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Abstract. Cloaking a source via anomalous localized resonance (ALR) was
discovered by Milton and Nicorovici in [15]. A general setting in which cloaking
a source via ALR takes place is the setting of doubly complementary media. This
was introduced and studied in [20] for the quasistatic regime. In this paper, we
study cloaking a source via ALR for doubly complementary media in the finite
frequency regime. To this end, we establish the following results: (1) Cloaking a
source via ALR appears if and only if the power blows up; (2) The power blows
up if the source is “placed" near the plasmonic structure; (3) The power remains
bounded if the source is far away from the plasmonic structure. Concerning the
analysis, on one hand we extend ideas from [20] and on the other hand we add new
insights into the problem. This allows us to not only overcome difficulties related
to the finite frequency regime but to also obtain new information on the problem.
In particular, we are able to characterize the behavior of fields far enough from
the plasmonic shell, as the loss approaches 0 for an arbitrary source outside the
core-shell structure in the doubly complementary media setting.

1 Introduction and statement of the main results

1.1 Introduction Negative index materials (NIMs) were first investigated
theoretically by Veselago in [30]. The existence of such materials was confirmed
by Shelby, Smith and Schultz in [29]. The study of NIMs has attracted a lot of
attention from the scientific community thanks to their many possible applications.
A very appealing one is cloaking. There are at least three ways to perform cloaking
using NIMs. The first one is based on plasmonic structures introduced by Alu and
Engheta in [2]. The second one uses the concept of complementary media. This
was suggested by Lai et al. in [13] and confirmed theoretically in [21] for related
schemes (see also [26]). The last one is based on the concept of ALR discovered
by Milton and Nicorovici in [15]. In this paper, we concentrate on the last method.

Cloaking a source via ALR was discovered by Milton and Nicorovici in [15].
Their work has its roots in [27] (see also [14]) where the localized resonance
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was observed and established for constant symmetric plasmonic structures in the
two-dimensional quasistatic regime. More precisely, in [15], the authors studied
core-shell plasmonic structures in which a circular shell has permittivity −1 − iδ

while its complement has permittivity 1, where δ denotes the loss of the material
in the shell.1 Let r1 and r2 be the inner and outer radii of the shell. They showed
that there is a critical radius r∗ := (r3

2r
−1
1 )1/2 such that a dipole is not seen, after

a normalization of the power,2 by an observer away from the core-shell structure,
hence it is cloaked, if and only if the dipole is within distance r∗ of the shell.
Moreover, the power Eδ (uδ ) of the field uδ , which is defined in (1.5), blows up as
the loss δ goes to 0. In [15] the authors also investigated a single dipole source
in the finite frequency regime outside the slab lens of coefficient −1. Two key
features of this phenomenon are: (1) the localized resonance, i.e., the fields blow
up in some regions and remain bounded in some others as the loss goes to 0; (2)
the connection between the localized resonance and the blow up of the power as
the loss goes to 0.

Cloaking a source via ALR has been mainly studied in the quasistatic regime.
In [6], Bouchitté and Schweizer proved that a small circular inclusion of radius γ(δ )
(with γ(δ ) → 0 fast enough) is cloaked by the above-mentioned core-shell plas-
monic structure in the two-dimensional quasistatic regime if the inclusion is located
within distance r∗ of the shell; otherwise it is visible. Concerning the second fea-
ture of cloaking a source via ALR, the blow up of the power was studied in the
more general setting of the two-dimensional quasistatic regime by Ammari et al. in
[4] and Kohn et al. in [12]. More precisely, they considered non-radial core-shell
structures in which the shell has permittivity −1 − iδ and its complement has
permittivity 1. In [4], Ammari et al. dealt with arbitrary shells and provided a
characterization of sources for which the power blows up via the information of
the spectral decomposition of a Neumann–Poincaré type operator. In [12], Kohn
et al. considered core-shell structures in which the outer boundary of the shell is
round but the inner is not and established the blow-up of the power for some class
of sources using a variational approach. A connection between the blow-up of
the power and the localized resonance depends on the geometry and property of
plasmonic structures; see [25] (and also [22]) for a discussion on this. Cloaking
a source via ALR in some special three-dimensional geometry was studied in [3].
Motivated by the concept of reflecting complementary media suggested and stud-
ied in [17] and results mentioned above, in [20] we studied cloaking a source via

1In fact, in [15] and in other works, the authors consider the permittivity −1+ iδ instead of −1− iδ ;
but this point is not essential.

2More details on the normalization process are given later.
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ALR for a general core shell structure of doubly complementary media property
(see Definition 1.2) in the quasistatic regime.3 More precisely, we established the
following three properties for doubly complementary media:

(P1) Cloaking a source via ALR appears if and only if the power blows up.

(P2) The power blows up if the source is located “near" the shell.

(P3) The power remains bounded if the source is far away from the shell.

Using these results, we extended various results mentioned previously. Moreover,
we were able to obtain schemes to cloak an arbitrary source concentrated at an
arbitrary smooth boundedmanifold of codimension 1 placed in an arbitrarymedium
via ALR; the cloak is independent of the source. The analysis in [20] is on one
hand based on the reflecting techniques initiated in [17], the removing localized
singularity technique introduced in [18, 21] to deal with the localized resonance.
On the other hand, it is based on new observations on the Cauchy problems and
the separation of variables technique for a general shell introduced there. The
implementation of this technique is an ad-hoc part of [20].

In this paper, we study cloaking a source via ALR for the finite frequency
regime. More precisely, we establish Properties (P1), (P2) and (P3) for doubly
complementary media in the finite frequency regime. As a consequence, we are
also able to obtain schemes to cloak a generic source concentrated at the boundary
of a smooth bounded open subset ofRd placed in an arbitrary medium via ALR; the
cloak is independent of the source (see Proposition 5.1 in Section 5). Concerning
the analysis, on one hand we extend ideas from [20] and on the other hand we add
various new insights into the problem. This allows us (1) to overcome difficulties
related to the finite frequency regime such as the use of the maximum priniciple, (2)
to shorten the approach in [20], and more importantly (3) to obtain new information
on cloaking a source via ALR. In particular, we can characterize the behaviour of
the fields far enough from the plasmonic shell, as the loss goes to 0, for arbitrary
sources outside the core-shell structure in the doubly complementary media setting
(Theorem1.1). This fact is interesting in itself and new to our knowledge. Cloaking
arbitrary objects via ALR is considered in [24].

1.2 Statement of the main results. Let k > 0, let A be a (real) uniformly
elliptic symmetric matrix defined inRd (d ≥ 2), and let � be a real function defined

3Roughly speaking, the plasmonic shell is not only complementary with a part of the complement
of the core shell but also complement to a part of the core.
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in R
d such that it is bounded below and above by positive constants. Assume that

(1.1) A(x) = I, �(x) = 1 for large |x|,
and 4

(1.2) A is piecewise C1.

Let �1 ⊂⊂ �2 ⊂⊂ Rd be smooth bounded simply connected open subsets of Rd ,
and set, for δ ≥ 0,

(1.3) sδ (x) =

⎧⎨
⎩

−1 − iδ in �2 \ �1,

1 in Rd \ (�2 \ �1).

For f ∈ L2
c(R

d ) with supp f ∩ �2 = Ø and δ > 0, let uδ ∈ H 1
loc

(Rd) be the unique
outgoing solution to

(1.4) div(sδA∇uδ ) + k2s0�uδ = f in R
d .

Here and in what follows

L2
c(R

d ) := { f ∈ L2(Rd ) with compact support}.
For R > 0 and x ∈ R

d , we will denote by B(x,R) the open ball in R
d centered

at x and of radius R; when x = 0, we simply denote B(x,R) by BR. Recall that
a function u ∈ H 1

loc
(Rd \ BR) for some R > 0 which is a solution to the equation

�u + k2u = 0 in R
d \ BR is said to satisfy the outgoing condition if

∂ru − iku = o(r
1−d

2 ) as r = |x| → +∞.

The powerEδ (uδ ) or, more precisely, the power dissipated in the medium, is defined
by (see, e.g., [15])

(1.5) Eδ (uδ ) = δ

∫
�2\�1

|∇uδ |2.

The normalization of uδ is vδ = cδuδ which is the unique outgoing solution in
H 1

loc
(Rd ) of

(1.6) div(sδA∇vδ ) + k2s0�vδ = fδ in R
d ,

where
fδ = cδ f,

4This assumption is used for various uniqueness statements obtained by the unique continuation
principle.
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and cδ is the normalization constant such that

(1.7) Eδ (vδ ) = δ

∫
�2\�1

|∇vδ |2 = 1.

In this paper, we establish properties (P1), (P2), and (P3) for doubly com-
plementary (A,�). Before giving the definition of doubly complementary media
for a general core-shell structure in the finite frequency regime, let us recall the
definition of reflecting complementary media introduced in [17, Definition 1].

Definition 1.1 (Reflecting complementary media). Let

�1 ⊂⊂ �2 ⊂⊂ �3 ⊂⊂ R
d

be smooth bounded simply connected open subsets of Rd . The media (A,�) in
�3 \ �2 and (−A,−�) in �2 \ �1 are said to be reflecting complementary if
there exists a diffeomorphism F : �2 \ �̄1 → �3 \ �̄2 such that F ∈ C1(�̄2 \ �1),

(F∗A,F∗�) = (A,�) for x ∈ �3 \ �2,(1.8)

F (x) = x on ∂�2,(1.9)

and the following two conditions hold:
(1) There exists a diffeomorphism extension of F , which is still denoted by F ,

from �2 \ {x1} → Rd \ �̄2 for some x1 ∈ �1;
(2) There exists a diffeomorphism

G : Rd \ �̄3 → �3 \ {x1}
such that G ∈ C1(Rd \ �3), G(x) = x on ∂�3, and G ◦ F : �1 → �3 is a
diffeomorphism if one sets G ◦ F (x1) = x1.

Here and in what follows, if T is a diffeomorphism, a and σ are a matrix-valued
function and a complex function, we use the following standard notations:

(1.10) T∗a(y) =
DT(x)a(x)∇T(x)T

| det∇T(x)| and T∗σ(y) =
σ(x)

| det∇T(x)|
where x = T−1(y).

Conditions (1.8) and (1.9) are the main assumptions in Definition 1.1. The
key point behind this requirement is, roughly speaking, the following property: if
u0 ∈ H 1(�3 \ �1) is a solution of div(s0A∇u0) + k2s0�u0 = 0 in �3 \ �1 and if u1

is defined in �3 \ �2 by u1 = u0 ◦ F−1, then div(A∇u1) + k2�u1 = 0 in �3 \ �2,
u1−u0 = A∇(u1−u0) ·ν = 0 on ∂�2 by Lemma 2.2, a change of variables formula.
Here and in what follows, ν denotes the outward unit vector on the boundary of
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a smooth bounded open subset of Rd . Hence u1 = u in �3 \ �2 by the unique
continuation principle; see, e.g., [28]. Conditions (1) and (2) are mild assumptions.
Introducing G makes the analysis more accessible; see [17, 18, 21, 26] and the
analysis presented in this paper.

Remark 1.1. Let d = 2, A = I , 0 < r1 < r2 < +∞ and set r3 = r2
2/r1.

Letting F be the Kelvin transform with respect to ∂Br2 , i.e., F (x) = r2
2x/|x|2 and

�i = Bri , one can verify that in the quasistatic regime the core-shell structures
considered by Milton and Nicorovici in [15] and by Kohn et al. in [12] have the
reflecting complementary property.

Remark 1.2. The class of reflecting complementary media has played an
important role in other applications of NIMs such as cloaking and superlensing
using complementary media; see [18, 21, 26].

We are ready to introduce the concept of doubly complementary media for the
finite frequency regime.

Definition 1.2. The medium (s0A, s0�) is said to be doubly complemen-
tary if for some �2 ⊂⊂ �3, (A,�) in �3 \ �2 and (−A,−�) in �2 \ �1 are
reflecting complementary, and

(1.11) F∗A = G∗F∗A = A and F∗� = G∗F∗� = � in �3 \ �2,

for some F and G as in Definition 1.1 (see Figure 1).

The reason media satisfying (1.11) are called doubly complementary, is that
(−A,−�) in �2 \ �1 is not only complementary to (A,�) in �3 \ �2 but also to
(A,�) in (G ◦ F )−1(�3 \ �2) (a subset of �1) (see [19]). The key property behind
Definition 1.2 is as follows. Assume that u0 ∈ H 1

loc
(Rd ) is a solution of (1.4) with

δ = 0 and f = 0 in �2. Set u1 = u0 ◦ F−1 and u2 = u1 ◦ G−1. Then u1, u2 satisfy
the equation div(A∇·) + k2�· = 0 in �3 \�2, u0 −u1 = A∇u0 ·ν−A∇u1 ·ν = 0 on
∂�2, and u1 − u2 = A∇u1 · ν − A∇u2 · ν = 0 on ∂�3 by Lemma 2.2 (two Cauchy
problems appear, one for (u0, u1) and one for (u1, u2)). This implies relations
between u0, u1, and u2.

Remark 1.3. Taking d = 2, A = I and r3 = r2
2/r1, and letting F and G

be the Kelvin transform with respect to ∂Br2 and ∂Br3 , one can verify that the
core-shell structures considered by Milton and Nicorovici in [15] have the doubly
complementary property. It is worth noting that one requires no information of A
outside Br3 and inside Br2

1/r2
in the definition of doubly complementary media.

More examples on doubly complementary media with quite simple formulas are
given in Section 2.3.
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F∗A, F∗Σ

−A, −Σ

K∗A, K∗Σ

F

K
Ω1

Ω2 \ Ω1
Ω3 \ Ω2

K = F −1oG−1oF

Figure 1. (s0A, s0�) is doubly complementary: (−A,−�) in �2 \ �1 is comple-
mentary to (F∗A,F∗�) in �3 \ �2 and (K∗A,K∗�) with K = F−1 ◦ G−1 ◦ F in
�2 \ �1.

Remark1.4. Given (A,�) inRd and�1 ⊂ �2 ⊂⊂ R
d , it is not easy in general

to verify whether or not (s0A, s0�) is doubly complementary. Nevertheless, given
�1 ⊂ �2 ⊂⊂ �3 ⊂⊂ R

d and (A,�) in �3 \ �2, it is quite easy to choose (A,�)
in �2 such that (s0A, s0�) is doubly complementary. One just needs to choose
diffeomorphisms F and G as in Definition 1.1 and define (A,�) = (F−1∗ A,F−1∗ �)
in �2 \ �1 and (A,�) = (F−1∗ G−1∗ A,F−1 ∗ G−1∗ �) in F−1 ◦ G−1(�3 \ �2). This
idea is used in Section 5 when we discuss cloaking sources in an arbitrary medium.

The first result of this paper is the following theorem which reveals the behavior
of uδ for a general source f with support outside �2.

Theorem1.1. Let d ≥ 2, k > 0, 0 < δ < 1, f ∈ L2
c(R

d ) with supp f ∩�2 = Ø,
and let uδ ∈ H 1

loc
(Rd ) be the unique outgoing solution of (1.4). Assume that

(s0A, s0�) is doubly complementary. Then

(1.12) uδ → û weakly in H 1
loc

(Rd \ �3),

where û ∈ H 1
loc

(Rd ) is the unique outgoing solution of

(1.13) div(Â∇û) + k2�̂û = f in R
d .

Here

(1.14) (Â, �̂) :=

⎧⎨
⎩

(A,�) in Rd \ �3,

(G∗F∗A,G∗F∗�) in �3.
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Using Theorem 1.1, one can establish the equivalence between the blow-up of
the power and the cloaking of a source via ALR as follows. Suppose that the power
blows up, i.e.,

lim
n→∞ δn‖∇uδn‖2

L2(�2\�1) = +∞.

Then, by Theorem 1.1, vδn → 0 in R
d \ �2 since cδn → 0; the localized resonance

takes place. The source cδn f is not seen by observers far away from the shell: the
source is cloaked. If the power Eδn(uδn) remains bounded, then the source is not
cloaked since uδn → û weakly in H 1

loc
(Rd \ Br3 ) and û ∈ H 1

loc
(Rd ) is the unique

outgoing solution to (1.13).

Remark 1.5. It follows from (1.10) that if (s0A, s0�) is a doubly comple-
mentary medium, then (A,�) is not piecewise constant; hence the separation of
variables method is out of reach for this setting in general.

In comparisonwith [20, Theorem1.1], Theorem1.1 in this paper is stronger: no
conditions on the blow up rate of the power are required. The proof of Theorem 1.1
is in the spirit of [20]. Nevertheless, we add two important ingredients. The first
one concerns the blow up rate of the power of uδ in (2.21), which is derived in this
paper instead of being assumed previously. The second one concerns the removing
localized singularity technique. In this paper, we are able to construct in a simple
and robust way the singular part of uδ which is necessary to be removed. This
helps us to avoid the ad-hoc separation of variables method for a general shell
developed and implemented in [20]. The construction of the removing term comes
from a remark of Etienne Sandier. The author would like to thank him for it. To
our knowledge, Theorem 1.1 is new and is the first result providing the connection
between the blow up of the power and the invisibility of a source in the finite
frequency regime. A numerical simulation from [10] illustrating Theorem 1.1 is
given in Section 2.3.

Concerning the blow up of the power, we can prove the following result which
holds for a large class of media in which the reflecting complementary property
holds only locally.

Proposition 1.1. Let d ≥ 2 and k > 0. Assume that there exists a dif-
feomorphism F : �2 \ �1 → �3 \ �2 for some �2 ⊂⊂ �3 ⊂ Rd such that

F ∈ C1(�̄2 \ �1), F (x) = x on ∂�2, and

(A,�) = (F∗A,F∗�) in D where D := B(x0,R0) ∩ (�3 \ �2)

for some x0 ∈ ∂�2 and R0 > 0. Let f ∈ L2
c(R

d ) and assume that A is Lipschitz
in D. There exists 0 < r0 < R0, independent of f , such that if (D1 := D ∩B(x0, r0)
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and there is no solution v ∈ H 1(D1) to the Cauchy problem

div(A∇v) + k2�v = f in D1 and v = A∇v · ν = 0 on ∂D1 \ ∂B(x0, r0))

then
lim sup

δ→0
δ

∫
�2\�1

|∇uδ |2 = +∞,

where uδ ∈ H 1
loc

(Rd ) is the unique outgoing solution of (1.4).

Property (P2) is understood in the sense of Proposition 1.1. Some conditions on
the source are necessarily imposed since for sources of the form div(A∇ϕ) + k2�ϕ

with smooth ϕ and suppϕ ⊂ R
d \ �3, the corresponding solution is ϕ, which is

bounded, and the power remains finite and even goes to 0. Note that (s0A, s0�)
is not required to be doubly complementary in Proposition 1.1. Proposition 1.1
is inspired from [22, Lemma 10] which has its root from [20]. More quantitative
conditions on the blow up of the power are presented in Proposition 1.3 where
�2 \ �1 = Br2 \ Br1 and (A,�) = (I, 1) in �3 \ �2, and the medium is doubly
complementary.

Concerning the boundedness of the power, we have the following result, which
implies Property (P3).

Proposition 1.2. Let d ≥ 2, k > 0, 0 < δ < 1, and f ∈ L2
c(R

d ), and let
uδ ∈ H 1(Rd ) be the unique solution (1.4). Assume that (s0A, s0�) is a doubly

complementary medium and supp f ∩ �3 = Ø. We have, for R > 0,

‖uδ‖H1(BR) ≤ CR‖ f ‖L2 ,

for some positive constant CR independent of f and δ .

Proposition 1.2 is a consequence of [17, Corollary 2 and Theorem 1]. A
more general version of Proposition 1.2 is given in Lemma 4.1 in Section 4.1.
The conclusion of Proposition 1.2 is somehow surprising and requires the doubly
complementary property since in general ‖uδ‖H1(BR) can be blown up with the
order 1/δ for some R > 0 (see [25, Theorem 2]). The blow up rate 1/δ is the worst
case possible (see Lemma 2.1).

In the case � j = Brj for j = 2, 3, (A,�) = (I, 1) in �3 \ �2 and d = 2, 3, more
quantitative estimates on the blow up and the boundedness of the power are given
in the following

Proposition 1.3. Let d = 2, 3, k > 0, and f ∈ L2
c(R

d ), and let uδ ∈ H 1(Rd )
be the unique solution of (1.4). Assume that (s0A, s0�) is a doubly complementary

medium, �2 = Br2 and �3 = Br3 for some 0 < r2 < r3, and (A,�) = (I, 1) in
Br3 \ Br2 . We have:
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(1) If there exists w ∈ H 1(Br0 \ Br2 ) for some r0 >
√

r2r3 with the properties

�w + k2w = f in Br0 \ Br2 and w = ∂rw = 0 on ∂Br2,

then

lim sup
δ→0

δ‖uδ‖2
H1(Br3 ) < +∞.

(2) If there does not exist v ∈ H 1(Br0 \ Br2 ) for some r0 <
√

r2r3 with the
properties

�v + k2v = f in Br0 \ Br2 and v = ∂rv = 0 on ∂Br2,

then

lim inf
δ→0

δ‖∇uδ‖2
L2(Br3\Br2 ) = +∞.

This proposition is in the spirit of [20, Theorems 1.2 and 1.3] (inspired by
[4]). One only assumes that (A,�) = (I, 1) in Br3 \ Br2 and (s0A, s0�) is doubly
complementary. Actually, (A,�) can be arbitrary outside of Br3 : the separation
of variables method is out of reach here. The proof of the first statement of
Proposition 1.3 is based on a variation of removing singularity technique and has
roots from [20]. A key point is the construction of the auxiliary function Wδ in
(4.17). The proof of the second statement is based on an observation on a Cauchy
problem in [20] and involves a three spheres inequality.

As a consequence of Proposition 1.3 and Theorem 1.1, one obtains new (non-
trivial) variants and generalizations of the result of Milton and Nicorovici in the
finite frequency regime in both two and three dimensions; note that (A,�) can be
arbitrary outside Br3 .

We finally point out that the stability of the Helmholtz equation with sign chang-
ing coefficients was studied by the integral method, the pseudodifferential operator
theory, and the T-coercivity approach in [7, 9, 11] and references therein, and was
recently unified and extended in [22] via the use of the reflecting technique and
the study of Cauchy’s problems. It was also shown in [22] that the complementary
property is necessary for the appearance of resonance.

The paper is organized as follows. The proof of Theorem 1.1 is given in
Section 2. In that section, we also provide various examples of doubly comple-
mentary media with quite simple formulas and numerical simulations illustrating
Theorem 1.1 (Section 2.3). Sections 3 and 4 are devoted to the proofs of Proposi-
tions 1.1 and 1.3 respectively. Finally, in Section 5, we present schemes of cloaking
a general class of sources via ALR in an arbitrary medium for the finite frequency
regime.
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2 Proof of Theorem 1.1

This section, containing three subsections, is organized as follows. In the first
subsection, we present a lemma on the stability of (1.4) and recall a change of
variables formula from [17] which is used repeatedly in this paper. The proof of
Theorem 1.1 is given in the second subsection. In the last subsection, we present
various examples of doubly complementary media with quite simple formulas and
present a simulation illustrating Theorem 1.1.

2.1 Preliminaries. The main result of this section is the following lemma,
which implies the stability of (1.4) and is used repeatedly in this paper.

Lemma 2.1. Let d ≥ 2, k > 0, δ0 > 0, R0 > 0, g ∈ H−1(Rd ) 5 with support
in BR0 . For 0 < δ < δ0, there exists a unique outgoing solution vδ ∈ H 1

loc
(Rd ) to

the equation

(2.1) div(sδA∇vδ ) + k2s0�vδ = g in R
d .

Moreover,

(2.2) ‖vδ‖2
H1(BR) ≤ CR

δ

∣∣∣
∫

gv̄δ

∣∣∣ + CR‖g‖2
H−1,

for some positive constant CR independent of g and δ .

Proof. We only establish (2.2). The uniqueness of vδ follows from (2.2). The
existence of vδ can be derived from the uniqueness of vδ by using the limiting
absorption principle; see, e.g., [22]. Without loss of generality, one may assume
that (1.1) holds for |x| ≥ R0 and �2 ⊂⊂ BR0 . We begin with establishing (2.2)
with R = R0 by contradiction. Assume that (2.2) with R = R0 is not true. Then
there exists (gδ ) ⊂ H−1(Rd ) such that suppgδ ⊂⊂ BR0 ,

(2.3) ‖vδ‖H1(BR0 ) = 1 and
1
δ

∣∣∣
∫

gδ v̄δ

∣∣∣ + ‖gδ‖2
H−1 → 0,

as δ → δ̂ ∈ [0, δ0], where vδ ∈ H 1
loc

(Rd ) is the unique solution to the equation

(2.4) div(sδA∇vδ ) + k2s0�vδ = gδ in R
d .

In fact, by contradiction, these properties only hold for a sequence (δn) → δ̂ .
However, for simplicity of notation, we still use δ instead of δn to denote an

5H−1(Rd ) denotes the dual space of H 1(Rd ).
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element of such a sequence. We only consider the case δ̂ = 0; the case δ̂ > 0
follows similarly. Since (see, e.g., [16, Lemma 2.3]), for R > R0,

(2.5) ‖vδ‖H1(BR\BR0 ) ≤ CR‖vδ‖H1/2(∂BR0 ),

for some positive constant CR independent of δ and gδ , and �vδ + k2vδ = 0 in
Rd \ BR0 , without loss of generality, one may assume that (vδ ) converges to v0

strongly in L2
loc

(Rd ), weakly in H 1
loc

(Rd ), and strongly in H 2(BR0+2 \ BR0 ) for some
v0 ∈ H 1

loc
(Rd ). Then, by (2.3), we obtain

(2.6) div(s0A∇v0) + k2s0�v0 = 0 in R
d .

Since vδ satisfies the outgoing condition, it follows that v0 also satisfies the outgoing
condition. Multiplying (2.4) by v̄δ and integrating on BR with R ≥ R0, we have

(2.7)
∫

BR

sδ 〈A∇vδ ,∇vδ〉 dx −
∫

BR

k2s0�|vδ |2 dx = −
∫

BR

gδ v̄δ dx +
∫

∂BR

∂rvδ v̄δ .

Letting δ → 0, by (2.3), we obtain, for R ≥ R0,

(2.8) �
(∫

∂BR

∂rv0v̄0

)
= 0.

Since v0 satisfies the outgoing condition, it follows from Rellich’s lemma that
v0 = 0 in R

d \BR0 .
6 Using (2.6) and the fact that v0 ∈ H 1

loc
(Rd ), we derive from the

unique continuation principle that

(2.9) v0 = 0 in R
d .

Letting R → ∞, considering the imaginary part in (2.7), and using (2.3), we obtain

(2.10) ‖∇vδ‖L2(�2\�1) → 0 as δ → 0.

Since vδ → v0 = 0 strongly in H 2(BR0+2 \ BR0 ), it follows that

lim
δ→0

∫
∂BR0+1

∂rvδ v̄δ = 0.

Considering the real part of (2.7) with R = R0 + 1, we derive from (2.10) that

‖vδ‖H1(BR0+1) → 0 as δ → 0.

We have a contradiction by (2.3). Hence (2.2) holds for R = R0.
The conclusion now follows from (2.5). �

6In the case δ̂ > 0, instead of (2.8), we obtain �(
∫
∂BR

∂rvδ̂ v̄δ̂ ) ≤ 0. This also implies that vδ̂ = 0 by

Rellich’s lemma. The rest of the proof works well for the case δ̂ > 0.
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We end this subsection by stating a change of variables formula which is a
consequence of [17, Lemma 2].

Lemma 2.2. Let D1 ⊂⊂ D2 ⊂⊂ D3 be three smooth bounded open subsets

of Rd . Let a ∈ [L∞(D2 \ D1)]d×d , σ ∈ L∞(D2 \ D1) and let T be a diffeomorphism
from D2 \ D̄1 onto D3 \ D̄2. Assume that u ∈ H 1(D2 \ D1) and set v = u ◦ T−1.

Then
div(a∇u) + σu = f in D2 \ D1,

for some f ∈ L2(D2 \ D1), if and only if

(2.11) div(T∗a∇v) + T∗σv = T∗ f in D3 \ D2.

Assume, in addition, that T(x) = x on ∂D2. Then

(2.12) v = u and T∗a∇v · ν = −a∇u · ν on ∂D2.

Recall that T∗a, T∗σ and T∗ f are given in (1.10). Here and in what follows,
when we mention a diffeomorphism T : � → �′ for two smooth open subsets
�, �′ of Rd , we mean that T is a diffeomorphism, T ∈ C1(�̄), and T−1 ∈ C1(�̄′).

2.2 Proof of Theorem 1.1. Define

u1,δ = uδ ◦ F−1 in R
d \ �2

and
u2,δ = u1,δ ◦ G−1 in �3.

It follows from (1.11) and Lemma 2.2 that

(2.13)
div(A∇u1,δ ) + k2�u1,δ + iδ div

(
A∇u1,δ

)
= div(A∇u2,δ ) + k2�u2,δ = 0 in �3 \ �2.

(2.14) uδ − u1,δ = 0 on ∂�2, A∇uδ

∣∣
�3\�2

· ν − (1 + iδ )A∇u1,δ · ν = 0 on ∂�2,

(2.15) u1,δ−u2,δ = 0 on ∂�3, and (1+iδ )A∇u1,δ

∣∣
�3\�2

·ν−A∇u2,δ ·ν = 0 on ∂�3.

Set

(2.16) ûδ =

⎧⎪⎪⎨
⎪⎪⎩

uδ in R
d \ �3,

uδ − (u1,δ − u2,δ ) in �3 \ �2,

u2,δ in �2.
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It follows from (2.13), (2.14) and (2.15) that ûδ ∈ H 1
loc

(Rd ) is the unique outgoing
solution of

(2.17)

⎧⎪⎪⎨
⎪⎪⎩

div(Â∇ûδ ) + k2�̂ûδ = f in Rd \(∂�2 ∪ ∂�3),

Â∇ûδ

∣∣
Rd\�3

·ν − Â∇ûδ

∣∣
�3

·ν =−iδA∇u1,δ

∣∣
�3\�2

·ν on ∂�3,

Â∇ûδ

∣∣
�3\�2

·ν − Â∇ûδ

∣∣
�2

·ν = iδA∇u1,δ

∣∣
�3\�2

·ν on ∂�2.

Here we used the fact that (Â, �̂) = (A,�) in �3 \ �2. By Lemma 2.1, we have
for R > 0,

(2.18) ‖uδ‖H1(BR) ≤ CRδ−1‖ f ‖L2 .

It follows from (2.17) and Lemma 2.1 again that, for R > 0,

‖ûδ‖H1(BR) ≤ CR‖ f ‖L2 .

As a consequence, we have for R > 0,

(2.19) ‖uδ‖H1(BR\�3) ≤ CR‖ f ‖L2 .

First fix R > 0 such that �3 ⊂⊂ BR and then fix x0 ∈ BR \�3 and r0 > 0 such that
B(x0, r0) ⊂ BR \ �3. We have, from (2.19),

(2.20) ‖uδ‖L2(B(x0,r0)) ≤ CR‖ f ‖L2 .

Using (2.18), (2.20), and the fact that div(A∇uδ ) + k2�uδ = f in BR \ �2, one is
able to derive from a three spheres inequality that ‖uδ‖L2(BR\�2) is much smaller
than δ−1‖ f ‖L2 , which is the order of an upper bound of ‖uδ‖H1(BR\�2). Indeed,
applying [1, Theorem5.3] to uδ in BR\�2 with ε = C‖ f ‖L2(BR\�2) for some positive
constant C large enough so that [1, (1.29)] holds with F = 0 (the largeness of C
depends only on R and �2), we obtain from (2.18) and (2.20) that, for 0 < δ < 1/2,

‖uδ‖L2(BR\�2) ≤ Cδ−1‖ f ‖L2/ lnμ(1/δ ),

for some positive constants C and μ, independent of f and δ (recall that R and r0

are fixed); this implies

(2.21) lim
δ→0

δ‖uδ‖L2(BR\�2) = 0.

Using (2.2) in Lemma 2.1, we get from (2.21) that

lim
δ→0

δ‖uδ‖H1(BR) = 0.

From (2.17) we have, for R > 0,

‖ûδ − û‖H1(BR) → 0 as δ → 0.

The proof is complete. �
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Remark 2.1. One of the key points in the proof is the definition of ûδ in
(2.16) after introducing u1,δ and u2,δ as in [20]. In �3 \ �2, we remove u1,δ − u2,δ

from uδ . The removing term is the singular part of uδ in �3 \ �2. The way of
defining the removing term is intrinsic and more robust than the one in [20], which
is based on the separation of variables for a general shell developed there. As
seen from there, the removing term becomes more and more singular when one
approaches ∂�2. The idea of removing the singular term was inspired by the study
of the Ginzburg–Landau equation in the work of Bethuel, Brezis and Helein in [5].
Another new important point in the proof is to establish (2.21). This is obtained
by first proving that uδ is bounded outside �3 (this is again based on the behavior
of ûδ ) and then applying a three spheres inequality.

2.3 Some examples of doubly complementary media and a numer-
ical simulation. We first present some examples of doubly complementary
media with quite simple formulas. Let 0 < r1 < r2 and α, β > 1 be such that
αβ − α − β = 0. Set r3 = rα

2 /rα−1
1 , r0 = rα

1 /rα−1
2 , and m = r3/r1 = (r2/r1)α, and

define � j = Brj for j = 1, 2, 3. Assume that

(2.22) A,� =

⎧⎪⎪⎨
⎪⎪⎩

I, 1 in Br3 \ Br2,

A1,�1 in Br2 \ Br1,

md−2I,md in Br1 \ Br0,

where

(2.23) A1, �1 =
rα
2

rα

[ 1
α − 1

er⊗er+(α−1)(eθ⊗eθ+eθ⊗eϕ)
]
, (α−1)

r3α
2

r3α
if d = 3,

and

(2.24) A1, �1 =
1

α − 1
er ⊗ er + (α − 1)eθ ⊗ eθ , (α − 1)

r2α
2

r2α
if d = 2.

Here the spherical and the polar coordinates are used. Considering F (x) = rα
2 x/|x|α

and G(x) = rβ
3 x/|x|β and noting that G ◦ F = mI , one can verify that (s0A, s0�) is

doubly complementary ( [18], see also [23] for details), (Â, �̂) = (I, 1) in Br3 \Br2 .
Next we present simulations illustrating Theorem 1.1. These are taken from the

joint work with Droxler and Hesthaven [10], where we present various simulations
illustrating cloaking and superlensing properties of NIMs in the two- and three-
dimensional acoustic settings. The author thanks them for allowing him to present
some simulations here. Consider the two-dimensional finite frequency regime with
k = 1. Set

r0 = 1/2, r1 =
√

2/2, r2 = 1, r3 =
√

2 and r4 =
√

2 + 1,
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and define � j = Brj for j = 1, 2, 3. Consider

A,� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

I, 1 in Br4 \ Br2,

I, r4
2/|x|4 in Br2 \ Br1,

I, 4 in Br1 \ Br0,

2I, 2 in Br0 .

Then (s0A, s0�) is doubly complementary by taking α = β = 2. Since G ◦F = 2I ,
one can verify that

Â, �̂ =

⎧⎨
⎩

I, 1 in Br4 \ Br2,

2I, 1/2 in Br2 .

In Figure 2, we present a simulation of û, the unique solution in H 1
0 (Br4 ) of the

equation div(Â∇û) + k2�̂û = f in Br4 where f = 5 in D and 0 otherwise and D is
the small (pink) region visible on the figure. The real part of uδ , the unique solution
in H 1

0 (Br4 ) to the equation div(sδA∇uδ ) + k2sδ�uδ = f in Br4 with δ = 5 × 10−5,
is given in Figure 3.

Figure 2. Simulation of û.

One easily sees from these simulations that the real parts of uδ and û are close
outside Br3 . This is consistent with the prediction given in Theorem 1.1. Note
that uδ blows up in Br3 \ Br1 ; hence the removing term u1,δ − u2,δ is necessary for
the boundedness of ûδ .7

7The simulations are performed for a bounded domain but this point is not essential.
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Figure 3. Simulation of uδ with δ = 5 × 10−5.

3 Proof of Proposition 1.1

We prove Proposition 1.1 by contradiction. Assume that

(3.1) lim sup
δ→0

δ‖∇uδ‖2
L2(�2\�1) < +∞.

Since div(A∇uδ ) + k2s0s−1
δ �uδ = 0 in �2 \ �1 and � is bounded above and below

by positive constants, it follows from a compactness argument that

‖uδ‖L2(�2\�1) ≤ C‖∇uδ‖L2(�2\�1).

We derive from (3.1) that

(3.2) lim sup
δ→0

δ‖uδ‖2
H1(�2\�1) < +∞.

Since, for R > 0,
‖uδ‖H1(BR) ≤ C‖uδ‖H1(�2\�1)

(see, e.g., [22, Lemmas 1 and 3]), it follows that, for R > 0,

lim sup
δ→0

δ‖uδ‖2
H1(BR) < +∞.

Define
u1,δ = uδ ◦ F−1 in �3 \ �2
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and set
vδ = u1,δ − uδ in D.

We then obtain

(3.3) div(A∇vδ ) + k2�vδ = gδ in D,

(3.4) vδ = 0 on D ∩ ∂�2 and A∇vδ · ν = hδ on ∂D ∩ ∂�2.

Here

gδ = −iδ div
(
A∇u1,δ

) − f =
iδ

1 + iδ
k2�u1,δ − f in D

and
hδ = iδ∇u1,δ · ν on ∂D ∩ ∂�2.

It is clear from (3.2) that

(3.5) ‖gδ + f ‖L2(D) + ‖hδ‖H−1/2(∂D∩∂�2) ≤ Cδ 1/2,

for some positive constant C independent of δ . Using (3.3), (3.4), and (3.5), and
applying [22, Lemma 10], we have

lim sup
δ→0

δ 1/2‖vδ‖H1(D) = +∞,

which contradicts (3.2). The proof is complete. �

4 Proof of Proposition 1.3

This section, containing two subsections, is devoted to the proof of Proposition 1.3.
In the first subsection we present two lemmas used in the proof of Proposition 1.3
and the proof of Proposition 1.3 is given in the second subsection.

4.1 Two useful lemmas. In this subsection we establish two lemmas
which are used in the proof of Proposition 1.3. The first one is a more general
version of Proposition 1.2.

Lemma 4.1. Let d ≥ 2, k > 0, 0 < δ < 1, f ∈ L2
c(R

d ), g ∈ H 1/2(∂�3), and
h∈H−1/2(∂�3). Assume that (s0A, s0�) is doubly complementary, supp f ∩�3 =Ø,

and Vδ ∈ ⋂
R>0 H 1(BR \ ∂�3) is the unique outgoing solution of

(4.1)

⎧⎨
⎩

div(sδA∇Vδ ) + k2s0�Vδ = f in Rd \ ∂�3,

[Vδ ] = g and [A∇Vδ · ν] = h on ∂�3.
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Then, for R > 0,

‖Vδ‖H1(BR\∂�3) ≤ CR
(‖ f ‖L2(�) + ‖g‖H1/2(∂�3) + ‖h‖H−1/2(∂�3)

)
,

for some positive constant CR independent of δ , f , g, and h.

Here and in what follows in this paper, we denote [v] = v |ext − v |int and
[M∇v · ν] = M∇v · ν|ext −M∇v · ν|int on ∂� for a smooth bounded open subset �
of Rd , for a matrix-valued function M , and for an appropriate function v .

Proof. The proof has its roots in [17] (see also [20]) and the key point is to
construct a solution V0 of (4.1) for δ = 0. Let V̂ ∈ ⋂

R>0 H 1(BR \ ∂�3) be the
unique outgoing solution to

⎧⎨
⎩

div(Â∇V̂ ) + k2�̂V̂ = f in R
d \ ∂�3,

[V̂ ] = g and [Â∇V̂ · ν] = h on ∂�3,

where (Â, �̂) is defined in (1.14). We obtain, for R > 0,

(4.2) ‖V̂‖H1(BR\∂�3) ≤ CR(‖ f ‖L2 + ‖g‖H1/2(∂�3) + ‖h‖H−1/2(∂�3)),

for some positive constant CR independent of f , g, and h. Define V0 in Rd as
follows:

(4.3) V0 =

⎧⎪⎪⎨
⎪⎪⎩

clV̂ in R
d \ �2,

V̂ ◦ F in �2 \ �1,

V̂ ◦ G ◦ F in �1.

Applying Lemma 2.2, we derive from (1.11) that V0 ∈ ⋂
R>0 H 1(BR \ (∂�3 ∪ ∂�1))

is an outgoing solution to

div(s0A∇V0) + k2s0�V0 = f in R
d \ (∂�3 ∪ ∂�1).

Applying Lemma 2.2 again, one obtains from the definition of V0 and V̂ that

[V0] = g and [A∇V0 · ν] = h on ∂�3,

and

[V0] = 0 and [A∇V0 · ν] = 0 on ∂�1.

Hence V0 ∈ ⋂
R>0 H 1(BR \ ∂�3) is an outgoing solution of (4.1) with δ = 0. Set

(4.4) Wδ = Vδ − V0 in R
d .
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Then Wδ ∈ H 1
loc

(Rd ) is the unique solution to

div(sδA∇Wδ ) + k2s0�Wδ = − div(iδA∇V01�2\�1 ) in R
d .

Here and in what follows, for a subset D of R
d , 1D denotes its characteristic

function. Applying Lemma 2.1, we have

(4.5) ‖Wδ‖H1(BR) ≤ CR‖V0‖H1(�2\�1).

The conclusion now follows from (4.2), (4.3), (4.4) and (4.5). �
Before stating the second lemma, we recall some properties of the Bessel and

Neumann functions and the spherical Bessel and Neumann functions of large
orders. We first introduce, for n ≥ 0,

(4.6) Ĵn(r) = 2nn!Jn(r) and Ŷn(r) = − π

2n(n − 1)!
Yn(r),

and

(4.7) ĵn(t) = 1 · 3 · · · (2n + 1) jn(t) and ŷn = − yn(t)
1 · 3 · · · (2n − 1)

,

where Jn and Yn are the Bessel and Neumann functions and jn and yn are the
spherical Bessel and Neumann functions of order n respectively. Then (see, e.g.,
[8, (3.57), (3.58), (2.37) and (2.38)]) one has, as n → +∞,

(4.8) Ĵn(t) = tn[1 + O(1/n)], Ŷn(t) = t−n[1 + O(1/n)],

(4.9) ĵn(r) = rn[1 + O(1/n)] and ŷn(r) = r−n−1[1 + O(1/n)].

Using (4.8) and (4.9), we can now implement the analysis in the quasistatic regime
developed in [20] to the finite frequency regime in this section.

We are ready to state the second lemma which is on a three spheres inequality
for the homogeneous Helmholtz equation in two and three dimensions.

Lemma 4.2. Let d = 2, 3, k > 0, R > 0, and let v ∈ H 1(BR) be a solution to

the equation �v + k2v = 0 in BR. Then, for 0 < R1 < R2 < R3 ≤ R,

‖v‖H1(BR2 ) ≤ CR,k‖v‖α
H1(BR1 )‖v‖1−α

H1(BR3 ),

where α = ln(R3/R2)/ ln(R3/R1) and CR,k is a positive constant independent of
R1,R2,R3, and v .

Remark 4.1. The case k = 0 is well-known and first noted by Hadamard in
two dimensions. A recent discussion on three spheres inequalities for second order
elliptic equations and their applications for cloaking using complementary media
is given in [26].
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Proof. By rescaling, one can assume that k = 1. We consider the cases d = 2
and d = 3 separately. We first give the proof in two dimensions. Since �v + v = 0
in BR, one can represent v in the form

v =
∞∑

n=0

∑
±

an,± Ĵn(|x|)e±inθ in BR,

for an,± ∈ C (n ≥ 0) with a0,+ = a0,− where Ĵn is defined in (4.6). Note that, for
0 < r ≤ R,

(4.10) ‖v‖2
H1(Br ) ∼

∞∑
n=0

∑
±

‖an,± Ĵn(|x|)e±inθ‖2
H1(Br ).

Here and in what follows in this section, a � b means that a ≤ Cb for some
positive constant C independent of n and δ and a ∼ b means that a � b and b � a.
On the other hand, for each n, there exists a constant Cn > 1 such that

(4.11) C−1
n |an,±|2r2 ≤ ‖an,± Ĵn(|x|)e±inθ‖2

H1(Br ) ≤ Cn|an,±|2r2.

The conclusion now follows from (4.8), (4.10) and (4.11) after applying Hölder’s
inequality.

The proof in three dimensions follows similarly. In this case v can be repre-
sented in the form

v =
∞∑

n=0

n∑
−n

an
m ĵn(|x|)Yn

m(x̂) in BR,

for an
m ∈ C and x̂ = x/|x| where Yn

m is the spherical harmonic function of degree n

and of order m. The conclusion is now a consequence of (4.9) after applying
Hölder’s inequality as in the two-dimensional case. The details are left to the
reader. �

4.2 Proof of Proposition 1.3. The proof is in the same spirit of [20,
Theorems 1.2 and 1.3] and is divided into two steps. By rescaling, one can assume
that k = 1.

Step 1. Proof of the first statement. Define

u1,δ = uδ ◦ F−1 in R
d \ Br3,

and
u2,δ = u1,δ ◦ G−1 in Br3 .

Let φ ∈ H 1(Br3 \ Br2 ) be the unique solution to

(4.12) �φ + φ = f in Br3 \ Br2, φ = 0 on ∂Br2, and ∂rφ − iφ = 0 on ∂Br3,
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and set
W = w − φ in Br0 \ Br2 .

Then W ∈ H 1(Br3 \ Br2 ) satisfies

(4.13) �W+W = 0 in Br0 \Br2 , W = 0 on ∂Br2, and ∂rW = −∂rφ on ∂Br2 .

We now consider the cases d = 2 and d = 3 separately.
Case 1. d = 2. Since �W + W = 0 in Br3 \ Br2 , one can represent W as

follows:

(4.14) W =
∞∑

n=0

∑
±

[an,± Ĵn(|x|) + bn,±Ŷn(|x|)]e±inθ in Br3 \ Br2,

for an,±, bn,± ∈ C (n ≥ 0) with a0,+ = a0,− and b0,+ = b0,− where Ĵn and Ŷn are
defined in (4.6). Using (4.8) and the fact that W = 0 on ∂Br2 , we derive that, for
large n,

(4.15) |bn,±| ∼ |an,±|r2n
2 .

It follows from (4.8) and (4.15) that, for some N > 0 independent of W ,

(4.16) ‖W‖2
H1(Br0 \Br2 ) ∼

N∑
n=0

∑
±

(|an,±|2 + |bn,±|2) +
∞∑

n=N+1

∑
±

n|a2
n,±|r2n

0 < +∞.

We also assume that (4.15) holds for n > N . One of the key points in the proof is
the construction of Wδ ∈ H 1(Br3 \ Br2 ) which is defined as follows

(4.17) Wδ =
∞∑

n=0

∑
±

1
1 + ξn

[
an,± Ĵn(|x|) + bn,±Ŷn(|x|)

]
e±inθ in Br3 \ Br2,

where

(4.18) ξn =

⎧⎨
⎩

0 if 0 ≤ n ≤ N,

δ 1/2(r3/r0)n if n ≥ N + 1.

From the definition of Wδ , we have

(4.19) �Wδ + Wδ = 0 in Br3 \ B̄r2, Wδ = 0 on ∂Br2,

and

(4.20) ‖Wδ‖2
H1(Br3 \Br2 ) ∼

N∑
n=0

∑
±

(|an,±|2 + |bn,±|2) +
∞∑

n=N+1

∑
±

n|an,±|2
1 + ξ 2

n
r2n
3 .
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From the definition of ξn in (4.18), we have

(4.21)
n|an,±|2
1 + ξ 2

n
r2n
3 ≤ δ−1n|an,±|2r2n

0 .

A combination of (4.16), (4.20) and (4.21) yields

(4.22) ‖Wδ‖H1(Br3\Br2 ) ≤ Cδ−1/2.

Here and in what follows, C denotes a positive constant independent of n and δ .
Let W1,δ ∈ H 1

loc
(R2) be the unique outgoing solution to
⎧⎨
⎩

div(sδA∇W1,δ ) + s0�W1,δ = 0 in R
2 \ ∂Br2,

[sδA∇W1,δ · ν] = (−1 − iδ )hδ on ∂Br2,

where
hδ = −∂r(φ + Wδ ) on ∂Br2,

and let W2,δ ∈ H 1
loc

(R2 \ ∂Br3 ) be the unique outgoing solution to
⎧⎨
⎩

div(sδA∇W2,δ ) + s0�W2,δ = f 1R2\Br3
in R

2 \ ∂Br3,

[W2,δ ] = φ + Wδ and [A∇W2,δ · ν] = ∂rφ + ∂rWδ on ∂Br3 .

From (4.12), (4.19), and the fact that (A,�) = (I, 1) in Br3 \ Br2 , we have

(4.23) uδ − (φ + Wδ )1Br3\Br2
= W1,δ + W2,δ in R

2.

Using (4.13) and (4.17), we obtain, on ∂Br2 ,

hδ = −∂r(φ + Wδ ) = ∂r(W − Wδ )

= ∂r

( ∞∑
n=N+1

∑
±

ξn

1 + ξn
[an,± Ĵn(|x|) + bn,±Ŷn(|x|)]e±inθ

)
.

It follows from (4.15) that

(4.24) ‖hδ‖2
H−1/2(∂Br2 ) �

∞∑
n=N+1

∑
±

n|ξn|2
1 + |ξn|2 |an,±|2r2n

2 .

From the definition of ξn in (4.18) and the fact that r0 >
√

r2r3, we derive that

(4.25)
n|ξn|2

1 + |ξn|2 r2n
2 ≤ δnr2n

0 .

A combination of (4.24) and (4.25) yields

‖hδ‖H−1/2(∂Br2 ) ≤ Cδ 1/2‖W‖H1/2(∂Br0 ) ≤ Cδ 1/2.
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Applying Lemma 2.1, we have

(4.26) ‖W1,δ‖H1(�) ≤ (C/δ )δ 1/2 = Cδ−1/2.

On the other hand, from (4.22) and Lemma 4.1, we obtain

(4.27) ‖W2,δ‖H1(Br3 \Br3 ) ≤ Cδ−1/2.

The conclusion for the case d = 2 now follows from (4.22), (4.23), (4.26), and
(4.27).

Case 2. d = 3. We represent W in the form

(4.28) W =
∞∑

n=0

n∑
−n

[an
m ĵn(|x|) + bn

mŷn(|x|)]Yn
m(x̂) in Br3 \ Br0,

for an
m, bn

m ∈ C and x̂ = x/|x|, where ĵn and ŷn are defined in (4.7). Define
Wδ ∈ H 1(Br3 \ Br2 ) by

Wδ =
∞∑

n=0

n∑
−n

1
1 + ξn

[an
m ĵn(|x|) + bn

mŷn(|x|)]Yn
m(x̂) in Br3 \ Br2,

where ξn is given by (4.18). The proof now follows similarly as in the case d = 2;
however, instead of using (4.8), we apply (4.9). The details are left to the reader.

Step 2: Proof of the second statement. Define u1,δ = uδ ◦ F and denote u2−n

and u1,2−n by un and u1,n for notational ease. We prove by contradiction that

(4.29) lim sup
n→+∞

2−n/2(‖un‖H1(Br3 \Br2 ) + ‖u1,n‖H1(Br3\Br2 )

)
= +∞.

Assume that

(4.30) m := sup
n

2−n/2(‖un‖H1(Br3 \Br2 ) + ‖u1,n‖H1(Br3\Br2 )
)

< +∞.

Define

vn = un − u1,n in Br3 \ Br2 and φn = i2−n∂ru1,n on ∂Br2 .

Then, by Lemma 2.2, we obtain

(4.31) �vn + vn = f in Br3 \ Br2, vn = 0 on ∂Br2, and ∂rvn = φn on ∂Br2.

We claim that (vn) is a Cauchy sequence in H 1(Br0 \ Br2 ). Indeed, set

Vn = vn+1 − vn in Br3 \ Br2 and �n = φn+1 − φn on ∂Br2 .
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We have

�Vn + Vn = 0 in Br3 \ Br2, Vn = 0 on ∂Br2, and ∂rVn = �n on ∂Br2 .

From (4.30), we derive that

(4.32) ‖Vn‖H1(BR2 \BR1 ) ≤ Cm2n/2 and ‖�n‖H1/2(∂Br2 ) ≤ Cm2−n/2.

Let Un ∈ H 1(Br3) be the unique solution of

�Un + Un = 0 in Br3 \ ∂Br2, [∂rUn] = �n, and ∂rUn − iUn = 0 on ∂Br3 .

We have

(4.33) ‖Un‖H1(Br3 ) ≤ C‖�n‖H−1/2(∂Br2 ).

Applying Lemma 4.2 for Vn1Br3\Br2
− Un in Br3 , we obtain from (4.33) that

‖Vn‖H1(Br0 \Br2 ) ≤ C(‖�n‖α
H−1/2(∂Br2 )‖Vn‖1−α

H1(Br3 \Br2 ) + ‖�n‖H−1/2(∂Br2 )),

where α = ln(r3/r0)/ ln(r3/r2) > 1/2 since r0 <
√

r2r3. It follows from (4.32) that

‖Vn‖H1(Br0 \Br2 ) ≤ Cm2−βn,

where β = (2α − 1)/2 > 0. Hence (vn) is a Cauchy sequence in H 1(Br0 \ Br2 ).
Let v be the limit of vn in H 1(Br0 \ Br2 ). It follows from (4.31) that

�v + v = f in Br0 \ Br2, v = 0 on ∂BR1 , ∂rv = 0 on ∂Br .

This contradicts the non-existence of v . Hence (4.29) holds. The proof is now
complete. �

5 Cloaking a source via anomalous localized resonance
in the finite frequency regime

In this section we describe how to use the theory discussed previously to cloak
a source f concentrated at a bounded smooth manifold of codimension 1 in an
arbitrary medium. We follow the strategy in [20]. Without loss of generality, one
may assume that the medium is contained in Br3 \ Br2 for some 0 < r2 < r3 and
characterized by a matrix-valued function a and a real bounded function σ. We
assume in addition that a is Lipschitz and uniformly elliptic in Br3 \ Br2 and σ is
bounded below by a positive constant. Let f ∈ L2(∂�) for some bounded smooth
open subset � ⊂⊂ Br3 \Br2 . We also assume that � ⊂⊂ B(x0, r0) for some r0 > 0
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and x0 ∈ ∂Br2 where r0 is the constant coming from Proposition 1.1. Define
r1 = r2

2/r3. Let F : Br2 \ {0} → R
d \ Br2 and G : Rd \ Br3 → Br3 \ {0} be the

Kelvin transform with respect to ∂Br2 and ∂Br3 respectively. Define

(5.1) A,� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a, σ in Br3 \ Br2,

F−1∗ a,F−1∗ σ in Br2 \ Br1,

F−1∗ G−1∗ a,F−1∗ G−1∗ σ in Br1 \ Br2
1/r2

,

I, 1 otherwise.

It is clear that (s0A, s0�) is doubly complementary. Applying Theorem 1.1 and
Proposition 1.1, we obtain

Proposition 5.1. Let d ≥ 2, δ > 0, and � ⊂⊂ D := B(x0, r0)∩ (Br3 \Br2 ) be
smooth and open, let f ∈ L2(∂�), and let uδ and vδ be defined by (1.4) and (1.6)
where (A,�) is given in (5.1). Assume that f �∈ H where

H :=
{
A∇v · ν∣∣

∂�
; v ∈ H 1

0 (�) is a solution of div(A∇v) + k2�v = 0 in �
}
.

There exists a sequence (δn) → 0 such that

lim
n→∞ Eδn(uδn) = +∞.

Moreover,

vδn → 0 weakly in H 1
loc

(Rd \ Br3 ).

Remark 5.1. It is worth noting from the definition of H that H has finite
dimensions and, for all positive k except for a discrete set, H = {0} by Fredholm’s
theory. Therefore, as a consequence of Proposition 5.1, for all positive frequency
except a discrete set and for all f ∈ L2(∂�), f is cloaked by the structure (5.1)
after the normalization.

Proof. By Theorem 1.1 and Proposition 1.1, it suffices to prove that there is
no W ∈ H 1(D) such that

div(A∇W ) + k2� = f in D and W = A∇W · η = 0 on ∂D ∩ ∂Br2 .

In fact, Theorem 1.1 and Proposition 1.1 only deal with the case f ∈ L2; however,
the same results hold for f stated here and the proofs are unchanged. Suppose that
this is not true, i.e., such a W exists. Since div(A∇W ) + k2�W = 0 in D \ �̄ and
W = A∇W · ν = 0 on ∂D ∩ ∂Br2 , it follows from the unique continuation principle
that W = 0 in D \ �̄. Hence W

∣∣
�

∈ H 1
0 (�) is a solution of div(A∇W ) + k2�W = 0

in �. We derive that f = −A∇W ·ν∣∣
�

on ∂�. This contradicts the fact that f �∈ H.
The proof is complete. �
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Linéaire 32 (2015), 471–484.

[19] H-M. Nguyen, Cloaking via anomalous localized resonance. A connection between the localized
resonance and the blow up of the power for doubly complementary media, C. R. Math. Acad. Sci.
Paris 353 (2015), 41–46.

[20] H-M. Nguyen, Cloaking via anomalous localized resonance for doubly complementary media in
the quasi static regime, J. Eur. Math. Soc. (JEMS) 17 (2015), 1327–1365.

[21] H-M. Nguyen, Cloaking using complementary media in the quasistatic regime, Ann. Inst. H.
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