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Abstract

This thesis examines predictability and seasonality in the cross-section of stock returns.

The first chapter, titled “Infrequent Rebalancing, Return Autocorrelation, and Seasonality,”

shows that a model of infrequent rebalancing can explain specific predictability patterns in the

time series and cross-section of stock returns. First, infrequent rebalancing produces return

autocorrelations that are consistent with empirical evidence from intraday returns and new

evidence from daily returns. Autocorrelations can switch sign and become positive at the

rebalancing horizon. Second, the cross-sectional variance in expected returns is larger when

more traders rebalance. This effect generates seasonality in the cross-section of stock returns,

which can help explain available empirical evidence.

The second chapter, titled “Seasonalities in Anomalies,” investigates return seasonalities in a

set of well-known anomalies in the cross-section of U.S. stocks returns. A January seasonality

goes beyond a size effect and strongly affects most anomalies, which can even switch sign in

January. Both tax-loss selling and firm size are important in explaining the turn-of-the-year

pattern. Return seasonality exists outside of January, with respect to the month of the quarter.

Small stocks earn abnormally high average returns on the last day of each quarter, which

significantly affects size, idiosyncratic volatility, and illiquidity portfolios. The results have

implications for the interpretation and analysis of many anomalies, such as asset growth and

momentum.

The third chapter, titled “The Cross-Section of Intraday and Overnight Returns,” uses a thirty-

year sample of U.S. stock returns to document substantial cross-sectional variation in returns

over the trading day and overnight. Market closures have a large impact on returns. Small and

illiquid stocks earn high average returns in the last thirty minutes of trading. In contrast, large

and liquid stocks perform poorly at this time. I find support for institutional and information

asymmetry theories. But these theories do not fully explain the cross-sectional evidence.

Portfolios based on other characteristics, such as beta and idiosyncratic volatility, earn their

return gradually throughout the trading day—contrary to the market and a benchmark based

on random portfolios. These portfolios also tend to incur large negative returns overnight,
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Abstract

consistent with mispricing at the open.

Key words: Return Predictability; Return Seasonality; Asset Pricing Anomalies; Intraday Re-

turns; Liquidity; Infrequent Rebalancing
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Résumé

Cette thèse étudie la prévisibilité et la saisonnalité dans les données en coupe transversale de

rendements d’actions financières.

Le premier chapitre, intitulé “Infrequent Rebalancing, Return Autocorrelation, and Seasonal-

ity,” montre qu’un modèle de rééquilibrage peu fréquent explique des effets de prévisibilité

dans les séries temporelles et la coupe transversale des rendements d’actions. Premièrement,

le rééquilibrage peu fréquent produit des autocorrélations de rendements qui sont compati-

bles avec des résultats empiriques intra journaliers et de nouveaux résultats provenant des

rendements quotidiens. Les autocorrélations peuvent changer de signe et devenir positives à

l’horizon de rééquilibrage. Deuxièmement, la variance transversale des rendements espérés

est plus élevée lorsque plus d’agents rééquilibrent leurs portefeuilles. Cet effet génère une

saisonnalité dans la coupe transversale des rendements qui aide à expliquer les données

empiriques disponibles.

Le deuxième chapitre, intitulé “Seasonalities in Anomalies,” étudie les saisonnalités dans les

rendements d’anomalies documentées dans la coupe transversale des rendements d’actions

américaines. Un effet de saisonnalité en janvier n’est que partiellement expliqué par la capi-

talisation boursière et affecte fortement la plupart des anomalies. Le rendement moyen des

anomalies peut même changer de signe en janvier. Le gain fiscal potentiel et la capitalisa-

tion boursière sont des variables importantes pour expliquer les rendements à la fin et au

début de l’année. Une saisonnalité des rendements existe en dehors de janvier en fonction du

mois du trimestre. Les actions d’entreprises de petite taille gagnent des rendements moyens

anormalement élevés le dernier jour de chaque trimestre. Cet effet affecte de manière sig-

nificative les portefeuilles basés sur la capitalisation boursière, la volatilité idiosyncratique

et la liquidité. Les résultats ont des implications pour l’interprétation et l’analyse de nom-

breuses anomalies, telles que celles basées sur la croissance des actifs et l’élan des rendements.

Le troisième chapitre, intitulé “The Cross-Section of Intraday and Overnight Returns,” utilise

un échantillon de trente ans de rendements d’actions américaines pour documenter une

variation transversale substantielle des rendements au cours de la journée. Les actions peu
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Résumé

liquides et de petites entreprises génèrent en moyenne des rendements élevés au cours des

trente dernières minutes de négociation boursière. En revanche, les actions de grandes

entreprises ont tendance à se déprécier en fin de journée. Les théories basées sur les chocs de

liquidité et l’information asymétrique sont en partie validées mais n’expliquent pas l’effet de fin

de journée pour les actions peu liquides. Les portefeuilles basés sur d’autres caractéristiques,

telles que le beta et la volatilité idiosyncratique, gagnent leur rendement progressivement tout

au long de la session boursière, contrairement au marché et à un indice de comparaison basé

sur des portefeuilles aléatoires. Néanmoins, ces portefeuilles perdent de la valeur entre la

fermeture du marché et l’ouverture le jour suivant. Ce résultat empirique est conforme avec

une distorsion des prix à l’ouverture.

Mots-Clés: Prévisibilité des Rendements; Saisonnalité des Rendements; Anomalies Finan-

cières; Rendements Intra Journaliers; Liquidité; Rééquilibrage Infréquent

vi



Contents
Acknowledgements i

Abstract (English/Français) iii

List of Figures xi

List of Tables xiii

Introduction 1

1 Infrequent Rebalancing, Return Autocorrelation, and Seasonality 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Patterns in the Cross-Section of Stock Returns . . . . . . . . . . . . . . . . . . . . 7

1.3 A Dynamic Model with Infrequent Rebalancing . . . . . . . . . . . . . . . . . . . 8

1.3.1 The Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.3 Constant Proportion of Infrequent Traders . . . . . . . . . . . . . . . . . . 11

1.3.4 Equilibrium Multiplicity and Existence . . . . . . . . . . . . . . . . . . . . 13

1.4 Return Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.2 Heterogeneous Rebalancing Horizons . . . . . . . . . . . . . . . . . . . . . 17

1.4.3 Empirical Evidence: Intraday Returns . . . . . . . . . . . . . . . . . . . . . 17

1.4.4 Empirical Evidence: Daily Returns . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.5 Additional Empirical Evidence . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Return Seasonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.1 Alternative Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6 Trading Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Seasonalities in Anomalies 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Seasonalities in Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



Contents

2.2.1 January . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 Beginning and End-of-Quarter Effects . . . . . . . . . . . . . . . . . . . . . 38

2.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.4 Fama-French Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.5 Robustness Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.1 Potential Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.2 Evidence from Daily Returns . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.3 Anomalies and Tax-Loss Selling . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.4 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 The Cross-Section of Intraday and Overnight Returns 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Theories of Intraday and Overnight Average Returns . . . . . . . . . . . . . . . . 63

3.3 Data and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Intraday and Overnight Average Returns . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.1 Evidence from Anomaly Portfolios . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.2 Nonsynchronous Trading and Thin Trading . . . . . . . . . . . . . . . . . 76

3.4.3 Benchmarking the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Size and Illiquidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5.1 Closure Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5.2 Institutional Effects: Price Pressure . . . . . . . . . . . . . . . . . . . . . . 83

3.5.3 Liquidity at the Close . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.6 Gradual Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.7 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.7.1 Do Stocks Earn High Overnight Returns? . . . . . . . . . . . . . . . . . . . 90

3.7.2 Trade-Based Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Conclusion 95

Outline for Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A Appendix to Chapter 1 97

A.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

viii



Contents

B Appendix to Chapter 2 109

B.1 Additional Robustness Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.1.1 Price Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.1.2 Subsamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

C Appendix to Chapter 3 115

C.1 Reversals in Midquote Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Bibliography 127

Curriculum Vitae 129

ix





List of Figures
1.1 Cross-sectional regressions of intraday returns . . . . . . . . . . . . . . . . . . . 4

1.2 Autocorrelations for different degrees of liquidity trading persistence and differ-

ent degrees of infrequent rebalancing . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Autocorrelations predicted by the model for intraday returns . . . . . . . . . . . 18

1.4 Cross-sectional multiple regressions of daily returns . . . . . . . . . . . . . . . . 20

1.5 Partial autocorrelations predicted by the model for daily returns with different

degrees of liquidity trading persistence . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Cross-sectional regressions of monthly returns . . . . . . . . . . . . . . . . . . . 23

1.7 Return seasonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.8 Volume change autocorrelations predicted by the model with different degrees

of infrequent rebalancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.9 Cross-sectional regressions of daily turnover . . . . . . . . . . . . . . . . . . . . . 29

2.1 Average daily return of size portfolios around the turn-of-the-year . . . . . . . . 46

2.2 Average daily return of size portfolios around the turn-of-the-quarter . . . . . . 47

2.3 Average daily return of illiquidity and idiosyncratic volatility portfolios around

the turn-of-the-quarter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Intraday and overnight t-statistics of market alphas of long-short portfolios for

different subsamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Intraday and overnight market alphas of long-short portfolios across days of the

week . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Intraday benchmarks: market portfolio and random portfolios . . . . . . . . . . 79

3.4 Intraday and overnight market alphas of small and large stocks portfolios across

days of the week . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xi





List of Tables
2.1 Average January and non-January months returns of return-weighted and value-

weighted long-short decile portfolios formed on different characteristics. . . . . 35

2.2 Average returns of long-short return-weighted and value-weighted decile portfo-

lios formed on different characteristics shown separately for middle-of-quarter,

beginning-of-quarter (excluding January), and end-of-quarter months . . . . . 39

2.3 Estimates of time series regressions controlling for Fama-French three factors . 42

2.4 Average returns of long-short value-weighted decile portfolios formed on differ-

ent characteristics with size screen . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Average returns of long-short value-weighted quintile portfolios around the

turn-of-the-year split by capital loss overhang . . . . . . . . . . . . . . . . . . . . 51

2.6 Average returns of long-short value-weighted quintile portfolios around the

turn-of-the-year split by size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.7 Tax-loss selling (pooled regression) . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.8 Tax-loss selling (portfolios) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1 Intraday and overnight return properties of long-short portfolios . . . . . . . . . 69

3.2 Intraday and overnight alphas of long-short portfolios with volume filter . . . . 77

3.3 Double-sorted size/illiquidity portfolios . . . . . . . . . . . . . . . . . . . . . . . 85

3.4 End of quarters and intraday returns . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5 Earnings announcements and intraday returns . . . . . . . . . . . . . . . . . . . 89

3.6 Intraday and overnight alphas of long and short portfolios . . . . . . . . . . . . . 91

3.7 Intraday and overnight average returns in basis points of aggregate portfolios for

different measures of the opening price . . . . . . . . . . . . . . . . . . . . . . . . 92

A.1 Model calibration for daily and intraday returns . . . . . . . . . . . . . . . . . . . 107

B.1 List of anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B.2 January vs non-January months: subsamples . . . . . . . . . . . . . . . . . . . . 111

B.3 Quarter analysis (1964-1988) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.4 Quarter analysis (1989-2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xiii



List of Tables

C.1 First and last available intraday quotes for symbol IT on several dates extracted

from the TAQ database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C.2 List of anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xiv



Introduction

Why do some stocks perform better than others? This apparently simple question has turned

out to be a conundrum for research in finance. Over the past decades, many stock charac-

teristics have been shown to predict the cross-section of stock returns but are not explained

by standard finance theory. Even though these “anomalies” are the focus of a large literature,

there is little consensus about their sources.

The global objective of this thesis is to contribute to research on this fundamental question by

studying predictability and seasonality in the cross-section of stock returns. The three essays

in this thesis build on each others to contribute to the literature on cross-sectional variation in

stock returns, market efficiency, and liquidity.

The first chapter starts from the stylized fact that some stocks tend to perform systematically

better than others at specific times of the day. While puzzling at first sight, I show that this

observation can be explained by a theoretical model in which traders readjust their portfolios

infrequently.

The second chapter provides an empirical overview of seasonality effects in stock returns

at the monthly frequency. This empirical exercise is broadly motivated by the rebalancing

model developed in the first chapter. Although the rebalancing model sheds light on intraday

patterns, evidence of infrequent rebalancing exists at other frequencies. I show that significant

cross-sectional variation in stock returns at the monthly frequency is linked to rebalancing

effects such as tax-loss selling at the end of the year.

The third chapter expands the stylized fact that motivated the first chapter to provide a detailed

analysis of the cross-section of intraday and overnight returns. I show that market closures

generate significant cross-sectional variation in average stock returns and find partial support

for theories of institutional effects and asymmetric information.
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1 Infrequent Rebalancing, Return Auto-
correlation, and Seasonality

A model of infrequent rebalancing can explain specific predictability patterns in the time series

and cross-section of stock returns. First, infrequent rebalancing produces return autocorre-

lations that are consistent with empirical evidence from intraday returns and new evidence

from daily returns. Autocorrelations can switch sign and become positive at the rebalancing

horizon. Second, the cross-sectional variance in expected returns is larger when more traders

rebalance. This effect generates seasonality in the cross-section of stock returns, which can

help explain available empirical evidence.1

1.1 Introduction

Heston, Korajczyk, and Sadka (2010) document a striking pattern of periodicity in intraday

returns. Reproducing their main finding, Figure 1.1 shows that the average estimate from a

cross-sectional regression of current half-hour returns on lagged half-hour returns spikes at

intervals of one trading day for several days. The estimate can be interpreted as the return on

a momentum strategy—a high or low return on a stock in a given half-hour interval today can

help predict the return on the stock at the same time tomorrow and over the next several days.

Changes in trading volume display a periodicity pattern that is similar to that for returns (Hes-

ton, Korajczyk, and Sadka (2010)), which suggests that investor trading is a natural candidate

to explain the evidence. Motivated by this observation, in this paper I highlight the role of

infrequent rebalancing for return and volume periodicity patterns at different frequencies.

The literature on slow-moving capital documents that many market participants are active

only intermittently (Duffie (2010)). In particular, there is evidence of systematic trading and

1This chapter is the postprint version of the article published in The Journal of Finance. Permission to reproduce
this article was obtained from John Wiley and Sons. BOGOUSSLAVSKY, V. (2016), Infrequent Rebalancing, Return
Autocorrelation, and Seasonality. The Journal of Finance, 71: 2967–3006. doi:10.1111/jofi.12436
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Chapter 1. Infrequent Rebalancing, Return Autocorrelation, and Seasonality

0 13 26 39 52 65
−2

−1

0

1

lag l

1
T
−l

∑ T t=
l+

1
γ

l,
t

Figure 1.1. Cross-sectional regressions of intraday returns. The 9:30 to 16:00 trading day
is divided into 13 separate half-hour intervals. For every half-hour interval t and lag l , the
following cross-sectional regression is estimated using NYSE stocks: ri ,t =αl ,t +γl ,t ri ,t−l +ui ,t ,
where ri ,t is the simple return of stock i in interval t and ri ,t−l is the simple return of stock
i in interval t − l . The cross-sectional regressions are run for each lag l = 1, . . . ,65 (past
five trading days) using every half-hour return from January 2001 through December 2005
(T = 16,261 intervals). The figure plots the time-series averages of γl ,t scaled so that the
units are percentages. The data are reproduced from Heston, Korajczyk, and Sadka (2010).
Section 1.2 provides additional details about these regressions.

infrequent rebalancing at the intraday, daily, and monthly frequencies.2 To account for this

evidence, I study a dynamic model in which a subset of agents trade only infrequently.3 I show

that the model can help explain return autocorrelation and seasonality patterns at different

frequencies.

In the model, infrequent rebalancing generates specific return autocorrelation patterns. After

traders absorb a liquidity shock in an asset, they hold an excess position in the asset relative to

its normal weight in their portfolio. At a rebalancing date, traders with an excess position in

the asset unload part of their position in the market. This unloading is equivalent to another

liquidity shock. Infrequent rebalancing can then result in positive return autocorrelation by

propagating liquidity shocks across periods. This effect also modifies the dynamics of trading

volume. A large liquidity shock results in high volume during both the current period and the

rebalancing period.

2Heston, Korajczyk, and Sadka (2010) discuss why institutional fund flows and trading algorithms may lead
to periodicity in trading volume and order imbalances. Rakowski and Wang (2009) find a day-of-the-week effect
in mutual fund flows. Similarly, the rebalancing methodology documentation of several investment products
suggests that weekly reviews may take place on specific days of the week. Ritter (1988) provides evidence that
individual investors strongly rebalance their portfolios in January.

3The setup builds on the model of Duffie (2010) and relates to the finance literature on overlapping generations
models. See Spiegel (1998), Watanabe (2008), Biais, Bossaerts, and Spatt (2010), Banerjee (2011), and Albagli (2015),
among others.
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1.1. Introduction

Unless liquidity shocks are highly persistent, autocorrelations are negative at any horizon in

the economy without infrequent traders. More importantly, all autocorrelations have the same

sign. With infrequent rebalancing, autocorrelations can switch sign around traders’ rebalanc-

ing horizon and become positive. Momentum at the rebalancing date is key in matching the

empirical evidence. Similarly, change in trading volume is negatively autocorrelated at any

horizon without infrequent rebalancing.

The infrequent rebalancing mechanism stressed by the theory can explain the empirical

evidence shown in Figure 1.1. Assuming that a fraction of agents trade only once a day, the

model can reproduce the periodicity documented by Heston, Korajczyk, and Sadka (2010). In

the model, systematic trading generates predictable patterns in returns despite being perfectly

anticipated. The model can also explain other recent evidence on intraday index returns. Gao

et al. (2014) find that the first half-hour return on the SPDR S&P 500 ETF predicts the last

half-hour return. This result is in line with a fraction of agents adjusting their portfolios at the

open and close of the market.4

Empirically, I provide new evidence on the impact of infrequent rebalancing on daily U.S.

stock returns from 1983 to 2012.5 Cross-sectional regressions in the spirit of Jegadeesh (1990)

reveal patterns in return autocorrelations that are consistent with a significant fraction of

investors rebalancing at a weekly frequency. The model fits the short-term autocorrelation

pattern. Neglected stocks do not drive the result since high turnover stocks display more

pronounced patterns than low turnover stocks. This is in line with the theory, which suggests

that infrequent rebalancing is distinct from thin trading. Daily volume change autocorrelations

are broadly consistent with the theoretical predictions.

Empirical evidence from intraday and monthly returns displays persistent seasonality patterns

that go beyond autocorrelation effects. In particular, Heston and Sadka (2008) document a

persistent seasonality pattern in the cross-section of monthly U.S. stock returns. Contrary to

the intraday evidence in Figure 1.1, Heston and Sadka’s periodicity pattern does not show any

decay with the horizon. More recently, Keloharju, Linnainmaa, and Nyberg (2016) provide

substantial evidence on the pervasiveness of return seasonalities across asset classes and

markets.

The well-known intraday U-shaped pattern in trading volume suggests that many market par-

ticipants concentrate their trading at specific hours (Admati and Pfleiderer (1988)). Similarly,

the fraction of agents who adjust their portfolios is likely not constant over a trading week

4As anecdotal evidence, The Wall Street Journal (September 10, 2010) reports the story of a proprietary-trading
firm that is mostly active at the open and close of the market (“The Traders Who Skip Most of the Day”).

5Papers that are closest to this one include Jegadeesh (1990) on the profitability of monthly contrarian strategies
and Lehmann (1990) on weekly return reversal in individual securities. Nagel (2012) provides a more recent analysis
on the profitability of reversal strategies.
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Chapter 1. Infrequent Rebalancing, Return Autocorrelation, and Seasonality

or year (Dellavigna and Pollet (2009), Hong and Yu (2009)). To account for this evidence, I

extend the model to allow for variation in the proportion of infrequent traders across calendar

periods. I show that this extended model can generate persistent seasonality patterns in line

with the empirical evidence from intraday and monthly returns.6

In this extension, price impact varies across calendar periods. Traders require a larger risk

premium to hold an asset when they expect the price impact to be higher next period. More

precisely, variation in the proportion of infrequent traders across calendar periods generates

seasonality in the market risk premium. If assets have different exposures to the market, then

this mechanism amplifies the cross-sectional variance in expected returns in the period during

which more traders rebalance. This effect generates seasonality in the cross-section of stock

returns.

Crucially, infrequent rebalancing does not add an extra risk factor but rather generates sea-

sonality in the factor risk premium. This is consistent with the evidence that seasonality

strategies have low correlation across and within asset classes (Keloharju, Linnainmaa, and

Nyberg (2016)). The seasonality strategies can have a low correlation in the context of the

model if markets exhibit some degree of segmentation and, as a result, their risk factors are not

perfectly correlated. Additionally, the seasonality strategies within an asset class (for instance,

among small and large stocks) can have a low correlation if small and large stocks load on

different factors. My equilibrium model features only one risk factor, but it is intuitive that

infrequent rebalancing could generate seasonality in multiple risk factors.

Keloharju, Linnainmaa, and Nyberg (2016) argue that return seasonalities are not a distinct

class of anomalies. However, one must explain why risk premia are seasonal to begin with.

Seasonality in trading activity seems important in explaining seasonality in returns. This

paper shows that trading by investors with heterogeneous rebalancing horizons can generate

autocorrelation effects and persistent seasonality patterns consistent with empirical evidence

at different frequencies.

Several papers examine the impact of infrequent rebalancing on asset prices. Duffie (2010)

surveys the literature on slow-moving capital and studies the conditional price response to a

large liquidity shock. He does not discuss unconditional return properties and trading volume.

Bacchetta and Van Wincoop (2010) study the role of infrequent portfolio adjustments for the

forward discount puzzle. Their setup, however, is tailored to the foreign exchange market. In

particular, liquidity shocks do not matter for predictability in their economy, while they play a

key role in mine. Chien, Cole, and Lustig (2012) show that intermittent rebalancing increases

6Investor inertia has been shown to affect asset properties at longer horizons. Lou (2012) shows that the high
persistence in mutual fund flows can explain part of the medium- and long-term predictability in stock returns.
Vayanos and Woolley (2013) provide a theory of momentum and reversal based on investment flows in a setup
with rational agents.
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the volatility of the market price of risk in a standard incomplete markets economy. Rinne and

Suominen (2012) also investigate short-term return reversals, but they focus on liquidity and

do not obtain the key prediction emphasized in this paper, namely, that infrequent rebalancing

generates shifts in return autocorrelations. In contemporaneous research, Hendershott et al.

(2014) test a modified version of Duffie’s model to shed light on deviations from efficient prices

at different frequencies. Their analysis uses impulse response functions and does not overlap

my approach and results. None of these papers examines return seasonality.

More broadly, this paper relates to the literature on heterogeneous investment horizons

and trading frequencies. For instance, Corsi (2009) motivates a cascade model of realized

volatility with heterogeneity in market participants’ trading frequencies. Beber, Driessen,

and Tuijp (2012) use heterogeneous investment horizons to study the pricing of liquidity risk.

More recently, Kamara et al. (2016) empirically highlight the role of differences in investors’

rebalancing horizons in determining risk premia.

The paper is organized as follows. Section 1.2 decomposes the cross-sectional regressions

used in Figure 1.1 and in the rest of the paper. Section 1.3 introduces a dynamic model with

infrequent rebalancing. Section 1.4 studies return autocorrelation, Section 1.5 studies return

seasonality, and Section 1.6 examines trading volume. Section 1.7 concludes. All the proofs

are in Appendix A.1. Appendix A.2 details the model’s calibration.

1.2 Patterns in the Cross-Section of Stock Returns

Heston, Korajczyk, and Sadka (2010) estimate the following regression to obtain Figure 1.1:

ri ,t =αl ,t +γl ,t ri ,t−l +ui ,t , (1.1)

where ri ,t is the return on stock i in half-hour interval t . Heston and Sadka (2008) estimate

the same regression on monthly returns. The regression coefficients are first estimated cross-

sectionally at each date and then averaged over time (Fama and Macbeth (1973)). The cross-

sectional regression methodology avoids several shortcomings of time-series estimates of

autocorrelation (Jegadeesh (1990), Lehmann (1990)). As explained below, however, the cross-

sectional regression estimates are not exactly equivalent to autocorrelations.

To better understand the empirical evidence, one can decompose the average cross-sectional

regression coefficient. Let r̄ t = 1
N

∑N
i=1 ri ,t . The slope coefficient estimate is given by

γ̂l ,t =
1

1
N

∑N
i=1

(
ri ,t−l − r̄ t−l

)2

N∑
i=1

ri ,t
1

N

(
ri ,t−l − r̄ t−l

)
︸ ︷︷ ︸

≡πt (l )

. (1.2)
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Chapter 1. Infrequent Rebalancing, Return Autocorrelation, and Seasonality

The above estimate closely relates to the profit of a relative strength strategy, denoted by πt (l ).

This zero-investment strategy is long past winners and short past losers based on their return

in period t − l . Define the calendar function c(t ), which gives the calendar period for each date

t (for instance, the day of the week). The expected return on the strategy in calendar period

c(t ) is

E[πt (l )|c(t )] = 1

N

N∑
i=1

Cov
[
ri ,t ,ri ,t−l |c(t )

]−Cov[r̄ t , r̄ t−l |c(t )]

+ 1

N

N∑
i=1

(
μi ,c(t ) −μc(t )

)(
μi ,c(t−l ) −μc(t−l )

)
, (1.3)

where μi ,c(t ) ≡ E
[
ri ,t |c(t )

]
and μc(t ) ≡ E[r̄ t |c(t )]. As a result, the average γl ,t coefficient in

equation (1.2) reflects three components: return autocorrelation, return cross-autocorrelation,

and cross-sectional variation in average returns (Lo and MacKinlay (1990)).7

In this paper, I explore how infrequent rebalancing can help explain the empirical evidence

obtained from regression (1.1) at different frequencies. First, infrequent rebalancing generates

specific return autocorrelation patterns linked to the rebalancing horizon of traders (first com-

ponent in equation (1.3)). Second, infrequent rebalancing can generate persistent seasonality

patterns. Indeed, the last component in equation (1.3) does not decay with the lag. Persistent

seasonality patterns in the average γl ,t can therefore arise when expected returns vary across

calendar periods. I show that infrequent rebalancing can generate such variation. The next

section presents a model that formalizes this intuition.

1.3 A Dynamic Model with Infrequent Rebalancing

To better understand the impact of investors’ trading on return and volume predictability

patterns, I study a model in which some traders readjust their portfolio infrequently in an

otherwise standard economy. The setup of the model builds on that of Duffie (2010). In

particular, I extend the model to multiple assets to study the evidence from cross-sectional

regressions.

In addition, as suggested by extant empirical evidence on trading volume, the fraction of

agents who adjust their portfolios is likely not constant over a trading day, week, or year. In

this respect, Heston, Korajczyk, and Sadka (2010) find that their pattern is strongest in the

first and last half-hour of trading. Following this evidence, I further extend the model to allow

7Many papers investigate the source of momentum profits using a similar decomposition (see, for instance,
Conrad and Kaul (1998) and Jegadeesh and Titman (2002)). Jegadeesh and Titman (1995) point out, however,
that applying this decomposition empirically may not correctly distinguish between the autocovariance and
cross-autocovariance components.
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for a fixed but nonconstant proportion of infrequent traders across periods. Theoretically,

Admati and Pfleiderer (1988) demonstrate that traders may optimally cluster their orders at

given periods.

1.3.1 The Economy

Time is discrete and goes from zero to infinity. At each date, N risky assets pay dividends. The

N ×1 vector of dividends follows a simple autoregressive process,

Dt+1 = aD Dt +εD
t+1, (1.4)

where 0 ≤ aD ≤ 1 represents common dividend persistence. I assume that εD
t+1 ∼ N (0,ΣD ),

where ΣD denotes the N × N variance-covariance matrix of dividend shocks. The mean

dividend does not matter for return autocorrelation and seasonality and is assumed to be zero.

In addition, a risk-free asset with gross return R > 1 is available in perfectly elastic supply.

Two types of agents with exponential utility over terminal wealth trade in the economy. Fre-

quent traders are present in the market at every date. A frequent trader of age j maximizes

the value of her terminal wealth in h − j periods. At the end of her trading cycle, the agent

starts investing again with a horizon h. I assume a constant fraction of frequent traders across

investment horizons. Given this assumption, at each date the following groups of frequent

traders are active in the market: a fraction 1
h of frequent traders with horizon h, a fraction 1

h of

frequent traders with horizon h −1, and so on.

Allowing for frequent traders with a long horizon is a natural extension to evaluate the robust-

ness of multiperiod return predictability patterns. Furthermore, investment horizons can have

large effects on asset prices, as illustrated by Albagli (2015). Let h − j be the remaining horizon

of a frequent trader (0 ≤ j ≤ h −1). Her optimization problem is then given by

max
X F

t , j

Et

[
−e−γF W F

t+h− j

]
,

s.t. W F
t+1 = (X F

t , j )
′
(Pt+1 +Dt+1 −RPt )+RW F

t ,

(1.5)

where X F
t is the vector of asset demands, Pt is the vector of asset prices, and W F

t is the initial

wealth. The expectation is taken with respect to an information set that is common to all

traders and includes the current and past levels of all state variables (defined below), as well as

the current calendar period.

Infrequent traders—the second group of agents—trade to maximize the value of their terminal

wealth and then leave the market for a period of length k. The inattention period k is taken

as exogenous. Bacchetta and Van Wincoop (2010), Duffie (2010), and Chien, Cole, and Lustig
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Chapter 1. Infrequent Rebalancing, Return Autocorrelation, and Seasonality

(2012) make a similar assumption. The tractability offered by this assumption allows one to

draw clear predictions from the model. Solving for endogenous participation or inattention in

general equilibrium settings is challenging.8 It is unlikely that a fixed fraction of infrequent

traders participate in the market each period; some investors may enter into the market

when they perceive that profit opportunities outweigh their participation cost, which is a

state-dependent trading rule, as opposed to the time-dependent rule implied by exogenous

k. In a partial equilibrium setting, Abel, Eberly, and Panageas (2007) find that a constant

rebalancing interval is optimal when agents are subject to observation costs. In further

research, Abel, Eberly, and Panageas (2013) show that in the presence of both information costs

and transaction costs, a time-dependent rule survives if the fixed component of transaction

costs is small enough. Sections 1.4 and 1.5 show that the model’s implications are consistent

with the empirical evidence, and thus a simple approximation of investors’ trading policies

may help shed light on asset return properties.

The infrequent traders who are rebalancing at date t select their vector of asset demands X I
t to

maximize their expected utility according to

max
X I

t

Et

[
−e−γI W I

t+k+1

]
,

s.t. W I
t+k+1 = (X I

t +θt )
′
(

Pt+k+1 +
k+1∑
j=1

Rk+1− j Dt+ j −Rk+1Pt

)
+Rk+1W I

t ,
(1.6)

where W I
t is initial wealth. Infrequent traders adjust their portfolio and do not trade for the

rest of their investment horizon. The dividends paid while the agent is out of the market are

reinvested at the risk-free rate.

The model requires an additional element to generate trade. Here, liquidity traders supply

inelastic quantities of assets every period. Equivalently, a fraction of frequent traders could

receive state-contingent endowment shocks as in the setup of Biais, Bossaerts, and Spatt

(2010). Liquidity traders’ supplies are given by the zero-mean N ×1 process

θt+1 = aθθt +εθt+1, (1.7)

where 0 ≤ aθ ≤ 1 represents liquidity trading persistence. I assume that εθt+1 ∼N (0,Σθ), where

Σθ denotes the N ×N variance-covariance matrix of liquidity shocks.

The autocorrelation effect highlighted in Section 1.4 requires that a shock affecting traders’

8Orosel (1998) studies an overlapping generations economy with endogenous participation arising from a fixed
cost of participation, but his setup does not include liquidity shocks. Taking another modeling approach, Peng and
Xiong (2006) define an agent’s attention to a particular stock as the precision of the signal he receives about the
stock’s future dividend. In this case, the agent is always active in the market but allocates his limited attention
across different stocks.
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1.3. A Dynamic Model with Infrequent Rebalancing

positions reverses over time. The model allows this shock to be asset-specific or common

to many assets. Importantly, the infrequent rebalancing mechanism does not require any

persistence in the shock to generate specific return predictability patterns. To focus on the

simplest possible setting, I use an autoregressive process of order one. This assumption also

makes the setup comparable to previous literature.

1.3.2 Equilibrium

Infrequent and frequent traders are present in the economy in proportion q and 1− q , re-

spectively. I consider two cases. First, the mass of rebalancing infrequent traders at each

date is constant over time. Second, the mass of rebalancing infrequent traders varies with the

calendar period and is equal to qc(t ), where c(t ) indicates the calendar period at date t . With

C calendar periods,
∑C

j=1 q j = q . In this general case, market-clearing requires

qc(t )X I
t +

1−q

h

h−1∑
j=0

X F
j ,t = S̄ +θt −

k∑
i=1

qc(t−i )X I
t−i , (1.8)

where S̄ is the N × 1 vector of share supplies.9 The lagged demands of infrequent traders

reduce the number of shares available in the market today.

The following three conditions define a linear rational expectations equilibrium (REE): (i)

prices and demands are linear functions of the state variables, (ii) agents optimize prob-

lems (1.5) and (1.6), and (iii) markets clear according to (1.8).

I first limit attention to the case in which the mass of rebalancing infrequent traders is identical

every period. This provides a benchmark model that focuses on return autocorrelation. I study

the general model with a varying mass of infrequent traders in Section 1.5.

1.3.3 Constant Proportion of Infrequent Traders

An identical proportion of infrequent traders readjust their portfolio every period, hence

qc(t ) = q
k+1 .

Proposition 1. In a linear stationary REE, if it exists, the vector of asset prices is given by

Pt = P̄ +Pθθt + aD

R −aD
Dt +

k∑
i=1

PXi X I
t−i , (1.9)

9If S̄ = 0N×1, then the unconditional expected excess return is zero for all assets. Thus, to study expected
returns I assume that all assets are in positive supply. Some securities can be in zero net supply as long as they are
correlated with securities in positive supply.
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where the coefficient matrices are solutions to a system of nonlinear equations given in Ap-

pendix A.1.

The lagged demands of infrequent traders are state variables in equilibrium. The matrices PXi

determine how lagged demands affect current prices. The matrix Pθ reflects the price impact

of liquidity shocks. The price vector includes the present value of expected future dividends

discounted at the risk-free rate. Indeed, Et

[∑∞
j=1 R− j Dt+ j

]
= aD

R−aD
Dt .

Polar cases of the economy help gain intuition, since the equilibrium coefficients have to be

solved numerically.10 When q = 0 (or k = 0), only frequent traders are active in the market and

thus lagged demands are not state variables anymore. The price vector is then given by

Pt = P̄ +Pθθt + aD

R −aD
Dt . (1.10)

The price vector (1.10) has the same form whether h = 1 or h > 1, but an analytical solution

for Pθ is only available when h = 1 because of the nonlinear hedging demands (see Spiegel

(1998)). I refer to this economy as the frictionless economy. The following corollary solves

for the equilibrium coefficients when the economy contains only infrequent traders with

inattention period k (infrequent rebalancing economy).

Corollary 1. Let q = 1. In a linear stationary REE, the lagged demands’ coefficient matrices in

equation (1.9) are given by

PX1 = PX2 = . . . = PXk =− 1

k +1

(
Rk+1 −ak+1

θ

Rk+1 −ak
θ

)
Pθ, (1.11)

where Pθ solves a quadratic matrix equation given in Appendix A.1.

When q = 1, equation (1.11) shows that PXi and Pθ are proportional to each other. Since

agents only trade on liquidity shocks, lagged demands directly reflect past liquidity shocks. To

gain intuition, assume for example that liquidity traders sell a large quantity of the asset. The

price drops to give agents an incentive to hold the additional asset supply. The traders who

accommodate the liquidity shock now hold the asset in excess of their steady-state optimal

position. As a result, these traders want to liquidate their abnormal holdings when they

rebalance their portfolio in k +1 periods. At that future date, this desire to rebalance puts

a downward pressure on the price that is proportional to the initial liquidity shock (traders

cannot unload their positions in equilibrium since they trade only with liquidity traders in

this polar case). This mechanism has specific implications for return autocorrelation, which I

explain in Section 1.4.1.

10This is due to the heterogeneity in traders. Watanabe (2008), Biais, Bossaerts, and Spatt (2010), and Banerjee
(2011) also resort to numerical solutions.

12



1.3. A Dynamic Model with Infrequent Rebalancing

1.3.4 Equilibrium Multiplicity and Existence

The infrequent rebalancing economy solves the same problem as the frictionless economy

with adjusted fundamental parameters. Thus, the results of Watanabe (2008) for the friction-

less economy apply. In particular, he shows that if liquidity and dividend shock volatilities

and correlations are the same for all assets, then only four “symmetric” equilibria exist (i.e.,

equilibria in which the price and demand coefficients are equal across assets): a “low volatility”

equilibrium coexists with three “high volatility” equilibria. This multiplicity stems from the

infinite horizon of the economy and the finite lives of agents. The low volatility equilibrium is

the unique equilibrium of the finite-horizon frictionless economy (Banerjee (2011)). Moreover,

as agents lives’ goes to infinity in the frictionless economy (with intermediate consumption),

a unique linear equilibrium always exists (Albagli (2015)). Albagli’s analysis further suggests

that the low volatility equilibrium converges to this unique equilibrium. I show in the Internet

Appendix that the low volatility equilibrium is the only “stable” equilibrium when q = 0 or

q = 1.11

When 0 < q < 1, I find multiple equilibria in all my numerical calibrations. Assuming that

fundamental parameters are the same for all assets, I always find four symmetric equilibria

that converge to the analytical polar cases as q → 0 or q → 1. For the previous reasons, I focus

my analysis on the low volatility equilibrium. Importantly, the paper’s main results also hold in

the high volatility equilibria. This is because my analysis does not rely on comparative statics,

for which different equilibria typically give opposite results (see, for instance, Banerjee (2011)).

With respect to existence, the effect of fundamental parameters is intuitive in both polar

economies: more volatile and persistent sources of risk shrink the existence region. However,

increasing the persistence of liquidity trading aθ may widen the existence region when q = 1,

as explained in the Internet Appendix. The exact equilibrium existence conditions in the

polar economies are given in the Internet Appendix. When 0 < q < 1, numerical experiments

indicate that small q helps obtain an equilibrium. High volatility leads to nonexistence. More

precisely, a risk-averse agent with a finite horizon requires a price discount to absorb a liquidity

shock. This price discount increases price volatility. Increased volatility leads the agent to

require an even larger discount. An equilibrium fails to exist if the loop does not converge.

Since aθ may have an opposite effect on the existence region when q = 0 and q = 1, aθ can

have an ambiguous effect on the existence region when 0 < q < 1. Increasing h helps find an

equilibrium, in line with the results of Albagli (2015).

11Multiple equilibria arise because agents have self-fulfilling beliefs about the volatility of future prices. Following
Bacchetta and Van Wincoop (2006), stability requires an equilibrium to be robust to a small deviation in next
period’s belief regarding volatility. The Internet Appendix is available in the online version of this article on The
Journal of Finance’s website.
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1.4 Return Autocorrelation

This section examines return autocorrelation in a dynamic equilibrium model in which some

traders adjust their portfolios infrequently.

1.4.1 Theory

Let Qt+1 = Pt+1 +Dt+1 −RPt denote the vector of (dollar) excess returns between time t and

t +1. In the frictionless economy, excess returns between time t + s −1 and t + s are given by

Qt+s =Pθε
θ
t+s +

R

R −aD
εD

t+s + (aθ−R)Pθθt+s−1. (1.12)

A dividend shock affects prices but does not modify expected returns (Wang (1994)). Return

autocovariances are then given by

Cov[Qt+s ,Qt ] = (aθR −1)as−1
θ

R −aθ

1−a2
θ

PθΣθP ′
θ, aθ < 1, s ≥ 1. (1.13)

Dividend persistence does not affect the sign of excess return autocovariances.12 Since the

price vector (1.10) takes the same form when h > 1, equation (1.13) also shows that long

horizons affect neither the sign of the autocovariances nor their rate of decay. The frictionless

model requires aθR < 1 to produce short-term return reversal, which is widely documented by

previous research (see, for instance, Jegadeesh (1990)) and confirmed by the empirical analysis

on daily returns in Section 1.4.4.13

When 0 < aθR < 1, the frictionless model predicts that all return autocovariances are negative

at any horizon and decay exponentially. The negative autocorrelation of price changes stems

from the reversal of transitory order flows and the risk aversion of frequent traders (Grossman

and Miller (1988)). Makarov and Rytchkov (2012) demonstrate that a version of equation (1.13)

holds for the more general case of asymmetrically informed traders. They show that asymmet-

ric information alone cannot generate price momentum in the standard stationary setting in

which liquidity trading follows a first-order autoregressive process. This implication contrasts

with the finite-horizon model of Cespa and Vives (2012), in which autocorrelations are positive

if information quality increases sufficiently across periods and liquidity trading is persistent

enough.

12Campbell, Grossman, and Wang (1993) derive a similar equation in a single-asset setup with myopic agents
and exogenously time-varying risk aversion instead of liquidity shocks. Following their paper and the related
literature, I focus my analysis on dollar returns Qt to highlight the economic intuition. Percentage returns are
not well defined with normally distributed prices and do not have analytical expressions. Numerical experiments
indicate that the main qualitative results hold with percentage returns.

13The infrequent rebalancing model can generate short-term reversal even when aθ > 1/R. Still, all return
autocorrelations become positive when aθ approaches one.
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1.4. Return Autocorrelation

In a stationary setup, liquidity shocks determine autocovariance dynamics because of the

market-clearing condition. When q = 0 (and h = 1), the market-clearing condition isγFΣ
(
θt + S̄

)=
Et [Qt+1], where Σ≡ Vart [Pt+1 +Dt+1] is a constant matrix. This implies that Cov[Qt+1,Qt ] =
γFΣCov[θt ,Qt ]. Since Cov

[
εD

t ,εθt
] = 0, signals about future dividends are not informative

about future liquidity shocks and cannot help generate positive return autocorrelation alone.14

According to the model, infrequent rebalancing can have a large impact on return autocor-

relation. Figure 1.2 displays the first 10 autocorrelations generated by the model for differ-

ent degrees of infrequent rebalancing and different degrees of liquidity trading persistence.

The patterns are robust to variation in the other parameters. The calibration is detailed Ap-

pendix A.2 and assumes that infrequent traders readjust their portfolios every five periods. To

focus solely on the patterns generated by infrequent rebalancing, I scale the autocorrelations

so that their absolute values sum up to one for the first 10 lags.

The left column shows autocorrelations in the frictionless economy. These autocorrelations

are always negative and decay proportionally to the persistence of liquidity trading. As shown

in the middle and right columns, infrequent rebalancing shifts the autocorrelations around

the rebalancing horizon. In particular, autocorrelations can switch sign and become positive

regardless of the persistence of liquidity trading. Even in a similar nonstationary setting,

returns reverse when liquidity trading is transient. In the model of Cespa and Vives (2012),

return autocorrelations are always negative when aθ = 0, in spite of the nonstationary variance

dynamics associated with the gradual revelation of information.

To understand the underlying mechanism, consider the single-asset case and assume that a

large liquidity shock takes place at date t . The price drops so that agents who are present in

the market accommodate the shock, and hence, Qt is low. Infrequent traders partially absorb

the liquidity shock, and X I
t is larger than its steady-state level. At time t +k +1, infrequent

traders come back to the market. Since liquidity trading is transient, these traders now hold an

abnormal position in the asset relative to the current asset supply. They therefore liquidate

part of their excess holdings. The resulting order flow is equivalent to a liquidity shock: the

price drops and Qt+k+1 is low. This effect increases Cov[Qt+k+1,Qt ]. Infrequent rebalancing is

akin to serially correlated liquidity shocks, which is why autocorrelations can become positive

despite the result of Makarov and Rytchkov (2012). A liquidity shock today transmits to the

future date when agents rebalance their holdings.

More formally, consider a single-asset economy with k = 1 and aθ = 0. In this case, all auto-

14The previous result holds in the model of Biais, Bossaerts, and Spatt (2010), which uses endowment shocks.
Asymmetric information can increase return autocorrelation but cannot make it positive unless aθR > 1. In a
stationary setup, Albuquerque and Miao (2014) obtain positive autocorrelation with a signal about future dividends.
The main trading mechanism of their model, however, is the existence of a nontraded investment opportunity as
in the model of Wang (1994). The hedging motive relies on a nonzero correlation between dividend shocks and
private investment shocks, which is why the signal affects return autocorrelation.
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Figure 1.2. Autocorrelations (scaled) for different degrees of liquidity trading persistence
(aθ) and different degrees of infrequent rebalancing (q). The figure plots the scaled first
element of the matrix Corr[Qt+s ,Qt ] for s = 1, . . . ,10. The autocorrelations are scaled so that
their absolute values sum to one over the first 10 lags. The calibration is shown in Table A.1
(left column).

covariances beyond the first lag are zero in the frictionless economy. This provides a clean

benchmark. The next proposition formalizes the intuition developed previously.

Proposition 2. Let aθ = 0, k = 1, and h = 1. In the single-asset economy with 0 < q < 1, if Pθ < 0

and PX > 0, then Cov[Qt ,Qt+1] < 0 and Cov[Qt ,Qt+2] > 0.

The conditions Pθ < 0 and PX > 0 are intuitive and hold in the polar economies. First, a

liquidity shock should have a negative price impact. Second, a positive lagged demand should

increase the price of the asset since it restricts the current asset supply. Under these conditions,

infrequent traders absorb part of the liquidity shocks and therefore provide liquidity when

0 < q < 1.15

Proposition 2 formally shows that infrequent rebalancing generates positive return autocor-

relation when liquidity trading is transient and that autocorrelations can switch sign. As

15See Lemma 4. These conditions always held in the four symmetric equilibria that I found numerically. Assuming
that k = 1 and h = 1 is made for convenience and does not appear to affect the result.
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1.4. Return Autocorrelation

indicated by Figure 1.2, a similar effect applies when k > 1. In summary, with infrequent

rebalancing, return autocorrelations are subject to shifts linked to traders’ rebalancing horizon

and can switch sign. Without infrequent rebalancing, all return autocorrelations have the

same sign and decay exponentially.16

Positive return autocorrelation can be obtained by mechanically adjusting the liquidity trading

process (1.7). Assuming that θt = εθt +βεθt−k leads to a price function of the form Pt = Pθε
θ
t +∑k

i=1 Pθ,i ε
θ
t−i . Economically, this specification of liquidity trading can be broadly interpreted

as a form of order-splitting strategy. If β > 0, this setup produces positive autocorrelation

between the excess return today and the excess return in k periods. This result illustrates that

infrequent rebalancing propagates liquidity shocks across periods.

1.4.2 Heterogeneous Rebalancing Horizons

In the Internet Appendix, I extend the benchmark model to allow for infrequent traders

with heterogeneous rebalancing horizons. More precisely, I consider an economy with two

groups of infrequent traders (in addition to frequent traders). Group i has mass qi and

inattention period ki . Though analytical solutions are again not available, the rebalancing

mechanism seems robust to having multiple groups of infrequent traders. In particular, the

autocorrelation pattern is subject to shifts at both rebalancing horizons, k1 +1 and k2 +1, that

is, both autocorrelations can switch sign. This suggests that the model can simultaneously

explain predictability patterns at different frequencies.

1.4.3 Empirical Evidence: Intraday Returns

Figure 1.2 suggests that a model in which a fraction of traders adjust their portfolio only

once a day can help explain the predictability pattern documented by Heston, Korajczyk,

and Sadka (2010) and reproduced in Figure 1.1. The multi-asset setting allows for an exact

replication of the regressions using simulated returns from a calibrated version of the model.17

Since the current model relies only on the autocorrelation component of equation (1.3), the

regression estimates are almost identical to autocorrelations in the model. For clarity, I report

autocorrelations. This paper does not aim to provide an exact quantitative match to the data.

16The Internet Appendix presents a model in which liquidity trading occurs at low and high frequencies. That is,
a fraction of liquidity traders trade infrequently. Autocorrelations are negative unless liquidity trading is highly
persistent and cannot switch sign if the first autocorrelation is negative. The key difference is that infrequent
traders provide liquidity (Lemma 4). Thus, when they liquidate their abnormal positions, they trade in the same
direction as the initial liquidity shock that they absorbed.

17Solving the model for a large number of assets is numerically challenging with high k and correlated assets.
To ease the procedure, one can assume that the variance-covariance matrices of dividends and liquidity shocks
commute and use an eigenvalue decomposition. The method only requires that one solve for (2k +2) eigenvalues
independently of the number of assets.
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The parameters are therefore chosen to broadly match the patterns observed in the data

while keeping the calibration as simple and transparent as possible. Appendix A.2 details the

calibrations used in the paper.

Figure 1.3 plots the autocorrelations obtained from the model. The results are in line with

the empirical evidence—as expected, the regression coefficient spikes at horizons that are

multiples of one trading day (since a trading day is composed of 13 half-hour intervals, traders’

inattention period is set to k = 12). Infrequent rebalancing produces a persistent pattern of

return predictability despite being perfectly anticipated by frequent traders.
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Figure 1.3. Autocorrelations predicted by the model for intraday returns. The calibration is
shown in Table A.1.

In Figure 1.3, the proportion of infrequent traders must be set to a high level (i.e., q = 0.99)

for the pattern to persist over several days. A small fraction of frequent traders is consistent

with the calibrations in related papers.18 The model also abstracts from transaction costs,

which limit the arbitrage activity of frequent traders and could therefore partially explain the

persistence of the pattern in the data (Heston, Korajczyk, and Sadka (2010)). The decay in

the coefficients is consistent with a repeated shock explanation. But the persistence of the

pattern at higher lags points towards cross-sectional variation in average returns that differs

across calendar periods (see Section 1.2). Section 1.5 investigates this effect, which generates

persistent seasonality patterns.

Heston, Korajczyk, and Sadka (2010) report that changes in trading volume exhibit similar

periodic patterns. The model also predicts this relationship. A large liquidity shock results

in high volume during the current period. One day later, infrequent traders reduce their

18Chien, Cole, and Lustig (2012) assume 5% of active traders, 45% of intermittent traders, and 50% of nonpartic-
ipants in their economy. Bacchetta and Van Wincoop (2010) study a foreign exchange market setup populated
only by infrequent traders. The results are robust to variation in the other parameters; for instance, liquidity shock
volatility can be adjusted to calibrate the magnitudes of the coefficients.
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1.4. Return Autocorrelation

abnormal positions and generate high volume again. I examine trading volume in Section 1.6.

1.4.4 Empirical Evidence: Daily Returns

This section examines whether daily returns exhibit predictability consistent with infrequent

rebalancing. I use daily returns on NYSE and Amex common stocks from CRSP over the period

January 1983 to December 2012. The data are cleaned as follows: the CRSP share code is

equal to 10 or 11, penny stocks (average price less than one dollar) are eliminated, returns

above 400% are winsorized, and each stock is required to have at least 250 days of data. This

procedure leaves an average of 2,000 stocks each period in the data set. I focus on the last 30

years of data because structural shifts in investors’ rebalancing frequencies are likely to be an

issue over longer samples.

Intuitively, conjecture that some traders rebalance at a weekly frequency (i.e., every five

consecutive trading days). This is consistent with Rakowski and Wang (2009), who find a

day-of-the-week effect in mutual fund flows, or with investment products being rebalanced on

specific days. To test this conjecture, I use the methodology of Jegadeesh (1990) and estimate

a multiple cross-sectional regression of current returns on lagged returns at each date.

As explained in Section 1.2, cross-sectional variation in average returns across calendar periods

can generate persistent seasonality patterns that are picked up by the regression coefficients.

This is likely to be a concern here since prior research documents that average stock returns are

not equal across days of the week (French (1980), Gibbons and Hess (1981)). The infrequent

rebalancing model developed in Section 1.3.3 provides a repeated shock explanation for

return predictability, although variation in unconditional expected returns across days of

the week could arise from variation in the degree of infrequent trading throughout the week

(see Section 1.5). To focus on the repeated shock mechanism, I estimate the following cross-

sectional regression at each date:

ri ,t =αt +γ1,t ri ,t−1 + . . .+γL,t ri ,t−L +γμ,tμi ,t +ui ,t , (1.14)

where μi t is the average same-weekday (the same weekday as day t ) return on stock i over the

previous year (excluding the past L returns). Here, μi t controls for variation in expected returns

across days of the week, which is similar to a day-of-the-week fixed effect (Keloharju, Linnain-

maa, and Nyberg (2016)). A multiple regression provides a cleaner picture of autocorrelation

patterns than a univariate regression.

The upper panel of Figure 1.4 plots the time-series averages of the cross-sectional regression

estimates with l = 20 and their associated Newey and West (1987) t-statistics. The results are

not sensitive to the precise number of lags.
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Figure 1.4. Cross-sectional multiple regressions of daily returns. The following cross-
sectional regression is estimated for each day t : ri ,t =αt +γ1,t ri ,t−1+. . .+γ20,t ri ,t−20+γμ,tμi ,t +
ui ,t , where ri ,t is the simple return of stock i on day t and μi t is the average same-weekday
(the same weekday as day t) return on stock i over the previous year excluding the past 20
returns. The sample consists of NYSE/Amex common stock returns over the period 1983 to
2012. The left-hand charts plot the time-series averages of γl ,t (l = 1, . . . ,20). The right-hand
charts plot t-statistics computed using a Newey-West correction with 20 lags. Black lines
indicate significance bounds at the 5% level. Panel A: all stocks. Panel B: the third of stocks
with the highest average turnover over the past 250 days as of date t −20.
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At short horizons, the coefficients are all negative and significant. The first estimate is large in

absolute value because of bid-ask bounce (-0.09, truncated in the figure). The decaying pattern

in slope coefficients is consistent with the q = 0 model. But the fifth and tenth estimates appear

abnormally high relative to the other estimates. More formally, the frictionless model predicts

that all autocorrelations decay exponentially. This implies the following null hypothesis:

Hypothesis 1. |γ5| ≥ |γ6|.

This hypothesis is rejected at the 1% level with a t-statistic of 2.93, which is inconsistent with

the frictionless model but is in line with infrequent rebalancing every five trading days as

illustrated in Figure 1.2. Note, however, that hypothesis 1 can only invalidate the frictionless

model—it does not constitute direct evidence of infrequent rebalancing. Still, infrequent

rebalancing offers a plausible explanation that seems difficult to obtain with other theories.

Furthermore, variation in average returns across days of the week does not generate the

results, although the average estimated γμ,t is strongly significant. Using simple regressions or

demeaning returns in the cross-section before estimating γμ,t does not affect this result.

To evaluate the role of trading volume, I split stocks into three portfolios at each date based

on their average turnover over the past 250 days. The cross-sectional regression (1.14) is then

estimated on the third of stocks that are in the high turnover portfolio at date t −20. Panel B

of Figure 1.4 shows that the shift at lag five is markedly stronger for high turnover stocks.

Hypothesis 1 is rejected at the 1% level with a t-statistic of 3.61. Neglected stocks do not

drive the results; the shift at lag five is weak for low turnover stocks. Moreover, the regression

coefficients tend to be lower in absolute value for high turnover stocks, indicating smaller

reversal for these stocks.

The model can match the predictability patterns in daily returns. As for intraday returns,

I compare the regression estimates to the partial autocorrelations predicted by the model

since they are almost identical.19 The left-hand side of Figure 1.5 reports the model’s partial

autocorrelations. The model seems to fit the short-term dependence in stock returns in

Figure 1.4. Infrequent rebalancing generates a shift in the autocorrelation pattern at the

rebalancing horizon.

The turnover results in Figure 1.4 are also potentially consistent with the model. A decrease in

the persistence of liquidity trading aθ increases turnover and decreases return autocorrelation

(in absolute value). Nevertheless, aθ has an ambiguous role on equilibrium price coefficients

with infrequent rebalancing (see the Internet Appendix for details). Numerically, I find that

when aθ is large, the pattern becomes more pronounced as aθ decreases, consistent with the

19The regression coefficients cannot be directly compared to partial autocorrelations. Nevertheless, adjusting
the volatility of dividends or liquidity shocks can fit the magnitudes of the autocorrelations while preserving the
shape of the autocorrelation pattern. The calibration is discussed in detail in Appendix A.2.
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Figure 1.5. Partial autocorrelations predicted by the model (with 20 lags) for daily returns
with different degrees of liquidity trading persistence (aθ). The calibration is shown in Ta-
ble A.1.

evidence. As an illustrative example, the left-hand side of Figure 1.5 shows that the infrequent

rebalancing pattern is more pronounced for lower aθ. In particular, the autocorrelation

becomes positive.

The previous results are robust to using midquote returns, controlling for firm size, and using

subsamples. The Internet Appendix reports the detailed results. In addition, the results do

not appear to be driven by a quarterly measure of institutional ownership after controlling for

turnover. The coefficients are insignificant, however, over an older sample that runs from 1963

to 1993.

1.4.5 Additional Empirical Evidence

The model can potentially shed light on additional recent evidence from intraday returns.

Gao et al. (2014) find that the first half-hour return on the SPDR S&P 500 ETF predicts the last

half-hour return of the trading day. The infrequent rebalancing model is consistent with this

evidence assuming that some infrequent traders adjust their portfolios at the open and close

of the market. This assumption is economically intuitive. The U-shaped pattern in trading

volume across the trading day suggests that many market participants concentrate their

trading at market open and close. Increasing the fraction of traders adjusting their portfolios in

a given calendar period increases trading volume and strengthens the autocorrelation pattern

in this period. Thus, the model can provide a simple explanation for the results of Gao et al.

(2014). Furthermore, these results come from time-series regressions and therefore reflect

autocorrelations only.
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1.5. Return Seasonality

1.5 Return Seasonality

Return autocorrelation cannot explain the persistence of the coefficients for intraday returns

in Figure 1.1. The same observation holds for monthly returns. Following Heston and Sadka

(2008), Figure 1.6 plots the estimates of regression (1.1) obtained with monthly returns. The

average coefficient spikes every twelfth lag and does not decay. According to the decompo-

sition of Section 1.2, these results provide strong evidence that the cross-sectional variance

in average returns varies across half-hour intervals of a trading day and months of the year.

Indeed, the last term of equation (1.3) is

1

N

N∑
i=1

(
μi ,c(t ) −μc(t )

)(
μi ,c(t−l ) −μc(t−l )

)
. (1.15)

Hence, persistent seasonality patterns can arise whenever the cross-sectional variance in

average returns varies across calendar periods. The benchmark infrequent rebalancing model

of Section 1.3.3 focuses on the autocovariance component and abstracts from cross-sectional

variation in expected returns. Next, I show that variation in the proportion of infrequent

traders across calendar periods can generate persistent seasonality patterns.
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Figure 1.6. Cross-sectional regressions of monthly returns. The following cross-sectional
regression is estimated for each month t : ri ,t =αl ,t +γl ,t ri ,t−l +ui ,t for l = 1, . . . ,240, where ri ,t

is the simple return of stock i in month t . The sample consists of U.S. common stock returns
over the period 1964 to 2013 for the dependent variable. The right-hand side series starts in
1944. Stocks with a price lower than $1 are excluded from the regressions. The figure plots the
time-series averages of γl ,t .

In the general setup of Section 1.3 in which a mass qc(t ) of infrequent traders rebalance in

calendar period c(t ), the following proposition holds.

Proposition 3. In a linear stationary rational expectations equilibrium, if it exists, the vector of
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asset prices is given by

Pt = P̄c(t ) + aD

R −aD
Dt +Pθ,c(t )θt +

k∑
i=1

PXi ,c(t )X I
t−i , (1.16)

where the coefficient matrices are solutions to a system of nonlinear equations given in Ap-

pendix A.1.

The main insights developed using the simpler model of Section 1.3.3 hold, but here the

equilibrium price coefficients vary with the calendar period c(t ) at date t . Expected returns

now differ across calendar periods.20

To convey the main intuition in the simplest possible way, I focus on the case with two different

calendar periods and let k = 1. The mass of frequent traders is fixed and equals 1−q , where q =
q1+q2. Further, let h = 1 for ease of exposition and recall that Qt+1 = Pt+1+Dt+1−RPt denotes

the vector of (dollar) excess returns. Using the market-clearing condition (1.8), the expected

return in a given calendar period is

E[Qt+1|c(t )] = γF

(1−q)
Var[Qt+1|c(t )]

(
S̄ −qc(t )E

[
X I

t |c(t )
]−qc(t−1)E

[
X I

t−1|c(t )
])

, (1.17)

where I used the fact that Vart [Qt+1] = Pθ,c(t+1)ΣθP ′
θ,c(t+1) +

(
R

R−aD

)2
ΣD is constant for a given

calendar period. The term in parentheses in equation (1.17) is independent of the calendar

period. Thus, when q1 	= q2, differences in expected returns across calendar periods are

generated solely by differences in conditional variances across calendar periods. When q1 > q2,

a larger mass of rational traders is present in the market in period 1, which reduces the price

impact of liquidity shocks. This implies that
∣∣Pθ,i ,2

∣∣> ∣∣Pθ,i ,1
∣∣ for asset i , and hence, expected

returns are larger in period 1 than in period 2. In summary, traders require a higher premium

to hold an asset when they anticipate the price impact to be higher next period. The next

proposition formalizes this reasoning using the same intuitive conditions as Proposition 2.

Proposition 4. Consider a single-asset economy with two calendar periods, and assume that

k = 1 and h = 1. Infrequent traders rebalance their portfolios only in the first calendar period. If

Pθ,c < 0 and PX ,c > 0 (c = 1,2), then the expected excess return on the asset is larger in the first

calendar period than in the second calendar period.

The previous result is specific to the infrequent rebalancing setup. As a point of comparison,

consider a frictionless economy (q = 0) in which the mass of traders—or equivalently, the risk

20Let date t be the beginning of a calendar period. The vector of expected returns in calendar period j is then
given by E

[
Pt+1 +Dt+1 −RPt |c(t ) = j

]
. This definition ensures that increasing traders’ risk aversion in a calendar

period increases expected returns in the same calendar period.
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aversion—varies deterministically from one calendar period to the next. In this economy, the

opposite result holds.

Proposition 5. Consider a single-asset economy with two calendar periods and only frequent

traders with h = 1. The expected excess return on the asset is largest in the period when fewer

traders are in the market.

A smaller mass of traders requires a larger expected return to absorb liquidity shocks. This

effect dominates the price impact effect described above. In the infrequent rebalancing

economy, the average asset supply that frequent traders must absorb is the same in both

calendar periods, as shown in equation (1.17).

Expected returns are larger in the period in which more traders rebalance.21 This effect

also leads to a larger spread in expected returns between assets in the rebalancing period.

Intuitively, assets with large loadings on the risk factor are disproportionately affected relative

to assets with small loadings—the extreme case being a riskless asset, which is not affected. To

see this, note that a conditional form of the CAPM holds. The expected excess return on asset

i in a given calendar period can be written as

E
[
Qi ,t+1|c(t )

]= Cov
[
Qi ,t+1,Qm,t+1|c(t )

]
Var

[
Qm,t+1|c(t )

] E
[
Qm,t+1|c(t )

]
, (1.18)

where Qm,t+1 is the market excess return.22 Variation in the degree of infrequent rebalancing

generates seasonality in the market risk premium. If assets have different exposure to market

risk, then the model generates seasonality in the cross-section of asset returns.23

As an example, consider two assets that are identical except for their liquidity shock volatilities.

Panel A of Figure 1.7 plots the expected excess return for each asset in both calendar periods

as a function of the first asset’s liquidity shock volatility. Since q1 > q2 in this example, the

cross-sectional variation in expected returns is larger in calendar period 1 than in calendar

period 2. This effect comes from anticipated price impact—the conditional variance is more

sensitive to variation in the mass of traders for the riskier asset than for the safer asset. In

addition, expected returns are larger in the period in which more traders rebalance, in line

with Proposition 4 (not shown in the figure since returns are normalized).

The above mechanism generates persistent return seasonality. Panel B of Figure 1.7 plots

the average coefficients in regression (1.1) estimated from simulated returns with different

21In line with this result, Jain and Joh (1988) find that the average return on the S&P 500 is largest in the first and
last hour of the trading day (except on Mondays).

22The market return is computed using the expected number of shares available in the market. More precisely,

Qm,t+1 =∑N
i=1 si Qi ,t+1, where si is the i th element of the vector S̄ −∑k

j=0 qc(t− j )E
[

X I
t− j |c(t )

]
.

23Assets’ betas may also change. Numerically, I find that infrequent rebalancing increases the spread in betas,
which strengthens the return seasonality. With many assets, however, this effect is small in the model.
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Figure 1.7. Return seasonality. Panel A shows the expected excess return for each stock in
each calendar period as a function of the first stock’s liquidity shocks volatility (σθ,1). The
expected returns are normalized to one for σθ,1 =σθ,2 = 0.5. Panel B shows cross-sectional
regression estimates (scaled) from Qi ,t = αl ,t +γl ,tQi ,t−l +ui ,t based on averages of 1000
simulations of a 20-stock economy over T = 500 periods. The calibration assumes q1 = 0.65,
q2 = 0.05, k = 1, aθ = 0, aD = 0, σD = 0.2, ρD = 0.3, R = 1.05, h = 2, and S̄ = 10. In Panel B, the
stocks have either σθ = 0.5 or σθ = 1.5 in equal proportions.

proportions of infrequent traders. Return autocorrelation mainly determines the coefficients

at lower lags—with infrequent rebalancing, the repeated shock mechanism produces a large

positive autocorrelation in the second period (middle and right charts). At higher lags, the

coefficients are positive because of cross-sectional variation in mean returns. When q1 	= q2,

these coefficients shift from period to period since the cross-sectional variance in mean

returns differs across calendar periods. Variation in the degree of infrequent rebalancing can

thus potentially explain the evidence presented by Heston, Korajczyk, and Sadka (2010) and

other persistent seasonality patterns in cross-sectional regression estimates. At low lags the
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cross-sectional regressions pick up a repeated shock mechanism, while at high lags they only

reflect cross-sectional variation in mean returns.

Crucially, infrequent rebalancing does not add an extra risk factor but rather generates season-

ality in the factor risk premium. This is consistent with evidence that seasonality strategies

have low correlation across and within asset classes (Keloharju, Linnainmaa, and Nyberg

(2016)). The seasonality strategies can have a low correlation in the context of the model if

markets exhibit some degree of segmentation and, as a result, their risk factors are not perfectly

correlated.

To be more specific about monthly return seasonality in small and large stocks, some evidence

of segmentation is provided by the rebalancing of traders in January (Ritter (1988)). The

“January effect” plays an important role for monthly seasonality in U.S. stock returns. Excluding

January lowers the magnitude of the monthly return seasonality strategy substantially: an

average value-weighted return of 3% in January versus 0.57% outside of January over the

period 1964 to 2014 (Bogousslavsky (2015)). In this case, infrequent rebalancing comes mainly

from individual investors because of tax reasons. Since these investors tend to trade in small

stocks, this creates a wedge between small and large stocks.

Additionally, the seasonality strategies can have a low correlation if the assets load on different

factors. Market risk is the single risk factor in the model. With additional sources of risk, it is

intuitive that variation in the proportion of rebalancing traders could generate seasonality

in multiple risk premia. Return seasonalities could then persist even after sorting assets on

specific characteristics or factors.

Consistent with the findings of Keloharju, Linnainmaa, and Nyberg (2016), a seasonality strat-

egy is exposed to systematic risk in the model. These authors argue that return seasonalities

are not a distinct class of anomalies. However, one must explain why risk premia are seasonal

to begin with. Infrequent rebalancing provides a simple and intuitive channel to explain such

seasonality.

1.5.1 Alternative Explanations

Alternative explanations based on seasonality in liquidity trading are possible. In the Internet

Appendix, I show that a model with seasonality in mean liquidity trading can also generate

persistent seasonality patterns. Buying or selling pressures on some stocks at the open and

close could generate the seasonality in mean liquidity trading and explain the persistence of

the pattern in Figure 1.1. This model cannot, however, explain the decaying pattern in the

coefficients (from lag 13 to 26 and so on), the empirical daily return evidence in Section 1.4.4,

and any predictability evidence based on time-series regressions (Section 1.4), which are all

consistent with an autocorrelation effect from infrequent rebalancing.
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Moreover, the seasonal mean model does not generate any calendar pattern in return volatility.

In this model, it is the price of risk that varies with the calendar period. This model may

therefore better apply to seasonality at a lower frequency, such as the January effect. Indeed,

volatility does not appear to be larger in January. The shifts in mean liquidity trading could

arise from tax-loss selling and rebalancing in January (Ritter (1988)).

1.6 Trading Volume

With only one group of agents, the dynamics of trading volume depend solely on the dynamics

of liquidity trading. As a result, changes in trading volume (ΔVt ) are negatively autocorrelated.

Proposition 6. When q = 0 or q = 1, and 0 < aθ < 1, changes in trading volume are negatively

autocorrelated, that is, Corr[ΔVt ,ΔVt+s] < 0, s ≥ 1.

In the model, multiple groups of agents trade, which alters the dynamics of trading volume.

Infrequent traders who rebalance their portfolios can trade with frequent traders. A large

liquidity shock today reverberates in k+1 periods when traders readjust their portfolios. These

rebalancing trades increase the autocorrelation between changes in trading volume, and

hence, Corr[ΔVt ,ΔVt+k+1] can be positive. Proposition 6 shows that this is impossible in the

frictionless economy.

Figure 1.8 plots Corr[ΔVt ,ΔVt+s] when q = 0 and q = 0.6 using the daily frequency calibration

(the Internet Appendix explains how to compute volume autocorrelations when 0 < q < 1).

In both cases, Corr[ΔVt ,ΔVt+1] is large and negative. Autocorrelations are negligible beyond

the first lag when q = 0. When 0 < q < 1, the autocorrelations are still small but many times

larger than in the frictionless economy. Patterns linked to infrequent rebalancing appear at

the rebalancing horizon (fifth lag).

The setup can potentially explain why Heston, Korajczyk, and Sadka (2010) find that half-hour

volume periodicity does not fully account for return periodicity. When q = 1, liquidity trading

determines trading volume (Proposition 6), but infrequent rebalancing still generates a return

periodicity pattern. Therefore, the volume pattern cannot explain the return pattern in this

polar case. When q < 1, volume is still determined in part by liquidity trading and therefore

cannot fully explain the return periodicity.

To test the model’s predictions, I estimate the following regression on daily returns:

vi ,t =αl ,t +γl ,t vi ,t−l +γν,tνi ,t +ui ,t , (1.19)

where vi ,t = ln
(

Turnoveri ,t

Turnoveri ,t−1

)
and νi ,t is the average same-weekday (the same weekday as day t )

change in turnover over the past year. To estimate regression (1.19), I exclude all stocks that
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Figure 1.8. Volume change autocorrelations predicted by the model with different degrees
of infrequent rebalancing (q). The calibration is shown in Table A.1.

have zero volume on one day from the sample. This procedure leaves an average of roughly

950 observations per period. The results of Section 1.4.4 are unaffected. Figure 1.9 plots the

average γl ,t coefficients and their t-statistics.
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Figure 1.9. Cross-sectional regressions of daily turnover. The following cross-sectional re-
gression is estimated for each day t : vi ,t =αl ,t +γl ,t vi ,t−l +γν,tνi ,t +ui ,t for l = 1, . . . ,20, where
vi ,t is the log turnover of stock i on day t and νi t is the average same-weekday (the same week-
day as day t ) turnover on stock i over the previous year. The sample consists of NYSE/Amex
common stock turnover series over 1983 to 2012. The left-hand chart plots the time-series av-
erages of γl ,t . The right-hand chart plots t-statistics computed using a Newey-West correction
with 20 lags. Black lines indicate significance bounds at the level of 5%.

The first coefficient (truncated in the figure) is large and negative (−0.39). The regression

reveals shifts in the autocorrelation at the fifth and tenth lags that are qualitatively consistent
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with an infrequent rebalancing mechanism. Similar to the daily return evidence, the average

of the coefficient γν,t is positive and highly significant but does not explain the shifts in the

other coefficients.

Nevertheless, the model overestimates the magnitude of the fifth coefficient and does not

produce a large positive tenth lag coefficient. Moreover, the fourth lag coefficient does not

exhibit any shift, which seems to indicate that traders either do not anticipate the repeated

liquidity shocks on average or are not able to reliably trade on them.

As in the analysis of Section 1.5 for returns, infrequent rebalancing can also generate persistent

seasonality patterns for changes in trading volume. Trading volume is higher when more

infrequent traders rebalance. At the same time, differences in trading volume across assets are

also more pronounced. The cross-sectional variance in average changes in trading volume is

then higher when more traders rebalance, which can generate persistent seasonality patterns

(Section 1.2). I leave a detailed investigation of these effects for future research.

1.7 Conclusion

This paper studies a dynamic equilibrium model in which some investors readjust their port-

folio infrequently. I show that trading by investors with heterogeneous rebalancing horizons

can generate return autocorrelation and seasonality consistent with empirical evidence at

different frequencies.

In the model, return autocorrelations exhibit specific patterns linked to the rebalancing

horizon of traders, consistent with empirical evidence from intraday returns and new evidence

from daily returns. Despite being perfectly anticipated, the lagged demands of infrequent

traders affect return dynamics. The model also makes specific predictions concerning changes

in trading volume, for which I find support in the data.

Variation in the proportion of infrequent traders across calendar periods can generate return

seasonality in line with empirical evidence from intraday and monthly returns. Infrequent

rebalancing does not add an extra risk factor but rather generates seasonality in the factor risk

premium. As a result, the spread in expected returns between assets with different exposures

to the factor increases when more traders readjust their portfolios. This paper provides a first

step in explaining why risk premia can be seasonal.
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2 Seasonalities in Anomalies

This chapter investigates return seasonalities in a set of well-known anomalies in the cross-

section of U.S. stock returns. A January seasonality goes beyond a size effect and strongly

affects most anomalies, which can even switch sign in January. Both tax-loss selling and firm

size are important in explaining the turn-of-the-year pattern. Return seasonality exists outside

of January, with respect to the month of the quarter. Small stocks earn abnormally high average

returns on the last day of each quarter, which significantly affects size, idiosyncratic volatility,

and illiquidity portfolios. The results have implications for the interpretation and analysis of

many anomalies, such as asset growth and momentum.

2.1 Introduction

Seasonalities have an important impact on the cross-section of stock returns. For example,

a large literature studies the tendency of small stocks to earn abnormal returns relative to

large stocks in January—i.e., the “January effect.”1 This paper investigates seasonalities in

“anomalies” portfolios built from U.S. stock returns. An anomaly is defined broadly as any

factor that affects the cross-section of stock returns beyond the market factor (Fama and

French, 2008). I consider a set of well-known anomalies based on accounting, price, return,

and volume data.

First, I examine the January seasonality in anomalies. I find that the January seasonality goes

beyond a size effect. Part of the evidence is consistent with previous research. But other results

based on recently documented anomalies are new. In addition, many results are scattered in

the literature and based on old data series. I aim to provide a fresh assessment of the January

1Rozeff and Kinney (1976) document larger January returns relative to other months in an equal-weighted index
of NYSE stocks. Keim (1983) shows that the large January returns stem from the abnormal performance of small
stocks.
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seasonality as well as regroup evidence about its impact on stock returns.

Second, I show that strong seasonalities exist outside of January depending on the month

of the quarter. One potential channel is that institutions may have incentives to manipulate

or window dress their portfolios at the end of quarters, which may affect stock prices.2 The

seasonalities are, however, especially strong for beginning-of-quarter months. The results

have implications for the interpretation of several anomalies and, more generally, for studies

of the cross-section of stock returns.

The January seasonality in anomaly return persists when controlling for the Fama-French

three factors. Despite showing a marked January seasonality, the SMB and HML factors do not

explain the January seasonality in anomalies. Moreover, the exposures of long-short anomaly

portfolios to the Fama-French factors do not appear to vary between January and other months.

On the other hand, month-of-the-quarter Fama-French alphas are much smaller than average

returns.3 The SMB factor displays a beginning-of-the-quarter seasonality that reduces the

beginning-of–the-quarter alpha of several anomalies portfolios. Even though the beginning-

of-the-quarter seasonality disappears when controlling for this factor, this result does not

explain why the factor is seasonal in the first place.

The previous results are robust to restricting the analysis on large caps portfolios with value-

weighting or using price screens. Here, the January seasonality in anomalies cannot simply be

understood as a January effect for small stocks. The results are also consistent over different

subsamples.

I discuss explanations for the January effect put forward by previous research. The literature

has not yet settled on an explanation for this seasonality. For instance, the tax-loss selling

hypothesis—one of the leading explanations for the January effect—does not explain the long

term seasonality patterns in January and the lack of price pressure in December for stocks

with high potential tax-loss.

I investigate daily patterns around the turn of the year and the turn of each quarter. Small

stocks earn an abnormally high average return on the last day of the quarter, which significantly

affects size, idiosyncratic volatility, and illiquidity portfolios. A similar effect occurs on the last

trading day of the year, which is puzzling from the point of view of tax-loss selling (Roll, 1983)

but may be consistent with portfolio pumping by equity funds (Carhart et al., 2002).

Tax-loss selling as proxied by a measure of capital loss overhang and size are both important in

2Musto (1997) shows evidence consistent with agency problems related to end-of-quarter portfolio disclosures
for commercial paper. Carhart et al. (2002) document mutual funds manipulation at the end of quarters. Ben-David
et al. (2013) provide similar evidence for hedge funds. For an example of anecdotal evidence, The Wall Street
Journal (December 6, 2012) reports this story: “Fund Managers Lift Results With Timely Trading Sprees.”

3Two noteworthy exceptions are the momentum and idiosyncratic volatility strategies; see Section 2.2.4.
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explaining the turn-of-the-year pattern. A marked seasonality exists in the long-short tax-loss

selling potential portfolio built from large capitalization stocks. Similarly, a seasonality also

exists in the long-short size portfolio built from stocks with low tax-loss selling potential. The

pattern in daily returns persists after jointly controlling for these variables. Moreover, several

anomalies characteristics are also significant in explaining year-end daily returns. Earnings

announcements do not appear to explain the seasonalities.

An asset pricing theory that attempts to explain an anomaly should also offer an explanation

as to why the anomaly exhibits seasonalities. The anomalies studied in the paper reflect a

wide range of sorting variables; hence, the seasonalities seem to show pervasive features of

the cross-section of stock returns. Furthermore, such seasonalities are important to take

into account when constructing and backtesting strategies. These seasonalities challenge the

economic interpretation of well-known strategies based on asset growth, size, momentum,

illiquidity, and idiosyncratic volatility. For instance, removing low-priced stocks appears to be

necessary to obtain positive illiquidity and size premia outside of January. But these premia

vary within the quarter.

A number of recent papers examine the determinants and role of anomalies in the cross-

section of stock returns. Most notably, studies explore the role of size (Fama and French,

2008), investor sentiment (Stambaugh, Yu, and Yuan, 2012), financial distress (Avramov et al.,

2013), institutions (Edelen, Ince, and Kadlec, 2014) and shorting fees (Drechsler and Drechsler,

2014). Also related, McLean and Pontiff (2016) study the returns of many anomalies and find

a post-publication decline in their returns. None of these papers discusses seasonalities in

anomalies.

Keloharju, Linnainmaa, and Nyberg (2014) also present evidence of seasonality in anomalies.

In particular, they show that seasonal variation in the average returns of several anomalies

strongly dominates the unconditional cross-sectional variation in average returns. They

examine return seasonality in different markets and focuses on the economic magnitude of

seasonality strategies. Relative to their paper, this paper examines anomalies in detail and how

the results challenge their economic interpretation. In addition, I specifically examine January

and month-of-the-quarter effects.

2.2 Seasonalities in Anomalies

This section provides evidence that several well-known anomalies exhibit marked January

and month-of-the-quarter seasonalities. The anomalies used in the paper are described in

Table B.1 in the Appendix. These anomalies reflect a broad range of sorting variables, such

as past returns, accounting data, market capitalization, and trading volume. I use daily and

monthly returns from CRSP on all common stocks (share code 10 or 11) on NYSE, Amex, and
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NASDAQ from January 1964 to December 2014.4 I take accounting data from Compustat to

compute book equity, gross profitability, asset growth, accruals, and net stock issues. All these

accounting variables are computed once a year at the end of June using data for the previous

fiscal year.

At the beginning of each month, I form decile portfolios based on the value of the variable

at the end of the previous month.5 Long-short portfolios are always long (short) the stocks

with the highest (lowest) value of the sorting variable in the formation period. For instance,

the long-short size portfolio is long large stocks and short small stocks. To help limit the

influence of microstructure noise, I focus on return-weighted and value-weighted portfolios

(Asparouhova, Bessembinder, and Kalcheva, 2013). Return-weighting weights each stock by

its gross return in the previous period. The weights are therefore positively correlated with any

mechanical noise in previous period returns, such as bid-ask bounce. This positive correlation

corrects for noise-induced reversals as a source of return. In addition, return-weighting does

not discard the information in small stocks returns to the same extent as value-weighting.

Equal-weighted portfolios show in general even stronger seasonalities.

Section 2.2.1 examines the average January returns on the anomalies portfolios. Section 2.2.2

studies non-January average returns. More specifically, I examine average returns for beginning-

of-quarter, middle-of-quarter, and end-of-quarter months.

2.2.1 January

Table 2.1 displays the average return-weighted and value-weighted monthly returns of long-

short decile portfolios in January and non-January months. All the portfolios exhibit a marked

January seasonality. The magnitudes are economically large. Furthermore, the difference

between the average January and non-January returns is statistically significant for all return-

weighted portfolios and for all but two value-weighted portfolios.

The literature abounds on the “January effect,” which is generally known as the tendency for

small stocks to earn abnormal returns relative to large stocks in January. Table 2.1 directly

illustrates this result. As first documented by Keim (1983), the size premium displays a strong

January seasonality (see also Blume and Stambaugh, 1983). Strikingly, the size effect is small

and insignificant outside of January.

To compute book-to-market, I divide a firm’s book equity by its market capitalization six

4To build some of the characteristics, I use returns starting from 1954. Returns are adjusted for a potential
delisting bias (Shumway, 1997). A missing delisting return that is performance-related (code 500, 520-584) is set to
-30%.

5The breakpoints for the portfolios are based on NYSE deciles. Stocks with a price smaller than 1$ at the
formation date are excluded from the portfolios. Financial firms (SIC code between 6000 and 6999) are excluded
from all the portfolios based on accounting variables.

34



2.2. Seasonalities in Anomalies

Table 2.1
Average January (Jan) and non-January months (non-Jan) returns in percent of return-
weighted and value-weighted long-short decile portfolios formed on different character-
istics. Sample: NYSE, Amex, and NASDAQ stocks from January 1964 to December 2014 (the
accruals portfolios start in July 1971). Breakpoints are based on NYSE deciles. Stocks with a
price smaller than $1 at the formation date are excluded. Financial firms are excluded from
book-to-market, gross profitability, asset growth, accruals, and net stock issues portfolios.
NASDAQ stocks are excluded from the turnover and illiquidity portfolios. The characteristics
are defined in Table B.1. Standard t-statistics are shown in parentheses. The diff columns
report the difference between January and non-January average returns where *, **, and ***
denote significance at the 10%, 5%, and 1% level.

return-weighted value-weighted

Jan non-Jan diff Jan non-Jan diff

Market cap. -6.36 0.32 -6.68*** -5.56 0.19 -5.74***
(-7.36) (1.87) (-7.58) (-6.36) (1.06) (-6.45)

Book-to-market 3.58 0.72 2.87*** 3.29 0.23 3.06***
(5.44) (4.24) (4.22) (3.72) (1.29) (3.38)

Gross profitability -1.19 1.03 -2.22*** -0.88 0.50 -1.38**
(-2.27) (8.18) (-4.12) (-1.66) (3.54) (-2.51)

Asset growth -3.95 -0.45 -3.50*** -2.21 -0.23 -1.98***
(-7.87) (-3.96) (-6.80) (-3.54) (-1.58) (-3.09)

Accruals -1.20 -0.33 -0.87** -0.56 -0.28 -0.28
(-3.11) (-3.99) (-2.20) (-0.91) (-1.87) (-0.45)

Net stock issues 0.15 -1.16 1.31** -0.17 -0.54 0.37
(0.28) (-9.24) (2.31) (-0.34) (-4.49) (0.70)

Δ turnover 3.25 0.89 2.36*** 1.72 0.45 1.27**
(5.71) (9.46) (4.09) (2.84) (3.73) (2.05)

Illiquidity 6.10 -0.16 6.26*** 4.46 0.16 4.31***
(6.75) (-0.97) (6.82) (5.44) (0.96) (5.16)

Idiosyncratic vol. 5.58 -1.03 6.61*** 2.69 -0.81 3.50***
(5.91) (-4.47) (6.81) (2.53) (-2.92) (3.18)

Momentum -3.47 1.72 -5.19*** -1.81 0.99 -2.80**
(-3.40) (8.71) (-4.98) (-1.59) (3.95) (-2.41)

12-month effect 3.28 0.48 2.81*** 3.00 0.57 2.42***
(6.20) (5.67) (5.23) (4.17) (4.02) (3.30) 35
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months ago. The book-to-market strategy is five times more profitable in January than in other

months with return-weighting. The difference is even larger with value-weighting. Loughran

(1997) documents a January seasonality in the book-to-market effect, which is robust to

controlling for firm size. He further argues that the book-to-market effect is insignificant for

large firms outside of January.

The size seasonality is well-known in the literature. Less is known, however, about the behavior

of other asset pricing anomalies in January. I investigate strategies based on the following

accounting data: gross profitability (Novy-Marx, 2013), asset growth (see, for instance, Cooper,

Gulen, and Schill, 2008), accruals (Sloan, 1996), and net stock issues (Daniel and Titman,

2006).6

The gross profitability strategy’s average return is negative in January and positive in all other

months. Though the strategy yields large and strongly significant average returns outside of

January, the previous results suggest that a convincing explanation should be able to account

for the different January behavior. Similarly, the asset growth strategies are seasonal and earn

more than 40% of their average annual return in January. For both of these anomalies, the

authors do not mention the seasonality.

The accruals anomaly exhibits a clear seasonality with return-weighted portfolios. For value-

weighted portfolios, the January average return is large but not statistically significant. The

average decile returns are not monotonic for this strategy. In January, they are U-shaped.

Outside of January, they are driven by the poor performance of the highest decile portfolio

(i.e., stocks with high accruals).

Previous research shows that firms with high net stock issues tend to have low future returns

(Daniel and Titman, 2006, Pontiff and Woodgate, 2008). The net stock issues strategy is also

seasonal. The strategy gives small and insignificant average returns in January, while the

average return is large outside of January. The difference is especially marked for return-

weighted portfolios.

Strategies based on volume data seem to perform differently in January. The “change in

turnover” strategy (Δ turnover) sorts stocks on their change in turnover in the previous month

relative to the past six-month average turnover. This strategy is highly profitable in all months

of the year. The January profit is, however, much larger than in other months. The seasonality

vanishes once one skips the last month in the portfolio formation: High December Δ turnover

stocks tend to have high average returns in January, but this is not the case for high November

Δ turnover stocks.

6Due to lack of data I start the sample in July 1971 for the accruals portfolios and in July 1964 for the asset growth
and net stock issues portfolios.
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Table 2.1 also examines the return on a strategy based on the average price impact measure

ILLIQ (Amihud, 2002) in the previous year like in Acharya and Pedersen (2005); see Table B.1.

The illiquidity strategy exhibits a strong January seasonality. Surprisingly, this strategy has the

wrong sign outside of January for return-weighted returns. Stocks with low price impact—as

measured by ILLIQ—in the previous year tend to underperform high price impact stocks.

Looking at each decile return separately gives no evidence of a robust return pattern outside

of January. Since ILLIQ is measured over one year, the seasonality does not reflect a short-term

reversal effect specific to December and January. These results highlight the importance of

controlling for January-related effects when testing liquidity variables (see Eleswarapu and

Reinganum, 1993, Datar, Y. Naik, and Radcliffe, 1998).

Ang et al. (2006) find a negative return on a high-minus-low strategy formed on past month

idiosyncratic volatility—a puzzling result that contradicts standard theories. As shown in

Table 2.1, the strategy’s average January and non-January returns strongly differ. Average

returns are sizable in both periods but have opposite signs.7 The non-January average return

is not monotonic across deciles (not reported). The highest-decile portfolio completely drives

the negative average return; that is, stocks with the highest idiosyncratic volatility in the last

month perform extremely poorly in the current month. The previous results are consistent

with the analysis of Peterson and Smedema (2011).

Momentum strategies tend to perform poorly in January (Jegadeesh and Titman, 2001). For

completeness, I compute the average monthly return on a momentum strategy that sorts

stocks based on the past six months skipping the last month and with a one-month holding

period. Table 2.1 reports the results, which are in line with previous research. Furthermore,

it is also well-known that strategies based on long-term reversal exhibit a strong January

seasonality (De Bondt and Thaler, 1987).

Finally, I examine a seasonality strategy based on past returns (Heston and Sadka, 2008). At the

end of month t −1, the 12-month strategy allocates stocks into ten portfolios based on their

average return in month t −k12, for k = 6,7,8,9,10. This strategy is profitable when the same

stocks tend to perform well in the same months every year. Unsurprisingly, the 12-month

strategy exhibits a strong January seasonality. Contrary to other months, the average return

pattern across deciles is not monotonic but U-shaped in January.

The January seasonality appears robust to value-weighting. Standing out are the accruals and

net issues portfolios, for which the value-weighted average January and non-January returns

do not differ significantly. In addition, value-weighting tends to lower the long-short portfolios

7Contrary to Ang et al. (2006), the portfolios are built using NYSE breakpoints instead of CRSP breakpoints.
Using value-weighted portfolios with CRSP breakpoints, I find that the average January return is 3.57% (t-stat:
2.85), and the average non-January return is -1.55% (t-stat: -4.94), which gives a total average return of -1.13%
(t-stat: -3.60)—in line with the findings of Ang et al. (2006). Bali and Cakici (2008) show that “the idiosyncratic
volatility puzzle” is sensitive to the weighting scheme and the definition of the breakpoints.
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average returns. The book-to-market and asset growth strategies give small and insignificant

average returns outside of January when using value-weighted portfolios.8

2.2.2 Beginning and End-of-Quarter Effects

This section shows that the average return of anomalies portfolios varies with the month of the

quarter. Returns in beginning-of-quarter and end-of-quarter months can differ from returns

in mid-quarter months for several reasons. Previous research has shown that institutions

may have incentives to manipulate or window dress their portfolios at the end of quarters

(Carhart et al., 2002, Ben-David et al., 2013). In this respect, Sias (2007) finds that a momentum

strategy has a higher return on quarter-ending months than on non-quarter-ending months.

In addition, most firms announce their earnings for the previous quarter in the first month

of the next quarter. Since most firms end their fiscal year in December, the months of April,

July, and October contain almost half of all earnings announcement over the period 1973-2004

(Lamont and Frazzini, 2007, Table I). Important quarterly macroeconomic data may also

be released in the month right after the end of the relevant quarter. This is the case for the

advanced estimate of U.S. gross domestic product.

Table 2.2 displays the average return of the long-short anomalies portfolios separately for

middle-quarter, beginning-of-quarter, and end-of-quarter months. The beginning-of-quarter

results exclude the month of January. Specific seasonalities emerge for both return-weighted

and value-weighted portfolios.

A size effect is economically large and statistically significant only in beginning-of-quarter

months. Since the market capitalization strategy is long large caps and short small caps, this

result contrasts with the average January return in Table 2.1, where small caps tend to strongly

outperform large caps. Therefore, two different seasonalities appear to drive the size premium:

a January seasonality and a beginning-of-quarter seasonality.

Book-to-market average returns differ between return-weighted and value-weighted portfolios.

Value-weighted returns are small and not statistically significant. While there is no clear

seasonality in the return-weighted gross profitability portfolio, the value-weighted portfolio

average return is small and insignificant in end-of-quarter months. On the contrary, the asset

growth value-weighted portfolio average return is only large and significant in end-of-quarter

months. The accruals, net stock issues, Δ turnover, illiquidity, and idiosyncratic volatility

average returns tend to display a seasonality in beginning-of-quarter months. The results

are especially marked for value-weighted portfolios. For instance, the accruals and net stock

8Cooper, Gulen, and Schill (2008) perform a battery of robustness checks, such as sorting on size. They do not,
however, control for a January seasonality. To provide a complete picture, I restrict the sample from July 1963 to
June 2003 like their analysis. The non-January average value-weighted return becomes -0.33% with a t-statistic of
-1.87, which is more than seven times lower than in January.
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Table 2.2
Average returns in percent of long-short return-weighted and value-weighted decile
portfolios formed on different characteristics shown separately for middle-of-quarter,
beginning-of-quarter (excluding January), and end-of-quarter months. Sample: NYSE,
Amex, and NASDAQ stocks from January 1964 to December 2014 (the accruals portfolios
start in July 1971). Breakpoints are based on NYSE deciles. Stocks with a price smaller than $1
at the formation date are excluded. Financial firms are excluded from book-to-market, gross
profitability, asset growth, accruals, and net stock issues portfolios. NASDAQ stocks are ex-
cluded from the turnover and illiquidity portfolios. The characteristics are defined in Table B.1.
The t-statistics are in parentheses, and *, **, and *** denote significance at the 10%, 5%, and
1% level.

return-weighted value-weighted

mid beg end mid beg end

Market cap. 0.15 0.93*** 0.03 0.01 0.95*** -0.21
(0.52) (2.75) (0.11) (0.04) (2.64) (-0.81)

Book-to-market 0.57* 1.08*** 0.59** 0.13 0.23 0.34
(1.93) (3.12) (2.39) (0.41) (0.62) (1.23)

Gross profitability 0.96*** 1.17*** 0.99*** 0.70*** 0.53* 0.27
(4.10) (5.35) (5.09) (3.38) (1.82) (1.10)

Asset growth -0.59*** -0.34* -0.40** -0.12 -0.14 -0.41*
(-2.66) (-1.75) (-2.36) (-0.48) (-0.53) (-1.66)

Accruals -0.38*** -0.30* -0.32** 0.03 -0.67** -0.29
(-2.62) (-1.76) (-2.50) (0.16) (-2.08) (-1.21)

Net stock issues -0.93*** -1.68*** -1.00*** -0.22 -1.22*** -0.36
(-3.94) (-7.70) (-5.30) (-1.17) (-5.56) (-1.67)

Δ turnover 1.05*** 0.78*** 0.81*** 0.22 0.81*** 0.41**
(6.20) (4.30) (5.79) (1.20) (3.37) (1.97)

Illiquidity -0.11 -0.93*** 0.37 0.23 -0.80** 0.80***
(-0.36) (-2.97) (1.52) (0.83) (-2.52) (3.32)

Idiosyncratic vol. -0.55 -1.66*** -1.04*** -0.25 -1.55*** -0.82*
(-1.30) (-3.72) (-3.17) (-0.52) (-2.89) (-1.92)

Momentum 1.37*** 1.20*** 2.45*** 0.73* 0.07 1.95***
(4.69) (2.69) (8.03) (1.77) (0.13) (5.12)

12-month 0.36*** 0.65*** 0.47*** 0.29 0.93*** 0.59***
(2.84) (3.34) (3.65) (1.26) (3.02) (2.74) 39
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issues value-weighted portfolios earn negative average returns more than twice as large at

the beginning of quarters than in other months. The illiquidity portfolio average return in

beginning-of-quarter months goes against economic intuition since low ILLIQ stocks strongly

outperform high ILLIQ stocks. Like the size portfolio, the illiquidity and idiosyncratic volatility

portfolios average beginning-of-quarter return have opposite sign than in January. Therefore,

the seasonalities in these anomalies at the beginning of quarters and in January appear to be

distinct.

Consistent with Sias (2007), the momentum average return is stronger in end-of-quarter

months. In addition, the value-weighted average return is close to zero at the beginning of

quarters. The 12-month strategy, which is a seasonality strategy, is more profitable at the

beginning and end of quarters. The average value-weighted return is small and insignificant

in middle-of-quarter months.

Overall, strong seasonalities arise at the beginning of quarters for many anomalies. The average

return of value-weighted long-short portfolios in middle-quarter months is economically

small and statistically insignificant for nine out of eleven anomalies. On the contrary, the

average return is large and significant in beginning-of-quarter months eight times out of

eleven. Besides, the zero momentum return in beginning-of-quarter months also reflects a

seasonality. The beginning-of-quarter seasonality does not, however, necessarily reflect an

attenuated January seasonality since some anomalies have opposite sign than in January. Last,

return-weighted and value-weighted portfolios can exhibit marked differences for some of the

anomalies.9

2.2.3 Discussion

Many anomalies exhibit strong seasonalities. January-related effects are weaker in recent years

but remain marked for most of the anomalies. Almost all of the anomalies under consideration

have a beginning-of-quarter seasonality. Here, the seasonalities are often stronger with value-

weighting. These seasonalities should be taken into account when backtesting strategies

or performing asset pricing tests on recent data. For instance, if the return on a strategy is

seasonal and the seasonality has decreased in recent years, then the average return on the

strategy is misleading.

Taking a specific case, the strong seasonality in ILLIQ may lead to biased inferences. Many

papers use ILLIQ as a measure of illiquidity but do not discuss the impact of seasonality on

their results (see, for instance, Acharya and Pedersen, 2005). The average long-short ILLIQ

9The same remark holds with equal-weighting instead of value-weighting. Examining anomalies’ returns
separately for each month of the year, the results are consistent but noisier. Still, October solely drives the
beginning-of-quarter seasonality in value-weighted size portfolios. Nevertheless, this seasonality is robust over
multiple subsamples (Section B.1.2).

40



2.2. Seasonalities in Anomalies

return is small and insignificant outside of January with return-weighted and value-weighted

returns. Going one step further, the average ILLIQ return is large but with an opposite sign

at the beginning and end of quarters. Hence, it is not clear that the return on the long-short

ILLIQ portfolio reflects an illiquidity premium. As shown below, removing low-priced stocks

appears to be necessary to obtain positive illiquidity and size premia outside of January. But

these premia are only large and significant in the last month of quarters.

2.2.4 Fama-French Factors

I do not adjust returns for exposure to the Fama-French factors (Fama and French, 1993). The

economic interpretation of these factors is subject to debate. For instance, as illustrated by the

previous analysis, the long-short size portfolio does not appear to consistently reflect a real

size premium. Nevertheless, since these factors are widely used, this section discusses their

impact on the analysis.

Fama and French’s SMB and HML factors also display a marked seasonality during the sample

period 1964-2014. The SMB factor has a mean of 1.94% (t-statistic: 4.04) in January and 0.10%

(0.76) in other months. The HML factor has a mean of 1.37% (2.70) in January and 0.27%

(2.31) in other months.10 This is not surprising in light of the previous results about size and

book-to-market portfolios.

Since the factors are seasonal, they may explain the seasonalities in anomalies. I estimate the

following time-series regression for each anomaly:

r LS
i ,t =α+αJan1Jan +αBeg1Beg +αEnd1End

+βm
(
rm,t − r f ,t

)+βSMBSMBt +βHMLHMLt +εt , (2.1)

where r LS
i ,t is the long-short decile portfolio return on anomaly i , and rm,t − r f ,t is the excess

market return. The regression includes January, beginning-of-quarter (excluding January),

and end-of-quarter dummies.

If the factors control for the seasonalities, then none of the dummies should be significant.

Table 2.3 presents the results for equal and value-weighted long-short portfolios. The January

dummy is significant for all return-weighted portfolios and for most value-weighted portfolios.

Even when the January dummy is insignificant, its magnitude is often large relative to the

mid-quarter alpha. Despite being seasonal, the factors do not explain the January seasonality

in anomalies.

Beginning and end-of-quarter dummies are insignificant most of the time. Still, the end-of-

10I take the risk-free return, market return, SMB, and HML from Kenneth French’s website. I thank him for
making these data available.

41



Chapter 2. Seasonalities in Anomalies

Table 2.3
Estimates of time series regressions controlling for Fama-French three factors. Monthly
returns of long-short portfolios as described in Table C.2 are regressed on the Fama-French
three factors and January, beginning-of-quarter (excluding January), and end-of-quarter
dummies. The table reports the intercept and dummies expressed in percent. The t-statistics
are shown in parentheses and computed using White heteroskedasticity robust standard errors.
The symbols *, **, and *** denote significance at the 10%, 5%, and 1% level.

return-weighted value-weighted

α αJan αBeg αEnd α αJan αBeg αEnd

MC 0.41*** -4.13*** -0.13 0.26 0.34*** -2.85*** -0.02 0.19
(2.66) (-9.14) (-0.59) (1.06) (2.62) (-6.96) (-0.09) (0.94)

BM 0.38** 1.62*** 0.45 -0.08 -0.27 0.83* 0.26 0.02
(2.28) (3.69) (1.64) (-0.36) (-1.44) (1.84) (0.82) (0.06)

GP 0.94*** -2.22*** 0.16 0.04 0.82*** -0.97* -0.19 -0.39
(4.04) (-3.71) (0.53) (0.12) (4.11) (-1.66) (-0.55) (-1.28)

AG -0.53*** -2.56*** 0.04 0.31 -0.00 -1.16** 0.01 -0.23
(-2.76) (-5.16) (0.18) (1.18) (-0.00) (-2.18) (0.04) (-0.77)

AC -0.36** -0.65* 0.03 0.09 0.00 -0.87 -0.50 -0.38
(-2.51) (-1.65) (0.15) (0.50) (0.00) (-1.36) (-1.36) (-1.20)

NSI -0.94*** 1.15** -0.49** -0.11 -0.24 -0.10 -0.74*** -0.20
(-5.42) (2.49) (-2.06) (-0.47) (-1.44) (-0.21) (-2.80) (-0.81)

ΔT 1.04*** 2.08*** -0.21 -0.26 0.21 1.46*** 0.55* 0.20
(6.08) (3.98) (-0.90) (-1.15) (1.09) (2.60) (1.84) (0.70)

IL -0.37** 3.74*** 0.07 0.08 -0.08 1.67*** -0.15 0.17
(-2.33) (8.94) (0.34) (0.36) (-0.62) (4.75) (-0.84) (0.97)

IV -0.91*** 4.29*** -0.22 -0.78** -0.65** 0.77 -0.22 -0.92**
(-4.08) (7.99) (-0.64) (-2.58) (-2.27) (1.18) (-0.50) (-2.42)

MOM 1.53*** -4.22*** -0.22 1.12*** 0.90** -2.13 -0.61 1.22**
(5.24) (-4.14) (-0.42) (2.65) (2.24) (-1.75) (-0.92) (2.22)

12m 0.35*** 2.88*** 0.29 0.10 0.33 2.82*** 0.73* 0.29
(2.76) (5.33) (1.23) (0.56) (1.49) (3.69) (1.91) (0.92)42



2.2. Seasonalities in Anomalies

quarter dummy stands out for the momentum and idiosyncratic volatility strategies. Consis-

tent with the results of Sias (2007), past winners outperform past losers at the end of quarters.

In addition, high idiosyncratic volatility stocks yield a large negative alpha at the end of

quarters. I come back to this effect in Section 2.3.2.

The month-of-the-quarter evidence from the regressions is much weaker than the evidence

from the portfolio sorts. First, in several cases the differences between mid-quarter and

beginning-of-quarter average monthly returns are not significant in Table 2.2. Second, the

SMB factor displays a beginning-of-quarter seasonality that reduces the beginning-of-quarter

alphas for many anomalies. Even though the beginning-of-quarter seasonality disappears

when controlling for this factor, this procedure does not explain why the factor is seasonal in

the first place. Stated differently, this evidence does not explain why the market capitalization

strategy in Table 2.2 displays such a marked beginning-of-quarter seasonality.

To complement the analysis, I estimate separately time-series regressions for January returns

and non-January returns (not reported). Overall, the Fama-French factor loadings remain

similar in both periods. In other words, the long-short anomalies portfolios sensitivities to the

Fama-French factors do not appear to vary between January and other months.

2.2.5 Robustness Checks

It is well-known that firm size plays a key role for the January effect. In Table 2.4 I try to

assess whether the January and month-of-the-quarter seasonalities in anomalies are purely a

size effect. Before sorting on the characteristic under study, I require the stocks to be larger

than the median NYSE market capitalization in the formation period. The portfolios are then

value-weighted.

The strategies’ returns tend to be smaller in the value-weighted portfolios restricted to large

caps. But the main results are qualitatively similar. Anomalies tend to exhibit specific January

patterns in large caps portfolios. For instance, the book-to-market strategy gives a markedly

larger average return in January. Excluding stocks with low market capitalization gives a posi-

tive and significant size premium except at the beginning of quarters, where the size premium

has the “wrong” sign. Beginning-of-quarter months continue to show strong seasonalities

relative to other months. This result is marked for size, net stock issues, Δ turnover, illiquidity,

idiosyncratic volatility, and 12-month strategies. The difference in average returns between

mid-quarter months and other months is often striking. Though some of these results may

be spurious due to noise, the evidence indicates that a wide range of well-known anomalies

display strong seasonalities even in value-weighted portfolios restricted to large caps.

In Section B.1 of the Appendix, I provide additional robustness checks with a larger price

screen and subsamples. Overall, the seasonalities in many anomalies are not simple artifacts
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Table 2.4
Average returns in percent of long-short value-weighted decile portfolios formed on dif-
ferent characteristics with size screen. Before sorting on the characteristic, stocks are re-
stricted to be larger than the median NYSE market capitalization. The average return is
shown separately for middle-quarter, January, beginning-of-quarter (excluding January), and
end-of-quarter months. Sample: NYSE, Amex, and NASDAQ stocks from January 1964 to
December 2014 (the accruals portfolios start in July 1971). Breakpoints are based on NYSE
deciles. Stocks with a price smaller than $1 at the formation date are excluded. Financial firms
are excluded from book-to-market, gross profitability, asset growth, accruals, and net stock
issues portfolios. NASDAQ stocks are excluded from the turnover and illiquidity portfolios.
The characteristics are defined in Table B.1. The symbols *, **, and *** denote significance at
the 10%, 5%, and 1% level.

mid Jan beg end

MC -0.39* (-1.82) -1.47** (-2.51) 0.58** (2.03) -0.52*** (-2.60)

BM -0.15 (-0.48) 2.10*** (2.75) -0.02 (-0.04) 0.22 (0.75)

GP 0.61*** (2.78) -0.67 (-1.15) 0.48 (1.55) 0.09 (0.33)

AG 0.02 (0.08) -1.04* (-1.67) -0.18 (-0.66) -0.31 (-1.22)

AC 0.07 (0.32) -0.41 (-0.74) -0.56* (-1.75) -0.24 (-0.99)

NSI -0.09 (-0.49) -0.17 (-0.31) -0.87*** (-4.08) -0.30 (-1.39)

ΔT 0.05 (0.30) 0.99* (1.95) 0.68*** (2.86) 0.39** (2.14)

IL 0.47** (2.46) 0.77 (1.49) -0.58** (-2.35) 0.59*** (3.19)

IV 0.11 (0.27) 1.56* (1.76) -0.82* (-1.78) -0.57 (-1.45)

MOM 0.40 (0.98) -1.26 (-1.15) -0.49 (-1.07) 1.49*** (4.20)

12m 0.30 (1.31) 1.34* (1.95) 0.85*** (2.88) 0.52** (2.45)
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of small market capitalization or low-priced stocks and hold over multiple subsamples.

2.3 Analysis

Section 2.3.1 briefly reviews current explanations for the January and month-of-the-quarter

seasonalities. Section 2.3.2 studies daily returns around the turns of years and quarters.

Section 2.3.3 studies the role of tax-loss selling for the January seasonality in anomalies.

Section 2.3.4 reports additional results on price pressure, long-term seasonality, and the role

of earnings announcements.

2.3.1 Potential Explanations

Previous studies put forward several explanations for the January effect among which the most

prominent are tax-loss selling and institutional “window dressing.”

According to the tax-loss selling explanation, taxable investors tend to sell their losing stocks

in December to realize capital losses. Realized losses offset realized gains and therefore reduce

the amount of taxes owed. Since taxes are calculated over a calendar year, investors have an

incentive to realize capital losses before the turn of the year. Tax-loss selling puts temporary

price pressure on the stocks in December, which bounce back to their equilibrium values in

January.11

Window dressing means that portfolio managers sell their low-performing stocks before year-

end since they do not want poor-performing investments to appear on their reports (Haugen

and Lakonishok, 1988). Like tax-loss selling, window dressing cannot explain why small stocks

that are past winners also earn large January returns (Reinganum, 1983). The window dressing

and tax-loss selling hypotheses make similar predictions but rely on different types of investors

since only individual taxable investors should be subject to the latter.12

Ritter (1988) suggests yet another explanation, which complements tax-loss selling. Namely,

individual investors reinvest the proceeds from tax sales and year-end cash infusions in January.

These individual investors mainly invest in small stocks, generating a size effect in January

even for prior winners. Furthermore, Ritter (1988) hypothesizes that these investors tend to

buy back the stocks they previously sold for tax reasons. Grinblatt and Keloharju (2004) provide

consistent evidence for the Finnish stock market. The “rebalancing” hypothesis predicts that

11Reinganum (1983) finds supportive evidence; the January effect is more pronounced for stocks with poor
performance over the previous year (see also Roll, 1983). Poterba and Weisbenner (2001) provide consistent
evidence and explain in greater detail the relevant U.S. tax regime. In a recent study, Kang et al. (2015) highlight the
role of interest rates for the January effect.

12Sias and Starks (1997) use institutional ownership to disentangle the two hypotheses.
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all small stocks outperform in January, including prior winners. In addition, small stocks

that are prior losers should exhibit the strongest effect since they are the best candidates for

tax-loss selling.

As mentioned in the introduction, institutions may want to manipulate or window dress their

portfolios at the end of quarters. Such trades are likely to affect stock prices, especially for

illiquid stocks. Moreover, Kang et al. (2015) argue that tax-loss selling may occur at the end of

quarters following recessions.

2.3.2 Evidence from Daily Returns

Turn-of-the-Year

Figure 2.1 shows the average daily return of value-weighted size portfolios around the turn-of-

the-year. The large average return of small stocks on the last trading day of December, already

pointed out by Roll (1983), seems difficult to reconcile with the tax-loss selling and window

dressing explanations. In addition, the average daily returns preceding the turn-of-the-year

also tend to be positive.

Figure 2.1. Average daily return of value-weighted size portfolios around the turn-of-the-
year. Jan indicates the first trading day of January. Market capitalization is measured each
year at the end of June. Sample: NYSE, Amex, and NASDAQ stocks from January 1964 to
December 2014. Breakpoints are based on NYSE deciles. Stocks with a price smaller than $1 at
the formation date are excluded.
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The seasonality is similarly unilateral for illiquidity, idiosyncratic volatility, and momentum

portfolios. For other anomalies, both legs tend to display a seasonality but often to a different

extent, which leads to the January seasonality reported in Table 2.1.
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Turn-of-the-Quarter

Small stocks earn large average returns on the last trading day of each quarter. Figure 2.2

displays the average daily return of value-weighted long-short size portfolio for each quarter-

turn outside of the year-turn.13 Small stocks (the short leg) drive the pattern in each case. The

average returns are especially large on the last trading day of the first and second quarters and

are highly significant with t-statistics of −5.15 and −3.90. For the third quarter, the average

daily return is smaller but remains significant at the level of 5% with a t-statistic of −2.36. I did

not find evidence of a similar effect at the turn-of-the-month within the calendar quarter.

Figure 2.2. Average daily return of value-weighted long-short size portfolios around the
turn-of-the-quarter. Q indicates the first trading day of the quarter. Market capitalization is
measured each year at the beginning of June. Sample: NYSE, Amex, and NASDAQ stocks from
January 1964 to December 2014. Breakpoints are based on NYSE deciles. Stocks with a price
smaller than $1 at the formation date are excluded.
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This small stock effect on the last trading day of the quarter may help explain why small stocks

tend to earn large average returns on the day before the turn-of-the-year (Figure 2.1). If the

same underlying force is at work in both cases, then the high average year-end return should

not be taken as evidence against tax-loss selling.

The pattern may reflect the evidence of portfolio pumping by equity funds on the last day of

each quarter documented by Carhart et al. (2002). One would expect portfolio pumping to

be implemented using small stocks since those tend to be less liquid and therefore easier to

manipulate. Furthermore, Figure 2.2 indicates that return reversal occurs to some extent on

the first day of the quarter.

13Market capitalization is measured once a year at the beginning of June, so that the composition of the portfolios
does not vary over the turn of any quarter.
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I now investigate whether turn-of-the-quarter effects drive the seasonalities in long-short

anomalies portfolios shown in Table 2.2. Most anomalies do not show any clear pattern at

the turn-of-the-quarter, but net stock issues, illiquidity, and idiosyncratic volatility stand

out. Figure 2.3 shows the average daily return of the value-weighted long-short illiquidity

and idiosyncratic volatility portfolios for each quarter-turn outside of the year-turn. Like

the size portfolio, the average daily return on the last trading day of the quarter is large and

significant.14 The only exception is the IV portfolio in the third quarter.

Figure 2.3 can therefore explain why the illiquidity portfolio earns a large return at quarter-

end (Table 2.2). The return on the last trading day generates a large part of the apparent

positive illiquidity premium at the end of quarters. These results do not explain, however, the

difference in average returns between beginning-of-quarter months and middle-of-quarter

months. Similarly, Figure 2.3 indicates that excluding the last day of the quarter strengthens the

idiosyncratic volatility puzzle. The evidence in Section 2.2.4 confirms this effect: Controlling

for the SMB factor increases the absolute alpha of the IV strategy at the end of quarters. In

summary, the small stocks turn-of-the-quarter effect has a significant impact on several asset

pricing anomalies.

2.3.3 Anomalies and Tax-Loss Selling

What is the role of tax-loss selling for the January seasonality in anomalies? To obtain a stock’s

potential for tax-loss selling, I follow Grinblatt and Han (2005) to compute a measure of capital

loss overhang for each stock. Each week t , a stock’s capital loss overhang (CLO) is given by

CLOt = Rt −Pt

Pt
, (2.2)

where Pt is the price at the end of the week, and Rt is a reference price. The reference price

equals

Rt =
260∑
n=1

k

(
Vt−n

n−1∏
τ=1

(1−Vt−n+τ)

)
Pt−n , (2.3)

where Vt is a stock’s turnover ratio in week t (sum of daily trading volume over shares out-

standing), and k is a normalization constant that makes the price weights sum up to one. The

reference price Rt gives a larger weight to prices set during weeks with high turnover. A weight

for a given week represents the probability that an investor bought the stock during this week

and did not sell it afterward. Like Grinblatt and Han (2005), I take an horizon of five years to

14The t-statistics are 4.61, 5.07, and 2.71 for the IL portfolio; and 4.61, 5.07, and 2.71 for the IV portfolio. In
March/April, the average daily return of the IV portfolio on the last trading day of the quarter is not the largest in
absolute value but is the only one to be statistically significant.
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Figure 2.3. Average daily return of value-weighted long-short illiquidity and idiosyncratic
volatility portfolios around the turn-of-the-quarter. Q indicates the first trading day of the
quarter. Sample: NYSE, Amex, and NASDAQ stocks from January 1964 to December 2014.
Breakpoints are based on NYSE deciles. Stocks with a price smaller than $1 at the formation
date are excluded.
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compute the reference price (see also Kang et al., 2015). A high capital loss overhang makes a

stock a good candidate for tax-loss selling since an investor is then likely to have bought the

stock at a price higher than the current price.

Sequential Sorts

I use sequential sorts to investigate whether capital loss overhang (i.e., tax-loss selling po-

tential) can explain the turn-of-the-year seasonality in small stocks.15 Table 2.5 presents the

average returns of portfolios from quintile sequential sorts on CLO and then on the charac-

teristics used to build the anomalies in the paper. For comparison, Table 2.6 presents similar

sorts using market capitalization as the first sorting variable. All the portfolios are formed at

the beginning of December and are value-weighted.

If tax-loss selling is the main driver of the January seasonality in anomalies, then the seasonality

should not exist among stocks in the low CLO quintile. In general, the seasonality is markedly

stronger for the portfolios formed within the high capital loss quintile. But several anomalies

continue to display a strong seasonality even when built using stocks that have a low potential

for tax-loss selling. A similar remark applies when market capitalization is the first sorting

variable, which confirms the robustness checks of Section 2.2.5.

Anomalies portfolios built using stocks in the low CLO quintile seem less subject to season-

alities than anomalies portfolios built using stocks in the high size quintile. This evidence

potentially indicates that CLO identifies the seasonalities more precisely than size. Neither

size nor CLO, however, subsumes the other: Within the large size quintile, sorting stocks on

CLO gives an average cumulative return in the ten days after the turn-of-the-year of 1.21%

with a t-statistic of 2.46. Similarly, sorting on size within the low CLO quintile gives an aver-

age cumulative return of -2.23% with a t-statistic of -4.22. Strikingly, the average return of

small stocks on the last trading day of December remains large among low CLO stocks with

a t-statistic of −8.25. Hence, tax-loss selling as proxied by CLO does not solely generate the

end-of-the-year effect in small stocks. This result is consistent with the end-of-the-year effect

in small stocks reflecting a general end-of-the-quarter effect (Figure 2.2).

The average return of many anomalies switches sign between January and non-January months

in Table 2.1. Table 2.5 shows that controlling for tax-loss selling does not help explain this

finding.

15Using independent sorts gives similar results, but some of the portfolios hold less than 20 stocks at several
dates.
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Table 2.5
Average returns in percent of long-short value-weighted quintile portfolios around the
turn-of-the-year split by capital loss overhang. At the beginning of December, stocks are
allocated into capital loss overhang quintiles. Within each quintile, stocks are sorted again
into quintiles based on different characteristics. T-10:T-2 indicates the average cumulative
return from ten to two days before the turn-of-the-year. T-1 indicates the average return on
the last trading day of December. T+1:T+10 indicates the average cumulative return from
the first to the tenth trading day of January. Sample: NYSE, Amex, and NASDAQ stocks from
December 1968 to December 2014. Stocks with a price smaller than $1 at the formation date
are excluded. The characteristics are defined in Table B.1. The t-statistics are in parentheses,
and *, **, and *** denote significance at the 10%, 5%, and 1% level.

low capital loss overhang high capital loss overhang

T-10:T-2 T-1 T+1:T+10 T-10:T-2 T-1 T+1:T+10

MC 0.16 -0.91*** -2.23*** 1.96*** -1.49*** -7.37***
(0.53) (-8.25) (-4.22) (3.48) (-5.88) (-8.53)

BM 0.31 0.20** 0.93* -0.56 0.83*** 4.04***
(0.78) (2.29) (1.86) (-1.01) (3.72) (4.88)

GP -0.06 0.10 -0.88** 0.40 -0.45** -1.13
(-0.18) (-1.09) (-2.12) (0.67) (-2.39) (-1.62)

AG 0.18 -0.16* -1.55*** -0.21 -0.47** -3.33***
(0.58) (-1.85) (-3.73) (-0.40) (-2.02) (-4.27)

AC 0.27 0.11 -0.41 -0.49 0.02 -2.07**
(0.80) (1.19) (-0.87) (-0.86) (0.10) (-2.51)

NSI 0.26 0.14* 0.59 -0.44 0.68*** -0.10
(0.86) (1.91) (1.57) (-0.89) (3.49) (-0.13)

ΔT 0.14 0.09 0.02 0.75 0.89*** 1.83**
(0.39) (0.76) (0.06) (0.83) (4.42) (2.49)

IL 0.28 0.68*** 2.19*** -0.89 1.51*** 5.80***
(0.79) (6.61) (3.91) (-1.45) (6.24) (4.42)

IV 0.45 0.56*** 1.81** -0.67 1.75*** 5.13***
(1.11) (3.28) (2.35) (-1.16) (6.64) (4.48)

MOM 0.82* 0.18 0.07 -0.29 -0.63*** -2.38**
(1.90) (1.60) (0.14) (-0.49) (-3.51) (-2.39)

12m 0.84** 0.06 1.88*** -0.46 0.51** 3.54***
(2.05) (0.53) (2.93) (-0.69) (2.57) (3.60) 51
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Table 2.6
Average returns in percent of long-short value-weighted quintile portfolios around the
turn-of-the-year split by size. At the beginning of December, stocks are allocated into size
quintiles. Within each quintile, stocks are sorted again into quintiles based on different char-
acteristics. T-10:T-2 indicates the average cumulative return from ten to two days before
the turn-of-the-year. T-1 indicates the average return on the last trading day of December.
T+1:T+10 indicates the average cumulative return from the first to the tenth trading day of
January. Sample: NYSE, Amex, and NASDAQ stocks from December 1968 to December 2014.
Stocks with a price smaller than $1 at the formation date are excluded. The characteristics are
defined in Table B.1. The t-statistics are in parentheses, and *, **, and *** denote significance
at the 10%, 5%, and 1% level.

low market cap high market cap

T-10:T-2 T-1 T+1:T+10 T-10:T-2 T-1 T+1:T+10

CLO -0.94* 1.23*** 6.28*** -0.41 0.09 1.21**
(-1.70) (5.97) (5.82) (-1.18) (1.24) (2.46)

BM 0.22 -0.40*** -0.41 0.28 0.19** 1.48***
(0.54) (-2.59) (-0.55) (0.79) (1.98) (3.46)

GP 0.31 -0.14 -2.69*** -0.16 -0.18*** -1.09***
(0.89) (-1.08) (-6.90) (-0.59) (-3.14) (-2.73)

AG -0.36 -0.20 -2.46*** -0.30 -0.01 -0.55
(-0.95) (-1.11) (-5.26) (-0.85) (-0.08) (-1.25)

AC -0.05 -0.34** -1.27*** 0.25 0.16*** -0.66**
(-0.16) (-2.05) (-3.25) (0.82) (3.22) (-2.06)

NSI -0.76** 0.56*** 1.36** 0.22 0.25*** 0.23
(-2.23) (4.48) (2.49) (0.80) (3.85) (0.77)

ΔT 3.02*** 1.06*** 1.18* 0.07 -0.05 0.61*
(3.84) (5.03) (1.69) (0.31) (-0.88) (1.94)

IL 0.15 0.06 -0.36 0.66** 0.53*** 0.15
(0.25) (0.23) (-0.39) (2.32) (5.46) (0.49)

IV -1.55** 1.43*** 4.78*** 0.19 0.38*** 1.30**
(-2.56) (7.16) (5.11) (0.54) (3.21) (2.36)

MOM 1.28** -0.97*** -3.91*** 0.58* -0.11 -1.25**
(2.55) (-4.81) (-4.43) (1.86) (-1.27) (-2.31)

12m -0.15 0.54*** 2.09** 0.02 0.04 1.43***
(-0.32) (2.92) (2.48) (0.05) (0.47) (2.92)52
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Regression Analysis

Regression analysis can give a better view of how market capitalization (MC), tax-loss potential

(CLO), and other characteristics jointly interact. I estimate the following pooled OLS regression

on daily returns in a window of ten days before and after the turn-of-the-year:

ri ,t =c0 +c11T−1 +c21T+1:T+10 +c3Xi ,t +c4 ln(MCi ,t )+c5CLOi ,t

+c61T−1Xi ,t +c71T−1 ln(MCi ,t )+c81T−1CLOi ,t

+c91T+1:T+10Xi ,t +c101T+1:T+10 ln(MCi ,t )+c111T+1:T+10CLOi ,t +εi ,t , (2.4)

where 1T−1 and 1T+1:T+10 are dummies for the last trading day of the year and the first ten

trading days of the year. The characteristic under consideration is denoted by X . Importantly,

X is measured at the beginning of December and is fixed over a given turn-of-the-year. Sim-

ilarly, CLO and MC are measured in the middle of December and are not updated over the

turn-of-the-year. Hence, there is only cross-sectional variation in those variables within a

given turn-of-the-year. All the variables except returns are winsorized at the 0.5% and 99.5%

fractiles over the sample. The t-values are computed using standard errors clustered by day.

Panel (a) of Table 2.7 reports the results. The 1T−1 and 1T+1:T+10 coefficients are large and

strongly significant in all regressions. Hence, both size and potential for tax-loss selling cannot

explain those dummies away, even when interacted with them. These interaction terms have

the expected signs and are all large and significant. To get an idea of the economic magnitude

of the coefficients, Panel (b) reports various percentiles for the characteristics averaged across

securities. All else equal, a stock in the 90th CLO (size) percentile earns an extra return of

0.32% (0.53%) per day during the first ten trading days of the year relative to a stock in the 10th

CLO (size) percentile. Therefore, in line with Tables 2.5 and 2.6, both size and CLO matter for

returns around the turn-of-the-year. The interacted coefficients for the last trading day of the

year are also especially large. Both small stocks and stocks with a high potential for tax-loss

selling earn substantial returns on this specific day.

Table 2.7 also shows that several anomalies characteristics have statistically significant inter-

action dummies around the turn-of-the-year. But these effects are in general economically

small relative to the contribution of size and tax-loss potential; the only exceptions being the

impacts of book-to-market and idiosyncratic volatility on the last trading of the year. I did not

find any significant term for the asset growth, accruals, and illiquidity characteristics.

There is little evidence of price pressure before the turn-of-the-year. Price pressure on stocks

subject to tax-loss selling would imply a negative coefficient on CLO, but this coefficient is

small and insignificant. Similarly, the regression constant, which represents a fixed return in

the ten days before the turn-of-the-year, is negligible in all specifications. Section 2.3.4 further

discusses price pressure.
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Table 2.7
Tax-loss selling (pooled regression). Panel (a): Pooled OLS regression estimates with t-values
in parentheses. Daily returns ten days before and after the turn-of-the-year are regressed on
different variables. MC is market capitalization measured at the middle of December. CLO is
the capital loss overhang measured at the middle of December. BM is book-to-market. GP
is gross profitability. NSI is net stock issues. MOM is six-month return momentum. IV is
idiosyncratic volatility. These characteristics are defined in Table B.1 and measured at the
beginning of December. 1T−1 is a dummy for the day before the turn-of-the-year. 1T+1:T+10

is a dummy for the ten days after the turn-of-the-year. Sample: NYSE, Amex, and NASDAQ
stocks from January 1968 to December 2014. Financial firms are excluded from the regressions
with accounting variables. Stocks with a price smaller than $1 at the middle of December are
excluded. Non-return variables are winsorized at the 0.5% and 99.5% fractiles over the full
sample. The t-values are computed using standard errors clustered by day. *, **, and *** denote
significance at the 10%, 5%, and 1% level. Panel (b): Average of descriptive statistics across
securities for different variables during the sample.

Panel (a)
X ln(BM) GP NSI MOM IV
constant -0.0007 -0.0004 -0.0004 -0.0008 -0.0003

(-0.67) (-0.35) (-0.36) (-0.73) (-0.18)
1T−1 0.0353*** 0.0344*** 0.0338*** 0.0335*** 0.0204***

(9.32) (8.58) (8.64) (8.95) (3.86)
1T+1:T+10 0.0116*** 0.0125*** 0.0115*** 0.0119*** 0.0091***

(6.80) (6.98) (6.38) (6.75) (2.91)
X 0.0002 -0.0001 -0.0008 0.0013* -0.0044

(0.77) (-0.37) (-1.33) (1.80) (-0.27)
ln(MC) 0.0002** 0.0002* 0.0002* 0.0002** 0.0002

(2.38) (1.92) (1.90) (2.15) (1.41)
CLO -0.0003 -0.0003 -0.0003 -0.0000 -0.0003

(-0.57) (-0.65) (-0.64) (-0.23) (-0.79)
1T−1X -0.0017*** -0.0005 0.0061*** -0.0040 0.1906***

(-2.65) (-0.65) (2.93) (-1.57) (4.26)
1T−1 ln(MC) -0.0026*** -0.0024*** -0.0024*** -0.0023*** -0.0017***

(-7.42) (-6.53) (-6.50) (-6.69) (-3.86)
1T−1CLO 0.0085*** 0.0081*** 0.0082*** 0.0076*** 0.0068***

(5.45) (5.30) (5.32) (5.36) (4.86)
1T+1:T+10X 0.0000 -0.0015*** 0.0023** 0.0000 0.0423

(0.20) (-3.69) (2.58) (0.03) (1.53)
1T+1:T+10 ln(MC) -0.0009*** -0.0010*** -0.0009*** -0.0010*** -0.0008***

(-6.39) (-6.00) (-5.82) (-6.08) (-3.59)
1T+1:T+10CLO 0.0040*** 0.0040*** 0.0040*** 0.0039*** 0.0035

(4.84) (4.98) (5.01) (5.21) (5.22)
Obs. 1’924’510 1’973’597 1’967’870 2’380’811 2’386’713
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(Table 2.7 continued.)

Panel (b)
#securities mean std min 10% 50% 90% max

ln(MC) 11’624 11.628 1.868 6.712 9.311 11.467 14.160 17.507
CLO 11’624 0.293 0.533 -0.496 -0.081 0.151 0.787 6.697
ln(BM) 8’984 -0.596 0.816 -3.925 -1.651 -0.520 0.335 1.798
GP 9’147 0.370 0.280 -0.739 0.101 0.344 0.719 1.442
NSI 9’138 0.052 0.110 -0.618 -0.012 0.019 0.151 1.091

2.3.4 Additional Results

Price Pressure and Long-Term Seasonality

At the beginning of each January, I allocate stocks into sixteen portfolios based on their average

return over the past year (excluding the last month) r−2:12m and their long-term seasonality

return r−6:10y .16 More precisely, stocks with a negative return over the past year are split into

two equal-sized groups: losers (L) and extreme losers (EL). Stocks with a positive return are

split in a similar way between winners (W) and extreme winners (EW). The stocks are then

independently allocated into the portfolios based on r−6:10y .

Panel (a) of Table 2.8 shows the average January return of the portfolios.17 Independently

of the previous year return, stocks with a high average return in January six to ten years ago

strongly outperform stocks with a low past-January return. The return pattern is monotonically

increasing in past average January return for each past-year return group.

Conditional on r−6:10y , past-year losers outperform past-year winners in January, consistent

with tax-loss selling and window dressing. The past-year return does not fully explain what

happens at the turn of the year. First, past-year losers should outperform past-year winners

in January. Among the eight portfolios with a negative return in the past year, half of them

perform worse in January than the W and EW portfolios that were winners six to ten years

ago. Second, past-year losers that belong to the r−6:10y winners group perform better than the

first three quartiles portfolios of extreme losers, which seems inconsistent with tax-loss selling.

16The monthly long-term seasonality return r−6:10y is a stock’s average return in the same month as the current
month six to ten years ago. This return proxies for the long-term seasonal component of a stock return in a given
month. The results are similar using Reinganum’s measure of potential for tax-loss selling, where the stock price at
the end of November is divided by its maximum price over January to November.

17The portfolios contain on average more than seventy stocks, but some of them have a couple of missing values
since I require a minimum of ten stocks in each portfolio. For instance, few stocks may have negative returns
following a stock market boom. Since this effect concerns around 1% of the portfolio-month observations and
relative sorts give similar results, this issue is not likely to be a serious concern. This also explains why the average
returns on some of the long-short portfolios are not exactly equal to the average long minus the average short
return.
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Using long-term seasonality returns over two to five years (r−2:5y ) or eleven to fifteen years

(r−11:15y ) gives similar results.

Panel (b) of Table 2.8 presents the average returns of the January-built portfolios in February.

There is no significant evidence of reversal for the W-P4 and EW-P4 portfolios relative to the

W-P1 and EW-P1 portfolios. The large January average returns of these portfolios do not

appear to reverse. The results are similar in March (not reported). The long-short EW-EL

portfolios seem to reverse partly. Three out of the four portfolios have positive and significant

average returns in February. The February average returns are markedly larger than their

March average returns, which do no exhibit any specific pattern.

Table 2.8 also shows in Panel (c) the average December return for the portfolios formed in

January (these portfolios do not depend on any December data since r−2:12m excludes the

last month). It is difficult to find any strong evidence of price pressure. The spreads between

extreme winners and losers are positive but insignificant and, more importantly, much lower

than the January spreads. This result is not consistent with tax-loss selling. According to

tax-loss selling, momentum profits should be especially large in December (Grinblatt and

Moskowitz, 2004). Overall, these results are difficult to reconcile with a price pressure story.

The absence of pattern in December relative to January is puzzling. Market liquidity could be

higher in December than in January, but then some reversal should occur in February for the

long-short portfolios.

Earnings Announcements

Following Lamont and Frazzini (2007), a firm is predicted to have an earning announcement

next month if it has an announcement in the same month one year ago. The firm is also

required to have at least four announcements in the previous year. Over the sample period

January 1974 to December 2013, the long expected announcement stocks and short no an-

nouncement stocks value-weighted portfolio earns an average monthly return of 0.61% with a

t-statistic of 5.39, consistent with the results of Lamont and Frazzini (2007). The return of this

portfolio is, however, zero in January (-0.03% with a t-statistic of -0.10). The equal-weighted

long-short portfolio earns a smaller monthly average return of 0.22% with a t-statistic of

3.33. In this case, the January average return is -0.95% (t-statistic -3.28). Hence, the earnings

announcement premium displays a strong January seasonality over the sample period. The

average premium with value-weighting is also more than two-third larger in beginning and

end-of-quarter months than mid-quarter months (not reported).

Intuitively, earnings announcements may partly explain seasonalities in anomalies portfolios

since, as mentioned previously, a majority of announcements take place in beginning-of-

quarter months. To answer this question, I examine long-short anomalies portfolios separately
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Table 2.8
Tax-loss selling (portfolios). Average monthly return in percent of equal-weighted portfolios
formed at the beginning of January. Stocks are first allocated into four groups based on their
average return over the past year excluding the last month (r−2:12m): extreme losers (EL), losers
(L), winners (W), and extreme winners (EW). Stocks are then independently allocated into
sixteen portfolios based on their average return in the same month as the current month six to
ten years ago (r−6:10y ). The sample includes NYSE, Amex, and Nasdaq common stocks from
January 1964 to December 2013. Stocks with a price smaller than $1 at the beginning of the
holding period are excluded. The t-statistics for the long-short portfolios are in parentheses,
and *, **, and *** denote significance at the 10%, 5%, and 1% level.

(a) January

r−6:10y

P1 (L) P2 P3 P4 (W) P4-P1

r−2:12m < 0
EL 4.12 4.95 5.38 7.15 2.72*** (4.77)
L 2.51 2.87 2.93 6.03 3.47*** (5.10)

r−2:12m ≥ 0
W 1.60 2.23 2.69 4.92 3.32*** (5.83)
EW 2.23 2.53 3.24 4.59 2.36*** (4.97)
EW-EL -2.19*** -2.68*** -2.14*** -2.55***

(-2.66) (-3.33) (-2.77) (-2.80)

(b) February

r−6:10y

P1 (L) P2 P3 P4 (W) P4-P1

r−2:12m < 0
EL 0.36 -0.34 0.76 0.91 0.19 (0.42)
L 0.66 0.95 1.15 1.79 0.97** (2.11)

r−2:12m > 0
W 1.20 1.13 1.32 1.49 0.29 (0.78)
EW 2.02 1.41 2.01 1.76 -0.26 (-0.55)
EW-EL 1.61*** 1.83*** 1.42** 0.86

(3.06) (3.88) (2.20) (1.55)

(c) December

r−6:10y

P1 (L) P2 P3 P4 (W) P4-P1

r−2:12m < 0
EL 2.09 1.93 1.77 2.33 0.16 (0.33)
L 2.09 1.97 2.15 1.71 -0.44 (-1.34)

r−2:12m > 0
W 2.26 2.33 2.39 2.58 0.32 (0.99)
EW 2.29 2.69 2.74 3.03 0.74* (1.81)
EW-EL 0.29 0.96 1.16* 0.70

(0.42) (1.54) (1.88) (0.92)

57



Chapter 2. Seasonalities in Anomalies

within the groups of stocks with and without expected announcements. In a nutshell, I do not

find any evidence of a systematic pattern in anomalies linked to expected announcements.

2.4 Conclusion

Well-known anomalies exhibit strong January and month-of-the-quarter seasonalities. These

seasonalities are in general robust to controlling for size and tax-loss selling potential. In

addition, small stocks earn an abnormally high average return on the last day of the quarter,

which significantly affects size, idiosyncratic volatility, and illiquidity portfolios. As a result,

taking into account such seasonalities is important when studying the cross-section of stock

returns. These seasonalities challenge the economic interpretation of many anomalies.
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3 The Cross-Section of Intraday and
Overnight Returns

Using a thirty-year sample of U.S. stock returns, I document substantial cross-sectional vari-

ation in returns over the trading day and overnight. Market closures have a large impact

on returns. Small and illiquid stocks earn high average returns in the last thirty minutes of

trading. In contrast, large and liquid stocks perform poorly at this time. I find support for

institutional and information asymmetry theories. But these theories do not fully explain

the cross-sectional evidence. Portfolios based on other characteristics, such as beta and id-

iosyncratic volatility, earn their return gradually throughout the trading day—contrary to the

market and a benchmark based on random portfolios. These portfolios also tend to incur large

negative returns overnight, consistent with mispricing at the open.

3.1 Introduction

This paper provides new evidence on the determinants of cross-sectional variation in expected

stock returns by examining returns over the trading day and overnight. First, an examination

of intraday and overnight returns gives insights on what factors affect the cross-section of

stock returns. If returns on two portfolios exhibit markedly different intraday patterns, then an

understanding of this difference sheds light on what drives stock returns. Second, an analysis

of intraday return patterns around market closures has important implications for liquidity

and market efficiency.1

To follow this intuition, I compute intraday half-hour returns and overnight returns on all

U.S. common stocks from January 1986 to December 2015. The overnight return is the return

outside of regular trading hours and is therefore defined by the change from the closing price

1As an example of the importance of studying intraday return and volume patterns, the rise of passive investing
appears to have led to a dramatic increase in trading volume over the last thirty minutes of trading in recent years.
See, e.g., Robin Wiggleworth, “Machines and Markets: 5 Areas to Watch,” Financial Times, March 17, 2017; and
Dan Strumpf, “Stock-Market Traders Pile In at the Close,” Wall Street Journal, May 27, 2015.
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on a given day to the opening price on the next day. I am not aware of any related paper using

such an extensive data set to examine intraday average returns.2

Research in finance has reported many variables that predict the cross-section of stock returns

and are not explained by standard finance theory. These “anomalies” are the focus of a large

literature, but there is little consensus about their sources. I show that anomaly portfolios

exhibit strikingly different intraday return patterns. Substantial differences in intraday average

returns exist both within and across the portfolios.

Anomalies fall into three groups: Anomalies that accrue in a specific period during the day (size,

illiquidity, and momentum), referred to as “period-specific” anomalies; anomalies that accrue

gradually over the trading day (betting-against-beta, gross profitability, idiosyncratic volatility,

and net stock issues), referred to as “gradual” anomalies; and anomalies that display no clear

pattern (accruals and book-to-market). The results are robust across subsamples and days

of the week and remain after applying a volume filter to limit the impact of nonsynchronous

trading. Furthermore, microstructure effects are unlikely to explain the findings: Portfolios are

value-weighted and returns computed from quote midpoints.

In contrast, the market portfolio earns close to zero returns over most of the trading day.

To further benchmark the results, I simulate thousands of random strategies using monthly

returns, select the profitable ones, and examine their intraday return patterns. The average

random strategy earns the majority of its profits overnight. Profitable random strategies are

highly unlikely to accrue intraday in a consistent manner over multiple subsamples and days

of the week, contrary to the period-specific anomalies. Similarly, none of the random strategies

is able to reproduce the consistently positive and statistically significant intraday average

returns of the gradual anomalies. These comparisons suggest that intraday return patterns of

anomalies have economic content that can help to understand cross-sectional variation in

stock returns.

Market closures have a large impact on stock returns. I document the novel finding that a

large fraction of size and illiquidity premia is realized in the last half hour of trading. Returns

on these strategies accrue like noise outside of the opening and closing hours. Both legs

contribute to the end-of-the-day return: Small and illiquid stocks perform well at the end of

the day while, on the contrary, large and liquid stocks tend to perform poorly.

2There is scant empirical evidence about intraday average returns. Wood, McInish, and Ord (1985), Harris
(1986), and Jain and Joh (1988) document patterns in intraday average returns, but they rely on short samples
dating from before 1984. Smirlock and Starks (1986) use a longer sample—twenty-one years of hourly returns—but
only for the Dow Jones Industrial Average. On the contrary, patterns in return volatility and volume over the
trading day are well-documented, robust, and appear in different markets; see, for instance, Wood, McInish, and
Ord (1985), Amihud and Mendelson (1987), Jain and Joh (1988), Gerety and Mulherin (1994), and Andersen and
Bollerslev (1997).
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High end-of-the-day returns are difficult to reconcile with standard theories of size and illiquid-

ity. For instance, if size proxies for distress risk, then it is unclear why small stocks would earn

most of their returns at the end of the day. I test theories based on closure effects, institutional

effects, and coordination effects.3 Closures should affect stock returns because it is more

complicated to hedge risk when the stock market is closed. Institutional effects can affect

intraday return patterns. Examples include mutual funds trading around the close to limit

tracking error and overnight margin constraints imposed on day traders. Coordination can

lead informed traders and liquidity traders to concentrate their trades at specific periods of

the day, which in turn has implications for intraday return properties.

End-of-the-day returns of small stocks do not reverse in the next overnight period. This rules

out a simple price pressure story in which small stocks are subject to buying pressure at the

end of the day. Moreover, I do not find evidence of common liquidity shocks at the close for

small stocks.

Evidence from double sorts and panel regressions show that illiquidity—as proxied by the

measure of Amihud (2002)—dominates size in explaining the end-of-the-day return. Illiquidity

remains a statistically significant explanatory variable of positive end-of-the-day returns even

in panel regressions that include stock fixed effects.

Given that illiquidity dominates size in explaining the end-of-the-day return, it is natural to

look for an explanation based on liquidity. High end-of-the-day returns can be rationalized by

a model in which liquidity deteriorates at the end of the day. Risk-averse market makers (with

positive inventories) require a higher compensation for risk to absorb supply shocks at this

time of the day. Previous research documents that liquidity deteriorates at the end of the day:

Effective spreads are U-shaped over the day (McInish and Wood (1992)), quoted depths are

reverse U-shaped (Lee, Mucklow, and Ready (1993)), and the price impact of transitory shocks

increases at the close (Madhavan, Richardson, and Roomans (1997), Cushing and Madhavan

(2000)).

The previous framework nests both a pure liquidity shocks theory and an information asym-

metry theory. First, the price impact of supply shocks may increase because supply shocks

are more volatile around the close, for instance, due to institutional effects around the close.

Second, the price impact of supply shocks may increase because there is more informed

trading around the close. This framework can explain the cross-sectional evidence if small and

illiquid stocks are subject to more volatile liquidity shocks or more information asymmetry

than large stocks.

To help disentangle liquidity shock effects from asymmetric information effects, I examine

return patterns at the end of quarters. There is evidence consistent with portfolio pumping

3Theories of intraday and overnight returns are reviewed in Section 3.2.
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at the end of quarters, which disproportionately affects illiquid stocks (Carhart et al. (2002)).

Portfolio pumping is, however, insufficient to explain the end-of-the-day returns of illiquid

stocks.

To test the information-based explanation, I use earnings announcements to proxy for a

change in the degree of asymmetric information. I conjecture that the degree of information

asymmetry is higher in the days preceding an announcement than in the days following one. I

find a positive end-of-the-day effect for all stocks on the days preceding an announcement.

On the contrary, a negative end-of-the-day effect exists for all stocks on the days following

an announcement. This marked asymmetry is consistent with the asymmetric information

theory. There is, however, only limited evidence that illiquid stocks are more affected than

other stocks. Asymmetric information is therefore not supported as the primary driver of the

end-of-the-day effect in illiquid stocks.

In summary, I find evidence consistent with institutional effects and information asymmetry

in generating high end-of-the-day returns. But these theories fail to explain why small and

illiquid stocks are disproportionately affected relative to large stocks. It remains unclear

whether differences in liquidity can explain the cross-sectional difference in intraday average

returns between small and large stocks.

Gradual anomalies (i.e., betting-against-beta, gross profitability, net stock issues, and idiosyn-

cratic volatility), earn consistently positive and statistically significant returns over most of

the trading day but tend to incur large negative returns overnight. Negative overnight re-

turns are difficult to explain with a risk-based theory. The evidence rejects overnight liquidity

risk and is difficult to reconcile with asymmetric information theories. Furthermore, noise

at the open does not drive the negative overnight returns: The evidence is robust to using

volume-weighted average prices in the first half hour of trading.

The short leg of the gradual anomalies drives their negative overnight returns. Hence, an

explanation based on time-varying mispricing over the day may better accommodate the

evidence than a risk-based explanation. Mispricing increases at the open—for instance, due

to systematic retail buying pressure at this time (Berkman et al. (2012)). Overall, the results

emphasize the role of market closures for the cross-section of stock returns.

Puzzling patterns in intraday and overnight stock returns have been documented by previous

research. Heston, Korajczyk, and Sadka (2010) provide evidence that some stocks tend to

perform systematically better than others during specific half hours of the trading day. Lou,

Polk, and Skouras (2016) show that momentum profits accrue solely overnight for U.S. stocks

over 1993 to 2013. They also report the intraday return and the overnight return of several

other anomalies but focus their analysis on momentum and do not decompose the intraday

return as I do.
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My paper contributes more broadly to studies of intraday and overnight returns: Overnight

returns on aggregate portfolios are large, but their magnitude is sensitive to the definition of

the opening price. Overnight returns are lower when they include the first five minutes of

trading or are computed using volume-weighted average prices.4

In addition, my research relates to a few recent papers that attempt to distinguish among

competing explanations of anomalies by examining variables such as investor sentiment

(Stambaugh, Yu, and Yuan (2012)) or out-of-sample and post-publication returns (McLean

and Pontiff (2016)).

The paper is organized as follows. Section 3.2 discusses theoretical determinants of intraday

and overnight returns. Section 3.3 presents the data and methodology. Section 3.4 explores

the cross-section of intraday and overnight returns. Section 3.5 examines end-of-the-day

return patterns. Section 3.6 examines gradual intraday return patterns. Section 3.7 provides

robustness checks and Section 3.8 concludes.

3.2 Theories of Intraday and Overnight Average Returns

Studies that examine average returns over trading and non-trading periods go back to French

(1980). French tests a calendar time hypothesis and a trading time hypothesis by comparing

returns on different days of the week. The calendar time hypothesis predicts that the Monday

average return is three times the average return on the other days of the week. The trading

time hypothesis predicts that the Monday average return is the same as for the other days of

the week. French (1980) strongly rejects both hypotheses in light of the large negative Monday

average return over his sample.

The benchmark considered by French (1980) with the calendar (trading) time hypothesis is

that returns accrue evenly over the (trading) day. If agents require a risk premium to hold an

asset, the premium required over a half hour in the morning should not differ substantially

from the premium required over a half hour in the afternoon. While this hypothesis is a natural

benchmark, there are theoretical reasons to expect intraday average returns not to be constant

over the day.

Hong and Wang (2000) solve an equilibrium model with periodic market closures.5 They

4Cliff, Cooper, and Gulen (2008), Kelly and Clark (2011) and Berkman et al. (2012) find that overnight returns
account for a sizable fraction of the U.S. equity premium. Marked intraday and overnight patterns in average
returns exist in other asset classes. Breedon and Ranaldo (2013) document time-of-day effects in currencies.
Muravyev and Ni (2016) find that the variance risk premium for S&P 500 and equity options is only negative
overnight and is in fact mildly positive intraday.

5Slezak (1994) develops an equilibrium model with a single closure that is a pure information event: The
variance of private news increases in the period after the closure, but the variance of liquidity trading remains the
same.
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model a competitive setup with informed and uninformed traders. Both groups hedge returns

from a private investment opportunity, but informed traders receive a private signal about

mean dividend growth.

When agents are homogeneous, there is no trade and market closures do not matter. When

agents are heterogeneous, the interaction of two effects can generate a rich set of dynamics in

average returns. First, investors cannot use the stock as a hedge overnight. This makes the stock

more risky to hold overnight, and investors want to reduce their hedging demand in the stock

before the market closes. As a result, the stock price decreases over the day. Second, the level

of information asymmetry tends to decrease over the trading day since uninformed investors

cannot learn from the stock price overnight. Indeed, information asymmetry decreases as

more information is incorporated into prices through trading. Uninformed investors then

require a lower discount to hold the stock. This effect makes the stock price increase over the

day.

In line with the hedging channel modeled by Hong and Wang (2000), Gerety and Mulherin

(1992) find evidence that high expected overnight volatility leads to high trading volume at

the close and at the next day’s open. This evidence is consistent with traders that unload

their positions before the close and reopen them on the following day. Gerety and Mulherin

(1992) do not explore implications for average returns. Risk-averse liquidity providers require a

price discount to absorb temporary order imbalances (Grossman and Miller (1988)). Previous

research documents evidence consistent with liquidity provision being compensated at the

open (Stoll and Whaley (1990)) but has not investigated liquidity provision at the close.

The model of Hong and Wang (2000) is a competitive setup in which everyone trades continu-

ously. The mix of traders active in the market may, however, vary over the day. Admati and

Pfleiderer (1988) develop a model in which informed investors can time their information

production. Trading volume is highest when transaction costs are lowest.6 Since the asset

price follows a martingale, the model is silent about average returns. Intuitively, one may

expect uninformed investors to require a larger premium to hold stocks during periods with

more informed trading.

Note that the first type of models (Hong and Wang (2000)) predicts intraday patterns because

investors cannot trade during a closure. The second type of models (Admati and Pfleiderer

(1988)) predicts intraday patterns at the open and at the close only to the extent that these

represent natural focal points for investors. Thus, the magnitude of the effects should not

depend on the length of the closure.

Institutional features may cause temporary price pressure at specific times of the day. For

6See also Foster and Viswanathan (1990). Relatedly, Collin-Dufresne and Fos (2016) solve a strategic model in
which informed investors have long-lived information and time their trades.
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instance, S&P500 futures and options settle based on the opening prices of the constituents,

which generates large liquidity shocks at the open (Barclay, Hendershott, and Jones (2008)).

Relatedly, Berkman et al. (2012) argue that buying by attention-constrained investors drives up

the opening price of stocks with large fluctuations in the previous day (i.e., stocks who caught

investors’ attention). Closing prices may also be subject to pressures induced by institutions.

For instance, share in open-end mutual funds trade at the net asset value (NAV), which is

computed once a day based on closing prices. Hence mutual fund managers may concentrate

their trades towards the end of the day, when there is less uncertainty about net daily flows. In

line with this idea, Goetzmann and Massa (2003) show that, for a sample of index funds, daily

net flows are correlated with afternoon index returns but not with morning returns.

Last, nonsynchronous trading can generate spurious time-of-the-day patterns in average

returns. Consider the extreme example of a stock that is traded only at the end of the day. If

the stock’s average return over the period is positive, then one observes a high end-of-the-day

return and zero returns over the rest of the day for this stock. This pattern is mechanical and

must be controlled for when studying intraday returns.

Overall, any theory that sets out to explain the cross-section of average returns has to be able

to accommodate the intraday patterns observed in the data. It remains an open question

to which extent cross-sectional variation in average intraday stock returns can shed light on

sources of cross-sectional variation in returns at lower frequencies.

3.3 Data and Methodology

The data used in this paper come from several databases. Institute for the Study of Securities

Market (ISSM) and Trade and Quote (TAQ) data are used to compute intraday half-hour returns

and volumes for each trading day from January 1, 1986, to December 31, 2015. ISSM data is

available back to January 1, 1983, but I begin the sample on January 1, 1986, three months after

the NYSE started opening at 9:30 a.m. (The month of August 1987 is excluded from the analysis

because of missing data.) TAQ data is used starting from January 1, 1993, and is stamped to the

millisecond (daily TAQ) from 2004 onwards. At the beginning of each quarter, I select all NYSE,

Amex, and NASDAQ common stocks with a price higher than $5 and a market capitalization

larger than 100 million. Before 1993, I use only NYSE and Amex stocks.

I compute intraday returns based on quote midpoints at the beginning of each half-hour

interval during regular trading hours (9:30 a.m. to 4:00 p.m.). Intervals of thirty minutes

limit the influence of microstructure effects but still capture a rich set of dynamics. The last

half-hour return (3:30 p.m. to 4:00 p.m.) is computed using the last quote available during

trading hours.7

7The results are robust to using the quote midpoint taken from the Center for Research in Security Prices (CRSP)
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Inaccurate quotes at the open generate spurious reversals in midquote returns. For instance,

an abnormally high ask price at the open biases the quote midpoint upward and results in

a high overnight return, but this return is immediately reversed in the first half hour when

quotes are updated. This problem is marked for small stocks in the recent part of the sample.

The Appendix provides a specific example and additional details. To limit the scope of this

issue, I consider quotes starting at 9:45 a.m.; hence, the first return interval goes from 9:45 a.m.

to 10:00 a.m.

In addition to standard error filters (e.g., Chordia, Roll, and Subrahmanyam (2001)), quotes

with a spread lower than zero or greater than $5 are excluded. The ISSM data is filtered as in

Hausman, Lo, and MacKinlay (1992). I also delete any observation for which the spread is

larger than 30 times the median spread during the day for a given stock. Finally, I screen the

returns to discard obvious reporting mistakes—for instance, extreme price moves that reverse

and are not accompanied by any trading volume.

Overnight returns are computed following Lou, Polk, and Skouras (2016); namely,

rovernight,t =
1+ rclose-to-close,t

1+ rintraday,t
−1, (3.1)

where rclose-to-close,t is the daily midquote return and rintraday,t is the intraday return computed

using the midquote at 9:45 a.m. as described above. As a result, the overnight return includes

the first 15 minutes of trading. To compute daily midquote returns, quote midpoints at the

close are adjusted for stock splits and dividends using CRSP factor to adjust prices (FACPR)

and CRSP dividend amount (DIVAMT). If the absolute difference between the daily midquote

return and the daily CRSP return is larger than 25%, the daily CRSP return is used instead of

the midquote return.

If a stock has no intraday data on a given day, the CRSP daily return, if it exists, is allocated to

the overnight return. If a return is missing in the CRSP daily file and intraday trade data exists,

I discard the data for this stock on this day.8 In the analysis below, I focus on stocks that have

non-zero volume in at least 80% of the traded days in the previous month.

The main analysis uses returns computed from quote midpoints. Quotes may be updated

when there is no trade, which limits the selection bias associated with the occurrence of a

trade. I provide robustness checks using trade prices as well as volume-weighted average

prices (VWAP) in the first half hour of trading. Trade-based returns are computed using the

data or the closing price if no midpoint is reported. Before 2004, end-of-the-day CRSP midquotes tend to be higher
than TAQ midquotes for all stocks. The main results of the paper are, however, qualitatively unaffected. After 2004,
midquotes are close to identical.

8I use the TCLINK macro provided by WRDS to link TAQ symbol to CRSP PERMNO. In a few cases, there are more
than one TAQ symbol associated with a given PERMNO on the same day. Among these overlapping observations, I
keep the TAQ symbol with the most observations over the current quarter and discard the others.
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first available transaction price in each half-hour interval and the last available price of the day.

A return is set to zero if there are no transactions during the interval. To remove abnormal data,

I exclude transactions at prices that are greater than the ask plus the spread and lower than

the bid minus the spread (Barndorff-Nielsen et al. (2009)). Bid and ask quotes are matched to

trades with a five-second lag before 1999 and no lag afterwards. To compute VWAP in the first

half hour, a stock is required to have a share volume greater than 1,000 in the first half hour on

at least 95% of the days in which the stock is traded in a given quarter.

To compute excess returns, daily risk-free returns obtained from Kenneth French’s data library

are subtracted from overnight returns. As pointed out by Heston, Korajczyk, and Sadka (2010),

the risk-free rate should not be earned intraday because transactions are settled at the end of

the trading day.

Accounting data is taken from Compustat to compute accruals, book equity, gross profitability,

and net stock issues. The accounting variables are computed once a year at the end of June

using data for the previous fiscal year. Table C.2 in the Appendix provides additional details

about the construction of each variable. Earnings announcement dates are obtained from

Compustat.

3.4 Intraday and Overnight Average Returns

This section provides new evidence on the determinants of cross-sectional variation in average

stock returns by examining returns over the trading day and overnight.

3.4.1 Evidence from Anomaly Portfolios

To analyze the cross-section of stock returns, I start by forming portfolios every month based

on well-known characteristics. The anomalies literature documents a large number of char-

acteristics associated with abnormal returns relative to the market. My analysis uses sorting

variables based on accounting data, market capitalization, past returns, and trading volume.

These variables are described in Table C.2 in the Appendix. The anomalies that I study are

similar to the anomalies considered in Fama and French (2016), to which I add an illiquidity

variable.

At the beginning of each month, decile portfolios are formed using NYSE breakpoints based on

the values of the sorting variable under consideration at the end of the previous month. The

long-short portfolio is long the highest decile portfolio and short the lowest decile portfolio (or

vice versa depending on the sorting variable). To exclude highly illiquid stocks and attenuate

microstructure effects, each stock is required to have at least ten days with non-zero volume

in the previous month and a price greater than $10 at the end of the previous month to be
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included. Value-weighted portfolios returns are used to limit the influence of microstructure

noise (Blume and Stambaugh (1983)). Importantly, there is no intraday rebalancing: Portfolio

returns are those of a buy-and-hold portfolio rebalanced at the beginning of each month.9

The day is split into k = 1, . . . ,K periods, where 1 indicates the overnight period and K indicates

the last half hour of trading. Let rt denote the return of a portfolio in interval t . The following

regression is estimated:

rt

σ̂t
=

K∑
k=1

1t ,k

σ̂k
μk +εt , (3.2)

where σ̂k denotes the standard deviation of returns in period k, 1t ,k is a dummy variable that

takes the value one if interval t belongs to period k and zero otherwise, and σ̂t =∑K
k=1 1t ,k σ̂k .

Estimating equation (3.2) is equivalent to computing average returns and standard deviations

separately for each period of the day. This is important to control for heteroskedasticity given

that return volatility is not constant over the day. In addition, standard errors are adjusted for

heteroskedasticity and autocorrelation using a Newey and West (1987) correction with 14 lags

(1 day). Similarly, to compute alpha in a given period, I estimate

rt

σ̂t
=

K∑
k=1

1t ,k

σ̂k
αk +

K∑
k=1

1t ,k

σ̂k
r e

m,tβk +εt , (3.3)

where r e
m,t is the market (excess) return in interval t . Alpha in a given half hour is estimated

using returns in the same half hour. This methodology recognizes that beta may vary over the

day. Theoretically, such variation can occur if, for instance, the proportion of traders active

in the market is not constant across the day (Bogousslavsky (2016)). The results are robust to

including lagged market returns in equation (3.3).

Table 3.1 reports average returns, market alphas, and several other statistics for each portfolio

over the full sample. Average returns and alphas are estimated using equation (3.3). Table 3.1

shows that marked differences in intraday average returns exist both within and across anoma-

lies. This variation is the building block of my analysis. Indeed, I aim to show that useful

information about cross-sectional variation in stock returns can be extracted from intraday

returns.

9I verify that no discernible difference exists between the average monthly portfolio return computed by
compounding intraday half-hour and overnight returns and the average monthly value-weighted portfolio return
computed using CRSP monthly returns.
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3.4. Intraday and Overnight Average Returns
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Chapter 3. The Cross-Section of Intraday and Overnight Returns

Anomalies fall into three groups: Anomalies that accrue in a specific period during the day

(size, illiquidity, and momentum), referred to as “period-specific” anomalies; anomalies that

accrue gradually over the trading day (betting-against-beta, gross profitability, idiosyncratic

volatility, and net stock issues), referred to as “gradual” anomalies; and anomalies that display

no clear pattern (accruals and book-to-market). These patterns are robust across subsamples

(Figure 3.1), though statistical significance tends to be lower because of the smaller number of

observations.10

Harris (1986), Smirlock and Starks (1986), and Jain and Joh (1988) all document a strong

day-of-the-week effect in intraday index returns. In particular, returns tend to be markedly

negative over the first hours of trading on Mondays. This evidence follows from the “weekend

effect,” i.e., returns tend to be particularly low on Mondays for the U.S. stock market (see, for

instance, French (1980)). While the weekend effect does not appear in recent data, Birru (2016)

finds day-of-the-week effects for anomalies in a sample that goes from 1995 to 2013. For each

anomaly, Figure 3.2 plots the statistical significance of intraday average returns separately for

each day of the week. The period-specific and gradual patterns are robust across days of the

week. The size portfolio is, however, subject to a day-of-the-week effect. This observation is

discussed in greater detail below.

In Table 3.1, market alphas display similar intraday patterns as average returns. This is not

surprising since the average market return is small throughout most of the trading day (see

below). Furthermore, anomaly betas are small and often close to zero. For most anomalies, I

find that betas are relatively stable across the trading day and leave a detailed investigation

of intraday exposures for future research. Betting-against-beta is the only anomaly for which

intraday returns and alphas show non-negligible differences. Given that nonsynchronous

trading can bias beta, it is reassuring that the results are similar for average returns and

alphas.11

Anomalies differ on other dimensions than average returns. While several anomalies exhibit

a marked U-shaped pattern in volatility across the trading day, other anomalies exhibit a

L-shaped pattern. Intraday patterns in skewness and minimum return also differ considerably

across anomalies.

10The sample is split into three parts. The first part spans the ISSM data and goes from January 1, 1986, to
December 31, 1992. The second part covers 1993 to 2004 included. Finally, the last part covers 2005 to 2015.

11Since I focus on portfolios, I do not adjust the regressions for nonsynchronous trading. On average over all
stocks in the market, measured betas and alphas are equal to true alphas and betas (Scholes and Williams (1977)).
Section 3.4.2 shows that nonsynchronous trading and thin trading do not appear to be a major concern for my
results.
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3.4. Intraday and Overnight Average Returns

Figure 3.1. Intraday and overnight t-statistics of market alphas of long-short portfolios
across subsamples. The first interval starts at 9:45 a.m. 10:00 indicates the half-hour interval
that starts at 10:00 a.m. and ends before 10:30 a.m. OV indicates the overnight return. Portfolio
construction is detailed in the caption of Table 3.1. Dashed red lines indicate significance at
the level of 10%. t-statistics are based on Newey and West (1987) standard errors with 14 lags.
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Chapter 3. The Cross-Section of Intraday and Overnight Returns

Figure 3.2. Intraday and overnight t-statistics of market alphas of long-short portfolios
across days of the week. The first interval starts at 9:45 a.m. 10:00 indicates the half-hour
interval that starts at 10:00 a.m. and ends before 10:30 a.m. OV indicates the overnight
return. Portfolio construction is detailed in the caption of Table 3.1. Dashed red lines indicate
significance at the level of 10%. t-statistics are based on heteroskedasticity-adjusted standard
errors.
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3.4. Intraday and Overnight Average Returns

(Figure 3.2 continued.)
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Chapter 3. The Cross-Section of Intraday and Overnight Returns

3.4.2 Nonsynchronous Trading and Thin Trading

Nonsynchronous trading is an important issue to consider when studying returns over short

horizons. Nonsynchronous trading smoothes portfolio returns, which generates positive

portfolio return autocorrelation (e.g., Fisher (1966)) and lowers a portfolio’s volatility below its

true economic volatility. The use of midquote returns, which are not necessarily associated

with trades, and the filters described in Section 3.3 should limit the problem. Still, quotes may

not be revised actively, especially during the old part of the sample.

To assess the impact of nonsynchronous trading and thin trading, I apply the following volume

filter: Each year, a stock is required to have trades in the first, second, second to last, and

last half hours of the trading day on at least 90% of the days for which the stock has a valid

CRSP daily return.12 In addition to excluding stocks that trade particularly infrequently, this

restriction ensures that the overnight and opening half-hour returns are associated with actual

transactions. In 1986, this criterion excludes 85% of the stocks for which I have ISSM data. In

2016, this criterion excludes 20% of the stocks for which I have TAQ data.

Table 3.2 reports intraday and overnight alphas of anomalies portfolios with the volume filter.

The patterns are robust. Alphas tend, however, to be slightly smaller over the trading day, and a

few differences arise for overnight and first-hour returns. For instance, both size and illiquidity

now earn positive and statistically significant overnight alpha. In summary, the patterns in

Table 3.1 do not appear to be driven by nonsynchronous trading.

12The ISSM data set misses volume data in 1987. I use as a benchmark the maximum number of days for which a
stock has ISSM volume data in this year (210).
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3.4. Intraday and Overnight Average Returns
Ta

b
le

3.
2

In
tr

ad
ay

an
d

ov
er

n
ig

h
ta

lp
h

as
(α

)i
n

b
as

is
p

o
in

ts
o

fl
o

n
g-

sh
o

rt
p

o
rt

fo
li

o
s

w
it

h
vo

lu
m

e
fi

lt
er

. E
ac

h
ye

ar
,a

st
oc

k
is

re
q

u
ir

ed
to

h
av

e
tr

ad
es

in
th

e
fi

rs
t,

se
co

n
d

,s
ec

on
d

to
la

st
,a

n
d

la
st

h
al

f-
h

ou
rs

of
th

e
tr

ad
in

g
d

ay
on

at
le

as
t9

0%
of

th
e

d
ay

s
fo

r
w

h
ic

h
it

h
as

a
va

lid
C

R
SP

d
ai

ly
re

tu
rn

.A
t

th
e

en
d

o
fe

ac
h

m
o

n
th

,s
to

ck
s

ar
e

sp
li

t
in

to
d

ec
il

e
p

o
rt

fo
li

o
s

b
as

ed
o

n
th

e
N

Y
SE

b
re

ak
p

o
in

ts
o

ft
h

e
ch

ar
ac

te
ri

st
ic

s
d

efi
n

ed
in

Ta
b

le
C

.2
.P

or
tf

ol
io

s
ar

e
va

lu
e-

w
ei

gh
te

d
an

d
h

el
d

fo
r

on
e

m
on

th
.A

st
oc

k
is

re
q

u
ir

ed
to

h
av

e
a

p
ri

ce
gr

ea
te

r
th

an
$1

0
at

th
e

en
d

o
ft

h
e

p
re

vi
o

u
s

m
o

n
th

an
d

at
le

as
t

80
%

o
ft

ra
d

ed
d

ay
s

w
it

h
n

o
n

-z
er

o
vo

lu
m

e
in

th
e

p
re

vi
o

u
s

m
o

n
th

to
b

e
in

cl
u

d
ed

.F
in

an
ci

al
fi

rm
s

ar
e

ex
cl

u
d

ed
fr

o
m

p
o

rt
fo

lio
s

b
as

ed
o

n
ac

co
u

n
ti

n
g

va
ri

ab
le

s.
N

A
SD

A
Q

st
o

ck
s

ar
e

ex
cl

u
d

ed
fr

o
m

th
e

il
liq

u
id

it
y

p
o

rt
fo

lio
.S

to
ck

re
tu

rn
s

ar
e

co
m

p
u

te
d

u
si

n
g

q
u

o
te

m
id

p
o

in
ts

.T
h

e
fi

rs
ti

n
te

rv
al

st
ar

ts
at

9:
45

a.
m

.1
0:

00
in

d
ic

at
es

th
e

h
al

f-
h

o
u

r
in

te
rv

al
th

at
st

ar
ts

at
10

:0
0

a.
m

.a
n

d
en

d
s

b
ef

o
re

10
:3

0
a.

m
.

O
V

in
d

ic
at

es
th

e
ov

er
n

ig
h

t
re

tu
rn

.
T

h
e

sa
m

p
le

is
co

m
p

o
se

d
o

fN
Y

SE
,A

m
ex

,a
n

d
N

A
SD

A
Q

co
m

m
o

n
st

o
ck

s
fr

o
m

Ja
n

u
ar

y
1,

19
86

,t
o

D
ec

em
b

er
31

,2
01

5.
N

A
SD

A
Q

st
o

ck
s

ar
e

in
cl

u
d

ed
si

n
ce

19
93

.
t-

st
at

is
ti

cs
ar

e
sh

ow
n

in
p

ar
en

th
es

es
an

d
b

as
ed

o
n

N
ew

ey
an

d
W

es
t(

19
87

)
st

an
d

ar
d

er
ro

rs
w

it
h

14
la

gs
.*

,*
*,

an
d

**
*

d
en

o
te

si
gn

ifi
ca

n
ce

at
th

e
10

%
,5

%
,a

n
d

1%
le

ve
l.

O
V

9:
45

10
:0

0
10

:3
0

11
:0

0
11

:3
0

12
:0

0
12

:3
0

1:
00

1:
30

2:
00

2:
30

3:
00

3:
30

A
cc

ru
al

s
α

0.
22

1.
01

**
*

0.
36

0.
02

-0
.4

2*
*

0.
09

0.
27

*
0.

10
-0

.0
3

-0
.2

3
0.

18
-0

.0
3

-0
.2

4
-0

.2
0

(0
.4

3)
(3

.7
1)

(1
.3

3)
(0

.1
1)

(-
2.

15
)

(0
.4

6)
(1

.6
5)

(0
.6

5)
(-

0.
16

)
(-

1.
46

)
(1

.0
9)

(-
0.

19
)

(-
1.

35
)

(-
0.

90
)

B
et

a
α

-3
.7

7*
**

0.
92

**
*

0.
94

**
*

0.
65

**
0.

26
0.

45
**

0.
22

0.
24

0.
59

**
*

0.
07

0.
56

**
*

0.
32

0.
40

*
-0

.3
3

(-
5.

17
)

(2
.9

2)
(2

.6
5)

(2
.2

8)
(1

.0
4)

(2
.0

6)
(1

.1
0)

(1
.2

7)
(3

.1
3)

(0
.3

4)
(2

.7
3)

(1
.4

7)
(1

.7
1)

(-
1.

20
)

B
o

o
k-

to
-m

ar
ke

t
α

-2
.7

4*
**

0.
65

**
0.

45
-0

.3
6

-0
.0

3
0.

13
0.

08
0.

12
0.

44
**

*
-0

.0
9

0.
01

0.
05

0.
09

0.
87

**
*

(-
5.

10
)

(2
.5

1)
(1

.5
9)

(-
1.

53
)

(-
0.

15
)

(0
.6

7)
(0

.4
6)

(0
.7

4)
(2

.6
3)

(-
0.

50
)

(0
.0

3)
(0

.2
5)

(0
.4

6)
(3

.6
9)

G
ro

ss
P

ro
fi

ta
b

ili
ty

α
-0

.4
5

-0
.0

4
0.

42
0.

61
**

*
0.

47
**

0.
36

*
0.

31
*

0.
16

0.
23

0.
13

-0
.0

4
0.

50
**

*
0.

03
-1

.0
8*

**
(-

0.
88

)
(-

0.
15

)
(1

.5
2)

(2
.6

6)
(2

.3
3)

(1
.9

1)
(1

.7
8)

(0
.9

6)
(1

.4
1)

(0
.8

2)
(-

0.
22

)
(2

.9
8)

(0
.1

6)
(-

5.
17

)
Id

io
sy

n
cr

at
ic

Vo
la

ti
lit

y
α

-5
.5

3*
**

0.
96

**
*

1.
86

**
*

0.
86

**
*

1.
02

**
*

0.
10

0.
20

0.
10

0.
39

**
0.

15
0.

07
0.

73
**

*
0.

93
**

*
-0

.9
0*

**
(-

8.
22

)
(2

.9
9)

(5
.2

1)
(2

.9
7)

(4
.1

5)
(0

.4
4)

(1
.0

5)
(0

.5
5)

(2
.0

6)
(0

.7
5)

(0
.3

4)
(3

.2
8)

(3
.9

0)
(-

3.
04

)
Il

li
q

u
id

it
y

α
0.

91
**

-0
.0

8
-0

.3
0

-0
.7

5*
**

0.
00

0.
12

0.
01

-0
.0

2
0.

09
-0

.0
8

0.
27

0.
09

0.
20

2.
12

**
*

(2
.2

2)
(-

0.
33

)
(-

1.
07

)
(-

3.
19

)
(0

.0
2)

(0
.6

5)
(0

.0
3)

(-
0.

12
)

(0
.5

3)
(-

0.
48

)
(1

.5
2)

(0
.4

8)
(0

.9
8)

(7
.9

7)
M

o
m

en
tu

m
α

6.
47

**
*

-0
.4

1
-0

.8
2*

*
-0

.0
7

0.
16

0.
08

-0
.1

8
-0

.3
7

-0
.1

8
-0

.0
0

-0
.1

1
-0

.2
0

-0
.4

6
-0

.9
0*

**
(7

.8
3)

(-
1.

18
)

(-
1.

98
)

(-
0.

19
)

(0
.5

1)
(0

.2
8)

(-
0.

77
)

(-
1.

63
)

(-
0.

81
)

(-
0.

01
)

(-
0.

44
)

(-
0.

78
)

(-
1.

64
)

(-
2.

94
)

N
et

St
o

ck
Is

su
es

α
-1

.4
1*

**
0.

76
**

*
1.

17
**

*
0.

88
**

*
0.

36
**

0.
54

**
*

-0
.0

9
0.

34
**

-0
.1

8
0.

32
**

0.
20

0.
48

**
*

-0
.2

1
-1

.4
2*

**
(-

3.
10

)
(3

.1
6)

(4
.7

8)
(4

.3
4)

(1
.9

8)
(3

.1
6)

(-
0.

56
)

(2
.2

0)
(-

1.
23

)
(2

.1
4)

(1
.3

0)
(2

.9
7)

(-
1.

24
)

(-
6.

80
)

Si
ze

α
1.

16
**

*
-0

.7
7*

**
-0

.6
6*

*
-0

.2
1

0.
12

0.
22

0.
31

*
0.

04
0.

21
0.

09
0.

16
0.

08
0.

07
2.

85
**

*
(2

.9
9)

(-
3.

15
)

(-
2.

41
)

(-
0.

94
)

(0
.5

8)
(1

.2
3)

(1
.7

9)
(0

.2
2)

(1
.3

4)
(0

.5
5)

(0
.9

0)
(0

.4
3)

(0
.3

8)
(1

0.
15

)

77



Chapter 3. The Cross-Section of Intraday and Overnight Returns

3.4.3 Benchmarking the Results

The previous findings show that there is marked cross-sectional variation in intraday and

overnight return patterns. In particular, patterns in intraday average returns differ across

anomalies. To which benchmark should these patterns be compared?

The market portfolio is a natural benchmark. Panel (a) of Figure 3.3 reports the t-statistics of

average intraday market returns, where the market return is computed as the value-weighted

return of all stocks in the sample and is rebalanced on a monthly basis. The market portfolio

tends to earn high returns overnight and displays no clear pattern over the trading day. Over

the full sample, the hypothesis that the market portfolio’s intraday half-hour returns (starting

from 10 a.m.) are jointly equal to zero cannot be rejected at the level of 1%. After 1990, the

hypothesis cannot be rejected at the level of 5%.

It is puzzling that the portfolio proxying for the aggregate risk in the economy tends to earn

close to zero returns over most of the trading day. This puzzle is further deepened when

excluding FOMC announcement days (not reported).13

As a second benchmark, I compute returns on “random” portfolios. At the beginning of each

year, stocks are allocated randomly into decile portfolios. I impose the same filters as for the

anomaly portfolios. Two of the decile portfolios are selected randomly to compute monthly

value-weighted returns on a long-short decile portfolio over the following year. The long and

short legs are determined ex post to obtain a positive average monthly return over the sample

period (1986-2015). This procedure is repeated 10,000 times.

Two remarks are in order. First, I assume annual rebalancing to simplify the computations.

Second, given that there is no persistence in the sorts over a period greater than a year, the

unconditional persistence in the composition of the random portfolios may not match the

persistence in the composition of the anomaly portfolios.14 While the first point is unlikely to

be a concern, the second point may make the random strategies not fully comparable to the

anomalies. Still, these random strategies provide a neat benchmark to evaluate intraday and

overnight return patterns.

Among all random strategies, 1,065 earn average monthly returns that are statistically signifi-

13Lucca and Moench (2015) document that, from January 1994 to March 2011, about 80% of annual realized
market excess returns accrue in the 24 hours before scheduled FOMC announcements. Most anomalies tend not
to perform well on FOMC announcement days. But apart from beta and idiosyncratic volatility, which incur large
negative overnight returns and continue to lose value over the day, intraday and overnight average returns on other
anomalies are not significantly different at the level of 10%. The short leg eliminates most of the exposure to the
announcement. These results are reported in the Internet Appendix available at www.vincentbogousslavsky.com.

14The average rank correlation of the characteristics from one year to the next ranges from 0.04 for momentum
to 0.97 for illiquidity. Net stock issues (0.40), beta (0.63), idiosyncratic volatility (0.65), and gross profitability (0.93)
lie in between.
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3.4. Intraday and Overnight Average Returns

Figure 3.3. Intraday benchmarks: market portfolio and random portfolios. Panel (a) re-
ports the t-statistics of the average intraday market returns. The market return is computed as
the value-weighted return of all stocks in the sample and is rebalanced on a monthly basis.
Random portfolios: At the beginning of each year, stocks with a price larger than $10 and
at least ten days of nonzero volume over the previous month are allocated randomly into
decile portfolios. Two of the decile portfolios are selected randomly to compute monthly
value-weighted returns on a long-short decile portfolio over the following year. The long and
short legs are determined ex post to obtain a positive average monthly return over the full
sample period (1986-2015). This procedure is repeated 10,000 times. The 1,065 strategies
that have an average monthly return significant at the level of 10% are labeled as significant
strategies. Panel (b) reports the first quartile, median, and third quartile of alpha’s t-statistics
across all significant strategies in each interval of the day. Panel (c) reports an histogram of
the number of significant strategies with a given number of positive and significant (at the
level of 10%) intraday half-hour alphas. The same statistic is indicated for accruals (AC), beta
(BE), book-to-market (BM), gross profitability (GP), idiosyncratic volatility (IV), illiquidity (IL),
momentum (MO), net stock issues (NI), and size (SI).
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Chapter 3. The Cross-Section of Intraday and Overnight Returns

cant at the level of 10%. In what follows, I refer to these strategies as “significant strategies.”

The best significant strategy has a t-statistic of 3.98. Unsurprisingly, market returns do not

explain the simulated strategies’ returns, and average returns and alphas are highly similar. For

each significant strategy, I compute intraday half-hour and overnight alphas with associated

t-statistics.

Panel (b) of Figure 3.3 plots the first quartile, median, and third quartile of t-statistics across all

significant strategies in each interval. These statistics shed light on the average alpha profile

over the day of a significant strategy. The overnight period drives the profitability of most

random strategies. In fact, less than 20% of significant strategies have a negative overnight

alpha. Overall, the average random portfolio does not appear to earn returns gradually over

the day, which is confirmed by a joint test below.

To benchmark period-specific anomalies, I evaluate whether a significant strategy can earn

statistically significant alpha in a given period across all subsamples. The probability for

a random strategy is close to zero for all periods except overnight (1.22%) and, to a lesser

extent, in the last half hour (0.47%). Among the 10,000 original strategies, only one strategy

earns significant alpha in a given period in all subsamples and across all days of the weeks.

Like momentum, this strategy has a positive overnight alpha. This evidence suggests that

concentrated patterns similar to that of the period-specific anomalies are not replicated by

simple random strategies.

To benchmark the gradual anomalies, the histogram in Panel (c) of Figure 3.3 reports the

number of random strategies that have a given number of positive and significant half-hour

alphas (at the level of 10%). Not a single random strategy has more than six statistically

significant intraday intervals and only two attain this threshold. The random strategies do not

appear to earn positive and statistically significant returns consistently across the trading day.

This result contrasts with the gradual anomalies identified above, for which the same statistic

is indicated in the histogram.

The comparison between these two benchmarks and the anomaly portfolios suggests that

stock characteristics matter for intraday patterns. Portfolios of stocks formed on different

characteristics can exhibit strikingly different intraday return patterns. These patterns differ

from the two natural benchmarks that are the market portfolio and random portfolios. The

next step is to understand why such cross-sectional differences in average returns exist at the

intraday level and whether these differences can explain the cross-section of stock returns at

lower frequencies.
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3.5. Size and Illiquidity

3.5 Size and Illiquidity

Strikingly, the bulk of size and illiquidity average returns (alpha) is earned in the last half hour

of trading. The end-of-the-day spike in size return in Table 3.1 translates to roughly 0.60% on

a monthly basis. This result is statistically significant across all subsamples and days of the

week (Figures 3.1 and 3.2), robust to excluding all January observations, and not limited to

extreme deciles. Overnight returns show no marked relation to firm size. But last half-hour

returns increase monotonically with size, while first half-hour returns decrease monotonically

with size (not reported). The last half hour return is also robust to excluding NASDAQ stocks

or forming a (size) portfolio using only NASDAQ stocks (not reported).

Small stocks earn a positive and statistically significant average excess return over the sample

period. Hence, if small stocks trade mostly around the close or, equivalently, their quotes

are updated mostly around the close, then positive returns should be concentrated at this

time. As shown in Section 3.4.2, the high end-of-the-day return of size and illiquidity is not a

mechanical side effect of nonsynchronous trading.

As a simple robustness check against data mining concerns, I examine size returns on days

with anticipated early closures of the exchanges. The NYSE and NASDAQ may close early on

July 3r d , July 5th , the day after Thanksgiving, and Christmas Eve. Over my sample, I identify

51 days with early closures. The average return in the last half hour (12:30-1:00 p.m.) is not

statistically significant but remains largest among all intraday average returns (4.28 bp).

To the best of my knowledge, this evidence has not been highlighted before. Using transaction

data on NYSE stocks over December 1981 to January 1983, Harris (1986) documents that

prices rise on the last trade of the day. This rise is in large part due to the tendency of the

last transaction to be at the ask (Harris (1989)). This effect cannot be at play in my sample of

midquote returns. Moreover, the cross-sectional difference between large and small stocks is

not emphasized by Harris (1989).

Figure 3.4 shows that small and large stocks display radically different patterns in average

returns across days of the week and over the trading day. Both legs contribute to the end-of-

the-day effect. Furthermore, small stocks perform poorly at the beginning of the week, while

large stocks display the opposite pattern.

The previous result is difficult to reconcile with standard theories of size and illiquidity. For

instance, if size proxies for distress risk, then it is not clear why small stocks should earn such

large returns at the end of the day. I explore next whether theories of intraday and overnight

returns can explain the previous evidence. More precisely, I test theories based on closure

effects, institutional effects, and coordination (information asymmetry).
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Chapter 3. The Cross-Section of Intraday and Overnight Returns

Figure 3.4. Intraday and overnight market alphas of small and large stocks portfolios
across days of the week. The first interval starts at 9:45 a.m. 10:00 indicates the half-hour
interval that starts at 10:00 a.m. and ends before 10:30 a.m. OV indicates the overnight return.
Portfolio construction is detailed in the caption of Table 3.1. Dashed red lines indicate sig-
nificance at the level of 10%. t-statistics are based on heteroskedasticity-adjusted standard
errors.
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3.5.1 Closure Effects

The large average return of small stocks (the long leg) over the last half hour of trading does

not appear to be consistent with overnight liquidity risk being compensated. Prices should go

down for liquidity providers to hold risky stocks overnight (see Section 3.2). Moreover, evidence

from extreme negative returns and skewness does not support a crash risk story (Table 3.1).

Therefore, the hedging story detailed in Section 3.2 cannot explain the high end-of-the-day

average return of small stocks. This explanation may help explain the low end-of-the-day

average return of large stocks, but it remains unclear why the opposite pattern is observed for

small stocks.

3.5.2 Institutional Effects: Price Pressure

Another potential explanation is that exogenous buy imbalances—for instance due to insti-

tutional effects as described in Section 3.2—may cause an increase in the price of small and

illiquid stocks at the end of the day. In this case, one would expect some reversal over the

following overnight and morning periods. However, autocorrelations provide no evidence of

reversal between the end-of-the-day return and the following overnight return (not reported).

In addition, Figure 3.4 shows that high average end-of-the-day returns tend not to be reversed

on the following day for most days of the week. In summary, there is no evidence of large price

pressure effects—correlated across small stocks to show up in portfolio returns—at the end of

the day.15

Following Llorente et al. (2002), I estimate the following regression for the small stocks portfo-

lio:

rOV,t+1 = a +b r3:30,t +c r3:30,t turn3:30,t +εt+1, (3.4)

where turn3:30,t is the logarithm of turnover (trading volume over shares outstanding) between

3:30 and 4:00 p.m. on day t minus its average over the past 250 days. Here, the turnover

of the portfolio is the value-weighted turnover of the stocks in the portfolio. We expect the

coefficient c to be negative if there are common liquidity shocks at the end of the day. There is

no such evidence for the small stocks portfolio except in the last part of the sample, in which c

is negative and statistically significant at the level of 10%. It remains possible, however, that

the shocks reverse over longer horizons.

15Evidence from panel regressions (detailed below) is inconclusive as well. A one basis point increase in the last
half-hour return is associated with a 0.09 basis point decrease in the following overnight return.

83



Chapter 3. The Cross-Section of Intraday and Overnight Returns

3.5.3 Liquidity at the Close

Table 3.1 shows that size and illiquidity exhibit a similar intraday pattern. To evaluate which

characteristic dominates the other, Table 3.3 reports the last half hour average return of double-

sorted long-short portfolios. Stocks are first sorted into illiquidity (size) quintiles and then,

within each quintile, stocks are sorted again into size (illiquidity) quintile portfolios. As can be

seen, illiquidity dominates size in generating a positive and statistically significant average

return in the last half hour of trading.

Given that illiquidity dominates size in explaining the end-of-the-day return, it is natural to

look for an explanation based on liquidity. A high return at the end of the day is consistent with

a model in which risk-averse market makers with positive inventories have to absorb supply

shocks at the end of the day.16 In this model, the price impact of supply shocks increases at

the end of the day, which leads market makers to require higher returns to hold stocks over

this period.

This framework nests both a pure liquidity shocks theory and an information asymmetry

theory. First, the price impact of supply shocks may increase because supply shocks are more

volatile around the close, for instance, due to institutional effects around the close. Second, the

price impact of supply shocks may increase because there is more informed trading around

the close. This framework can explain the cross-sectional evidence if small and illiquid stocks

are subject to more volatile liquidity shocks or more information asymmetry than large stocks.

There is evidence that liquidity deteriorates around the close. Effective spreads are U-shaped

over the day (McInish and Wood (1992)) while quoted depths are reverse U-shaped (Lee,

Mucklow, and Ready (1993)). Furthermore, Madhavan, Richardson, and Roomans (1997) find

that temporary price impact increases over the day. Cushing and Madhavan (2000) find that

the return sensitivity to order flow is higher in the last half hour of trading than during the

rest of the day. More precisely, they document a common factor in stock returns at the end

of the day and link their finding to institutional trading at this time.17 Still, recent anecdotal

evidence suggests that liquidity is higher at the close (see the references in Footnote 1).

The liquidity of small and large stocks may possibly diverge at this time of the day. As a simple

test, I compute Amihud’s illiquidity coefficient separately for each interval of the day. For both

small and large stocks, the illiquidity coefficient is actually lowest at the end of the day (not

reported). This result does not support a liquidity explanation. Liquidity risk may be higher

for small stocks at the end of the day, but this channel is not supported by the limited evidence

16Comerton-Forde et al. (2010) document that NYSE specialists had positive end-of-the-day inventories 94% of
the time over 1994 to 2004.

17Strategic models such as Admati and Pfleiderer (1988) and Foster and Viswanathan (1990) predict that liquidity
measures improve with higher trading volume. Hence, these models have trouble reconciling the evidence of
U-shaped intraday patterns in volume and trading costs.
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3.5. Size and Illiquidity

Table 3.3
Average end-of-the-day return of double-sorted size-illiquidity portfolios. At the end of
each month, stocks are sorted sequentially into size/illiquidity (ILLIQ) long-short quintile
portfolios. The table reports the average return in the last half hour of trading (r̄3:30) in basis
points. Portfolios are value-weighted and held for one month. A stock is required to have a
price greater than $10 at the end of the previous month and at least 80% of traded days with
non-zero volume in the previous month to be included. Stock returns are computed using
quote midpoints. The first interval starts at 9:45 a.m. 10:00 indicates the half-hour interval
that starts at 10:00 a.m. and ends before 10:30 a.m. OV indicates the overnight return. The
sample is composed of NYSE and Amex common stocks from January 1, 1986, to December
31, 2015. t-statistics are shown in parentheses and based on Newey and West (1987) standard
errors with 14 lags. *, **, and *** denote significance at the 10%, 5%, and 1% level.

Size/ILLIQ quintile
r̄3:30 [bp] 1 2 3 4 5

Size (given ILLIQ) 0.87*** -0.18 -0.19 -0.06 0.30
(4.77) (-1.08) (-1.11) (-0.10) (1.28)

ILLIQ (given Size) 0.75*** 0.31 0.65** 1.08*** 1.59***
(3.26) (1.65) (3.63) (6.74) (8.91)

of return reversal in portfolios of small and illiquid stocks. Clearly, more work remains to be

done to assess intraday liquidity patterns in the cross-section.

Institutional Effects

To disentangle liquidity shock effects from asymmetric information effects, I examine return

patterns at the end of quarters. Liquidity effects may be more pronounced at the end of

quarters. As shown by Carhart et al. (2002), portfolio pumping by fund managers often takes

place on the last day of each quarter. This aggressive trading can affect the cross-section of

stock returns and, in particular, size and illiquidity portfolios.18 I estimate a panel regression

with end-of-the-quarter indicator variables as follows.

r 3:30
i ,t =αi +γILILLIQi ,t +γEoQ1EoQ,t +γEoQ,I L1EoQ,t ILLIQi ,t +ui ,t , (3.5)

where γEoQ1EoQ,t takes the value one on the last day of a quarter.

The results are reported in Table 3.4. In line with prior evidence, illiquid stocks are subject to a

significant end-of-the-quarter effect. The coefficient on ILLIQ remains, however, positive and

18Bogousslavsky (2015) shows that small stocks earn large returns on the last day of each quarter that partly
reverse on the following day.
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Chapter 3. The Cross-Section of Intraday and Overnight Returns

statistically significant at the level of 10%, even though stock fixed effects are included in the

regression. Excluding all January observations does not affect this result.

In summary, explanations based on pure liquidity shocks (institutional effects) have some

merit in explaining high returns at the end of the day. But, in view of the lack of reversal

observed in small stocks returns (Section 3.5.2), they do not appear to explain why marked

cross-sectional differences are observed between small and large stocks.

Information Asymmetry

This section examines whether an increase in the degree of information asymmetry for small

stocks can explain the end-of-the-day pattern. A shift in the degree of information asymmetry

is potentially consistent with strategic models in which informed traders select when to trade

(Section 3.2). According to this explanation, the end-of-the-day pattern in small stocks may

result from small stocks being subject to a higher degree of information asymmetry than large

stocks.

To test the information-based explanation, I use earnings announcements to proxy for a

change in the degree of asymmetric information. One may expect the degree of information

asymmetry to be higher on the days preceding an earnings announcement than on the days

following one. The model of Kim and Verrecchia (1994) predicts the opposite pattern: Some

traders have better information processing ability than others and, as a result, information

asymmetry increases following an announcement. I expect, however, such effects to last for

less than a day, especially over my sample which mostly spans recent years.

If an earnings announcement is made on a given day after the close of trading, I allocate it to

the next trading day.19 The following panel regression is estimated:

r h
i ,t =αt +γILILLIQi ,t +

3∑
k=−3

γEA−k 1EA-k,i ,t +
3∑

k=−3
γEA−k,IL1EA-k,i ,t ILLIQi ,t +ui ,t , (3.6)

where 1EA-k,i ,t is an indicator variable that takes the value one if firm i has an earnings an-

nouncement on date t + k. I focus on a range of three days before and after an earnings

announcement date. According to the asymmetric information theory, the coefficients γEA−k

should be larger in the days preceding the announcement. Furthermore, the coefficients

γEA−k,IL should be positive in the days preceding the announcement. The coefficient γIL

should be statistically insignificant if earnings announcement account for the end-of-the-day

effect.

19Since Compustat reports only the date of the announcement, I use a simple volume test to determine whether
the announcement is made after trading hours. The firm’s turnover net of market turnover is compared between
the reported day and the following trading day. The announcement is allocated to the day with the highest turnover.
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Table 3.4
End of quarters and intraday returns. The following panel regression is estimated: r h

i ,t =
αi+γILILLIQi ,t+γEoQ1EoQ,t+γEoQ,I L1EoQ,t ILLIQi ,t+ui ,t , where r h

i ,t is stock i ’s return in interval
h on day t (in basis points), ILLIQi ,t is the logarithm of stock i ’s Amihud (2002) illiquidity
coefficient estimated over the previous year, and 1EA-k,i ,t is an indicator variable that takes the
value one if firm i has an earnings announcement on date t . The regression includes stock
fixed effects. A stock is required to have a price greater than $10 at the end of the previous
month and at least 80% of traded days with non-zero volume in the previous month to be
included. Stock returns are computed using quote midpoints. All the variables are winsorized
at 0.05%. ILLIQ is normalized by its standard deviation. The sample is composed of NYSE and
Amex common stocks from January 1, 1986, to December 31, 2015. t-statistics are shown in
parentheses and based on standard errors that are double-clustered by date and firm. *, **,
and *** denote significance at the 10%, 5%, and 1% level.

dependent variable r 3:30
i ,t [bp]

ILLIQ 0.34*
(1.80)

1EoQ 6.40
(1.47)

1EoQ * ILLIQ 2.81***
(3.43)

Stock fixed effects Yes

Obs. 6,186,818

Table 3.5 reports the results. The left column shows that there is a positive end-of-the-day

effect for all stocks on the days preceding an announcement. On the contrary, there is a

negative end-of-the-day effect for all stocks on the day following an announcement. This

striking asymmetry is consistent with the asymmetric information theory.

Moreover, as shown in the middle and right columns of Table 3.5, this asymmetry does not

exist during the intervals 2:30-3:00 p.m. and 3:00-3:30 p.m. There is, however, only limited

evidence that illiquid stocks are more affected than other stocks. The coefficient on ILLIQ

remains large and positive, which shows that earnings announcement do not explain the

end-of-the-day effect in illiquid stocks. There is an announcement day effect since average

returns tend to be positive and statistically significant on announcement days for all shown

intervals. The previous results are robust to excluding the ISSM data.

Overall, the evidence does not support asymmetric information as the primary driver of the

end-of-the-day effect in illiquid stocks. However, the evidence in Table 3.5 is consistent with a

role of asymmetric information for end-of-the-day returns. Table 3.5 does not directly show
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that there is more asymmetric information at the end of the day, but the intraday return

pattern seems hard to reconcile with alternative explanations.

3.5.4 Summary

I find evidence consistent with institutional and information asymmetry theories in generating

high end-of-the-day returns. However, these theories fail to explain why small and illiquid

stocks are disproportionately affected relative to large stocks. Importantly, it remains unclear

whether liquidity improves or deteriorates at the end of the trading day and whether variations

in liquidity can explain the striking cross-sectional difference in intraday average returns

between small and large stocks.

3.6 Gradual Anomalies

Gradual anomalies—i.e., betting-against-beta, gross profitability, idiosyncratic volatility, and

net stock issues—earn consistently positive and statistically significant average returns over

the trading day. This evidence is robust across subsamples and days of the week.

These anomalies realize, however, large negative returns overnight and in the last half hour

of trading. Such returns are difficult to reconcile with risk-based explanations. Since the

overnight returns of gradual anomalies are negatively skewed, overnight crash risk does not

seem to explain the low overnight returns.20

Another potential explanation for the large overnight returns is that the quote midpoints of

the stocks in these portfolios tend to be associated with low depth at 9:45 a.m. Hence, even

small trades could easily bias the quotes, which would reverse shortly afterwards. In this

respect, Section 3.7.1 shows that the definition of the opening price has a large impact on

the magnitude of overnight returns of aggregate portfolios. Such reversal at the open is not

economically meaningful for understanding of anomalies over longer horizons.

To test this explanation, I compute overnight returns using volume-weighted average prices

(VWAP) in the first half hour of trading. As detailed in Section 3.3, I use only stocks that have

a sufficient number of shares traded over this interval. The results—reported in the Internet

Appendix—show that overnight alphas remain large and negative for all gradual anomalies

except gross profitability.21

Mispricing theories generally predict an asymmetry between an anomaly long leg return and

20Moreover, even though a series of positive returns over the day is in line with information asymmetry being
gradually resolved with trading (Section 3.2), there is no reason to expect that stocks in the long leg of these
portfolios are subject to more information asymmetry than stocks in the short leg.

21Overnight returns on long-only portfolios are, however, more sensitive to this choice as shown in Section 3.7.1.
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Table 3.5
Earnings announcements and intraday returns. The following panel regression is estimated:
r h

i ,t = αt +γILILLIQi ,t +
∑3

k=−3γEA−k 1EA-k,i ,t +
∑3

k=−3γEA−k,IL1EA-k,i ,t ILLIQi ,t +ui ,t , where r h
i ,t

is stock i ’s return in interval h on day t (in basis points), ILLIQi ,t is the logarithm of stock
i ’s Amihud (2002) illiquidity coefficient estimated over the previous year, and 1EA-k,i ,t is an
indicator variable that takes the value one if firm i has an earnings announcement on date
t +k. The regression includes day fixed effects. A stock is required to have a price greater than
$10 at the end of the previous month and at least 80% of traded days with non-zero volume in
the previous month to be included. Stock returns are computed using quote midpoints. All the
variables are winsorized at 0.05%. ILLIQ is normalized by its standard deviation. The sample
is composed of NYSE and Amex common stocks from January 1, 1986, to December 31, 2015.
t-statistics are shown in parentheses and based on standard errors that are double-clustered
by date and firm. *, **, and *** denote significance at the 10%, 5%, and 1% level.

dependent variable r 3:30
i ,t [bp] r 3:00

i ,t [bp] r 2:30
i ,t [bp]

ILLIQ 0.43*** 0.04 -0.05
(4.30) (0.54) (-0.80)

EA-3 1.18 0.60 0.49
(1.45) (0.89) (0.81)

EA-2 1.35 0.17 0.51
(1.59) (0.24) (0.76)

EA-1 1.50 0.42 -1.32*
(1.55) (0.56) (-1.82)

EA 3.62*** 2.38*** 3.00***
(3.63) (2.74) (3.66)

EA+1 -1.77** 0.62 -0.53
(-2.12) (0.86) (-0.79)

EA+2 -0.49 0.33 -0.19
(-0.60) (0.48) (-0.30)

EA+3 -1.63** 0.14 0.03
(-2.03) (0.20) (0.05)

EA-3 * ILLIQ 0.26 0.14 0.06
(1.30) (0.84) (0.40)

EA-2 * ILLIQ 0.13 0.00 0.09
(0.64) (0.02) (0.56)

EA-1 * ILLIQ -0.10 0.08 -0.39**
(-0.42) (0.44) (-2.24)

EA * ILLIQ 0.46* 0.39* 0.63***
(1.92) (1.82) (3.08)

EA+1 * ILLIQ -0.48** 0.16 -0.05
(-2.39) (0.91) (-0.32)

EA+2 * ILLIQ -0.07 0.12 -0.02
(-0.33) (0.71) (-0.10)

EA+3 * ILLIQ -0.30 0.04 0.06
(-1.52) (0.24) (0.44)

Obs. 6,186,889 6,186,889 6,186,889
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Chapter 3. The Cross-Section of Intraday and Overnight Returns

short leg return because buying stocks is easier than shorting them (e.g., Stambaugh, Yu,

and Yuan (2012)). Table 3.6 reports average returns on the long and short legs of the four

gradual anomalies. While both legs contribute to the anomalies’ intraday profits, the short leg

drives the low overnight return and—to a lesser extent—the low return at the end of the day.

According to mispricing theories, this evidence is consistent with mispricing that worsens at

the open and in the last half hour of trading as the short leg becomes more overvalued.

There is evidence that mispricing can worsen at the open. Neal (1996) documents that the

degree of mispricing associated with stock index arbitrage is highest at the open. Bid-ask

spreads tend to be especially high at the open (McInish and Wood (1992)), which may hinder

arbitrage. Furthermore, systematic buying pressure by retail investors at the open may increase

mispricing, as suggested by the analysis of Berkman et al. (2012).

Intuitively, mispricing may also increase around the close. One potential explanation is that

arbitrageurs tend to close their short positions at the end of the day; for example, they may

not want to carry short positions overnight.22 This theory predicts a low return on the short

leg of anomalies portfolios in the last half hour of trading. This explanation could be tested

using intraday data on short sales.

Even though the negative overnight returns are most consistent with mispricing, the gradual

returns over the trading day may still represent a compensation for risk, mispricing that gradu-

ally resolves over the day, or a combination of both. The evidence suggests that mispricing

matters around market closures. But it is an open question why portfolios of stocks formed on

certain characteristics earn their return gradually over the day. This pattern stands in sharp

contrast with the market portfolio, which earns the bulk of its return overnight.

3.7 Robustness

This section examines the robustness of overnight returns to the measure of the opening price

(Section 3.7.1) and the robustness of the results to the use of trade-based returns (Section 3.7.2).

3.7.1 Do Stocks Earn High Overnight Returns?

As shown in the main analysis, anomaly overnight returns are robust to the choice of the

opening price. Overnight returns on long-only portfolios are, however, more sensitive to this

choice.

Stocks are allocated into micro, small, and large value-weighted portfolios based on the 20th

22The initial margin requirements of Regulation T in the U.S. are typically applied at the end of the day; see for
instance https://gdcdyn.interactivebrokers.com/en/index.php?f=marginnew&p=overview1.
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Chapter 3. The Cross-Section of Intraday and Overnight Returns

Table 3.7
Intraday (IN) and overnight (OV) average returns in basis points of aggregate portfolios
for different measures of the opening price. The table also reports the correlation (corr)
between overnight and intraday returns. Stocks are allocated into micro, small, and large
value-weighted portfolios based on the 20th and 50th percentiles of NYSE market capitalization
each year at the end of June. Opening prices are computed using the first trade of the day
(trade), the first quote of the day after 9:35 (quote), and the volume-weighted average price in
the first half-hour of trading (VWAP). Each stock is required to have a share volume greater
than 1,000 in the first half-hour of trading on at least 95% of the days in a given quarter (using
days for which the stock has a valid CRSP daily return). The sample is composed of NYSE,
Amex, and NASDAQ common stocks. NASDAQ stocks are included since 1993. A stock is
required to have a price greater than $5 and a market capitalization greater than $100 million at
the end of the previous quarter to be included. Standard t-statistics are shown in parentheses.
*, **, and *** denote significance at the 10%, 5%, and 1% level.

1986-1992 1993-2004 2005-2015
OV IN corr OV IN corr OV IN corr

Large
trade 3.30** 3.43* 0.06 5.83*** -1.07 -0.02 2.90** 0.68 0.05

(2.18) (1.66) (5.74) (-0.62) (2.20) (0.36)
quote 5.03*** 1.69 -0.02 5.47*** -0.76 -0.02 2.82** 0.74 0.05

(3.19) (0.84) (5.22) (-0.45) (2.12) (0.40)
VWAP 0.69 6.12*** -0.06 3.25*** 1.59 0.03 2.02 1.45 0.13

(0.42) (2.89) (3.11) (0.94) (1.55) (0.81)
Small

trade 5.08*** 1.08 0.12 8.75*** -3.26* 0.12 2.81** 1.61 0.08
(3.89) (0.54) (10.17) (-1.77) (2.07) (0.69)

quote 6.47*** -0.30 0.12 7.71*** -2.26 0.08 2.30 2.11 0.03
(4.49) (-0.15) (7.79) (-1.27) (1.55) (0.93)

VWAP 1.65 4.27** 0.06 4.78*** 0.40 0.07 0.21 3.94* 0.12
(1.06) (2.09) (4.41) (0.22) (0.14) (1.79)

Micro
trade 8.26*** -2.62 0.06 11.99*** -3.59 0.06 4.70*** 1.00 0.10

(4.94) (-1.06) (10.76) (-1.55) (3.34) (0.38)
quote 8.98*** -3.33 0.06 11.51*** -3.25 0.03 4.53*** 1.13 0.07

(4.97) (-1.38) (9.01) (-1.46) (3.05) (0.44)
VWAP 3.12 2.83 -0.00 8.66*** -1.99 0.02 0.83 3.28 0.13

(1.58) (1.18) (5.74) (-0.82) (0.55) (1.32)

and 50th percentiles of NYSE market capitalization each year at the end of June. Table 3.7

reports intraday and overnight average returns for each of the portfolios using three measures

of the opening price: quote midpoints, trade prices, and VWAP as described in Section 3.3. To

make an exact comparison, each portfolio in Table 3.7 has the same composition as the VWAP

portfolio. The results for the micro portfolio over the 1986-1992 period should be taken with a

grain of salt since this portfolio holds on average only 50 stocks during this period.
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3.8. Conclusion

The choice of the opening price matters. Overnight returns are lowest using VWAP. The

differences are particularly marked in the first part of the sample and for the small and micro

stocks portfolios. Midquote and trade prices yield negative intraday returns for the large stocks

portfolio between 1993 and 2004, while VWAP yield positive intraday returns.

Cliff, Cooper, and Gulen (2008) claim that the U.S. equity premium over 1993 to 2006 is entirely

earned overnight. Table 3.7 shows that this statement depends on the definition of the opening

price. A substantial fraction of overnight returns computed from trades and quote midpoints

can be explained by short-term price movements in the first half hour of trading. This evidence

indicates abnormally high prices at the open that revert over the following half hour of trading.

3.7.2 Trade-Based Returns

Intraday and overnight average trade-based returns on anomalies are reported in the Internet

Appendix. In general, returns computed from trade prices give similar results than returns

computed from quote midpoints. As hinted by the evidence in Section 3.7.1, most differences

occur in the old part of the sample and are due to the inclusion of the first fifteen minutes of

trading when computing trade-based returns. Intraday returns on anomalies do not differ

much. The results in the main analysis are therefore robust. In fact, return patterns around

market closures tend to be more pronounced with trade-based returns.

3.8 Conclusion

Portfolios of stocks formed on different characteristics exhibit strikingly different intraday

return patterns. This evidence is novel and helps understand the economic drivers behind

cross-sectional variation in stock returns. Portfolios of stocks formed on different characteris-

tics exhibit strikingly different intraday return patterns. These patterns are robust and differ

from two natural benchmarks: the market portfolio and portfolios based on random strategies.

Market closures have a large impact on stock returns. Small and illiquid stocks earn large

returns in the last half hour of trading. In contrast, large stocks tend to perform poorly at the

end of the day. Therefore, any explanation that rejects the role of market closures should be

able to provide an alternative as to why a large fraction of size returns accrue in the last half

hour of trading

High end-of-the-day returns are difficult to explain with standard theories of size and illiquidity.

I find evidence consistent with information asymmetry and institutional effects resulting in

high end-of-the-day returns across stocks. However, the empirical evidence is inconclusive

relative to why small and illiquid stocks behave differently than large stocks. In this respect,

more work is needed to understand liquidity around the close and whether variations in
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Chapter 3. The Cross-Section of Intraday and Overnight Returns

liquidity can explain cross-sectional differences in average intraday returns. Such work is also

important from a trade execution point of view.

Overall, this paper provides new evidence on the determinants of cross-sectional variation in

stock returns. But it remains an open question to which extent cross-sectional variation in

average intraday stock returns can explain cross-sectional variation in lower frequency returns.

As pointed out by Chordia, Roll, and Subrahmanyam (2005) in a study of market efficiency, it

is puzzling how extant empirical evidence goes from apparent weak-form efficiency at very

short horizons to predictability at long horizons. This paper provides an intermediate step

that can help bridge this gap. It appears crucial to consider separately the different periods of

the day. For instance, specific patterns around the close may be masked by noise over the rest

of the trading day.

94



Conclusion

This thesis contributes to research on cross-sectional variation in stock returns, market effi-

ciency, and liquidity.

The first chapter studies a dynamic equilibrium model in which some investors readjust their

portfolio infrequently. I show that trading by investors with heterogeneous rebalancing hori-

zons can generate return autocorrelation and seasonality consistent with empirical evidence

at different frequencies. This chapter provides a first step in explaining why risk premia can be

seasonal.

The second chapter documents that well-known anomalies exhibit strong January and month-

of-the-quarter seasonalities. These seasonalities are in general robust to controlling for size

and tax-loss selling potential. In addition, small stocks earn an abnormally high average

return on the last day of the quarter, which significantly affects size, idiosyncratic volatility,

and illiquidity portfolios. This chapter shows that taking into account such seasonalities is

important when studying the cross-section of stock returns.

The third chapter contributes to extant literature by documenting substantial cross-sectional

variation in average stock returns over the trading day and overnight. This evidence is novel

and helps understand the economic drivers behind cross-sectional variation in stock returns.

Portfolios of stocks formed on different characteristics exhibit strikingly different intraday

return patterns. These patterns are robust and differ from natural benchmarks. Market

closures have a large impact on stock returns. I find evidence consistent with information

asymmetry and liquidity shocks resulting in high end-of-the-day returns across stocks.

To come back to the question raised in the introduction—why do some stocks perform better

than others?—this thesis finds that investor rebalancing and institutional effects are important

drivers of cross-sectional variation in stock returns. As discussed below, much more work

remains to be done in this area.
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Conclusion

Outline for Further Research

A study of how the intraday return patterns taken as stylized facts in the first chapter of this

thesis evolve over time would be of high interest. With the rise of high-frequency trading, such

predictability patterns may be expected to become weaker as they are arbitraged away. At

the same time, index investing has grown tremendously in recent years. This increase could

lead to more pronounced time-of-the-day effects. Indeed, many institutional investors rely on

closing prices as benchmarks. For example, open-end mutual funds use closing prices to set

the net asset value at which their shares can be bought and sold each day. Similarly, leveraged

exchange-traded funds tend to trade heavily towards the end of the day. This increase in

passive investing appears to have led to a dramatic increase in trading volume over the last

thirty minutes of trading in recent years.

As a result, it is unclear whether intraday return predictability patterns have become stronger

or weaker over time. Further work in this area is necessary to understand trends in market

efficiency and the role of price pressures in explaining excess return volatility. In particular,

more work is needed to estimate the consequences of trading concentration at the close for the

average retail investor. A deep understanding of liquidity around the close and at other times

of the day is also important from a trade execution point of view. The length and granularity of

the data set constructed in the third chapter of this thesis can potentially shed light on these

important questions.

Relative to standard asset pricing research, more work is needed to understand the properties

of intraday and overnight returns. I have found preliminary evidence that the canonical asset

pricing model—the market model—explains better overnight returns than intraday returns

(see also Bollerslev, Li, and Todorov (2016)). An analysis of why such a difference exists can

potentially help develop asset pricing models with increased power to explain the cross-section

of stock returns.

Overall, this thesis provides new evidence on the determinants of cross-sectional variation in

stock returns. But it remains an open question to which extent cross-sectional variation in

average intraday stock returns can explain cross-sectional variation in lower frequency returns.

As pointed out by Chordia, Roll, and Subrahmanyam (2005) in a study of market efficiency, it

is puzzling how extant empirical evidence goes from apparent weak-form efficiency at very

short horizons to predictability at long horizons.
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A Appendix to Chapter 1

A.1 Proofs

To derive Proposition 1, I first conjecture that asset prices and infrequent traders’ demands are

linear in the state variables (defined below). Using this conjecture, I derive frequent traders’

demands (Lemma 1) and infrequents traders’ demands (Lemma 3). Finally, I verify the initial

conjectures by plugging the demands into the market-clearing condition (Proposition 1). The

dividend and liquidity trading mean vectors are given by D̄ and θ̄ in the proofs and are set to

0N×1 in the analysis.

Derivation of the state variables process: I follow Duffie (2010) and focus on linear equilibria.

Let the price and infrequent traders’ demand vectors be given by

Pt = AYt , and

X I
t = BYt ,

(A.1)

where A and B are constant parameter matrices of dimensions N ×1+ (2+k)N , and Yt is the

(1+ (2+k)N )-dimensional vector of state variables
(

1 θ′t D ′
t X I ′

t−1 . . . X I ′
t−k

)′
. Let IN

(0N ) denote the identity (zero) matrix of dimension N×N . One can write Yt+1 = AY Yt +BY εt+1,

where εt ≡ (εθ′t εD′
t )′ ∼N (02N×1,ΣY ) is the vector of innovations with variance-covariance

97



Appendix A. Appendix to Chapter 1

matrix ΣY =
[
Σθ 0N

0N ΣD

]
, and the matrices AY and BY are given by

AY =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 01×N · · · 01×N

(1−aθ)θ̄ aθ IN 0N · · · 0N

(1−aD )D̄ 0N aD IN 0N · · · 0N

B

0N×1 0N 0N IN 0N · · · 0N 0N
...

...
... 0N

. . .
...

...
... 0N

0N×1 0N 0N 0N . . . 0N IN 0N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and BY =

⎡
⎢⎢⎢⎢⎣

01×N 01×N

IN 0N

0N IN

0kN×N 0kN×N

⎤
⎥⎥⎥⎥⎦ .

The dynamics of Yt imply that

Yt+ j = A j
Y Yt +

j∑
i=1

A j−i
Y BY εt+i , j ≥ 1. (A.2)

To simplify notation, let A0
Y = IN . I also introduce the following matrices for convenience: ϕD ,

ϕθ, and ϕx , which are defined such that θt = ϕθYt , Dt = ϕD Yt ,
(
X I ′

t−1 . . . X I ′
t−k

)′ = ϕX Yt , and

ϕS̄Yt = S̄.

Define Qt+1 ≡ Pt+1 +Dt+1 −RPt , the vector of excess dollar returns. It follows that Qt+1 =
AQ Yt +BQεt+1, where AQ ≡ (A+ϕD )AY −R A and BQ ≡ (A+ϕD )BY . Finally, denote the cumu-

lative payoff from t (ex-dividend) to t +k +1 as Tt ,t+k+1 ≡ Pt+k+1 +
∑k+1

j=1 Rk+1− j Dt+ j .

Lemma 1. Given the initial conjectures (A.1), the demands of frequent traders with remaining

horizon h − j (0 ≤ j < h) at date t are given by

X F
t , j =

1

α j+1
F j+1Yt , (A.3)

where F j+1 = (BQΞ j+1B ′
Q )−1(AQ −BQΞ j+1B ′

Y U ′
j+1 AY ) and α j = Rα j+1.

The coefficients are solved recursively starting from the conditions αh = γF and Uh = 01+2N+kN .

The matrices Ξ j+1 and U j+1 (0 ≤ j < h) are defined below.

Proof of Lemma 1: The proof parallels the derivations of He and Wang (1995) in a nonstationary

setup. Let j be the age of the investor (0 ≤ j < h) and J(Wt ,Yt , j ) be the value function. The

Bellman optimization problem for an investor aged j at date t is

J (Wt ,Yt , j ) = max
Xt , j

Et
[

J (Wt+1,Yt+1, j +1)
]

(A.4)
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where Wt+1 = X
′
t , j Qt+1+RWt and J (Wt ,Yt ,h) =−e−γF Wt . Conjecture that J (Wt+1,Yt+1, j +1) =

−e−α j+1Wt+1− 1
2 Y ′

t+1U j+1Yt+1 . It then follows that

Et
[

J (Wt+1,Yt+1, j +1)
]=−e−α j+1(RWt+X ′

t , j AQ Yt )
Et

[
e−α j+1 X ′

t , j BQεt+1− 1
2 Y ′

t+1U j+1Yt+1
]

=−e−α j+1(RWt+X ′
t , j AQ Yt )− 1

2 Y ′
t A′

Y U j+1 AY Yt

Et

[
e(−α j+1 X ′

t , j BQ−Y ′
t A′

Y U j+1BY )εt+1− 1
2 ε

′
t+1B ′

Y U j+1BY εt+1
]

. (A.5)

Using the multivariate normality of εt+1 (see, for instance, Vives (2010)) gives

Et

[
e(−α j+1 X ′

t , j BQ−Y ′
t A′

Y U j+1BY )εt+1− 1
2 ε

′
t+1B ′

Y U j+1BY εt+1
]
= ∣∣I +ΣY B ′

Y U j+1BY
∣∣− 1

2

e
1
2 (−α j+1 X ′

t , j BQ−Y ′
t A′

Y U j+1BY )(I+ΣY B ′
Y U j+1BY )−1ΣY (−α j+1B ′

Q Xt , j−B ′
Y U ′

j+1 AY Yt ). (A.6)

Define ρ j+1 ≡
∣∣I +ΣY B ′

Y U j+1BY
∣∣− 1

2 and Ξ j+1 ≡ (Σ−1
Y +B ′

Y U j+1BY )−1. Using the previous re-

sults, the first-order condition is

AQ Yt −α j+1BQΞ j+1B ′
Q Xt , j −BQΞ j+1B ′

Y U ′
j+1 AY Yt = 0, (A.7)

which gives (A.3). The second-order condition is satisfied if −α j+1BQΞ j+1B ′
Q is negative

definite. Last, I verify the conjecture for the value function. Plugging the optimal demand

expression into the optimization problem gives

Et
[

J (Wt+1,Yt+1, j +1)
]=−ρ j+1e−α j+1RWt− 1

2 Y ′
t M j+1Yt , (A.8)

where M j+1 ≡ A′
Y U j+1 AY +F ′

j+1BQΞ j+1B ′
Q F j+1−A′

Y U j+1BY Ξ j+1B ′
Y U ′

j+1 AY . Matching terms

with the conjectured value function yields α j = Rα j+1 and U j = M j+1 −2ln(ρ j+1)I11, where

I11 is a matrix whose first element is one and all others are zero. The terminal condition gives

αh = γF and Uh = 01+2N+kN . The coefficients can then be solved recursively.�

The next lemma is needed to derive infrequent traders’ demands.

Lemma 2. Given the initial conjectures (A.1), the equilibrium stationary j -period cumulative

payoff variance, Vart
[
Tt ,t+ j

]
, is a constant matrix Σ j given by (for j ≥ 1)

j∑
i=1

(
A A j−i

Y + R j−i+1 −a j−i+1
D

R −aD
ϕD

)
BY ΣY B ′

Y

(
A A j−i

Y + R j−i+1 −a j−i+1
D

R −aD
ϕD

)′
. (A.9)
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Proof of Lemma 2: Since Tt ,t+ j = AYt+ j +∑ j
i=1 R j−i Dt+i , it follows (using (A.2)) that

Vart
[
Tt ,t+ j

]= Var

[
A

j∑
i=1

A j−i
Y BY εt+i +

j∑
i=1

R j−i

(
i−1∑
s=1

as
DεD

t+i−s +εD
t+i

)]
. (A.10)

To compute Vart
[
Tt ,t+ j

]
, note that

j∑
i=1

R j−i

(
i−1∑
s=1

as
DεD

t+i−s +εD
t+i

)
=

j∑
i=1

g (R, aD , j − i )ϕD BY εt+i , (A.11)

where the function g (R, aD , j − i ) is defined recursively by g (R, aD , i ) = g (R, aD , i −1)R +ai
D ,

i ≥ 1, and g (R, aD ,0) = 1. By induction, g (R, aD , i ) = Ri+1−ai+1
D

R−aD
. Plugging this function into the

conditional variance expression (A.10) gives

Σ j = Var

[
j∑

i=1

(
A A j−i

Y + R j−i+1 −a j−i+1
D

R −aD
ϕD

)
BY εt+i

]
. (A.12)

Since the vectors εt+i in (A.12) are independent of each other, the lemma follows.�

Lemma 3. Given the initial conjectures (A.1), infrequent traders’ demands are given by

X I
t = 1

γI
Σ−1

k+1

k∑
j=0

Rk− j AQ A j
Y Yt , (A.13)

where Σk+1 ≡ Vart
[
Tt ,t+k+1

]
is the equilibrium stationary (k +1)-period payoff variance and is

shown to be constant in Lemma 2.

Proof of Lemma 3: From the optimization problem (1.6) and given that prices are normally

distributed under the conjecture (A.1), infrequent traders’ demands are

X I
t = 1

γI
Σ−1

k+1

(
Et

[
Pt+k+1 +

k+1∑
j=1

Rk+1− j Dt+ j

]
−Rk+1Pt

)

= 1

γI
Σ−1

k+1

k∑
j=0

Rk− jEt
[
Qt+ j+1

]
. (A.14)

Using (A.2), (A.14) reduces to (A.13). The vector of demands is linear in the state variables, as

conjectured.�

Proof of Proposition 1: Replacing the demands (A.13) and (A.3) in the market-clearing con-

dition (1.8) with qc(t ) = q
k+1 and rearranging terms yields the following system of fixed point
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equations:

q/γI

k +1
Σ−1

k+1

(
k∑

j=0
Rk− j AQ A j

Y

)
+ 1−q

h

(
h−1∑
j=0

1

α j+1
F j+1

)
−ϕθ−ϕS̄ +

q

k +1
ϕX = 0, (A.15)

1

γI
Σ−1

k+1

(
k∑

j=0
Rk− j AQ A j

Y

)
−B = 0. (A.16)

A linear REE exists if this system of equations admits a solution. Using the expressions for AQ

and AY , the dividend coefficient matrix in (A.16) can be rewritten as

(aD (PD + IN )−RPD )

(
k∑

j=1
Rk− j a j

D +Rk

)
= 0N , (A.17)

where the equality follows from the fact that agents do not trade on dividends (no-trade

theorem). Hence, PD = aD
R−aD

IN .�

Proof of Corollary 1: For simplicity, let θ̄ = 0, D̄ = 0, and S̄ = 0. This implies that P̄ = 0. When

q = 1, the market-clearing condition becomes

1

k +1
X I

t = θt − 1

k +1

k∑
i=1

X I
t−i . (A.18)

This gives the B coefficients in (A.1). Plugging infrequent traders’ demands (A.14) into the

market-clearing condition yields

Rk+1Pt = Et
[
Tt ,t+k+1

]−γI (k +1)Σk+1θt +γIΣk+1

k∑
i=1

X I
t−i , (A.19)

where Tt ,t+k+1 = Pθθt+k+1 + (PD + IN )Dt+k+1 +
∑k

i=1 Rk+1−i Dt+i +∑k
i=1 PXi X I

t+k+1−i . Using

(1.4) and matching terms for the dividends in (A.19) gives PD = aD
R−aD

IN .

The (t +k)-demand of an infrequent trader equals her (t −1)-demand plus the additional

liquidity trading that takes place between t +k −1 and t +k:

⎡
⎢⎢⎣

X I
t+k
...

X I
t+1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

X I
t−1
...

X I
t−k

⎤
⎥⎥⎦+ (k +1)

⎡
⎢⎢⎢⎢⎣

θt+k −θt+k−1

θt+k−1 −θt+k−2
...

θt+1 −θt

⎤
⎥⎥⎥⎥⎦ . (A.20)

This equation follows from the market-clearing condition (A.18) and the fact that agents trade

only every k +1 periods. Using this result and (1.7), it follows that Et
[

X I
t+i

]= X I
t+i−(k+1) − (k +

1)ai−1
θ

(1−aθ)θt . Finally, using the previous results and matching terms for the liquidity shocks
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and lagged demands in (A.19) gives

Rk+1Pθ = ak+1
θ Pθ−γI (k +1)Σk+1 − (k +1)(1−aθ)

(
k−1∑
i=1

ak−i
θ PXi +PXk

)
, and (A.21)

Rk+1PXi = PXi +γIΣk+1, i = 1, . . . ,k. (A.22)

Equation (1.11) follows from (A.21), (A.22), and (1−aθ)
(∑k−1

i=1 ak−i
θ

+1
)= 1−ak

θ
.

To prove the second part of the corollary, I show that Σk+1 = Vart
[
Tt ,t+k+1

]
defines a system of

quadratic matrix equations that admits 2N solutions under some parametric condition. Since

PX1 = PX2 = . . . = PXk ≡ PX , it follows that
∑k

i=1 PXi X I
t+k+1−i = PX

(∑k
i=1 X I

t−i + (k +1)(θt+k −θt )
)
.

Plugging this formula into the expression for Tt ,t+k+1 and using (1.11) to replace PX with Pθ

gives

Σk+1 = Vart

[
aD

R −aD
Dt+k+1 +

k+1∑
i=1

Rk+1−i Dt+i +Pθε
θ
t+k+1 −

Rk+1(1−aθ)

Rk+1 −ak
θ

Pθθt+k

]
.

(A.23)

Since dividends and liquidity shocks are uncorrelated, I can focus on both terms separately.

Tedious computations show that

Vart

[
aD

R −aD
Dt+k+1 +

k+1∑
i=1

Rk+1−i Dt+i

]
=
(

R

R −aD

)2
(

k∑
i=0

R2i

)
ΣD . (A.24)

For liquidity shocks, tedious computations show that

Vart

[
Pθε

θ
t+k+1 −

Rk+1(1−aθ)

Rk+1 −ak
θ

Pθθt+k

]
=
⎛
⎝1+

(
Rk+1(1−ak

θ
)

Rk+1 −ak
θ

)2
⎞
⎠PθΣθP ′

θ. (A.25)

This last expression implies that Σk+1 defines a quadratic matrix equation for Pθ. Finally,

using (A.21) and (A.22), simplify terms to get Σk+1 + (Rk+1−1)(Rk+1−ak+1
θ

)

γI (k+1)(Rk+1−ak
θ

)
Pθ = 0. Replacing Σk+1

with (A.24) and (A.25) gives the following quadratic matrix equation for Pθ:⎛
⎝1+

(
Rk+1(1−ak

θ
)

Rk+1 −ak
θ

)2
⎞
⎠PθΣθP ′

θ+
(Rk+1 −1)(Rk+1 −ak+1

θ
)

γI (k +1)(Rk+1 −ak
θ

)
Pθ+

(
R

R −aD

)2
(

k∑
i=0

R2i

)
ΣD = 0.

(A.26)

It can be shown that this quadratic matrix equation admits 2N solutions if 1
4

(
(Rk+1−1)(Rk+1−ak+1

θ
)

γI (k+1)(Rk+1−ak
θ

)

)2

IN−(
R

R−aD

)2 (
1+∑k

i=1 R2i
)(

1+
(

Rk+1(1−ak
θ

)

Rk+1−ak
θ

)2)
Σ

1
2

θ
ΣDΣ

1
2

θ
is positive definite (see the Internet Appendix
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for details).�

To prove Proposition 2, I use the following lemma.

Lemma 4. Let k = 1 and h = 1. In the single-asset economy with 0 < q < 1, if Pθ < 0 and PX > 0,

then infrequent traders absorb part of the liquidity shocks (i.e., Xθ > 0) in any equilibrium.

Proof of Lemma 4: Infrequent traders’ demand at time t is linear in the state variables and can

be written as X I
t = X̄ I +Xθθt +XX X I

t−1, where X̄ I , Xθ, and XX are constant parameters. When

k = 1, h = 1, and N = 1, the following four equations hold:

q

2
Xθ+ (1−q)γ−1

F Σ−1
1 ((aθ−R)Pθ+PX Xθ) = 1, (A.27)

q

2
XX + (1−q)γ−1

F Σ−1
1 PX (XX −R) =−q

2
, (A.28)

Xθ = γ−1
I Σ−1

2

(
aθ (aθPθ+PX Xθ)+PX XX Xθ−R2Pθ

)
, and (A.29)

XX = γ−1
I Σ−1

2

(
PX X 2

X −R2PX
)

. (A.30)

Equations (A.27) and (A.28) are obtained from the market-clearing condition. Equations (A.29)

and (A.30) follow from the optimization problem of infrequent traders. Since I assume that

Pθ < 0 and PX > 0, equation (A.28) implies that XX < R. But then equation (A.30) requires

−R < XX < 0.

Next, assume that Xθ ≤ 0. Equation (A.27) then implies that (aθ−R)Pθ+PX Xθ > 0, which is

equivalent to RPθ < aθPθ+PX Xθ < 0. Moreover, equation (A.29) implies that aθ (aθPθ+PX Xθ)+
PX XX Xθ −R2Pθ < 0. Combining the last two conditions gives aθRPθ +PX XX Xθ −R2Pθ < 0.

This is a contradiction since PX XX Xθ > 0 under our assumption and aθRPθ−R2Pθ > 0. There-

fore, if Pθ < 0 and PX > 0, then Xθ > 0 in any equilibrium.�

Proof of Proposition 2: Using the notation of Lemma 4, one has X I
t = X̄ I +Xθε

θ
t +XX X I

t−1. It

then follows that

Cov[Qt+1,Qt ] =P 2
θCov

[
εθt+1 −Rεθt ,εθt −Rεθt−1

]
+PX PθCov

[
X I

t −R X I
t−1,εθt −Rεθt−1

]
+P 2

X Cov
[

X I
t −R X I

t−1, X I
t−1 −R X I

t−2

]
(A.31)

=−RP 2
θΣθ+PX PθXθ (1−R (XX −R))Σθ+P 2

X (XX −R)2 XX Var
[

X I
t

]
.

(A.32)

Since Lemma 4 implies that Xθ > 0 and XX < 0, each term is negative. Similarly,

Cov[Qt+2,Qt ] =P 2
X Cov

[
X I

t+1 −R X I
t , X I

t−1 −R X I
t−2

]+PX PθCov
[

X I
t+1 −R X I

t ,εθt −Rεθt−1

]
=P 2

X (XX −R)2 X 2
X Var

[
X I

t

]+P 2
X (XX −R) XX X 2

θΣθ+PX Pθ (XX −R) (1−R X X ) XθΣθ.

(A.33)
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Since Xθ > 0 and XX < 0, each term is positive.�

Proof of Proposition 3: Since the proof is quite similar to the proof of Proposition 1, I only

provide the key steps. Conjecture that Pt = Ac(t )Yt and X I
t = Bc(t )Yt . The dynamics of the

state variables and excess returns are then given by Yt+1 = AY ,c(t )Yt +BY εt+1 and Qt+1 =
AQ,c(t )Yt +BQ,c(t+1)εt+1, where the matrices are defined as in Proposition 1 but vary depending

on the calendar period c(t ). It follows that

Yt+ j =
(

j∏
i=1

AY ,c(t+ j−i )

)
Yt +

j−1∑
i=1

(
i∏

s=1
AY ,c(t+ j−s)

)
BY εt+ j−i +BY εt+ j . (A.34)

Infrequent traders’ demand can then be written as

X I
t = 1

γI
Σ−1

k+1,c(t )

{
Ac(t+k+1)

(
k+1∏
i=1

AY ,c(t+k+1−i )

)
+
(

k+1∑
i=1

Rk+1−i ai
D

)
ϕD

}
Yt , (A.35)

where Σk+1,c(t ) is a constant matrix. Demands are linear in the state variables, as conjectured.

Consider next the problem of frequent traders. The value function of a frequent trader of age j

who trades in calendar period c(t ) is

J (Wt ,Yt , j ,c(t )) = max
Xt

Et
[

J (Wt+1,Yt+1, j +1,c(t +1))
]
, (A.36)

where Wt+1 = X
′
t , j Qt+1 +RWt and J(Wt ,Yt ,h,c(t)) = −e−γF Wt . When the agent is one pe-

riod older, the calendar period is c(t + 1). Conjecture that J(Wt+1,Yt+1, j + 1,c(t + 1)) =
−e−α j+1Wt+1− 1

2 Y ′
t+1U j+1,c(t+1)Yt+1 .

Using standard arguments, it follows that

Xt , j = 1

α j+1
F j+1,c(t+1)Yt , (A.37)

where F j+1,c(t+1) =
(
BQ,c(t+1)Ξ j+1,c(t+1)B ′

Q,c(t+1)

)−1 (
AQ,c(t ) −BQ,c(t+1)Ξ j+1,c(t+1)B ′

Y U ′
j+1,c(t+1) AY ,c(t )

)
.

All the parameter matrices are defined recursively from αh = γF and Uh,c(t ) = 01+2N+kN . It
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then follows that

α j =α j+1R, (A.38)

U j ,c(t ) = M j+1,c(t+1) −2lnρ j+1,c(t+1)I11, (A.39)

M j+1,c(t+1) = A′
Y ,c(t )U j+1,c(t+1) AY ,c(t ) +F ′

j+1,c(t+1)BQ,c(t+1)Ξ j+1,c(t+1)B
′
Q,c(t+1)F j+1,c(t+1)

− A′
Y ,c(t )U j+1,c(t+1)BY Ξ j+1,c(t+1)B

′
Y U ′

j+1,c(t+1) AY ,c(t ), (A.40)

ρ j+1,c(t+1) = |I +ΣY B ′
Y U j+1,c(t+1)BY |− 1

2 , and (A.41)

Ξ j+1,c(t+1) =
(
Σ−1

Y +B ′
Y U j+1,c(t+1)BY

)−1
. (A.42)

The market-clearing condition is qc(t )X I
t +1−q

h

∑h−1
j=0 X F

t , j =
(
ϕS̄ +ϕθ−

∑k
i=1 qc(t−i )ϕXi

)
Yt , which

verifies the conjecture that the price is linear in the state variables. Using equations (A.35) and

(A.37), the market-clearing condition determines a system of fixed point equations for the

Ac(t ) coefficients. The demand coefficients Bc(t ) can be solved using the fixed point system

from equation (A.35):

1

γI
Σ−1

k+1,c(t )

{
Ac(t+k+1)

(
k+1∏
i=1

AY ,c(t+k+1−i )

)
+
(

k+1∑
i=1

Rk+1−i ai
D

)
ϕD

}
−Bc(t ) = 0. (A.43)

This concludes the proof.�

Proof of Proposition 4: Assuming that k = 1, one can write X I
t = X̄ I ,c(t ) +Xθ,c(t )θt +XX ,c(t )X I

t−1.

When h = 1, market-clearing implies

qc(t )Xθ,c(t ) + (1−q)γ−1
F Σ−1

c(t )

(
aθPθ,c(t+1) −RPθ,c(t ) +PX ,c(t+1)Xθ,c(t )

)= 1, (A.44)

where Σc(t ) = Pθ,c(t+1)ΣθP ′
θ,c(t+1) +

(
R

R−aD

)2
ΣD .

Consider the case with two calendar periods, and let q2 = 0. Equation (A.44) implies

q1Xθ,1 + (1−q1)γ−1
F Σ−1

1

(
aθPθ,2 −RPθ,1 +PX ,2Xθ,1

)= 1, and (A.45)

(1−q1)γ−1
F Σ−1

2

(
aθPθ,1 −RPθ,2

)= 1. (A.46)

For simplicity, assume that there is only one asset. Plugging (A.46) into (A.45) gives

q1Xθ,1 +
(

aθPθ,2 −RPθ,1 +PX ,2Xθ,1

aθPθ,1 −RPθ,2

)
Σ2

Σ1
= 1. (A.47)

Equation (A.46) implies that aθPθ,1 −RPθ,2 > 0. Using the methodology of Lemma 4, the con-

ditions Pθ,c(t ) < 0 and PX ,c(t ) > 0 imply that Xθ,1 > 0. In that case, if Pθ,1 < Pθ,2, then Σ2
Σ1

> 1 and
aθPθ,2−RPθ,1+PX ,2 Xθ,1

aθPθ,1−RPθ,2
> 1, which is impossible. As a result, Pθ,1 > Pθ,2 in any equilibrium. Equiva-
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lently, Σ1 >Σ2. Equation (1.17) therefore implies that E[Qt+1|c(t ) = 1] > E[Qt+1|c(t ) = 2].�

Proof of Proposition 5: In this setup, risk aversion is inversely related to the mass of traders.

Let the risk aversion of frequent traders vary with the calendar period and be denoted by

γc(t ). In equilibrium, aθPθ,c(t+1) −RPθ,c(t ) = γc(t )

(
Pθ,c(t+1)ΣθP ′

θ,c(t+1) +
(

R
R−aD

)2
ΣD

)
. With two

calendar periods and one asset, if γ1 > γ2, then Pθ,1 < Pθ,2 in any equilibrium (by contra-

diction). Since price impact is negative, this implies that aθPθ,2 −RPθ,1 > aθPθ,1 −RPθ,2.

Using the market-clearing condition, the expected excess return is given by E[Qt+1|c(t )] =(
aθPθ,c(t+1) −RPθ,c(t )

)
S̄. The proof follows from applying the previous result in the last equation.�

Proof of Proposition 6: Consider an asset with liquidity shock volatility σθ. When q = 0 (or

q = 1), trading volume is given by Vt = |θt −θt−1|. To compute volume autocorrelation, note

that if X and Y are jointly normal random variables with zero mean, variances σ2
X and σ2

Y ,

and correlation ρ, then Cov[|X |, |Y |] = 2
π

(
ρarcsin(ρ)+

√
1−ρ2 −1

)
σX σY .

Since θt+s−θt+s−1 = const+(aθ−1)as
θ
θt−1+εθt+s+(aθ−1)

∑s−1
i=0 as−1−i

θ
εθt+i , s ≥ 1, the autocovari-

ance of Δθt+s ≡ θt+s −θt+s−1 for a single asset is given by Cov[Δθt ,Δθt+s] =−
(

1−aθ

1+aθ

)
as−1
θ

σ2
θ

,

s ≥ 1. It follows that Corr[Δθt+s ,Δθt ] ≡ ρΔθ(s) = −
(

1−aθ
1+aθ

)
as−1
θ

σ2
θ

2
1+aθ

σ2
θ

= −
(

1−aθ

2

)
as−1
θ

, s ≥ 1. Thus,

ρΔθ(s) < 0 and is an increasing concave function of s for 0 < aθ < 1.

Using the previous result,

Cov[Vt ,Vt+s] = 2

π

(
ρΔθ(s)arcsin(ρΔθ(s))+

√
1−ρΔθ(s)2 −1

)
σ2
Δθ. (A.48)

Note that dCov[Vt ,Vt+s ]
dρΔθ(s) = 2

π arcsin(ρΔθ(s))σ2
Δθ

. Using this fact and the properties of the arcsin

function, it is direct to show that Cov[Vt ,Vt+s] > 0 and is a decreasing convex function of s (s ≥
1). Note that when aθ = 1, Cov[Vt ,Vt+s] = 0, s ≥ 1. Since Cov[ΔVt ,ΔVt+s] = 2Cov[Vt ,Vt+s]−
Cov[Vt ,Vt+s−1]−Cov[Vt ,Vt+s+1], it follows that Cov[ΔVt ,ΔVt+s] < 0 by Jensen’s inequality.�

A.2 Calibration

Table A.1 shows the calibration used to compare the model’s predictions to the empirical

analysis on intraday returns in Section 1.4.3 and daily returns in Section 1.4.4. This paper

does not aim to provide an exact quantitative match to the data. The parameters are therefore

chosen to broadly match the patterns observed in the data while keeping the calibration as

simple and transparent as possible.

Trading frequencies: Section 1.4.3 discuss the calibration for intraday returns. For daily returns,

I assume that 60% of the agents rebalance once a week (q = 0.6, k = 4). The other agents trade
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Table A.1
Model calibration for daily and intraday returns.

Parameter Daily returns Intraday returns
Proportion of infrequent traders q 0.6 0.99
Inattention period k 4 12
Risk aversion γF ,γI 1 1

Risk-free rate R 1.05
1

250 1.0001
Persistence of dividends aD 0 0
Persistence of liquidity trading aθ 0.8 0.7
Volatility of dividend shocks σD 0.04 0.01
Volatility of liquidity shocks σθ 1 0.6
Correlation of dividend shocks ρD 0.3 0.3
Correlation of liquidity shocks ρθ 0 0
Number of assets N 2 2
Horizon of frequent traders h 20 20

every period with a monthly horizon (h = 20).

Dividends: Dividend persistence does not affect excess return autocorrelation and is set to

zero. Dividend shocks’ volatility and correlation do not qualitatively affect the results.

Liquidity shocks: The persistence of liquidity shocks is the only parameter that can generate

persistence in excess return autocorrelation in this setup. For daily returns, Figure 1.4 suggests

a relatively high persistence. The persistence required by the model to broadly match the

decaying autocorrelation pattern for the first lags in the data seems lower for intraday returns

than for daily returns (Figures 1.1 and 1.4). This evidence is inconsistent with a single liquidity

trading process driving both intraday and daily returns. For instance, a mix of low frequency

and high frequency liquidity shocks would result in a more complicated process than an AR(1).

Still, the AR(1) assumption represents a natural benchmark. Furthermore, the rebalancing

mechanism does not require any persistence in liquidity shocks (Section 1.4.1). Liquidity

shock volatility is hard to estimate. I set it to a lower value than the equivalent value estimated

by Campbell, Grossman, and Wang (1993). Liquidity shocks’ correlation is set to zero for

simplicity.
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B.1 Additional Robustness Checks

B.1.1 Price Screen

Bhardwaj and Brooks (1992) assert that the January effect is mainly a low-price effect. I

therefore exclude all stocks with a price lower than $10 at the formation date (instead of $1 in

the paper). A majority of anomalies still exhibit a marked January seasonality (not reported).

The average returns are often several times larger in January than in other months. The larger

price screen reduces, however, the January seasonality for the accruals and net stock issues

anomalies. The month-of-quarter results are mostly similar with a larger price screen (not

reported). The two exceptions are illiquidity and size. The illiquidity strategy average return at

the beginning of quarters is still negative but now insignificant, while the average return at the

end of quarters remains positive and strongly significant. The size portfolio has a large negative

average return—a positive size premium since large caps underperform small caps—at the

end of quarters and a positive but statistically insignificant average return at the beginning of

quarters.

B.1.2 Subsamples

I split the sample in two subsamples. Table B.2 shows that the January seasonality tends to be

less pronounced across anomalies in the second subsample. This is especially true for value-

weighted portfolios, though most of the anomalies still exhibit a marked seasonality. Contrary

to the January effect, the month-of-the-quarter effects are in general more pronounced in the

most recent sample (see Tables B.3 and B.4). Statistical significance often declines relative

to the full sample, which is not surprising given the smaller number of observations, but the

magnitudes remain large.
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Table B.1
Description of the anomalies used in the paper. All the accounting variables are computed
once a year at the end of June using data for the previous fiscal year.

Name Sorting variable

Market cap. (MC) Market capitalization in the previous month

Book-to-market (BM) Book equity over market value, where market value is the market
capitalization of the firm six months ago (stockholders’ equity is
computed as in Novy-Marx (2013) and negative BE firms are ex-
cluded from the portfolios)

Gross profitability (GP) Revenue minus cost of good sold, divided by total assets

Asset growth (AG) Yearly growth rate of total assets

Accruals (AC) Change in working capital (excluding cash) minus depreciation,
scaled by average total assets over the previous two years

Net stock issues (NSI) Growth rate of the split-adjusted shares outstanding at fiscal year
end as in Fama and French (2008)

Δ turnover (ΔT) Change in turnover in the previous month relative to the past six-
month average turnover (excluding the last month)

Illiquidity (IL) Average ILLIQ in the previous year (the portfolios are formed once
a year at the beginning of January);

ILLIQi ,t = 1
Di ,y

∑Di ,y

d=1
|ri ,y,d |

DVOLi ,y,d
106, where Di ,y is the number of trad-

ing days and DVOL is the dollar volume (at least 100 trading days to
be included)

Idiosyncratic volatility (IV) Standard deviation of the residuals from regressing the stock’s daily
excess returns on the Fama-French three factors (at least 17 return
observations in the month to be included)

Momentum (MOM) Past six months return skipping the last month and with a one-
month holding period

12-month effect (12m) Average of the stock’s return in the same calendar month six to ten
years ago
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Table B.2
Average January (J) and non-January months (nJ) returns in percent of high-minus-low
return-weighted and value-weighted decile portfolios formed on different characteristics
by subsample. Sample: NYSE, Amex, and NASDAQ stocks from January 1964 to Decem-
ber 2014 (the accruals portfolios start in July 1971). Breakpoints are based on NYSE deciles.
Stocks with a price smaller than $1 at the formation date are excluded. Financial firms are
excluded from book-to-market, gross profitability, asset growth, accruals, and net stock issues
portfolios. NASDAQ stocks are excluded from the turnover and illiquidity portfolios. The
characteristics are defined in Table B.1. The t-statistics are in parentheses.

return-weighted value-weighted

1964-1988 1989-2014 1964-1988 1989-2014

Market cap. J -8.06 (-6.56) -4.73 (-4.12) -7.25 (-5.93) -3.92 (-3.32)
nJ 0.19 (0.73) 0.44 (2.03) 0.09 (0.33) 0.28 (1.21)

Book-to-market J 5.13 (4.60) 2.10 (3.43) 5.48 (4.37) 1.19 (1.06)
nJ 0.60 (2.87) 0.83 (3.13) 0.22 (0.93) 0.24 (0.90)

Gross profit. J -0.78 (-1.83) -1.59 (-1.68) -1.59 (-2.37) -0.20 (-0.24)
nJ 0.90 (5.89) 1.16 (5.82) 0.53 (2.60) 0.46 (2.40)

Asset growth J -4.28 (-7.08) -3.95 (-7.79) -3.23 (-3.88) -2.21 (-3.51)
nJ -0.34 (-2.43) -0.45 (-3.94) -0.22 (-1.17) -0.23 (-1.57)

Accruals J -1.48 (-2.07) -1.20 (-3.11) -0.23 (-0.26) -0.56 (-0.91)
nJ -0.33 (-2.66) -0.33 (-3.99) -0.45 (-1.90) -0.28 (-1.87)

Net stock issues J -1.08 (-1.73) 0.15 (0.28) -1.17 (-1.88) 0.17 (-0.34)
nJ -1.13 (-9.56) -1.16 (-9.24) -0.65 (-4.25) -0.54 (-4.49)

Δ turnover J 4.90 (5.23) 1.67 (3.30) 3.11 (3.20) 0.37 (0.58)
nJ 0.64 (5.03) 1.14 (8.25) 0.54 (3.96) 0.36 (1.83)

Illiquidity J 8.79 (6.24) 3.52 (3.86) 6.74 (5.04) 2.27 (2.95)
nJ -0.01 (-0.05) -0.30 (-1.42) 0.21 (0.87) 0.10 (0.48)

Idiosyncratic vol. J 6.67 (4.90) 4.53 (3.48) 3.40 (2.13) 2.00 (1.40)
nJ -1.09 (-3.91) -0.97 (-2.66) -0.81 (-2.72) -0.81 (-1.74)

Momentum J -4.32 (-3.14) -2.66 (-1.75) -1.39 (-0.89) -2.22 (-1.32)
nJ 1.75 (8.14) 1.69 (5.16) 1.22 (4.32) 0.77 (1.88)

12-month effect J 4.16 (5.54) 2.44 (3.38) 2.27 (2.54) 3.70 (3.30)
nJ 0.25 (2.19) 0.70 (5.66) 0.27 (1.51) 0.87 (3.93)
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Table B.3
Quarter analysis (1964-1988). Average returns in percent of long-short return-weighted
and value-weighted decile portfolios formed on different characteristics. The average re-
turn is shown separately for middle-quarter, beginning-of-quarter (excluding January), and
end-of-quarter months. Sample: NYSE, Amex, and NASDAQ stocks from January 1964 to
December 1988 (the accruals portfolios start in July 1971). Breakpoints are based on NYSE
deciles. Stocks with a price smaller than $1 at the formation date are excluded. Financial firms
are excluded from book-to-market, gross profitability, asset growth, accruals, and net stock
issues portfolios. NASDAQ stocks are excluded from the turnover and illiquidity portfolios.
The characteristics are defined in Table B.1. The t-statistics are in parentheses.

return-weighted value-weighted

mid beg end mid beg end

MC 0.18 0.73 -0.20 0.09 0.72 -0.39
(0.37) (1.45) (-0.48) (0.19) (1.40) (-0.94)

BM 0.25 0.94 0.71 0.03 0.23 0.40
(0.70) (2.17) (2.20) (0.07) (0.54) (1.06)

GP 1.04 0.66 0.93 0.64 0.50 0.45
(4.43) (2.16) (3.56) (2.16) (1.16) (1.26)

AG -0.15 -0.46 -0.43 0.01 0.00 -0.61
(-0.64) (-1.77) (-1.89) (0.03) (0.01) (-2.08)

AC -0.43 -0.32 -0.23 -0.16 -0.78 -0.49
(-2.24) (-1.13) (-1.26) (-0.49) (-1.45) (-1.25)

NSI -0.98 -1.28 -1.18 -0.27 -0.94 -0.82
(-5.19) (-5.49) (-5.86) (-1.06) (-3.25) (-3.24)

ΔT 0.73 0.62 0.55 0.18 1.12 0.48
(3.57) (2.20) (2.97) (0.82) (3.80) (2.28)

IL -0.07 -0.64 0.52 0.14 -0.56 0.86
(-0.15) (-1.35) (1.43) (0.32) (-1.25) (2.39)

IV -0.69 -1.75 -1.00 -0.18 -1.78 -0.72
(-1.51) (-2.95) (-2.35) (-0.37) (-2.89) (-1.57)

MOM 1.48 1.74 2.01 1.16 1.18 1.31
(4.94) (4.08) (5.08) (2.65) (2.02) (2.76)

12m 0.19 0.24 0.30 0.18 0.50 0.18
(1.00) (1.15) (1.63) (0.59) (1.39) (0.66)
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Table B.4
Quarter analysis (1989-2014). Average returns in percent of long-short return-weighted
and value-weighted decile portfolios formed on different characteristics. The average re-
turn is shown separately for middle-quarter, beginning-of-quarter (excluding January), and
end-of-quarter months. Sample: NYSE, Amex, and NASDAQ stocks from January 1989 to
December 2014. Breakpoints are based on NYSE deciles. Stocks with a price smaller than $1
at the formation date are excluded. Financial firms are excluded from book-to-market, gross
profitability, asset growth, accruals, and net stock issues portfolios. NASDAQ stocks are ex-
cluded from the turnover and illiquidity portfolios. The characteristics are defined in Table B.1.
The t-statistics are in parentheses.

return-weighted value-weighted

mid beg end mid beg end

MC 0.13 1.11 0.24 -0.06 1.17 -0.05
(0.36) (2.46) (0.75) (-0.17) (2.31) (-0.14)

BM 0.89 1.21 0.47 0.22 0.23 0.28
(1.87) (2.25) (1.28) (0.50) (0.38) (0.70)

GP 0.89 1.66 1.05 0.76 0.56 0.09
(2.20) (5.46) (3.63) (2.60) (1.40) (0.28)

AG -0.59 -0.34 -0.40 -0.12 -0.14 -0.41
(-2.65) (-1.75) (-2.35) (-0.47) (-0.53) (-1.66)

AC -0.38 -0.30 -0.32 0.03 -0.67 -0.29
(-2.62) (-1.76) (-2.50) (0.16) (-2.08) (-1.21)

NSI -0.93 -1.68 -1.00 -0.22 -1.22 -0.36
(-3.94) (-7.70) (-5.30) (-1.17) (-5.56) (-1.67)

ΔT 1.36 0.93 1.07 0.26 0.51 0.35
(5.12) (4.06) (5.11) (0.88) (1.36) (0.98)

IL -0.15 -1.21 0.22 0.32 -1.03 0.74
(-0.40) (-2.91) (0.70) (0.92) (-2.28) (2.30)

IV -0.42 -1.57 -1.08 -0.32 -1.32 -0.91
(-0.59) (-2.35) (-2.16) (-0.39) (-1.51) (-1.28)

MOM 1.26 0.69 2.88 0.31 -1.00 2.57
(2.54) (0.89) (6.25) (0.46) (-1.15) (4.37)

12m 0.53 1.03 0.63 0.40 1.34 0.99
(3.10) (3.28) (3.54) (1.14) (2.71) (3.00)
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C.1 Reversals in Midquote Returns

Spurious reversals plague midquote returns computed from TAQ. These reversals are especially

prevalent across small stocks in the second part of the sample. Table C.1 illustrates the problem

for a randomly selected stock by showing the first and last available intraday quotes on several

dates.

Table C.1
First and last available intraday quotes for symbol IT on several dates extracted from the TAQ
database.

Date Time Bid Ask Bid Size Ask Size
2005-10-11 15:59:50.0 11.38 11.39 5 5
2005-10-12 9:30:54.0 11.03 16.03 1 1

9:34:57.0 11.3 11.36 1 1
...

2005-10-12 15:59:42.0 11.3 11.31 2 23
2005-10-13 9:30:31 10.35 13.67 30 1

9:30:32 10.35 14.38 30 1
9:30:33 10.35 15.09 30 1
9:32:19 11.24 11.25 2 1

As can be seen in the table, the best ask at the open can be biased. A high ask generates a large

overnight return and a negative first half-hour return (i.e., spurious reversal). Furthermore,

even the second and third quoted ask prices can be too high. The best bid is subject to similar

problems. It takes a few minutes for the quotes to stabilize to what appears to be their normal

level. Note that there is a nonzero trade size at both bid and ask quotes. The criterion of

Berkman et al. (2012) of taking the first valid quote (i.e., with nonzero trade size on both bid
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and ask) does not seem sufficient. Numerous similar examples can be found for stocks that

display more frequent quote updates.

To deal with these spurious reversals, I use the following criteria. First, I only consider quotes

after 9:45. This threshold is based on an empirical investigation of many spurious reversals.

For all stocks that have quote updated on a regular basis, I find that quotes seem to have

normalized by 9:45. Second, I always delete the first quote available during the day. It is often

the case that this quote is biased. This restriction is important for stocks whose first available

quote is released after 9:45. Third, I delete any observation for which the spread is larger than

30 times the median spread during the day. This restriction helps exclude outliers that may

have passed the other filters. Finally, I screen the data to eliminate large outliers; in particular,

large return reversals that are not accompanied by any trading volume.
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Table C.2
List of anomalies. All the accounting variables are computed once a year at the end of June
using data for the previous fiscal year.

Name Sorting variable

Accruals Change in working capital (excluding cash) minus depreciation,
scaled by average total assets over the previous two years (Sloan,
1996). The strategy shorts stocks with high accruals.

Beta Market beta for each stock estimated using daily returns over the
past year. The market return is the value-weighted return of all
stocks in the sample excluding stocks with a price below $5 and
is rebalanced once a month. The strategy shorts stocks with high
beta.

Book-to-market Book equity over market value, where market value is the market
capitalization of the firm six months ago. Stockholders’ equity
is computed as in Novy-Marx (2013) and negative BE firms are
excluded from the portfolios.

Gross profitability Revenue minus cost of good sold, divided by total assets (Novy-
Marx, 2013). The strategy is long stocks with high gross prof.

Idiosyncratic volatility Standard deviation of the residuals from regressing the stock’s daily
excess returns on Fama-French’s three factors (Ang et al., 2006).
A stock is required to have at least 17 valid returns in a month to
be included. The strategy shorts stocks with high idiosyncratic
volatility.

Illiquidity Average ILLIQ over the past 250 trading days (Amihud, 2002). More
precisely, ILLIQi ,t = 1

Ni ,t

∑
d∈Di ,t

|ri ,d |
DVOLi ,d

106, where Di ,t is the set of
trading days with trading volume for stock i in the past 250 business
days before day t , and Ni ,t is their total number. DVOL is the dollar
volume. A stock is required to have at least 100 trading days to be
included. The strategy is long stocks with high ILLIQ.

Momentum Return over the past twelve months skipping the last month (Je-
gadeesh and Titman, 1993).

Net stock issues Growth rate of the split-adjusted shares outstanding at fiscal year
end as in Fama and French (2008). The strategy shorts stocks with
high net stock issues.

Size Market capitalization in the previous month.
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