2. The common intuitive idea of regarding manifolds as smoothly curved spaces

may something be misleading. Consider for instance the curve α : R→ R2, α(t) = (t , |t |). We

wonder if the image M := {α(t), t ∈R} admits a manifold structure. Despite the corner in the

origin we can equip M with a manifold structure isomorphic to R, for instance by defining the

chart φ(t , |t |)= t . On the other hand, intuitively because of the “corner”, M is not a submanifold

of R2.

In view of numerical approximations one may be interested in understanding if a given set

(for example the set in which the approximate solution of the problem at hand is sought)

admits or not a manifold structure and, if the answer is positive, which one is more natural, or

convenient, for the problem under analysis. The following examples and definitions will be

used for later developments.

2.0.1 Product of manifolds, sub-manifold, maps between manifolds

Remark 2.0.1. [ Product of manifolds ]

Let M1 and M2 be two manifolds modeled on H1 and H2 with atlas {Ui ,φi }i∈I1 and {Vi ,ψi }i∈I2

respectively. The set M1×M2 admits a manifold structure, called product, when equipped with

the following collection of charts:

φi ×ψ j : Ui ×V j →H1×H2

(x1, x2) �→ (φi (x1),ψ j (x2)).

for all i ∈ I1 and j ∈ I2

Definition 2.0.2. Let M be a C p manifold modeled on H with atlas {Ui ,φi }i∈I . A subset

N ⊂M is called sub-manifold of M if there exists H1 linear subspace of H such that {Ui ∩
N ,φi }i∈I forms an atlas for N modeled on H1, i.e. φi (Ui ∩N )⊂H1 is open for all i ∈ I and

the union of Ui ∩N covers N . We say that {Ui ,φi }i∈I induces an atlas on N .

For ease of notation, in the following we will generally omit the index in denoting atlas and

charts. Namely we will write {U ,φ} to refer to the atlas {Ui ,φi }i∈I and (U ,φ) when we consider

an arbitrary chart of the atlas.

Let M1,M2 be two C p−manifolds, with p ≥ 1, modeled on H1 and H2 with atlas {U ,φ} and

{V ,ψ} respectively. The smoothness of a map F : M1 →M2 is regarded in terms of charts as

smoothness in the model spaces H1 and H2.

Definition 2.0.3. A map F : M1 →M2 is differentiable in x ∈M1 if there exists a chart (U ,φ) ∈
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Chapter 2. Differential Manifolds

i

Figure 2.2 – Left: an example of an injective immersion that is not homeomorphic to a sub-
manifold. The arrow means that the line approaches itself without touching. Right: the eight
shape (red line) is not a manifold because it has a crossing point in the origin that is not locally
homeomorphic to the Euclidean 1-space.

{U ,φ} containing x, and a chart (V ,ψ) ∈ {V ,ψ} containing F (x), such that the map:

ψ◦F ◦φ−1 : φ(U )⊂H1 →ψ(V )⊂H2

is differentiable in φ(x). We say that F is differentiable if it is differentiable for any x ∈M1.

Observe that the map ψ◦F ◦φ−1 goes from a subspace of H1 to H2 (Hilbert spaces), where

the concepts of differentiability is defined in the standard way using the norms of H1 and

H2. Definition 2.0.3 can be generalized to C k differentiability for any 0≤ k ≤ p. Consider the

special case of real valued functions f : M1 →R. Following Definition 2.0.3, f is differentiable

if for every x ∈M1 there exists a smooth chart (U ,φ) such that x ∈U and the composition

f ◦φ−1 : φ(U ) → R is smooth. We denote with Fx (M ) the set of all smooth real valued

functions defined in a neighborhood of x ∈M .

Definition 2.0.4. A map F : M1 → M2 is an immersion at x ∈ M1 if there exists an open

neighborhood U ⊂M1 of x such that the restriction of F to U induces an homeomorphism∗

of U onto a submanifold of M2. We say that F is an immersion if it is an immersion for any

x ∈M1.

If the immersion F : M1 →M2 is injective, then M1 is homeomorphic to F (M1)⊂M2. Observe

that an injective immersion is not necessarily homeomorphic to a submanifold. In other words

an immersed subspace of M2 is not necessarily a submanifold of M2, see figure 2.2 (left) for

an intuitive example. When this occurs we call it embedded submaniold, see subsection 2.0.3.

∗an homeomorphism is a continuous bijective function between two topological spaces, whose inverse is
continuous.
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2.0.2 Tangent space

Let M be a C p−manifold, with p ≥ 1, modeled on H with atlas {U ,φ}. We aim to equip

M with a differential structure. To do so a tangent vectors ξ to M at x is represented by an

equivalence class of triples (U ,φ, v) where (U ,φ) is a local chart of M such that x ∈U and

v ∈H is the representative of ξ in this chart.

Let (U ,φ), (V ,ψ) be two charts of M such that x ∈U ∩V and v, w ∈H , we say that (U ,φ, v)

and (V ,ψ, w) are equivalent representations of a tangent vector ξ to M at x if and only if

(V ,ψ, w) ⇐⇒ w =Dφ(x)(ψ◦φ−1)(v), where D is the usual directional derivative in H . We say

that v is the tangent vector ξ read in the local chart (U ,φ) whereas w is the tangent vector

ξ read in the local chart (V ,ψ). We denote with TxM the collection of all tangent vectors to

M at x. Observe that the tangent space TxM can be equipped with a vector space structure

induced by the model space. This is a remarkable property in view of the design of numerical

approximation algorithms. Likewise the derivative to a real valued function provides a local

linear approximation to the function, in same way we can think that the tangent space to

a manifold gives a local vector space approximation of the manifold. Moreover, since the

transition maps ψ◦φ−1 are diffeomorphisms, the maps Dφ(x)(ψ◦φ−1) are isomorphisms from

H to H . Then, each chart (U ,φ) determines a bijection of TxM on H , which allows to

transport to the tangent space the Hilbert structure of the model space. It follows that for any

x ∈M , TxM is a Hilbert space isomorphic to the model space H in which we can define a

norm equivalent to the original norm of H .

Example 2.0.3. When M is a submanifold of a normed vector space H , a tangent vector in

x to M along a curve γ : [0,T ]→M can be simply identified with the classical derivative of γ

at t = 0, i.e. ξ= γ̇(0)= lim
d t→0

‖γ(d t )−γ(0)‖H

d t
. In this case, the tangent space to M at x can be

represented as the collection of the derivatives of all smooth curves passing by x:

TxM = {
γ̇(0) |γ : R→M ∈C 1(R,H ), γ(0)= x

}
. (2.1)

If now F is a differentiable map between two manifolds M1 and M2, by means of charts, we

can interpret the derivative of F in a point x ∈M1 as a map between the tangent space TxM1

and the tangent space TF (x)M2. More precisely we have the following definition:

Definition 2.0.5. Let M1,M2 be two C p−manifolds, with p ≥ 1, modeled in H1 and H2,

respectively, and equipped with atlas {U ,φ} and {V ,ψ}, and F : M1 → M2 a differentiable

function. We define differential (or push-forward) of F at x the linear map Dx F : TxM1 →
TF (x)M2 defined by:

Dx F (ξ)=μ ⇐⇒ w =Dφ(x)(ψ◦F ◦φ−1)(v) (2.2)

where v is the tangent vector ξ read in the local chart (U ,φ) of M1 containing x and w is the

tangent vector μ read in the local chart (V ,ψ) of M2 containing F (x). The differential of F may

sometimes be denoted equivalently by F∗.
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In other words, if a tangent vector ξ ∈TxM1 is represented by v ∈H1, then the tangent vector

Dx F (ξ) ∈TF (x)M2 is represented by Dφ(x)(ψ◦F ◦φ−1)(v) ∈H2. This can be represented by

the following diagram:

TxM1 H1

TF (x)M2 H2

∼

Dx F Dφ(x)(ψ◦F◦φ−1)

∼

Since the vector spaces TxM1 and TF (x)M2 are isomorphic to the model spaces, H1 and H2

respectively, the differential of F is a continuous map, for any F differentiable. Specifically,

when M1 and M2 are submanifolds of normed (or metric) vector spaces and TxM1 is charac-

terized as in (2.1), the differential to F at x can be interpreted as the map which associates to

a tangent vector v = γ̇(0) ∈TxM1 the tangent vector to the curve F ◦γ(t ) at t = 0. Intuitively,

one can think the push-forward map of F as the best local linear approximation of F . Based

on the characterization of the differential, we can distinguish three categories of differentiable

functions:

• F is a submersion at x if and only if Dx F is surjective;

• F is a immersion at x if and only if Dx F is injective and the image Dx F (TxM1) is closed

in TF (x)M2;

• F is a diffeomorphism at x if and only if Dx F is bijective.

Observe that the definition of immersion given here coincides with Definition 2.0.4.

Definition 2.0.6. Two manifolds M1,M2 are diffeomorphic, M1 �M2, if there exists a diffeo-

morphism between them, i.e. a function F : M1 →M2 such that the differential Dx F is bijective

at each x ∈M1.

Diffeomorphisms between manifolds will be used to characterize the tangent space of abstract

manifolds in terms of tangent space of diffeomorphic manifolds with well know differential

structures.

Definition 2.0.7. The union of the tangent spaces at all elements of M is called tangent bundle:

T M := ⋃
x∈M

TxM

Definition 2.0.8. Let M be a C p−manifold, with p ≥ 1. We define C k -vector field, for any

0≤ k ≤ p, a map
Ξ : M →T M

x �→Ξ(x)
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which assigns to any x ∈M a tangent vector Ξ(x) ∈TxM . The integral curve of a vector field

on the manifold M is a curve c : [0,T ]→M such that:

d

d t
c(t )=Ξ(c(t )), ∀t ∈ [0,T ]. (2.3)

Namely Ξ(c(t )) is tangent to the curve at c(t ) at any time.

The time derivative in (2.3) is defined following Definition 2.0.5 as d
d t (ψ◦c)(t ) read in the local

chart (V ,ψ) where V contains c(t ).

Definition 2.0.9. Let gx be a bilinear, symmetric and positive-definite form:

gx : TxM ×TxM →R

(ξ,ν) �→ gx (ξ,ν).

If this form varies smoothly over the tangent bundle, then g defines a Riemannian metric. A

pair (M , g ) consisting of a manifold M and a Riemannian metric g is called a Riemannian

manifold.

2.0.3 Embedded submanifold

We have seen that if a set can be equiped with a manifold structure, usually admits more

than one manifold structure. However, a subset N ⊂M , where M is a manifold, admits

(at most) only one structure which makes it a submanifold of M . Namely there exists only

one maximal atlas which induces on N and on the tangent space to N , the same topology

induced by the ambient manifold. A special type of submanifolds are the, so called, embedded

submanifolds, which are the image of injective immersions whose topology coincides with

the (unique) subspace topology induced by M .

Theorem 2.0.1. [74] Let F : N →M be an injective immersion between the manifolds N and

M . If F is homeomorphic onto its image, then F (N ) is an (embedded) submanifold of M and

N is isomorphic to F (N ).

The following theorem is useful to recognize or construct embedded manifolds.

Theorem 2.0.2. [76] Let F : M1 →M2 be a differentiable function between two smooth mani-

folds M1,M2 and y be an element in the range of F . If the differential of F at x is surjective for

all x ∈ F−1(y), then F−1(y) is an embedded manifold of M1.

Stiefel manifold

Let H be a (possibly infinite dimensional) Hilbert space equipped with an inner product

< ·, · > and let S > 0 be a natural number. We call Stiefel manifold, denoted with St(S,H ), the
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collection of all orthonormal frames of S elements in H :

St(S,H )= {
V= (V1, ...,VS) : Vi ∈H and <Vi ,Vj >= δi j ∀i , j = 1, ...,S

}
. (2.4)

St(S,H ) is a smooth embedded submanifold of [H ]S [57]. This can be shown by applying

Theorem 2.0.2 to the following differentiable map:

F : [H ]S →Ss ym(S)

V �→ 〈〈V,V〉〉− IS

where V is a row vector, IS is the identity in RS×S , 〈〈V,V〉〉 ∈ RS×S is defined as 〈〈V,U〉〉i j :=
〈〈V j ,Vi 〉〉 for all i , j = 1, ...,S and Ss ym(S) := {B ∈ RS×S : BT = B}. It is evident that St(S,H )=
F−1(0). We need to verify that the differential of F is surjective for all V ∈ St(S,H ). We re-

call that the tangent space to [H ]S and Ss ym(S) are respectively given by TU[H ]S = [H ]S ,

TBSs ym(S)=Ss ym(S), for any U ∈ [H ]S and B ∈Ss ym(S). In light of this, we do not need to

read the differential of F by means of charts and we can write directly:

DVF (Z)= 〈〈V,Z〉〉+〈〈Z,V〉〉,∀Z, V ∈ [H ]S

This is surjective at V ∈ St(S,H ) because DVF ( 1
2 VB) = B for all B ∈ Ss ym(S). In particular

St(S,H ) is a complete Riemannian manifold with the induced Riemannian metric given by

<V,U>=
S∑

i=1
<Vi ,Ui >.

The fact that St(S,H ) is an embedded manifold of [H ]S relieves us from using charts for read-

ing the tangent vectors to St(S,H ). More precisely St(S,H ) admits a global chart (St(S,H ),φ)

where φ is actually the inclusion φ(V) = V, which implies that ξ ∈TVSt(S,H ) is actually an

element of [H ]S for any V ∈ St(S,H ). This facilitates us to characterize the elements of

TVSt(S,H ). Consider a smooth curve V(t ) in St(S,H ); we have that:

〈〈V(t ),V(t )〉〉 = IS , ∀t . (2.5)

If we differentiate relation (2.5) with respect to t we get:

〈〈V̇(t ),V(t )〉〉+〈〈V(t ), V̇(t )〉〉 = 0, ∀t . (2.6)

where the time derivative V̇ is thought in the ambient space, thanks to the fact that St(S,H ) is

an embedded manifold of [H ]S . Then observe that, since TVSt(S,H )= [H ]S , any tangent

vector V̇(t ) ∈TVSt(S,H ) belongs actually to [H ]S and can be decomposed in:

V̇(t )=V(t )Ω+Z

where Ω ∈ RS×S and Z = (Z1, ..., ZS) is in the orthogonal complement to V(t) in [H ]S , i.e. <
Zi ,Vj (t )>= 0 ∀i , j = 1, ...,S. Then, for relation (2.6) to be satisfied, we get that Ω is necessarily

skew-symmetric, i.e.: Ω=−ΩT . Finally we have that the tangent space to St(S,H ) at V can be
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written as:

TVSt(S,H ) = {δV ∈ [H ]S such that < δVi ,Vj >+<Vi ,δVj >= 0, ∀i , j = 1, ...,S}

= {δV=VΩ+Z ∈ [H ]S |Ω=−ΩT ∈RS×S , Z ∈ [H ]S :< Zi ,Vj >= 0 ∀i , j = 1, ...,S}

In this thesis we consider both:

• St(S,L2(Ω)) defined as the collection of all vectors of S L2(Ω)−orthonormal random

variables in a probability space (Ω,A ,P );

• St(S, H 1(D)) which denotes the collection of all L2(D)−orthonormal frames of S vector

functions in H 1(D); with D ⊂Rd an open bounded domain.

St(S, H 1(D))= {
V= (V1, ...,VS) : Vi ∈H 1(D) and <Vi ,Vj >L2(D)= δi j ∀i , j = 1, ...,S

}
(2.7)

We emphasize that St(S, H 1(D)) is embedded in [H 1(D)]S while the orthonormality

condition is required in the weaker norm L2(D). However this distinction does not affect

the construction of the differential structure of St(S, H 1(D)) and we can proceed as

previously described (where in (2.6) we consider the L2(D)-inner product). In particular

we have that for any V ∈ St(S, H 1(D)) the tangent space is isomorphic to [H 1(D)]S and

can be written as:

TVSt(S, H 1(D))= {δV=VΩ+Z ∈ [H 1(D)]S |Ω=−ΩT ∈RS×S , Z ∈ [H 1(D)]S :

< Zi ,Vj >L2(D)= 0 ∀i , j = 1, ...,S}
(2.8)

where for convenience δV ∈ [H 1(D)]S is decomposed in the part belonging to the sub-

space spanned by V and the part in the orthogonal complement to V in [H 1(D)]S with

respect to the L2(D)-norm. In the following, we always denote by St(S, H 1(D)) the set in

(2.7). This observation can be generalized to any Sobolev space H p (D) for any p > 1.

2.0.4 Quotient spaces of manifolds

Intuitively quotient spaces can be imagined as the result of an equivalence classing in which

all equivalent elements are “contracted” in only one point. When equipped with a suitable

manifold structure they provide the proper mathematical framework for several numerical/-

computational applications. Think, for instance, to numerical algorithms involving finite

dimensional subspaces which, for computational applications, strictly need to be represented

in terms of bases (matrices at the discrete level). It is clear that there are infinitely many “equiv-

alent” bases spanning the same subspace, but only one have to be chosen. The questions are

how to properly choose only one “representative element” per class and how to make this

choice depend smoothly (in a suitable sense) on the element that has to be represented. A

possible solution can be obtained by equipping the quotient space with a differential manifold

structure. We start by recalling under which conditions this can be achieved. Let M be a man-
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ifold and ∼ an equivalence relation defined for all elements of M . We call fiber (or equivalent

class) containing x ∈M the set of all elements which are equivalent to x:

[x] := {y ∈M such that y ∼ x}

If we regard all equivalent elements as a unique element, we get what is called quotient space

of M by ∼, namely the set of all equivalence classes of ∼ in M , i.e.:

M /∼:= {
[x] : x ∈M

}
Any element of the quotient space is a fiber, and so it corresponds to a subset of M . The map

which associates to any element its fiber, is called canonical map and is defined as

π : M →M /∼
x �→ [x]

It is evident that π(x)=π(y) if and only if x ∼ y . Any fiber [x] can be seen as the inverse of the

canonical map in the point y =π(x), namely [x]=π−1(y).

Proposition 2.0.1. [2, 16] Let M /∼ be a quotient space equipped with the structure of quotient

manifold of M , and let π denote the canonical projection map. Each equivalent class [x] =
π−1(π(x)), is an embedded manifold of M , ∀x ∈M .

In general quotients of smooth manifolds are not necessarily smooth manifolds themselves.

Nice quotient structures can be derived by the action of Lie groups, under some additional

conditions which will be summarized in the next section.

Quotient manifold by Lie group action

Definition 2.0.10. A Hilbert Lie group G modeled on a Hilbert space G is a C∞ manifold

modeled on G , with group operation, given by the multiplication:

G×G →G

(g ,h) �→ g h

and inverse map:
G →G

g �→ g−1.

which are both smooth.

We denote with e the neutral element of G , i.e. the only element of G such that g e = g for all

g ∈G . A right-action θ of Lie group G on a smooth manifold M is a map:

θ : M ×G →M

(x, g ) �→ θ(x, g )=: Rg (x)
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which satisfies:

• θ(x,e)= x for all x ∈M ,

• θ(x, g h)= θ(θ(x,h), g ), for all x ∈M and g ,h ∈G . (Equivalently written as Rg h =Rg ◦Rh)

The action is smooth if the map θ is smooth. For convenience of notation, right actions will

be often denoted as θ(x, g )= x · g in what follows. We recall that the G-orbit of a point x ∈M

is the set of elements in M to which x can be moved to, by the Lie action of G. This concept

can be used to define an equivalence relation in M : we say that two elements x, y ∈M are

equivalent if they can be moved one towards the other by the action of an element of G . More

precisely:

x ∼ y ⇐⇒ ∃g ∈G : θ(x, g )= y

According to this definition, the G-orbits correspond to the fibers of M by the equivalence

relation ∼ induced by the G action. The quotient space M/G :=M/∼ is the collection of all

orbits. We recall that:

• an action θ of G on a smooth manifold M is free if has not fixed points. This means that

any element g ∈G different from the neutral element moves any point x ∈M , i.e.:

if ∃x ∈M : θ(x, g )= x ⇒ g = e

• an action θ of G on a smooth manifold M is proper if the graph of θ:

Θ : G×M →M ×M

(g , x) �→ (θ(x, g ), x)

is proper, i.e. preimages of compact sets have compact closure. Roughly speaking G

acts properly if each compact subset is moved away from itself by most elements of the

group.

• an action θ is isometric if it leaves the metric, given by the inner product, invariant on

the fibers:

〈Dx Rg [ν],Dx Rg [ξ]〉 = 〈ν,ξ〉, ∀ν,ξ ∈TxM , ∀x ∈M

Let us define the following map, ϑx , that sends an element of G to an element of the orbit

containing x, here denoted by Fx :

ϑx : G → Fx

g �→ θ(g , x).

The action θ is free if and only if ϑx is injective for all x ∈M .
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Theorem 2.0.3. [Quotient Manifold theorem, [76, 74]] Let G be a Hilbert Lie group acting on

the right on a Riemannian Hilbert manifold M via an isometric action θ which is smooth, free

and proper. Provided that the tangent map Deϑx has a closed range, then:

• the orbits are closed submanifolds of M and ϑx is a diffeomorphism,

• the quotient space M /G has a smooth Hilbert structure,

Grassmann manifold as quotient space

Let H be a general Hilbert space and S a positive real number, we denote by G (S,H ) the

Grassmann manifold of dimension S that consists of all the S−dimensional linear subspaces

of H . The Grassmann G (S,H ) can be identified with the Stiefel manifold St(S,H ), defined

in (2.4), quotiented by the equivalence relation ∼ defined as follows:

V∼U ⇐⇒ span(V)= span(U) (2.9)

It is straightforward to verify that ∼ is an equivalence relation as it is reflexive, symmetric and

transitive. Directly from the definition of ∼we easily see that there is a one-to-one correspon-

dence between St(S,H )/∼ and G (S,H ), since two elements V,U ∈ St(S,H ) are equivalent if

and only if they span the same subspace . This implies that, if St(S,H )/∼ admits a manifold

structure, this can be naturally reflected to G (S,H ).

Observe that two elements V,U ∈ St(S,H ) are equivalent if and only if U=VO for some orthog-

onal matrix O. Let us denote by OS the subspace of all the orthogonal matrices of dimension

S: OS = {O ∈ RS×S : OT O=OOT = I}. It is straightforward to verify that OS is a (compact) Lie

group modelled on RS×S where the group operation is given by matrix multiplication. Let us

define the following smooth right action of OS in St(S,H ):

θ : St(S,H )×OS → St(S,H )

(U,O) �→V=UO=: RO(U) ⇐⇒ Vk =
S∑

i=1
Ui Oi k ∀k = 1, ...,S

Since the equivalence relation induced by the action θ coincides with ∼ in (2.9), St(S,H )/∼
coincides with St(S,H )/OS . For any U ∈ St(S,H ), the equivalent class containing U, which

is given by UOS = {UW : W ∈OS}, is identified by the subspace U = span(U1, ...,US) ∈G (S,H ).

One can verify that θ is an isometric action, indeed:

<DZRO[U],DZRO[W]>=<UO,WO>=<U,W> ∀U,W ∈TZSt(S,H ), ∀Z ∈ St(S,H )

which acts freely and properly in St(S,H ). Hence Theorem 2.0.3 implies that G (S,H ) =
St(S,H )/OS admits a (unique) structure of (Hilbert) quotient manifold.
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2.0.5 Principal fiber bundle

The structure of principal fibre-bundle is the appropriate mathematical formulation un-

derlying the gauge theory, first developed in physics to describe the dynamics of all non-

gravitational interactions, and used afterwards in several other applications.

Definition 2.0.11. Let (M ,B,π,G) be a geometrical structure, where:

• M is a manifold, called total space;

• G is a Lie group which acts freely on M on the right:

M ×G →M

θ(x, g ) �→ x · g ,

• B, called base, is the quotient manifold of M by the action of G,

• π : M →B is the projection map, i.e. the surjective continuous map that associates to

each point in M the G-orbit containing x.

We say that (M ,B,π,G) forms a principle fiber bundle if it satisfies the condition of local

triviality, i.e. if there exists a family of charts {Ui ,φi } where {Ui } are open subsets covering B

and φi : π−1(Ui )→Ui×G are homeomorphic maps, such that the following diagram commutes:

π−1(Ui ) Ui ×G

Ui

ϕ

π
pr o j1

where pr o j1 is the projection into the first component. Namely there exists a G-equivariant†

map gi : π−1(Ui )→G which is a fibrewise diffeomorphism and such that φi (p)= (π(p), gi (p)).

The collection {Ui ,φi } is called local trivialization of the bundle.

Definition 2.0.12. We call local section any right inverse of π in Ui ⊂B, namely any smooth

map σ : Ui →π−1(Ui ) such that π◦σ= i d, i.e. σ(x)= y if and only if y ∈π−1(x).

Roughly speaking, section maps are functions that assign to each point (equivalent class)

x ∈Ui a unique “representative” point y on the fiber corresponding to x. Observe that the

local triviality condition guarantees the existence of local sections.

Lemma 2.0.1. [122] Let π : M →B be a surjective submersion and let G be a Lie group which

acts freely on M from the right such that the orbits of the action are exactly the fibers π−1(y) for

any y ∈B. Then (M ,B,π,G) is a principal G-bundle.

†A map φ defined on π−1(Ui ) is G-equivariant if φ(pg )=φ(p)g for all g ∈G and p ∈π−1(Ui ).
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In other words, assumed that G acts freely on M , a necessary and sufficient condition for

(M ,M/G ,π,G) to form a principle fiber bundle is that the mapping π admit local sections.

Combining Lemma 2.0.1 with Proposition 2.0.1 we have that any (M ,M /G ,π,G) where M /G

is a quotient manifold, forms a principal fiber bundle.

The fiber bundle associate to the Grassmann manifold

In Section 2.0.4 we have seen that G (S,H )= St(S,H )/OS admits a structure of quotient man-

ifold, which implies, by means of Proposition 2.0.1, that the canonical projection map π :

St(S,H )→G (S,H ) is a submersion and the fibers: UOS = {UW : W ∈OS} are embedded sub-

manifolds of St(S,H ). As a consequence of Lemma 2.0.1, we conclude that (St(S,H ),G (S,H ),π,OS)

form a principle fiber bundle.

2.0.6 Tangent space to the base manifold

Consider a principle fiber bundle (M ,B,π,G); the differential structure of the total space M is

typically well known and used to characterize the tangent vectors to the base space B. Let ξ ∈
TyB be a tangent vector to B at y and x be an element in the preimage of y , i.e. x ∈π−1(y)⊂
M ; any tangent vector ν ∈ TxM which satisfies Dxπ(ν) = ξ can be considered a suitable

representation of ξ. The drawback of this approach is that Dxπ is not injective and so the

representation of ξ is not uniquely determined. The uniqueness is recovered by decomposing

TxM into the subset of directions tangent to the fiber π−1(y) and its complementary space.

The latter, which consists in all directions that do not induce displacements along the fiber,

provides a suitable representation of the tangent space to the base manifold.

Definition 2.0.13. The vertical space at x ∈M , denoted by Vx , is the vector subspace of TxM

consisting of all the tangent vectors which are tangent to fiber of x.

We call vertical distribution the map that assigns to each element x ∈M the vertical space

Vx ⊂ TxM . Any vertical distribution is G invariant. We remind that for any x, the fiber

containing x is an embedded submanifold of M , which coincides with the image of the

inverse of the canonical map in the point y = π(x). Since π is constant along the fibers, the

differential of π at x, Dxπ : TxM →Tπ(x)B, vanishes along the fiber. So the vertical space Vx

can be defined as the kernel of Dxπ, i.e.

Vp = {v ∈TxM : Dxπ(v)= 0}.

Intuitively this means that movements in the vertical direction make no changes in the quo-

tient space. This motivates the choice of representing tangent vectors in the tangent space to

B at π(x) by means of tangent vectors in the complement of the vertical space Vx .

Definition 2.0.14. A connection on a principle fiber bundle (M ,B,π,G) is a smooth splitting:

TxM =Vx ⊕Hx , ∀x ∈M
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Figure 2.3 – The tangent vector ξ ∈Ty (M /∼) to the quotient manifold M /∼ is represented by
the tangent vector v to the total manifold M . The vector v belongs to the horizontal space
Hx ⊂TxM at x ∈M such that y =π(x).

satisfying the G-invariance property: Hxg =Dx Rg [Hx ], ∀g ∈G , ∀x ∈M . Hx is called horizon-

tal space to M at x.

The map that assigns to each element x ∈ M the horizontal space Hx ⊂ TxM is named

horizontal distribution and is G invariant. The existence (but not uniqueness) of a horizontal

distribution is always guaranteed in our context of Hilbert manifolds; the same conclusion

does not generally apply to manifold modelled on Banach spaces. Observe that a horizontal

distribution turns the map Dxπ : Hx →Tπ(x)B into an ismorphism for any x ∈M .

Definition 2.0.15. Let Ξ : B→T B be a smooth vector field on B. We call horizontal lift of Ξ

the vector field Ψ : M →H for which Dxπ(Ψ(x))=Ξ(π(x)) for all x ∈M .

We emphasize that in the absence of any extra structure there is no natural complement to Vx

in TxM .

Remark 2.0.2. If M is a Riemannian manifold equipped with a G-invariant metric, we can

simply define the horizontal space as the orthogonal complement (with respect to the metric) of

Vx in TxM , i.e. Hx =V ⊥
x .

The choice of the horizontal space can be equivalently seen as the definition of a linear map

Dπ(x)σ : Tπ(x)B→TxM so that:

• Dxπ◦Dπ(x)σ= id the identity in Tπ(x)B.

• Dπ(x)σ is G-invariant.
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As the symbol suggests, the map Dπ(x)σ can be interpreted as the differential of a local section

σ at π(x).

Definition 2.0.16. Let Ξ : B →T B be a smooth vector field and γ : [0,T ]→B the integral

curve of Ξ passing by y at t = 0. We define lift of γ through x ∈ π−1(y) a curve γ̃ : [0,T ]→M

such that γ̃(0)= x and π(γ̃(t ))= γ(t ) for any t ∈ [0,T ]. A lift of γ is horizontal if is the integral

curve of the horizontal lift of Ξ.

A rigorous treatment of these concepts is given for instance in [25, 63]. In particular the

following classical result of fiber bundle theory tells us that horizontal distributions provide

unique parametrization of the tangent space to a base manifold.

Theorem 2.0.4. [25] Let (M ,B,π,G) be a principal fiber bundle and Hx : M → H, x �→ Hx

a horizontal distribution. For any y ∈B and any smooth curve γ : R→B such that γ(0)= y,

there exists a unique horizontal lift δ̃ : R→M with δ̃(0)= x, for any x ∈M such that π(x)= y.

In other words a horizontal distribution turns the map Dxπ : Hx →TxB into an isomorphism.

This leads to a unique representation of the tangent space to B at γ(t) and hence a local

parametrization of the base manifold by means of pull back.

Tangent space to the Grassmann manifold

We continue in the analysis of the principle fiber bundle (St(S,H ),G (S,H ),π,OS). To equip

G (S,H ) with a differential structure we need to fix a horizontal distribution in St(S,H ). We

have seen that for any V ∈ St(S,H ) the tangent space to St(S,H ) at V is given by:

TVSt(S,H )= {δV=VΩ+Z ∈ [H ]S |Ω=−ΩT ∈RS×S , Z ∈ [H ]S :< Zi ,Vj >= 0 ∀i , j = 1, ...,S}

Any fiber UOS is an embedded submanifold of St(S,H ) thus it inherits the differential structure

of the ambient space St(S,H ). Take an arbitrary curve along the fiber UOS , this is written as

α : R→UOS , t �→α(t )=UO(t ), which implies that the tangent vector to α at time t has to be

written as UȮ(t ). Since UȮ(t ) ∈TV(t )St(S,H ), it is evident that Ȯ(t ) ∈RS×S is skew-symmetric.

In conclusion, for any U ∈ St(S,H ) the vertical space at U is given by:

VU = {UΩ : Ω=−ΩT ∈RS×S}.

Depending on the choice of the horizontal distribution we can have different parametrizations

of the tangent bundle of G (S,H ). However, since St(S,H ) is a Riemannian manifold with

metric defined as <V,U>=
S∑

i=1
<Vi ,Ui >, a natural choice consists in defining the horizontal

space as the orthogonal complement to the vertical space with respect to this metric. This

procedure reduces to consider G (S,H ) as a quotient submanifold of St(S, H). Precisely the
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horizontal space at U reads:

HU = {δV ∈TUSt(S,H ) such that < δV,UΩ>= 0,∀Ω ∈RS×S : Ω=−ΩT }

= {Z ∈ [H ]S such that < Zi ,U j >H= 0,∀i , j = 1, ...,S}
(2.10)

Observe that the horizontal space consists of only variations in St(S,H ) which modify the

span. Finally the tangent space to G (S,H ) at U = π(U)= span(U) is represented by HU. In

particular if γ : [0,T ] �→G (S,H ) is a curve passing by U =π(U0) with U0 ∈ St(S,H ), the unique

horizontal lift of γ through U0 in St(S, H) is defined as t �→U(t) and satisfies: U(0)=U0 and

< U̇i (t ),U j >H= 0, ∀i , j = 1, ...,S. In the following we refer to the last condition as dynamically

orthogonal constraint.

2.1 Manifold of S rank random fields

In this thesis we are interested in approximating the solutions of differential equations with

random parameters by a linear combination of S (and not less than S) linearly independent

deterministic modes combined with S linearly independent stochastic modes. More precisely

the approximate solution is sought in the manifold of S rank random fields, defined as follows:

Definition 2.1.1. We define MS ⊂H ⊗L2(Ω) the manifold of all S rank random fields, i.e.:

MS =
{
uS ∈H ⊗L2(Ω) : uS =∑S

i=1 Ui Yi | span(U1, ...,US) ∈G (S,H ),

span(Y1, ...,YS) ∈G (S,L2(Ω))
} (2.11)

where H ⊂ L2(D) is a Hilbert space. We use the tools of differential geometry discussed in the

previous Sections to show that MS is actually a differential manifold. Hence we derive the

parametrizations of the tangent space which will be used in the following Chapters.

First of all we emphasize that there are two levels of flexibility in the parametrization of MS :

• the choice of the atlas to equip MS with a manifold structure. Practically, when we

define an atlas, we write each element in MS as a linear combination of S terms, each

one written in separable form. The choice of the atlas consists in fixing in which and

how many components each term is separated and setting the functional spaces to

which each component belongs.

• the choice of a horizontal distribution to equip MS with a differential structure and

parametrize the tangent space.

In the context of dynamical low rank approximation, the second step leads to the dynamic

constraints, known in physics as gauge constraints, which are used to derive the reduced order

system. Let 〈·, ·〉 : H ×H →R be an inner product (non necessarily the one of H ), we consider
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Chapter 2. Differential Manifolds

the following representation:

uS =
S∑

i=1
YiUi =UY (2.12)

where:

• U= (U1, ...,US) ∈ [H ]S is a S dimensional (row) vector of functions Ui ∈H which are

orthonormal with respect to the 〈·, ·〉-product, i.e. 〈Ui ,U j 〉 = δi j for all i , j = 1, ...,S.

• Y is a row vector of S linearly independent random variables, hence with full rank

covariance matrix C= E[YYT ].

In practice, H will be same Sobolev space H s(D) for s ≥ 0, and 〈·, ·〉 will be the L2(D)-inner

product.

Remark 2.1.1. Here we have assumed that 〈·, ·〉 is an inner product, i.e. a symmetric and positive

bilinear form in H . Actually this condition can be relaxed by asking 〈·, ·〉 to be a non degenerate

bilinear form in H , i.e 〈U ,V 〉 = 0 for all V ∈H if and only if U = 0. The non-degeneracy is

a sufficient condition to equip MS with a structure of differentiable quotient manifold. This

type of construction will be used in Chapter 5, where we take 〈·, ·〉 to be a symplectic (i.e. non

degenerate and antisymmetric) form in H .

Hereafter we refer to (2.12) as DO decomposition, as used in [116, 117]. Observe that the

deterministic modes U belong to the Stiefel manifold St(S,H ) defined in (2.7), that, we recall,

is an embedded submanifold of [H ]S (see Section 2.0.3). Let us denote by B(S,L2(Ω)) ⊂
[L2(Ω)]S the sub-manifold of all L2(Ω)-linearly independent random vectors of dimension

S; we claim that MS admits a structure of differential manifold based on the isomorphism

with
(
G (S,H )×B(S,L2(Ω))

)
where the Grassmannian manifold G (S,H ) = St(S,H )/OS is

interpreted as the Riemanniann quotient manifold of St(S,H ). The proof is based on the fact

that horizontal distributions in St(S,H ) imply the existence of local section maps σU : Bπ(U) ⊂
G (S,H )→ St(S,H ), defined in a neighborhood Bπ(U) of π(U), for all U ∈ St(S,H ).

Proposition 2.1.1. MS admits a manifold structure diffeomorphic to
(
G (S,H )×B(S,L2(Ω))

)
according to which, for any uS ∈MS, the tangent space to MS at uS can be parametrized as

follows:

TuS MS =
{
δv =∑S

i=1

(
δUi Yi +UiδYi

) ∈H ⊗L2(Ω) with δYi ∈ L2(Ω) and δUi ∈H ,

s.t. 〈δUi ,U j 〉 = 0 ∀i , j = 1, ...,S
}

(2.13)

Proof. We start by considering the Grassmannian manifold G (S,H ), that is the collection of

all S dimensional subspaces of H . Following the discussion in Section 2.0.4, we have that
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2.1. Manifold of S rank random fields

G (S,H ) is diffeomorphic to St(S,H )/OS and admits a quotient manifold structure. More-

over (St(S,H ),G (S,H ),π,OS) forms a principle fiber bundle, where the projection map π

corresponds to the span operation (see Section 2.0.5). We consider in St(S,H ) the L2 norm

defined as: 〈V,U〉 =
S∑

i=1
〈Vi ,Ui >L2(D) and we choose the horizontal distribution by means of L2

projection on the orthogonal complement to the vertical space. Then for any U ∈ St(S,H ) the

horizontal space is written as:

HU = {Z ∈ [H ]S such that 〈Zi ,U j 〉 = 0,∀i , j = 1, ...,S} (2.14)

We recall that a horizontal distribution turns the map DUπ : HU → Tπ(U)G (S,H ) into an

isomorphism, for any U ∈ St(S,H ). Namely, by fixing the horizontal space HU, we implicitly

define a linear map Dπ(U)σ
U : Tπ(U)G (S,H )→TUSt(S,H ), which is the right inverse of the

differential DUπ, and which coincides to the push-forward of the local section mapσU induced

by the horizontal distribution, defined in a neighborhood of π(U). We now define the following

maps:

s :
(
St(S,H )×B(S,L2(Ω))

) →MS

(U,Y) �→
S∑

i=1
Ui Yi

(2.15)

σ̃ := s ◦ (σU× id ) :
(
BU ×B(S,L2(Ω))

) →MS

(V ,Y) �→σU(V )Y=
S∑

i=1

(
σU(V )

)
i Yi

(2.16)

where σU, defined in a neighborhood BU ⊂ G (S,H ) of U = π(U), is the local section map

associated to the quotientation of St(S,H ). The map σ̃ is a diffeomorphism, hence the tangent

space to MS can be represented in terms of the differential of σ̃: for any vS = σ̃(V ,Y) and

δvS ∈TvS MS

δvS =D(V ,Y)σ̃(δV ,δY)

=
S∑

i=1

(
DV σ

U(δV )
)

i Yi +
S∑

i=1

(
σU(V )

)
iδYi

= δVY+VδY such that V=σU(V ), and 〈Vi ,δVj 〉 = 0, ∀i , j = 1, ...,S.

(2.17)

Here we explicitly used the horizontal distribution defined by (2.14).

This isomorphism allows us to recast variational problems, defined in the abstract manifold

MS , as systems of equations defined respectively in H and L2(Ω).

Observe that we can retrace the same construction as before by inverting the role of the

deterministic and stochastic bases and get the Dual DO decomposition, used in Chapter

4, in which the stochastic modes are now orthonormal and subject to orthogonal dynamic

constraints.
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2.1.1 Some alternative parametrizations

Alternative parametrizations of low rank manifolds in separable form have been investigated

in literature and used to derive reduced order methods or rank-constrained geometrical

optimization algorithms. We have already mentioned the DyBO (or BO) method introduced in

[30] and used in [31, 36], consisting in a representation in three fields:

uS(x, t ,ω)=
S∑

i=1
λi (t )Ui (x, t )Yi (t ,ω)

which maintains both the deterministic and the stochastic modes orthogonal (but non or-

thonormal). This technique is included in the class of Dynamical Low Rank method, i.e. the

DyBO-approximate solution satisfies the DLR variational principle (1.4.1) and is equivalent the

(Dual) Dynamical approximate solution, provided that no crossing between the eigenvalues

λ1, ...,λS occurs. The equivalence between the DO and DyBO reduced systems is shown in

[35]. For deterministic Schrödinger equations, the same result in variational setting has been

derived in [12] (Section 3.2 and Section 3.2) and can be recast into the setting of PDEs with

random coefficients by following the discussion in Chapter 1.

Other different geometrical constructions of manifold with fixed rank in finite dimensional

setting, have been recently introduced in [93], for machine learning applications. In this frame-

work MS is the manifold of all matrices with rank S, and the different types of representations

of S rank random fields recalled above correspond to different matrix factorizations. In [93],

the authors proposed three geometrical interpretations underling the full-rank factorization

(corresponding to the Cholesky-type decomposition), the polar factorization (corresponding

to the SVD decomposition) and the subspace-projection factorization (corresponding to the

QR decomposition). The former is the finite dimensional analogue of the DO representation

for S rank random fields. However the differential structure proposed in [93] (which is sum-

marized hereafter) is different to the one proposed here and, as a result, leads to a different

parametrization of the tangent space. The parametrization proposed in [93] appears quite

natural but leads to more involved dynamic constraints. It is based on considering MS as the

collection of the equivalence classes defined as follow:

[(U,Y)]= {
(UO,OT Y), ∀O ∈OS

}
More precisely, the principle fiber bundle associated to MS is given by:

• the total space
(
St(S,H ),B(S,L2(Ω))

)
;

• the base space
(
St(S,H ),B(S,L2(Ω))

)
/OS defined with respect to the following equiva-

lence relation:

(U,Y)∼ (V,Z) ⇐⇒ ∃O ∈OS : (V,Z)= (UO,OT Y),

for all U,V ∈ St(S,H ) and Y,Z ∈B(S,L2(Ω));
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• the Lie group OS with right action defined as:

(
St(S,H ),B(S,L2(Ω))

)×OS → (
St(S,H ),B(S,L2(Ω))

)
((U,Y),O) �→ (UO,OT Y)

• the projection map π which associates to any pair (U,Y) ∈ (
St(S,H ),B(S,L2(Ω))

)
the

corresponding equivalence class.

and MS is identified with the base space
(
St(S,H ),B(S,L2(Ω))

)
/OS . Moreover, the total space

is equipped with the following OS-invariant Riemannian metric:

g
(
(V,Z), (W,X)

)= S∑
i=1

<Vi ,Wi >+Trace
(
E[ZXT ]E[YYT ]−1).

For any (U,Y) ∈ (St(S,H ),B(S,L2(Ω))
)
, the corresponding fiber is written as:

π−1[(U,Y)]= {
(UO,OT Y), ∀O ∈OS},

and the vertical space at (U,Y) is given by:

V(U,Y) =
{
(UΩ,ΩT Y), ∀Ω ∈RS×S : ΩT =−Ω}

.

When endowed with the metric g , the base space
(
St(S,H ),B(S,L2(Ω))

)
/OS becomes the

Riemannian quotient manifold of
(
St(S,H ),B(S,L2(Ω))

)
by OS . In other words, the tangent

space to MS , seen as
(
St(S,H ),B(S,L2(Ω))

)
/OS , is parametrized in terms of the horizontal

distribution induced by the metric g , and is written as:

TuS MS =
{
δv =∑S

i=1

(
δUi Yi +UiδYi

) ∈H1⊗L2(Ω) with δYi ∈ L2(Ω) and δUi ∈H1,

s.t. �U,δU�+(E[YδYT ]E[YYT ]−1
)

is simmetric
}

(2.18)

at any uS =UY ∈MS .
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3 Dynamical Low-Rank approximation
for parabolic PDEs with random data

This Chapter is mainly based on the paper [96] with respect to which we have done minor

changes in the notation (i.e. B[L2
0(Ω)]S has been replaced with B(S,L2

0(Ω))) and added a nu-

merical test considering a parabolic equation with non linear reaction term. In particular, in

Section 3.2 we introduce the Dynamically Orthogonal method, we show the analogy with the

Dynamically Double Orthogonal method and we formalize the Dynamical Low-Rank varia-

tional principle for parabolic equations with random parameters which establishes the link

between the DO(DDO) method and the DLR approximation. Afterwards, in Section 3.2.3, we

analyze same properties of the approximation manifold which are then used in Section 3.3.1

to derive a theoretical bound for the approximation error of the S−terms DLR approximate

solution by the corresponding S-terms best approximation, for linear parabolic equations.

After studying the main properties of the DO approximations on simple cases of deterministic

equations with random initial data in Section 3.4, we conclude in Section 3.5 with some nu-

merical tests which confirm the theoretical bound and show potentials and limitations of the

DLR approach.

Introduction

Many physical and engineering problems can be properly described by mathematical models,

typically of differential type. However, in many situations, the input parameters may be

affected by uncertainty due e.g. to measurement errors, limited data availability or intrinsic

variability of the phenomenon itself. A convenient way to characterize uncertainty consists

in describing the uncertain parameters as random variables or space and/or time varying

random fields. Starting from a suitable Partial Differential Equation (PDE) model, the aim of

the Uncertainty Quantification is to assess the effects of the uncertainty by computing the

statistics of the solutions or of some quantities of interest. Several approaches have been

proposed and analyzed in the last decades. We name the Monte Carlo method [46, 21], Quasi

Monte Carlo [51, 98] and the corresponding Multilevel versions [37], or the approaches based

on deterministic approximations of the parameters-to-solution map (response function) such

as the generalized Polynomial Chaos [38, 136, 131, 75] in its Galerkin [6, 89, 49] and collocation
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versions [11, 5, 101, 133, 135].

In this work we focus on a reduced basis method to approximate the solution. We consider a

general type of time dependent PDE with random data of the form:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u(x,t ,ω)
∂t =L (u(x, t ,ω),ω), x ∈D, t ∈T , ω ∈Ω,

B(u(σ, t ,ω))= h(σ, t ), σ ∈ ∂D, t ∈T , ω ∈Ω,

u(x, t = 0,ω)=u0(x,ω), x ∈D, ω ∈Ω,

(3.1)

where x ∈ D ⊂ Rd is the spatial coordinate, t is the time variable in T ≡ [0,T ] and ω is the

random elementary event in the complete probability space (Ω,A ,P ). In addition L is a

general (linear or non linear) differential operator and B is an operator defining the boundary

conditions. Here the randomness can appear in the operator L as a random parameter

or forcing term as well as in the initial datum. A possible approach to approximate the

solution consists in expanding u on a deterministic (Proper Orthogonal Decomposition- POD

[23, 13, 62]) or stochastic (gPC [136, 139, 100]) set of orthogonal basis functions, performing

a Galerkin projection and computing the coefficients at any time step. Specifically, the POD

method requires a set of pre-computed snapshots for different parameter values and time

instants. However, since the dependence of the solution on the random parameters may

significantly vary in time, any approximation which makes use of time fixed basis functions

(either deterministic or stochastic), necessarily requires during the evolution an increasing

number of terms to maintain a proper level of accuracy and, in general, needs a very high

computational effort. Several adaptive and greedy type techniques have been proposed in

the literature to (partially) overcome this problem, e.g. time-dependent gPC [48, 59] and

Generalized POD [104, 106, 33]. On the other hand, in many cases, the collection of all

solutions at a given time corresponding to all possible outcomes of the input random processes

can still be well approximated in a low-dimensional subspace, which however, will change at

each time instant.

It is well known that the optimal S-dimensional subspace, in L2 sense, is the one which is

spanned by the first S terms of the Karhunen-Loève decomposition of the solution [75, 49, 78].

The main practical difficulty is that such subspace is, in general, not easy to characterize a

priori and might significantly change in time. Therefore the idea of the approach proposed

here is to approximate the solution on an evolving subspace, exploiting the structure of the

differential equation. In other words, the approximate solution is expanded on a dynamical

deterministic orthonormal basis with stochastic coefficients which evolve in time as well, i.e.:

uS(x, t ,ω)= ūS(x, t )+
S∑

i=1
Yi (t ,ω)Ui (x, t ), (3.2)

Here ūS(x, t )�E[u(x, t , ·)] is the approximated expected value, U1, ...,US are

L2(D)−orthonormal deterministic basis functions and Y1, ...,YS are zero-mean stochastic

variables. The approximate solution (3.2) is obtained by suitably projecting the residual of

the differential equation (non linear Galerkin projection) and aims to be close enough to the
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Karhunen-Loève decomposition, even if it does not coincide, in general, with it.

This approach is not new; it has been introduced in [116] and named “Dynamically Orthogonal”

approximation (DO) and applied in [117, 127] to the approximation of fluid equations with

random initial data. Analogous formulations are also used in [30, 31, 34]. On the other hand,

similar ideas have been developed in a quite different context, namely in chemistry and

quantum dynamics, for the approximation of the deterministic Schrödinger equations by

the Multi-Configuration time-dependent Hartree method (MCTDH, [67, 39]) and the Dirac-

Frenkel Variation principal [42, 47]. There, the goal is to look for an approximate solution

written in separable form as a product of functions depending on one space variable only,

whereas, in the DO approach presented here, we aim at separating the space variables from

the stochastic ones. The discrete analogue of the MCTDH method consists in looking for a

Dynamical Low-Rank approximation of a deterministic evolution matrix or tensor equation

[66, 68, 83]. A few theoretical results are available on the accuracy and error estimates for either

the MCTDH approximation of Schrödinger equations or Dynamical Low-Rank approximation

of matrix equations [39, 66].

Our first goal in this paper is to establish a precise link between the DO approach (as proposed

in [116]) and the Dynamical Low-Rank approximation analyzed e.g. in [66]. This allows us to

“import” some of the theoretical results developed in [39, 66] to our situation of a parabolic

equation with random parameters. In particular, we reinterpret the DO equations given in

[116, 117, 127] as a Galerkin projection onto the tangent space to the manifold of the rank

S functions of the form (3.2). Using curvature bounds for such manifold, given in [39], we

show that the DO approximation error for a linear parabolic equation with random input data

can be bounded in terms of the best rank S approximation of the solution (Karhunen-Loève

expansion), at each time instant. The bound is applicable on the largest time interval in which

the best S−terms approximation is continuously differentiable in time. This request on time

differentiability is actually unavoidable and corresponds to asking that certain eigenvalues of

the Karhunen-Loève decomposition do not cross in time. By means of simple examples with

a deterministic linear operator and random initial datum, we highlight how and when the

crossing of the eigenvalues negatively effects the DO approximation. In particular we show

in which cases, for a deterministic operator, the DO solution is exact and on the other hand,

when the DO error can not be properly bounded by the best approximation error. Finally, we

describe the numerical method that we have adopted in this work and the technique utilized

to deal with singular covariance matrices. We conclude with some numerical examples in

which we specifically address: i ) a deterministic linear parabolic equation with random initial

condition, i i ) a linear parabolic equation with stochastic coefficient and deterministic initial

datum, i i i ) a non-linear parabolic equation of reaction-diffusion type.

The outline of the paper is as follows: in Section 2 we introduce the mathematical problem and

basic notations; in Section 3 we describe the DO approximation, we show the analogy with the

dynamical low-rank approach and we give a variational interpretation of it. In Section 4 the

DO approximation is applied to a linear stochastic parabolic equation and an analysis of the

DO approximation error is provided. In Section 5 we analyze the case of a linear deterministic

operator. Finally, in Section 6 we describe the numerical discretization of the DO equations
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Chapter 3. Dynamical Low-Rank approximation for parabolic PDEs with random data

and we present several numerical test cases that will show when the DO approximation is

effective and when is not.

3.1 Problem setting

Let D ⊂ Rd , 1 ≤ d ≤ 3, be an open bounded domain and (Ω,A ,P ) a complete probability

space, where Ω is the set of outcomes, A a σ-algebra and P : A → [0,1] a probability measure.

The problem considered in this paper is the following time dependent stochastic PDE:

∂u(x, t ,ω)

∂t
=L (u(x, t ,ω),ω), x ∈D, t ∈T , ω ∈Ω, (3.3)

where L is a general (linear or non-linear) differential operator, x ∈D is the spatial coordinate

and t is the time variable in T ≡ [0,T ]. Additionally, the initial state of the problem is described

by

u(x, t = 0,ω)= u0(x,ω), x ∈D, ω ∈Ω, (3.4)

and the (deterministic) boundary condition is given by

B(u(σ, t ,ω))= h(σ, t ), σ ∈ ∂D,

where B is a linear differential or algebraic operator. We specifically address the parabolic

case in which L is an elliptic second order differential operator in the space variable x. For a

random function v(x, t ,ω), we define its mean value as

v̄(x, t )= E[v(x, t , ·)]=
∫
Ω

v(x, t ,ω)dP (ω),

as well as the L2 inner product in the physical space

〈u(·, t ,ω), v(·, t ,ω)〉 =
∫

D
u(x, t ,ω)v(x, t ,ω)d x.

In what follows we use the notation

u∗(x, t ,ω)= u(x, t ,ω)−E[u(x, t , ·)]

We assume that all the random fields considered in this paper are square integrable for any

t ∈T , that is, ∫
D
E[u2(x, t , ·)]d x <+∞ ∀t ∈T .

As the approaches considered in this work have a strong relationship with the Karhunen-

Loève expansion, we review some basic properties of the latter. To begin with, let us define the
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covariance function of a space-dependent random field u(x,ω) as

Covu(x, y)= E
[
u∗(x, ·)u∗(y, ·)] , x, y ∈D.

It is well known that any second order random field u(x,ω), with continuous and positive

definite covariance function Covu : D×D → R, can be represented as an infinite sum of

random variables, by means of the Karhunen-Loève expansion [49]. To this end, we introduce

the compact and self-adjoint operator Tu : L2(D)→ L2(D), which is defined by

Tu v(·)=
∫

D
Covu(x, ·)v(x)d x, ∀v ∈ L2(D). (3.5)

Then, consider the sequence of non-negative decreasing eigenvalues of Tu , {μi }∞i=1, and the

corresponding sequence of orthonormal eigenfunctions, {Zi }∞i=1, satisfying

Tu Zi =μi Zi , 〈Zi , Z j 〉 = δi j ∀i , j ∈N+, (3.6)

where δi j is the Kronecker symbol. In addition, define the mutually uncorrelated real random

variables

γi (ω) := 1�
μi

∫
D

u∗(x,ω)Zi (x)d x ∀i ∈N+, (3.7)

with zero mean and unit variance, i.e. E[γi ] = 0 and E[γiγ j ] = δi j for i , j ∈ N+. Then, the

truncated Karhunen-Loève expansion of the stochastic function u, which we denote by zS , is

defined by

zS(x,ω)= ū(x)+
S∑

i=1

�
μiγi (ω)Zi (x), ∀S ∈N+. (3.8)

By Mercer’s theorem [78], it follows that

lim
S→∞

sup
x∈D

E[(u(x, ·)− zS(x, ·))2]= lim
S→∞

sup
x∈D

∞∑
i=S+1

μi Z 2
i (x)= 0.

Observe that the S random variables in (3.7), describing the approximate random function

zS (3.8), are weighted differently due to the decay of the eigenvalues of the Karhunen-Loève

expansion. The decay properties of eigenvalues and eigenvectors have been investigated e.g.

in the works [49, 119].

In the case of a time-varying random filed u(x, t ,ω), the truncated Karhunen-Loève expansion

at each fixed t ∈T would read

zS(x,ω, t )= ū(x, t )+
S∑

i=1

√
μi (t )γi (t ,ω)Zi (x, t ), ∀S ∈N+ (3.9)

with 〈Zi (·, t ), Z j (·, t )〉 = δi j , ∀t ∈T .
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Chapter 3. Dynamical Low-Rank approximation for parabolic PDEs with random data

3.2 Dynamically Orthogonal approximation

Several approaches have been proposed in the literature to numerically compute the random

solution u(x, t ,ω) of PDEs with stochastic input data. For instance, in a generalized Polynomial

Chaos (gPC) approach (see e.g. [75, 136, 131]), after parameterizing the probabilistic space by

a sequence of random variables {ηi }i≥1, the solution is expanded on a fixed basis of orthogonal

polynomials in ηi with space and time varying coefficients:

vS(x, t ,ω)= v̄S(x, t )+
S∑

i=1
Vi (x, t )Φi (η1(ω),η2(ω), ...)= v̄S(x, t )+

S∑
i=1

Vi (x, t )Φ̃i (ω),

and E[Φ̃i Φ̃ j ]= δi j .

Unlike the gPC approach, the Dynamically Orthogonal (DO) approximation, first introduced

in [116], utilizes a more general expansion

uS(x, t ,ω)= ūS(x, t )+
S∑

i=1
Ui (x, t )Yi (t ,ω). (3.10)

Namely, both the spatial basis {Ui (x, t )}S
i=1 and the random basis {Yi (t ,ω)}S

i=1 are time depen-

dent and either Ui or Yi are kept orthogonal at all times, thus aiming to mimic the Karhunen-

Loève expansion (3.9). Note that the above approximations are finite sums where the index S

represents the approximation level.

In what follows we focus on the case where the spatial basis {Ui }S
i=1 is kept orthogonal at

all times. The uniqueness of the DO approximation (3.10) is guaranteed by the following

dynamically orthogonal conditions [116],[117],[127]:

E[Yi (t , ·)]= 0, 〈Ui (·, t ),U j (·, t )〉 = δi j ,

〈∂Ui (·,t )
∂t ,U j (·, t )〉 = 0, 1≤ i , j ≤ S, ∀t ∈T .

(3.11)

Given problem (3.3), by using together the Galerkin projection onto the subspaces spanned

by the basis functions in (3.10) and the DO conditions (3.11), one gets the following DO

system[116, 117, 127]:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂ūS(x, t )

∂t
= E [L (uS(x, t , ·))] (3.12)

S∑
i=1

Ci j (t )
∂Ui (x, t )

∂t
=Π⊥U E

[
L (uS(x, t , ·))Y j (t , ·)] j = 1, · · ·,S (3.13)

∂Yi (t ,ω)

∂t
= 〈L ∗(uS(·, t ,ω),ω),Ui (·, t )〉 i = 1, · · ·,S (3.14)

where
Ci j (t )= E[Yi (t , ·)Y j (t , ·)], ∀i , j = 1, · · ·,S,

L ∗(u(x, t ,ω),ω)=L (u(x, t ,ω),ω)−E [L (u(x, t , ·))]
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3.2. Dynamically Orthogonal approximation

and Π⊥
U

is the projection operator from the space L2(D) to the orthogonal complement of the

S dimensional subspace U = span{U1, · · ·,US}, namely,

Π⊥
U

[v]= v −ΠU [v]= v −∑S
i=1 〈v,Ui 〉Ui , ∀v ∈ L2(D).

The associated boundary conditions have the form

B(ūS(σ, t ))= h(σ, t ), σ ∈ ∂D∑S
i=1 Ci j (t )B(Ui (σ, t ))= 0, σ ∈ ∂D, j = 1, · · ·,S

(3.15)

and the corresponding initial conditions are given by

ūS(x,0)= ū0(x)= E[u0(x, ·)], Ui (x,0)= Zi 0(x), Yi (0,ω)= 〈u0(·,ω)− ū0, Zi 0〉 , (3.16)

where {Zi 0(x)}S
i=1 are the spatial basis functions appearing in the Karhunen-Loève expansion

of u0(x,ω). Note that the DO equations (3.12)-(3.14) are coupled together, in general. By

solving this system, one easily gets the approximation of the mean and of the total variance of

the solution:

E[u(x, t , ·)]≈ E[uS(x, t , ·)]= ūS(x, t ), VarT [u](t )≈VarT [uS](t )=
S∑

i=1
E[Y 2

i (t )].

where the total variance is defined as VarT [u](t) = ∫
D E[(u(x, t , ·)− ū(x, t , ·))2]d x. Concern-

ing the numerical approximation of the DO system (3.12)-(3.14), many approaches can be

followed, among which the Finite Elements or the Finite Difference methods for spacial dis-

cretization and the Stochastic Collocation [5, 101, 135], gPC [137, 136] or (Quasi) Monte Carlo

[46, 21] methods for the stochastic discretization. Any time splitting scheme can be adopted

for the time derivative discretization, but care should be taken in respecting exactly or with

good accuracy, the DO conditions (3.11) at each time step.

3.2.1 Dynamically Double Orthogonal approximation

The DO conditions (3.11) in the derivation of the DO approach are somehow unsymmetric as

only the deterministic fields {Ui }S
i=1 are required to be orthogonal. An alternative approach

consists in considering a double orthogonal basis {Ũi }S
i=1 and {Ỹi }S

i=1 and the general formula-

tion:

u(x, t ,ω)≈ ũS(x, t ,ω)= ˜̄uS(x, t )+
S∑

i , j=1
Ai j (t )Ũi (x, t )Ỹ j (t ,ω)= ˜̄uS + ŨT AỸ, (3.17)

with notations

Ũ= (Ũ1, ...,ŨS)T , A=
(

Ai j

)S

i , j=1
, Ỹ= (Ỹ1, ..., ỸS)T .
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Chapter 3. Dynamical Low-Rank approximation for parabolic PDEs with random data

Here we require that both {Ũi }S
i=1 and {Ỹi }S

i=1 are dynamically orthonormal, or rather:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E[Ỹi (t , ·)]= 0, ∀ 1≤ i ≤ S, (3.18)

〈Ũi (·, t ),Ũ j (·, t )〉 = δi j , E
[
Ỹi (·, t ), Ỹ j (·, t )

]= δi j , ∀ 1≤ i , j ≤ S, (3.19)

〈∂Ũi (·, t )

∂t
,Ũ j (·, t )〉 = 0, E

[
∂Ỹi (·, t )

∂t
, Ỹ j (·, t )

]
= 0, ∀ 1≤ i , j ≤ S. (3.20)

Analogously to what has been done in the DO approximation, one can easily derive the

following dynamically double orthogonal (DDO) system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ ˜̄uS(x, t )

∂t
= E [L (ũS(x, t , ·))] , (3.21)

d

dt
A(t )= E

[〈L ∗(ũS(·, t , ·)),ŨT (·, t )〉 Ỹ(·, t )T ] , (3.22)

AT (t )
∂Ũ(x, t )

∂t
=Π⊥

Ũ
E
[
Ỹ(·, t )L ∗(ũS(·, t , ·))

]
(3.23)

A(t )
∂Ỹ(t ,ω)

∂t
=Π⊥

Ỹ
〈L ∗(ũS(·, t ,ω),ω),Ũ(·, t )T 〉 , (3.24)

where L ∗(u)=L (u)−E [L (u)] and Π⊥
Ỹ

is the projection operator from the space L2(Ω) to the

orthogonal complement of the S dimension subspace Ỹ = span(Ỹ1, ..., ỸS). The related initial

and boundary conditions can be obtained by the same way as in (3.15) and (3.16). The decom-

position (3.17) and the corresponding system (3.21)-(3.24) have been proposed in [66, 68] for a

dynamically low rank approximation of a time dependent differential matrix/tensor equation.

An analogous formulation in infinite dimensional setting is derived in [67, 39], related to the

multi-configuration time-dependent Hartree approach (MCTDH), in the quantum dynamics

framework. We remark that for time dependent SPDEs, a Dynamically bi-orthogonal method

(DyBO), which has a close relation with the DDO approximation, has been introduced in

[30, 31]. As our error analysis relies on the symmetric property of the DDO approach, we

will show in the following the equivalence between the DDO and the DO approximations.

Note that in the DDO system (3.21)-(3.24), the equation for the mean function coincides with

equation (3.12) in the DO system. Furthermore, letting Y = AỸ, it is easy to show that the

approximation ũS = ūS + ŨT Y satisfies the DO system. Indeed, by using together equations

(3.22) and (3.24), we have

∂Y
∂t = dA

dt Ỹ+A∂Ỹ
∂t

= E
[〈L ∗(ũS),ŨT 〉ỸT

]
Ỹ+Π⊥

Ỹ
〈L ∗(ũS),ŨT 〉

= E
[〈L ∗(ũS),ŨT 〉ỸT

]
Ỹ+〈L ∗(ũS),ŨT 〉−E

[〈L ∗(ũS),ŨT 〉ỸT
]

Ỹ

= 〈L ∗(ũS),ŨT 〉,

(3.25)

which coincides with equation (3.14) in the DO system. Moreover, by multiplying both sides

of (3.23) by A we obtain

AAT ∂Ũ

∂t
=Π⊥

Ũ
E
[
YL ∗(ũS)

]
. (3.26)
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3.2. Dynamically Orthogonal approximation

Note that the covariance matrix of Y is

C= E[YYT ]= E[AỸ(AỸ)T ]=AAT . (3.27)

Thus, the equation (3.26) coincides with (3.13) in the DO system. Using similar techniques, one

can show that the corresponding initial and boundary conditions for the DO system and the

DDO system also coincide. On the other hand, if uS = ūS +UT Y is a solution of the DO system

(3.12)-(3.14), then defining A as the square root of C one can show by the same arguments

as above that uS = ūS +UT AỸ with Ỹ=A−1Y is a solution of the DDO system (3.21)-(3.24). In

particular, Ỹ is a vector of orthonormal random variables in L2(Ω). We thus conclude that the

DO and the DDO formulations produce the same approximate solution.

3.2.2 An equivalent Variational Formulation

Let H ⊂ L2(D) be a suitable Hilbert space and H ′ its dual. We assume that equation (3.3) can

be set in H ′ ⊗L2(Ω) and it admits a unique solution u(t ) ∈H ⊗L2(Ω) for any t ∈T .

Denoted by L2
0(Ω)⊂ L2(Ω) the subspace of all the square integrable random variables with

zero mean, let us define:

F̃S =O[H ]S ×MS×S ×O[L2
0(Ω)]S (3.28)

with:

MS×S = {A ∈RS×S : rank(A)= S},

O[H ]S = {Ũ= (Ũ1, ...,ŨS) : Ũi ∈H and < Ũi ,Ũ j >= δi j ∀i , j = 1, ...,S},

O[L2
0(Ω)]S = {Ỹ= (Ỹ1, ..., ỸS) : Ỹi ∈ L2

0(Ω) and E[Ỹi Ỹ j ]= δi j ∀i , j = 1, ...,S}

and the map:

π : F̃S →MS

(Ũ,A, Ỹ) �→π(Ũ,A, Ỹ)=∑S
j=1

∑S
i=1 Ai jŨi Ỹ j

(3.29)

The image of π is the manifold:

MS =
{

u∗S =
S∑

j=1

S∑
i=1

Ai jŨi Ỹ j : (Ũ,A, Ỹ) ∈ F̃S

}
⊂H ⊗L2

0(Ω) (3.30)

Observe that the subspace F̃S is isomorphic to

FS =O[H ]S ×B(S,L2
0(Ω)), (3.31)

with B(S,L2
0(Ω)) = {Y = (Y1, ...,YS) : Yi ∈ L2

0(Ω) and E[Yi Y j ] = λiδi j ∀i , j = 1, ...,S}, i.e. the set

of all the pairs (U,Y) such that U ∈ O[H ]S and Y = (Y1, ...YS) is a vector of, not necessary

independent, zero mean, square integrable random variables with full rank covariance matrix
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C= E[YT Y]. Therefore the manifold MS can be equivalently defined as

MS =
{

u∗S =
S∑

i=1
Ui Yi : (U,Y) ∈FS

}
(3.32)

with the associated map π′ : FS →MS such that π′(U,Y)=∑S
i=1 Ui Yi .

Definition 3.2.1. We define a S-rank random field as a function uS = ūS +u∗S ∈H ⊗L2(Ω)

such that u∗S ∈MS, and we call MS (H ⊗L2
0(Ω)), or simply MS if no ambiguity arises on the

functional spaces, the manifold of all S-rank zero mean random fields u∗S ∈H ⊗L2
0(Ω).

The DO approximate solution is a S rank function at each time, provided that the covariance

matrix is not singular. However, observe that the map π, analogously π′, is not injective, i.e.

the representation of a stochastic field u∗S ∈MS in F̃S (respectively FS) is not unique: for any

orthogonal matrices Θ, Θ̃ ∈MS×S we have that π(Ũ,A, Ỹ)=π(ŨΘ,ΘT AΘ̃, ỸΘ̃) and conversely

for any (Ũ,A, Ỹ) and (Ṽ,B, Z̃) such that π(Ũ,A, Ỹ) = π(Ṽ,B, Z̃), there exists a unique orthogo-

nal matrix Θ ∈ MS×S such that (Ṽ,B, Z̃) = (ŨΘ,ΘT AΘ̃, ỸΘ̃). In terms of differential geometry

F̃S , MS and π define a fiber bundle with fiber given by the group OS of the orthogonal matrix

of dimension S. In particular F̃S/OS is isomorphic to MS . This construction allows us to equip

MS with a manifold structure and define the tangent space to MS at u∗S =π(Ũ,A, Ỹ)=π′(U,Y).

Proposition 3.2.1. The tangent space Tu∗S MS consists of the elements δu∗S ∈H ⊗L2(Ω) of the

form:

Tu∗S MS =
{
δu = ∑S

i=1

∑S
j=1

(
δAi jŨi Ỹ j +Ai jδŨi Ỹ j +Ai jŨiδỸ j

) ∈H ⊗L2
0(Ω)

:< δŨi ,Ũ j >= 0, E[δỸi ]= 0, E[δỸi Ỹ j ]= 0 ∀i , j = 1, ...,S
}

=
{
δu = ∑S

i=1

(
δYiŨi +δŨi Yi

)
:< δŨi ,Ũ j >= 0E[δYi ]= 0, ∀i , j = 1, ...,S

} (3.33)

where in the last line we use notations in (3.32) with Y = AỸ. (The two different notations

correspond to the DDO and the DO formulation respectively).

Observe that the tangent space does not depend on the choice of coordinates (Ũ,A, Ỹ) but

only on the point u∗S .

Remark 3.2.1. The DO approximate solution describes a path from T to MS defined as

t → u∗S (t) = uS(t)− ūS(t). On the other hand the same path can be parametrized by in-

finitely many different continuous flows t → (Ũ(t ),A(t ), Ỹ(t )) foliating the fibers F̃S, satisfying

π(Ũ(t),A(t), Ỹ(t))= u∗S (t) at each t ∈T , and so-called gauge transformations [7, 80] allow to

continuously pass from one flow to an equivalent one. A generic gauge constrain is defined as

follows:

< ˙̃Ui ,Ũ j >=<GUŨi ,Ũ j >
E[ ˙̃Yi Ỹ j ]= E[GY Ỹi Ỹ j ]

(3.34)
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where GU and GY are arbitrary self-adjoint operators in L2(D) and L2(Ω) respectively. Any of

these gauge constrains leads to an evolution system for one of the possible parametrization

(Ũ(t),A(t), Ỹ(t)) ∈ F̃S of the same path t → u∗S (t) ∈MS. Specifically, in the DDO formulation,

we assume GU ≡ 0 and GY ≡ 0, which leads to system (3.22)-(3.24). On the contrary, the gauge

constrain that keeps A(t ) diagonal at all times leads to the DyBO method proposed in [30, 31].

As shown in [35], the DO and the DyBO method provide, indeed, the same approximate solution,

as long as the covariance matrix is not singular. In other words the two approaches lead to two

different parameterizations in F̃S of the same path u∗S (t ) in MS. In fact, the analogy between

the two methods can be alternatively proved by following the analysis on [7], properly adopted

to our context.

According to the DO approach, the tangent space to MS , defined in (3.33), is parametrized by

imposing condition in (3.11). Then the following proposition holds, suitably adapted to our

framework from [66, 39].

Proposition 3.2.2. For all v ∈H ⊗L2(Ω) and u∗S ∈MS , the orthogonal projection Pu∗S onto

the tangent space Tu∗S MS of v is given by

Pu∗S (v)= Pu∗S (v∗)=UT 〈v∗,UT 〉+ (Π⊥U {E[v∗YT ]}C−1)T Y,

where C−1 is the inverse of the covariance matrix C= E[YYT ], that has full rank, by definition

of S-rank function. We denote with P⊥u∗S v = P⊥u∗S v∗ = (I−Pu∗S )(v∗) the complementary

projection.

Furthermore we observe that the governing equation (3.3) can be formulated as:

∂ū(x, t )

∂t
= E[L (u(x, t , ·))], in H ′

∂u∗(x, t ,ω)

∂t
=L ∗(u(x, t ,ω),ω) in H ′ ⊗L2(Ω)

(3.35)

with u∗ = u− ū. Finally we have the following variational formulation for the DO approach:

Proposition 3.2.3. Let
(
ūS(t ), Y(t ),U(t )

) ∈H ×FS be the strong solution of system (3.12)-(3.14)

at each t ∈T , then uS(t )= ūS(t )+u∗S (t )= ūS(t )+π′(U(t ),Y(t )) ∈H ×MS satisfies:

E

[
〈∂uS(·, t , ·)

∂t
−L (uS(·, t , ·)), v〉

]
= 0, ∀v = v̄ + v∗, (v̄ , v∗) ∈H ×Tu∗S (t )MS (3.36)

at each t ∈T , which can be equivalently written as

∂uS(x, t ,ω)

∂t
= E [L (uS(x, t , ·))]+Pu∗S (t )(L

∗(uS(x, t ,ω)))

with L ∗(uS)=L (uS)−E[L (uS)].

Remark 3.2.2. Observe that the tangent space Tu∗S (t )MS is time dependent and depends only
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on uS(t ) and not on the parametrization. It follows that the variational formulation in (3.36) is

valid for the DDO as well as DyBO approach proposed in [30, 31].

Proposition (3.2.3) emphasizes that the approximate solution u∗S = uS − ūS is forced to belong

to the S dimensional manifold MS at all times. We point out that the DO solution (3.36) does

not coincide, in general, with the best S-rank approximation (denoted by zS in (3.9)) which

instead minimizes the approximation error in L2 sense at each time instant, i.e.

zS(t )= ū(·, t )+argminw∈MS
E
[
‖u∗(·, t , ·)− w(·, ω)‖2

L2(D)

]
, ∀t ∈T . (3.37)

It is well known that the best S-rank approximation corresponds indeed to the truncated

Karhunen-Loève expansion, with S terms. Observe that in the best S-rank approximation

(3.37) the solution u∗ of the equation (3.35) is projected onto the manifold MS , whereas

in (3.36) the residual of the equation (3.35) is projected onto the tangent space Tu∗S (t )MS .

However, the DO formulation takes inspiration from the Karhunen-Loève decomposition.

It aims at developing an analogous type of approximation without directly computing the

Karhunen-Loève decomposition. In fact the DO method evolves a dynamically low rank

approximation and adapts at each time instant the spatial basis as well the stochastic variables

to what best describes the structure of the solution. This makes the method numerically

accessible and effective in terms of approximation error at any time instant for long time

integration.

3.2.3 Properties of the manifold

In this subsection, we shall discuss some properties of the manifold MS , which will play

an important role in the next section when analyzing the convergence properties of the DO

approach. Given the equivalence between the DO and DDO formulations, shown in Section 3.1

here we will use either formalism depending on what is more convenient for the presentation.

Definition 3.2.2. Denoted with A the square root of the covariance matrix C = E[YYT ], the

singular values of a S-rank function uS = ūS +UT Y are defined as the singular values of A:

σ(uS) :=σ(A)=
√

eig(C). (3.38)

Equivalently for the DDO formulation, uS = ūS +UT AỸ, the singular values of uS are by defini-

tion the singular values of A.

In the following, we denote with ‖ ·‖0 := ‖·‖L2(D)⊗L2(Ω) the norm in L2(D)⊗L2(Ω). The norm

for a function vector U is defined as usual, namely, ‖U‖0 = (
∑

i ‖Ui‖2
L2(D)

)1/2. We also denote

with ‖ ·‖F and ‖ ·‖2 the Frobenius and the spectral norm of a matrix, respectively. Note that,

with such definition we have ‖u∗S‖0 = ‖A‖F , for u∗S = ŨT AỸ ∈MS .

We introduce now a useful lemma concerning the properties of the operator Pu∗S and the

curvature estimates for the manifold MS . This lemma is taken from [39] with just small
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adjustments to the notations and settings used here. We skip the proof as it would follow very

closely the one in [39]. Analogous results are achieved in [66], where the authors considered a

very similar approach for matrix equations in finite dimensional spaces.

Lemma 3.2.1. Consider the manifold MS(L2(D)⊗L2(Ω)). Let u∗S =UT Y ∈MS such that the

smallest nonzero singular value satisfies σs(u∗S ) ≥ ρ > 0, and let v∗S = VT Z ∈MS with ||u∗S −
v∗S ||0 ≤ 1

8ρ. Then, ∀w ∈ L2(D)⊗L2(Ω), the following bounds hold:

‖(Pu∗S −Pv∗S )w‖0 ≤ 8ρ−1‖u∗S − v∗S ‖0 · ‖w‖0, (3.39)

‖P⊥u∗S (u∗S − v∗S )‖0 ≤ 4ρ−1‖u∗S − v∗S ‖2
0. (3.40)

Further we observe that any linear deterministic bounded operator applied to a S-rank func-

tion, does not increases its rank.

Proposition 3.2.4. Let V1 and V2 be two Hilbert spaces such that V2 ⊆ V1 ⊆ L2(D) and B : V1 → V2

a linear bounded operator. For any uS = ūS +u∗S with (ūS ,u∗S ) ∈ V1×MS(V1⊗L2(Ω)), we have

that B⊗ IuS =BūS +B⊗ Iu∗S with (BūS ,B⊗ Iu∗S ) ∈ V2×MS(V2⊗L2(Ω)).

Proof. It is enough to observe that
(
B⊗ I

)
u∗S =

∑S
i=1(BUi )Yi and it can be expanded as:

(
B⊗ I

)
u∗S =∑S

i=1ΠU(BUi )Yi +∑S
i=1Π

⊥
U

(BUi )Yi∑S
i=1

(∑S
j=1 〈BUi ,U j 〉U j

)
Yi +∑S

i=1Π
⊥
U

(BUi )Yi∑S
j=1

(∑S
i=1 〈BUi ,U j 〉Yi

)
U j +∑S

i=1Π
⊥
U

(BUi )Yi =UT δY+δUT Y

(3.41)

where δY= 〈B(UT )Y,U〉 and δU=Π⊥
U

(BU) is orthogonal to U by construction.

3.3 Application to stochastic parabolic equations

In this section, we consider the DO approach for the following linear stochastic parabolic

equation:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u(x, t ,ω)

∂t
−∇· (a(x,ω)∇u(x, t ,ω))= f (x, t ,ω), x ∈D, t ∈T , ω ∈Ω, (3.42)

u(σ, t ,ω)= 0 σ ∈ ∂D, t ∈T , ω ∈Ω, (3.43)

u(x,0,ω)=u0(x,ω), x ∈D, ω ∈Ω, (3.44)

where a(x,ω) : D×Ω→R is a random field with continuous and bounded covariance function

and D is an open, bounded and Lipschitz domain. We say that u is a weak solution of

problem (3.42)-(3.44) if it satisfies the initial condition u = u0 at t = 0 and if, at any t ∈ T ,
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u(·, t , ·) ∈H 1
0 (D)⊗L2(Ω) and

E[〈∂u(·, t , ·)
∂t

, v〉]+E[〈a∇u(·, t , ·),∇v〉]= E[〈 f (·, t , ·), v〉] ∀v ∈H 1
0 (D)⊗L2(Ω). (3.45)

A sufficient condition to guarantee the existence and uniqueness of the solution u consists

in assuming that f ∈ L2(T ,L2(D)⊗L2(Ω)), u0 ∈ L2(D)⊗L2(Ω) and the diffusion coefficient

a(x,ω) is bounded and uniformly coercive almost surely, i.e.

∃ami n , amax ∈ (0,+∞) : P
(
ω ∈Ω : a(x,ω) ∈ [ami n , amax ],∀x ∈D

)= 1. (3.46)

Then by standard arguments applied for almost every ω ∈ Ω (see also [100]), it is straight-

forward to show that there exists a unique solution u ∈ L2(T , H 1
0 (D)⊗ L2(Ω)) with

∂u

∂t
∈

L2(T , H−1(D)⊗L2(Ω)) and by standard energy estimates the following a priori bound holds

∀T ∈T :

‖u(T )‖2
L2(D)⊗L2(Ω)

+ami n‖u‖2
L2(T ,H 1

0 (D)⊗L2(Ω))
≤ ‖u0‖2

L2(D)⊗L2(Ω)

+ c2
p

ami n
‖ f ‖2

L2(T ,L2(D)⊗L2(Ω))
,

(3.47)

where cp denotes the constant appearing in the Poincaré inequality. For the error analysis of

the DO method that will be presented in the next section, we need some extra regularity on

the exact solution u as well as its DO approximation uS . We make the following assumption:

(For simplicity of notation we denote with u̇ the time derivative of u)

Assumption 1. h

• u, uS ∈ L2(T , H 2(D)∩H 1
0 (D)⊗L2(Ω))

• u̇, u̇S ∈ L2(T ,L2(D)⊗L2(Ω))

We give here an informal discussion on why this assumption is reasonable under mild extra

requirements on the data of the problem (3.42)-(3.44). In particular, while regularity results

on the exact solution u can be proved by standard techniques, it is not obvious whether

analogous results should hold for the DO solution uS , because of the projection on the tangent

manifold. Consider the pure Neumann problem ∂un = 0 on ∂Ω and look first at the exact

problem (3.42)-(3.44) (with Neumann boundary conditions instead of Dirichlet ones). Under

the assumption that ∇a ∈ L∞(D ×Ω) and ∇u(0) ∈ L2(D)⊗L2(Ω), by taking v =−Δu in (3.45)

and integrating in time we get:

‖∇u(T )‖2
L2(D)⊗L2(Ω)

+ami n‖Δu‖2
L2(T ,L2(D)⊗L2(Ω))

≤ 2
ami n

‖∇a‖L∞(D×Ω)‖∇u‖2
L2(T ,L2(D)⊗L2(Ω))

+ 2
ami n

‖ f ‖2
L2(T ,L2(D)⊗L2(Ω))

+‖∇u(0)‖2
L2(D)⊗L2(Ω)

,

(3.48)

which implies, in light of (3.47), that u is bounded in L2(T , H 2(D)⊗L2(Ω)). In order to derive

a bound on the time derivative of u, let us now take v = u̇ in (3.45) and integrate in time. We
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get the following a priori estimate:

‖u̇‖2
L2(T ,L2(D)⊗L2(Ω))

+ami n‖∇u(T )‖2
L2(D)⊗L2(Ω)

≤ amax‖∇u0‖2
L2(D)⊗L2(Ω)

+‖ f ‖2
L2(T ,L2(D)⊗L2(Ω))

(3.49)

which shows that u̇ ∈ L2(T ,L2(D)⊗L2(Ω)). Therefore the regularity properties in Assumption 1

on u are sound provided that∇a ∈ L∞(D×Ω) and u(0) ∈H 1(D)⊗L2(Ω). Observe that, since the

truncated Karhunen-Loève expansion inherits the spatial regularity of u [119], estimates (3.48)

and (3.49) are valid for zS as well, for any S ∈N. By following the same approach as before, we

investigate now the regularity of the DO solution uS . The weak formulation of the DO method

reads: At each time t ∈T , find uS = ūS +u∗S with (ūS ,u∗S ) ∈H 1(D)×MS (H 1(D)⊗L2(Ω)) such

that

E [〈u̇S(·, t , ·), v〉]+E [〈a∇uS(·, t , ·),∇v〉]= E
[〈 f (·, t , ·), v〉] , (3.50)

∀v = v̄ + v∗, (v̄ , v∗) ∈H 1(D)×Tu∗S (t )MS .

We now take as before v = −ΔuS in (3.50). The key now is to observe that thanks to the

Proposition 3.2.4, v∗ = −Δu∗S ∈ Tu∗S MS so that it is a suitable test function. By the same

argument we can take v = u̇S as a test function. Then, proceeding as before, one can derive

the same bounds (3.48) and (3.49) for the DO solution as well. This shows that the regularity

assumption (Assumption 1) are also sound for the DO solution uS under the same conditions

on the data: ∇a ∈ L∞(D×Ω) and u(0) ∈H 1(D)⊗L2(Ω).

Remark 3.3.1. The informal arguments that we have used to derive the bounds (3.48) and

(3.49) for the exact solution as well as its DO approximation uS can be made rigorous e.g. by

using the so called Faedo-Galerkin method that consists on working with a sequence of Galerkin

approximations of the solution u, which satisfy the governing equation projected in finite

dimensional subspaces, and weakly converge to u (see e.g. [115, 45]).

3.3.1 Analysis of DO approximation error

We are now ready to prove the convergence result for the DO approximation of the stochastic

parabolic equation (3.42)-(3.44). The proof will follow closely the one by Lubich et al. in

[66] for the error analysis of the Dynamical Low Rank approximation of time dependent data

matrices. For notation simplicity, we denote

L (u) :=∇· (a∇u)+ f , L ∗(·)=L (·)−E[L (·)]. (3.51)

We suppose that the problem (3.42)-(3.44) admits a unique solution u in L2
(
T ,H2(D)∩

H 1
0 (D)⊗L2(Ω)

)
and that there exists a continuously differentiable best S-rank approximation

zS = z̄ + z∗S of the solution u at any t ∈ T . Observe that the covariance function Covu is

equal to zero on the boundary and then each mode Zi in (3.9) and, as a result, the truncate

Karhunen-Loève expansion zS , satisfy the homogeneous Dirichlet boundary conditions.

The assumptions on the data can be summarized as follows.
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Assumption 2. • f ∈ L2(T ,L2(D)⊗L2(Ω)),

• a(x,ω) bounded and uniformly coercive a. s.,

• ∇a ∈ L∞(D×Ω),

• u(0) ∈H 1(D)⊗L2(Ω).

In light of what discussed in the previous section we can argue that under Assumptions 2 the

exact solution as well as the truncated Karhunen-Loève expansion zS and the DO approxi-

mate solution uS belong to L2
(
T ,H2(D)∩H 1

0 (D)⊗L2(Ω)
)

and, in particular, the quantities

‖L (u)‖0,‖L (zS)‖0 and ‖L (uS)‖0 will be bounded, which is a necessary condition for our

proof of the quasi-optimality of the DO approximate solution. We will estimate the error of

the DO approximate solution in terms of the best approximation error ‖u− zS‖H 1(D)⊗L2(D) as

long as this remains small enough compared with the smallest singular value of zS .

Theorem 3.3.1. Suppose that, under Assumption 2, a continuously differentiable best S-rank

approximation zS(t ) of the exact solution u(t ) of (3.42)-(3.44) exists in
(
H 2(D)∩H 1

0 (D)
)⊗L2(Ω)

for 0≤ t ≤ t̄ and the smallest singular value of zS(t) is uniformly bounded from below, with

lower bound σ(zS(t ))≥ ρ > 0,∀t ∈ [0, t̄ ]. Then there exists 0< t̂ ≤ t̄ such that the approximation

error of the DO solution uS = ūS +u∗S with initial value uS(0)= zS(0) is bounded by

‖uS(t )− zS(t )‖2
0+ami n

∫t

0
|uS(τ)− zS(τ)|21dτ≤ 2αe2β(t )

∫t

0
‖zS(τ)−u(τ)‖2

1dτ, (3.52)

for all 0< t ≤ t̂ , with

β(t )= 4ρ−1
∫t

0

(
4‖L ∗(zS(τ))‖0+‖L ∗(u(τ))‖0+‖L ∗(uS(τ))‖0+‖ż∗S (τ)‖2

0

)
dτ,

α=max
{

a2
max

2ami n
, 4ρ−1

}
,

where ‖.‖1, |.|1 denote respectively the norm and semi-norm in H 1(D)⊗L2(Ω), provided that all

the terms in (3.52) are well defined.

Proof. Thanks to the assumptions of boundedness of u̇ and żS and being uS(0)= zS(0), we

have that for any t ∈ [0, t̄ ]

‖uS(t )− zS(t )‖2
0 = ‖∫t

0

(
u̇S(τ)− żS(τ)

)
dτ‖2

0 ≤ t
∫t

0 ‖u̇S(τ)− żS(τ)‖2
0dτ

≤ 2t (‖u̇S‖2
L2([0,t ],L2(D)⊗L2(Ω))+‖żS‖2

L2([0,t ],L2(D)⊗L2(Ω)))︸ ︷︷ ︸
A(t )

therefore, for t̂ =min
(
t̄ , ρ2

2·82 A(t̄ )

)
the distance between uS and zS remains bounded by 1

8ρ, as

required in Lemma 3.2.1.

For the best approximation zS it must hold that E[zS]= E[u] and E[żS]= E[L (u)]. Moreover

(zS −E[zS])− (u−E[u]) must be orthogonal to the tangent space Tz∗S MS , that is:

Pz∗S

(
(zS −E[zS])− (u−E[u])

)= Pz∗S (zS −u)= 0 (3.53)
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For z∗S ∈MS , we denote with Dz∗S P [δz∗S ] the Gateaux derivative of the projection operator in

z∗S , i.e.

Dz∗S P [δz∗S ]= lim
ε→0

Pz∗S+εδz∗S −Pz∗S

ε
. (3.54)

Observe that d
d t Pz∗S (t ) =Dz∗S P [ż∗S ]. We differentiate the relation (3.53) with respect to t and we

then obtain:

Pz∗S (żS − u̇)+Dz∗S P [ż∗S ](zS −u)= 0,

Since we have Pz∗S (żS)= Pz∗S (ż∗S )= ż∗S = żS −E[żS] the above equation becomes

żS = E[żS]+Pz∗S (u̇)−Dz∗S P [ż∗S ](zS −u)

= E[L (u)]+Pz∗S (L ∗(u))−Dz∗S P [ż∗S ](zS −u)
(3.55)

Since the DO solution satisfies

u̇S = E[L (uS)]+Pu∗S (L ∗(uS)), (3.56)

by subtracting equations (3.55) and (3.56) we get

u̇S − żS = E[L (uS)]−E[L (u)]+Pu∗S (L ∗(uS))−Pz∗S (L ∗(u))+Dz∗S P [ż∗S ](zS −u).

By adding and subtracting (Pu∗S −Pz∗S )(L ∗(zS)) we obtain

u̇S − żS = E[L (uS)]−E[L (u)]+ (Pu∗S −Pz∗S )(L ∗(zS))+Pz∗S

(
L ∗(zS)−L ∗(u)

)
+[I −P⊥u∗S

](
L ∗(uS)−L ∗(zS)

)+Dz∗S P [ż∗S ](zS −u).

and then

u̇S − żS = (Pu∗S −Pz∗S )(L ∗(zS))+Pz∗S

(
L ∗(zS)−L ∗(u)

)+Dz∗S P [ż∗S ](zS −u)

+(L (uS)−L (zS)
)−P⊥u∗S

(
L ∗(uS)−L ∗(zS)

)+E[L (zS)]−E[L (u)].

By taking the inner product with uS − zS , on both sides, we obtain

E
[〈u̇S − żS ,uS − zS〉

]=
T1︷ ︸︸ ︷

E
[〈(Pu∗S −Pz∗S )(L ∗(zS)),uS − zS〉

]
+

T2︷ ︸︸ ︷
E
[〈L (uS)−L (zS),uS − zS〉

]
T3︷ ︸︸ ︷

+E[〈Pz∗S

(
L ∗(zS)−L ∗(u)

)
,uS − zS〉

]+E
[〈E[L (zS)]−E[L (u)],uS − zS〉

]
T4︷ ︸︸ ︷

+E[〈Dz∗S P [ż∗S ](zS −u),uS − zS〉
]+

T5︷ ︸︸ ︷
E
[〈−P⊥u∗S

(
L ∗(uS)−L ∗(zS)

)
,uS − zS〉

]

(3.57)

We now estimate separately each term on the right hand side of (3.57). Lemma 3.2.1 implies
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that:

T1 : E
[〈(Pu∗S −Pz∗S )(L ∗(zS)),uS − zS〉

] = E
[〈L ∗(zS), (Pu∗S −Pz∗S )(uS − zS)〉]

≤ 8ρ−1‖L ∗(zS)‖0‖uS − zS‖2
0

(3.58)

T2 : E
[〈L (uS)−L (zS),uS − zS〉

]≤−ami n‖∇uS −∇zS‖2
0 ≤−ami n |uS − zS |21

For the term T3, since

E
[〈Pz∗S

(
L ∗(zS)−L ∗(u)

)
,uS − zS〉

]= E
[〈L ∗(zS)−L ∗(u),uS − zS〉]
−E[〈L ∗(zS)−L ∗(u),P⊥z∗S (uS − zS)〉]

we have

T3 : E
[〈Pz∗S

(
L ∗(zS)−L ∗(u)

)
,uS − zS〉

]+E
[〈E[L (zS)]−E[L (u)],uS − zS〉

]
T3 = E

[〈L (zS)−L (u),uS − zS〉
]−E

[〈L ∗(zS)−L ∗(u),P⊥z∗S (uS − zS)〉]
and then

T3 ≤ amax |zS −u|1|uS − zS |1+4ρ−1(‖L ∗(zS)‖0+‖L ∗(u)‖0)‖uS − zS‖2
0

Analogously

T5 : E
[〈P⊥u∗S (L ∗(uS)−L ∗(zS)

)
,uS − zS〉

] ≤ ‖L ∗(uS)−L ∗(zS)‖0‖P⊥u∗S (uS − zS)‖0

≤ 4ρ−1(‖L ∗(zS)‖0+‖L ∗(uS)‖0)‖uS − zS‖2
0.

(3.59)

Also we have:

‖Dz∗S P [ż∗S ](zS −u)‖0 = lim
d t→0

Pz∗S+d t ż∗S −Pz∗S

d t
(zS −u)≤ 8ρ−1‖ż∗S ‖0‖zS −u‖0,

and hence:

T4 : E
[〈Dz∗S P [ż∗S ](zS −u),uS − zS〉

]≤ 8ρ−1‖ż∗S ‖0‖zS −u‖0‖uS − zS‖0. (3.60)

Finally by combining (3.58)-(3.60) and denoting ε=uS − zS , we obtain

1
2

d

d t
‖ε‖2

0+ 1
2 ami n |ε|21 ≤ {

16ρ−1‖L ∗(zS)‖0+4ρ−1‖L ∗(u)‖0+4ρ−1‖L ∗(uS)‖0

+4ρ−1‖ż∗S ‖2
}‖ε‖2

0+
a2

max
2ami n

|zS −u|21
+4ρ−1‖zS −u‖2

0

(3.61)

The result now follows using the Gronwall inequality.

Remark 3.3.2. The derived error bound applies as well to the DDO and DyBO solutions as long

as they remain full rank. Indeed, the proof is based on the variational formulation (3.36) and
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does not make use of the parametrization of the manifold.

Remark 3.3.3. Improved upper bounds can be investigated under stronger assumptions as in

[66]. Smaller errors over longer time intervals can be obtained if, not only the error u− zS, but

also its derivative is small.

3.4 Deterministic equation with stochastic initial datum

To have a better understanding of the DO approximation, let us have now a closer look at the

following simple problem

⎧⎪⎨
⎪⎩

u̇(x, t ,ω)−Δu(x, t ,ω)= 0 x ∈D, t ∈T , ω ∈Ω, (3.62)

u(σ, t ,ω)= 0 σ ∈ ∂D, t ∈T , ω ∈Ω, (3.63)

u(x,0,ω)=u0(x,ω) x ∈D, ω ∈Ω (3.64)

For sake of simplicity we assume E[u0]= 0. However observe that in case of a deterministic lin-

ear operator the equation for the mean in the DO system (3.12)-(3.14) is completely decoupled

from the others,which implies that nothing changes in the following analysis for any ū0 != 0.

3.4.1 Case I: exactness of the DO approximation

We assume that the initial datum u0 is in the manifold MS . According to the Karhunen-Loève

decomposition, u0 can be expanded as:

u0(x,ω)=
S∑

i=1

�
μiγi (ω)Zi (x) (3.65)

Let {λi }∞i=1 and {Φi }∞i=1 be respectively the eigenvalues and the eigenfunctions of the Laplace

operator, then the exact solution of problem (3.62) with initial datum (3.65) is simply given by:

u(x, t ,ω)=
S∑

i=1

�
μiγi (ω)

[ ∞∑
k=1

< Zi ,Φk > e−λk tΦk (x)
]
. (3.66)

Observe that u is in the manifold MS and the truncated Karhunen-Loève expansion of rank S is

actually exact for all times. The exact solution belongs indeed to MS at any time instant, hence

it coincides with its best S-rank approximation zS . We show here that the DO approximate

solution is exact as well. First of all we have that the time derivative u̇ is in manifold MS :

u̇(x, t ,ω)=−
S∑

i=1

�
μiγi (ω)

[ ∞∑
k=1

< Zi ,Φk >λk e−λk tΦk (x)
]
.
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Moreover we observe that, in light of Proposition 3.2.4, Δu belongs to TuMS at each time

instant, indeed:

Δu =
S∑

i=1
<Δu,Ui >Ui +

S∑
i=1

E[Π⊥U (Δu)Yi ]Yi

which implies that the projection of Δu onto the tangent space TuMS is actually equal to Δu

itself. In particular, since the projection of the governing equation (3.62) onto the tangent

space TuMS coincides with the governing equation, we have that the DO solution uS satisfies

the exact equation (3.62). Finally the fact that u0 = zS(0) = uS(0) ensures that the three

solutions coincide at each time. Formally the same conclusion can be achieved by looking at

the evolution equations of zS and uS . As shown in (3.55) and (3.56) we have that:

żS = PzS (L (u))−DzS P [żS](zS −u)

u̇S = PuS (L (uS))

with initial condition u0 = zS(0)= uS(0). Since u(t)= zS(t) at each time, the second term on

the right side of the equation (3.4.1) is equal to zero, i.e.:

żS = PzS (L (zS))=L (zS)

u̇S = PuS (L (uS))=L (uS).

The two functions satisfy the same evolution equation with equal initial condition which

implies that they are equal at each times.

Remark 3.4.1. More generally, if the differential operator L (·) in (3.3) is a linear deterministic

operator and the initial condition u0 is in MS, then u belongs to MS and the DO approximate

solution (with rank equal to S) coincides with the exact solution at each time instant.

Proposition 3.4.1. If the initial condition u0 ∈MS is a linear combination of S eigenfunctions

Φ= (Φ1, ...,ΦS)T of the Laplace operator, then the DO method coincides to the Proper Orthogonal

Decomposition method (see e.g. [75] chapter 2) in which the governing equation is projected in

the fixed (time independent) subspace spanned by Φ. Indeed the deterministic basis functions

do not evolve in time and the DO solution uS is given by uS(x, t ,ω)=UT (x, t )Y(t ,ω) with:

U(x, t )=U(x,0), Y(t ,ω)=Υ(0)e−ΛtΥ(0)"Y(0,ω), (3.67)

where Λ is the diagonal matrix of the eigenvalues of the Laplace operator associated to Φ, i.e.

−ΔΦ=ΛΦ, and Υ(t) is the transformation matrix Υ(t)i , j = 〈Ui (·, t ), Φ j 〉 between the basis of

modes U and the basis of eigenfunctions Φ.

Proof. First of all we recall that, since u0 ∈ MS , the exact solution is in MS . Moreover it

is in the span of the S eigenfunctions Φ = (Φ1, ...,ΦS)T at any time instant. Indeed, being

u0(x,ω)=Φ(x)T Υ(0)Y(0,ω), the exact solution is given by:

u(x, t ,ω)=Φ(x)T e−ΛtΥ(0)T Y(0,ω)
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As previously discussed, we have that the DO solution coincides to the exact solution. Then it

is easy to verify that u =UT Y and the couple (U, Y) in (3.67) satisfies the DO system. To this

end, observe that the covariance matrix of the solution can be explicitly calculated as follows:

C(t ) = Υ(0)e−ΛtΥ(0)T E[Y(0)Y(0)T ]Υ(0)e−ΛtΥ(0)T

= Υ(0)e−ΛtΥ(0)T C(0)Υ(0)e−ΛtΥ(0)T (3.68)

The initial covariance matrix C(0) is assumed to have full rank and since Υ(0)e−ΛtΥ(0)T is

strictly positive definite, C(t) remains invertible at any t ∈T . This implies that C(t) can be

simplified in (3.13) and then DO system is reduced to:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dΥ(t )

d t
= [

Υ(t )ΛΥ(t )"Υ(t ) − Υ(t )Λ
]= 0

∂Y(t ,ω)

∂t
= −Υ(t )ΛΥ(t )"Y(t ,ω).

(3.69)

where we use that Υ(t) is a square orthogonal matrix. By integrating in time we get the

result.

3.4.2 Case II: effect of truncation - zS is continuously time differentiable

We now consider an initial datum u0 !∈MS . Assuming u0 ∈ L2(D)⊗L2(Ω) it can be expanded

according to the Karhunen-Loève decomposition as:

u0(x,ω)=
∞∑

i=1

�
μiγi (ω)Zi (x) (3.70)

Analogously the exact solution u of problem (3.62) with initial condition (3.70) can be in

general decomposed at each time t as:

u(x, t ,ω)=
∞∑

i=1

√
μ′i (t )γ′i (ω, t )Z ′

i (x, t ). (3.71)

In order to apply the DO method, the initial datum is approximated by the first S terms of the

series (3.70), whose sum zS(0) corresponds to the best rank-S approximation of u0 in norm

L2(D)⊗L2(Ω) (S-rank truncated Karhunen-Loève expansion). In the same way, we denote

with zS(t ) the best rank-S approximation of the exact solution at time t > 0, i.e.:

zS(x, t ,ω)=
S∑

i=1

√
μ′i (t )γ′i (ω, t )Z ′

i (x, t ) (3.72)

where we assumed that the coefficient μ′i are ordered in decreasing order at each time t :

μ′1(t )≥μ′2(t )≥ ...≥μ′S(t ).
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In other words the triplet (γ′i (ω, t),μ′i (t), Z ′
i (x, t)) is the one with the i th biggest coefficient

μ′i (t ) at time t . In addition, we denote with μi (t ) the trajectory of the i th term of the Karhunen-

Loève decomposition of u0 or, rather, the evolution of the term that at t = 0 has the i th biggest

variance. Observe that the function

uS(x, t ,ω)=
S∑

i=1

√
μi (t )γi (ω, t )Zi (x, t ) (3.73)

is the exact solution of the problem (3.62) with initial condition zS(0) (the best S-rank approxi-

mation of u0):

u0S(x,ω)= zS(x,0,ω)=
S∑

i=1

√
μi (0)γi (ω,0)Zi (x,0) ∈MS . (3.74)

and differs, in general, from zS(t ). Moreover, from what previously discussed, since u0S is in a

S dimensional manifold the DO solution coincides to (3.73). This shows that the DO method,

differently to the best S-rank approximation, may be affected by the truncation of the initial

datum. Indeed the DO solution of problem (3.62) with initial condition u0 will be always equal

to the exact solution of the same problem with initial datum u0S , that is generally different to

u and zS as well.

We consider first the case in which the best S-rank approximation zS is continuously differ-

entiable in time, as in the hypothesis of Theorem 4.1. For the problem we are analyzing this

regularity assumption implies that the Sth eigenvalue of the correlation operator is differen-

tiable in time, which can be translated in practice by requiring that the maximum neglected

eigenvalue μ′S+1 of the correlation operator, would never cross the trajectories μ1, ...,μS at any

time. Under this assumption the best rank-S approximation zS coincides to (3.73) and the

approximation error is given by

εS(t )=
∞∑

i=S+1
μ′i (t )=

∞∑
i=S+1

μi (t ). (3.75)

We see that, for a deterministic linear operator L (·), the continuous time differentiability of

zS is a sufficient condition for the DO solution to coincide to the best rank S approximation.

3.4.3 Case III: effect of truncation - zS is not continuously time differentiable

We remove any hypothesis of regularity on the evolution of the eigenvalues of the correlation

operator. This implies that the trajectories of μi , μ j may cross each other at any time instant,

for any i , j ∈N. In particular, if the Sth eigenvalue of the correlation operator is not continu-

ously time differentiable, which means that μ′k (t ) would cross μi (t ) at some t ∈T , for some

i = S+1, ...,∞ and k = 1, ...,S, then the best approximation zS will not be continuously differ-

entiable in time. In this case the DO approximate solution and the best rank-S approximation
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do not coincide:
zS(x, t ,ω)=∑S

i=1γ
′
i (ω, t )

√
μ′i (t )Z ′

i (x, t )

uS(x, t ,ω)=∑S
i=1γi (ω, t )

√
μi (t )Zi (x, t )

The DO approximation error is then strictly larger then the best approximation error:

εDO
S (t )=

S∑
i=1

μi (t )>
S∑

i=1
μ′i (t )= εS(t ). (3.76)

and we do not have any control on it in terms of best approximation error. However observe

that, for the specific problem considered in this section, the DO approximation error is always

bounded by the initial truncation error:

εDO
S (t )≤ εS(0), ∀t ∈T . (3.77)

3.4.4 An Illustrative Example

Consider the following problem:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u(x, t ,ω)

∂t
− ∂2u(x, t ,ω)

∂x2 = 0 x ∈ (0, 2π), t ∈ [0,T], ω ∈Ω
u(0, t ; ω) = u(2π, t ; ω) = 0 t ∈ [0,T], ω ∈Ω
u(x,0; ω)=α1(ω)

1�
π

sin(x)+α2(ω)
1�
π

sin(2x) x ∈ (0, 2π), ω ∈Ω
(3.78)

where α1, α2 are independent uniform random variables with zero mean and variance E[α2
1]=

1, E[α2
2] = 2. As one can easily verify, the exact solution as well the total variance can be

calculate analytically, i.e.:

u(x, t ,ω) =α1(ω)e−t 1�
π

sin(x)+α2(ω)e−4t 1�
π

sin(2x),

VarT [u](t ) = E[α2
1]e−2t +E[α2

2]e−8t .
(3.79)

Observe that u(x,0,ω) is a 2-rank function in the span of the first two eigenfunctions of the

Laplace operator. Consequently the exact solution evolves in the manifold M2 at any time

instant, the DO method degenerates to the POD method and, with S = 2, both the DO and the

Karhunen-Loève solutions coincide with the exact solution.

Think now that we want to approximate the solution in a manifold of dimension 1. The initial

datum is approximated according to the Karhunen-Loève decomposition by the principal

component with largest variance, i.e. z1(x,0,ω) =u1(x,0,ω) = α2(ω)
1�
π

sin(2x), and the DO

method develops the following approximate solution:

u1(x, t ,ω) = α2(ω)e−4t 1�
π

sin(2x) x ∈ [0, 2π], t ∈ [0,T], ω ∈Ω (3.80)
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Figure 3.1 – On the left: Evolution of the total variance VarT (t) of the exact solution as well
as the KL and DO approximate solution with S = 1. On the right: Time evolution of the mean
square error ε(t ) of the DO method with S = 1, compared to the best approximation error.

On the contrary the Karhunen-Loève approximate solution is given by:

z1(x, t ,ω) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α2(ω)e−4t 1�
π

sin(2x) for t ∈ [0, T] : E[α2
1]e−2t ≤ E[α2

2]e−8t

α1(ω)e−t 1�
π

sin(x) for t ∈ [0, T] : E[α2
1]e−2t > E[α2

2]e−8t

(3.81)

That is not continuously time differentiable at t∗ = 1
6 log

(E[α2
1]

E[α2
2]

)
. Figure 3.1 shows the evolution

of the exact and approximate total variance (left) and the mean square error of the DO method

compared to the best 1-rank approximation.

One can see that the error of the DO method is bounded by the initial truncation error and goes

asymptotically to zero as t goes to infinity, but it is strictly larger than the best approximation

error as soon as the eigenvalues cross each other. Indeed, while the best approximation error

asymptotically goes to zero with exponential rate given by the second eigenvalue of the Laplace

operator, i.e.:

ε(t )K L = min
(
E[α2

1]e−2t , E[α2
2]e−8t ) and ε(t )K L = E[α2

2]e−8t for t > t∗,

the exponential rate of DO approximation error is given by the smallest eigenvalue of the

Laplace operator:

ε(t )DO = E[α2
1]e−2t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
εK L(t ) for t ∈ [0,T] : t ≤ t∗

E[α2
1]

E[α2
2]

e6tεK L(t ) for t ∈ [0,T] : t > t∗
(3.82)
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which shows that the DO error can not be bounded uniformly by the Karhunen-Loève error.

This result does not contradict Theorem 4.1. Indeed at time t∗ the truncated Karhunen-Loève

expansion with rank S = 1 is not differentiable in time, so one important assumption in the

Theorem 4.1 is not fulfilled.

3.5 Numerical examples

In this section, we will give some numerical examples to verify the performance of the DO

approximation. Thus, we need to numerically solve the following DO system:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂ūS(x, t )

∂t
= E [L (uS(x, t , ·))] (3.83)

S∑
i=1

Ci j (t )
∂Ui (x, t )

∂t
=Π⊥U E

[
L (uS(x, t , ·))Y j (t , ·)] , j = 1, · · ·,S, (3.84)

∂Yi (t ,ω)

∂t
= 〈L ∗(uS(·, t ,ω),ω),Ui (·, t )〉 , i = 1, · · ·,S (3.85)

3.5.1 Numerical discretization

For what concerns the numerical discretization of the system (3.83)-(3.85) we use the Finite

Element method in the physical space, for equations (3.83)-(3.84), and Stochastic Collocation

method (see e.g.[5, 11]) for equation (3.85). We assume that the input data are functions of a

uniformly distributed random vector η= (η1, ...,ηN ) so that the stochastic space (Ω,A ,P ) is

parametrized byη and replaced by (Λ,B(Λ), f (η)dη) whereΛ, B(Λ) and f denote respectively

the domain, the Borel σ-algebra and the density function of η. For the discretization in time

we use a backward Euler scheme in which however eventual non linear terms are computed

explicitly. Both the covariance matrix and the projection operator in (3.83) are treated explicitly,

this allow us to linearize and completely decouple equations (3.83)-(3.84) from equations

(3.85). In particular, the projection onto the orthogonal space in (3.84) is done on a basis

freezed at the previous time step whereas the update of the random variables {Yi } in (3.84)

is done on the newly computed basis. The splitting scheme is therefore of “Gauss-Seidel”

type. Let Uh denote the finite element space of continuous piecewise linear functions on a

regular triangulation of the spatial domain D with mesh size h, {ξi ∈Λ} the set of Ny tensorized

Gauss-Legendre collocation points and Δt the time step. Then the DO approximate solution

at time t n = nΔt is discretized as follow:

un
S,h,Ny

(x,η)=
Nh∑
j=1

Ū n
j ρ j (x)+

S∑
i=1

( Nh∑
j=1

U n
j ,iρ j (x)

Ny∑
k=1

Y n
k,i Lk (η)

)

where {ρi }Nh

i=1 and {Lk }
Ny

k=1 are respectively the finite elements basis functions in D and the

multivariate tensorized Lagrange polynomials on the grid {ξk } in Λ. Observe that the first

moment of the DO approximate solution at t = t n corresponds to the function Ū n
h (x) =
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∑Nh

j=1 Ū n
j ρ j (x) and the total variance can be easily computed as the sum of the variances of the

stochastic coefficients {Yi }, i.e.:

VarT [un
S,h,Ny

]=
S∑

i=1
Var[Y n

i ]=
S∑

i=1

Ny∑
k=1

Y n
i (ξk )2wk

where {wk }
Ny

k=1 are the weights of the Gaussian quadrature formula associated to the collo-

cation points of the stochastic grid. (For further details concerning other possible types of

stochastic grids we refer to [11, 101]). Moreover the computation of the covariance of the

stochastic coefficients is explicitly required in the equations (3.84). Indeed the equations

for the deterministic basis functions {Ui } are coupled together by the covariance matrix. A

“natural” option to decouple the equations consists in multiplying both sides in (3.84) by the

inverse of the covariance matrix. Unfortunately this is often not possible, since the covari-

ance matrix C(t n) = Cn may be singular or very ill conditioned at some time instant t n . A

straightforward example is provided by any system of PDEs with stochastic coefficients and

deterministic initial data: the DO approximate solution will require S ≥ 1 number of modes,

in general, even if the initial covariance matrix is identically equal to zero and then singular

at least for the very first iteration. Furthermore the rank of the covariance matrix typically

evolves in time whatever the initial condition is. For instance in the very simple case of linear

diffusion equations with no forcing terms, the rank tends asymptotically to zero as t goes

to infinity whereas for non linear problem it may drastically increases or decreases during

the time evolution. This makes unsuitable also the direct use of the pseudo-inverse of Cn ,

since such approach automatically sets to zero the “non active” deterministic basis functions

and then prevents the rank from increasing. Instead of multiplying both sides of (3.84) by the

pseudo-inverse of C, denoted by C†, we reformulate directly the problem in this form:

∂U

∂t
=C†Π⊥U E [YL (us)] ,

that is equivalent to solve (3.84) when the covariance matrix has full rank. From a numerical

point of view the strategy that we have adopted in this work, is based on diagonalizing the

covariance matrix at each time step in order to completely decouple the system of equation

(3.84). Indeed, even if the covariance matrix at t = 0 is diagonal, the DO method does not

preserve in general the un-correlation of the stochastic coefficients for t > 0. For a better

understanding let us write equation (3.84) in algebraic form with notations:

Un ∈RNh×S : U n
i , j = 〈U j (·, t n),ρi 〉 , Yn ∈RNy×S : Y n

i , j = Y j (ξi , t n)

Fn ∈RNh×Ny : Fn
j k = 〈L (uS(·,ξk , t n)),ρ j 〉

Furthermore we denote with M the Finite Element mass matrix and with ENy [.] the discretized

expected value, computed by the quadrature formula on the collocation points {ξk }
Ny

k=1. Then
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the algebraic formulation of system (3.84) is the following:

MUn+1Cn =MUnCn +Δt (I−MUnUnT )ENy [F∗Yn] (3.86)

where F∗ denotes that the diffusion term is always treated implicitly, while eventual non

linear terms are computed at t = t n . Let Vn = (vn
1 , ..., vn

S ) ∈RS×S be the matrix of eigenvectors

of Cn and Σn ∈ RS×S : Σn
i j = δi jμ

n
i the matrix of eigenvalues, such that CnVn = VnΣn . Then

multiplying both sides in (3.86) by Vn we get:

MUn+1VnΣn =MUnVnΣn +Δt (I−MUnUnT )ENy [F∗YnVn]

Observe that Zn = YnVn is a vector of uncorrelated random variables with variance ENy [(Z n
i )2]=

μn
i . Finally we solve:

MUn+1Vn =MUnVn +Δt (I−MUnUnT )ENy [F∗YnVn]Σ†n (3.87)

where Σ†n is the pseudoinverse of Σn with tolerance ε, that is:

Σ†n
i j =

⎧⎨
⎩δi jμ

n
i μn

i > εμn
max

0 otherwise

Roughly speaking we impose that only the “directions” associated to the eigenvalues μn
i >

εμn
max evolve, while the others remain constant. An alternative integrator for the low rank

approximation of time dependent matrix is proposed in [82]. This is based on a suitable

splitting of the orthogonal projector onto the tangent space.

As already mentioned, the DO method explicitly requires the deterministic basis functions to

be orthonormal in L2(D). At the continuous level the orthonormality is preserved at any time

instant thanks to condition (3.11). On the other hand, many numerical schemes, including the

one discussed here, will not preserve the orthonormality of the discrete basis (see e.g. [56] for

a discussion on orthogonality preserving numerical schemes). We therefore re-orthogonalize

at each time step the spatial basis {Ui } by means of a QR factorization (where the matrix Q is

orthogonal with respect to the continuous L2(D) inner product, i.e. QT MQ = I).

3.5.2 Linear parabolic problem with random initial conditions

We start by considering the following simple problem already discussed in Section 5:⎧⎨
⎩

∂u(x, t ,ω)

∂t
− ∂2u(x, t ,ω)

∂2x
= 0, x ∈ [0, 8], t ∈T ,ω ∈Ω (3.88)

u(0, t ;ω)=u(8, t ,ω)= 0, t ∈T ,ω ∈Ω (3.89)

where the initial condition is a random field. Here we take

u0(x,ω)=α(ω)u01(x)=α(ω)
1

4
|−x+4|+1
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where α(ω)= eη(ω)−E[eη] and η(ω) is a uniformly distributed random variable in [−1,1]. It

is easy to see that the exact solution is a stochastic field with the same distribution of α(ω).

Analytically it can be calculated as uex (x,ω, t )=α(ω)ψ(x, t ), being ψ the solution of the deter-

ministic diffusion PDE with initial condition ψ(x,0)=u01(x). By normalizing the field ψ(x, t )

the solution can be rewritten in accordance with the Karhunen-Loève decomposition, hav-

ing only one principal component Z1(x, t )=ψ(x, t )/‖ψ(., t )‖0 and one stochastic coefficient

γ1(ω, t)= α(ω)‖ψ(., t )‖0. We can easily verify that the couple (Z1, γ1) satisfy the DO system

(3.13)-(3.14) with S = 1:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ż1 =
ψ̇

‖ψ‖0
−< ψ̇

‖ψ‖0
,

ψ

‖ψ‖0
> ψ

‖ψ‖0
=ΔZ1−<ΔZ1, Z1 > Z1 =Π⊥

Z
{ΔZ1}

γ̇1 =< ψ̇

‖ψ‖0
,

ψ

‖ψ‖0
> γ1 =<ΔZ1, Z1 > γ1

(3.90)

and initial condition Z1(x,0)= u01(x)/‖u01‖0, γ1(ω,0)=α(ω). This confirms again the exact-

ness of the DO method in case of deterministic operator and initial condition that belongs to

a finite dimensional manifold. Now we want to show that the exactness of the DO method

is preserved at the discrete level as well: let uh,Ny ,Δt denote the discrete solution of (3.88),

obtained by using piecewise linear continuous Finite Elements in space with mesh size h

, Stochastic Collocation method on Ny Gauss-Legendre points in η(ω) and backward Euler

discretization in time with step Δt . We show that the corresponding DO approximate solution

coincides with uh,Ny ,Δt . Let M and K be respectively the mass and stiffness matrix of the

Finite Element discretization and let μn
1 denotes the variance of the random variable Y n

1 . The

algebraic system for the DO solution u1,h,Ny ,Δt =U1,h,Δt Y T
1,N y,Δt with rank one is given by:

{
MU n+1μn +ΔtKU n+1μn =MU nμn +ΔtMU nU nT KU nμn (3.91)

Y n+1T +ΔtU nKU nY n+1T = Y nT (3.92)
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where for simplicity of notation, we have omitted the subscripts. By multiplying the first

equation by Y n+1 and using (3.92) we get:

MU n+1Y n+1T +ΔtKU n+1Y n+1T =MU nY n+1T −MU nY n+1T +MU nY nT

or equivalently:

Mun+1
1 +ΔtKun+1

1 =Mun
1

which exactly corresponds to the algebraic system of the discretized problem for uh,Ny ,Δt .

Figure 3.2 (middle) shows that the deterministic basis function U1 evolves in time and coin-

cides to the principal component Z1 of the discrete solution uh,Ny ,Δt at each time step. The

stochastic coefficient Y1 is as well proportional to the initial random parameter, with variance

that decreases in time and coincides with the total variance of the solution. Figure 3.2 (left)

shows that Y n
1 , normalized with respect to the variance at time t n (E[(Y n

1 )2]), is equal to α(ω)

at each time step.

Finally we aim at analyzing the efficacy of the DO method in case of over-approximation, that

occurs when the DO approximate solution is defined in a manifold of dimension larger then

the rank of the exact solution. To this purpose we again apply the DO method to problem

(3.88) with S > 1 whereas we have seen that only one mode is really needed. We initialize the

deterministic basis functions {Ui }S
i=1 to a sequence of hierarchical functions as in Figure 3.2

(right). To preserve the consistency with the initial datum, the first stochastic coefficient is

initialized to α(ω) and all the other coefficients are initialized to zero. Since the DO method

requires the deterministic basis functions to be orthonormal in L2(D), the first step consists in

the re-orthonormalizing the initial hierarchical basis functions. From a computational point

of view, this is achieved by using the QR decomposition, with respect to the continuous L2(D)

inner product. Let (Û1, ...,ÛS) denotes the set of orthonormalized basis functions. Then the

initial datum is expanded as

u0(x,ω)=
S∑

i=1
Ûi (x,0)Ŷi (ω,0) (3.93)

with Ŷi (ω,0) = 0 for i = 2, ...,S. As the system evolves in time, all the spatial basis func-

tions evolve and all the random variables become in general different from zero (Figure 3.3).

However the stochastic coefficients {Ŷi } are all linearly dependent and the rank of the co-

variance matrix Cn
i j = E[Ŷ nT

i Ŷ n
j ] remains constantly equal to one at each time step, as long

as the total variance of the solution is larger than zero. This confirms that the DO method

in the version proposed here, effectively deals with singular covariance matrices in case of

over-approximation and is able to identify the effective dimension of the manifold of the

solution. Moreover we remark that at each time step only one deterministic PDE is actually

solved, thanks to the diagonalization technique discussed in Section 6.1. Also in case of over-

approximation we have verified numerically that the DO solution corresponds to the discrete

solution uh,Ny ,Δt at each time step.
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3.5.3 Linear parabolic problem with random diffusion coefficient

We consider now the following linear parabolic equation:

{
∂u(x, t ,ω)

∂t
−div

(
a(x,ω)

∂u(x, t ,ω)

∂x

)
= 0, x ∈ [0, 1], t ∈T ,ω ∈Ω (3.94)

u(0, t ,ω)=u(1, t ,ω)= 0, t ∈T ,ω ∈Ω (3.95)

where now L (·) is actually a stochastic differential operator, being the diffusion coefficient a

a random field on (Ω,A ,P ) taking values in L∞(D). This means that the eigenvalues and the

eigenfunctions of L (·) are random fields in (Ω,A ,P ) as well. For reasons of existence and

uniqueness of the solution we assume a(·,ω) to be a strictly positive and bounded function
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over D for each random event ω ∈Ω. Here we consider a coefficient having the following form:

a(x,ω)= ā(x)+
2∑

i=1

(
η2i−1(ω)cos(iπx)+η2i (ω)sin(iπx)

)
(3.96)

where ā = 1.45 and η1, ...,η4 are zero mean uniform independent random variables with

variance E[η2
i ]= (1/3) ·10−i+1.

3.5.4 Deterministic initial condition

The initial condition is taken to be a deterministic function and is given by:

u0(x)= 10sin(πx)

By this choice we can also verify the stability of the DO method in case of an initial zero

rank covariance matrix and emphasize the differences with respect to the type of problems

discussed in Section 5.1 and 6.2. Here the solution u(x, t ,ω) is actually a function of the

random variables η= (η1, ...,η4). Figure 3.4 (left) shows the evolution of the total variance of

the solution.

At each time step, we can introduce the parameter-to-solution map u(·, t ,η) : [−1,1]4 →H 1
0 (D).

Defining now the set V (t) = {u(·, t ,η), η ∈ [−1,1]4} ⊂ H 1
0 (D), at each time step the solution

u(·, t ,η(ω)) is in V (t ) for all ω ∈Ω. The manifold V (t ) is a multidimensional manifold which,

in this example, evolves in time. First of all we compute and analyze the Karhunen-Loève
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decomposition of the numerical reference solution computed with a very accurate (and costly)

Stochastic Collocation method. The analysis of the Karhunen-Loève decomposition is very

useful to understand what we can expect from the DO method. Moreover, it allows us to

directly compare the DO solution with the best approximation. In Figure 3.4 (right) we see the

evolution of the eigenvalues of the covariance operator. Observe that only few of them reach

remarkable values. This immediately shows that the solution u can be well approximated

in a low rank format. On the other hand, notice that the first two eigenvalues cross each

other at time t∗ ≈ 0.08. This implies that the 1-truncated Karhunen-Loève expansion is not

continuously differentiable in time at the crossing. Hence Theorem 4.1 only applies for t < t∗,

for S = 1. On the other hand, the case S = 2 seems to be smooth (at least up to the final

computational time T = 0.3). Similar considerations apply to successive modes, for S = 3,4,

S = 5,6, etc.

The numerical results confirm the theoretical ones given in Section 4 and are consistent

with the observations above. The errors have been calculated with respect to a reference

solution, numerically computed with the Stochastic Collocation method in a fine tensor grid

and by using the same discretization parameters, in time and space, chosen for solving the

DO system. Figure 3.5 (left) shows the approximation error in the L2(D)×L2(Ω) norm of the

truncated Karhunen-Loève expansion as well as the DO solution, with rank S = 1 (solid line)

and S = 2 (dotted line). We see that the approximation error of the DO solution with rank

equal to 1 is proportional to the best approximation error only until the first two eigenvalues

of the Karhunen-Loève expansion cross each other. Before the crossing , the difference in the

L2(D)×L2(Ω) norm between the DO solution and the truncated Karhunen-Loève expansion

82



3.5. Numerical examples

1 2 3 4 5 6 7 8 9 10

10
−8

10
−4

10
0

number of modes

 

 

KL
DO

1 2 3 4 5
10

−4

10
−3

10
−2

10
−1

number of modes

 

 

DO

Figure 3.7 – Left: The best approximation error (green) and the error of the DO approximate
solution (red, dotted line) in L2(D)×L2(Ω) norm w.r.t. the number of modes at time T = 0.1.
Right: The L2(D)-error on the mean of the DO approximate solution w.r.t. the number of
modes, at time T = 0.1

with rank 1 is bounded by the best approximation error so the error of the DO method is well

controlled by the error of the Karhunen-Loève expansion. After the crossing, the bound clearly

degenerates. The problem is due to the evolution of the first mode of the Karhunen-Loève

expansion which is no longer continuous in time. In Figure 3.5 (right) we see the first mode of

the Karhunen-Loève expansion in two consecutive time step, just before and after the crossing.

By using only one mode, the DO method is not able to follow accurately the evolution of the

first mode of the Karhunen-Loève expansion after the crossing. Indeed the hypothesis of

continuous differentiability of the rank-1 Karhunen-Loève approximation is not fulfilled and

Theorem 4.1 can not be applied after the crossing. However this problem can be overcome

by using an approximation with rank larger than 1, as we can see in Figure 3.6 (left). The plot

shows the first three modes of the DO approximate solution which are very close to those

of the Karhunen-Loève expansion even after the crossing t∗. Moreover the evolution of the

eigenvalues of the covariance matrix related to the DO solution, is comparable to the evolution

of the eigenvalues of the covariance operator of the exact solution (Figure 3.6, right). For what

concerns the L2(D)×L2(Ω) error (Figure 3.7, left) and the L2(D) error on the mean (Figure 3.7,

right), good levels of accuracy can be achieved by using only few modes. Moreover, the plot

clearly shows an exponential convergence rate with respect to the number of modes.

Stochastic initial condition

We analyze again problem (3.94), by adding this time some sources of stochasticity in the

initial condition as well. While in the first case the goal was to verify the effectiveness of the

proposed numerical method in case of singular covariance matrix, and study the accuracy

and the convergence of the DO method with respect to the regularity of the Karhunen-Loève

decomposition and the number of modes; now our aim is to analyze the effect of the truncation
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on the initial datum and especially verify the bound for the DO approximation error, obtained

in (3.52). We assume:

u(x,0,ω)= 10si n(πx)+
6∑

i=1

√
2

4i−1
yi (ω)si n(iπx) (3.97)

where y1, ..., y6 are zero mean, uniform and independent random variables in [−1, 1]. Further-

more we assume that the random vector (y1, ..., y6) is independent to (η1, ...,η4), which implies

that for this example we deal with a stochastic space of dimension 10. Figure 3.8 (left) shows

the evolution of the total variance of the reference solution, computed with the Stochastic

Collocation method by using an isotropic sparse-grid of Smolyak type with level 4 (see [101]

for details) and the same discretization parameters, in time and space, used for solving the DO

system. Figure 3.8 (middle) shows the evolution in time of the first 12 eigenvalues of the covari-

ance operator where we can see that only the first two cross in the time interval considered. In

Figure 3.8 (right) we show the results for the DO approximate solution as well as the truncated

Karhunen-Loève expansion with S = 3 number of modes. Observe that the initial condition

for the DO system is simply obtained by truncating the sum in (3.97) to i = 3. Furthermore

we remark that, even if the first two eigenvalues cross, the best 3-rank approximate solution

is continuously differentiable in time, at least up to the final computational time T = 0.15,

and all the hypothesis of Theorem 4.1 hold. In the figure we verify the bound for the DO

approximation error, and specifically inequality (3.52) at each time step. In particular we show

in red (dotted line) the difference between the DO and the KL approximate solution (with the

norm specified in (3.52)), in blue (solid line) and in green (marked line) respectively the error

of the KL and DO approximate solution in norm L2([0, t ], H 1(D)×L2(Ω)). We see once more

that the DO error is well controlled by the KL error (best S−rank approximation).
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Linear convection-dominated problem

We consider now a linear convection-dominated problem with a constant transport coefficient

and stochastic diffusion and initial datum:

∂u(x, t ,ω)

∂t
−μdiv

(
a(x,ω)

∂u(x, t ,ω)

∂x

)
+b

∂u(x, t ,ω)

∂x
= 0, x ∈ [1, 16], t ∈T ,ω ∈Ω

u(1, t ,ω)=u(16, t ,ω)= 0, t ∈T ,ω ∈Ω
(3.98)

with the diffusion coefficient a defined in (3.96), μ and b constant and equal to 1 and 100,

respectively. The initial condition is a stochastic field defined as:

u0(x,ω)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
δ(ω)(sin(0.5π(x−3.5γ(ω)))+1) (3.5γ(ω)−1)< x < (3.5γ(ω)+3)

0 x ≤ (3.5γ(ω)−1)

0 x ≥ (3.5γ(ω)+3)

(3.99)

where δ and γ are two independent uniformly distributed random variables with mean 1

and variance 1/3 ·10−2 and 4/3 ·10−2, respectively. The mesh size in the physical space is

chosen small enough such that the numerical scheme used for computing both the DO and

the reference solution does not require any stabilization strategy. The results achieved show

that the DO method performs quite well for the example under consideration. Figure 3.9 (left)

and Figure 3.9 (middle) display the reference solution and the DO approximate solution with

S = 3, respectively, in the collocations points, at t = 0 and t = 0.1. The plots show that the

DO approximation effectively describes the dynamics and the variance of the traveling wave.

The analysis of the approximation error is reported in Figure 3.9 (right) where both the DO

and the Karhunen-Loève approximate solutions are compared with the reference solution in
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parameters: Gauss-Legendre collocation points Ny = 41, spatial discretization h = 0.03, time
step Δt = 0.001

norm L2([0, t ],L2(Ω)⊗H 1(D)). Also in this case the DO approximation error behaves similarly

as the KL error. We remark, however, that in this case of a convection-dominated problem,

the numerical scheme proposed here may require a smaller time discretization step than

for the pure diffusion case to guarantee a good accuracy level. This is probably due to the

strategy adopted for the discretization of the projection operator which is indeed treated

explicitly. A possible better strategy would consist in adopting a splitting scheme when solving

the equations for the deterministic modes in order to first transfer the modes according to the

advection field before performing the projection in the second step.

3.5.5 Parabolic equation with non linear reaction term

To conclude we consider a reaction-driven non liner parabolic operator with stochastic coeffi-

cient. The problem is defined as follows:

∂u(x, t ,ω)

∂t
−μΔu(x, t ,ω)= f (u(x, t ,ω)), x ∈D = [0,1]2, t ∈T , ω ∈Ω,

∂u

∂n
(σ, t ,ω)= 0, σ ∈ ∂D, t ∈T , ω ∈Ω

u(x,0,ω)=
⎧⎨
⎩1 if x1 ≤ 0.5,

0 if x1 > 0.5.
x ∈D, ω ∈Ω,

(3.100)

The reaction term is a cubic polynomial in u, i.e. f (u)=βu(u−1)(α(ω)−u), with constant

excitation rate β and stochastic threshold potential α(ω). We assume α(ω) to be a uniformly

distributed random variable. The initial condition is instead deterministic and it is represented

by a step function equal to one for values of coordinate x1 smaller than 0.5 and zero otherwise.

The solution is a traveling wave, whose direction and speed, proportional to β, is determined

by the value of the random variable α. After a while, the wave exits the computational domain

and the solution tends to the constant function u = 1 if α(ω) < 0.5, and u = 0 if α(ω) > 0.5,

irrespectively of the initial datum. Therefore for t � 0 the solution is at most a rank-1 function
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Figure 3.11 – First (top) and second (bottom) mode of the DO approximate solution at time
t = 0 (left), t = 0.05 (middle) and t = 0.5 (right) with a number of modes S = 6, excitation rate
β= 100 and threshold potential α(ω) uniform r.v. in [0, 0.4]. Discretization parameters: Gauss-
Legendre collocation points Ny = 41, spatial discretization h = 0.05, time step Δt = 0.001

and is deterministic if either α(ω)< 0.5 or α(ω)> 0.5 ∀ω ∈Ω. Figure 3.10 shows the evolution

of the expected value of the solution, by assuming α(ω) < 0.5. Observe that the solution is

a function of the random variable α. By defining as before the parameter-to-solution map

u(·, t ,α) : [−1,1] → H 1(D) and the set V (t) = {u(·, t ,α), α ∈ [−1,1]} ⊂ H 1(D), at each t ∈ T

the solution u(·, t ,α(ω)) is in the one dimensional manifold V (t) for all ω ∈Ω. However, the

manifold V (t) evolves in time, driven by the non linear reaction term, and may feature a

complex structure for large times. In the DO approach, we try to approximate such manifold

by a linear combination of S modes. The number of basis functions that the DO approximate

solution needs to well describe the solution depends obviously on the complexity of the

manifold V (t ).

We analyze here the performance of the DO approach. First of all, since the initial condition is

deterministic, we have arbitrarily initialized the modes to a set of orthonormal functions. Due

to the zero Neumann boundary conditions, we have chosen S orthonormal cosine functions of

increasing frequency, i.e. ui (x1, x2)= ki cos(i1πx1)cos(i2πx2) (where ki is the normalization

constant). Figure 3.11 shows the first two deterministic basis functions at different time

iterations. Observe that the modes adapt very fast to the structure of the problem and assume

values different than zero only around the front of the traveling wave. On the other, by

analyzing the evolution of the eigenvalues of the covariance matrix, we see that good levels
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Figure 3.12 – On the left: Evolution of the eigenvalues of the covariance matrix of the DO
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Discretization parameters: Gauss-Legendre collocation points Ny = S, spatial discretization
step h = 0.05, time step d t = 0.001.

of accuracy can be achieved only if a relatively large number of modes is used. Figure 3.12

(left) shows that several eigenvalues reach remarkable values and many of them cross each

other. This poses a serious limitation in the use of low-rank formats for this type of problems,

which is intrinsically due to the nature of the problem and the structure of the solution. This is

confirmed also by the analysis of the effective rank of the DO approximate solution. Figure

3.12 (right) shows the evolution of the rank of the DO approximate solution, for different values

of S. Being the rank of the covariance matrix bounded by the number of collocation points

that are used in the stochastic discretization, in the plot we consider a number of collocation

points at least equal to S. We see that for S < 40 the rank tends to reach the saturation level
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Figure 3.13 – Error in norm L2(D)× L2(Ω) of the DO (red, dotted line) and the truncated
Karhunen-Loève (blue, solid line) approximate solution w.r.t. the number of modes. (log
scale). Left: β = 10, T=3. Middle: β = 100, T = 0.5. Right: β = 100, T = 0.7.Discretization
parameters: Gauss-Legendre collocation points Ny = 41, spatial discretization h = 0.05, time
step Δt = 0.001
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S, whereas it does not exceed 39 by using S > 40. However that bound is influenced by the

space discretization and tends to slightly increase by refining the deterministic discretization

parameter. Furthermore, the bound is related to the value of the excitation rate β, which

affects the “sharpness” of the front. When the excitation rate is small, e.g β≈ 10, the maximum

rank achieved is relatively smaller (≈ 22). In the latter case indeed the reaction has weaker

predominance on the diffusion term and the solution has fewer step gradients. Looking

at the solution for larger times, when the front is about to exit the computational domain,

the total variation of the solution decreases, and the rank decreases as well. If, on the one

hand, these results show the ability of the DO method to capture the effective dimension of

the solution at each time step, on the other hand, they also show the need of using a large

number of modes. Figure 3.13 shows the L2(D)×L2(Ω) error of the DO approximate solution

(red, dotted line) and of the truncated Karhunen-Loève expansion (blue, solid line) with

respect to the number of modes (the errors have been calculated with respect to a reference

solution, numerically computed with the Stochastic Collocation method in a fine tensor grid

and by using the same discretization parameters, in time and space, chosen for solving the

DO system). We observe that in both cases, high levels of accuracy may be achieved only for

large values of S. Furthermore, the rate of convergence of the DO method is slower than the

one of the truncated Karhunen-Loève expansion. This is due to the fast increasing/decreasing

of the eigenvalues of the covariance matrix, that makes them frequently cross each other. As

discussed in Section 4, this fact may negatively affect the performance of the DO method.

On the other hand, numerical evidence reveals that better performances for these types of

problems can be achieved when the stochastic input concerns the initial condition instead of

the coefficients of the reaction-operator.

3.6 Conclusion

In this work we established and formalized a link between the DO approximation of PDEs

with random initial datum and the MCTDH method proposed for the approximation of deter-

ministic Schrödinger equations, or the discrete analogue Dynamical Low Rank approximation

of evolution matrix or tensor equations. We have reinterpreted the DO approximation as a

Galerkin projection onto the tangent space to the manifold MS of all rank S functions, at any

time instant and in light of the theoretical results developed in [39, 66] for the MCTDH method

and the Dynamical Low Rank approximation, we investigated the properties of the manifold

MS for a linear parabolic equation with random parameters. Specifically we exploited the

curvature bounds of MS to show that the DO approximation error can be bounded in terms of

the best rank S approximation of the solution, at each time instant, under the assumption that

the latter is differentiable in time. On the other hand, we have seen that the regularity assump-

tion on the Karhunen-Loève decomposition is actually a necessary condition to maintain an

effective control on the DO approximation error. As confirmed by the numerical results, the

DO approximation error is properly bounded in terms of best approximation error as long as

the eigenvalues of Karhunen-Loève expansion included in the S rank approximation, do not
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cross the ones which have been initially omitted. In conclusion our work sets the bases for a

theoretical analysis of the DO approximation for random PDEs and provides indication of the

effectiveness of the DO method for different types of problems.
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4 Dual DO approximation of Navier
Stokes equations with random bound-
ary conditions
This Chapter is mainly based on the paper [95] with only minor changes (in particular, for

consistency with the rest of the thesis, the stochastic coefficients Y are defined here as column

vectors instead of row vectors). In this Chapter we propose a method for the strong imposition

of random Dirichlet boundary conditions in the Dynamical Low Rank (DLR) approximation

of parabolic PDEs, focusing on incompressible Navier-Stokes equations. In particular, in

Section 4.3 we start by defining the Dual DO formulation in which the stochastic modes are

kept orthonormal, then we show that the collection of all S rank random fields which satisfy

a suitable low-rank approximation of the exact boundary condition, admits a structure of

differential manifold. We formulate the DLR variational principle in the constrained manifold

and we characterize its tangent space by means of the Dual DO formulation which allows us to

identify the proper boundary conditions for each (time dependent) deterministic mode and

guarantees that the boundary constraint is fulfilled at each time. In Section 4.4 we apply the

Dual DO formulation to Navier-Stokes equations with random parameters, including Dirichlet

boundary conditions. We conclude with two numerical test cases: the classical benchmark of

a laminar flow around a cylinder with random inflow velocity, and a biomedical application

simulating blood flow in a realistic carotid artery reconstructed from MRI data with random

inflow conditions coming from Doppler measurements.

Introduction

Uncertainty quantification received a lot of attention in the last decades and is nowadays an

active research field [134, 120, 79, 123, 75]. Mathematical models and numerical methods for

efficient propagation of uncertainties are more and more needed in many application areas,

from aerospace and mechanical engineering to life and geosciences. Numerical techniques

for uncertainty propagation typically require a lot of problem solves for many values of the

uncertain/random parameters and this may result in an unaffordable computational cost

for complex applications, mostly if the phenomenon under study is time dependent. In this

context, the use of reduced order models is very appealing as they reduce dramatically the

computational cost of each solve, provided they guarantee a certain accuracy level. Many
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techniques have been developed, especially in the deterministic parametric framework, start-

ing from the “classical” Proper Orthogonal Decomposition (POD) [23, 33] and the Reduced

Basis (RB) method [58, 110]. All these techniques are based on the assumption that in many

situations the solution manifold can be well approximated by a small number of dominant

modes extracted from the covariance matrix of several snapshots precomputed in the offline

stage, for different values of the parameters and different time instants. By performing a

Galerkin projection into the subspace spanned by the dominant modes the size of the original

problem is drastically reduced and the online stage simply consists in low-cost reduced-order

simulations for new instances of the input. The drawback of this approach is that the solution

manifold at time t , i.e. the collection U (t)= {u(t ,ω), ω ∈Ω} of all solutions at time t for all

parameters ω ∈Ω, may change significantly during the time evolution, which implies that the

(fixed in time) reduced basis has to be sufficiently rich to be able to approximate U (t) at all

time. This may lead to a fairly large reduced model thus compromising its efficiency.

An alternative approach that has been proposed in the literature consists in expanding the

solution on a fixed basis in the probability space by assuming that the randomness can be ac-

curately parametrized in terms of a finite dimensional vector. For instance, in the Polynomial

Chaos (PC) expansion, polynomial basis functions are chosen, which are orthonormal with

respect to the underlying probability measure of the input random vector used to parametrize

the stochastic space [75]. However, it has been reported in literature [128] that, for certain

classes of problems, long time integration might need an increasing number of terms in the

expansion to keep an acceptable accuracy level.

To overcome the limitations related to expansions of the solution on a fixed basis, either

deterministic or stochastic, here we propose a dynamical low-rank approximation. In the

UQ context, this method has been introduced in [116, 117] and is known under the name

of Dynamically Orthogonal Field equations (DO). Equivalent formulations of the same ap-

proach can be found in [30, 31] (Dynamically Bi-Orthogonal method or DyBO) and [35, 36]

(Bi-Orthogonal method or BO). The DO is a reduced order method in which both the spatial

and random modes are computed on the fly and are free to evolve in time, thus adjusting

at each time to the current structure of the solution. The approximate solution is sought

on the manifold MS of S-rank functions uS(x, t ,ω)=∑S
i=1 Ui (x, t )Yi (t ,ω) with both {Ui } and

{Yi } linearly independent and is obtained by Galerkin projection of the governing equations

onto the tangent space of MS along the solution trajectory. As the manifold is parametrized

in terms of dynamic constraints, one can derive evolution equations for both the determin-

istic modes Ui and the random modes Yi , suitable for numerical computation. The same

approach was independently proposed in the literature in different fields. In the context of

deterministic time-dependent Schrödinger equations, its abstract formulation is known as

Dirac-Frenkel time-dependent variational principle [80] and leads to the derivation of the

so-called multi-configuration time-dependent Hartree (MCTDH) method [92, 12, 65, 138].

In a finite dimensional setting, the same is known as Dynamical Low Rank approximation

[66, 68]. Extensions to tensor formats can be found in [39, 67, 83]. In [96] the link between

the DLR, or MCTDH, and the DO method has been exploited to derive a quasi-optimal error

bound for the approximation of linear parabolic equations. More precisely the approximation
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error is bounded in terms of the best approximation error of the exact solution in MS , and

holds in the largest time interval in which the best rank S approximation remains full rank and

continuously differentiable in time.

In this chapter, we focus on the approximation of parabolic PDEs and, in particular, incom-

pressible Navier-Stokes equations, with random Dirichlet boundary conditions. Our interest

is motivated by the observation that, in fluid dynamics problems, small variations on inflow

boundary conditions can have a strong impact on the dynamics of the flow. Applications

can be found both in engineering and biomedical problems. A judicious approximation of

the problem by low-rank techniques necessarily has to address the issue concerning which

boundary conditions should be satisfied by the approximate solution and if and how the

randomness coming from the boundary should be compressed. This problem has not been

investigated in depth in the literature so far, at least in the context of dynamically low-rank

approximation, and the answer is far from being straightforward. In fact, it is not possible to

say “a priori” which parameters have the strongest impact on the dynamics of the solution

and at which time. Moreover, no results can be derived by the comparison with the truncated

Karhunen-Loève expansion which does not necessary approximate well the solution on the

boundary. It is clear that the truncated Karhunen-Loève expansion, being the result of a (volu-

metric) L2-projection at a fixed time, is not able to quantify the discrepancy on the boundary

and, least of all, evaluate its impact on the dynamics. We mention that in the first formulation

of the DO method for random time-dependent PDEs, as introduced in [116], the source of

randomness includes boundary terms. The strategy proposed there consists in projecting the

Dirichlet boundary conditions onto the subspace spanned by the stochastic modes at each

time. However, we observe that this subspace evolves in time and is part of the solution of the

approximate problem and not known “a priori”. It is then not clear which boundary conditions

are actually satisfied by the approximate solution as times evolves and how the randomness

arising from the boundary data is taken into consideration. An alternative approach, common

in the reduced basis community [61, 110], consists in computing explicitly a lift of the random

boundary function, which needs to be written in a separable form, and then solving for the

homogeneous part of the solution (zero on the boundary). In such case, the deterministic

modes always vanish on the boundary. However, on the one hand, the explicit construction

of the lifting may be difficult and time-consuming for time-dependent random boundary

conditions, and the quality of the approximation may be influenced by the choice of the lift.

Theses issues are reflected in a similar way in the DO approximation and in particular the

latter concerns the difficulty in evaluating the loss of information in deriving the reduced

order system when the lift is projected in the tangent space.

In this work, we investigate the possibility of strong imposition of the random boundary con-

ditions in the dynamical low-rank approximation. We require that the approximate solution

satisfies the same boundary conditions as the exact solution, or a well-controlled approxima-

tion of them. To do so we assume that the datum on the boundary is “almost low rank”, which

is not a too restrictive assumption in our context: since we are looking for an approximate

solution uS of rank S such that uS ≈ u, it is reasonable to ask that the boundary value u|∂D = g

is properly approximated in separable form by gM =∑M
i=1 Zi (ω)vi (t , x) with M ≤ S. In the
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context of dynamical low rank approximation, an approximation gM of the boundary datum g

in separable form with M < S terms, will allow us to identify the proper boundary conditions

to impose on each deterministic mode at each time for the solution uS =∑S
i=1 Ui (x, t )Yi (t ,ω).

Indeed the reduced system for the evolution of the deterministic modes consists of S coupled

PDEs of the same type as the original problem, which have to be completed with suitable

boundary conditions. Our strategy consists in seeking for a dynamically low-rank solution

in the manifold MS of rank S functions constrained to take the approximate value gM on the

boundary. We show, in particular, that, as long as the datum gM has rank M , the constrained

manifold is indeed a manifold and we provide a characterization of its tangent space. To derive

a proper set of equations for the deterministic and stochastic modes, we propose a Dual-DO

formulation, in which the stochastic modes are kept orthonormal, instead of the deterministic

modes as in the original DO formulation of [116]. It turns out that such a formulation is very

convenient for the “strong” imposition of random Dirichlet boundary conditions and results

in a set of S coupled PDEs for the evolution of the deterministic modes (M of which with

non homogeneous boundary conditions) coupled with S−M ODEs for the evolution of the

stochastic modes. Also when dealing with the incompressible Navier-Stokes equations, the

Dual-DO is also very convenient to include the incompressibility constraint.

The Dual DO method has been tested on two fluid dynamics problems. In the first one, our

goal is to test the performance of the Dual DO approximation in the challenging case in which

the rank of the solution continues to increase in time. We consider the classical benchmark 2D

problem of an incompressible viscous fluid flowing around a cylindrical obstacle in a channel

at moderate Reynold numbers Re∈ [80,120]. The challenge of this test is due to the inflow

velocity that depends on some random parameters. The patterns of the solutions correspond

to flows with random vortex shedding frequency. Intuitively one can imagine the solution

manifolds U (t) as the collection of infinitely many flow patterns which become more and

more out of phase, one with respect to the others, as time evolves. The obtained numerical re-

sults show good performance of the method, at least in the initial phase, in approximating the

whole solution manifold at each time instant with a relatively small number of time evolving

modes. However, as one might expect, the performance deteriorates for larger times due to

the “phase” issue. To alleviate the problem, we introduce a simple time rescaling based on

an empirical linear relation between Reynolds number and shedding frequency considerably

improves the performance of the method as it allows to “rephase” all solutions. In this setting,

we were able to simulate the transition phase and few shedding periods in the whole range

Re∈ [80,120] with good accuracy with S = 4 modes.

The second numerical problem addressed in this work aims at testing the possibility of ap-

plying the Dynamical Low-Rank method for biomedical applications. Indeed in this field,

numerical simulations of parameter dependent PDEs can be used as a virtual platform for

the prediction of input/output response of biological values, and the speed up of the com-

putational time is a crucial issue. We consider the problem of simulating blood flow in a

realistic carotid artery reconstructed from MRI data, where the inflow boundary conditions

are taken as random due to the uncertainty and large errors in Doppler measurements of the

inflow velocity profile [50, 111]. The results highlight the remarkable potential of the Dual DO
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method for this type of problems.

The paper is organized as follows: in Section 1 we introduce the problem setting and the

notations used throughout, in Section 4.2 we recall the DO approach for a general parabolic

problem with deterministic boundary conditions, in Section 3 we describe the Dual DO for-

mulation for a second order elliptic operator with random Dirichlet boundary conditions and

in Section 4 we apply the Dual DO to the Navier-Stokes equations. Section 5 presents the two

numerical tests mentioned above.

4.1 Problem setting and Notation

Let D ⊂ Rd , 1 ≤ d ≤ 3, be an open bounded domain and (Ω,A ,P ) a complete probability

space, where Ω is the set of outcomes, A a σ-algebra and P : A → [0,1] a probability measure.

We consider a general time dependent PDE of the type:

u̇(x, t ,ω)=L (u(x, t ,ω), x, t ,ω), x ∈D, t ∈ (0,T ], ω ∈Ω, (4.1)

where L is a linear or non-linear differential operator, x ∈D is the spatial coordinate and t is

the time variable in [0,T ]. For the ease of notation in what follows we omit to write the explicit

dependence of L on (x, t ,ω) and use the shorthand notation L (u(x, t ,ω)). The initial state of

the system is described by

u(x, t = 0,ω)=u0(x,ω), x ∈D, ω ∈Ω, (4.2)

and equation (4.1) is complemented with suitable boundary conditions

B(u(x, t ,ω),ω)= g (x, t ,ω), x ∈ ∂D, ω ∈Ω, t ∈ (0,T ].

Here ω ∈Ω represents a random elementary event which may affect the operator L (as e.g. a

coefficient or a forcing term), the boundary conditions or the initial conditions. Specifically,

in Section 4, we consider a second order deterministic elliptic operator L completed with

random Dirichlet boundary conditions and in Section 4.4 we consider the Navier Stokes

equations, with random viscosity and Dirichlet boundary conditions.

We introduce here some notation that will be used throughout. Let v : Ω→R be an integrable

random variable; we define the mean of v as:

v̄ = E[v]=
∫
Ω

v(ω)dP (ω),

and the variance as:

Var[v]= E[(v − v̄)2]=
∫
Ω

(v(ω)− v̄)2dP (ω).

We will use the shorthand notation: v∗ = v −E[v], and L2
0(Ω) will denote the set of all zero

mean, square integrable random variables. Let now v,u : D ×Ω→ R be x-indexed random
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fields. We denote the L2 inner product in the physical space by:

〈u(·,ω), v(·,ω)〉 =
∫

D
u(x,ω)v(x,ω)d x.

We also recall that L2(D×Ω) denotes the space of all square integrable random fields, i.e.:

L2(D×Ω) :=
{

u : D×Ω→R s.t.
∫

D
E
[
(u(x, ·)− ū(x))2]d x <∞

}

Observe that L2(D×Ω) is isometrically isomorphic to L2(D)⊗L2(Ω).

A vector-valued random field will be denoted by small bold letters u := (u1, ..,uN )T and is

conventionally a column vector. The L2(D) and the L2(D×Ω) norms are respectively defined

as:

‖u(·,ω)‖2
[L2(D)]N :=

N∑
i=1
‖ui (·,ω)‖2

L2(D) and ‖u‖2
[L2(D)]N⊗L2(Ω) :=

N∑
i=1
‖ui‖2

L2(D)⊗L2(Ω).

In the following we will denote by ‖ ·‖ both the scalar and vector norm in L2(D×Ω). Capital

bold letters will be instead used for denoting a vector of deterministic scalar (or vector-valued)

functions U= (U1, ...,US) (or U= (U1, ...,US) in the case of vector valued functions) which will

be written as row vector, and the notion�U,V� denotes the S×S matrix with entries:

�U,V�i j=
∫

D
Vi (x)U j (x)d x

(or�U,V�i j=
∫

D Vi (x)TU j (x)d x if Ui ,V j are vector functions).

Lastly, we recall the well known Karhunen-Loève expansion. Let u ∈ L2(D ×Ω) be a square

integrable random field, the covariance function Covu : D×D →R is defined as:

Covu(x, y)= E
[
u∗(x, ·)u∗(y, ·)] , x, y ∈D.

and defines a trace class operator Tu : L2(D)→ L2(D) as

Tu v(·)=
∫

D
Covu(x, ·)v(x)d x, ∀v ∈ L2(D); (4.3)

Then, u can be written as:

u(x,ω)= ū(x)+
∞∑

i=1

�
λi Z K L

i (ω)V K L
i (x)

where:

• (λi ,V K L
i ) are respectively the eigenvalues and the (L2(D)-orthonormal) eigenfunctions

of the covariance operator Tu ,
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• Zi are mutually uncorrelated real-valued random variables given by:

Z K L
i (ω) := 1√

λi

∫
D

u∗(x,ω)V K L
i (x)d x ∀i ∈N+, (4.4)

with zero mean, E[Z K L
i ]= 0, and unit variance, E[Z K L

i Z K L
j ]= δi j .

Assuming that the eigenvalues are sorted in decreasing order, it is well known (see e.g. [78, 60,

49]) that the best L2-approximation of u∗ with S terms written in separable form is given by

the truncated Karhunen-Loève expansion:

u(x,ω)≈uK L
S (x,ω) := ū(x)+

S∑
i=1

√
λi Z K L

i (ω)V K L
i (x), (4.5)

Assuming Covu ∈C 0(D×D) and D compact, by Mercer’s theorem [112], it follows that

lim
S→∞

sup
x∈D

E[(u(x, ·)−uK L
S (x, ·))2]= lim

S→∞
sup
x∈D

∞∑
i=S+1

λi (V K L
i (x))2 = 0.

All the previous definitions can be generalized to a time-varying random field u(x, t ,ω) and in

particular the Karhunen-Loève expansion can either be defined at each fixed t ∈ [0,T ]:

uK L
S (x, t ,ω)= ū(x, t )+

S∑
i=1

√
λi (t )Z K L

i (t ,ω)V K L
i (x, t ), ∀S ∈N+ (4.6)

with 〈V K L
i (·, t ),V K L

j (·, t )〉 = δi j for all t ∈ [0,T ], or as a global space-time approximation

ũK L
S (x, t ,ω)= ū(x, t )+

S∑
i=1

√
λi (t )Z̃ K L

i (ω)Ṽ K L
i (x, t ), ∀S ∈N+,

provided u ∈ L2(D × [0,T ]×Ω). In what follows we refer always to (4.6) as the best S-terms

approximation of a space-time random field.

Let us also define the Stiefel manifold St(S,H ), for a general Hilbert space H , as the set of

orthonormal frames of S vectors in H , i.e.:

St(S,H )= {
V= (V1, ...,VS) : Vi ∈H and <Vi ,Vj >H= δi j ∀i , j = 1, ...,S

}
where < ·, · >H is the inner product in H . We denote by G (S,H ) the Grassmann manifold of

dimension S that consists of all the S−dimensional linear subspaces of H . Observe that the

truncated Karhunen-Loève expansion can be characterized as:

uK L
S (x, t ,ω)=ΠV K L

S (t )⊗Z K L
S (t )

[
uS(x, t ,ω)

]
(4.7)

where Π is the L2(D ×Ω) projector and V K L
S (t) ∈ G (S,L2(D)), Z K L

S (t) ∈ G (S,L2(Ω)) coincide

respectively to the span of the first S deterministic and stochastic modes: (V K L
1 , ...,V K L

S ) ∈
St(S,L2(D)) and (Z K L

1 , ..., Z K L
S ) ∈ St(S,L2(Ω)), in the Karhunen-Loève expansion (4.6).

97



Chapter 4. Dual DO approximation of Navier Stokes equations with random boundary
conditions

However we would like to emphasize that, in our context, the Karhunen-Loève decomposi-

tion (4.6) of the solution to problem (4.1), as well as the L2-orthogonal projector ΠV K L⊗Z K L

in (4.7), are not available in practice. In other words the optimality of the Karhunen-Loève

approximation is suitable only for the purpose of analysis, since it provides a lower bound for

the approximation error of low rank methods.

4.2 Dynamical Low rank methods

The Dynamical Low-rank approach [66, 80] is a reduced order method according to which the

solution of the governing equation is approximated in a low dimensional manifold of functions

with fixed rank, written in separable form. The peculiarity of this reduced basis approach

relies on the fact that both the deterministic modes and the stochastic coefficients can evolve

in time and are thus able to dynamically adapt to the features of the solution. The approximate

solution is obtained by performing a Galerkin projection of the governing equations onto the

(time-varying) tangent space to the approximation manifold along the solution trajectory. Let

us assume that the solution u(·, t ,ω) to problem (4.1) is in a certain Hilbert space H ⊂ L2(D)

for (almost) all t ∈ [0,T ] and ω ∈Ω and that L (u) ∈H ′ for all u ∈H and almost everywhere

in [0,T ]×Ω. Moreover let us define S rank random field any function uS ∈H ⊗L2(Ω) which

can be expressed as a sum of S (and not less than S) linearly independent deterministic modes

combined with S linearly independent stochastic modes.

Definition 4.2.1. We define MS ⊂H ⊗L2(Ω) the manifold of all the S rank random fields, i.e.:

MS =
{
uS ∈H ⊗L2(Ω) : uS =∑S

i=1 Ui Yi | span(U1, ...,US) ∈G (S,H ),

span(Y1, ...,YS) ∈G (S,L2(Ω))
} (4.8)

Observe that the definition of S rank random field can be characterized in several different

ways. We recall in the following box few of the many possible representations that have been

proposed and used in literature. For simplicity we describe the different options for time

independent random fields.
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Representations of S rank random field:

• Double-Orthogonal decomposition (used e.g. in [66, 68]), thereafter named

DDO:

uS(x,ω)=
S∑

i=1

S∑
j=1

Ai j Zi (ω)Vj (x)=VAZ (4.9)

where:

– Ai j ∈RS×S is a full rank matrix,

– V is a row vector of S L2(D)−orthonormal deterministic functions,

– Z is a column vector of S L2(Ω)−orthonormal random variables.

• Decomposition with orthonormal deterministic modes (used e.g. in [116, 117]),

thereafter named DO:

uS(x,ω)=
S∑

i=1
Ỹi (ω)Ũi (x)= ŨỸ (4.10)

where:

– Ũ=V is a row vector of L2(D)−orthonormal deterministic functions,

– Ỹ = ZA is a column vector of S linearly independent random variables,

hence with full rank covariance matrix C= E[ỸỸ].

• Decomposition with orthonormal stochastic modes (see Section 4.3), thereafter

named Dual DO:

uS(x,ω)=
S∑

i=1
Yi (ω)Ui (x)=UY (4.11)

where:

– U=VA is a row vector of S linearly independent deterministic functions.

Namely, M ∈RS×S , defined as Mi j = 〈U j ,Ui 〉, is a full rank matrix.

– Y= Z is a column vector of S L2(Ω)−orthonormal random variables.

In this chapter we adopt the decomposition with orthonormal stochastic modes that turns out

to be more suitable to approximate the incompressible Navier Stokes equations with random

Dirichlet boundary conditions.

Observe, however, that none of the previous formats leads to a unique representation of uS .

Namely, it is always possible to rewrite uS in the same format but with a different set of bases.

This implies that the Dynamical Low-Rank solution (DLR solution), or generally any arbitrary

continuously differentiable path t → uS(t) from [0,T ] to MS , is not uniquely described in

terms of time-dependent bases, whatever the format in which it is represented is. However,

the uniqueness of the representation is recovered by imposing dynamic constraints in the
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evolution of the bases. These constraints can be formally derived by exploiting the geometrical

differential structure of the approximation manifold, see Section 4.3 and [7, 90, 80].

4.2.1 DLR Variational Principle

We introduced here the Dynamical Low Rank (DLR) approach for a general problem (4.1), all

details concerning the boundary conditions have been postponed to Section 4.3.2.

Consider problem (4.1): the solution u describes a path t → u(t ) from [0,T ] in H ⊗L2(Ω). The

idea behind the DLR approach is to approximate this curve t → u(t )≈ uS(t ) by dynamically

constraining the time derivative u̇S to be in the tangent space to the manifold MS ⊂H ⊗L2(Ω)

at uS(t ) by Galerkin projection of the governing equation (4.1). Precisely, the DLR variational

principle for problem (4.1) reads as follows:

DLR Variational Principle. At each t ∈ (0,T ], find uS(t ) ∈MS such that:

E [〈u̇S(·, t , ·) −L (uS(·, t , ·)), v〉]= 0, ∀v ∈TuS (t )MS (4.12)

where TuS (t )MS is the tangent space to MS at uS(t ).

If L (uS(·, t , ·)) is in the tangent space itself at uS(t) for any uS ∈MS , and at any time, and

u0 is a S rank function, then the DLR approximation recovers the exact solution. If u0 is not

S rank and the DLR method is initialized with its best S rank approximation, uK L
0S , then the

DLR solution coincides with the truncated Karhunen-Loève expansion (i.e. the best S rank

approximation), under the assumption that the eigenvalues considered in the approximation

of u0 do not cross the ones that have been omitted at initial time [96].

Observe that the variational principle in (4.12) does not depend on the parametrization of

the manifold MS , as long as the solution is full rank. Specifically, the tangent space TuS (t )MS

is time dependent and depends only on uS(t ) and not on its representation. The variational

principle in (4.12) provides indeed a unified formulation for the DO method, as proposed by

Sapsis [116], and similar approaches proposed in the literature, including the DyBO method

[30] and the DDO method [39]. We refer to [96] for further details.

In order to numerically compute the approximate solution, one needs to uniquely characterize

uS in terms of deterministic and stochastic bases (modes). This is achieved by locally charac-

terizing the manifold by means of a parametrization of the tangent space. This is detailed in

the next section for the Dual DO formulation with orthonormal stochastic modes.

4.3 Dual DO formulation

We have seen that from the variational point of view, the DLR approximate solution uS ∈MS is

defined as a solution of the variational principle (4.12) at each time. However to numerically

compute uS , we need to parametrize the tangent space, hence the manifold, in terms of

local charts, corresponding in our context to the deterministic and stochastic modes. Once a
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parametrization has been fixed, one can easily derive a set of equations that uniquely describe

the dynamics of both the deterministic and stochastic modes. We emphasize that problem

(4.12) leads to different sets of equations depending on the parametrization of the tangent

space and any of these parametrizations leads to a different reduced order system.

Here we adopt the two fields formulation (4.11) in which we assume the stochastic modes to be

orthonormal. We will refer to it as Dual DO Formulation (as opposed to (4.10) which keeps the

deterministic modes orthonormal and was originally proposed in [116]). This representation

turns out to be computationally more efficient and more suitable for dealing with random

Dirichlet boundary conditions and solenoidal constraints. We define:

B(S,H )= {U= (U1, ...,US) : Ui ∈H with Mi j =<Ui ,U j > s.t. rank(M)= S}

and the map:

π̃ :
(
B(S,H ),St(S,L2(Ω))

) →MS ⊂H ⊗L2(Ω)

(U,Y) �→ π̃(U,Y)=∑S
i=1 Ui Yi =: uS

(4.13)

The image of π̃ is the manifold of S rank random fields MS defined in (4.8). Observe that:

• the DLR variational principle (4.12) is defined in MS while we want to write the DLR

approximate solution in terms of (U,Y) ∈B(S,H )×St(S,L2(Ω));

• the map π̃ is not injective, indeed for any orthogonal matrix Q ∈ RS×S , π̃(UQ,QT Y) =
π̃(U,Y).

The uniqueness of the representation (4.13) can be recovered in terms of unique decomposi-

tion in tangent space by imposing the following Gauge constraint [40, 90]:

E[δYi Y j ]= 0 ∀i , j = 1, ...,S, (4.14)

which leads to the following parametrization of the tangent space at uS =∑S
i=1 Ui Yi as [93, 66]:

TuS MS =
{

v̇ =∑S
i=1

(
δUi Yi +UiδYi

) ∈H ⊗L2(Ω), with δUi ∈H ,

δYi ∈ L2(Ω) s.t. E[δYi Y j ]= 0 ∀i , j = 1, ...,S
}

.
(4.15)

Finally the variational problem (4.12) can be rewritten in terms of evolution equations for

(U,Y).

Proposition 4.3.1. Let (U(t ),Y(t )) ∈B(S,H )×St(S,L2(Ω)) be a solution of the following system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂Ui (x, t )

∂t
= E [L (uS(x, t , ·))Yi (t , ·)] i = 1, · · ·,S (4.16)

S∑
i=1

M j i (t )
∂Yi (t ,ω)

∂t
=Π⊥Y 〈L (uS(·, t ,ω)),Ui (·, t )〉 j = 1, · · ·,S (4.17)
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then uS(t )= π̃(U(t ),Y(t )) ∈MS satisfies the DLR variational principle (4.12) at any t ∈ [0,T ].

Note the symmetry with the DO system proposed in [116].

4.3.1 Isolating the mean

In our context of partial differential equations with random parameters, since we are usually

interested in computing the statistics of the solution, it may be worth approximating separately

the mean of the solution. This is achieved by adopting a slightly different definition of S-rank

random field and leads to an approximation closer to the Karhunen-Loève expansion of the

solution (4.5) where the mean is treated separately in the expansion. The idea of isolating

the mean and the corresponding DO formulation was introduced in [116] and adopted in

[117],[96],[30]. We detail here only the Dual DO formulation and re-define S rank random field

as follows.

Definition 4.3.1. We call S rank random field (with the isolating mean format) any function

that can be exactly expressed as:

uS = ūS +∑S
i=1 Ui Yi

=U0Y0 +∑S
i=1 Ui Yi =UYT (4.18)

where:

• Y is a column vector of S+1 L2(Ω)-orthonormal random variables such that Y0 = 1 and

E[Yi ]= 0 for all i = 1, ...,S,

• U1, ...,US are linearly independent deterministic functions.

One can think that the difference with respect to definition (4.11) consists in fixing the first

random variable to be constant (Y0 = 1), with the zero mean condition of the remaining

random variables coming simply from the orthonormality of the random modes. However,

observe that (4.18) is not necessarily a S + 1 rank function since ūS is not assumed to be

linearly independent of U1, ...,US , or more precisely the subspace spanned by U does not have

necessarily dimension S+1 (at most dimension S+1 and at least S). According to the new

definition of S rank random field given in (4.18) the Dual DO system derived in (4.16)-(4.17)

becomes:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U̇0(x, t )= E [L (ũS(x, t , ·))] (4.19)

U̇i (x, t )= E [L (ũS(x, t , ·))Yi (t , ·)] i = 1, · · ·,S (4.20)
S∑

j=1
M j i (t )Ẏ j (x, t )=Π⊥Y 〈L ∗(ũS(·, t ,ω),ω),Ui (·, t )〉 i = 1, · · ·,S (4.21)

=Π⊥
Ỹ
〈L (ũS(·, t ,ω),ω),Ui (·, t )〉 i = 1, · · ·,S (4.22)
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where Y = span(Y1, ...,YS), L ∗(ũS(x, t ,ω),ω) :=L (ũS(x, t ,ω),ω)−E[L (ũS(x, t , ·))], Ỹ = span(Y0, ...,YS)

and Mi j = 〈U j ,Ui 〉, i , j = 1, ...,S.

Remark 4.3.1. Observe that definition (4.18) does not guarantee the optimality in the manifold

of function with rank S+1. This is due to the fact that we do not assume U0 linearly independent

of U1, ...,US and so (4.18) may have a deficient rank. To clarify this point, just consider the

function u(x,ω)= x+α(ω)x, with E[α] != −1. This is clearly a 1-rank function, but representation

(4.18) would require 2 modes.

The previous remark may appear quite obvious when we only want to isolate the mean, but it

turns out to be a crucial point when the number of constraints is larger. In the following, we

investigate the latter situation. For this purpose, the main questions that we need to address

are: how to define the low-rank manifold with constraints and which is the best approximation

in this manifold.

4.3.2 Dual DO under boundary constraints

We now explicitly assume that L in (4.1) is a second order elliptic operator of the form

L (u)=−di v(A(x,ω)∇u)−b(x,ω) ·∇u+ c(x,ω)u− f (x, t ,ω) where Ai j (x,ω),bi (x,ω),c(x,ω),

i , j = 1, ...,d , are bounded random variables in the open bounded Lipschitz domain D ⊂
Rd and under the assumptions that A(x,ω) is uniformly coercive almost surely and f ∈
L2([0,T ],L2(D×Ω)). The problem is set in H 1(D)⊗L2(Ω) and completed with Dirichlet bound-

ary conditions u|∂D = g . If the boundary condition is deterministic it is reasonable to adopt

formulation (4.18) in which the first deterministic mode, that approximates the mean, is

required to fulfill the constraint on the boundary, while all other modes satisfy homogeneous

conditions:

• U0(x, t )= g (x, t ) for x ∈ ∂D ,

• Ui (x, t )= 0 for x ∈ ∂D and for all i = 1, ...,S.

This is consistent with the Karhunen-Loève decomposition given in (4.5), for which we have:

λi V K L
i (y)|∂D = [∫

D Covu(x, y)V K L
i (x)d x]

]
|y∈∂D

=∫
D E

[
u∗(x, ·)u∗(y, ·)|y∈∂D

]
V K L

i (x)d x = 0 ∀i ∈N+ (4.23)

since ū|∂D = E[u]|∂D = g and u∗|∂D
= u|∂D − ū|∂D = 0. The case in which the boundary data are

random is more cumbersome. The first question to be addressed is which boundary conditions

should be satisfied by a general low rank approximate solution. One can easily verify that

the truncated Karhunen-Loève expansion does not necessarily satisfy the same boundary

conditions satisfied by the exact solution. Consider for example the following toy problem in
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D≡ (0,2π):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u̇(x, t ,ω)−Δu(x, t ,ω)= 0

u(0, t ,ω)= u(2π, t ,ω)=α(ω)e−t

u(x,0,ω)=α(ω)cos(x)+β(ω)sin(x)

(4.24)

where α, β are two uncorrelated zero mean random variables such that E[α2] < E[β2]. The

exact solution is u(x, t ,ω)= e−t (α(ω)cos(x)+β(ω)si n(x)). It is clear that the Karhunen-Loève

approximate solution of rank 1 is uK L
1 (x, t ,ω)=β(ω)e−t sin(x) and uK L

1|∂D
!=u|∂D . Generally the

values of the truncated Karhunen-Loève expansion on the boundary are unknown. Secondly,

in the context of Dynamical Low Rank approximation, we need to specify the boundary

conditions to impose on each deterministic mode U1, ...,US . We remind that the Dual DO

reduced system consists of dynamic differential equations for all the factors in (4.11). In

particular, in the equations (4.16)-(4.17), boundary conditions for each deterministic mode Ui

are needed to have a well posed problem.

Dual DO under random boundary constraints

Our strategy consists in enforcing that the low rank approximation satisfies the same boundary

conditions as those of the exact solution. This is motivated by the fact that we can not say

“a priori” which parameters have the strongest impact on the dynamics and at which time

the dynamic of the solution is influenced by the uncertain parameters in the boundary data.

It may therefore be important to impose these constraints as accurately as possible. To

do so we assume that the datum on the boundary is “almost low rank”, which is not a too

restrictive assumption in our context: since we are looking for an approximate solution uS ≈u

is reasonable to ask that u|∂D is properly approximated by a function of rank at most S. We

start considering Dirichlet boundary conditions that do not depend on time.

Assumption 3. The boundary function g can be properly approximated on the manifold of

M-rank functions for some M ≤ S:

u(x, t ,ω)= g (x,ω)≈ gM (x,ω)=
M∑

i=1
vi (x)Zi (ω) ∀x ∈ ∂D, a.s. (4.25)

with:

• E[Zi Z j ]= δi j ,

• v1, ..., vM linearly independent.

We denote by R the difference S−M and by Z the subspace spanned by {Z1, ..., ZM }. Then in

the DO formulation (4.12), we impose strongly condition (4.25). Precisely we ask:

uS(x, t ,ω)= gM (x,ω) ∀x ∈ ∂D, a.s. (4.26)
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For the sake of clarity, we start considering a general Dual DO representation, as defined in

(4.11). The similar formulation with the isolation of the mean is discussed in Remark 4.3.2.

Definition 4.3.2. A S rank random field under constraint (4.26) is a S rank function that

satisfies the boundary condition in (4.25) and can be written as:

ugM

S (x,ω)=
S∑

i=1
Ui (x)Yi (ω)=UY (4.27)

with:

• uS|∂D = gM a. s.,

• U1, ...,US linearly independent deterministic functions.

• Y1, ...,YS uncorrelated random variables.

We denote by M
gM

S the set of all the S rank random fields under constraint (4.26).

For the sake of notation, we omit the superscript in ugM

S in the following. However observe

that definition (4.27) strongly depends on the boundary conditions. Our first aim is to show

that M
gM

S is indeed a manifold. and precisely we aim to show that M
gM

S is the manifold of all

random fields of rank S that satisfy the same boundary condition as the solution, up to the

approximation in (4.25). We now claim that any function in M
gM

S can be written in terms of the

random modes Z1, ..., ZM in (4.25) and R = S−M “free” random variables, in the orthogonal

complement of Z .

Lemma 4.3.1. Let MR,M denote the manifold of all the functions uR,M written as:

uR,M (x,ω)=
R∑

i=1
Ui (x)Yi (ω)+

M∑
i=1

Vi (x)Zi (ω) (4.28)

where we assume:

• R+M = S,

• uR,M (x,ω)= gM (x,ω)=∑M
i=1 vi (x)Zi (ω) for x ∈ ∂D a.s.,

• all the random variables are mutually L2(Ω)-orthonormal:

– E[Zi Z j ]= δi j for all i , j = 1, ..., M;

– E[Yi Y j ]= δi j for all i , j = 1, ...,R;

– E[Zi Y j ]= 0 for all i = 1, ..., M and for all j = 1, ...,R.

• U1, ...,UR are linearly independent.
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Then, the set M
gM

S coincides with MR,M , hence it is a manifold.

To prove this lemma we need a preliminary result:

Lemma 4.3.2. Given a random field uR,M ∈MR,M defined as in (4.28), it holds:

• Vi |∂D = vi a.s. for all i = 1, ..., M;

• Ui |∂D = 0 a.s. for all i = 1, ...,R;

and in particular {U1, ...,UR ,V1, ...,VM } are linearly independent.

Proof. To verify the values of Ui and Vi on the boundary is enough to observe that:

Vi |∂D = E[uR,M |∂D Zi ]= E[gM Zi ]=∑M
j=1 v jE[Z j Zi ]= vi

Ui |∂D = E[uR,M |∂D Yi ]= E[gM Yi ]=∑M
j=1 v jE[Z j Yi ]= 0

where we have used the fact that uR,M |∂D = gM a.s. and the random modes are mutually orthog-

onal. Then the fact that v1, ..., vM are linearly independent implies that {U1, ...,UR ,V1, ...,VM }

are linearly independent.

Proof (Lemma 4.3.1). The fact that MR,M ⊆M
gM

S follows directly from Lemma 4.3.2. Now we

need to show that M
gM

S ⊆MR,M . Let uS ∈M
gM

S , we have that:

uS =∑S
i=1 Ui Yi

=∑S
i=1 UiΠZ Yi +∑S

i=1 UiΠ
⊥
Z

Yi

=∑M
j=1

(∑S
i=1 UiE[Yi Z j ]

)
Z j +∑S

i=1 UiΠ
⊥
Z

Yi

=∑M
j=1 Vj Z j +∑S

i=1 UiΠ
⊥
Z

Yi

Since uS|∂D = gM and Zi are orthogonal, we necessary have that Vj |∂D = v j . Moreover, the fact

that vi are linearly independent implies that V1, ...,VM are linearly independent. We can write:

〈v j ,uS|∂D 〉L2(∂D) = 〈v j ,
M∑

i=1
vi 〉L2(∂D)Zi , (4.29)

that implies

S∑
l=1
〈v j ,Ul |∂D 〉L2(∂D)Yl = 〈v j ,

M∑
i=1

vi 〉L2(∂D)Zi . (4.30)

Let B ∈RM×M , C ∈RM×S denote respectively:

Bi j = 〈v j , vi 〉L2(∂D) and Ci j = 〈vi ,U j |∂D 〉L2(∂D).
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Then, equation (4.30) can be rewritten as:

CY=MZ ⇒ Z=M−1CY (4.31)

where we use the fact that v1, ..., vM are linearly independent. This shows that:

span(Z1, ..., ZM )⊂ span(Y1, ...,YS).

In particular there exist (Ỹ1, ..., ỸR ) orthonormal random variables, orthogonal to the subspace

spanned by (Z1, ..., ZM ) such that:

span(Y1, ...,YS)= span(Z1, ..., ZM )⊕ span(Ỹ1, ..., ỸR ).

Hence uS can be written according to (4.28), as:

uS =
M∑

j=1
Vj Z j +

R∑
i=1

Ũi Ỹi

where the linear independence of Ũ1, ...,ŨR follows form the fact that uS is a S-rank random

field.

In view of Lemma 4.3.1 we can exploit representation (4.28) that enables us to derive the

boundary conditions for each mode in the DO reduced system. In particular any uS ∈M
gM

S is

written as:

uS =
S∑

i=1
Ui Yi

where

• {Y1, ..,YS} are L2(Ω)-orthonormal random variables;

• {U1, ...,UR } are linearly independent;

• Ui |∂D = 0 for all i = 1, ...,R (R = S−M) and Ui |∂D = vi for all i =R+1, ...,S;

• Yi = Zi for all i =R+1, ...,S;

Observe that:

M
gM

S
∼=MR ⊕M

gM

M (4.32)

where we recall that:

M
gM

M =
{

u =
M∑

i=1
Ui Zi

∣∣∣u|∂D = gM , Ui ∈H 1(D) linearly independent
}
⊂H 1(D)⊗L2(Ω)
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and MR is the manifold embedded in H 1
0 (D)⊗Z ⊥ of all the random fields of rank R . Observe

that if M = 0 we recover the standard formulation without constraints according to which MS

is the manifold of all the random fields of rank S that vanish on the boundary. On the other

hand, if M = S, M
gS

S reduces to the S dimensional affine subspace, spanned by Z1, ..., ZM and

the Dynamical Low Rank approximation reduces to a standard Galerkin projection.

We are now ready to define the Dynamical Low Rank variational principle in M
gM

S , i.e. the

manifold of all the S rank random fields that satisfy the (approximate) boundary conditions

(4.25). Observe that, in light of (4.32), for any uS ∈M
gM

S , we have that:

TuS M
gM

S
∼=TuR MR ⊕

(
Z ⊗H 1

0 (D)
)

(4.33)

where uR = Π⊥
Z

[uS]. Assuming that we adopt a parametrization of the manifold such that

uS ∈ M
gM

S is represented as
∑S

i=1 Ui Yi where the last M random variables coincide with

Z1, .., ZM in (4.25), then the tangent space can be parametrized as:

TuS M
gM

S
∼=
{

u̇ =∑S
i=1

(
δUi Yi +UiδYi

) ∈H 1
0 (D)⊗L2(Ω) s.t. E[δYi Y j ]= 0 ∀i , j = 1, ...,S

δYi = 0 a.s. ∀i =R+1, ...,S
}

(4.34)

This construction of constrained approximation manifolds can be generalized to Dirichlet

boundary conditions which depend on time. In this case the decomposition (4.25) is time

dependent and the approximation manifold changes in time: M
gM (t )
S

∼=MR ⊕M
gM (t )
M . The

tangent space is defined at each fixed time, according to (4.34). Formally the DLR variational

principle reads the same as in (4.12). What changes is the definition of the manifold. We

project the governing equation into the tangent space to M
gM (t )
S at uS(t ) at each time where

now M
gM (t )
S is the manifold constrained to gM (t ) which may change in time, hence the approx-

imate solution uS(t ) automatically satisfies the Dirichlet boundary conditions of the original

problem.

According to the parametrization of the tangent space in (4.34) the reduced order system for

the Dual DO formulation under random boundary constraints becomes:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U̇i (x, t )= E [L (uS(x, t , ·))Yi (t , ·)] x ∈D, t ∈ (0,T ],

i = 1, · · ·,S

Ui (x, t )= 0 (x, t ) ∈ ∂D× (0,T ],

i = 1, · · ·,R

Ui (x, t )= vi (x, t ) (x, t ) ∈ ∂D× (0,T ],

i =R+1, · · ·,S

(4.35)

∑R
j=1 M j i (t )Ẏ j (t ,ω)=Π⊥

Y
〈L (uS(·, t ,ω),ω),Ui (·, t )〉 (t ,ω) ∈ (0,T ]×Ω,

i = 1, · · ·,R
(4.36)

Ẏi (t ,ω)= 0 (t ,ω) ∈ (0,T ]×Ω,

i =R+1, · · ·,S
(4.37)

where Y =span(Y1, ...,YS) and M ∈ RR×R is the correlation matrix of the first R determinis-

tic modes Mi , j =<Ui ,U j > for i , j = 1, ...,R. Observe that the system (4.36) consists of only

R = S−M equations since the last M random variables remain constant.

Remark 4.3.2. Again, since in our context of partial differential equations with random pa-

rameters we are usually interested in computing the statistics of the solution it may be worth

approximating separately the mean of the solution as in (4.18). Observe that we can distinguish

two cases:

• (non homogeneous) deterministic boundary conditions. In this case isolating the mean

only reduces to a special case of the Dual DO formulation under boundary constraints

with S + 1 modes and M = 1 constraint: ūS+1 satisfies the constraints and all other

deterministic modes are homogeneous on the boundary. The approximation manifold

can be defined including the mean, by taking US+1 = ūS+1 and YS+1 = 1. Observe that

the non homogeneous boundary conditions guarantee that US+1 and Ui are linearly

independent for any i = 1, ...,S. In practice, we work in a manifold of rank S+1 under

one constraint, given by YS+1 = 1 at each time.

• random boundary conditions. Consider a boundary datum g = ḡ +∑M
i=1 vi Zi , with

E[Zi ]= 0 and ḡ = E[g ], if ḡ is linearly independent from {v1, ..., vM } we fall back to the first

case, namely isolating the mean coincides with defining the constrained approximation

manifold by including the mean: we have S+1 linearly independent modes and M +1

constraints. On the other hand in the general case, isolating the mean does not guarantee

any kind of orthogonality for ūS with respect to the other deterministic modes, thus the

constrained set which includes the mean is not necessarily a manifold. If ḡ is not linearly

independent from v1, ..., vM , we can either isolate the mean and work in a manifold of

dimension S embedded in H 1(D)⊗L2
0(Ω), or write gM as in (4.25). Observe that in the

first case the approximate solution is in H 1(D)⊕M
gM

S and has rank at least equal to S.
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An alternative strategy for dealing with random boundary conditions was proposed in [116],[117]

and consists in projecting the boundary conditions g (x, t ,ω) onto Y (t )= span< Y1, ...,YS > at

each t . Combining this approach to the Dual DO framework would imply enforcing:

Ui (x, t )|∂D = E[g (x, t , ·)Yi (t , ·)] ∀x ∈ ∂D, ∀t ∈ (0,T ], ∀i = 1, ...,S

which further implies:

uS(x, t , ·)|∂D =
S∑

i=1
E[g (x, t , ·)Yi (t , ·)]Yi (t ,ω) ∀x ∈ ∂D, ∀t ∈ (0,T ], ∀i = 1, ...,S.

However, note that the subspace spanned by Y1, ...,YS evolves in time and it is implicitly deter-

mined by the approximate solution itself. It is not clear then at time t � 0 which boundary

conditions are actually satisfied by uS and how the randomness arising from the boundary

data is taken into consideration. The two different strategies are numerically compared in

Section 4.5. The results for the problems under analysis show that strong imposition of bound-

ary constrains leads to better performances in terms of accuracy versus number of modes,

especially for long time intervals.

4.3.3 Best S rank approximation

We now look at the problem of finding the best S rank approximation in M
gM (t )
S at any fixed

time t ∈ [0,T ].This can be seen as an optimization problem under constraints.

Definition 4.3.3. Fix t ∈ [0,T ] and let u(t ) ∈H 1(D)⊗L2(Ω) be a square integrable random field

with rank greater or equal to S and such that u(x, t ,ω)= gM (x, t ,ω) for all x ∈ ∂D a.s.. We define

best rank S approximation a solution of the following problem: find uK L
S (t ) ∈M

gM (t )
S such that

uK L
S (t )= argmin

vS∈M gM (t )
S

‖u(t )− vS‖L2(D)⊗L2(Ω) (4.38)

Lemma 4.3.3. The solution to problem (4.38) is given by:

uK L
S (x, t ,ω) =∑R

i=1

√
λi (t )V K L

i (x, t )Z K L
i (t ,ω)+∑M

i=1 Vi (x, t )Zi (ω, t )

= uK L
R (t )+

M∑
i=1

Vi (x, t )Zi (t ,ω)︸ ︷︷ ︸
u∗M (t )

(4.39)

where

• u∗M (t ) ∈M
gM (t )
M is the Galerkin projection of u(t ) in H 1(D)⊗Z (t ). Specifically Vi (x, t )=

E[u(x, t , ·)Zi (t , ·)];

• uK L
R (t ) is the best approximation with R terms ofΠ⊥

Z (t )[u(t )]= u(t )−u∗M (t ): (λi (t ),V K L
i (t ), Z K L

i (t ))R
i=1
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are the first R terms of the Karhunen-Loève expansion of Π⊥
Z (t )[u(t )].

Proof. Observe that M
gM (t )
S ⊂ H 1(D)⊗L2(Ω) while the minimization in (4.38) is defined in

L2(D)⊗L2(Ω). In order to formally recover the constraint (4.26), i.e. uK L
S (x, t ,ω)= gM (x, t ,ω),

∀x ∈ ∂D a.s., we set problem (4.38) in the larger space V ⊂ L2(D)⊗L2(Ω) defined as:

V = L2(D)⊗Z (t )⊕MR (L2(D)⊗Z ⊥(t ))

where MR (L2(D)⊗Z ⊥(t )) is the manifold of R rank random fields embedded in L2(D)⊗Z ⊥(t ).

Now let us define the following problem: F ind ũK L
S (t ) ∈ V such that

ũK L
S (t )= argmin

vS∈V
‖u(t )− vS‖L2(D)⊗L2(Ω) (4.40)

The problem (4.40) reduces to two well known problems: a Galerkin projection in Z (t ) plus an

optimization problem without constraints in MR (L2(D)⊗Z ⊥(t )). This implies that problem

(4.40) is well posed and admits a solution ũK L
S (t) that can be written as in (4.39). Moreover

observe that ũK L
S (t ) ∈M

gM (t )
S ⊂ V , which implies that ũK L

S (t )=uK L
S (t ) is a solution of problem

(4.40).

In the following we call best S rank approximation uK L
S (t ) the solution to problem (4.38).

Remark 4.3.3. The error analysis derived in [96] for linear parabolic equations with random

parameters applies as well to the Dual DO approximation under constraints. In this case, the

DLR approximation error is bounded in term of the best approximation (4.39), i.e. the solution

of the optimization problem under constraints (4.38). The proof follows very closely the one

derived in [96].

4.4 Application to Navier Stokes equations

In this Section we focus on fluid flow dynamics governed by the non-stationary Navier Stokes

equations for incompressible, constant-density fluids. In this setting the uncertainty may arise

from the parameters of the equations such as the fluid viscosity, or from the forcing term or

initial or boundary conditions. The general problem, in a open, bounded Lipschitz domain

D ⊂Rd , with d = 2,3, reads a.s. in Ω as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇(x, t ,ω)−ν(x, t ,ω)Δu(x, t ,ω)+u(x, t ,ω) ·∇u(x, t ,ω)+∇p(x, t ,ω)= f(x, t ,ω) (x, t ) ∈D× (0,T ]

∇·u(x, t ,ω)= 0

u(x,0,ω)=u0(x,ω) x ∈D

u(x, t ,ω)= g(x, t ,ω) x ∈ ΓD , t ∈ (0,T ]

ν∂nu(x, t ,ω)−p(x, t ,ω) ·n=h(x, t ,ω) x ∈ ΓN , t ∈ (0,T ]

(4.41)

111



Chapter 4. Dual DO approximation of Navier Stokes equations with random boundary
conditions

where u is the velocity (column) vector field, p is the scalar pressure and ν is the kinematic

viscosity that may eventually be modeled as a random variable or random field. ΓD and ΓN are

disjointed parts of the boundary ∂D , such that ΓD ∪ΓN = ∂D, on which we impose Dirichlet

and Neumann boundary conditions respectively.

Our goal is to find a low rank approximation of the velocity field. We apply the Dual DO

method described in Section 4.3 and we derive evolution equations for all the factors (U,Y) of

the approximate velocity vector field. We start by recalling the definition of Karhunen-Loève

expansion for a square integrable random vector field.

Definition 4.4.1. Let u ∈ L2
(
Ω, [L2(D)]d

)
be a square integrable random field with covariance

function Covu : D×D →Rd×d , defined as:

Covu(x,y)= E[u∗(x, ·)u∗T(y, ·)]

with u∗ =u−E[u].

Then u can be written as:

u(x,ω)= ū(x,ω)+
∞∑

i=1

√
λi VK L

i (x)Z K L
i (ω)︸ ︷︷ ︸

u∗

(4.42)

where:

• {λi ,VK L
i } are respectively the (non-zero) eigenvalues and eigenfunctions (column vectors

of scalar functions) of the covariance operator Tu : [L2(D)]d → [L2(D)]d defined as

TuV(x) =∫
D Covu(y,x)V(y)dy, V ∈ [L2(D)]d

TuVK L
i =λi VK L

i

• Z K L
i are mutually uncorrelated scalar random variables given by:

Z K L
i (ω) := 1√

λi

∫
D

(u∗(x,ω))T VK L
i (x)d x ∀i ∈N+,

with zero mean and unit variance.

Observe that the deterministic modes are vector valued functions while the stochastic modes

are scalar functions. We denote by H 1
di v (D) and H 1

ΓD
(D) the following spaces:

H 1
di v (D) := {

v ∈ [H 1(D)]d : ∇·v= 0
}
,

H 1
g (D) := {

v ∈ [H 1(D)]d : v|ΓD
= g

}
, H 1

ΓD
(D) := {

v ∈ [H 1(D)]d : v|ΓD
= 0

}
.

Remark 4.4.1. Let u be in H 1
di v (D)⊗L2(Ω), then the mean and all the deterministic eigen-modes

in (4.42) are divergence free. Indeed
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∇· ū=∇·E[u]= E[∇·u]= 0, λi∇·VK L
i =∇·E[uZ K L

i ]= E[
(∇·u)Z K L

i ]= 0

In light of Remark 4.4.1, we look for a Dynamical Low Rank approximation written as a linear

combination of divergence free modes.

We consider the general case of problem (4.41) with random Dirichlet boundary conditions,

and detail the Dual DO formulation introduced in Section 4.3.1 in which we also isolate the

mean. Following the discussion in Section 4.3.2, we assume that the datum on the Dirichlet

boundary can be properly approximated by a M rank random field, with M ≤ S. In particu-

lar, for consistency with the approximate solution, the boundary constraint is decomposed

according to Definition (4.18), by isolating the mean:

u(x, t ,ω)= g(x, t ,ω)≈ gM (x, t ,ω)= ḡ(x, t )+g∗M (x, t ,ω), x ∈ ΓD , t ∈ [0,T ], a.s. (4.43)

Hence ḡ(x, t ) is the deterministic Dirichlet boundary condition for the mean, while g∗M (x, t ,ω),

written as a linear combination of M ≤ S zero mean random variables, is the constraint of the

approximation manifold. To be precise:

gM (x, t ,ω)= ḡ(x, t )+
M∑

i=1
v i (x, t )Zi (t ,ω), ∀x ∈ ΓD , t ∈ [0,T ], a.s. (4.44)

with:

• Z1, ..., ZM zero mean L2(Ω)-orthonormal random variables: E[Zi (·, t )]= 0, E[Zi (·, t )Z j (·, t )]=
δi j for all i , j = 1, ..., M

• v 1, ..., v M linearly independent vector valued deterministic functions.

and the approximation manifold of zero mean S rank random fields constrained to g∗M (t) is

parametrized as follows:

M
g∗M (t )
S,di v =

{
u∗S =

∑S
i=1 Ui Yi s.t. uS|ΓD

= g∗M (t ), and Ui ∈H 1
di v (D),

E[Yi ]= 0, E[Yi Y j ]= δi j , rank(M)=R
} (4.45)

where R = S−M and M=�U,U�∈RR×R is again the full rank correlation matrix of the first

R deterministic modes: Mi j =<Ui ,U j >=∑d
k=1 <Ui ,k ,U j ,k >. Thus, the DLR approximate

solution is written at each time as:

uS(t )= ūS(t )+u∗S (t )

with:

• ūS(t ) ∈H 1
di v (D)∩H 1

ḡ(t )(D),
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• u∗S (t ) ∈M
g∗M (t )
S,di v .

Finally, the DLR variational principle (4.12) applied to the Navier Stokes problem in (4.41)

becomes:

DLR Variational Principle. At each time t , find (ūS(t ),u∗S (t )) ∈ (H 1
di v (D)∩H 1

ḡ(t )(D))×M
g∗M (t )
S,di v

such that uS(t )= ūS(t )+u∗S (t )= ūS(t )+∑S
i=1 Ui (t )Yi (t ) satisfies:

E
[< u̇S +uS ·∇uS − f, v>+ < ν∇uS ,∇v>−<h,v>ΓN

]= 0

∀v ∈ (H 1
di v (D)∩H 1

ΓD
(D))×TuS (t )M

g∗M (t )
S,di v .

(4.46)

with initial condition given by ū(0)+u∗S (0), where ū(0) = E[u0] and u∗S (0) is the best S rank

approximation of u0− ū(0) in M
g∗M (0)
S,di v , provided u0 ∈H 1

di v ⊗L2(Ω).

Observe that the term < h,v >ΓN derives from the integration by part of −ν < ΔuS ,v > + <
∇p,v> combined with the Neumann boundary conditions in ΓN . Again, by imposing condi-

tion (4.14), we can equip M
g∗M (t )
S,di v with a differential manifold structure and derive the Dual

DO reduced order system for Navier Stokes equations with random parameters (including

boundary conditions).

Proposition 4.4.1. Let (ūS ,U,Y) be a smooth solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

< ˙̄uS +E
[
uS ·∇uS − f

]
, δU>+< E

[
ν∇uS

]
,∇δU>−< E

[
h],δU>ΓN= 0

ūS|ΓD
= ḡ

< U̇i +E
[(

uS ·∇uS − f
)
Yi

]
, δU>+< E

[
ν∇uSYi

]
,∇δU>−< E

[
hYi ],δU>ΓN= 0

Ui |ΓD
= 0 ∀i = 1, ...,R

Ui |ΓD
= v i ∀i =R+1, ...,S

∑R
k=1 M j kE[ẎkδY ]=<U j ,E

[(
f−uS ·∇uS

)
δY

]>−<∇U j ,E
[
ν∇uSδY

]>+<U j ,E
[
hδY

]>ΓN

∀ j = 1, ...,R

(4.47)

∀δU ∈ H 1
di v (D)∩H 1

ΓD
(D) and ∀δY ∈ Y ⊥

0 (the orthogonal complement of Y in L2
0(Ω)), with

initial conditions given by ū(0) and the best S rank approximation of u0− ū(0) in M
g∗M (0)
S,di v . Then

uS = ūS +∑S
i=1 Ui Yi is solution of (4.46), at each time.

We treat the divergence free constraint, that is imposed on each deterministic mode, by

introducing S+1 Lagrange multipliers p̄, p1, ..., pS . Then, by reintegrating by part, we finally

get:
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Proposition 4.4.2. Let (ūS ,U,Y) be a smooth solution of

˙̄uS +∇p̄ = E
[
νΔuS −uS ·∇uS + f

]
∇· ūS = 0

U̇i +∇pi = E
[(
νΔuS −uS ·∇uS + f

)
Yi

]
∇·Ui = 0 ∀i = 1, ...,S∑R

k=1 Mi k Ẏk =<Ui ,Π⊥1∪Y

[
νΔuS −uS ·∇uS + f

]> ∀i = 1, ...,R

(4.48)

then uS = ūS +UY is solution of (4.46), at each time.

The initial conditions are given by ū(0) and the best S rank approximation of u0 − ū(0) in

M
g∗M (0)
S,di v , while the boundary conditions are the following:

ūS(x, t )= ḡ(x, t ) (x, t ) ∈ ΓD × [0,T ],

Ui (x, t )= v i (x, t ) (x, t ) ∈ ΓD × [0,T ], ∀i = 1, ...,R

Ui (x, t )= 0 (x, t ) ∈ ΓD × [0,T ], ∀i =R+1, ...,S

ν∂nUi (x, t )−pi (x, t ) ·n= E[h(x, t , ·)Yi ] (x, t ) ∈ ΓN × [0,T ], ∀i = 1, ...,S.

In conclusion, the Navier Stokes equations with random parameters in (4.41) is reduced to S

deterministic problems of Navier Stokes type, coupled to a system of R stochastic ODEs.

4.5 Numerical Test

4.5.1 Flow around a cylinder: stochastic boundary condition

In this section we consider a two-dimensional incompressible flow over a circular cylinder at

moderate Reynold’s Numbers for which a periodic vortex shedding phenomenon is observed

around the obstacle. The geometry and the mesh used for the simulations are shown in

Figure 4.1. The height and length of the channel are respectively H = 0.41 and l = 2.2. The

cylinder hole has radius r = 0.05 and is slightly uncentered, the coordinate of the center being

(0.2, 0.2) with respect to the origin located on the lower-left corner of the channel. We consider

homogeneous initial conditions and we assume a parabolic inflow profile with random peak

Figure 4.1 – Left: mesh used for the simulation, 2592 number of vertices, hmax = 0.055,
hmi n=0.006.

115



Chapter 4. Dual DO approximation of Navier Stokes equations with random boundary
conditions

velocity Umax that varies in the range [1.2, 1.8]. More precisely we have:

u(x,ω, t ) = (4(Ū +σZ (ω))︸ ︷︷ ︸
Umax

x2(H −x2)/H 2, 0) x= (x1, x2) ∈ Γi n

= (4Ū x2(H −x2)/H 2, 0)+ (4σZ (ω)x2(H −x2)/H 2, 0)

= ḡ(x)+Z (ω)v 1(x)︸ ︷︷ ︸
g1

(4.49)

where Ū = 1.5, σ= 0.1 and Z is a uniform random variable with zero mean and unit variance.

An initial ramp is applied on the boundary data to guarantee consistency with the homoge-

neous initial conditions. We use a cubic polynomial smoothing function that reaches 1 at time

t=1. No slip conditions are applied on the top, bottom and cylinder side-walls, Neumann ho-

mogeneous conditions at the outlet. We recall that for this problem the Reynold’s number (that

can be computed as Re = Um D
ν where here ν= 10−3 is the kinematic viscosity and Um = 2

3Umax

is the mean inflow velocity) determines the frequency of the vortex shedding and the length of

the recirculation region. Observe that the random boundary condition at the inflow directly

influences the Reynold’s Numbers, that here varies in the range Re ∈ [80,120]. It follows that

the pattern of the solutions corresponds to flows with random vortex shedding frequency.

Before presenting the numerical results we remark that even if we have only one random vari-

able as input, the problem is not straightforward since the solution depends non-linearly on it.

Indeed the test case under consideration is challenging for model order reduction techniques,

which are unable to approximate the solution manifold with a relatively small number of

modes. This is due to the fact that each value of the input parameter leads to a vortex shedding

with different frequency and characteristic length. Somehow we can imagine the manifold of

solutions to be constituted of infinitely many flow patterns which become more and more out

of phase one with respect to the others as time evolves. Consequently, even if we start with

a low-rank initial condition (or even deterministic) the rank of the solution will significantly

increase in time. This can be verified by looking at the evolution of the eigenvalues of the

covariance operator in Figure 4.8 (left). Consider for instance the POD method [13][23], in

which the approximate solution is sought as a linear combination of (deterministic and fixed

in time) precomputed modes. For a fixed value of Reynold’s number the solution is periodic

and the vortex shedding can be well reproduced as a linear combination of few pairs of modes

with alternating symmetry properties: the dynamics of the solution is approximately low rank

(or well approximated in a low dimensional manifold), at least once the vortex shedding is

fully developed. On the other hand, it has been shown (see for instance [99][85] for details),

that the span of the eigen-modes changes significantly with the Reynold’s number, making the

POD approach very sensitive to the choice of the parameters used to compute the snapshots.

Indeed POD techniques may fail to capture the dynamics for values of the Reynold’s number

different from those used to pre-compute the modes. We are interested in understanding if

the dynamical approach of the DLR method can, at least partially, overcome this problem.

In particular, we analyze the performance of the Dual DO method in describing both the

transient period and the long-term periodic dynamics.
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Dual DO system and numerical discretization

We apply the Dual DO formulation to the Navier-Stokes (NS) equations derived in Section 4.4.

By isolating the mean, the Dual DO approximate solution is written as:

uS(x, t ,ω)= ūS(x, t )+
S−1∑
i=1

Ui (x, t )Yi (t ,ω)+US(x, t )Z (ω)

where Z is the random variable in (4.49), and u∗S = uS − ūS belongs to the low dimensional

manifold:

M
g1(t )
S,di v =

{
uS =

S∑
i=1

Ui Yi s.t. uS|Γi n
= g1(t ), Ui ∈H 1

di v , Yi ∈ L2
0(Ω), E[Yi Y j ]= δi j , rank(M)= S−1

}

Let B denote the third order tensor defined as Bi j k := E[Yi Y j Yk ], the Dual DO system for this

problem reads:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̄uS −νΔūS + ūS ·∇ūS +
S∑

i=1
Ui ·∇Ui +∇p̄S = 0

∇· ūS = 0

ūS|Γi n
= ḡ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
U̇k −νΔUk +

S∑
i=1

S∑
j=1

Bi j k Ui ·∇U j +Uk ·∇ūS + ūS ·∇Uk +∇pk = 0 k = 1, ...,S

∇·Uk = 0

U1|Γi n
= v 1 Uk|Γi n

= 0 for k != 1
S−1∑
i=1

Mki Ẏi + Π⊥1∪Y
<Uk ,

S∑
i=1

S∑
j=1

Ui ·∇U j > Yi Y j = 0 k = 1, ...,S−1

YS = Z

No slip conditions on the top, bottom and cylinder side-walls and homogeneous Neumann
boundary conditions on the outflow are applied for ūS ,U1, ...,US . Observe that the Dual DO
system (4.5.1)-(4.5.1) reduces to S+1 (coupled) Navier-Stokes equations, plus a system of S−1
ODEs. However playing with the time discretization it is possible to decouple the system to
save computational time and effectively compute the approximate solution without losing
the stability. In particular, we used a splitting scheme of “Gauss-Seidel” type to linearize and
completely decouple the system of ODEs from the system of PDEs. Specifically both the third
order tensor B and the projection operator Π⊥1∪Y

(·) are treated explicitly whereas the update
of the random variables {Yi } is done on the newly computed basis {Ui }. In particular, denoting
by un

S = ūn
S +Un(Yn) the approximate solution at time t n = nΔt , equations (4.5.1) and (4.5.1)

are discretized in time as follows:

1
Δt ūn+1

S −νΔūn+1
S + ūn

S ·∇ūn+1
S +∇p̄n+1

S = 1
Δt ūn

S −
S∑

i=1
Un

i ·∇Un
i

1
Δt Un+1

k −νΔUn+1
k + (ūn

S +
S∑

i=1
Bn

i kk Un
i ) ·∇Un+1

k +∇pn+1
k = 1

Δt Un
k −

S∑
j=1
j !=k

S∑
i=1

Bn
i j k Un

i ·∇Un
j −Un

k ·∇ūn
S
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In conclusion at each time step we first solve in parallel S +1 decoupled deterministic NS

equations and then a system of S−1 ODEs. All implementations has been developed within

the open source Finite Element library FEniCs. We chose to discretize functions defined

in the physical space by a Finite Element method, with P2 elements for the velocity and P1

for the pressure, to ensure that the inf-sup condition is satisfied at the discrete level. Then

each of the S +1 deterministic NS equations system is solved by using the Chorin-Teman

projection scheme with rotational incremental pressure correction [125]. The system of ODEs

is instead discretized by using the Stochastic Collocation method with Gauss-Legendre points

(the stochastic space has been parametrized by a uniform random variable, according with

the input data).

The first difficulty in applying the Dual DO method concerns the initialization of the modes.

Indeed, the initial condition is deterministic, i.e. a zero rank random field, but the rank

is expected to increase in time, due to the randomness in the boundary data and the non

linearity of the problem. It follows that we may expect S > 1 modes to be needed to effectively

describe the dynamics of the solutions. In practice we look for the Dual DO approximate

solution uS even if the initial condition has clearly defective rank. We initialize the last random

mode to Z in (4.49) and the first S−1 to an orthonormal polynomial basis in Z⊥, whereas the

deterministic modes are set to zero. Observe that uS does not belong to the approximation

manifold M
g1(t )
S,di v at least at the initial time steps. This is a common problem of DLR methods

and may arise even if the initial solution is full rank because nothing prevent the DLR solution

to become rank deficient at some point in time. To treat the case of rank deficiency here we

used the same strategy proposed in [96] that consists in diagonalizing the correlation matrix M

at each time step and solving the equations only for the eigen-modes with eigenvalues larger

than a prescribed (small) tolerance, whereas the other modes are kept constant in time. By

this way, the stochastic coefficients associated to deterministic modes with L2 norm below the

threshold, have a negligible influence on the approximation of the solution. However, they are

kept in the approximation and may become active again at a later time when the rank of the

solution increases. See [96] for more details. We mention that an alternative strategy to treat

rank deficiency is proposed in [82], in the context of time-dependent matrices, which makes

use of a projector splitting integrator.

Numerical results

First of all, we assess the accuracy of the Dual DO formulation with constraints according to

which the random boundary conditions are imposed strongly. This technique is compared

to the one proposed in [116] that consists in projecting the boundary data in the subspace

spanned by the random modes at each time. The approximation error is calculated with

respect to the reference solution computed by using the Stochastic Collocation method with

Gauss-Legendre points and with the same discretization parameters in time and space. In

Figure 4.2 (left) we compare the approximation error in norm H 1(D)⊗ L2(Ω) for the two

strategies with S (number of modes) equal to 7 and 11. We observe that for the problem under

consideration the strategy proposed here exhibits a smaller error for long time integration. We
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Figure 4.2 – Left: time evolution of the approximation error in norm H 1(D)⊗ L2(Ω) with
S = 7 modes (and S = 11, dashed lines). In blue the best approximation error, in red the
approximation error of DO method with projected boundary conditions ([116][117]), in green
approximation error of the Dual DO with strong imposition of boundary constraints. Right:
The second stochastic mode of the KL decomposition of the reference solution (green) and
the DO approximate solution (red dashed line) with S = 5 at time T = 1, T = 2, T = 3
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Figure 4.3 – Left: The third stochastic mode of the (constrained) KL decomposition (green) of
the reference solution and of the Dual DO approximate solution (red dashed line) with S = 5
at time T = 1, T = 2, T = 3 seconds (left) and S = 11 at time T = 3, T = 4, T = 5 (right). seconds
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Figure 4.4 – The first deterministic mode of the Dual DO approximate solution with S = 11 (on
the left) and the first KL eigen-mode of the reference solution (on the right) at t = 0.6, t = 1.6,
t = 2, t = 2.4 and t = 5.2.

stress that for this problem the first random mode is fixed and distributed as Z in (4.49) while

the other S−1 random modes, initialized to an arbitrary orthonormal basis in the orthogonal

complement to Z , “automatically” adapt to the structure of the solution. In Figure 4.2 (right)

and Figure 4.3 we compare the random modes of the Dual DO approximate solution to the

random modes of the best rank S approximation at different times. We recall that we denote

by uK L
S the solution to problem (4.38), namely the best S rank approximation in M

g1(t )
S,di v , the

approximation manifold with constraints. As expected the accuracy in the evolution of the

random basis depends on the number of modes used to compute the Dual DO approximate

solution: the modes stay closer and closer to the optimal ones (and for a longer time interval)

as S increases. In the first part of the transition phase, the stochastic modes properly adapt in

time also when very few modes are used, whereas the effectiveness of the method tends to

decrease for long time intervals, see Figure 4.2 (right) and Figure 4.3 (left). Better agreement

for longer times is achieved by increasing the number of modes, Figure 4.3 (right). Similar

conclusions can be drawn by analyzing the deterministic modes, see Figure 4.4 and Figure 4.5.

We conclude this section by analyzing the rate of convergence of the Dual DO method with

respect to the number of modes. The Dual DO approximation error is again computed in

norm H 1(D)⊗L2(Ω) with respect to the reference solution computed by using the Stochastic

Collocation method and with the same discretization parameters in time and space. In Figure

4.6 and Figure 4.7 we compare the Dual DO approximation error to the best approximation

error as S increases and at different times. First of all, we observe that the approximation
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Figure 4.5 – The second deterministic mode of the Dual DO approximate solution with S = 11
(on the left) and the second KL eigen-mode of the reference solution (on the right) at t = 0.6,
t = 1.6, t = 2, t = 2.4 and t = 5.2.

error increases in time, due to the intrinsic nature of the exact solution whose rank quickly

increases until reaching a stable level when the vortex shedding is fully developed. In particular

during the initial phase, for a fixed number of modes, both the DO and the Karhunen-Loève

approximation error increase in time, which means that an increasing number of modes are

needed to achieve a certain level of accuracy. We observe, however, in Figure 4.6 that the Dual

DO approximation error stays very close the best approximation error and exhibits the same

rate of convergence with respect to the number S of modes, until T ≈ 2.4. On the other hand,

Figure 4.7 shows that the difference between the Dual DO and the best approximation error

tends to increase in time when the solution finally reaches the periodic phase. At this stage,

we observe that the best approximation error stabilizes in time (or slightly decreases). On the

other hand, the error of the Dual DO approximation is considerably larger and the convergence

rate with respect to S seems to be worse than the one of the best approximation. This result is

consistent with the quasi-optimal error estimate derived in [96] for linear parabolic problems

in which the proportionality constant increases in time.

Time rescaling

The poor performance of the Dual DO method, as any other reduced order method, in effi-

ciently approximate the problem in Section 4.5.1 for long times, is justified by the intrinsic

nature of the solution whose structure is not apt to be well approximated in low rank format.

This can be verified by looking at the evolution of the eigenvalues of the covariance operator

in Figure 4.8 (Left): the eigenvalues increase fast and many of them reach not negligible values.

Figure 4.7 shows the rate of convergence for the Karhunen-Loève approximation, i.e. the best
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Figure 4.6 – The Dual DO approximation error (red) and the KL truncation error (blue) in norm
H 1(D)⊗L2(Ω) with respect to the number of modes, at different time steps (transition phase).
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Figure 4.7 – The Dual DO approximation error (red) and the KL truncation error (blue) in norm
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Figure 4.8 – Left: the time evolution of the eigenvalues of uK L , i.e. the Karhunen-Loève
decomposition of the reference solution, computed with the stochastic collocation method in
a set of Ny = 33 Gauss Legendre collocation points. Middle: Decay of the eigenvalues of the
Karhunen-Loève decomposition of the reference solution without (red dashed line) and with
(blue solid line) time rescaling at different times. Right: the time evolution of the eigenvalues
of uK L , i.e. the Karhunen-Loève decomposition of the reference solution with time rescaling.

approximation with respect to the number of modes in norm L2(D)⊗L2(Ω). We observe that

the decay of the singular values is relatively slow. Moreover, we see that the decay significantly

changes in time, meaning that the problem is not apt to be approximated by low-rank methods

with fixed rank. To overcome these problems we propose here a strategy aiming at reformu-

lating the original problem in a new coordinate system in order to obtain a solution that can

be suitably approximated in low-rank format. First of all, we recall that, for deterministic

values of the input parameter, namely for a fixed value of the Reynold’s number, the flow

features a periodic vortex shedding. In this case POD procedures from snapshots properly

collected at different time instants, leads to accurate reconstructions of the solution with few

modes. However, as numerically shown e.g. in [99, 85], the accuracy of these methods rapidly

deteriorates as one slightly moves away from the parametric value used for the construction

of the basis. This is because the input parameters affect the frequency and the length of the

recirculation region. In particular, when the boundary conditions at the inflow are modeled

as in (4.49), the solutions are velocity fields with varying vortex shedding frequencies which

become more and more “out of phase” as time evolves (this explains the increasing rank of the

solution in time). In light of that, our goal is to find a transformation which realigns all the

solutions and keeps the rank small. For this purpose, we make use of an empirical formula

[130] that linearly relates the vortex shedding frequency to the maximum velocity at the inflow:

fs ∝ Umax
D (where D here is the diameter of the cylinder). We recall that for the problem under

consideration Umax =Um +σz(ω) so we claim that the frequency is linear in the random

parameter z. Then, let us consider the fluid motion from a Lagrangian point of view. We

define X (x, s; t ) the trajectory of the particle that at the instant t = s passes through the point

x, and we denote by τ= t − s the interval of time that the same particle needs to go from x to

x1 = X (x, s; t ). We recall that the Navier Stokes equations can be written in Lagrangian form as:

123



Chapter 4. Dual DO approximation of Navier Stokes equations with random boundary
conditions

⎧⎨
⎩

Du
Dt −νΔu+∇p = f

∇·u= 0
(4.50)

Observe, however, that in our case the motion is a random field. This implies that, depending

on the realization ω, the same particle will need a random interval of time to go from x to

x1. Because of that we define X (x, s;τ(ω)) the trajectory of the particle that for the realization

ω was in x at time s. Observe that now the time is function of the random variable as also

the period of the vortex shedding, defined T = 1
fs

. Our purpose is to find an explicit formula

relating T to ω and recover the Eulerian formulation of the motion expressed in terms of

the new (random) time variable τ, with respect to which, the period of motion is almost

deterministic. By using the empirical formula fs ∝ Um+σz(ω)
D , we define the new time variable

as:

(t ,ω)→ τ(t ,ω) := Um +σz(ω)

Um
t

(in the following we denote with α(ω)= Um+σz(ω)
Um

) and we denote with û the velocity field as a

function of τ (instead of t ): ⎧⎨
⎩û(x,τ(t ,ω))= ∂X

∂τ (x, s;τ(t ,ω))

X (x, s;τ(s,ω))= x(ω)

Observe that û= 1
α(ω)

∂X
∂t = 1

α(ω) u. Then we can rewrite the first equation in (4.50) with respect

to û and τ and we obtain:

α2 Dû

Dτ
−ανΔû+∇p = f

or equivalently
∂û

∂τ
+ û ·∇û− 1

α
νΔû+∇p̂ = f̂

In conclusion the problem becomes:⎧⎨
⎩

∂û
∂τ + û ·∇û− 1

ανΔû+∇p̂ = 0

∇· û= 0
(4.51)

with deterministic boundary conditions at the inflow:

û(x,ω,τ)= (4Ū x2(H −x2)/H 2, 0) x= (x1, x2) ∈ Γi n

Observe that now the diffusion coefficient is a random variable. We now apply the Dual DO

method to problem (4.51) and we recover the approximate solution of the original problem as

uS(x,ω, t )=α(ω)ûS(x,ω,τ(t ,ω)). The advantage is that û can be more easily approximated in

low rank format. Indeed the rate of decay of the singular values of û is significantly faster that

the one of u, see Figure 4.8 (Middle). Figure 4.8 (Right) shows instead the time evolution of the

eigenvalues of the covariance function of û. In Figure 4.9 (Left), the Dual DO approximation is
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Figure 4.9 – Left: H 1(D)⊗ L2(Ω) approximation error with time rescaling. The Dual DO
approximation error (red) is compared to the best approximation error (blue) as the number
of modes increases and at different time steps. Right: the Dual DO approximation error
without (red) and with rescaling (blue, denoted by DOT ) and the best approximation error, all
computed in norm H 1(D)⊗L2(Ω) and w.r.t. the reference solution in the original coordinates.

compared to the optimal one. The error is computed in H 1(D)⊗L2(Ω) norm for û, so before

recovering the approximate solution in the original coordinates. We see that good levels of

accuracy can be achieved with very few modes.

We conclude by analyzing the accuracy of the time rescaling technique, once the approximate

solution uS = αûS in the original coordinates is recovered. The performances of the time

rescaled Dual DO are compared to the Dual DO method applied directly to the original

problem (Section 6.2). In Figure 4.9 (Right) we compare the approximation error of the two

approaches: Dual DO approximation without or with time rescaling. Both the approximate

solutions are compared to the reference solution in the original coordinates and the error is

computed in H 1(D)⊗L2(Ω) norm. We see that remarkable advantages are obtained by the

second approach. Good levels of accuracy can be obtained with very few modes and the

error appears to be also smaller than the optimal approximation error of u (solution without

time rescaling) with the same number of modes. However, we remark that the error tends

to increases for a longer time interval, probably due to the fact that we use an empirical

formula to approximate the frequency of the solution, quantity that also is very sensitive to

computational errors. However, this problem seems to be overcome by increasing the number

of modes. For the example under consideration, 5 modes are enough to achieve very good

levels of accuracy which remains approximately constant in time for the whole computational

time interval.
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Figure 4.10 – Left: Computational mesh of the carotid artery, having 171123 cells and 34246
vertices. Right: The flow rate at the center of the inflow surface. The data correspond to
two heart beats, with an initial quadratic ramp to go smoothly from zero flow rate to the
physiological one.
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Figure 4.11 – Left: Time evolution of the maximum flow rate in the stochastic collocation
points. It corresponds to two heart beat (plus an initial smoothing to agree with the uniform
initial condition). Right: Inlet profile in the stochastic collocation points.
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Figure 4.12 – Left: Dual DO approximation error (blue) compared to the best approximation
error under boundary constraints. The error is computed in norm [H 1(D)]3⊗L2(Ω) with a
number of modes S = 5. Right: Dual DO approximation error of the mean in norm [H 1(D)]3

with a number of modes S = 5.
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Figure 4.13 – On the left the standard deviation of the solution at time t = 1.6 during the
second simulated heart beat. On the right we compare the mean of the Dual DO approximate
solution computed with 5 modes (right) (S = 5) to the mean of the reference solution at the
same time. We observe that the approximate solution effectively describes the dynamic and
allow to accurately quantify the variability of the solutions.

4.5.2 Hemodynamic application

We now consider the Dual DO method for a hemodynamic problem with real data. Here

the Dual DO method has been applied to simulate the blood flow in a realistic carotid artery

reconstructed from MRI data (MRI images from the Vascular-surgery and Radiology Divisions

at Fondazione IRCSS Ca’ Granda, Ospedale Maggiore Policlinico, Milan): in Figure 4.10 (left)

the mesh used in the numerical simulation, having 171123 cells and 34246 vertices; Figure 4.10

(right) shows the physiological pulse wave velocity imposed at the inlet, which corresponds to

two heart beats.

We apply a non-homogeneous Dirichlet boundary condition at the inflow, a homogeneous

Neumann condition at the outflow and non-slip conditions at the arterial walls. We assumed

random inflow conditions due to possible errors in the Doppler measurements of the axial

blood velocity at the inflow section. Specifically at the inlet we consider a parabolic velocity

profile perturbed by two uniform and independent random variables Z1 and Z2 in [−1,1] that

vary the maximum flow rate and slightly the shape:

u|Γi n
(x, t ,ω)=

(
0,0,( fb(t )+Z1(ω))(1−(

x1−x1
c

R
)2−(

x2−x2
c

R
)2)+Z2(ω)cos(

9(x1−x1
c )

2R
π)cos(

9(x2−x2
c )

2R
)
)

(4.52)

(x1
c , x2

c ) are the coordinates of the center of the inflow section, R is the radius and fb is the flow

rate in figure 4.10 (right). In Figure 4.11, the maximum flow rate (left) and the inlet profile

(right) for different values of Z1 and Z2 is shown. We refer to [108, 15] for the details about the

typical numerical and physiological parameters.

We consider the Dual DO formulation with the isolation of the mean describe in Section 4. Let
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Figure 4.14 – The first deterministic mode of the Dual DO approximate solution with S = 5 (on
the top) compared and the first eigen-mode of the best approximate solution (on the bottom)
at different time

us write the boundary conditions at the inflow as:

u(x, t ,ω) = ḡ(x, t )+g2(x, t ,ω) x ∈ Γi n

g2(x, t ,ω) =
(
0,0,(Z1(ω))(1− (

x1−x1
c

R )2− (
x2−x2

c
R )2)+Z2(ω)cos(

9(x1−x1
c )

2R π)cos(
9(x2−x2

c )
2R )

)

and let M
g2(t )
S,di v denote the manifold of all the divergence free S rank random fields that satisfy

the boundary condition g2(t) in ΓD for a fixed t ∈ [0, T ]. Hence the approximate solution is

sought in the form:

uS(x, t ,ω)= ūS(x, t )+
S−2∑
i=1

Ui (x, t )Yi (t ,ω)+
2∑

i=1
Ui (x, t )Zi (ω)︸ ︷︷ ︸

u∗S

where u∗S (·, t , ·)=uS − ūS belongs to M
g2(t )
S,di v and ūS is equal to ḡ on ΓD . The Dual DO reduced

system is as in (4.5.1). By using the same discretization technique discussed in Section

4.5.1, at each time step we solve S + 1 decoupled deterministic PDEs and S − 2 ODEs. All

implementations has been developed within the open source Finite Element library FEniCs,
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Figure 4.15 – The second deterministic mode of the Dual DO approximate solution with S = 5
(on the top) compared and the first eigen-mode of the best approximate solution (on the
bottom) at different time

programmed and parallelized in Python. We report here the results obtained for S = 5. In

Figure 4.12 (left) we compare the Dual DO and the best in norm [H 1(D)]3⊗L2(Ω) as time

evolves. We observe that the two errors are proportional and the Dual DO approximate

solution stays close to the best S rank approximation. The same conclusions can be drawn

by comparing the Dual DO approximation of the mean to the mean of the reference solution,

see Figure 4.12 (right) and Figure 4.13. Finally in Figure 4.14,4.15, 4.16 we compare the Dual

DO modes to the modes of the best approximation. We see that the Dual DO modes adapt

properly to describe the variability of the solution. In conclusion for this case, the Dual DO

method leads to very good results, in term of accuracy versus computational cost.

4.6 Conclusion

In this work, we have proposed a convenient strategy to strongly impose random Dirichlet

boundary conditions in the dynamically low-rank approximation of parabolic PDEs with

random parameters. We showed that the set of S rank random fields, constrained to satisfy

an approximation of the boundary datum of the exact solution, can be equipped with the
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Figure 4.16 – The third deterministic mode of the Dual DO approximate solution with S = 5 (on
the top) compared and the first eigen-mode of the best approximate solution (on the bottom)
at different time
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structure of a differential manifold, allowing for a parametrization of its tangent space in

terms of dynamical constraints on the stochastic coefficients. To do so we proposed a Dual

DO formulation in which the stochastic modes are kept orthonormal. Under the assumption

that the boundary datum g can be properly approximated by a linear combination gM of

M < S terms written in separable form, we fixed M stochastic modes in the approximate

solution equal to those in the decomposition of gM . This allowed us to identify the proper

boundary conditions for each (time dependent) deterministic mode and guarantees that the

boundary constraint is fulfilled at each time. We obtained a reduced system which consists

of a set of S coupled PDEs for the evolution of the deterministic modes, M of which with

non homogeneous boundary conditions, coupled with S−M ODEs for the evolution of the

stochastic modes. This resulted in an efficient dynamical low-rank approximation which

accurately takes into account the randomness arising from the boundary data at the price of a

slightly reduced flexibility in the evolution of the random modes. Furthermore, we observed

that Dual DO formulation is also very convenient to include the incompressibility constraint

when dealing with incompressible Navier-Stokes equations. Indeed we were able to effortlessly

imposed the solenoidal constraint in each deterministic mode, facilitated by the fact that in

the Dual DO formulation no numerical orthonormalization or dynamic constraint is required

in the deterministic modes. In conclusion, Navier Stokes equations with random parameters,

including random Dirichlet boundary conditions, has been reduced to S coupled deterministic

PDEs of Navier-Stokes type and a system of S−M stochastic ODEs.

We tested the potential and limitations of the proposed method on the classical benchmark

2D problem of an incompressible viscous fluid flowing around a cylindrical obstacle in a

channel at moderate Reynold numbers Re∈ [80,120], by adding some randomness in the

inflow velocity. The numerical results obtained show good performance of the method, at

least at the initial phase, but a loss of accuracy for long time integration. We observed that

this is intrinsically due to the fact that the flow patterns become more and more out of phase

one with respect to the others, as time evolves, requiring an increasing rank in time to keep

a prescribed accuracy level. We numerically showed that a simple time rescaling based on

an empirical linear relation between Reynolds number and shedding frequency considerably

improves the performance of the method and allows to “rephase” all solutions. Finally, we

highlighted the potentiality of the Dual DO method for biomedical applications, by simulating

blood flows in a realistic carotid artery reconstructed from MRI data, with random inflow

boundary conditions. The numerical results reported here, show that good level of accuracy

can be achieved with only a few modes.
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5 Symplectic Dynamical Low-Rank ap-
proximation

In this Chapter, we propose a dynamical low-rank strategy for the approximation of second

order wave equations with random parameters. The governing equation is rewritten in Hamil-

tonian form and the approximate solution is sought in the low dimensional manifold of all

complex-valued random fields with rank equal to S. Recast in the real setting, the approximate

solution is expanded over a set of 2S dynamical symplectic-orthogonal deterministic modes

and satisfies the symplectic projection of the governing Hamiltonian system into the tangent

space of the approximation manifold along the approximate trajectory. We recover a reduced

order system for the evolution of both the stochastic coefficients and the deterministic basis.

That guarantees the conservation of the average energy over the flow.

Introduction

Second order wave equations with random parameters, such as acoustic or elastic wave equa-

tions with uncertain random speed and/or source terms, appear in a large number of physical

and engineering problems. Realistic applications are found for instance in seismology, where

the propagation of the seismic waves strongly depends on source location, i.e. the epicenter of

an earthquake, and density or elastic modulus of the medium. These parameters are inevitably

affected by uncertainty.

In the context of low-rank approximation of wave equations, and more generally hyperbolic

equations, a critical issue is how to construct reduced order systems which preserve the stabil-

ity and the geometrical properties of the original problem. It has been reported in literature

[109], that a POD-based reduced system may indeed become unstable even if the original

hyperbolic systems was not. This calls for the development of “novel” reduced order tech-

niques, built ad hoc to deal with hyperbolic problems. A possible strategy consists in designing

low-rank techniques that preserve the underlying geometric structure of the full order system,

which has generally a fundamental impact on the dynamic of the solutions. This leads to

reduced order systems which enjoy the same conservation properties as the original full order

system, and are better suited for long time integration and stability preservation. This direc-

tion has been initially investigated in [73] where the authors derive reduced order systems
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which preserve the Lagrangian structure of the full order system. The same strategy is used

in [24] and combined with the Gappy POD method to further reduce the computational cost.

In the context of parametric Hamiltonian systems, recent works [107, 86] have proposed a

reduced order method with symplectic bases, designed in analogy to the proper orthogonal de-

composition, in which the standard Galerkin projection is replaced by a symplectic projection

and the solution is approximated in a low dimensional symplectic space. The reduced order

system consists then in a Hamiltonian system of small size which preserves the symplectic

structure of the full order system, is energy conservative and preserve stability.

In this work, we propose a dynamical low-rank technique for the approximation of second

order wave equations with random parameters. The aim is to exploit the flexibility of the DLR

approximation, which, thanks to the use of dynamic modes, is well suited to approximate

wave propagations. In this context, the challenge is to find a correct characterization of the

manifold and parametrization of its tangent space at each point. Moreover, being the govern-

ing equation hyperbolic, special care is needed to preserve the stability of the reduced system.

Our strategy, which we name Symplectic Dynamical Low Rank (Symplectic DO) method, is

closely related to the Multi-Configuration Time-Dependent Hartree (MCTDH) method, used

in [67, 39] for the approximation of deterministic Schrödinger equations and is based on re-

casting the governing equation in Hamiltonian form. In particular, the Symplectic DO method

is designed as a combination of:

• the Dynamically Orthogonal (DO) method, introduced in [116, 117] for the approxima-

tion of parabolic equations with random coefficients;

• the symplectic reduced basis technique proposed in [107] in the context of parametric

Hamiltonian systems.

The result is a reduced order method with symplectic dynamical deterministic bases which

enjoys the conservation of energy, as the original problem. The approximate solution is ex-

panded over a set of 2S (time dependent) symplectic-orthogonal deterministic modes, with

(time dependent) stochastic coefficients and satisfies the symplectic projection of the Hamil-

tonian system into the tangent space to the approximation manifold along the approximate

trajectory. We show that recast in the complex setting, this coincides with looking for a dynam-

ical low-rank approximation of the governing complex-valued Hamiltonian system, into the

low dimensional manifold of all the complex-valued random fields with S rank. Thanks to

this analogy, we are able to obtain a proper parametrization of the tangent space, in terms of

orthogonal constraints on the dynamics of the deterministic modes, and to derive the reduced

dynamical system. The latter consists of a set of equations for the constrained dynamics of

the deterministic modes, coupled with a reduced order Hamiltonian system for the evolution

of the stochastic coefficients. The Symplectic DO shares with the symplectic order reduction

the use of symplectic deterministic bases, and, as the “classic” DO approximation, allows both

the stochastic and the deterministic modes to evolve in time.

134



5.1. Notation and problem setting

5.1 Notation and problem setting

Let F stand for R or C, and D be an open bounded subset of Rd , 1 ≤ d ≤ 3, with a smooth

boundary ∂D . L2(D,F) (respectively H 1(D,F)) denotes the Hilbert space of square integrable

functions (respectively with square square integrable partial derivatives) on D with values in F.

When F is omitted we always refer to R. We denote by 〈·, ·〉 the real inner product in L2(D,R),

and with 〈·, ·〉h the Hermitian inner product in L2(D,C), which is defined as:

〈û, v̂〉h := 〈uq , v q〉+〈up , v p〉+i (〈up , v q〉−〈uq , v p〉) ∀û =uq+i up , v̂ = v q+i v p ∈ L2(D,C),

(5.1)

Hereafter, complex valued functions are denoted with the overhat symbol (û), with real and

complex components labeled with the apex q and p respectively (û =uq + i up ).

We define the Stiefel manifold St(S, H 1(D,F)), as the set of L2-orthonormal frames of S func-

tions in H 1(D,F), i.e.:

St(S, H 1(D,F))= {
V= (V1, ...,VS) : Vi ∈H 1(D,F) and 〈Vi ,Vj 〉∗ = δi j ∀i , j = 1, ...,S

}
(5.2)

where 〈Vi ,Vj 〉∗ is the real L2 product if F=R and the hermitian product if F=C. We denote by

G (S, H 1(D,F)) the Grassmann manifold of dimension S that consists of all the S−dimensional

linear subspaces of H 1(D,F). The definition of Stiefel and Grassmann manifold can be gener-

alized to vector-valued functions in [H 1(D,F)]d .

Let (Ω,A ,P ) be a complete probability space, where Ω is the set of outcomes, A a σ-algebra

and P : A → [0,1] a probability measure. Let v : Ω→ F be an integrable random variable; we

define the mean of v as:

ȳ = E[y]=
∫
Ω

y(ω)dP (ω).

L2(Ω,F) (respectively L2
0(Ω,F)) denotes the Hilbert space of square integrable random variables

(respectively with zero mean), that is:

L2(Ω,F) := {
y : Ω→ F : E[y2]=

∫
Ω

(y(ω))2dP (ω)<∞}
We also recall that L2(D×Ω,F) denotes the space of all square integrable random fields, i.e.:

L2(D×Ω,F) :=
{

u : D×Ω→ F s.t. E
[‖u‖2

L2(D,F)

]<∞}
.

Observe that L2(D×Ω,F) is isometrically isomorphic to the tensor product space L2(D,F)⊗
L2(Ω,F).

5.1.1 Wave equation with random parameters

We consider the following initial boundary value problem: find a random function u : D̄ ×
[0,T ]×Ω→R, such that P-almost everywhere in Ω (almost surely) the following holds: * * perche non non lin
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ü(x, t ,ω)=∇·
(
c(x,ω)∇u(x, t ,ω)

)
+ f (u(x, t ,ω),ω) x ∈D, t ∈ (0,T ], ω ∈Ω,

u(x,0,ω)= p0(x,ω) x ∈D, ω ∈Ω,

u̇(x,0,ω)= q0(x,ω) x ∈D, ω ∈Ω,

u(σ, t ,ω)= 0 σ ∈ ∂D, t ∈ (0,T ], ω ∈Ω,

(5.3)

For convenience we restrict in this work to homogeneous Dirichlet boundary conditions,

although the development hereafter generalizes easily to other types of boundary conditions,

either homogeneous or non-homogeneous with deterministic forcing terms. The case of

non-homogeneous stochastic boundary conditions can be treated as in Chapter 4 (or [95])

but will not be detailed in this work. For the well-posedness of problem (5.3), we assume that

the random wave speed c is bounded and uniformly coercive [118, 94]:

0< cmi n ≤ c(x,ω)≤ cmax <∞ ∀x ∈D, a.s.,

and the initial data satisfy: q0 ∈ L2(Ω, H 1
0 (D)), p0 ∈ L2(Ω,L2(D)). Here the randomness may

affect the wave speed c as well as the initial conditions p0, q0 and the (possibly non linear)

source term f . Our goal is to find a dynamical low rank approximation of the solution of

problem (5.3).

5.2 DO approximation

We recall that the Dynamically Orthogonal method (DO) [116, 117, 96] is a reduced basis tech-

nique used for the approximation of parabolic equations with random parameters. Consider

the following general real valued problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u̇(x, t ,ω)=L (u(x, t ,ω), t ,ω), x ∈D, t ∈ (0,T ], ω ∈Ω,

u(x,0,ω)=u0(x,ω) x ∈D, ω ∈Ω,

B(u(σ, t ,ω),ω)= g (σ, t ) σ ∈D, t ∈ (0,T ], ω ∈Ω,

(5.4)

where L is a linear or non-linear differential operator, x ∈D is the spatial coordinate and t is

the time variable in [0,T ]. Here ω ∈Ω represents a random elementary event which may affect

the operator L (as e.g. a coefficient or a forcing term) or the initial conditions. Let us assume

that the solution u(·, t ,ω) to problem (5.4) is in a certain real Hilbert space H ⊂ L2(D) for

(almost) all t ∈ [0,T ] and ω ∈Ω and that L (u, t ,ω) ∈H ′ for all u ∈H and almost everywhere

in [0,T ] and Ω. Hereafter, whenever no confusion arises, we may write simply L (u) instead of

L (u, t ,ω). The approximation manifold consists of the collection of all S rank random fields,

i.e functions that can be exactly expressed as linear combination of S linearly independent

deterministic modes combined with S linearly independent stochastic modes.
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5.2. DO approximation

Definition 5.2.1. We define MS ⊂H ⊗L2(Ω) the manifold of all S rank random fields, i.e.:

MS =
{
uS ∈H ⊗L2(Ω) : uS =∑S

i=1 Ui Yi | span(U1, ...,US) ∈G (S,H ),

span(Y1, ...,YS) ∈G (S,L2(Ω))
} (5.5)

The DO approximate solution is sought in MS and satisfies the following variational principle:

DLR Variational Principle. At each t ∈ [0,T ], find uS(t ) ∈MS such that: uS(0)= u0,S and

E [〈u̇S(·, t , ·) −L (uS(·, t , ·)), v〉]= 0, ∀v ∈TuS (t )MS , t ∈ (0,T ] (5.6)

where TuS (t )MS is the tangent space to MS.

The variational principle (5.6) enforces the approximate solution uS to satisfy the govern-

ing equation projected into the tangent to the approximation manifold along the solution

trajectory. The initial datum u0,S is a suitable S rank approximation of u0 by e.g. a trun-

cated Karhunen-Loève expansion (best S rank approximation in the L2(D)⊗L2(Ω) norm). In

quantum mechanic this is known as Dirac-Frenkel time-dependent variational principle (see

e.g. [80]) and leads to the MCTDH method [39, 67, 7] for the approximation of deterministic

time-dependent Schrödinger equations.

There exist several possible parameterizations of a S rank random field. One option consists

in assuming the deterministic modes orthonormal:

uS(x,ω)=
S∑

i=1
Yi (ω)Ui (x)=UY (5.7)

where:

• U ∈ St(S,H ) is a row vector of L2−orthonormal deterministic functions,

• Y is a column vector of S random variables with full rank second moment matrix C=
E[YYT ].

In the following we denote by B(S,L2(Ω)) the set of all S frames of linearly independent random

variables in L2(Ω), i.e.:

B(S,L2(Ω))= {Y= (Y1, ...,YS) ∈ [L2(Ω)]S s.t. rank(E[YYT ])= S}. (5.8)

One easily sees that the representation (5.7) is not unique. For any orthogonal matrix O ∈
O (S) ⊂ RS×S one can always find a new couple of bases W = UO ∈ St(S,H ) and Z = OT Y ∈
B(S,L2(Ω)) which represents the same S rank random field: uS =UY=WZ. The uniqueness of

the decomposition (5.7), in terms of U ∈ St(S,H ) and Y ∈ B(S,L2(Ω)), is recovered by imposing

the following constraint on the dynamics of U [66]:

〈U̇i (t ),U j (t )〉 = 0 i , j = 1, ...,S (5.9)
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This condition represents a quotientation of St(S,H ) with respect to the group of rotations

O (S) and leads to the diffeomorphic identification of MS with
(
St(S,H )/O (S)

)×B(S,L2(Ω)).

In particular (5.9) implies that the tangent bundle to
(
St(S,H )/O (S)

)
is parametrized in

terms of the tangent vectors of St(S,H ) which are orthogonal to the equivalent classes of the

quotientification. This procedure is based on classical results of fiber bundle theory. We refer

interested readers to [74, 1, 64] for further details.

By means of (5.9), the tangent space to MS at uS =UY is parametrized as:

TuS MS =
{
δu =

S∑
i=1

(
δYiUi +YiδUi

) ∈H ⊗L2(Ω) : 〈Ui ,δU j 〉 = 0, ∀i , j = 1, ...,S
}

(5.10)

Then (5.6) leads to the DO reduced system [116, 117]: find uS(t )=U(t )Y(t ), t ∈ (0,T ] such that⎧⎪⎨
⎪⎩

S∑
i=1

U̇i Ci j =P ⊥
U

(
E[L (uS)Y j ]

)
∀ j = 1, ...,S

Ẏ j = 〈L (uS),U j 〉 ∀ j = 1, ...,S
(5.11)

where C = E[YYT ] ∈ RS×S and P ⊥
U is the projection operator from the space L2(D) to the

orthogonal complement of the S dimensional subspace U = span{U1, · · ·,US}, i.e. P ⊥
U (v)= v−

PU(v)= v−
S∑

i=1
〈v,Ui 〉Ui , ∀v ∈ L2(D). The initial condition is given by the truncated Karhunen-

Loève expansion (the best S rank approximation in norm L2) and the DO approximate solution

is determined by solving (5.11).

The peculiarity of the DO method is that both the spatial and stochastic bases are computed

on the fly and are free to evolve in time, thus adjusting at each time to the current structure of

the random solution.

5.3 Symplectic Manifolds

Symplectic manifolds are the natural setting for Hamiltonians systems, due to the intrinsic

symplectic structure of the canonical phase-space coordinates. We review in this section

the main definitions and results concerning symplectic manifolds. For a comprehensive

treatment see e.g. [88, 91].

Definition 5.3.1. A symplectic manifold is a pair (V ,ϑ) consisting of a differential manifold V

and a 2-form:
ϑu : TuV ×TuV →R

(y, z) →ϑu(y, z)

for any u ∈ V , which is:

• closed, i.e dϑ= 0 where d is the exterior derivative.

• non-degenerate, i.e. for any u ∈ V and y ∈TuV , ϑu(y, z)= 0 for all z ∈TuV if and only if

y = 0.
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The form ϑ is called symplectic form.

If V is a vector space, the requirement dϑ= 0 is automatically satisfied since the ϑu is constant

in u and Definition 5.3.1 is simplified as follows:

Definition 5.3.2. Let V be a vector space and ϑ a bilinear map: ϑ : V ×V →R such that:

• ϑ is not degenerate, i.e. ϑ(y, z)= 0 for all z ∈ V if and only if y = 0,

• ϑ is antisymmetric, i.e. ϑ(y, z)=−ϑ(z, y) for any y, z ∈ V .

The pair (V ,ϑ) is called symplectic vector space.

Definition 5.3.3. Let (V ,ϑ) be a symplectic vector space. A smooth submanifold W ⊂ V is said

symplectic if the restriction of ϑ to W is not-degenerate.

Definition 5.3.4. Let (V ,ϑ) be a symplectic vector space and U a subspace of V . The symplectic

complement of U is defined as:

U⊥,s ym = {
z ∈ V such that ϑ(z, y)= 0, ∀y ∈U

}
(5.12)

Unlike orthogonal complements, U⊥,s ym ∩U is not necessary trivial. We start by recalling

some properties of finite dimensional symplectic manifolds [77]. Afterwards, we look at the

infinite dimensional case [129, 88].

Proposition 5.3.1. All finite dimension symplectic vector spaces are even dimensional.

This can be verified by observing that real skew-symplectic matrices of odd dimension must

have a non trivial kernel. Since a symplectic form makes the tangent spaces into symplectic

vector spaces, Proposition 5.3.1 actually applies to all finite dimension symplectic manifolds.

Without further specification, in the following V2N will always denote a finite dimensional

manifold of dimension 2N .

Theorem 5.3.1 (Darboux’ theorem). Let (V2N ,ϑ) be a symplectic manifold. For any u ∈ V2N

there exists a neighborhood Bu ⊆ V2N of u and a local coordinate chart in which ϑ is constant.

Definition 5.3.5. Let (V2N ,ϑ) be a symplectic vector space. A basis (e1, ...,eN , f1, ..., fN ) of V2N is

said symplectic if:

• ϑ(ei , f j )= δi j =−ϑ(f j ,ei ), ∀i , j = 1, ..., N ,

• ϑ(ei ,e j )= 0=ϑ(fi , f j ), ∀i , j = 1, ..., N .
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Darboux’ theorem implies that, for any u in the symplectic manifold (V2N ,ϑ) there is a neigh-

borhood Bu ⊆ V2N and a symplectic basis with respect to which the symplectic form is written

as ϑu(w,v) = wT J2N v for all w,v ∈Bu (column vectors), where J2N ∈ R2N×2N is the Poisson

matrix, i.e.

J2N =
(

0 IN

−IN 0

)

and IN is the identity matrix in RN×N . It is easy to verify that J2N JT
2N = JT

2N J2N = I2N and

J2N J2N = JT
2N JT

2N =−I2N . When V2N is a vector space, ϑu is constant in u and Bu corresponds

to the whole space, namely ϑ(w,v) =wT J2N v for all v,w ∈ V2N . If this symplectic basis coin-

cides with the canonical basis of R2N we call ϑ canonical symplectic form and we denote

by (V2N ,J2N ) the corresponding symplectic manifold. A prototypical example of symplectic

vector space arises from the identification of the complex space CN with the real space R2N .

Let us write elements of CN as N -tuples of complex numbers û= (û1, ..., ûN ), for each term

ûi = uq
i + i up

i , the apex q and p denoting respectively the real and the complex components.

Let CN be equipped with the usual Hermitian inner product:

〈û, v̂〉h =
S∑

i=1
ûi v̂∗i =

S∑
i=1

(uq
i v q

i +up
i v p

i )+ i
S∑

i=1
(v q

i up
i −uq

i v p
i ),

for any û, v̂ ∈ CN . The realification, namely the identification of CN with R2N , consists

in associating to any û ∈ CN the elements u = (uq ,up ) ∈ R2N , where uq = (uq
1 , ...,uq

N ) and

up = (up
1 , ...,up

N ). In the following we always use the overhat to distinguish complex elements

(û) and corresponding real representations (u). One can easily see that the canonical sym-

plectic form of R2N coincides with the imaginary part of the Hermitian product, with changed

sign: uT J2N v=−ℑ〈û, v̂〉h , for all û, v̂ ∈CN .

We call symplectic matrix any A ∈ R2N×2N such that AT J2N A = J2N . The collection of all

symplectic matrices of R2N×2N forms a group, called symplectic group.

Definition 5.3.6. The symplectic group, denoted by Sp(2N ,R2N ), is the subset of R2N×2N de-

fined as:

Sp(2N ,R2N ) := {A ∈R2N×2N : AT J2N A= J2N }.

The unitary group is the subgroup of Sp(2N ,R2N ) of all unitary matrices

Definition 5.3.7. The unitary group, denoted by U(N ,R2N ), is the subset of R2N×2N defined as:

U(N ,R2N ) := {A ∈ Sp(2N ,R2N ) : AT A=AAT = I2N }.

In other words, U(N ,R2N )= Sp(2N ,R2N )∩O (2N ,R2N ), where O (2N ,R2N ) denotes the group

of orthogonal matrices in R2N×2N . Definitions 5.3.6 and 5.3.7 can be generalized to rectangular

matrices A ∈R2N×2S for any 0< S <N :
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Definition 5.3.8. We denote by Sp(2S,R2N ) the sub-manifold of R2N×2S defined as:

Sp(2S,R2N ) := {A ∈R2N×2S : AT J2N A= J2S}

and by U(S,R2N ), the submanifold of R2N×2S defined as:

U(S,R2N ) := {A ∈ Sp(2S,R2N ) : AT A= I2S}.

We call symplectic (respectively unitary) matrix any A ∈ Sp(2S,R2N ) (respectively A ∈U(S,R2N )).

Definition 5.3.9. A linear map φ : R2S →R2N defined as:

φ : R2S →R2N

x �→φ(x) :=Ax
(5.13)

is said symplectic if it preserves the canonical form, i.e

xT J2S x=φ(x)T J2Nφ(x)= (Ax)T J2N Ax ∀x ∈R2S

.

Observe that φ in (5.13) is symplectic if and only if A ∈ Sp(2S,R2N ).

In the same way as R2N admits a (canonical) symplectic structure associated to the Euclidean

product, all inner product vector spaces can be equipped with the symplectic form associated

to their inner product, called again canonical form. In particular, consider the (possibly

infinite dimensional) Hilbert space H and the product space H = [H ]2, for which we use

the notation u= (uq ,up ) to denote the first and second component of any u ∈H. Let H be

equipped with the usual inner product: 〈u,v〉H := 〈uq , v q〉H +〈up , v p〉H , for any u,v in H;

we denote by J2 :H→H the following linear operator:

J2 : H →H
u �→J2(u) :=

[
0 Id

−Id 0

][
uq

up

]
=
[

up

−uq

]

where Id is the identity operator in H . Then, the canonical form of H is defined as

ϑ : H×H → R

(u,v) �→ 〈u,J2(v)〉H = 〈uq , v p〉H −〈up , v q〉H

The form ϑ is antisymmetric,being J2 ◦J2(u)=−u, for all u ∈H, and non degenerate since

ϑ(J2(u),u)= 〈J2(u),J2(u)〉H = ‖u‖2
H which is non zero for any 0 !=u ∈H. Hence (H,ϑ) is a

symplectic vector space. We generally write (V ,J2) to refer to a symplectic manifold V ⊂H,

when equipped with the canonical form of H.

Proposition 5.3.2. Let H C be a complex Hilbert space and H ×H its realification. The
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Hermitian product of H C, defined as:

〈û, v̂〉H C := 〈uq , v q〉H+〈up , v p〉H+i (〈up , v q〉H−〈v p ,uq〉H ) ∀û =uq+i up , v̂ = v q+i v p ∈H C,

satisfies:

〈(uq ,up ),J2(v q , v p )〉H×H =−ℑ(〈û, v̂〉H C)

for any u= (uq ,up ),v= (v q , v p ) ∈H ×H and û = uq + i up , v̂ = v q + i v p ∈H C.

This construction applies straightforwardly to H= [L2(D)]2 equipped with the [L2(D)]2 inner

product and to H= [H 1(D)]2 equipped either with the L2(D)×L2(D) or the [H 1(D)]2 inner

product. The identification in complex setting leads to H C = L2(D,C) and H C =H 1(D,C) for

H respectively equal to H= [L2(D)]2 or H= [H 1(D)]2.

In view of the Symplectic Dynamical Low Rank approximation of wave equations we need

to recast problem (5.3) into a Hamiltonian system, in terms of the phase-space coordinates

(u, u̇) ∈H 1(D)×L2(D). For this aim, we are interested to equip H=H 1(D)×L2(D) with the

symplectic form associated to the L2(D)×L2(D) inner product and verify that what we obtain

is still a symplectic space. The issue is due to the fact that now H is a product of two different

Hilbert spaces. With a little abuse of notation, we use the same symbol J2 to denote the

restriction of J2 to H 1(D)×L2(D), i.e. the linear operator:

J2 : H 1(D)×L2(D) → L2(D)×H 1(D)

u= (uq ,up )T �→ J2(u) :=
[

0 Id

−Id 0

][
uq

up

]
=
[

up

−uq

]
(5.14)

where Id is the identity operator defined in L2(D) or restricted to H 1(D). Then the bilinear

form associated to J2 is clearly antisymmetric and non degenerate in H 1(D)×L2(D), thanks

to the fact that H 1(D) is dense in L2(D). This allows us to conclude that H 1(D)×L2(D) is a

symplectic (pre-Hilbert) vector space when endowed with the canonical form associated to

the [L2(D)]2 inner product. Conversely, in this case we loose the identification in complex

setting, namely Proposition 5.3.2 does not apply to H 1(D)×L2(D) since we are dealing with the

cartesian product of two different spaces. We denote by ϑD the symplectic form of H 1(D)×
L2(D) associated to the L2(D)×L2(D) inner product, i.e:

ϑD (u,v)= 〈u,J2v〉[L2(D)]2 , u,v ∈H 1(D)×L2(D). (5.15)

Hereafter, when confusion does not arise, we omit the subscript and we write< ·, · > to indicate

the L2(D)×L2(D)-product in H 1(D)×L2(D) (or any other Sobolev space H⊂ [L2(D)]2). The

same considerations apply to
(
H 1(D)×L2(D)

)⊗L2(Ω) and [H 1(D)]S × [L2(D)]S , for any S > 0.

In analogy with (5.2), one can define the Stiefel manifold Sp(2S, H 1(D)×L2(D)) of all possible

2S dimensional symplectic bases in H 1(D)×L2(D) with respect to the symplectic form ϑD .

Definition 5.3.10. We denote with Sp(2S, H 1(D)×L2(D)) the Stiefel manifold of all S dimen-
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sional symplectic bases of (H 1(D)×L2(D),ϑD ), i.e.:

Sp(2S, H 1(D)×L2(D)) := {
U = (U1, ...,U2S) ∈ [H 1(D)×L2(D)]2S , such that

ϑD (Ui ,U j )= (J2S)i j , ∀i , j = 1, ...,2S
}
.

(5.16)

We denote by U s ym ⊂H 1(D)×L2(D) the subspace spanned by U, for any U ∈ Sp(2S, H 1(D)×
L2(D)), and we call U a symplectic basis of U s ym . Note that the symplectic form ϑD , when

restricted to U s ym , can be identified with the canonical form of RS , that is for any R, G ∈RS

and u = UR, v = UG ∈U s ym : ϑD (u,v) =∑2S
i , j=1 Ri 〈Ui ,J2U j 〉G j = RT J2S G. This implies that

ϑD is non degenerate in U s ym and U s ym , is a symplectic submanifold of H 1(D)×L2(D). We

define in Sp(2S, H 1(D)×L2(D)) the following equivalence relation:

W∼U ⇐⇒ W s ym =U s ym

meaning that two equivalent elements span the same symplectic subspace.

Lemma 5.3.1. Two symplectic bases W,U ∈ Sp(2S, H 1(D)×L2(D)) are equivalent if and only if

there exists a symplectic matrix B ∈ Sp(2S,R2S) such that W=UB.

Proof. The sufficient condition is obvious: BTJ2S B= J2S implies 〈(W)i , (J2W) j 〉L2(D) = (J2S)i j .

On the hand, if U ∈ Sp(2S, H 1(D)×L2(D)), then U1, ...,U2S are linearly independent. Hence,

if W,U ∈ Sp(2S, H 1(D)×L2(D)) span the same subspace, there necessarily exists a (unique)

full rank matrix B ∈R2S×2S such that W=UB. Then 〈(W)i , (J2W) j 〉L2(D) = (J2S)i j implies that

B belongs to Sp(2S,R2S).

5.4 Hamiltonian formulation of wave equations with random pa-

rameters

From a physics point of view, a Hamiltonian, denoted in the following by H , is a smooth

function which expresses the total energy of a dynamical system in terms of the position and

the momentum of its particles. In more abstract setting we can state the following [87]:

Definition 5.4.1. Let (V ,ϑ) be a symplectic manifold. A vector field XH on V is called Hamilto-

nian if there is a function H : V →R such that:

ϑu(XH (u),v)= dH(u) ·v

where dH (u) ·v is the directional derivative of H along v. Hamilton’s equations are the evolution

equations:

u̇= XH (u) (5.17)

If (V2N ,ϑ) is a symplectic vector space and (q,p)= (q1, ..., qN , p1, ..., pN ) denote the canonical
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Chapter 5. Symplectic Dynamical Low-Rank approximation

coordinates with respect to which ϑ has matrix J2N , the Hamiltonian equations become:

u̇= J2N∇H(u).

Let φt denote the flow of the Hamiltonian XH , that is φt (u0) is the solution to (5.17) with initial

condition u0 ∈ V , we have that φt conserves the energy of H .

Proposition 5.4.1. Let φt be the flow of XH on the symplectic manifold (V ,ϑ). Then H ◦φt =H,

where defined.

Proof.
d

d t

(
H ◦φt (u)

) = dH(φt (u)) ·XH (φt (u))

=ϑφt (u)(XH (φt (u)), XH (φt (u)))= 0

The flow φt of a Hamiltonian vector field consists of symplectic transformations, namely φt

(whenever it is defined) preserves the symplectic form ϑ. Formally, for all u ∈ V and v,z ∈TuV ,

we have:

ϑu(v,z)=ϑφt (u)(Du[φt ](v),Du[φt ](z)) (5.18)

where Du[φt ] is the differential of φt at u. It follows from Poincaré lemma [88, 56] that

the flow φt of a vector field X is symplectic if and only if it is locally Hamiltonian, that is

there locally exists a Hamiltonian function H such that ϑu(X (u),v) = dH(u) · v. The link

between symplecticity and energy preservation has been widely studied and exploited to

derive numerical time discretization schemes that share the same symplectic structure of

the original system, in order to preserve the geometric properties. The same idea can be

used to formulate reduced order methods which preserve the symplectic structure underlying

the original full order Hamiltonian system, thus being energy conservative and preserving

stability.

We start by looking for a suitable Hamiltonian formulation for wave equations with random

parameters. As shown in literature [118, 94], problem (5.3) admits a unique solution u ∈
L∞([0,T ], H 1

0 (D)⊗L2(Ω)) with time derivative u̇ ∈ L∞([0,T ],L2(D)⊗L2(Ω)), provided that the

random wave speed c is bounded and uniformly coercive and the initial data (q0, p0) belong

to
(
H 1

0 (D)⊗L2(Ω)
)×(

L2(D)⊗L2(Ω)
)
. Let us introduce the phase space variables (p, q)= (u, u̇),

then problem (5.3) can be rewritten into a first order system in H 1(D)×L2(D) for almost all
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ω ∈Ω:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇(x, t ,ω)= p(x, t ,ω) x ∈D, t ∈ (0,T ], ω ∈Ω,

ṗ(x, t ,ω)=∇· (c(x,ω)∇q(x, t ,ω)
)− f (q(x, t ,ω),ω) x ∈D, t ∈ (0,T ], ω ∈Ω,

q(x,0,ω)= q0(x,ω) x ∈D, ω ∈Ω,

p(x,0,ω)= p0(x,ω) x ∈D, ω ∈Ω,

q(x, t ,ω)= 0 x ∈ ∂D, t ∈ (0,T ], ω ∈Ω,

(5.19)

analogously written in matrix form as:(
q̇

ṗ

)
=J2

(
−∇· (c∇·q)+ f (q)

p

)

Problem (5.19) can be interpreted as a Hamiltonian system in the symplectic space (H 1
0 (D)×

L2(D),ϑD ) with symplectic form ϑD defined in (5.15). In this case, the Hamiltonian energy

associated to (5.19) is defined pointwise in ω as:

Hω(q, p)= 1

2

∫
D

(
|p|2+c(ω)|∇q|2+F (q)

)
, F ′(q)= f (q).

Thus, by denoting with ∇q Hω, ∇p Hω the functional derivatives of Hω with respect to q and p

respectively, i.e.:

〈∇q Hω,δq〉 =∫
D c∇q∇δq+∫

D f (q)δq and 〈∇p Hω,δp〉 =∫
D pδp.

=∫
D

(−∇· (c∇·q)+ f (q)
)
δq,

for any δq ∈ H 1
0 (D), δp ∈ L2(D), where the term

∫
D −∇ · (c∇ · q)δq should be interpreted in

distributional sense, equation (5.3) is recast into the following canonical Hamiltonian system,

written with respect to u= (q, p):⎧⎨
⎩u̇(x, t ,ω)=J2∇Hω

(
u(x, t ,ω),ω

)
,

u(x,0,ω)= (q0(x,ω), p0(x,ω))T
(5.20)

for almost every x ∈D and ω ∈Ω. Observe that both the flow of the solutions and the Hamilto-

nian depend on the random input, and that the conservation of energy applies point-wise

in the parameter space, which means that, for any realization ω, the flow φt of (5.20) with

initial conditions evaluated in ω, conserves the Hamiltonian evaluated in ω. This immediately

implies that the expected value, and generally any finite moment of Hω, are constant along

the flow of the solutions.

Alternatively, in a setting more suited to our context, the conservation of energy can be derived

directly in
(
H 1(D)⊗L2(Ω)

)× (
L2(D)⊗L2(Ω)

) = (
H 1(D)×L2(D)

)⊗L2(Ω) equipped with the
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following symplectic form:

ϑ(u,v) = E[〈u,J2v〉[L2(D)]2 ],

= E[〈uq , v p〉L2(D)]−E[〈up , v q〉L2(D)]
(5.21)

for any u = (uq ,up ), v = (v q , v p ) ∈ (
H 1(D)⊗L2(Ω)

)× (
L2(D)⊗L2(Ω)

)
, with uq , v q ∈ H 1(D)⊗

L2(Ω), up , v p ∈ L2(D)⊗L2(Ω). The pair (
(
H 1(D)⊗L2(Ω)

)×(L2(D)⊗L2(Ω)
)
) is the symplectic space

that will be used in Section 5.6 to derive the Symplectic Dynamical Low Rank method. In this

setting the Hamiltonian energy associated to (5.19) is defined as:

H(q, p)= 1

2
E
[∫

D

(
|p|2+c(ω)|∇q|2+F (q)

)]
, F ′(q)= f (q).

In particular, if XH(ω) denotes the Hamiltonian vector field associated to (5.20), for u suffi-

ciently smooth, system (5.20) can be rewritten as u̇= XH(ω)(u) and the conservation of mean

energy along the flow of the solutions can be rederived in terms of the symplectic form (5.21)

as:

d
d t H(u(t )) = 〈∇H(u(t )), u̇(t )〉

= 〈∇H(u(t )), XH(ω)(u(t ))〉
=−ϑ(XH(ω)(u(t )), XH(ω)(u(t ))

)= 0

(5.22)

thanks to the antisymmetry of ϑ.

5.5 Symplectic Order Reduction

We recall here the symplectic order reduction for parametric Hamiltonian systems proposed

in [107]. This method is designed in analogy to the proper orthogonal decomposition where

the standard inner product is replaced by the symplectic form and leads to approximate

solutions which belong to a low dimensional symplectic space. This method has the desirable

property of preserving the symplectic structure of the full order system, which allows deriving

conservative schemes.

Definition 5.5.1. Let U ∈ Sp(2S, H 1(D)×L2(D)), the symplectic inverse of U, denoted by U+, is

the 2S vector function written as:

U+ :=J T
2 UJ2S ∈ Sp(2S,L2(D)×H 1(D)). (5.23)

If we write U component-wise, with Ui = (U q
i ,U p

i )T ∈H 1(D)×L2(D):

U =
[

U q
1 ... U q

S U q
S+1 ... U q

2S

U p
1 ... U p

S U p
S+1 ... U p

2S

]
QI ,S =U q

1 , ...,U q
S , QI I ,S =U q

S+1, ...,U q
2S ,

=
[

QI ,S QI I ,S

PI ,S PI I ,S

]
, PI ,S =U p

1 , ...,U p
S , PI I ,S =U p

S+1, ...,U p
2S ,
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5.5. Symplectic Order Reduction

then U+ is explicitly given by:

U+ =
[

PI I ,S −PI ,S

−QI I ,S QI ,S

]

It is straightforward to verify that 〈Ui ,U+
j 〉 = δi j , ∀i , j = 1, ...,2S. The notion of symplectic

inverse is used to define the symplectic Galerkin projection. Precisely:

Definition 5.5.2. Let v = (v q , v p )T be a square integrable random field in
(
H 1(D)×L2(D)

)⊗
L2(Ω) and U ∈ Sp(2S, H 1(D)×L2(D)) a symplectic basis, spanning U s ym. The symplectic projection

of v into U s ym ⊗L2(Ω) is defined as:

vS(x,ω)=P
s ym
U [v]=PU+[v]=U(x)Y(ω) (5.24)

where

• U+ ∈ Sp(2S,L2(D)×H 1(D)) is the symplectic inverse of U, defined in (5.23);

• Y= Y1, ...,Y2S is a vector of 2S square integrable random variables defined as Yi = 〈v,U+
i 〉.

Moreover we say that v is in the subspace spanned by U if v=P
s ym
U [v], or namely if there exists

a vector of (square integrable) random variables Y, such that v=UY. Observe that Y is uniquely

determined by U by means of symplectic projection as Yi = 〈v,U+
i 〉. On the contrary, we say that

v ∈ (
H 1(D)×L2(D)

)⊗L2(Ω) is in the symplectic orthogonal complement of U if P
s ym
U [v] = 0.

We denote by P
s ym,⊥
U [·]= I−P

s ym
U [·] the projection into the symplectic orthogonal complement

of U.

The Symplectic Order Reduction method consists of two steps:

• an off-line stage for computing the basis functions U= (U1, . . . ,U2S). They can be ex-

tracted by means of Principal Symplectic Decomposition (PSD) procedures from snap-

shots u(·, t j ,ωk ) collected at different times and for different values of the parameters

[107], or following a greedy-PSD approach as described in [86].

• an on-line stage which consists in low-cost reduced-order simulations for computing

the coefficients Y= (Y1, . . . ,Y2S) at each time and for different values of the parameters.

The reduced order system is obtained by preforming a symplectic Galerkin projection

of the governing Hamiltonian equations in the subspace spanned by U.

The use of the symplectic Galerkin projection aims to preserve the symplectic structure of

the original problem, in order to ensure the stability of the reduced order system [73]. More

precisely, the approximate solution uS = (qS , pS)T to problem (5.20), which is written as:

uS(x, t ,ω)=U(x)Y(ω, t ),
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satisfies the following variational principle at each time and for any ω ∈Ω:

〈
u̇S −J2∇Hω(uS ,ω),J T

2 v
〉= 0, ∀v ∈U s ym , (5.25)

where U s ym is the subspace spanned by U ∈ Sp(2S, H 1(D)× L2(D)). This can be written

formally as a symplectic projection of the governing equation (5.20) into U s ym :

u̇S(t )=P
s ym
U [J2∇Hω(uS(t ),ω)], ∀t , ω ∈ (0,T ]×Ω

where the definition of P
s ym
U [·] is properly extended to all v ∈ (

L2(D)×H−1(D)
)⊗L2(Ω) as

P
s ym
U [v] =

2S∑
i=1

Ui 〈v,U+
i 〉 and 〈·, ·〉 denoting the H 1

0 -H−1 duality pair. If we write the solution

component-wise, the position and momentum are respectively approximated as:

q(x, t ,ω)≈ qS(x, t ,ω)=
2S∑

i=1
U q

i (x)Yi (ω, t ), p(x, t ,ω)≈ pS(x, t ,ω)=
2S∑

i=1
U p

i (x)Yi (ω, t )

The stochastic coefficients Y= (Y1, ...,Y2S) belong to [L2(Ω)]2S and satisfy the following system

of ordinary differential equations (ODEs):

Ẏ(ω) = 〈P s ym
U [J2∇Hω(uS ,ω)],U+〉

= 〈J2∇Hω(uS ,ω),U+〉
= 〈∇Hω(uS ,ω),UJT

2S〉 = J2S∇YH̃ω(Y,ω)

(5.26)

with initial conditions Yi (0) = 〈(q0, p0)T ,U+
i 〉 for all i = 1, ...,2S, obtained by performing a

symplectic projection of the initial datum (5.19) on U.

Remark 5.5.1. The reduced system (5.26) consists of Hamiltonian equations in the symplectic

Hilbert space [L2(Ω)]2S equipped with the canonical form: E[YT J2S Z], ∀Y,Z ∈ [L2(Ω)]2S.

Lemma 5.5.1 ( from [107]). Let U belong to Sp(2S, H 1(D)×L2(D)) and φU be the linear map

associated to U, defined as:

φU : [L2(Ω)]2S → [H 1(D)×L2(D)]⊗L2(Ω)

Y �→ φU(Y) :=UY.

Then φU is a symplectic linear map between
(
[L2(Ω)]2S ,J2S

)
and

(
[H 1(D)×L2(D)]⊗L2(Ω),J2

)
,

i.e. φU preserves the symplectic form:

E[YT J2S Z]= E[〈UZ,J2UY〉]

for any Y,Z ∈ [L2(Ω)]2S. Moreover, the function H̃ω in (5.26), which can be written as:

H̃ω :=Hω ◦φU : [L2(Ω)]2S → L2(Ω)

Y→Hω(
2S∑

i=1
Ui Yi ,ω),
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is a first integral, pointwise in ω, of Y(t ), that is the flow of (5.26) preserves the energy of H̃ω at

each time and for any ω.

In conclusion, the original problem (5.19), set in (H 1(D)×L2(D))⊗L2(Ω), is reduced to a

Hamiltonian ODE system of dimension 2S, set in [L2(Ω)]2S , describing the evolution of the

random coefficients Y1, ...,Y2S . To verify that H̃ω is conserved by the solution of (5.26), note

that d
d t H̃ω(Y(t)) =

2S∑
i=1
∇Yi (t )H̃ω(Y(t)) · Ẏi (t) = (∇YH̃ω(Y(t)))T J2S∇YH̃ω(Y(t)) = 0 a.s. in Ω. The

energy of the approximate solution, that is H̃ω(Y(t ))=Hω(UY(t ))=Hω(uS(t )), is not necessary

equal to the exact one, namely the energy of the exact solution Hω(u(t )), but the discrepancy

between the exact and the approximate energy remains constant in time and can be evaluated

at initial time. The drawback of the Symplectic Reduced Order approach with a fixed basis U,

is that if the solution manifolds M (t )= {u(·, t ,ω), ω ∈Ω} significantly change during the time

evolution, as it typically happens in wave propagation phenomena, the fixed reduced basis

U= (U1, . . . ,U2S) has to be sufficiently rich to be able to approximate such manifolds for all

t ∈ [0,T ]. This leads to a fairly large reduced model thus compromising its efficiency.

5.6 Symplectic Dynamical Low Rank approximation

In this paper we propose the Symplectic Dynamical Low Rank (Symplectic DO) approxi-

mation for wave equations with random parameters which combines the Dynamically Or-

thogonal approach described in Section 5.2 with the Symplectic Order Reduction strategy

summarized in Section 5.5. This method shares with the symplectic order reduction the use

of symplectic deterministic bases, and, as the “classic” DO approximation, allows both the

stochastic and the deterministic modes to evolve in time. This aims to both preserve the Hamil-

tonian structure of the original problem and guarantee more flexibility to the approximation.

The approximate solution, indeed, preserves the (approximated) mean Hamiltonian energy

and continuously adapts in time to the structure of the solution. The reduced dynamical

system consists of a set of equations for the constrained dynamics of the deterministic modes

in a submanifold of Sp(2S, H 1(D)×L2(Ω)), coupled with a reduced order Hamiltonian system

for the evolution of the stochastic coefficients.

Definition 5.6.1. We denote U(S, [H 1(D)]2) the submanifold of Sp(2S, H 1(D)×L2(D)) consist-

ing of all L2-orthonormal symplectic bases in [H 1(D)]2, i.e.:

U(S, [H 1(D)]2) := {
U= (U1, ...,U2S) ∈ [H 1(D)×H 1(D)]2S such that

ϑD (Ui ,U j )= (J2S)i j and 〈U j ,Ui 〉L2(D) = δi j , ∀i , j = 1, ...,2S
}
,

with ϑD defined in (5.15).

The advantage in restricting Sp(2S, H 1(D)×L2(D)) to U(S, [H 1(D)]2) is the possibility to iden-

tify the latter with the Stiefel manifold St (S, H 1(D,C)) of all S-dimensional orthonormal com-

plex bases in H 1(D,C) (while the same clearly does not applies to Sp(2S, H 1(D)×L2(D))). We
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postpone this discussion to Section 5.6.1, and we go forward here with the construction of the

approximation manifold.

Proposition 5.6.1. The following properties hold for any U ∈U(S, [H 1(D)]2):

a) let U ∈ Sp(2S, H 1(D)×L2(D)), then U ∈U(S, [H 1(D)]2) if and only if:

U+ =J T
2 UJ2S =J2UJT

2S =U; (5.27)

b) U ∈U(S, [H 1(D)]2) if and only if:

U=
(

Q −P

P Q

)
(5.28)

with Q,P ∈ [H 1(D)]S row vector functions such that:

〈Pi ,Q j 〉 = 〈Qi ,P j 〉 and 〈Qi ,Q j 〉+〈Pi ,P j 〉 = δ j i , (5.29)

for all i , j = 1, ...,S.

Proof. Here we use the notation � U,V � to denote the 2S × 2S matrix with entries �
U,V�i j= 〈U j ,Vi 〉, for all U,V ∈ [H 1(D)×H 1(D)]2S (Analogous definition for U,V ∈ [H 1(D)]S).

a) If (5.27) then�U,U�=�J T
2 UJ2S ,U�=�U+,U�= I2S implies U ∈U(S, [H 1(D)]2).

If U ∈U(S, [H 1(D)]2), then U+ ∈U(S, [H 1(D)]2). Since both U,U+ are vectors of linearly

independent functions

�U,U�= I2S =�U+,U� ⇒ U+ =J T
2 UJ2S =U.

b) If U ∈U(S, [H 1(D)]2) then�U,J2U�= J2S . Block-wise, this is written as:

U=
[

QI ,S QI I ,S

PI ,S PI I ,S

]
(5.30)

with QI ,S ,QI I ,S ,PI ,S ,PI I ,S ∈ [H 1(D)]S such that:

�PI I ,S ,QI ,S �−�QI I ,S ,PI ,S �= IS ,

�PI ,S ,QI ,S �=�QI ,S ,PI ,S � and �PI I ,S ,QI I ,S �=�QI I ,S ,PI I ,S �
(5.31)

From a) we have that U+ =U, i.e.:

U+ =
[

PI I ,S −PI ,S

−QI I ,S QI ,S

]
=
[

QI ,S QI I ,S

PI ,S PI I ,S

]
=U
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which implies Q := QI ,S = PI I ,S and P := PI ,S = −QI I ,S . The proof is concluded by

combining the last relation with (5.31). The other implication is obvious.

From Proposition 5.6.1 it follows that the symplectic projection coincides with the standard

projection:

Proposition 5.6.2. For any v= (v q , v p )T ∈ (H 1(D)×L2(D)
)⊗L2(Ω) and U ∈U(S, [H 1(D)]2) it

holds that:

P
s ym
U [v]=PU+[v]=PU[v] (5.32)

Additionally the following properties hold:

Proposition 5.6.3. Let v be a square integrable random field v= (v q , v p )T ∈ (H 1(D)×L2(D))⊗
L2(Ω). For any U ∈U(S, [H 1(D)]2) we have that:

P
s ym
U [v]=PU[v]=PJ2U[v]=P

s ym
J2U [v]; (5.33)

where PU, PJ2U (respectively P
s ym
U , P

s ym
J2U ) are the standard (respectively symplectic ) pro-

jections in the subspace spanned by U and J2U respectively.

Proposition 5.6.4. Let v be a square integrable random field v= (v q , v p )T ∈ (H 1(D)×L2(D))⊗
L2(Ω). For any U ∈U(S, [H 1(D)]2) we have that:

J2P
s ym
U [v]=J2PU[v]=PU[J2v]=P

s ym
U [J2v]. (5.34)

The same property is satisfied by the projector into the symplectic -orthogonal complement of U:

J2P
s ym,⊥
U [v]=J2P

⊥
U [v]=P ⊥

U [J2v]=P
s ym,⊥
U [J2v].

The Symplectic DO approximate solution of problem (5.19) is sought in the approximation

manifold defined as follows:

Definition 5.6.2. We call symplectic manifold of rank S, denoted by M
s ym
S , the collection of all

random fields uS = (qS , pS)T ∈ [H 1(D)]2⊗L2(Ω) that can be written as: uS =UY where

• U ∈U(S, [H 1(D)]2),

• Y= Y1, ...,Y2S is a 2S dimensional vector of square integrable random variables Yi ∈ L2(Ω),

such that rank(E[YYT ]+ JT
2SE[YYT ]J2S)= 2S.
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We call symplectic S rank random field any function uS ∈M
s ym
S . This can be written component-

wise as follows:

qS(x,ω)=
S∑

i=1
Qi (x)Yi (ω)−

S∑
i=1

Pi (x)YS+i (ω), pS(x,ω)=
S∑

i=1
Pi (x)Yi (ω)+

S∑
i=1

Qi (x)YS+i (ω) (5.35)

In the following we denote by Bs ym(2S,L2(Ω))⊂ [L2(Ω)]2S the set of all 2S-vectors Z= (Z1, ..., Z2S) ∈
[L2(Ω)]2S , that satisfy the full rank condition on E[ZZT]+ JT

2SE[ZZT]J2S . Observe (5.28) implies

that the first S components of U ∈U(S, [H 1(D)]2) characterize the whole vectors U and U+, for

all U ∈U(S, [H 1(D)]2) (which motivates the name of symplectic S rank random field). Hence,

for (5.28) to be verified, the same regularity has to be assumed for both the position and

momentum components. This means that, when we look for an approximate solution of

problem (5.19) in M
s ym
S , we necessary have to assume some extra-regularity on the approxi-

mate momentum. In other words, the orthonormality combined to the symplectic condition

forces to set the approximation problem in [H 1(D)]2⊗L2(Ω) while the natural setting would

be (H 1(D)×L2(D))⊗L2(Ω).

Remark 5.6.1. The representation of uS ∈ M
s ym
S in terms of U ∈ U(S, [H 1(D)]2) and Y ∈

Bs ym(2S,L2(Ω)) (decomposition (5.35)) is not unique. Let uS =UY ∈M
s ym
S with U ∈U(S, [H 1(D)]2),

Y ∈ Bs ym(2S,L2(Ω)), then for any B ∈ U(S,R2S) we have that W = UB ∈ U(S, [H 1(D)]2), Z =
(B+)T Y=BTY ∈Bs ym(2S,L2(Ω)) leads to WZ=uS. Indeed:

• W ∈U(S, [H 1(D)]2):

〈W j , (J2W)i 〉 = 〈(UB) j , (J2UB)i 〉
=Bk j 〈Uk , (J2U)l 〉Bl i

=BT
j k (J2S)kl Bl i = (J2S)i j

〈W j ,Wi 〉 = 〈Ul Bl i ,Us Bs j 〉
=BT

i l 〈Ul ,Us〉Bs j

=BT
i lδl s Bs j = δi j

;

Here the Einstein notation is used.

• E[ZZT]+ J2SE[ZZT]J2S is full rank since:

E[ZZT]+ J2SE[ZZT]J2S =BTCB+ JT
2S BTCBJ2S

=BTCB+BTJT
2S CJ2S B

=BT
(
C+ JT

2S CJ2S
)
B.

and B and (C+ JT
2S CJ2S

)
are the both full rank.

A necessary condition for Z to belong to Bs ym(2S,L2(Ω)) is that the second moments ma-

trix E[ZZT ] has rank at least equal to S. Indeed, since J2S is a full rank matrix, the rank of
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JT
2SE[ZZT]J2S is equal to the rank of E[ZZT]. Then the conclusion is drawn by recalling that the

sum of ranks is greater or equal to the rank of the sum (i.e. rank(A)+ rank(B)≥ rank(A+B),

∀A,B).

Remark 5.6.2. We recall that in the standard DO approach for parabolic equations (Section

5.2), one assumes that the second moments matrix C= E[YYT ] is full rank (rank(C)= 2S). Here

we need the weaker assumption rank(C+J2S CJ2S)= 2S. The motivation is related to the fact that

we work in the phase-space coordinates: we need to uniquely determine the couple (qS , pS) and

not the position and the momentum separately. Namely asking Y1, ...,Y2S linearly independent

is a too strong assumption in our model, as emphasized by the following example:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q̈(x, t ,ω)=Δq(x, t ,ω) x ∈ (0,2π), t ∈ (0,T ], ω ∈Ω
q(0, t ,ω)= q(2π, t ,ω)= 0 t ∈ (0,T ], ω ∈Ω
q(x,0,ω)= q0(x,ω)= Z1(ω) 1�

π
sin(x) x ∈ [0,2π], ω ∈Ω

q̇(x,0,ω)= p0(x,ω)= 0 x ∈ [0,2π], ω ∈Ω

(5.36)

Here Z1 is a square integrable random variable. We start looking for a symplectic decomposition

of the initial data (q0, p0) in M
s ym
S . Problem (5.36) is linear with only one random variable

which multiplies the initial data, which suggests to set S = 1. Hence we look for U= (U1,U2) ∈
U(1, [H 1(D)]2) and Y = (Y1,Y2)T ∈ Bs ym(2,L2(Ω)) such that

∑2
i=1 Ui Yi = (Z1(ω) 1�

π
sin(x),0)T

(observe that, by working with symplectic bases, we can not decrease further the number of

modes). The solution can be obtained by setting Y1 = Z1 and Y2 = 0. Then the deterministic

basis U ∈U(1, [H 1(D)]2) is uniquely determined by:

U= 1�
π

(
sin(x) 0

0 sin(x)

)
(5.37)

Conversely, we can not find any symplectic basis U ∈ U(1, [H 1(D)]2), or more generally U ∈
Sp(2, H 1(D)×L2(D)), if we assume that E[YYT ] is full rank. Let us write U=

[
QI ,1 QI I ,1

PI ,1 PI I ,1

]
; if

Y1,Y2 are linearly independent, then PI ,1(x)Y1(ω)+PI I ,1(x)Y2(ω)= p0(x,ω)= 0 implies PI ,1 =
PI I ,1 = 0 and hence UT J2U != J2. Generally any symplectic basis U ∈ Sp(2S, H 1(D)×L2(D))

consists of 2S linearly independent functions, which implies that we can not have PI ,S =PI I ,S =
0. On the other hand we have seen that the symplectic decomposition of (q0, p0) in M

s ym
1 is well

defined when the assumption of linear independence of Y1,Y2 is relaxed to C+ JT
2 CJ2 full rank.

This consideration generally applies to the solution of (5.36) at any time. The solution, given by

u1(t)= (q(t), q̇(t))= (Z1(ω)cos(t) 1�
π

sin(x),−Z1(ω)sin(t) 1�
π

sin(x)) ∈M
s ym
1 , is characterized

by a covariance matrix C(t) = E[Y(t)YT(t)] with Y1(t) = Z1 cos(t) and Y1(t) = −Z1 sin(t) of

defective rank while C(t )+ JT
2S C(t )J2S is full rank at any time. (We will see in the following that

for this particular case the symplectic DO approximation degenerates to the Symplectic Proper

Decomposition described in Section 5.5: the deterministic basis does not evolve, the coefficients

evolve according to (5.26) and the approximation (with S = 1) is exact).
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We emphasize that the full rank condition for C+ JT
2S CJ2S guarantees the uniqueness of the

representation on U once Y is fixed. Namely, let uS be in M
s ym
S ; if uS =UY=WY with U,W ∈

U(S, [H 1(D)]2) and Y ∈Bs ym(2S,L2(Ω)), then necessarily U=W. Indeed:

0 = (U−W)Y ⇒ (U−W)C= 0

=J2(U−W)JT
2S)Y ⇒ (U−W)JT

2S CJ2S = 0
(5.38)

By summing the two equations on the right, we get (U−W)(C+ JT
2S CJ2S)= 0, which implies

U = W thanks to the full rank condition on C+ JT
2S CJ2S . The same result does not apply if

we extend the submanifold U(S, [H 1(D)]2) to the whole Sp(2S, H 1(D)×L2(D)). Consider for

instance the random field u1 = (q, p)= (Z (ω) 1
2
�
π

sin(x), Z (ω) 1�
π

sin(2x)) with x ∈ [0,2π] and

Z ∈ L2(Ω). This can be represented, for instance, as:

U= 1�
π

(
1
2 sin(x) −sin(2x)

sin(2x) 0

)
Y=

(
Z

0

)
(5.39)

or equivalently as:

W= 1�
π

(
1
2 sin(x) 0

sin(2x) 2sin(x)

)
Y=

(
Z

0

)
(5.40)

where U,W ∈ Sp(2, H 1(D)×L2(D)) and Y ∈ Bs ym(2,L2(Ω)). This implies that, if we replace

U(1, [H 1(D)]2) with Sp(2, H 1(D)×L2(D)) in Definition 5.6.2, what we get is not a manifold

anymore. Indeed, to get a manifold we need that the decomposition of uS ∈MS , even though it

is not unique in terms of U,Y, is uniquely characterized when one of the two bases is fixed. This

implies that a stronger condition on C should be required when U(1, [H 1(D)]2) is extended to

Sp(2, H 1(D)×L2(D)).

5.6.1 Parametrization of the tangent space by means of complex representation

In this section we discus how to equip M
s ym
S with a differential manifold structure and

parametrize the tangent space. This is achieved by identifying M
s ym
S , i.e. the manifold of

all real valued symplectic random fields of rank S, with the manifold of all complex valued

functions of rank S. To do so let us introduce the complex variable v̂ = q+ i p and its complex

conjugate v̂∗ = q− i p. The Hamiltonian system (5.20), written in terms of the new variables

(v̂ , v̂∗), becomes:

i ˙̂v = 2∂v̂∗H(v̂ , v̂∗,ω)

i ˙̂v∗ =−2∂v̂ H(v̂ , v̂∗,ω)
(5.41)

Observe that the second equation can be obtained from the first one by complex conjugation,

thus it is redundant. The Hamiltonian function in (5.41) is now expressed with respect to the
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new complex variables v̂ and v̂∗ and satisfies the reality condition:

H(v̂ , v̂∗,ω)= (
H(v̂ , v̂∗ω)

)∗ =: H∗(v̂∗, v̂ ,ω)

where with the symbol ∗ we always denote the complex conjugate. We emphasize that the

solution of (5.41), which is completely characterized by solving only one of the two equations

in (5.41), is a complex valued function v̂ : D̄× [0,T ]×Ω→C, whose real and imaginary parts

correspond respectively to the position and momentum in system (5.20). In what follows,

complex functions will be written as v̂ = v q + i v p , according to which the apex q and p will

denote respectively the real and the imaginary part.

Definition 5.6.3. We call complex S rank random field any function ûS ∈H 1(D,C)⊗L2(Ω,C)

which can be exactly expressed as:

ûS(x,ω)=
S∑

i=1
Ŷi (ω)Ûi (x)=

S∑
i=1

(
Y q

i (ω)+ i Y p
i (ω)

)
(U q

i (x)+ iU p
i (x)) (5.42)

with:

• Û= (Û1, ...,ÛS) ∈ St(S, H 1(D,C)),

• Ŷ= Ŷ1, ..., ŶS ∈ [L2(Ω,C)]S linearly independent random variables.

Definition 5.6.4. We define complex manifold of dimension S the collection of all complex S

rank random fields:

MC
S = {

ûS =
S∑

i=1
Ûi Ŷi |span(Û1, ...,ÛS) ∈G (S, H 1(D,C)), span(Ŷ1, ..., ŶS) ∈G (S,L2(Ω))

}
= {

ûS = ÛŶ, Û ∈ St(S, H 1(D,C)), Ŷ= (Ŷ1, .., ŶS) linearly independent }

Observe that MC
S is the complex version of the manifold MS , introduced in Section 5.2 to

describe the DO approximation of real parabolic equations. Hence, MC
S , as well as MS , can

be equipped with a differential manifold structure by means of the same standard tools of

differential geometry, recalled in Section 5.2. Complex manifolds of fixed rank have been

already used in literature e.g. for the approximation of deterministic Schrödinger equations,

see [67, 39]. Let us define the following map:

π : (St(S, H 1(D,C)),B(S,L2(Ω,C)) →MC
S

(Û, Ŷ) →
S∑

i=1
Ûi Ŷi = ûS

where we denote by B(S,L2(Ω,C)) the set of all S frames of linearly independent random vari-

ables in L2(Ω,C). This map is surjective, i.e. MC
S is the image of (St(S, H 1(D,C)),B(S,L2(Ω,C))

by π, but clearly non injective. The triple
(
St(S, H 1(D,C))×B(S,L2(Ω,C)),MC

S ,π
)

defines a

fiber bundle with fibers given by the group of the unitary matrices U(S,CS) = {Ŵ ∈ CS×S :
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Ŵ∗Ŵ = ŴŴ∗ = I} and MC
S is isomorphic to the quotient space (St(S, H 1(D,C)/U(S,CS))×

B(S,L2(Ω,C)). The uniqueness of the representation of ûS ∈MC
S in terms of bases (Û, Ŷ) ∈

(St(S, H 1(D,C)),B(S,L2(Ω,C)) is recovered in terms of unique decomposition in the tangent

space, by imposing the following Gauge constraints [40, 90]:

〈δÛi ,Û j 〉h = 〈δU q
i ,U q

j 〉+〈δU p
i ,U p

j 〉+i (〈δU p
i ,U q

j 〉−〈δU q
i ,U p

j 〉)= 0, ∀i , j = 1, ...,S (5.43)

for any δÛ = (δÛ1, ...,δÛS) ∈TûS M
C
S and Û = (Û1, ...,ÛS) ∈MC

S . This leads to the following

parametrization of the tangent space to MC
S at ûS =

S∑
i=1

Ûi Ŷi :

TûS M
C
S =

{
δ̂v =

S∑
i=1

(
δÛi Ŷi +ÛiδŶi

)
with δŶi ∈ L2(Ω,C) and δÛi ∈H 1(D,C),

s.t. 〈δÛi ,Û j 〉h = 0, ∀i , j = 1, ...,S
} (5.44)

Remark 5.6.3. TûS M
C
S is a complex linear space, hence δv̂ belongs to TûS M

C
S if and only if

iδv̂ belongs to TûS M
C
S .

The complex Hilbert space H 1(D,C)⊗L2(Ω,C), equipped with the usual hermitian L2 prod-

uct, can be identified with the real space [H 1(D,R)⊗L2(Ω,R)]2, equipped with the complex

structure associated to J2. Namely the following map is bijective

H 1(D,C)⊗L2(Ω,C) → [H 1(D,R)⊗L2(Ω,R)]2

û = uq + i up → (uq ,up )T =: u

and for all û, v̂ ∈H 1(D,C)⊗L2(Ω,C) we have:

E[〈û, v̂〉h]= E[〈u,v〉]− iE[〈u,J2v〉], (5.45)

where 〈·, ·〉 is the standard L2 product in the real space. Observe that the imaginary part of

the Hermitian product (5.45) coincides with the canonical symplectic form of [H 1(D,R)⊗
L2(Ω,R)]2 defined in (5.21) with changed sign:

ℑ(E[〈û, v̂〉h])=−ϑ(u,v)=−E[〈u,J2v〉] (5.46)

Similarly [L2(Ω,C)]S can be identified with [L2(Ω,R)]2S , i.e:

[L2(Ω,C)]S → [L2(Ω,R)]2S

Ẑ= (Z q
1 + i Z p

1 , ..., Z q
S + i Z p

S ) → (Z q
1 , ..., Z q

S , Z p
1 , ..., Z p

S )T =: (Zq ,Zp )T = Z

and
E[Ẑ∗Ŷ] = E[YT Z]− iE[YT J2S Z]

= E[YqT Zq]+E[YpT Zp]+ i (E[YpT Zq]−E[YqT Zp]).

Let GL
(
[L2(Ω,C)]S , H 1(D,C)⊗L2(Ω,C)

)
be the set of all bounded linear maps from [L2(Ω,C)]S

to H 1(D,C)⊗L2(Ω,C). We denote by φ̂Â the map of GL
(
[L2(Ω,C)]S , H 1(D,C)⊗L2(Ω,C)

)
which
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can be represented as:

φ̂Â : [L2(Ω,C)]S →H 1(D,C)⊗L2(Ω,C)

Ẑ �→ φ̂Â(Ẑ)= ÂẐ
(5.47)

for any (row) vector of deterministic complex functions Â ∈ [H 1(D,C)]S . Let [L2(Ω,C)]S and

H 1(D,C)⊗L2(Ω,C) be identified with [L2(Ω,R)]2S and [H 1(D,R)⊗L2(Ω,R)]2 respectively, and

let φ be the function φ̂Â in real setting. Then, φ must satisfies:

φ : [L2(Ω,R)]2S → [H 1(D,R)⊗L2(Ω,R)]2

Z �→φ(Z)=u ⇐⇒ û = ÂẐ
(5.48)

where Z and u are the realification of Ẑ and φ̂(Ẑ) respectively. The map φ is linear and can be

written in terms of a matrix of functions A ∈ [H 1(D,R)×H 1(D,R)]2S such that φ(Z)=AZ ⇐⇒
û = ÂẐ. Precisely for any Â= (Aq + i Ap ) ∈ [H 1(D,C)]S , the map φ̂Â is identified in real setting

with φA : [L2(Ω,R)]2S → [H 1(D,R)⊗L2(Ω,R)]2 where A is given:

A :=
(

Aq −Ap

Ap Aq

)
(5.49)

The proof is an exercise of linear algebra [113, 114]. We say that A is the real matrix repre-

sentation of Â and write Â ∼ A. This motivates the real identification of row-vector com-

plex functions which will be used in the following. Observe that in this setting the com-

plex conjugate simply corresponds to the transpose: Â∗ ∼ AT and the hermitian product

〈Aq
i ,B q

j 〉+〈Ap
i ,B p

j 〉+ i (〈Ap
i ,B q

j 〉−〈Aq
i ,B p

j 〉) can be computed by matrix multiplication as:

〈Âi , B̂ j 〉h ∼ 〈
(

Aq
i −Ap

i

Ap
i Aq

i

)(
B q

i B p
i

−B p
i B q

i

)
〉

=
(〈Aq

i ,B q
j 〉+〈Ap

i ,B p
j 〉 〈Aq

i ,B p
j 〉−〈Ap

i ,B q
j 〉

〈Ap
i ,B q

j 〉−〈Aq
i ,B p

j 〉 〈Aq
i ,B q

j 〉+〈Ap
i ,B p

j 〉

)

where the last matrix is indeed the real matrix representation of 〈Âi , B̂ j 〉h . Moreover the real

multiplication by J2 corresponds to the complex multiplication with the imaginary unit i .

Namely if A is the real matrix representation of Â, then J2A is the real matrix representation of

i Â. The same procedure in finite dimension leads to representing a complex matrix by a real

matrix of double dimension, i.e. Â=Aq + i Ap ∈CS×S is represented by A ∈R2S×2S , written as

in (5.49), with Aq and Ap real matrices in RS×S .

Lemma 5.6.1. The manifold MC
S of all S rank complex random fields is isomorphic to the

manifold M
s ym
S in Definition 5.6.2.

Proof. The proof is based on the real representation of complex valued functions introduced

before. Let Û = (Û1, ...,ÛS) ∈ St(S, H 1(D,C)) and U q
i , U p

i denote respectively the real and

imaginary part of Ûi for any i = 1, ...,S. The orthonormality condition 〈Ûi ,Û j 〉h = δi j is written
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component-wise as:

〈U q
i ,U q

j 〉+〈U
p
i ,U p

j 〉 = δi j , and 〈U p
i ,U q

j 〉−〈U
q
i ,U p

j 〉 = 0, ∀i , j = 1, ...,S. (5.50)

Let U be the real matrix representation of Û as defined in (5.49). This is written as:

Û∼U=
(

Q −P

P Q

)
with

Q= (Q1, ...,QS) : Qi = Û q
i ∈H 1(D,R), ∀i = 1, ...,S,

P= (P1, ...,PS) : Pi = Û p
i ∈H 1(D,R), ∀i = 1, ...,S.

Observe that condition (5.50) coincides with condition (5.29). Thus, form Proposition 5.6.1

(point b) we have that Û ∈ St(S, H 1(D,C)) if and only if U ∈U(S, [H 1(D,R)]2). It follows that any

element Û ∈ St(S, H 1(D,C)) can be uniquely identified with an element U ∈U(S, [H 1(D,R)]2).

Consider now Ẑ ∈ [L2(Ω,C)]S and its realification Z= (Zq ,Zp )T ∈ [L2(Ω,R)]2S . The components

(Ẑ1, ..., ẐS) of Ẑ are linearly independent if and only if the following matrix

E[ẐẐ∗]= E[ZqZqT ]+E[ZpZpT ]+ i (E[ZpZqT ]−E[ZqZpT ]) ∈CS×S (5.51)

has full rank. Observe that the real matrix representation of E[ẐẐ∗] is given by:(
E[ZqZqT ]+E[ZpZpT ] E[ZqZpT ]−E[ZpZqT ]

E[ZpZqT ]−E[ZqZpT ] E[ZqZqT ]+E[ZpZpT ]

)
= (

E[ZZT ]+ JT
2SE[ZZT ]J2S

) ∈R2S×2S (5.52)

This implies that (Ẑ1, ..., ẐS) are linearly independent if and only if E[ZZT ]+E[J2S ZZT JT
2S] is

full rank. Observe also that E[ZZT ]+E[J2S ZZT JT
2S] is the real matrix representation of E[ẐẐ∗],

hence the two identifications are consistent. It follows that B(S,L2(Ω,C)) can be uniquely

identified with Bs ym(2S,L2(Ω,R)).

Finally any ûS = ÛŶ ∈MC
S , with Û ∈ St(S, H 1(D,C)) and Ŷ ∈B(S,L2(Ω,C)), can be uniquely rep-

resented in real setting as uS =UY ∈M
s ym
S where U ∈U(S, [H 1(D,R)]2) and Y ∈Bs ym(2S,L2(Ω,R))

are the real representations of Û and Ŷ respectively.

We now rewrite Lemma 5.6.1 in real setting to recover a unique representation of S-rank

random fields uS ∈M
s ym
S in terms of the bases in (U,Y) ∈ (U(S, [H 1(D)]2),B(S,L2(Ω,C))).

Proposition 5.6.5. In real setting, the orthogonal condition (5.43) is reinterpreted as:

〈δUi ,U+
j 〉 = 〈δUi ,U j 〉 = 0 ∀i , j = 1, ...,2S (5.53)

We mention that condition (5.53) can be directly derived, without making use of the iso-

morphism with MC
S , by quotienting U(S, [H 1(D)]2) by U(S,R2S). This is perfectly consistent

with the construction discussed before, being U(S,R2S) isomorphic to O (S,C). Condition

(5.53) can be seen as a symplectic orthogonality condition: we ask that δU belongs to the

symplectic orthogonal complement to U at each time:

P
s ym
U [δU]=PU[δU]= 0
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Observe that condition (5.53) preserves the orthogonal-symplectic structure of the basis,

namely if U(t ) is the integrable curve passing by U(0) ∈U(S, [H 1(D)]2), of a vector field which

satisfies (5.53), then U(t ) ∈U(S, [H 1(D)]2) at any time.

Proposition 5.6.6. Let U(t ) be a smooth curve in [H 1(D)]2S such that:

• U(0) ∈U(S, [H 1(D)]2),

• 〈U̇i ,U+
j 〉 = 〈U̇i ,U j 〉 = 0, ∀i , j = 1, ...,2S, and ∀t ∈ [0,T ],

then U(t ) ∈U(S, [H 1(D)]2) for all t .

Proof. We start by showing that the orthogonality is preserved:

d

d t
〈U j (t ),Ui (t )〉 = 〈U̇ j (t ),Ui (t )〉+〈U j (t ),U̇i (t )〉 = 0

implies that 〈U j (t ),Ui (t )〉 = 〈U j (0),Ui (0)〉 = δi j , ∀i , j = 1, ...,2S and ∀t ∈ [0,T ].

Similarly for the symplecticity:

d

d t
〈J2U(t ),U(t )〉 = 〈J2U̇(t ),U(t )〉+〈J2U(t ),U̇(t )〉

= 〈U(t ),PU(t )[J2U̇(t )]〉+〈J2U(t ),PJ2U(t )[U̇(t )]〉
= 〈U(t ),J2PU(t )[U̇(t )]〉+〈J2U(t ),PU(t )[U̇(t )]〉 = 0

which implies 〈J2U(t ),U(t )〉 = 〈J2U(0),U(0)〉 =J2.

The dynamic condition (5.53) induces a bijection between (U(S, [H 1(D)]2)/U(S,R2S))×Bs ym(2S,L2(Ω,R)))

and M
s ym
S which allows to equip M

s ym
S with a differential manifold structure. In particular,

for any uS ∈M
s ym
S , the tangent space to M

s ym
S at uS =UY is parametrized as follows:

Lemma 5.6.2. For any uS =UY ∈M
s ym
S , the tangent space to M

s ym
S at uS is the subspace of

[H 1(D)]2⊗L2(Ω) given by:

TuS M
s ym
S =

{
δuS = (δU)Y+UδY ∈ [H 1(D)]2⊗L2(Ω) : δY ∈ [L2(Ω,R)]2S ,

δU ∈U s ym⊥ : J T
2 (δU)J2S = δU

}
=
{
δuS =

2S∑
i=1

(δUi Yi +UiδYi ) : δYi ∈ L2(Ω,R) and δUi ∈ [H 1(D)]2,

s.t. J T
2 δUJ2S = δU, 〈δUi ,U j 〉 = 0, ∀i , j = 1, ...,2S

}
(5.54)

The following property holds for any uS =UY ∈M
s ym
S :

Proposition 5.6.7. v ∈TuS M
s ym
S if and only J2v ∈TuS M

s ym
S
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Proposition 5.6.7 follows directly from the diffeomorphism between MC
S and M

s ym
S , see

Remark 5.6.3 for the same result in complex setting. We emphasize that this property does not

apply to arbitrary symplectic manifolds, and in particular, does not hold when the space of

symplectic deterministic bases is not restricted to U(S, [H 1(D)]2). Observe that Proposition

5.6.7 implies that the symplectic form defined in (5.21) is not degenerate in M
s ym
S . Indeed for

any v ∈TuS M
s ym
S such that v != 0, ϑ(J2v,v)= E[〈J2u,J2v〉]= ‖v‖2

[L2(D)]2⊗L2(Ω)
> 0.

Lemma 5.6.3. Let uS ∈M
s ym
S be written as uS =UY. For any v= (δU)Y+UδY ∈TuS M

s ym
S , δU

and δY are uniquely characterized as:

δY= 〈PU[v],U〉
δU(C+ J2S CJT

2S)=P
⊥,s ym
U

[
E[vYT ]+J2E[vYT JT

2S]
] (5.55)

Proof. Let ṽ ∈ [H 1(D)]2⊗L2(Ω) and v= (δU)Y+UδY be the projection of ṽ in the tangent space

TuS M
s ym
S , that is:

E[〈ṽ,w〉]= E[〈v,w〉] ∀w ∈TuS M
s ym
S (5.56)

According to (5.54) this can be written as:

E[〈ṽ,WY+UZ〉]= E[〈(δU)Y+UδY,WY+UZ〉] (5.57)

for any Z ∈ [L2(Ω,R)]2S and W ∈U s ym⊥ which satisfies J T
2 WJ2S =W. We need to verify that

δU and δY are uniquely characterized only in terms of ṽ, U and Y.

• By testing against UZ (i.e. setting W= 0), we easily recover the characterization of δY:

E[〈ṽ,UZ〉] = E[〈UδY,UZ〉],
⇒ E[〈ṽ,U〉Z] = E[ZT δY] ∀Z ∈ [L2(Ω,R)]2S ,

(5.58)

which leads to:

δY= 〈PU[ṽ],U〉.

• We now want to test against VY for V arbitrary in U s ym⊥ and satisfying J T
2 VJ2S =V. The

last condition can be replaced by setting V= 1
2

(
J T

2 WJ2S +W
)

with arbitrary W ∈U s ym⊥.

Thus we have:

E[〈ṽ,J T
2 VJ2S Y+VY〉]= E[〈(δU)Y,J T

2 VJ2S Y+VY〉] ∀V ∈U s ym⊥ (5.59)

The left hand side can be rewritten as

E[〈ṽ,J T
2 VJ2S Y+VY〉]= 〈E[J2ṽYT JT

2S],V〉+〈E[ṽYT ],V〉,

160



5.6. Symplectic Dynamical Low Rank approximation

while for the right hand side we have:

E[〈(δU)Y,J T
2 VJ2S Y+VY〉] = E[〈(δU)Y,J T

2 VJ2S Y〉]+E[〈(δU)Y,VY〉]
= E[〈J2(δU)Y,VJ2S Y〉]+E[〈(δU)Y,VY〉]
= E[〈(δU)J2S Y,VJ2S Y〉]+E[〈(δU)Y,VY〉]
= 〈δU,V〉J2S CJT

2S +〈δU,V〉C
(5.60)

where we used the fact that J T
2 δUJ2S = δU. By combining the two parts we get:

〈E[J2ṽYT JT
2S],V〉+〈E[ṽYT ],V〉 = 〈δU,V〉J2S CJT

2S +〈δU,V〉C (5.61)

for any V ∈U s ym⊥. By using Preposition 5.6.4 we finally obtain:

δU(C+ J2S CJT
2S)=P

⊥,s ym
U

[
E[ṽYT ]+J2E[ṽYT JT

2S]
]

. (5.62)

Observe that δU is completely characterized, thanks to the full rank assumption on

C+ J2S CJT
2S .

We finally verify that condition J2(δU)JT
2S = δU is actually satisfied. We observe that J2(δU)JT

2S =
δU applies if and only if

δU(C+ J2S CJT
2S)JT

2S =J2(δU)JT
2S(C+ J2S CJT

2S)JT
2S =−J2(δU)(J2S CJT

2S +C).

Then, from (5.62) and Proposition 5.6.4 follows that:

δU(C+ J2S CJT
2S)JT

2S =P
⊥,s ym
U

[
E[ṽYT ]+J2E[ṽYT JT

2S]
]

JT
2S

=P
⊥,s ym
U

[
E[ṽYT JT

2S]+J T
2 E[ṽYT ]

]
=J T

2 P
⊥,s ym
U

[
J2E[ṽYT JT

2S]+E[ṽYT ]
]

=J T
2 δU(C+ J2S CJT

2S)

=−J2δU(C+ J2S CJT
2S)

which concludes the proof.

5.6.2 DLR Variational Principle in complex and real setting

Our goal is to find a dynamical low rank approximation uS ∈M
s ym
S of problem (5.3), which is

written as:

uS(x, t ,ω)=
2S∑

i=1
Ui (x, t )Yi (t ,ω) (5.63)

To do so we exploit the diffeomorphism between M
s ym
S and MC

S .

We start by considering problem (5.41). In complex setting, since this is a first order PDE we

can apply the DO approximation described in Section 5.2. The DO variational principle for
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problem (5.41) reads as follows:

Complex DLR Variational Principle 1. At each t ∈ (0,T ], find ûS(t ) ∈MC
S such that:

E
[〈

i ˙̂uS −∂û∗S Hω(ûS , û∗S , ·), v̂
〉

h

]= 0, ∀v̂ ∈TûS (t )M
C
S . (5.64)

with initial condition u0,S given by a suitable S rank approximation of u0 by e.g. a truncated

Karhunen-Loève expansion.

Since TûS (t )M
C
S is a complex linear space (which means that v̂ ∈ TûS (t )M

C
S if and only if

i v̂ ∈TûS (t )M
C
S ), we get the same conditions if we take only the real part or the imaginary part

of (5.64). Following the discussion of Section 5.6.1, and in particular by means of (5.46) and

Lemma 5.6.1, we can recast problem (5.64) in the real setting as follows:

Symplectic DLR Variational Principle. At each t ∈ (0,T ], find uS(t ) ∈M
s ym
S such that:

E
[〈

J2u̇S +∇Hω(uS , ·),v
〉]= 0, ∀v ∈TuS (t )M

s ym
S , (5.65)

with initial conditions given by the symplectic projection of the initial data into M
s ym
S .

The term E
[〈∇Hω(uS , ·),v

〉]
in (5.65) is interpreted as d

d t |t=0
E[Hω(γS(t))], i.e. the directional

derivative along a curve γS(t ) ∈M
s ym
S with γS(0)=uS and γ̇S(0)= v.

Observe that the variational principle (5.65) corresponds to a symplectic projection of the

governing equation onto the (time-dependent) tangent space to the manifold along the trajec-

tory of the approximate solution. We call symplectic dynamical low rank (or symplectic DO)

approximation of problem (5.19) the solution to (5.65). This belongs to M
s ym
S at any t and is

written as:

uS(x, t ,ω)=
(

qS(x, t ,ω)

pS(x, t ,ω)

)
=

2S∑
i=1

Ui (x, t )Yi (ω, t )=

⎛
⎜⎜⎝

S∑
i=1

Qi Yi −
S∑

i=1
Pi YS+i

S∑
i=1

Pi Yi +
S∑

i=1
Qi YS+i

⎞
⎟⎟⎠ , (5.66)

with U(t ) ∈U(S, [H 1(D)]2), Y(t ) ∈Bs ym(2S,L2(Ω)). The peculiarity of the symplectic dynamical

low rank approximation is the conservation of energy:

Lemma 5.6.4. Assuming that problem (5.65) admits a smooth solution uS, for all t ∈ [0,T ], the

expected value of the Hamiltonian is conserved along the approximate solution.

Proof. Equation (5.65) can be rewritten as

ϑ(u̇S ,v)=−E[〈∇Hω(uS , ·),v
〉]

.

where ϑ is the symplectic form defined in (5.21). Then, taking v= u̇S we get:

0=ϑ(u̇S , u̇S)=−E[〈∇Hω(uS , ·), u̇S
〉]= d

d t |t=0

E[Hω(uS(t ))],
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5.6. Symplectic Dynamical Low Rank approximation

which implies E[Hω(uS(t ))]= E[Hω(uS(0))] for all t ∈ [0,T ].

Similarly to the Symplectic Order reduction, the energy that is conserved by the approximate

solution, i.e. H (uS(t ))= E[Hω(uS(t ))], is not necessary equal to the energy of the exact solution

H(u(t ))= E[Hω(u(t ))]. However, such discrepancy is constant in time and depends only the

approximation of the initial data:

|E[Hω(u(t ))−Hω(uS(t ))]| = |E[Hω(u(0))]−E[Hω(uS(0))]|.

Moreover, thanks to the analogy with the complex DO, the Symplectic Dynamical Low-rank

approximation has the same approximation properties as the standard DO approach. In par-

ticular, if the differential operator is linear and deterministic, i.e. ∇H = L with L deterministic,

linear and self-adjoint, the following holds:

Proposition 5.6.8. The symplectic dynamical low-rank approximation of linear deterministic

Hamiltonian systems with random initial condition coincides with the exact solution, provided

that the initial condition belongs to M
s ym
S .

More generally, the symplectic dynamical low-rank approximation of linear deterministic

Hamiltonian systems is optimal in L2-sense provided that there is no crossing between the

omitted and not omitted singular values of the exact solution. As discussed in Chapter 3

(see also [96]), this condition is an intrinsic limitation of dynamical low rank methods, and

generally can not be avoided without data-driven adaptivity strategies or closure models: when

such crossings occur, the neglected modes, which become dominant in the exact solution,

can not be tracked by the reduced system, which evolves only the modes that were dominant

at initial time.

By using the parametrization of the tangent space in (5.54) we finally derive the symplectic DO

reduced system. The variational problem (5.65) is rewritten in terms of dynamic equations for

(Y,U) as follows:

Proposition 5.6.9. Let (U(t),Y(t)) ∈U(S, [H 1(D)]2)×Bs ym(2S,L2(Ω)) be a solution of the fol-

lowing system:

⎧⎪⎨
⎪⎩

Ẏ= 〈J2∇uS Hω(uS),U+〉 = J2S∇YH̃ω(Y) (5.67a)

U̇(C+ JT
2S CJ2S) =P ⊥

U+
[∇H(uS)YT J2S +J2∇H(uS)YT

]
=P ⊥

U+
[
E[∇Hω(uS)YT J2S]+E[J2∇Hω(uS)YT ]

] (5.67b)

with initial conditions given by the complex SVD. Then uS(t)=U(t)Y(t) ∈M
s ym
S satisfies the

DO variational principle (5.65) at any t ∈ [0,T ].

Proof. The equations in (5.67a)-(5.67b) can be simply obtained by replacing ṽ with J2∇H (uS)

in the proof of Lemma 5.6.3.
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Observe that system (5.67a)-(5.67b) consists of 2S random ODEs coupled to 2S deterministic

PDEs. However, exploiting the unitary structure of U (5.28), we actually need to solve only S

PDEs to completely characterize the deterministic basis at each time. Indeed, the dynamic

condition (5.53) preserves at continuous level this unitary structure (5.28), provided that

U ∈U(S, [H 1(D)]2) at initial time. This can be directly verified by looking at the set of equations

for U̇ (5.67b). First of all, let A = C+ JT
2S CJ2S or A = (

C+ JT
2S CJ2S

)−1, in both cases, it holds:

J2S AJT
2S = JT

2S AJ2S =A. The analogous property is satisfied by the term on the right hand side of

(5.67b):
J2

(
P ⊥

U+
[
E[∇Hω(uS)YT J2S]+E[J2∇Hω(uS)YT ]

])
JT

2S

=
(
P ⊥

U+
[
E[J2∇Hω(uS)YT ]−E[∇Hω(uS)YT JT

2S]
])

where we use Proposition 5.6.4 and the properties of the Poisson matrix. This implies that the

same property is necessarily satisfied by U̇, i.e. J T
2 U̇J2S =J2U̇JT

2S = U̇ and the structure (5.28)

is preserved by the dynamic system. On the other hand at discrete level the time discretization

scheme has to be carefully chosen to preserve the unitary structure of U.

5.6.3 Isolating the mean

In our context of partial differential equations with random parameters, since we are usually

interested in computing the statistics of the solution, it may be worth approximating separately

the mean of the solution, as proposed by [116] and adopted in [117],[96],[30] for the DO

approximation of parabolic equations. For this aim we re-define S rank random field as

follows.

Definition 5.6.5. We call S rank random field (in the isolated mean format) any function that

can be exactly expressed as uS = ūS +UY, where:

• ūS = E[uS] ∈ [H 1(D)]2⊗L2(D).

• U ∈U(S, [H 1(D)]2),

• Y= (Y1, ...,Y2S) ∈Bs ym(2S,L2(Ω)) such that E[Yi ]= 0 for any i = 1, ...,S.

We define M̊
s ym
S ⊂ (H 1(D)×L2(D))⊗L2

0(Ω) the manifold of all symplectic S rank random fields

with zero mean.

In this setting, the symplectic Low Rank approximation of problem (5.3) is sought in ([H 1(D)]2⊗
L2(D))×M̊

s ym
S and satisfies:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ẏ= J2S∇YH̃◦
ω(Y)

˙̄uS = E[J2∇Hω(uS)]

U̇(C+ JT
2S CJ2S)=P ⊥

U+
[
E[∇H◦

ω(uS)YT J2S]+E[J2∇H◦
ω(uS)YT ]

] (5.68)

where H◦
ω(·)=Hω(·)−E[Hω] and H̃◦

ω = H̃ω ◦U.
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5.7 Numerical tests

5.7.1 Linear Deterministic Hamiltonian: validation 1

For the validation of the Symplectic DO method we consider the following straightforward

problem in the one dimensional domain D = (0,2π):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q̈(x, t ,ω)=Δq(x, t ,ω) x ∈ (0,2π), ω ∈Ω, t ∈ (0,T ]

q(0, t ,ω)= q(2π, t ,ω)= 0 ω ∈Ω, t ∈ (0,T ]

q(x,0,ω)= Z (ω) 1�
π

sin(x) x ∈ (0,2π), ω ∈Ω
q̇(x,0,ω)= 0 x ∈ (0,2π), ω ∈Ω

(5.69)

where Z is a uniformly distributed random variable in [−1,1]. The analytical solution, given

by:

q(x, t ,ω)= Z (ω)cos(t )
1�
π

sin(x), p(x, t ,ω)=−Z (ω)sin(t )
1�
π

sin(x)

is clearly a 1−rank symplectic function, namely u= (q, p) belongs to M
s ym
1 and can be written

as u=UY with:

U= 1�
π

[
sin(x) 0

0 sin(x)

]
∈U (1, [H 1

0 (D)]2), Y=
[

Z (ω)cos(t )

−Z (ω)sin(t )

]
∈Bs ym(2,L2(Ω)).

In particular, this means that the rank of the exact solution, which is equal to 1 at t = 0,

remains constant in time. The same generally applies to any solution of linear deterministic

Hamiltonian systems with finite rank initial condition. We start by rewriting problem (5.69) in

Hamiltonian form:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u̇(x, t ,ω)=J2Lu(x, t ,ω)

u(x,0,ω)= (Z (ω) 1�
π

sin(x),0)

u1(0, t ,ω)=u1(2π, t ,ω)= 0

with L=
[
−Δ 0

0 I

]
. (5.70)

Then by following (5.67a)-(5.67b), one can easily derive the reduced Symplectic DO system,

which is given by:⎧⎨
⎩Ẏ(t ,ω)=<J2LU(·, t ),U(·, t )> Y(t ,ω) ω ∈Ω, t ∈ (0,T ]

U̇(t )(C(t )+ JT
2 C(t )J2)=P ⊥

U(t )

[
J2LU(t )C(t )+LU(t )C(t )J2

]
x ∈ (0,2π), t ∈ (0,T ]

(5.71)

with initial conditions:

U(0)=
[

Q(0) −P (0)

P (0) Q(0)

]
= 1�

π

[
sin(x) 0

0 sin(x)

]
, Y(0)=

[
Z (ω)

0

]
(5.72)

and completed with homogeneous Dirichlet boundary conditions: Q(0, t )=Q(2π, t )= P (0, t )=
P (2π, t )= 0 for all t ∈ [0,T ]. After observing that U(0) is an eigenfunction of L with eigenvalue
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Figure 5.1 – Left: the exact solution (solid line) and the symplectic DO approximate solution
with S = 1 (dotted line) for Z = 0.4058 at t = 0 and t = 1: the two solutions coincide. Right:
the deterministic modes of the symplectic DO approximate solution with S = 1 at t = 0 and
t = 1: the modes are constant in time. Discretization parameters: number of Gauss-Legendre
collocation points Ny = 7, spatial discretization h = 0.01, time-step Δt = 0.01.

equal to 1, i.e. LU(0) = U(0), we claim that the Symplectic DO system (5.71) recovers the

exact solution of problem (5.69) and keep the deterministic modes constant in time. Namely

we want to show that the exact solution, written as u(t) = U(t)Y(t) with U(t) = U(0) and

Y(t) = (Z (ω)cos(t),−Z (ω)sin(t))T , satisfies (5.71). To verify this, we start by assuming that

C+ JT
2 CJ2 has full rank, with C denoting the moments matrix, i.e. E[YYT ]. Under this assump-

tion, one can easily see that equations (5.71) are automatically satisfied by U(t) =U(0), by

observing that
0= U̇(C+ JT

2 CJ2) =P ⊥
U

[
J2UC−UCJT

2

]
=P ⊥

U

[
U
]
(J2C−CJT

2 )

= 0

since P ⊥
U

[
U
]

is clearly equal to zero. Thus, the Symplectic DO system, which is reduced to

the Hamiltonian system for the evolution of the coefficients Y, degenerates to the proper

symplectic decomposition proposed in [107]. Specifically we have Ẏ = J2Y with initial con-

dition Y(0), which admits a unique solution given by Y(t)= (Z (ω)cos(t),−Z (ω)sin(t))T . We

finally verify that the assumption on the rank of C+JT
2 CJ2 is actually fulfilled, by observing that

C+ JT
2 CJ2 =

(
E[Z 2] 0

0 E[Z 2]

)
at any time. This allows us to conclude that the Symplectic DO

method recovers the exact solution by keeping the deterministic basis constant in time. The

numerical results perfectly agree with the previous analysis, with the only care in choosing a

symplectic time discretization scheme, see Figure 5.1.
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Figure 5.2 – The solution for two different realizations of Z ,i.e. Z = 0.906 and Z = 0.538,
at t = 0 on the left and t = 0.8 on the right. The symplectic DO solution coincides with
the reference solution computed with the Stochastic collocation method. Discretization
parameters: number of Gauss-Legendre collocation points Ny = 5, spatial discretization
h = 0.01, time-step Δt = 0.01.

5.7.2 Linear Deterministic Hamiltonian: validation 2

Next, we consider again a linear wave equation but with a more general initial condition:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q̈(x, t ,ω)= 0.1Δq(x, t ,ω) x ∈ (0,1), ω ∈Ω, t ∈ (0,T ]

q(0, t ,ω)= q(1, t ,ω)= 0 ω ∈Ω, t ∈ (0,T ]

q(x,0,ω)= Z (ω)h(10×|x−0.5|) x ∈ (0,1), ω ∈Ω
q̇(x,0,ω)= 0 x ∈ (0,1), ω ∈Ω

(5.73)

with:

h(s)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1−1.5s2+0.75s3 0≥ s ≤ 1

0.25(2− s)3 1< s ≤ 2

0 s > 2

Since the Hamiltonian is linear and deterministic, the exact solution, which at time t = 0

is a symplectic 1-rank function, has rank which is constant in time and can be written as

u(x, t ,ω)= Z(ω)(q(x, t ), p(x, t)). By observing that J2Lu and Lu belong to the tangent space

Tu(t )M
s ym
1 at any time, we claim that the Symplectic DO method recovers again the exact

solution. In particular, the Symplectic DO approximate solution, which is initialized as:

U0 =
[

h(10×|x−0.5|)
‖h(10×|x−0.5|)‖ 0

0 h(10×|x−0.5|)
‖h(10×|x−0.5|)‖

]
Y0 =

[
‖h(10×|x−0.5|)‖Z

0

]
,

is expected to evolve as (U(t ), Z X(t )), where X(t ) is a rescaling factor, and satisfies U(t )Y(t )=u

at any time. The numerical results validate the exactness of the Symplectic DO method for

the problem under consideration, up to the numerical discretization error in time and space.

The validation is done by comparing the Symplectic DO approximate solution to the reference
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Figure 5.3 – The deterministic modes Q (left) and P (right) of the symplectic DO approximate
solution at time t = 0 and t = 0.8. We observe that both the modes evolve in time by following
the variability spread of the solutions. Discretization parameters: number of Gauss-Legendre
collocation points Ny = 5, spatial discretization h = 0.01, timestep Δt = 0.01.

solution computed with the Stochastic Collocation method with Gauss-Legendre points ([5]).

Figure 5.2 shows the solution for two different realizations of Z and at two different times t = 0

and t = 0.6: we see that the DO solution and the reference solution coincide. Contrary to the

previous example (in which the deterministic basis remains fixed in time), Figure 5.3 shows

that in this case, the deterministic modes evolve in time by following the wave propagation.

In particular, we observe that the mode P1, initialized to zero, will be automatically activated

by the method, which means that the approximation will not be restricted to the diagonal

structure of U0, used for the initialization. This shows the potential of the Symplectic DO

method with respect to a reduced order method with fixed (in time) bases.

5.7.3 Wave equation with random wave speed

We now consider a linear wave equation with random speed and random initial data, in the

2-dimensional physical domain D = (0,1)2, with boundary ∂D = Γ̄N ∪ Γ̄D , Γ̄N = {(x, y) ∈R2, x ∈
(0,1), y = 1}, ΓD = ∂D\ΓN . The problem reads as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̈(x, t ,ω)= c2(ω)Δq(x, t ,ω) x ∈ (0,1)2, t ∈ (0,T ], ω ∈Ω
q(x, t ,ω)= 0 x ∈ ΓD , t ∈ (0,T ], ω ∈Ω
∂n q(x, t ,ω)= 0 x ∈ ΓN , t ∈ (0,T ], ω ∈Ω
q(x,0,ω)=α(ω)q0(x) x ∈ (0,1)2, ω ∈Ω
q̇(x,0,ω)= 0 x ∈ (0,1)2, ω ∈Ω

(5.74)

with:

q0(x)=
⎧⎨
⎩e

−‖x−0.5‖2

2(0.1)2 ‖x−0.5‖2 < 0.8

0 ‖x−0.5‖2 ≥ 0.8
(5.75)
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Here the randomness arises form both the diffusion coefficient and the initial data. We assume

that the uncertainty in the initial condition is independent from the randomness of the wave

speed. The stochastic space is parametrized in terms of 2 independent random variables Z1,

Z2, affecting respectively the initial position q(0) and the diffusion coefficient. Specifically we

assume α= (Z1+0.1)2 and c2 = 0.1+0.05Z2 with Z1, Z2 linearly independent and uniformly

distributed in [−1,1]. The goal here is to test the symplectic DO method on a problem in which

the probability distribution (and consequently the rank) of the exact solution changes over

time. We start by rewriting problem (5.74) in Hamiltonian form:⎧⎨
⎩u̇(x, t ,ω)=J2L(ω)u(x, t ,ω)

u(x,0,ω)= (
(Z1(ω)+0.1)2q0(x),0

) with L=
[
−c2(ω)Δ 0

0 I

]
, (5.76)

Observe that the Hamiltonian explicitly depends on the random variable c2:

Hω(q, p,ω)= 1

2

∫
D

(|p|2−c(ω)2|∇q|2).

We look for an approximate solution uS ∈M
s ym
S written as:

uS(x, t ,ω)=
(

qS(x, t ,ω)

pS(x, t ,ω)

)
=

2S∑
i=1

Ui (x, t )Yi (ω, t )=

⎛
⎜⎜⎝

2S∑
i=1

Qi (x, t )Yi (t ,ω)−
2S∑

i=1
Pi (x, t )Yi (t ,ω)

2S∑
i=1

Pi (x, t )Yi (t ,ω)+
2S∑

i=1
Qi (x, t )Yi (t ,ω)

⎞
⎟⎟⎠ ,

(5.77)

which satisfies{
Ẏ=<J2LU,U> Y (5.78a)

U̇(C+ JT
2S CJ2S)=P ⊥

U

[
J2E[LUYYT ]−E[LUYYT ]JT

2S

]
(5.78b)

at any time and for some S ≥ 1. Despite the initial condition is a 1-rank function, the rank of

the exact solution is expected to increase in time. Indeed, even if the governing equation is

linear, the parameters-to-solution maps is non-linear, due the randomness which affects the

differential operator. Thus it is reasonable to assume that the Symplectic DO approximation

needs S > 1 modes to achieve good levels of accuracy.

We look for a Symplectic DO approximate solution in M
s ym
S for S > 1, and for the initialization

of the modes we adopt the same strategy used in [96, 95]; namely the deterministic modes are

initialized randomly and the redundant stochastic coefficients are set to zero. Precisely, after

setting Q̃1 = q0 and Ỹ1 = (Z1+0.1)2, we initialize Q̃2, ...,Q̃S randomly with associated stochastic

coefficients Ỹ2, ..., ỸS equal to zero. Then, in order to get a symplectic orthogonal basis, we

factorize Q̃, by using the (real) QR factorization, in Q̃=QR and we initialize:

U=
[

Q 0

0 Q

]
, Yi =

S∑
j=1

Ri j Ỹ j and ỸS+i = 0, ∀i = 1, ...,S.
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Roughly speaking, we use a number of modes larger then what needed to approximate the

initial data (although the approximate solution thus constructed has deficient rank), but we

evolve in time only the “active” modes (possibly after a suitable rotation of the basis), i.e. those

corresponding to non vanishing singular values. The problem of dealing with approximate

solutions with deficient rank is however an issue which generally affects the dynamically

low rank approximation with fixed rank, at initial and successive time. To deal with it, we

implemented two alternative strategies: the first one simply consists in multiplying both

sides of (5.78b) by the pseudo inverse of (C+ JT
2S CJ2S); the second is based on the complex

diagonalization of (C+ JT
2S CJ2S). Detailing more the second strategy, let C̃ denotes the sum

(C+ JT
2S CJ2S). Observe that C̃ satisfies C̃ = JT

2S C̃J2S , so it can be written as: C̃ =
[

C̃1 −C̃2

C̃2 C̃1

]
,

with C̃1, C̃2 ∈RS×S . This means that C̃ can be identified by the complex hermitian matrix Ĉ=
C̃1+ i C̃2 ∈CS×S . Let D̂, V̂ be respectively the (complex) eigenvalues and eigenvectors of Ĉ, and

V the real matrix representation of V̂, i.e. V=
[

Re(V̂) −Im(V̂)

Im(V̂) Re(V̂)

]
. We define Ũi = (ŨQ

i ,Ũ P
i )T =∑2S

j=1 U j V j i and we rewrite equations (5.78b) with respect to the rotated basis Ũ. Observe that

the complex diagonalization guarantees that the rotated basis Ũ belongs to U(S, [H 1(D)]2),

since the product of symplectic orthogonal matrices is as well symplectic orthogonal. Then we

actually solve only the equations corresponding to not vanish eigenvalues, i.e. the equations

in ˙̃Ui for which Di i (which is real) is larger then a prescribed tolerance, for any i = 1, ...,S.

Denoting by r the rank of D, the remaining modes Ũr+1, ...,ŨS are kept constant to the previous

time iteration. Finally, by exploiting the unitary structure in (5.28), we reconstruct the complete

basis as:

Ũ=
[

ŨQ −ŨP

ŨP ŨQ

]
(5.79)

and we get the updated modes in the original coordinates by multiplying by VT . Despite the

two strategies lead to comparable numerical results, the technique based on the complex diag-

onalization, has the computational advantage of solving the minimum number of equations

required. In practice, in the results reported here, the rank r is computed with respect to a

threshold ε that is weighted by the largest eigenvalue of D at each time, specifically we set

threshold equal to ε= 10−15 max
i=1,...,S

Dn
i i at any t n = nΔt .

5.7.4 Numerical Discretization

The implementation of all numerical tests in this Chapter has been developed within the open

source Finite Element library FEniCs [3]. The Finite Element method is used for the discretiza-

tion in the physical space, namely for solving (5.78b) and for computing the L2(D)-projection

in (5.78a). Specifically we use P1 finite elements on a uniform triangular grid of equal edges

h = 0.04. For what concerns the discretization of the random modes, we parametrize the

stochastic space in terms of a uniformly distributed random vector η, in accordance with
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the distribution of the input random data. Thus the stochastic space (Ω,A ,P ) is replaced by

(Λ,B(Λ), f (η)dη) where here Λ= [−1, 1]2, B(Λ) and f = 1
4 denote respectively the domain,

the Borel σ-algebra and the density function of η. Then, equations (5.78a) are solved with

the Stochastic Collocation method on Gauss-Legendre collocation points with tensorized

Gaussian grid [5]. The corresponding quadrature formula is used to compute the covariance

matrix and any expected value in (5.78b). However, the use of sparse stochastic collocation

grids is recommended for problems in higher dimensional stochastic spaces. For details see

e.g. [135, 5, 101].

The time discretization scheme has to be carefully chosen in order to preserve the symplectic

structure of the problem. For a complete review of symplectic schemes we refer to [56] and

references therein. Moreover, since numerical symplectic schemes do not necessarily pre-

serve the orthogonal structure (5.28) at the discrete level, especially for approximate solutions

with deficient rank, special attention has been paid to preserve both the orthogonal and

symplectic structure of the deterministic modes. We propose two possible time discretiza-

tion strategies, described hereafter, both finalized to preserve the symplecticity of the flow

and guarantee the orthogonality of the deterministic basis. Based on the linear reversibility

of wave equations, which states that the time reversed solution of a wave equation is also

solution to the same wave equation, we look for a numerical scheme which, when applied

to a reversible differential equation, produces a reversible numerical flow, in order to get a

consistent long-time behavior. Based on the link between reversibility and symmetric schemes

[56], we propose two possible symplectic time discretization methods based respectively on a

symmetric splitting and on the implicit midpoint rule (which is a symmetric scheme). The

two procedures can be summarized as follows:

• Strang splitting in U,Y combined with the symplectic Euler scheme. Starting from

un
S =UnYn at t = t n :

– we compute Yn+1/2 ≈Y(t n + Δt
2 ) by solving system (5.78a) discretized in time with

the Symplectic Euler scheme for half time step;

– we compute Un+1 ≈U(t n+Δt ) by solving system (5.78b) with the Symplectic Euler

scheme and the updated coefficients Yn+1/2;

– we re-orthogonalize Un+1 by using the complex QR factorization;

– we compute Yn+1 ≈ Y(t n +Δt) by solving system (5.78a) for half time step, with

initial values Yn+1/2 and the updated deterministic basis. The equations are dis-

cretized by the adjoint Symplectic Euler scheme with respect to the one used in

the first half-step.

• Standard Lie-Trotter splitting in U,Y combined with the implicit midpoint scheme for
the time discretization of both system (5.78a) and system (5.78b). We apply the complex
diagonalization strategy to (5.78b) and we denote by un

S =UnYn = ŨnỸn the approximate
solution at time t n = nΔt in standard and rotated bases respectively. Equations (5.78a)-
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Figure 5.4 – Evolution in time of the approximation error of the Symplectic DO method with
different number of modes (S=3,4,5,6). The error is computed in norm H 1(D)⊗L2(Ω) with
respect to a reference solution computed with the Stochastic Collocation method. On the
left the approximation error with the Strang splitting combined with the symplectic Euler
scheme. On the right the Lie-Trotter splitting combined with the implicit midpoint scheme
(right). Discretization parameters: stochastic tensor grid with Gauss-Legendre collocation
points, number of points: Ny = 49, spatial discretization: triangular mesh with edge h = 0.04,
uniform time-step Δt = 0.001.

(5.78b) are discretized in time as follows:

1
Δt Yn+1− 1

2 <J2LUn ,Un > Yn+1 = 1
Δt Yn + 1

2 <J2LUn ,Un > Yn

1
Δt Ũn+1

i D̂n+1
i i − 1

2 P ⊥
Un

[
J2E[LŨn+1

i Ỹn+1
i Ỹn+1

i ]+E[LŨn+1
i Ỹn+1

i Ỹn+1
S+i ]

] = 1
Δt Ũn

i D̂n+1
i i

+ 1
2 P ⊥

Un

[
J2E[LŨn

i Ỹn+1
i Ỹn+1

i ]+E[LŨn
i Ỹn+1

i Ỹn+1
S+i ]

]
+P ⊥

Un

[
J2E[

2S∑
j=1
j !=i

LŨn
j Ỹn+1

j Ỹn+1
i ]+E[

2S∑
k=1

k !=S+i

S∑
j=1

LŨn
j Ỹn+1

j Ỹn+1
k (J2S )ki ]

]
(5.80)

Concerning the re-orthogonalization of the deterministic modes in the second strategy, we

recall that the midpoint rule has the convenient property of conserving quadratic invariants

and in particular the implicit midpoint scheme is a unitary integrator [41]. We numerically

observe that the implicit midpoint scheme helps in preserving the symplectic orthogonal

structure of the deterministic basis, thus reducing the number of the (computationally expen-

sive) re-orthogonalizations. However, we emphasize that the midpoint scheme proposed here

does not preserve exactly the unitary structure of U and reorthogonalization is still needed for

approximate solutions with deficient rank. In particular, the unitary structure is slightly com-

promised by the explicit treatment of the coupling terms in (5.80). However for the problem

under consideration, this scheme allows us to apply a complex QR re-orthogonalization only

in the very first time steps, when the solution has deficient rank, and then around every 100

iterations (one possibility is to apply the complex QR decomposition only when the error in

the orthonormalization of U is larger then a prescribed tolerance). Figure 5.4 shows the ap-

proximation error of the Symplectic DO approximate solution, implemented with the Strang

splitting combined with Symplectic Euler method on the left, and with the Lie-Trotter splitting
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combined with the midpoint scheme on the right, with different numbers of modes. The error

is computed in norm H 1(D)⊗L2(Ω) with respect to a reference solution computed with the

Stochastic Collocation method on Gauss-Legendre points using 7 points in each direction and

the same discretization parameters in time and space, i.e. a triangular mesh with edge h = 0.04

and uniform time-step Δt = 0.001. We observe that good level of accuracy can be reached with

only a few modes and in particular, for S = 6 the magnitude of error tends to stay constant in

time and lower than 10−4. Despite the two strategies lead to comparable numerical results,

we point out that the second one is generally computationally more efficient since a smaller

number of re-orthogonalizations is required. We conclude by reporting here same qualitative

results to show the effectiveness of the Symplectic DO method in reproducing the exact follow

of the solutions. In Figure 5.5 and Figure 5.6 we compare the exact and the approximate

solution with S = 5, evaluated in α = 1, c2 = 0.121 and α = 0.4, c2 = 0.063 respectively, at

different times. One can see that, even if the two realizations ( i.e. for α= 1, c2 = 0.121 and

α= 0.4, c2 = 0.063) are quite different at fixed time, the Symplectic DO is able to effectively

reproduce both of them.

5.8 Conclusion

In this Chapter, we developed a dynamical low-rank technique for the approximation of

wave equations with random parameters, which combines the DLR approach with the use of

symplectic deterministic (dynamic) bases. The governing equation is rewritten in the Hamil-

tonian form in a suitable symplectic space, and the approximate solution is sought in the set

of all random fields which can be expanded, in separable form, over a symplectic-orthogonal

deterministic basis of dimension 2S. After deriving the proper conditions on the stochastic

coefficients to equip this set, denoted by M
s ym
S , with a manifold structure, we formulated the

Symplectic DLR variational principle as the symplectic projection of the Hamiltonian system

onto the tangent space to M
s ym
S along the approximate trajectory. We showed that this coin-

cides with rewriting the governing Hamiltonian system in complex variables and looking for a

DLR approximation in the manifold MC
S of all the complex-valued random fields with rank S.

We used the analogy between the complex manifold MC
S and its real representation M

s ym
S

to determine a suitable parametrization of the tangent space to M
s ym
S (in real form). After

deriving the associated orthogonal constraints on the dynamics of the deterministic modes,

we recovered the reduced dynamical system which, in the real framework, consists of a set of

equations for the constrained dynamics of the deterministic modes, coupled with a reduced

order Hamiltonian system for the evolution of the stochastic coefficients. The Symplectic

DO shares with the symplectic order reduction the use of symplectic deterministic bases, and,

as the “classic” DO approximation, allows both the stochastic and the deterministic modes

to evolve in time. As a result, the approximate solution preserves the (approximated) mean

Hamiltonian energy and continuously adapts in time to the structure of the solution.
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Figure 5.5 – Reference solution (left) and Symplectic DO approximate solution with S = 5 (right) for
α = 1 and c2 = 0.121 at t = 0, t = 1, t = 1.5, and t = 2. Discretization parameters: stochastic tensor
grid with Gauss-Legendre collocation points, number of points: Ny = 49, spatial discretization: P1
finite elements over a triangular mesh with edge h = 0.04, uniform time-step Δt = 0.001 (with implicit
midpoint scheme).
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Figure 5.6 – Reference solution (left) and Symplectic DO approximate solution with S = 5 (right)
for tree different values of α = 0.4 and c2 = 0.063 at t = 0, t = 1, t = 1.5, and t = 2. Discretization
parameters: stochastic tensor grid with Gauss-Legendre collocation points, number of points: Ny = 49,
spatial discretization: triangular mesh with edge h = 0.04, uniform time-step Δt = 0.001 (with implicit
midpoint scheme).
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6 Conclusions and perspectives

In this thesis, we developed and analyzed dynamical low-rank techniques for the approxima-

tion of time evolving PDEs with random data.

The starting point has been to establish a link between the DO method, proposed in [116, 117]

for the approximation of PDEs with random initial data, and the MCTDH method used for the

approximation of deterministic Schrödinger equations, or its discrete analogue Dynamical

Low Rank approximation of evolution matrix or tensor equations [39, 66]. After defining the

approximation manifold as the collection of all the S rank random fields, i.e. the set of all

functions which can be expressed as a sum of S linearly independent deterministic modes

combined with S linearly independent stochastic modes, we formalized the Dynamical Low

Rank variational principle for parabolic equations with random parameters, which consists in

a Galerkin projection of the governing equations onto the tangent space to the approximation

manifold along the approximate trajectory. In this setting the DO reduced system is rederived

by means of one of the (many) possible parametrizations of the tangent space. The variational

approach proposed here, besides giving a unified formulation for the DO method and other

dynamical low-rank techniques such as the DyBO and the DDO method, allows for a suitable

mathematical analysis of such approaches. There were, indeed, no previous works in literature

addressing this issue in the context of PDEs with random data. In light of the theoretical

results developed for the MCTDH method and the Dynamical Low-Rank approximation, we

investigated the properties of the manifold MS for a linear parabolic equation with random

parameters. Specifically, we exploited the curvature bounds of MS to derive a theoretical

bound for the approximation error of the S−terms DO solution in terms of the corresponding

S-terms best approximation, i.e. the truncated S−terms Karhunen-Loève expansion at each

time instant. The bound is applicable for full rank DLR approximate solutions on the largest

time interval in which the best S−terms approximation is continuously differentiable in time.

We observed by means of simple analytical examples that the regularity assumption on the

Karhunen-Loève decomposition is actually a necessary condition to maintain an effective

control on the DO approximation error. As confirmed by the numerical results, the DO

approximation error is properly bounded in terms of best approximation error as long as
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the eigenvalues of Karhunen-Loève expansion included in the S rank approximation, do

not cross the ones which have been initially omitted. This provides an indication of the

effectiveness of the DO method for different types of problems. More challenging appears

instead the extension of the error analysis to non linear problems, as for instance Navier-

Stokes equations, for which the analysis is complicated by the difficulty in obtaining bounds

on the time derivative in the stochastic space. Moreover, the possibility of extending the error

analysis to approximate solutions with deficient rank remains an open issue. The problem of

the rank-deficiency is as well the main obstacle in the analysis of the existence and uniqueness

of the approximate solution. While our theoretical analysis requires the full rank condition,

we overcome this problem in the numerical scheme by using a strategy based on the pseudo-

inverse operator: we initialize the solution with a large number of modes (although the initial

solution thus constructed might be rank deficient), and only the “active” modes (possibly after

a suitable rotation of the basis), i.e. those corresponding to non-vanishing singular values, are

actually evolved in time. This allows the rank of the approximate solution to adapt in time

without losing computational efficiency.

However, it looks promising for future developments to investigate formulations of DLR

techniques with an adaptive choice of the number of modes, based on suitable a-posteriori

error estimators. The strategy to reduce the rank is quite straightforward. By analyzing the

eigenvalues and eigenvectors of the correlation matrix of the non orthogonalized modes, one

can easily drop the components corresponding to the eigenvalues which are below a given

threshold. On the other hand, the technique to increase the rank is not obvious. Preliminary

results have been obtained for the Dual DO formulation of parabolic diffusion equations with

an adaptive strategy based on:

• an a posteriori error estimator to determine if and at which time the rank needs to be

increased,

• the random initialization of the new stochastic modes, combined with a suitable time

splitting, to exploit the instantaneous time-adaptivity of the DLR method.

The effectiveness of the random initialization has been already observed in this thesis for the

DLR approximation with fixed number of modes (possibly rank deficient). Indeed the same

strategy has been applied in Chapter 4 and Chapter 5 for the initialization of the modes at t = 0,

with remarkable results. On the other hand, in the context of rank adaptivity, the advantage in

terms of computational effort is evident: it allows to reduce the computational cost due to the

initialization of the new modes, which can be done for instance by sampling the orthogonal

component to the tangent space, as proposed in [117] or by power-type or Arnoldi iterations

similarly to what proposed in [124] in the context of Proper Orthogonal Decomposition. The a

posteriori error estimator is instead computed in the same spirit as what typically done in the

Reduced Basis method [52, 55]. This technique is based on two ingredients: an estimate of the

dual norm of the residual:

ε(t n)∼= sup
ω∈Ω

(
sup
u∈H

r (u, t n ,ω)

‖u‖H

)
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where r (u, t n ,ω) is the residual of the equation, obtained by plugging the Dual DO approximate

solution in the governing equation evaluated in ω, and a lower bound αmi n for the coercivity

constant. Thus, the error can be bounded as:

‖u(t )−uDLR (t )‖2
H⊗L2(Ω) <∼

( Δt

αmi n

n∑
l=1

(ε(t l ))2
)

The algorithm under investigation can be summarized as follows:

Algorithm 1

1: ūtmp ← solve equation for the mean
2: if S > 0 then
3: Utmp ← solve equations for the determinitic modes
4: Ytmp ← solve equations for the stochastic modes with updated Utmp

5: Δ← compute the residual
6: if Δ< ε then
7: ūn+1 ← ūtmp

8: Un+1 ←Utmp

9: Yn+1 ← Ytmp

10: else
11: S ← S+1
12: Z ← random initialization , Yn ← [Yn , Z ]
13: V ← 0, Un ← [Un ,V ]
14: QR-orthogonalization of Yn

15: ūn+1 ← solve equation for the mean
16: Un+1 ← solve equations for the determinitic modes
17: Yn+1 ← solve equations for the stochastic modes with updated Un+1

The effectiveness of the proposed algorithm has been tested on the following toy-problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u(x, t ,ω)

∂t
− ∂2u(x, t ,ω)

∂x2 = f (x, t ,ω) x ∈ (0, π), t ∈ (0,T], ω ∈Ω
u(0, t ; ω) = u(2π, t ; ω) = 0 t ∈ (0,T], ω ∈Ω
u(x,0; ω)= sin(x) x ∈ (0, 2π), ω ∈Ω

(6.1)

where

f (x, t ,ω)= Z1(ω)x(x−π)+Z2(ω)(|cos(x)|−1)(t ≥ 0.01)+Z1(ω)sin(4x)(t ≥ 0.015)

+(Z 3
2 (ω)+Z3(ω))sin(2x)(t ≥ 0.02)

with Z1, Z2, Z3 independent and uniformly distributed random variables in [−1,1]. The exact

solution is deterministic at the initial time and affected by randomness as time evolves for the

effect of the forcing term. We start the approximation with S = 0. Figure 6.1 (left) shows that the

algorithm is able to increase the number of modes when needed, namely at t = 0 to include the

randomness coming from the term Z1(ω)x(x−π), then at t = 0.01 and t = 0.02 when the terms
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Figure 6.1 – Left: The number of modes. Right: evolution in time of the residual norm (blue)
and the approximation error in norm L2(Ω)⊗H 1(D) of the Dual DO approximate solution with
rank adaptive strategy, compared to a reference solution computed with Stochastic Collocation
method. Discretization parameters: space steps h = 0.01, time step Δt = 0.001, stochastic
tensor grid with Gauss-Legendre collocation points with 5 points in each directions.

Z2(ω)(|cos(x)|−1) and Z3(ω)sin(2x) are activated respectively. Moreover, we observe that, as

expected, no adding occurs at t = 0.015. This means that the term Z1(ω)sin(4x) belongs to the

tangent space to uS(t ) at t = 0.015, which confirms that the first added stochastic mode has

been properly adapted by the algorithm. The analysis of the error in Figure 6.1 (right) supports

the claim on the effectiveness of the technique. We observe that the approximation error of

the Dual DO solution with rank adaptive strategy, which is, however, smaller than 10−10, is

due to the time discretization scheme and converges to zero as the time step decreases.

In the same direction, further adaptive strategies to drive a mesh adaptation during the time

evolution or an adaptive choice of the time discretization step can be investigated to improve

the performance of the DLR approximation.

The second achievement has been the extension of the DRL approach to parabolic equations,

and, in particular, Navier Stokes equations, with random Dirichlet boundary conditions. We

have proposed a convenient strategy to strongly impose to the DLR approximate solution a

suitable (low rank) approximation of the Dirichlet boundary conditions. This resulted in an effi-

cient dynamical low-rank approximation which accurately takes into account the randomness

arising from the boundary data at the price of a slightly reduced flexibility in the evolution of

the random modes. In particular, we showed that the set of S rank random fields, constrained

to satisfy an approximation of the boundary datum of the exact solution, can be equipped with

a structure of a differential manifold, allowing for a parametrization of its tangent space in

terms of dynamical constraints on the stochastic coefficients. To do so we proposed a Dual DO

formulation in which the stochastic modes are kept orthonormal. Under the assumption that

the boundary datum g can be properly approximated by a linear combination gM of M < S

terms written in the separable form, we fixed M stochastic modes in the approximate solution

equal to those in the decomposition of gM . This allowed us to identify the proper boundary
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conditions for each (time dependent) deterministic mode and guarantee that the boundary

constraint is fulfilled at each time. The same formulation is also used to conveniently include

the incompressibility constraint when dealing with incompressible Navier-Stokes equations

with random parameters. Indeed we were able to effortlessly impose the solenoidal constraint

in each deterministic mode, facilitated by the fact that in the Dual DO formulation no numer-

ical orthonormalization or dynamic constraint are required in the deterministic modes. In

conclusion, Navier Stokes equations with random parameters, including random Dirichlet

boundary conditions, has been reduced to S coupled deterministic PDEs of Navier-Stokes type

and a system of S−M stochastic ODEs. The Dual DO method has been tested on two fluid

dynamics problems: the classical benchmark of a laminar flow around a cylinder with random

inflow velocity, and a biomedical application simulating blood flows in a realistic carotid artery

reconstructed from MRI data, where the inflow boundary conditions are taken as random

due to the uncertainty and large errors in Doppler measurements of the inflow velocity. The

results highlight the remarkable potentials of the Dual DO method for this type of applications.

The third achievement has been the development of a dynamical low-rank technique for the

approximation of wave equations with random parameters. We proposed the Symplectic DO

method, which combines the DLR approach, devised for parabolic equations, to the use of

symplectic deterministic bases, as proposed in the Symplectic Order reduction of parametric

Hamiltonian systems. The governing equation is rewritten in the Hamiltonian form in a

suitable symplectic space and the approximate solution is expanded over a set of 2S (time

dependent) symplectic-orthogonal deterministic modes, with (time dependent) stochastic

coefficients. We derived the proper conditions to embed the set M
s ym
S , i.e. the collection of

all S rank random fields which can be exactly expanded over a symplectic -orthonormal basis

of dimension 2S, with a manifold structure and we formulated the Symplectic DLR variational

principle as the symplectic projection of the Hamiltonian system onto the tangent space to

M
s ym
S along the approximate trajectory. We showed that this corresponds to rewrite the

governing Hamiltonian system in complex variables and looking for a DLR approximation in

the manifold MC
S of all the complex-valued random fields with rank S. We used the analogy

between the complex manifold MC
S and its real representation M

s ym
S to determine a suitable

parametrization of the tangent space in the real framework. After deriving the associated

orthogonal constraints on the dynamics of the deterministic modes, we recover the reduced

dynamical system which consists of a set of equations for the constrained dynamics of the

deterministic modes, coupled with a reduced order Hamiltonian system for the evolution of

the stochastic coefficients. The Symplectic DO shares with the symplectic order reduction the

use of symplectic deterministic bases, and, as the “classic” DO approximation, allows both

the stochastic and the deterministic modes to evolve in time. As a result, the approximate

solution preserves the (approximated) mean Hamiltonian energy and continuously adapts in

time to the structure of the solution.

The variational formulation of the Symplectic DO method sets a basis for extending to wave

equations with random data the error analysis derived for the DLR approximation of lin-
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ear parabolic equations. Promising seems also the analysis of the well-posedness of the

Symplectic DLR problem, as strategies that exploit the conservation of energy may be em-

ployed here to prove existence and uniqueness of the approximate solution. Envisaged future

investigations concern also the generalization of the Symplectic DLR approach to dynamical

low-rank approximations with arbitrary (not necessarily orthonormal) symplectic bases. In-

deed, the assumption of orthonormality of the deterministic modes is used here to exploit the

complex representation and parametrize the tangent space but is not strictly needed to define

the Symplectic DLR variational principle. Interesting is then the study of some possible char-

acterizations of the approximation manifold when this condition is removed. This approach

could potentially lead to remarkable improvements in the effectiveness of the approximation.
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