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The majority of problems in aircraft production and operation require decisions made in
the presence of uncertainty. For this reason aerodynamic designs obtained with traditional
deterministic optimization techniques seeking only optimality in a specific set of conditions
may have very poor off-design performances or may even be unreliable. In this work we
present a novel approach for robust optimization of aerodynamic shapes based on the com-
bination of single and multi-objective Evolutionary Algorithms and a Continuation Multi
Level Monte Carlo methodology to estimate robust designs, without relying on derivatives
and meta-models. Detailed numerical studies are presented for a transonic airfoil design
affected by geometrical and operational uncertainties.

I. Introduction

Optimization has always been an integral part in aerodynamic design. Nowadays the ever-increasing demand
for aircrafts with better performance, higher reliability and robustness at lower cost requires optimization
techniques seeking optimality under uncertain conditions that may arise during design, manufacture and
operation of the vehicle. Indeed, the geometrical and operational parameters, that characterize aerodynamic
systems, are naturally affected by aleatory uncertainties due to the intrinsic variability of the manufacturing
processes and the surrounding environment.
Reducing the geometrical uncertainties due to manufacturing tolerances can be prohibitively expensive while
reducing the operational uncertainties due to atmospheric turbulence in external aerodynamics is simply
impossible. Optimization under uncertainty (OUU) refers to broad class of methodologies that address mainly
the following two problems:

• Robust Design Optimization (RDO): focuses on the performances of a system under perturbations of
the design conditions. Prescribed probabilistic measures of robustness (involving mean, variance or
higher moments) as objective functions are used to robustify the design. The optimal design should, in
this framework, be as much insensitive as possible to uncertain conditions meaning that its performance
should not drop below a prescribed quality level.

• Reliability-based Design Optimization (RBDO): focus on safety-under-uncertainty aspects of the system
and deals generally with the optimization of a deterministic objective functions subject to probabilistic
constraints (failure probability or reliability index). The optimal design has, in this framework, a
higher degree of confidence and guarantees a prescribed minimum level of reliability under uncertain
conditions.

In this work we concentrate on the former class of problems in aerodynamic shape design. To be relevant
for complex industrial engineering problems we also consider designs that require a robust optimization of
different and competing objectives: Multi-Objective Robust Design Optimization (MO-RDO).
In this work we consider transonic airfoils under geometric uncertainties due to manufacturing tolerances
and operating uncertainties due to intrinsic variability of the surrounding flow. In transonic airfoil RDO
we not only wish to minimize shock drag losses at a given speed, as in deterministic optimization, but we
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require that the drag and its dispersion (e.g. standard deviation of the drag) are minimized under a set
of geometric and operating uncertain conditions. Supercritical airfoils have been investigated since many
years and are usually conceived to operate efficiently with a substantial portion of supersonic flow on the
airfoil while maximizing the lift in the aft portion where the flow is subsonic. Although several of these
supercritical sections appeared promising during the preliminary design phase, they led to serious problems
when incorporated into an aircraft because of their sensitivity to Mach number. As a result they may poorly
perform or may be even potentially worthless at off-design conditions leading to the appearance of the so
called drag creep, a situation in which substantial section drag increase with Mach number even at speeds
below the design value.1

Despite the wide availability of modern parallel computer architectures and efficient Computational Fluid
Dynamics (CFD) solvers, the key difficulties in RDO are:

• computing the objective functions that involve robust measures based on mean, variances and higher
moments when many sources of uncertainties are present (efficient propagation of uncertainties).

• dealing with competing objectives to compute a robust Pareto-optimal front.

Many non-intrusive uncertainty propagation techniques and derivatives-free approaches have gained a lot of
interest in recent years as they simply require multiple solutions of the original model and can use available
industrial CFD solvers as a black box. Polynomial Chaos (PC)2–4 and Stochastic Collocation (SC)5 methods
have been successfully employed in different engineering fields to built response surfaces of the stochastic
variables, while Kriging regression6 has been mainly employed to build meta-models of the design variables.
All these approaches have a strong potential for RDO but they are known to suffer the so called ’curse of
dimensionality’ (dramatically increase of computational cost with the number of uncertain/design variables).
In addition, those approaches based on global basis functions that span the entire stochastic domain may see
their performances and accuracy jeopardized if the problem under investigation present strong discontinuities
as in the case of transonic/supersonic flows.
On the other hand Monte Carlo (MC) methods have a dimension independent convergent rate and have been
proven to be robust and accurate for non smooth problems, nevertheless their very slow convergence rate
makes them chimerical for practical applications. The Multi Level Monte Carlo (MLMC) method has been
introduced by Heinrich7 and thereupon extended by Giles8 to approximate stochastic differential equations
(SDEs). The key idea of MLMC is that one can draw MC samples simultaneously and independently on
several approximations of the problem under investigations on a hierarchy of nested computational grids
(levels). The expectation of a quantity of interest (QoI) is computed as a sample average of coarsest solutions
corrected by averages of the differences of the solutions of two consecutive grids in the hierarchy. By this way,
most of the computational effort is transported from the finest level to the coarsest one.
The robustness and accuracy of the classical MLMC implementation strongly rely on (problem dependent)
convergence rates of the output quantity of interest over the hierarchy of meshes and the corresponding rate
of cost increase to dictate the number of levels and the number of realizations per level. For many engineering
problems such parameters are generally estimated through a computational expensive screeening procedure
performed before the actual uncertainty analysis. In a previous work we presented a robust and efficient
Continuation Multi Level Monte Carlo (C-MLMC) approach,9 following the idea of Collier et al.,10 which is
capable of propagating the operational and geometrical uncertainties in compressible inviscid flow problems.
The key parameters that control the number of levels and the number of realizations per level are computed
on the fly using an online least squares fitting.
In this work we further extend the C-MLMC methodology to compute in one run the expectation and the
variance of quantities of interest of the problem under investigation and combine it with a Covariance Matrix
Adaptation Evolutionary Strategy (CMA-ES) to perform robust design optimization of airfoils affected by
operating and geometric uncertainties.
The paper is organized as follows. Section II introduce the robust design optimization problem and presents
how to compute robust loss functions and probabilistic constraints with MLMC. Section III recalls the MLMC
method and explain how to calibrate the C-MLMC to compute expectations and variances of a quantity of
interest. In Section IV the implementation of the approach is presented. Section V presents the application
of the methodology to single and multi objective robust design and finally Section VI concludes the paper
and proposes future work.
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II. Robust Design Optimization with MLMC

In this work we consider constrained single and multi objective robust design optimization problems.
For simplicity, introduce the following notation:
A general formulation of a single objective robust design optimization problem (SO-RDO) reads as follows:

SO-RDO :


min
x∈X

R [Qq
r(x̃(x, ω), p(ψ))]

s.t Ci [Qm
c (x̃(x, ω), p(ψ))] ≤ ki i = 1, . . . , s

xL ≤ x ≤ xU
(1)

where
Qq
r(x̃(x, ω), p(ψ)) =

[
Qr1(x̃(x, ω), p(ψ)), . . . , Qrq (x̃(x, ω), p(ψ))

]
(2)

is the vector of dimension q of QoI that have to be robustified and

Qm
c (x̃(x, ω), p(ψ)) = [Qc1(x̃(x, ω), p(ψ)), . . . , Qcm(x̃(x, ω), p(ψ))] (3)

the vector (of dimension m) of QoI that have to be constrained. x is the vector of design variable. Its actual
realization x̃(x, ω) as well as the vector of system parameters p(ψ) may be affected by uncertainties. The
design variable vector belong to the subset X of Rn with n being the number of design variables. We denote
the uncertainties by ω ∈ Ω and ψ ∈ Ψ, where Ω and Ψ are respectively the uncertainty spaces of the design
and system variables. R is the robust loss function (or fitness in case of maximization) involving one or more
QoI Qr (e.g. weighted sum) that have to be optimized and robustified. Ci denotes a set of deterministic and
probabilistic constraints (s is the number of constraints) applied on a set of QoI Qm

c . xL and xU are lower
and upper bounds of the design variable.

Definition 1. The feasible design space X̃ is defined as the set {x|Ci [Qm
c (x̃(x, ω), p(ψ))] ≤ ki, i = 1, . . . , s

and xL ≤ x ≤ xU}
The loss function R is a measure of robustness against the uncertainties in the design and system parameters.
Classical robust optimization approaches generally consider optimizing performance under ’worst-case’
outcomes (min-max formulations). This approach is known to generally produce overly conservative designs
with suboptimal performance in the uncertainty range.
Hereafter we consider loss functions that involve the weighted sum of the mean µQr and standard deviation
σQr of the quantity of interest that have to be optimized:

R [Qr(x̃(x, ω), p(ψ))] = w1µQr [x̃(x, ω), p(ψ)] + w2σQr [x̃(x, ω), p(ψ)] (4)

w1 and w2 denote respectively the weights for the mean and standard deviation of Qr. It is worth underlining
that the present approach can also be extended to include higher statistical moments, measures of asymmetry
or tailedness of the probability density function (skewness and kurtosis), quantiles, conditional value at risk
(CVaR) or more complex coherent risk measures.
The constraint function C involves also a weighted sum of deterministic values and statistical moments.

C [Qc(x̃(x, ω), p(ψ))] = g0 + g1µQc [x̃(x, ω), p(ψ)] + g2σQc [x̃(x, ω), p(ψ)] (5)

where g0, g1 and g2 are the weights of the sum.
We now define with RΦ [Qq

r(x̃(x, ω), p(ψ))] a vector of Φ robust loss functions:

RΦ [Qq
r(x̃(x, ω), p(ψ))] = [R1 [Qq

r(x̃(x, ω), p(ψ))] , . . . ,RΦ [Qq
r(x̃(x, ω), p(ψ))]] (6)

Using the same notation we can further generalize (1) and define the multi-objective robust design optimization
problem (MO-RDO) as :

MO-RDO :


P-min
x∈X

RΦ [Qq
r(x̃(x, ω), p(ψ))]

s.t Ci [Qm
c (x̃(x, ω), p(ψ))] ≤ ki i = 1, . . . , s

xL ≤ x ≤ xU
(7)

where Φ is the number of objective functions and P-minx∈X RΦ denote all Pareto optimal values of RΦ.
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Definition 2. A feasible point x∗ ∈ X̃ is Pareto optimal if and only if there does not exist another
feasible point x ∈ X̃ such that RΦ [Qq

r(x̃(x, ω), p(ψ))] ≤ RΦ [Qq
r(x̃(x∗, ω), p(ψ))], and Ri [Qq

r(x̃(x, ω), p(ψ))] <
Ri [Qq

r(x̃(x∗, ω), p(ψ))] (i = 1, . . . ,Φ) for at least one objective.

In the previous definition the relation a ≤ b between vectors has to be interpreted component-wise.
The main difference between SO-RDO and MO-RDO is that in the latter usually there is no single solution,
but a set of points that fit a predetermined definition for optimum.
In this work we employ Single and Multi Objective Covariance Matrix Adaptation Evolutionary Strategies
(CMA-ES) to solve the SO-RDO (1) and MO-RDO (7) problems. CMA-ES are a class of stochastic derivative-
free evolutionary algorithms for numerical optimization of non-linear and non-convex black-box optimization
problems introduced by Hansen11,12 that estimate a covariance matrix associated to the current population
within an iterative procedure. New individuals (candidate solutions) are sampled at each generation (iteration
of the algorithm) according to a multivariate normal distribution in Rn with such covariance matrix. The
CMA-ES does not use gradient informations and does not even assume their existence. This makes the
method feasible on non-smooth and non-continuous problems.
The novelty and the main contribution of this work is in the methodology employed to compute the robust
loss function R and the set of probabilistic constraints C. We developed a Continuation Multi Level Monte
Carlo (C-MLMC) algorithm capable of efficiently computing statistics of all the required QoI. The appropriate
number of levels and simulations per level is determined on the fly using Bayesian updates. By combining the
CMA-ES and our implementation of C-MLMC we are able to optimally control the cost required to compute
each individuals loss function, up to a prescribed tolerance, in the population of candidate solutions and
guarantee a prescribed tolerance on the statistics of the QoIs.

II.A. Computation of R and C by MLMC

For the computation of R and C we are interested in the expected value µQ = E[Q] and variance σ2
Q = Var[Q]

of a QoI Q associated to the solution u of an aerodynamic problem computed using a numerical approximation
with a discretization parameter M (number of spatial degrees of freedom). Q is approximated by QM = f(uM ).
The key idea of MLMC8 is to simultaneously draw Monte Carlo (MC) samples on several approximations
QMl

of Q build on a hierarchy of computational grids, called levels, with discretization parameters M0 <
M1 < ... < ML = M . The linearity of the expectation operator suggests that the expectation of the QoI on
the finest level can be written as a telescopic sum of the expectation of the QoI on the coarsest level plus a
sum of correction terms adding the difference in expectation between evaluations on consecutive levels:

E[QML
] = E[QM0 ] +

L∑
l=1

E[QMl
−QMl−1

] =

L∑
l=0

E[Yl] (8)

where the correction terms Yl = QMl
−QMl−1

are computed using the same sample on both levels whereas
corrections on different levels are sampled independently.
The Multi Level Monte Carlo estimator for E[Q] is:

EMLMC[QM ] :=

L∑
l=0

EMC[QMl
−QMl−1

] =

L∑
l=0

EMC[QMl
]− EMC[QMl−1

], (9)

where EMC[QMl
] and EMC[QMl−1

] are the MC expectation estimators for E[QM ] computed on level l and l − 1:

EMC[QM ] :=
1

N

N∑
i=1

QM (ω(i)) (10)

The Multi Level Monte Carlo (MLMC) estimator for Var[Q] can be easily constructed following the same
approach as:

VMLMC[QM ] :=

L∑
l=0

VMC[QMl
]− VMC[QMl−1

], (11)
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where VMC[QMl
] and VMC[QMl−1

] are the MC variance estimators for Var[QM ] computed on level l and l − 1:

VMC[QM ] :=
1

N − 1

N∑
i=1

(
QM (ω(i))− EMC[QM ]

)2

. (12)

In a previous work13 we presented an efficient MLMC algorithm to propagate the operating and geometric
uncertainties in internal and external aerodynamic problem. To overcome some of the limitations of classical
MLMC approach and to further reduce the computational burden required to accurately compute the problem
dependent parameters needed to estimate the number of level and samples per levels required to achieve a
prescribed tolerance we recently developed a continuation algorithm following the idea of Collier et al.10

As underlined and extensively studied in Pisaroni et al.9 the common practice of computing the number of
levels and simulations per levels by relying on rates computed a-priori using a screening procedure can be
quite computationally expensive. Additionally if the number of screening levels and samples per level are
chosen too small, the extrapolation of the convergence rates might be quite unstable, leading to an unreliable
estimation or an over conservative (more computational demanding) simulation. We assessed the efficiency
and dimension independent (number of uncertain parameters) convergence rates of the C-MLMC approach on
compressible inviscid aerodynamics problems9 and recently on viscous problems modeled by RANS equations.
Thanks to the rigorous mean square error estimators that exist for the MLMC estimators for mean and
variance we are able to approximate, with different levels of accuracy, in just one run of our C-MLMC
algorithm the following quantities:

• mean and standard deviation of the QoI that has to be optimized: µQr [x(ω), p(ψ)], σQr [x(ω), p(ψ)]

• mean and standard deviation of the QoI that has to be constrained: µQc [x(ω), p(ψ)], σQc [x(ω), p(ψ)]

III. C-MLMC for EMLMC[QM ] and VMLMC[QM ]

III.A. Calibration of C-MLMC for EMLMC[QM ]

We recall here briefly the procedure to optimally tune the MLMC algorithm in the Continuation version
developed in.9,10 We assume that the sequence of discretizations (with parameters M0 < M1 < ... < ML = M)
provide errors that decrease algebraically with Ml, with cost increasing algebraically in Ml (see Figure 1).
More precisely:

Ã1. Let cγ , γ > 0 be such that the cost Cl to compute one sample QMl
at level l is:

Cl = C(QMl
(ω(i))) ≤ cγMγ

l , (13)

Ã2. Let cα, α > 0 be such that:
|E[QMl

−Q]| ≤ cαM−αl (14)

Ã3. Let cβ , β > 0, with α ≥ min(β, γ) be such that:

Var[Yl] ≤ cβM−βl , (15)

These rates (α, β, γ) and constants (cα, cβ , cγ) will be estimated on the fly by the algorithm.
We require the total error of the MLMC estimator EMLMC[QM ] achieves the desired tolerance ε with confidence
probability 1− φ (exploiting the asymptotic normality of the estimator EMLMC[QM ]10):

TErr :=
∣∣EMLMC[QM ]− E[Q]

∣∣ ≤ |E[Q−QM ]|+
∣∣EMLMC[QM ]− E[QM ]

∣∣
≤ |E[Q]− E[QM ]|︸ ︷︷ ︸

B

+Cφ
√

Var[EMLMC[QM ]]︸ ︷︷ ︸
SE

(16)
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where Cφ = Φ−1(1− φ
2 ) and Φ is the cumulative distribution function (CDF) of a standard normal random

variable. We introduce a splitting parameter θ ∈ (0, 1) and require in our simulations that:

Bias : B := |E[Q]− E[QM ]| ≤ (1− θ)ε, (17a)

Statistical Error : SE := Var[EMLMC[QM ]] =

L∑
l=0

Var[Yl]
Nl

≤
(
θε

Cφ

)2

(17b)

The bias contribution B, in absence of an exact solution E[Q] of the problem under consideration, is
approximated as:

B ≈
∣∣EMC[QL −QL−1]

∣∣ . (18)

that is a reasonable estimate of the discretization error for sufficiently fine grids.
Instead of solving the MLMC hierarchy for the final tolerance ε (as in the classical MLMC approach), we solve
for the QoI with a sequence of decreasing tolerances and progressively improve the estimation of the problem
dependent parameters that directly control the number of levels and sample sizes. To achieve a certain RMSE
of ε, we prescribe a slightly smaller tolerance ε

r2
with r2 > 1 and define a sequence of decreasing tolerances

ε0 > ε1 > · · · > εi > · · · > εk = ε
r2

with εi = r1εi+1 and r1 > 1 where, for a given ε0 > ε, the number Iε of
iterations is given by:

Iε =

⌊
−log( εr2 ) + log(ε0)

log(r1)

⌋
. (19)

At the i-th iteration of the C-MLMC algorithm (with prescribed tolerance εi), the optimal number of levels
is computed by solving the following discrete optimization problem and by exhaustive search:

(Li, θi) = arg min
L∈[Li−1,...,LMAX ],θ∈(0,1)

s.t. cαM
−α
L =(1−θ)εi

CMLMC(εi, θ, L) (20)

using the cost model:

CMLMC(εi, θ, L) =

( Cφ
θεi

)2
(

L∑
l=0

√
ClVar[Yl]

)2

(21)

obtained with an optimal choice of Nl computed with:

Nl =


(Cφ
θε

)2
√

Var[Yl]
Cl

L∑
k=0

√
CkVar[Yk]

 l = 0, 1, . . . , L. (22)

The constraint cαM
−α
L = (1 − θ)εi in (20) represents the bias constrain and allows to determine θ as a

function of L (and εi):

θ(εi, L) = 1− cαM
−α
L

εi
(23)

Since cαM
−α
L can take only discrete values, for each L that satisfies the bias constraint B ≤ εi, it is worth

taking the largest possible θ = 1− B
εi

so as to relax as much as possible the statistical error constraint

Var[EMLMC[QM ]] ≤
(
θεi
Cφ

)2

(24)

and reduce the overall computational cost.
In the classical MLMC approach Var[Yl] in (22) and (21) is approximated using the MC level sample variance
VMC[Yl]:

Var[Yl] ≈ VMC[Yl] =
1

Nl − 1

Nl∑
n=1

(
Yl(ω

(n,l))− EMC[Yl]
)2

(25)

In the C-MLMC approach the estimation of the variances Var[Yl] is performed using a Bayesian methodology
that uses samples generated on all levels to locally improve the estimation. Using the bias model E[Yl] ≈
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µ̂l := cαM
−α
l and variance model Var[Yl] ≈ λ̂−1

l := cβM
−β
l with cα, α, cβ , β estimated from the previous

iteration of the CMLMC algorithm, Yl is described as a Gaussian random variable N (µl, λ
−1
l ). The Bayesian

update of µl and λ−1
l is performed based on the collected values Yl(ω

(n,l)) with a Normal-Gamma prior

distribution NG(λ̂l, k0, k1λ̂l+ 1/2, k1) with maximum in (µ̂l, λ̂l) (k0 and k1 are two parameters that represent

our ”certainty” on µ̂l and λ̂−1
l ). The posterior is also a Normal-Gamma, with maximum at

µMAP
l =

NlE
MC[Yl] + k0µ̂l
k0 +Nl

and λMAP
l =

Ξ1,l − 1
2

Ξ2,l
(26)

with:

Ξ1,l =
1

2
+ k̃1λ̂l +

Nl
2
, (27a)

Ξ2,l = k̃1 +
Nl − 1

2
VMC[Yl] +

k0Nl(E
MC[Yl]− µ̂l)2

2(k0 +Nl)
. (27b)

The resulting update formula for Var[Yl] ≈ λ−1
l is then:

VC[Yl] :=
Ξ2,l

Ξ1,l − 1
2

l > 0 (28)

Following the above arguments, VC[Yl] is then used to in (21) and (22) to approximate Var[Yl].
On the other hand, the sample variance 25 is used to estimate the final statistical error SE 17b.
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NDoFs
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T
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e[
s]
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Cl γ = 0.72

Figure 1: Bias of the MLMC estimators EMLMC[QM ] and VMLMC[QM ], V ar[Yl] and ∆[Xl, Yl] decays and cost
model. The QoI are the CD and CL coefficients for a UQ analysis of the RAE-2822 in transonic regime. The
y-axis in the first two plots is the absolute error, while the x-axis denotes the number of degrees of freedom of
the level grids.
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III.B. Calibration of C-MLMC for VMLMC[QM ]

Following the same arguments presented above for EMLMC[QM ], we now apply the above presented C-MLMC
procedure to VMLMC[QM ]. The only difference is in the requirements of the total error of the MLMC estimator.
We require that VMLMC[QM ] achieves the desired tolerance ε with confidence probability 1− φ:

TErr :=
∣∣VMLMC[QM ]− Var[Q]

∣∣ ≤ |Var[Q]− Var[QM ]|+
∣∣VMLMC[QM ]− Var[QM ]

∣∣
≤ |Var[Q]− Var[QM ]|︸ ︷︷ ︸

B

+Cφ
√

Var[VMLMC[QM ]]︸ ︷︷ ︸
SE

(29)

We introduce again a splitting parameter θ ∈ (0, 1) and require in our simulations (see Bierig et al.14) that:

B := |Var[Q]− Var[QM ]| ≤ (1− θ)ε, (30a)

SE := Var[VMLMC[QM ]] =

L∑
l=0

E[(CMC[Xl, Yl]− C[Xl, Yl])
2] =

L∑
l=0

1

Nl
∆[Xl, Yl] (30b)

with Xl = QMl
+QMl−1

and Yl = QMl
−QMl−1

, C[Xl, Yl] denotes the covariance of Xl and Yl:

C[Xl, Yl] = E [(Xl − E[Xl]) (Yl − E[Yl])] . (31)

and CMC[Xl, Yl] the MC covariance estimator of C[Xl, Yl]:

CMC[Xl, Yl] =
1

Nl − 1

Nl∑
i=1

(
Xl(ω

(i))− EMC[Xl]
)(

Yl(ω
(i))− EMC[Yl]

)
, (32)

and
∆[Xl, Yl] = NlE[(CMC[Xl, Yl]− C[Xl, Yl])

2] (33)

As it is possible to see from the previous error contributions, the key difference between EMLMC[QM ] and
VMLMC[QM ] is in the treatment of the bias B and statistical error contributions SE.
It is possible to show (see Appendix A) that:

∆[Xl, Yl] =

(
E[X2

l Y
2
l ]− N − 2

N − 1
E[XlYl]

2 +
1

N − 1
Var[Xl]Var[Yl]

)
(34)

We can write the statistical error for VMLMC[QM ] as:

Var[VMLMC[QM ]] =

L∑
l=0

1

Nl

(
E[X2

l Y
2
l ]− N − 2

N − 1
E[XlYl]

2 +
1

N − 1
Var[Xl]Var[Yl]

)
(35)

Now, in order to use the C-MLMC methodology presented before for the MLMC expectation estimator
EMLMC[QM ] we will simply perform the Bayesian update on ∆[Xl, Yl] instead of Var[Yl].
A crucial task in C-MLMC simulations, that require the solution of a large number of aerodynamic problems,
is the efficient and robust computation of bias and statistical error contributions (e.g. in (35)) and performing
each deterministic simulation on different levels in parallel.
Näıve one-pass approaches for the computation of statistical moments that involve sum of powers are known
to lead to numerical instabilities as well as to arithmetic overflow when dealing with large values. On the
other hand, two-pass algorithms (first compute the mean and than the required powers of deviations) are
impractical for large data sets since they require the storage of a large number of informations in the cache
memory as each data point must be accessed twice. For these reasons numerically stable online one-pass
algorithms for centered statistical moments have long been investigated16.17 A comprehensive review of
parallel online one-pass algorithms for arbitrary order statistical moment and covariances can be found in.18

In Appendix B we present a novel one-pass update formula for parallel computation of arbitrary order
’PQ-covariances’ Cpq[X,Y ]. PQ-covariances are special cases of central cross-moments with only two entries:

Cpq[X,Y ] = E [(X ′l)
p(Y ′l )q]] = E [(Xl − E[Xl])

p(Yl − E[Yl])
q] , p, q ∈ N (36)

Such PQ-covariances can be used to update the terms that appear in the bias and statistical error contributions,
the MC estimators EMC and VMC that appear in the MLMC estimators in (9) and (11) at each iteration of the
C-MLMC algorithm and when the simulations are performed in parallel without any storage of informations
in the cache memory as they are updated whenever the results of simulations are available.
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IV. Implementation of the Methodology

In order to solve the single (1) and multi objective (7) robust design optimization problems presented in
Section II we adapt the CMA-ES algorithm (see Hansen19 for the single objective case and Igel et al.12 for
the multi objective case). Instead of solving a deterministic problem on a fine computational grid for each
candidate design xk that populates the ES population of λ individuals, we perform a C-MLMC simulation
with tolerance ε imposed on the highest statistical moment that is required to compute the robust loss
function R and the probabilistic constraint C.
In the following Algorithm 1 we denote with xk, k = 1, . . . , λ, the candidate designs evaluated at each
generation g. Let m, σp and C be respectively the mean, standard deviation and correlation matrix of the
multivariate normal distribution N (m,σ2

pC) used to sample the candidates xk. ψ denotes a subset of λ that
includes the best candidates. Finally Θ is a vector of size gMAX (maximum number of generations) that
defines how the tolerance of the C-MLMC algorithm should be reduced during the optimization loop.

Algorithm 1: C-MLMC CMA-ES for Robust Optimization.

CMA-ES(λ, σ0, m0, gMAX , Θ)
Initialize(C = I, m = m0 σ = σ0, g = 0)
while (Stop-criteria) OR g < gMAX do

for k = 1, . . . , λ do
xk ∼ N (m,σ2C)
ε = Θg

C-MLMC(Qr, Qc, Θg, xk, ε, Φ)
return Rk [Qr(xk(ω), p(ψ))], Ck [Qc(xk(ω), p(ψ))]

If (Rk OR Ck) violate penalties, update Rk
Selection: best ψ candidates out of λ
Recombination: update mean m based on ψ candidates
Step-size: update the distribution sigma σ
CMA: compute new covariance matrix C
Generation: g = g + 1

return ψ candidates

C-MLMC(Qr, Qc, Θg, xk, ε, Φ)
compute Iε using (19)
while (i < Iε) AND (εi > Θg) do

compute (L(i), θ(i)) using (20)

compute {N (i)
l }L

(i)

l=0 to satisfy ε(i), with V
(i−1)
l

MLMC(L(i), {N (i)
l }L

(i)

l=0 )

update V
(i)
l using (28)

i = i+ 1
return Rk [Qr(xk(ω), p(ψ))], Ck [Qc(xk(ω), p(ψ))]

V. Application to Single and Multi Objective Robust Design Optimization

In this section, the above presented methodology is applied to single and multi objective robust design
optimization of the RAE-2822 airfoil. The design problem involves determining the geometry of an airfoil
in order to minimize the drag coefficient CD or maximize lift-drag ratio L/D and their dispersion in an
uncertain environment.

C-MLMC Grid Hierarchy and Deterministic Solver. In this work we employ a 4-levels structured
grid hierarchy for the C-MLMC simulations. The features of the grid levels are presented in Table 1 along
with the average computational time required to compute one deterministic simulation (on one CPU) using
the MSES collection of programs for the analysis of airfoils.20 MSES solves the steady Euler equations with
a finite volume discretization over a streamline grid and is coupled, via the displacement thickness, with a
two-equation integral solver for the viscous regions of the boundary layer and trailing wakes.
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LEVEL Airfoil nodes Cells CTime[s]

L0 47 1739 1.9

L1 71 2627 3.2

L2 107 3959 5.7

L3 161 5957 7.5

L4 243 8991 14.7

Table 1: MLMC 5-levels grid hierarchy for the RAE2822 problem.

Operating Conditions and Uncertainties In the following simulations we consider two uncertain
scenarios. First we consider only operating uncertainties (see Table 2) affecting the flow surrounding the
airfoil and we use as design variables the Free Form Deformation (FFD) box coefficients (Figure 2(a)).

(a) FFD box for RAE2822

ys

yp xs

xp

Cs

Cp

Rs

Rp

y

xθs

θp

M∞

α∞

RAE-2822

(b) PARSEC parametrization for RAE2822

Figure 2: Preliminary results for MO-RDO2

Another set of simulations is performed considering operating uncertainties and geometric uncertainties due
to manufacturing tolerances at the same time. In this scenario the geometrical uncertain set and the design
set are the PARSEC coefficients of the airfoil (see Table 3 and Figure 2(b)).
All uncertain parameters are modeled as truncated Gaussian random variables (denoted by y ∼ T N (µ, σ, a, b)
in Table 2 and Table 3).

Quantity Reference (r) Uncertainty T N (µ, σ,XLO, XUP )

α∞ 2.31 T N (r, 2%,−2%,+2%)

Operating M∞ 0.730 T N (r, 2%,−2%,+2%)

parameters Rec 6.5 · 106 −
p∞ [Pa] 101325 −
T∞ [K] 288.5 −

Table 2: Operating parameters and uncertainties for the RAE2822 problem.

Geometrical Constraints :

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

v1
v2

v3
v4

Figure 3: Geometrical trapezoid box constraint.

In the following optimization problems we require
and make sure that the selected airfoils (individuals
to be evaluated in the evolutionary strategy) have
a shape that allows a prescribed trapezoid to be fit
inside them without intersecting. The coordinates of
the box vertex are: v1 = (0.13, 0.03), v2 = (0.4, 0.05),
v3 = (0.4,−0.045), v4 = (0.13,−0.03). This is a
reasonable requirement to built an aircraft wing with
an appropriate inner volume to accommodate the fuel tank and a torque box. Additionally such requirement
naturally rejects from the population of candidate individuals all degenerate airfoil shape. Lastly we impose
the section of the optimized airfoil to be at least 75% of the original section of the RAE-2822.
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Quantity PARSEC - RAE-2822 Uncertainty T N (µ, σ,XLO, XUP )

Rs 0.00839 T N (r, 1%r,−1%r,+1%r)

Geometric Rp 0.00853 T N (r, 1%r,−1%r,+1%r)

parameters xs 0.431 T N (r, 1%r,−2%r,+2%r)

xp 0.346 T N (r, 1%r,−2%r,+2%r)

ys 0.063 T N (r, 1%r,−2%r,+2%r)

yp −0.058 T N (r, 1%r,−2%r,+2%r)

Cs −0.432 T N (r, 1%r,−1%r,+1%r)

Cp 0.699 T N (r, 1%r,−1%r,+1%r)

θs −11.607 −
θp −2.227 −

Table 3: PARSEC parameters of the RAE2822 airfoil and geometric uncertainties applied on the shape.

V.A. Single Objective Robust Design Optimization - Operating and Geometric Uncertainties

In this subsection we consider the problem of robustly optimize the shape of the RAE-2822 airfoil affected by
operating (system parameters p(ψ), Mach number and angle of attack in Table 2) and geometric uncertainties
at the same time (Table 2 and Table 3). The design parameters x are the PARSEC parameters in Table 3
(second column). In the actual stage of the airfoil, uncertainty is added to those parameters (see table 3 last
column) We consider two optimization problems. In SO-RDO1, we wish to minimize the drag coefficient of
the airfoil and its dispersion while in SO-RDO2, we wish to maximize and robustify the lift-drag ratio.

SO-RDO1 : minimize the sum of the mean and the standard deviation of the drag coefficient CD of the
airfoil. We impose a probabilistic constraint on the lift coefficient CL by requiring the mean µCL to be greater
than or equal to 90% of the original RAE-2822 (C∗L = 0.9 ∗CRAEL ). We constrain also the shape of the airfoil
by requiring enough space for the fuel/torque box and the final shape to be at least 75% of the original
section of the RAE-2822.

SO-RDO1 :


min
x
R [CD(x̃(x, ω), p(ψ))] = µCD (x̃(x, ω), p(ψ)) + σCD (x̃(x, ω), p(ψ))

s.t C [CL(x̃(x, ω), p(ψ))] = µCL(x̃(x, ω), p(ψ)) ≥ C∗L
xL ≤ x ≤ xU

(37)

In Figure 4 we present the results of SO-RDO1 and compare with the original RAE-2822 and the result of a
deterministic optimization of the same airfoil without considering the uncertainties (SO-DO1).

SO-DO1 :


min
x

CD(x, p)

s.t CL(x, p) ≥ C∗L
xL ≤ x ≤ xU

(38)

As it is possible to observe from Figure 4 the SO-DO1 airfoil is able to achieve the lowest mean drag (circle
in the CD plot) and drag at the design condition (Mach = 0.730, α = 2.31, diamond symbol in the CD plot).
It is well known that it is generally possible to design an airfoil to have shock-free recompression only for a
single combination of Mach-angle of attack. The curvature of the suction inhibits the formation of the shock
at design condition (black curve in the Cp plot). However as it is possible to observe from the variance of the
Cp, small variations in the geometry of the airfoil and operating conditions, rapidly produce a shock in two
regions in the suction side of the airfoil leading to rapid variation in the drag and lift-drag ratio.
On the contrary, the SO-RDO1 airfoil produces a shock on the suction side in all operating conditions also
with variations in the geometry of the airfoil. The stability in the intensity and position of the shock is
reflected in a small deviation around the mean of the drag coefficient CD and lift drag ratio L/D. The
relatively large leading edge radius of the robust airfoil and the suction side curvature are able to produce
a pressure envelope that reduces progressively the flow before the shock region leading to a weaker shock
(compared to the RAE-2822 and SO-DO1).
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Figure 4: Performances of the SO-RDO1 and SO-DO1 airfoil compared with the original RAE-2822. The
upper plots present the uncertain Cp profile of the airfoils under operating and geometric uncertainties. The
lower plots present the airfoil CD and L/D variations (mean ± two standard deviations). The diamond symbol
represents the performance of the airfoil at design condition (airfoil operating at Mach = 0.730, α = 2.31).
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SO-RDO2 : maximise the sum of the mean and the standard deviation of the lift-drag ratio L/D of the
airfoil. We constrain again the shape of the airfoil by requiring enough space for the fuel/torque box and the
final shape to be at lease 75% of the original section of the RAE-2822.

SO-RDO2 :

{
max
x
R [L/D(x̃(x, ω), p(ψ))] = µL/D(x̃(x, ω), p(ψ))− σL/D(x(ω), p(ψ))

s.t xL ≤ x ≤ xU
(39)

SO-DO1 :

{
max
x

L/D(x, p)

s.t xL ≤ x ≤ xU
(40)
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Figure 5: Performances of the SO-RDO2 and SO-DO2 airfoil compared with the original RAE-2822. The
upper plots present the uncertain Cp profile of the airfoils under operating and geometric uncertainties. The
lower plots present the L/D variation (mean ± two standard deviations). The diamond symbol represents
the performance of the airfoil at design condition (airfoil operating at Mach = 0.730, α = 2.31).

In Figure 5 we present the result of the robust (SO-RDO2) and deterministic (SO-DO2) optimization of the
L/D ratio. As in the previous case we observe that the deterministically optimized airfoil is able to achieve
the best performance at design condition however the L/D ratio is highly sensitive to small variations of the
geometry and operating conditions.
The robust airfoil is also in this case equipped with a relatively large leading edge. The quasi constant
pressure plateau and the large aft chamber, compared to the SO-DO2, are capable of reducing the L/D
dispersion.

V.B. Multi Objective Robust Design Optimization - Operating Uncertainties

We now consider two competing robust objectives to be optimized simultaneously, namely minimize the drag
coefficient CD and its dispersion and maximise the lift coefficient and its dispersion. We consider, first, only
operating uncertainties (see Table 2) affecting the flow surrounding the airfoil and we use as design variables
x the Free Form Deformation (FFD) box coefficients (Figure 2(a)).
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MO-RDO1 :

{
P-min

x
{RD [CD(x, p(ψ))] ,RL [CL(x, p(ψ))]}

s.t xL ≤ x ≤ xU
(41)

with:

RD [CD(x, p(ψ))] = µCD (x, p(ψ)) + σCD (x, p(ψ))

RL [CL(x, p(ψ))] = −µCL(x, p(ψ)) + σCL(x, p(ψ))
(42)

We compare the results with the following multi objective optimization problem:

MO-DO1 :

{
P-min

x
{CD(x, p), CL(x, p)}

s.t xL ≤ x ≤ xU
(43)

In Figure 6 we present the result of MO-RDO1 and MO-DO1. For the candidate solution in the deterministic
Pareto set (blue points, with lift coefficient higher and drag coefficient lower than the original RAE2822) and
the RAE-2822 airfoil (black points) we perform an uncertainty analysis and compute the mean value (red
square) and dispersion of the airfoils CD and CL (red ellipses correspond to two standard deviations) when
they are operated in the uncertain environment. The blue stars represent candidates in the deterministic
Pareto set that are very unstable when operating in the uncertain environment. Small variations in the angle
of attack and Mach number lead to separated flow on the suction side of such airfoils.

Figure 6: Deterministic and Robust Pareto fronts obtained by solving respectively the MO-DO1 and the
MO-RDO1. The central plot is a blow-up view of the full Pareto. The red squares are the mean of CL and
CD when the airfoils are operated in the uncertain environment, while the red ellipses are the dispersion
around such mean values (two standard deviations). The green squares are the mean values of the robust
optimal points and the green ellipses are their dispersion around such mean values (two standard deviations).

The first comment we can make regarding Figure 6 is that way fewer individuals populate the robust Pareto
set with respect to the deterministic Pareto. Additionally we can observe a gathering of robust optimal

14 of 22

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 E

C
O

L
E

 P
O

L
Y

T
E

C
H

 F
E

D
E

R
A

L
E

 L
A

U
SA

N
N

E
 o

n 
Ju

ly
 4

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
7-

33
29

 



candidates and their means around CL ≈ 0.75 and CD ≈ 0.011. Such robust candidates have quite similar
performances and dispersion around the mean.

V.C. Multi Objective Robust Design Optimization - Operating and Geometric Uncertainties

Lastly we consider the multi objective problem of minimizing the drag coefficient CD and its dispersion and
maximizing the lift coefficient and its dispersion with operating (system parameters p(ψ), Mach number and
angle of attack in Table 2) and geometric uncertainties at the same time (Table 2 and Table 3). In this set of
simulations the design parameters x, are PARSEC parameters (Table 3 second column) and in the actual
shape of the airfoil, uncertainty is added to those parameters.

MO-RDO2 :

{
P-min

x
{RD [CD(x̃(x, ω), p(ψ))] ,RL [CL(x̃(x, ω), p(ψ))]}

s.t xL ≤ x ≤ xU
(44)

with:

RD [CD(x̃(x, ω), p(ψ))] = µCD (x̃(x, ω), p(ψ)) + σCD (x, p(ψ))

RL [CL(x̃(x, ω), p(ψ))] = −µCL(x̃(x, ω), p(ψ)) + σCL(x̃(x, ω), p(ψ))
(45)

We compare the results with MO-DO1 but in this set of simulation we use the PARSEC coefficients as design
parameters.
In Figure 7 we present the result of MO-RDO2 and MO-DO1. We perform, as for the previous case, an
uncertainty analysis for the deterministic and robust candidates that dominate the original RAE-2822 (with
lift coefficient higher and drag coefficient lower) and compute the mean value (red squares for the deterministic
optimal and yellow squares for the robust optimal candidates) and dispersion of the airfoils CD and CL (red
ellipses for the deterministic and green for robust candidates that correspond to two standard deviations)
when they are operated in the uncertain environment. The blue stars represent candidates in the deterministic
Pareto set that are very unstable when operating in the uncertain environment. Small variations in the
geometry, angle of attack or Mach number lead to separated flow on the suction side of such airfoils.
As for the previous case we can observe a smaller population of candidates in the robust Pareto set with
respect to the deterministic one. We can clearly identify, even better than in the previous case, a much higher
stability of the performances of the robust optimized airfoils when operated in an uncertain environment and
when affected by geometrical uncertainties.

VI. Conclusions

In this work we have presented an extension of the Continuation Multi Level Monte Carlo (C-MLMC) to
compute single and multi objective function based on mean and variance. We have described how to interface
a well established Evolutionary Strategy algorithm, the CMA-ES, with the C-MLMC algorithm to perform
robust design optimization. Additionally we provided parallel update formulas (the PQ-covariances) to
compute the statistics of a quantity of interest and the statistical error contributions required to control the
computational work and the accuracy of a C-MLMC analysis when the deterministic simulation (that are
required in the stochastic analysis) are performed in parallel.
In the context aerodynamic shape design, we have described how to use the combination of CMA-ES
and C-MLMC approach to perform robust optimization of transonic airfoils affected by a large number
of operating and geometric uncertainties. We demonstrated with single and multi objective optimization
problems that such methodology can be efficiently employed to design transonic airfoils that are less sensitive
to those uncertainties. The technique has the potential to be extended to more complex problems where the
stability and the reliability of the aerodynamic system is of crucial importance. Planned future work involves
investigating and extending the C-MLMC approach to higher order moments, quantiles and coherent risk
measures to perform robust and reliability based design optimization of aerodynamic systems.
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Figure 7: Deterministic and Robust Pareto fronts obtained by solving respectively the MO-DO1 (using
PARSEC as design parameters) and the MO-RDO2. The central plot is a blow-up view of the full Pareto. he
red squares are the mean of CL and CD when the airfoils are operated in the uncertain environment, while
the red ellipses are the dispersion around such mean values (two standard deviations). The green squares are
the mean values of the robust optimal points and the green ellipses are their dispersion around such mean
values (two standard deviations).
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A. Statistical Error for MLMC Variance Estimator

We define here the following symbols:

x′ = x− E [x] x̄ = EMC[x] =
1

N

N∑
i=1

xi x̄′ =
1

N

N∑
i=1

(xi − E[x]) (46)

The MSE for the MLMC estimator VMLMC[QM ] for Var[QM ] is

e(VMLMC[QM ])2 :=E[(VMLMC[QM ]− Var[Q])2]

= (Var[QM ]− Var[Q])
2︸ ︷︷ ︸

(B-VMLMC)

+

L∑
l=0

E[(CMC[Xl, Yl]− C[Xl, Yl])
2]︸ ︷︷ ︸

(SE-VMLMC)

with Xl = QMl
+QMl−1

, Yl = QMl
−QMl−1

,

CMC[Xl, Yl] =
1

Nl − 1

Nl∑
i=1

(
Xil − EMC[Xl]

) (
Yil − EMC[Yl]

)
,

C[Xl, Yl] = E [(Xl − E[Xl]) (Yl − E[Yl])] .

(47)

We show here that the following are equivalent:

E[(CMC[Xl, Yl]− C[Xl, Yl])
2] =

1

Nl

(
E[X2

l Y
2
l ]− N − 2

N − 1
E[XlYl]

2 +
1

N − 1
Var[Xl]Var[Yl]

)
(48)
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Proof. To shorten the notation we write in the following X and Y instead of Xl and Yl (47):

E[(CMC[X,Y ]− C[X,Y ])2]

= E

( 1

N − 1

N∑
i=1

(
Xi − EMC[X]

) (
Yi − EMC[Y ]

)
− E [(X − E[X]) (Y − E[Y ])]

)2


= E

( 1

N − 1

N∑
i=1

(
Xi ± E [X]− X̄

) (
Yi ± E [Y ]− Ȳ

)
− E [X ′Y ′]

)2


= E

( 1

N − 1

N∑
i=1

(
X ′i − X̄ ′

) (
Y ′i − Ȳ

)
− E [X ′Y ′]

)2


= E

( 1

N − 1

(
N∑
i=1

X ′iY
′
i −NX̄ ′Ȳ ′

)
− E [X ′Y ′]

)2


= E


 1

N − 1

N∑
i=1

X ′iY
′
i −

1

N(N − 1)

N∑
j,k=1

X ′jY
′
k − E [X ′Y ′]

2


= E


 1

N

N∑
i=1

X ′iY
′
i −

1

N(N − 1)

N∑
j 6=k

X ′jY
′
k − E [X ′Y ′]

2


= E


1

N2

(
N∑
i=1

X ′iY
′
i

)2

︸ ︷︷ ︸
(T1)

+
1

N2(N − 1)2

 N∑
j 6=k

X ′jY
′
k

2

︸ ︷︷ ︸
(T2)

+E [X ′Y ′]
2︸ ︷︷ ︸

(T3)

− 2

N2(N − 1)

(
N∑
i=1

X ′iY
′
i

) N∑
j 6=k

X ′jY
′
k


︸ ︷︷ ︸

(T4)

− 2

N

(
N∑
i=1

X ′iY
′
i

)
E [X ′Y ′]︸ ︷︷ ︸

(T5)

+
2

N(N − 1)

 N∑
j 6=k

X ′jY
′
k

E [X ′Y ′]

︸ ︷︷ ︸
(T6)



(49)
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The terms in (49) can be rewritten as:

(T1) :
1

N2
E

( N∑
i=1

X ′iY
′
i

)2
 =

1

N2
E

 N∑
i,j=1

X ′iY
′
iX
′
jY
′
j


=

1

N2

E

[
N∑
i=1

(X ′i)
2(Y ′i )2

]
+ E

 N∑
i6=j=1

X ′iY
′
iX
′
jY
′
j


=

1

N2

(
E

[
N∑
i=1

(X ′iY
′
i )2

]
+ (N2 −N)E [X ′Y ′]

2

)

=
1

N
E
[
(X ′Y ′)2

]
+
N − 1

N
E [X ′Y ′]

2

(T2) :
1

N2(N − 1)2
E


 N∑
j 6=k

X ′jY
′
k

2
 =

1

N2(N − 1)2
E

 N∑
j 6=k

(X ′j)
2(Y ′k)2


=

1

N(N − 1)
Var [X ′]Var [Y ′] +

1

N(N − 1)
E [X ′Y ′]

2

(T3) : E
[
E [X ′Y ′]

2
]

= E [X ′Y ′]
2

(T4) :
2

N2(N − 1)
E

( N∑
i=1

X ′iY
′
i

) N∑
j 6=k

X ′jY
′
k

 = 0

(T5) :
2

N
E

[(
N∑
i=1

X ′iY
′
i

)
E [X ′Y ′]

]
= 2E [X ′Y ′]

2

(T6) :
2

N(N − 1)
E

 N∑
j 6=k

X ′jY
′
k

E [X ′Y ′]

 = 0

(50)

By substituting (50) in (49):

E[(CMC[X,Y ]− C[X,Y ])2]

=
1

N
E
[
(X ′Y ′)2

]
+
N − 1

N
E [X ′Y ′]

2
+

1

N(N − 1)
Var [X ′]Var [Y ′]

+
1

N(N − 1)
E [X ′Y ′]

2
+ E [X ′Y ′]

2 − 2E [X ′Y ′]
2

=
1

N

[
E
[
(X ′Y ′)2

]
− N − 2

N − 1
E [X ′Y ′]

2
+

1

N − 1
Var [X ′]Var [Y ′]

]
.

(51)

If we now consider the contribution of all levels in (47) we finally obtain:

e(VMLMC[QM ])2 :=E[(VMLMC[QM ]− Var[Q])2]

= (Var[QM ]− Var[Q])
2︸ ︷︷ ︸

(B-VMLMC)

+

L∑
l=0

1

Nl

(
E
[
(X ′lY

′
l )2
]
− N − 2

N − 1
E [X ′lY

′
l ]

2
+

1

N − 1
Var [X ′l ]Var [Y ′l ]

)
︸ ︷︷ ︸

(SE-VMLMC)

(52)
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B. Parallel update formulas for PQ-Covariances

Let Sn be an index set of cardinality n and {(xi, yi), i ∈ Sn} a collection of data. Our goal is to compute
efficiently the quantity

Mp,q,Sn =
∑
i∈Sn

(
xi − µxSn

)p (
yi − µySn

)q
with µxSn =

1

n

∑
i∈Sn

xi, µySn =
1

n

∑
i∈Sn

yi (53)

Clearly

Mp,q,Sn =
∑
i∈San1

(
xi − µxSn

)p (
yi − µySn

)q
︸ ︷︷ ︸

(A)

+
∑
j∈Sbn2

(
xj − µxSn

)p (
yj − µySn

)q
︸ ︷︷ ︸

(B)

(54)

Consider now a partition Sn = San1 ∪ Sbn2, n1 + n2 = n and suppose that the quantity Mp,q,San
has already

been computed. The question we address hereafter is how to compute efficiently Mp,q,Sn using the previous
computations.
For the sake of simplicity we denote from now on San1

as Sa, San2
as Sb and we indicate with δxb,a = −δxa,b =

µxSb − µxSa and with δyb,a = −δya,b = µy
Sb
− µySa :

(A) :
∑
i∈Sa

(xi − µxS)
p

(yi − µyS)
q

=
∑
i∈Sa

(
xi −

n1µ
x
Sa + n2µ

x
Sb

n

)p(
yi −

n1µ
y
Sa + n2µ

y
Sb

n

)q
=
∑
i∈Sa

(
xi − µxSa −

n2

n
(µxSb − µxSa)

)p (
yi − µySa −

n2

n

(
µy
Sb
− µySa

))q
=
∑
i∈Sa

[
p∑
k=0

(xi − µxSa)
k
(
−n2

n
δxb,a

)p−k (p
k

)][ q∑
l=0

(yi − µySa)
l
(
−n2

n
δyb,a

)q−l(q
l

)]

=
∑
i∈Sa

p∑
k=0

q∑
l=0

(xi − µxSa)
k

(yi − µySa)
l
(
−n2

n
δxb,a

)p−k (
−n2

n
δyb,a

)q−l(p
k

)(
q

l

)

=

p∑
k=0

q∑
l=0

(∑
i∈Sa

(xi − µxSa)
k

(yi − µySa)
l

)
︸ ︷︷ ︸

Mkl,Sa

(
−n2

n
δxb,a

)p−k (
−n2

n
δyb,a

)q−l(p
k

)(
q

l

)

(55)

The same procedure can be applied to term (B) leading to:

(B) :
∑
j∈Sb

(xi − µxS)
p

(yi − µyS)
q

=
∑
j∈Sb

p∑
k=0

q∑
l=0

(xi − µxSb)
k (
yi − µySb

)l (−n1

n
δxa,b

)p−k (
−n1

n
δya,b

)q−l(p
k

)(
q

l

)

=
∑
j∈Sb

p∑
k=0

q∑
l=0

(xi − µxSb)
k (
yi − µySb

)l (
+
n1

n
δxb,a

)p−k (
+
n1

n
δyb,a

)q−l(p
k

)(
q

l

)

=

p∑
k=0

q∑
l=0

∑
j∈Sb

(xi − µxSb)
k (
yi − µySb

)l
︸ ︷︷ ︸

M
kl,Sb

(
+
n1

n
δxb,a

)p−k (
+
n1

n
δyb,a

)q−l(p
k

)(
q

l

)
(56)
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By substituting (55) and (56) in (54) we obtain:

Mp,q,Sn =

p∑
k=0

q∑
l=0

[
Mk,l,Sa

(
−n2

n
δxb,a

)p−k (
−n2

n
δyb,a

)q−l(p
k

)(
q

l

)
+ Mk,l,Sb

(
+
n1

n
δxb,a

)p−k (
+
n1

n
δyb,a

)q−l(p
k

)(
q

l

)] (57)

For the sake of explanation we now reduce Sb to a singleton:

n2 = 1, Sb = {xn, yn},
∣∣Sb∣∣ = 1

n1 = n− 1, S = Sa ∪ {xn, yn}, Sa = Sn−1, |Sa| = n− 1

δx = xn − µxSn−1
, δy = yn − µySn−1

.

(58)

Since M0,0,Sn = n and M1,0,Sn = M0,1,Sn = 0 we finally obtain a formula to estimate all the PQ-covariances:

Mp,q,Sn =

(
n− 1

n

)p+q
(δx)

p
(δy)

q

(
(−1)p+q

(n− 1)p+q−1
+ 1

)
+

p∑
k=1

q∑
l=1

[
Mk,l,n−1

(
−δ

x

n

)p−k (
−δ

y

n

)q−l(
p

k

)(
q

l

)]

+

p∑
k=2

Mk,0,n−1

(
−δ

x

n

)p−k (
−δ

y

n

)q (
p

k

)

+

q∑
l=2

M0,l,n−1

(
−δ

x

n

)p(
−δ

y

n

)q−l(
q

l

)
(59)

p q Mp,q,Sn Used for

1 1 M1,1,Sn = M1,1,n−1 + n−1
n δxδy E[XY ] and

M1,2,Sn , M2,1,Sn , M2,2,Sn

2 0 M2,0,Sn = M2,0,n−1 + n−1
n (δx)

2 Var[X] and

M2,1,Sn , M2,2,Sn , M3,0,Sn , M4,0,Sn

0 2 M0,2,Sn = M2,0,n−1 + n−1
n (δy)

2 Var[Y ] and

M1,2,Sn , M2,2,Sn , M0,3,Sn , M0,4,Sn

2 1 M2,1,Sn = M2,1,n−1 + 2M1,1,n−1

(
− δxn

)
+
(
n−1
n

)3
(δx)

2
δy
(

1 + −1
(n−1)2

)
+M2,0,n−1

(
− δyn

)
M2,2,Sn

1 2 M1,2,Sn = M1,2,n−1 + 2M1,1,n−1

(
− δyn

)
+
(
n−1
n

)3
δx (δy)

2
(

1 + −1
(n−1)2

)
+M0,2,n−1

(
− δxn

)
M2,2,Sn

2 2 M2,2,Sn = M2,2,n−1 − 2M2,1,n−1
δy

n − 2M1,2,n−1
δx

n E[X2Y 2]

+4M1,1,n−1
δxδy

n2 +
(
n−1
n

)4
(δx)

2
(δy)

2
(

1 + 1
(n−1)3

)
+M2,0,n−1

(
− δyn

)2

+M0,2,n−1

(
− δxn

)2
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