
Technical Report

Sequential Proximity

Towards Provably Scalable Concurrent Search Algorithms

Karolos Antoniadis, Rachid Guerraoui, Julien Stainer, and Vasileios Trigonakis?

École Polytechnique Fédérale de Lausanne

1 Introduction

This report contains complementary definitions on sequential proximity [2]. Furthermore, in this report we
motivate sequential proximity by using it to prove that two concurrent search data structures are sequentially
proximal and show how sequentially proximity can help a developer create a highly-scalable linked list.

In Section 2 we present related work. In Section 3 we give precise definitions for logical deletion and
cleaning-up stores. Then, in Section 4 we prove two relations between sequential proximity properties and
classic progress conditions. In Section 5 we prove that a lock-based linked list [17] is sequentially proximal,
while in Section 6 we prove that a non-blocking linked list [16] satisfies sequential proximity. We conclude
in Section 7 where we present the trend of concurrent search data structures towards sequential proximity,
an example on how we can end-up with a highly-scalable concurrent linked list and some instances where
sequential proximity is violated.

2 Related Work

On the one hand, sequential proximity (SP) can be viewed as the formalization of a vast amount of prior
work that directly or indirectly calls for sequential-like concurrent designs (Section 2.1). On the other hand,
SP continues a long tradition of formal properties defined with respect to a sequential behavior (Section 2.2).

2.1 Common Practices

Several designers of concurrent search data structures (CSDSs) [9, 10, 15, 17, 22] pose as a design goal, one
way or another, similarity to sequential algorithms. For example, in the lazy list [17] algorithm “The wait-free
nature of the membership operation means that ongoing changes to the list cannot delay even a single thread
from deciding membership.” Similarly, the skip-list algorithm by Herlihy et al. [22] has “searches exactly as
in a sequential skip list.”

Read-copy update (RCU) [29] is a technique for designing CSDSs with sequential, wait-free reads. RCU
targets read-mostly workloads. Arbel and Attiya [3] extend RCU to better support concurrent updates.
PRCU [4] reduces the granularity of waiting in RCU. RLU [28] further provides concurrency of reads with
multiple writers. All these RCU variants enforce sequential search operations while improving the scalability
of updates.

Flat combining [18] and variants, such as RCL [27], optimize highly-contended critical sections by em-
ploying sequential executions of those critical sections. Unlike SP, flat combining targets data structures with
single points of contention, such as queues. Still, the idea of sequential execution to minimize synchronization
is identical in SP.

Universal constructions [19] can implement non-blocking CSDSs using their respective sequential design.
Universal constructions are rarely used in practice due to their inferior performance compared to hand-tuned
implementations. Similarly, the transactional memory (TM) abstraction [20, 36] takes as input sequential
code. TM executes this code with the necessary synchronization for preserving the sequential semantics in
the face of concurrency.

? This work has been supported in part by the European ERC Grant 339539 - AOC.

OPTIK [15] is a design pattern for concurrent data structures. OPTIK implements simple “transactions”
using validation with version numbers (i.e., read version number, execute, then lock and validate the version
number). OPTIK leads to sequential-like transactions with a “fixed” amount of locking and validation.

Asynchronized concurrency (ASCY) [9] is a paradigm comprising four informal patterns on how to design
CSDSs that scale across workloads and platforms. ASCY’s approach to scalability is, similarly to SP, to
reduce synchronization by designing concurrent algorithms that are close to their sequential counterparts.
Compared to SP, ASCY contains only high-level informal hints on designing scalable CSDSs, not precise
and formal properties.

All these aforementioned practical approaches either offer hints, or implementation tools on how to design
scalable concurrent data structures.

2.2 Theoretical Approaches

Classic correctness properties, such as linearizability [21] and serializability [34], are typically defined with
respect to a sequential specification. In the same vein, our definition of SP is based on a concrete sequential
implementation of the corresponding data structures.

Disjoint-access parallelism (DAP) [25] roughly states that operations that take as parameters different
memory addresses should not conflict on the same memory locations. Therefore, such operations progress
independently. Similarly, in a CSDS that satisfies SP, only update operations that operate on the same
vicinity in the respective sequential structure are allowed to conflict.

The scalable commutativity rule (SCR) [8] states that “whenever interface operations commute, they can
be implemented in a way that scales.” By definition, insert and delete operations of the CSDS interface do
not commute. Still, we can define commutativity between concrete parameters in CSDSs: Any two operations
on distinct elements commute. SCR’s definition of scalability is unsuitable even for these cases, because it
is based on the notion of conflict-free accesses which excludes cases such as a process writing to a memory
location that was read by another process. These intricacies of CSDSs are captured by SP, but not by SCR.

The “laws of order” paper [6] proves that atomic operations, such as compare-and-swap, cannot be
completely eliminated in many concurrent software constructs, such as queues and locks. Similarly, SP
“allows” insertions and deletions in CSDSs to perform up to a fixed number of atomic operations (either for
locking, or for lock-freedom).

Gibson et al. [13] (as well as [9, 17]) argue that search operations of CSDSs, such as lists, are better
off selfish (i.e., if they do not help other operations, e.g., by cleaning up the list). SP1 captures this exact
behavior.

Atalar et al. [5] introduce a way of modeling data structures in order to predict their throughput. This
model however only applies to lock-free data structures that have a constant retry loop [1], such as stacks
and queues. SP targets both lock-free and lock-based CSDSs.

3 Logical Deletion Algorithms

Many CSDSs [16, 17], when deleting a value (node) from their data structure, first mark the node to be
deleted and later on do the actual deletion, i.e., physical removal of the node.

3.1 Logically Deleting

Here we define what it means for a node to be logically deleted. Roughly speaking, a node is logically deleted
if the node is physically accessible, meaning it can be reached from the root pointer but search operations
are not able to find the value residing in this node.

Formally we say that a NodeAlloc(tal, π) has been logically deleted if:

– NodeAlloc(tal, π) was allocated during an insert(v) operation call;
– there is a successful delete(v) that is linearized at a write that corresponds to a transition tdel and this

write was issued to a location l ∈ NodeAlloc(tal, π);
– and NodeAlloc(tal, π) ⊆ reachable(root,∞)tdel , since it can be accessed by the root pointer.

3.2 Cleaning-Up Stores

Given a well-formed execution π and a contiguous subsequence π(a,b) of it, let us consider a transition
tw ∈ π(a,b) that corresponds to a global write or compare-and-swap statement in a location l. We say that tw
is a cleaning-up store in π(a,b) if one of the two following conditions hold.

– If tw is a global write or a successful compare-and-swap (i.e., one such that a call to compare-and-
swap(l, old, new) returns old) transition and there is a logically deleted node NodeAlloc(tal, π) such
that NodeAlloc(tal, π) ⊆ reachable(root,∞)tw−1 and NodeAlloc(tal, π) ∩ reachable(root,∞)tw = ∅.
This means that NodeAlloc(tal, π) is still physically accessible before the store, but not after it. Transi-
tion tw − 1 corresponds to the exact preceding transition of tw in π. For the above relations to hold, it
should be the case that tw is not the first transition in our execution, something that is valid to assume
if we consider that writes in a well-formed program take place only inside operations. This implies that,
before tw, there was an entry transition by the same process in π.

– If tw is an unsuccessful compare-and-swap transition. Then there should be a transition tr in π(a,b) by the
same process as the one taking tw that reads location l and a transition tw′ between tr and tw, taken by
a different process, that writes to location l.

The second condition is used to avoid having CSDSs that satisfy sequential proximity, where compare-
and-swap statements fail for no apparent reason.

Note that cleaning-up stores are not confined in parse phases but could as well take place in modify
phases.

4 Progress of Traversals

In what follows, we say that an operation op of a program Prog satisfies “n steps non-blocking”. This means,
that for any execution π ∈ JProgK, if for any transition ts ∈ π that corresponds to an operation-entry of op
and te ∈ π its matching operation-exit, then process proc(ts) is “n steps non-blocking” in the interval π(ts,te).
In case transition ts has no matching operation-exit in π, then process proc(ts) is “n steps non-blocking” in
the execution interval starting from transition ts until the end of execution π.

Also, note that we assume a scheduler that does not prevent any process from taking steps.

Proposition 1. If an operation op satisfies “n steps non-blocking” and allocates a finite amount of memory,
then it is obstruction-free.

Proof. Consider such an operation op that allocates a finite amount of memory and satisfies “n steps non-
blocking”. Note, that “n steps non-blocking” requires that at least one global read is issued during every n
steps taken by the process executing op. So, if op is executed solo, eventually it is going to run out of memory
locations it can read, and it is going to finish.

Definition 1 (Totally Ordered Nodes). We say that a program Prog has totally ordered nodes if there
exists a one-to-one function f such that, for every execution π ∈ JProgK and any pair of allocate transitions
(t1, t2) in π, either f(NodeAlloc(t1, π)) < f(NodeAlloc(t2, π)), f(NodeAlloc(t1, π)) = f(NodeAlloc(t2, π)),
or f(NodeAlloc(t1, π))) > f(NodeAlloc(t2, π)).

For example, the function f could be based on a field of the actual node, such as a value field, etc.
For the following definition we define read(opTrans(ten, π)) that corresponds to the read transitions of

an operation. Formally, read(opTrans(ten, π)) is the subsequence of transitions of opTrans(ten, π) that issue
a global read. For a transition tr that issues a read in π, we define al(tr, π) to be the transition tal such
that rloc(tr) ⊆ NodeAlloc(tal, π) (i.e., al(tr, π) is an allocate transition that allocates memory from where
transition tr reads from).

Definition 2 (Ordered Traversals). Consider a program Prog that has totally ordered nodes with function
f . Prog is said to have ordered traversals if for every execution π ∈ JProgK, for every entry transition ten
in π, if read(opTrans(ten, π)) = t1, t2, . . . , tn, then for any ti, tj in read(opTrans(ten, π)) with i < j it is
the case that f(NodeAlloc(al(ti, π), π)) ≤ f(NodeAlloc(al(tj , π), π)).

Definition 3 (Bounded Number of Nodes). We say that a program Prog has a bounded number of
nodes if ∃k ∈ N such that there is no execution π ∈ JProgK with at least k+ 1 transitions t1, t2, . . . , tk+1 ∈ π
and f(NodeAlloc(ti, π)) 6= f(NodeAlloc(tj , π)) for all i 6= j.

Proposition 2. If an operation op that has “n steps non-blocking”, follows an ordered traversal by a program
Prog in which all operations allocate a finite amount memory, and Prog has a bounded number of nodes
then op is wait-free.

Proof. Consider such an operation op that has “n steps non-blocking” and follows an ordered traversal. Since,
op has “n steps non-blocking”, it must read a location every n steps, since the nodes are totally ordered, it
has to read locations from “greater” nodes each time. And since the number of nodes is bounded, eventually
op is going to finish its execution. Therefore op is wait-free.

5 Lazy Linked List Proof

Here we prove that the slightly modified lazy linked list [17] whose algorithm is presented1 in Figure 5.2 is
sequentially proximal with respect to the sequential linked list depicted in Figure 5.1. The slight modification
corresponds to the parse phase result checks before actually acquiring the locks.

Before we present the proof, we describe some conventions regarding our pseudo-code presented in Fig-
ure 5.2.

Language. Although the syntax of our language does not contain while, for, or other similar constructs,
we include them in our pseudo-code examples that follow since they increase the readability of the examples.
They can be easily created using conditional expressions and branching constructs.

We slightly abuse notation when referring to nodes by writing n.x to mean the value of the x field of the
node n based on its set of allocated memory locations (usually x would correspond to some of the memory
locations that belong to the node). For example, n.next could correspond to the value of a next pointer of a
node. Similarly, for allocate statements, we write allocate(n) instead of allocate(n.v, n.next, . . .).

Initialization of Globals. We consider that the init operation is executed by a unique process before
any other transition of the program. The initG reference pointing to the head node that was allocated by the
init operation in Figure 5.2 is available to all processes.

Proof. We denote by LazyL the lazy linked list program and by SeqL the underlying SDS. Note that,
in the algorithm presented in Figure 5.2, we mark the commands (except the lock command) that issue a
global write to a memory location allocated during some other operation with “(GW)”.

For example, although the statements at lines 39 and 40 in LazyL issue global writes, we do not mark
them as such, since the writes are issued to the allocated node (newNode) of the operation. In other words,
the transitions that issue those writes do not belong to the OtherNodeWrites set. It is the write at line 42
that makes the node reachable by other processes.

Note that we consider that insert and delete operations can be invoked with any value v, besides −∞ and
+∞. Moreover, the entry and exit statements are omitted from the pseudo-code: They correspond respectively
to the call and the return statement of the function implementing the concerned operation.

We start by proving that LazyL produces only well-formed executions.

Lemma 1. Every execution π of LazyL is well-formed.

1 Our presented algorithm uses only one lock for insertion instead of two, but as the authors mention in [17] one
lock is adequate.

Proof. Consider an execution π of JLazyLK. The only calls to functions that occur inside the search, insert, and
delete operations are calls to the auxiliary function validate that does not call any function itself. Consequently,
for each process p, a matching exit statement (return statement of the function) immediately follows any
entry statement (call to the function corresponding to the operation) in hs(π)|p. It follows that, for any
process p, hs(π)|p is sequential. Hence, hs(π) is a well-formed history.

Consider now an entry insert transition ten in π. Since there is no branching nor return between beg- and
end-parse or beg- and end-modify statements, they appear by pairs in the right order in pm(opTrans(ten, π)).
Moreover, an end-parse (or an end-modify) returning false at line 28 (or line 50) is immediately followed by
an exit insert false (return false) statement (lines 30 and 52). A successful end-modify is followed by a return
true statement and a successful end-parse by a beg-modify. Finally, an end-modify statement returning restart
(line 50) triggers a jump to a beg-parse statement (line 51). Consequently, any insert operation of π follows
a parse-modify pattern. The same applies to delete operations.

The analysis of the code of Figure 5.2 shows that lock and unlock statements, as well as global reads and
writes only occur inside the search insert and delete functions (operations) (and inside the auxiliary function
validate which is itself only called from insert and delete functions). Consequently, π has no global transitions
outside operations.

Moreover, in the case of insert and delete operations, these global instructions only take place between
beg- and end-parse statements or between beg- and end-modify statements. It follows that π has no global
update transition outside parse and modify phases.

We can then conclude that all the executions π of JLazyLK are well-formed.

We continue by presenting lemmas that help us show that LazyL satisfies the sequential proximity
properties.

Lemma 2. LazyL has search read-only traversals: For any search entry transition ten in an execution
π ∈ JLazyLK, there is no transition executing a write instruction in any sequence of traversals(ten, π).

Proof. Checking the code of the search (lines 55-59) we can see that no stores are issued to global memory.
Therefore no transition executing a write instruction takes place.

Lemma 3. The value of a node remains unchanged in LazyL: The value field of a node after it is
inserted in the list never changes.

Proof. After the value field of a node is initialized at line 39, it is never modified. This can be verified by
looking at the algorithm in Figure 5.2, there is no statement changing the value field of a node.

Lemma 4. No process p can modify the fields of a locked node during an update operation, if
the node is locked by some other process p′ in LazyL: The fields of a node that is locked by some
process p′ cannot be modified by some other process p 6= p′ that is executing an insert or a delete operation.

Proof. Nodes are modified during either insert or delete operations. In an insert operation, a global write
occurs at line 42, but the node where previous points to has been locked at line 33. In a delete operation a
write occurs at lines 85 and 86, but in both cases the nodes where previous and current point to have been
locked at lines 78 and 79 respectively. Thus, in both cases a node is modified only after it has been locked
and since a lock cannot be acquired more than once, a node that is being locked by some process p′ cannot
be modified by some other process p 6= p′.

Lemma 5. Nodes are stored in increasing order of values in LazyL: Given two nodes n1 and n2 in
LazyL such that the next field of n1 points to n2 then n1.value < n2.value at any point during an execution
of LazyL.

Proof. Initially, after the execution of the init operation, it is the case that head.next=tail and head.value
= −∞ < +∞ = tail.value, so the inequality holds.

We continue by showing that every time the next field of a node is changed, the inequality still holds.
The next field of a node is changed during insert operations (line 42) or during delete operations (line 86).

Consider an insert operation that was invoked with a parameter v, and the last two nodes the parse phase
traversed correspond to the nodes n1 and n2, that correspond to previous and current respectively in the
code. We know that for the value of node n2, it is the case that v ≤ n2.value or otherwise the parse phase
would have continued (line 22) traversing nodes. Since the node n2 was read, this means that v > n1.value,
otherwise the parse phase would have stopped (line 22) when it read the value of node n1. Since the parse
phase was successful (line 29) this means that n2.value 6= v and thus v < n2.value. Afterwards, node n1 is
locked (line 33). It is then validated that the read nodes have not been modified (line 34) which means that
n1 still points to n2 and neither of the two nodes is logically deleted (marked). Since node n1 is locked, no
node can be appended between n1 and n2 by some other process because such a process would need to lock
n1 as well. Similarly, neither n1 or n2 can be logically deleted or removed from the list. Which means that
after n1 is locked, it is still the case that n1.value < v < n2.value. Since a locked node cannot be modified
by other processes due to Lemma 4 node n1 cannot be modified to point to some other node. And due to
Lemma 3, the value field of a node does not change. The new node is appended between n1 and n2 and
contains a value that is in-between n1.value and n2.value so the desired inequality still holds.

Consider a delete operation that was invoked with a parameter v, and the last two nodes the parse phase
traversed are the nodes n1 and n2, that correspond to previous and current respectively in the code. Consider
that n2.next points to a node n3. It should be the case that n1.value < n2.value, n2.value = v (otherwise the
parse phase would have failed at line 74), and n2.value < n3.value. Nodes n1 and n2 are locked at line 78
and line 80 respectively. It is then validated (line 80) that nodes n1 and n2 have not been modified: They
are both not marked and n1 still points to n2. Due to lemmas 3 and 4 a node cannot be inserted after n1

or n2 and the value field of a node does not change, so it still holds that n1.value < n2.value < n3.value.
After the deletion, when node n2 has been physically removed, n1 points to n3, and it is still the case that
n1.value < n3.value.

Therefore nodes are always stored in increasing order of their values, at any point during the execution.

Lemma 6. LazyL has search no back-step traversals: For any execution π ∈ JProgK, for any search
entry transition ten taken by process p in π, in every sequence trav in sequence in traversals(ten, π), process
p has no back-steps in trav.

Proof. Initially a search starts by reading head which contains the value −∞. A search operation continues by
moving to subsequent nodes following the next pointers (line 57) of the nodes. Due to Lemma 5, when a search
operation reads the value n.value of a node n and then moves to the next node n′, then n.value < n′.value.
Due to Lemma 3 the value of a node remains unchanged. Therefore, we infer that a node is never revisited
and there are consequently no back-steps.

Lemma 7. LazyL has search non-blocking traversals: There exists an n ∈ N such that for any execution
π ∈ JProgK, for any search entry transition ten taken by a process p in π, p is n steps non-blocking in every
sequence of traversals(ten, π).

Proof. For the “non-blocking” condition we set the needed n to be equal to 4. This means that at least one
global read is issued every 4 steps and furthermore no memory location is read more than 4 times. This
can be seen by checking what happens during the search operation, invoked with a parameter v. We can see
that the head of the list is assigned to current at line 55, then its value is read at line 56 and is compared
with the value v. Afterwards, if the comparison was successful the next field of the node is read at line 57
and now current points to another node. In this case, in just 3 steps, the search operation moved to a new
node. As was stated in Lemma 6, search operations do not revisit nodes. Therefore after moving to a new
node, previously read memory locations are never read again. If the while condition was unsuccessful then
the value and marked fields of the node are read in 2 steps (line 59), so a total number of 4 steps before the
search operation finishes.

To summarize, in at most 4 steps executed during a search operation a global read is issued. Moreover a
location is never read more than 4 times.

Lemma 8. LazyL has no insert or delete back-steps during a parse phase in LazyL: For any
execution π ∈ JProgK, for any update entry transition ten taken by process p in π, p has no back-steps in any
sequence of traversals(ten, π).

Proof. Parse phases are quite similar to search operations. A parse phase of an insert operation starts by
reading head which contains the value −∞. The parse phase then continues by moving to subsequent nodes
following the next pointers of the nodes. For every node, its value field (line 22) and its next field (line 24)
are read. The statement at line 23 does not correspond to a global read, it just assigns previous the same
pointer that current contains.

Due to Lemma 5, when a parse phase reads the value n.value of a node n and then moves to the next
node n′, then n.value < n′.value. Therefore, we infer that a node is never revisited.

Still, it could be the case that during the evaluation of the parse phase result (lines 26-27) a back-step is
taken (i.e., a location that belongs to some previously visited node is read).

But in the parse phase result, only the value field of current is read. But current points to the last node
that was read (when the while loop condition evaluated to false at line 22). So re-reading the value does not
constitute a back-step. The marked fields were never read before line 26 during the parse phase, so those
reads also do not constitute a back-step.

Similar arguments are applied to parse phases of delete operations. Therefore, we conclude that no process
takes back-steps in a parse phase.

Lemma 9. LazyL has insert and delete non-blocking traversals: There exists an n ∈ N such that
for any execution π ∈ JProgK, for any update entry transition ten taken by a process p in π, p is n steps
non-blocking in every sequence of traversals(ten, π).

Proof. The proof is similar to Lemma 7. The existing n can be any value greater or equal to 8. This means
that at least one global read is issued every 8 steps and furthermore no memory location is read more than
8 times. This can be seen by checking what happens during a parse phase. Since the parse phases of insert
and delete operations are almost the same (except the evaluation of the parse phase result) let us consider
the parse phase of an insert operation.

If the check in the while loop (line 22) fails, then in at most 5 steps the parse phase will be finished. If
not, the parse phase updates its previous and current pointers. As was stated in Lemma 8, a parse phase
keeps traversing the list while reading the value field of the node current, points to, without revisiting already
traversed nodes. Therefore memory locations, such as the value or next fields of a node are never read again,
except during the evaluation of the parse phase result. Still, if the while condition was unsuccessful, then
the value and marked fields of the node are read in 3 steps, so a total number of 5 steps before the update
operation finishes.

To summarize, in at most every 8 steps executed during a parse phase a global read is issued. Moreover
a memory location is never read more than 8 times. Same arguments apply for the parse phase of a delete
operation.

Lemma 10. LazyL has no allocation traversals and no allocation modifications: For any search
transition ten taken in π, there is no transition executing an allocate instruction in any sequence of
traversals(ten, π). Furthermore, for any transition ten taken in π that executes entry delete, there is no
transition executing an allocate instruction in any sequence of modifications(ten, π).

Proof. This directly follows from the code shown in Figure 5.2. The search and delete operations never allocate
memory. Only delete operations call another operation, namely the validate operation (line 80), which does
not allocate any memory either.

Lemma 11. No stores are issued during a parse phase in LazyL: For any update entry transition
ten in π, there are no stores in any sequence of traversals(ten, π).

Proof. No stores are issued during a parse phase as can been seen in Figure 5.2. Specifically for an insert
operation a parse phase consists of the statements from line 19 to 28 and none of these statements issue a
global write. For a delete operation, a parse phase consists of the statements from line 64 to 73 and none of
these issue a global write.

In the following lemmas, when saying that a node is inserted in the list of LazyL, we consider it happens
when the statement at line 42 (Figure 5.2) is executed.

Lemma 12. LazyL has insert and delete read-only unsuccessful modifications: For any complete
sequential history S ∈ SpecSDS and any sequence of processes P , the solo execution π = se(S, Prog, P)
verifies that: For every entry op transition ten in π that has a matching exit op false statement in hs(π), it
is the case that modifications(ten, π) = ∅.

Proof. For proving this lemma, we first argue that an update operation enters a modify phase at most once in
a solo execution. An update operation can execute a modify phase more than once only because of restarts.
Due to Lemma 19, restarts only occur due to concurrency (i.e., a concurrent process writing to a node).
Therefore in a solo execution of an update operation of LazyL, a modify phase can be executed at most
once.

Regarding unsuccessful modifications, there are two possible cases: unsuccessful insert and delete opera-
tions. Consider an unsuccessful insert operation that entered the modify phase. Since it is unsuccessful, this
means that the operation returned false at line 36. This occurs only if current.value = v (at line 35). But at
the end of the parse phase it was checked that current.value 6= v (line 29). Since, the operations are being
executed solo, current.value could not have been modified by some other process in the meantime. Since there
is at most one modify phase that can take place in an update operation, this contradicts the statement that
an unsuccessful insert has entered the modify phase. Similar argument can be applied to show that LazyL
has delete read only unsuccessful modifications.

Lemma 13. Number of stores: LazyL has a sequential number of stores per modification, with respect to
SeqL.

Proof. This can be easily seen in tables 1 and 2. A modify phase in LazyL only acquires one lock during an
insert (line 33) and two locks during a delete (lines 78 and 79). Also, an insert only issues one global write
(line 42) to a node that was not allocated by it. A delete issues only two global writes (line 85 and 86).

SeqL Number of Stores and Freed Nodes

MaxOtherNodeWrites(insert) = 1

MaxOtherNodeWrites(delete) = 1
MaxFreedNodes(delete) = 1

Table 1. Number of stores and freed nodes by the sequential linked list.

LazyL Number of Stores and Acquired Locks

insert
|AcquiredLocks(modi)|= 1

|OtherNodeWrites(modi, π)|= 1

delete
|AcquiredLocks(modi)|= 2

|OtherNodeWrites(modi, π)|= 2
Table 2. Number of stores and acquired locks by the lazy linked list.

Lemma 14. The value of a node remains unchanged in SeqL: The value field of a node never changes
after it is inserted in the list.

Proof. After the value field of a node is initialized at line 27, it is never modified. This can be verified by
looking at the algorithm in Figure 5.1, there is no statement changing the value field of a node.

For the following lemma, when we say that a node is locked by some process, we mean that this process
executed a lock statement on the lockf field of this node and has not yet issued an unlock statement on the
same lockf field.

Lemma 15. Nodes are stored in increasing order of values in SeqL: Given two nodes n1 and n2 in
SeqL such that the next field of n1 points to n2 then n1.value < n2.value at any point during an execution of
SeqL.

Proof. Since there is no concurrency in SeqL, similar arguments as in Lemma 5 can be used to prove this
lemma, although simpler ones.

Lemma 16. No marked or locked nodes exist in a steady state in LazyL: In any steady state
π ∈ JLazyLK that is produced by a solo execution there is no reachable marked or locked node.

Proof. A node can only be marked during a delete operation. After a node is marked (line 85) then it is
physically removed (line 86) by the same process that is executing the delete operation. When a node is
physically removed it is not reachable anymore from the head of the list. Thus, an operation that starts
traversing the list after the delete operation finished will not be able to reach (“see”) this node.

Concerning locked nodes, operations always unlock their acquired locks before returning. An insert op-
eration first locks the node pointed to by previous at line 33 and then unlocks this same node at line 49. A
delete operation first locks the nodes pointed to by previous and current at lines 78 and 79 respectively, it
then unlocks the nodes pointed to by current and previous at lines 93 and 94 respectively. Note that nodes
are unlocked even if an update operation restarts due to a failed validation, at line 51 of insert operations or
at line 96 of delete operations.

Thus, we conclude that there exists no marked or locked nodes in a steady state.

Lemma 17. Each node is associated with exactly one value in LazyL: There is a one to one corre-
spondence between a node and its value.

Proof. Nodes are created when memory is allocated which occurs only during an insert (line 38) operation
or during the init operation (line 4 or 6). In the case of an insert, that was invoked with a parameter v, the
allocated node is associated with the value v. While the first node allocated by init corresponds to value −∞,
and the second to the value +∞.

Lemma 18. Each node is associated with exactly one value in SeqL: There is a one to one corre-
spondence between a node and a value.

Proof. Similar to Lemma 17.

Lemma 19. LazyL has valid conflict restart modifications, with respect to SeqL: For any complete
sequential history S′ with at least four tuples, (S′, SeqL, LazyL) is a valid restart triple.

Proof. Consider a complete sequential history S′ = S, en0, ex0, en1, ex1. We are going to prove that t =
(S′, SeqL, LazyL) is a valid restart triple.

Assume by the way of contradiction that t is not a valid restart triple. This means that a solo execution
πS = se(S′, SeqL, PS) exists such that transitions ten0

and ten1
, that correspond to entry statements en0 and

en1 in πS , are conflict-free, but there exists an extension πC′ of se(S,LazyL, PC) such that the transitions
that correspond to the entry statements en0 and en1 in πC′ are not restart-free.

An operation in SeqL can write to at most one node (e.g., for an insert operation, one global write takes
place at line 29) and obviously at most one node is freed. Therefore, we have WrittenNodes(ten0 , πS) ∪
FreedNodes(ten0 , πS) ⊆ {rn0, rn1} and WrittenNodes(ten1 , πS) ∪ FreedNodes(ten1 , πS) ⊆ {rn′0, rn′1}.
LazyL writes to at most one node during an insert operation and at most to two nodes in case of a
delete operation. But in the case of a delete operation, the second written node corresponds to the node
to be freed (due to marking at line 85). So, in the concurrent execution of the operations en0 and en1 in
πC′ , en0 is going to write to at most two nodes with values rn0.value and rn1.value, and en1 is going to

write to at most nodes with values rn′0.value and rn′1.value. Since the transitions ten0 and ten1 are conflict-
free in πS , this means that (WrittenNodes(ten0 , πS) ∪ FreedNodes(ten0 , πS)) ∩ (WrittenNodes(ten1 , πS) ∪
FreedNodes(ten1

, πS)) = ∅, which means (due to Lemma 17) that the sets of values are disjoint:
{rn0.value, rn1.value} ∩ {rn′0.value, rn′1.value} = ∅. Subsequently, this means that the concurrent execution
of operations en0 and en1 in πC are going to write to different values and hence different nodes. Restarts in
both insert and delete operations occur when the call to validate, lines 34 and 80 respectively, returns false.
This happens if the nodes pointed to by previous or current are modified. Since, both operations write to
different nodes, it is the case that one operation does not invalidate the other. Meaning a restart cannot
occur, a contradiction.

Lemma 20. Nodes created by solo executions of LazyL and SeqL that contain the same value,
are associated with the same relative node: Consider a sequential history S that is executed solo by
LazyL and SeqL. At the end of the execution, LazyL contains a node nLazy that is reachable from the head
of the list generated by LazyL. While SeqL contains a node nSeq that is reachable from the head of the list
generated by SeqL. Consider that the node nLazy is associated with the relative node rnLazy, while the node
nSeq is associated with the relative node rnSeq. If nLazy.value = nSeq.value then rnLazy = rnSeq.

Proof. Due to Lemma 16 all reachable nodes after a solo execution are not marked or locked in LazyL. The
same applies to SeqL, since the sequential linked list does not use any locks or employ logical deletions.

Assume by the way of contradiction that nodes nLazy and nSeq exist such that nLazy.value = nSeq.value
but rnLazy 6= rnSeq. Since nLazy.value = nSeq.value, both nodes were allocated (line 38) during an insert
operation that was invoked with a parameter of value v, where v = nLazy.value = nSeq.value. Since the node
was created (allocated), this means that this insert invocation was successful (i.e., it returned true). Assume
that rnLazy=(l, 1) while rnSeq=(s, 1) where the second part of both nodes is one since insert operations
call the allocate instruction only once. Since rnLazy 6= rnSeq, this implies that l 6= s. Assume that l < s,
this means that when the subsequent insert operation was invoked with parameter v, the insert operation
that exists in position s of the sequential history S2, could not have returned true, since a unmarked node
with value v was still reachable in the list. Similar arguments apply if s < l. A contradiction. Therefore
rnLazy = rnSeq.

Lemma 21. Region of stores per modification: LazyL has a valid region of stores per modification with
respect to SeqL.

Proof. Assume by the way of contradiction that there exists a sequential history S, two sequences of processes
PC and PS and an operation op such that LazyL does not satisfy SP9. If there are many operations in S,
then we consider as op the first operation such that this holds. We examine the cases based on what op can
be: insert or delete.

Since search operations do not issue any stores, neither in LazyL, nor in SeqL we do not have to take
them into account. Nevertheless, we start by showing that for a search operation in S, LazyL and SeqL read
the same nodes. This helps us show that LazyL and SeqL write to similar nodes.

Assume op is a search operation that was invoked with a parameter of value v. search operations read the
same nodes while looking for value v. Let us assume they do not. We prove that this is impossible, by showing
that both search operations in SeqL and LazyL read the same nodes and in the same order. We start by
noticing that both operations read from their respective head node. Assume that the first two nodes that they
read, that have different values, are nSeq from SeqL and nLazy from LazyL with nSeq.value 6= nLazy.value.
Since the nodes have different values, assume that nSeq.value < nLazy.value, this means that the LazyL
never visited a node with value nSeq.value and since the nodes are stored in increasing order of their values
(Lemma 5). this means that value v, is never going to be read by LazyL, a contradiction. The same argument
can be applied when nSeq.value > nLazy.value. Both programs are eventually going to stop when they read
the first node that contains a value greater or equal to v, which should be the same in both algorithms for the
aforementioned reason. Since both search operations read the same values for each node, due to Lemma 20
they are going to read the same relative nodes.

2 Note that LazyL and SeqL execute the exact same sequential history S.

We can now discuss about update operations. Assume that op is an insert or delete operation for a value
v. The same argument as before can be used to show that a parse phase is going to read the exact same nodes
in both SeqL and LazyL. Therefore since both algorithms write the previous pointer, which corresponds to
the same node, they are going to have equal sets of written nodes. Note that since we are talking about
solo executions, due to what was described in the proof of Lemma 12, at most one modify phase takes place
during an update operation. Since parse phases do not issue any write instruction in LazyL, the written
nodes during all the modifications of an update operation correspond to the written nodes of the operation.

Theorem 1. LazyL is sequentially proximal with respect to SeqL.

Proof. Lemma 2 entails that search operations of LazyL follow SP1. Lemma 7 implies they respect SP2,
Lemma 6 shows that they fulfill SP3, while Lemma 10 proves that they respect SP4.

By Lemma 9, the parse phases of update operations in LazyL follow SP2. Lemma 8 shows that they also
fulfill SP3, Lemma 10 proves they verify SP4, and Lemma 11 ensures that they respect SP5.

Finally, Lemma 12 implies that the modify phases of update operations in LazyL verify SP6, Lemma 19
shows they fulfill SP7, by Lemma 13 they respect SP8, and by Lemma 21 SP9. Moreover, Lemma 10 entails
that delete operations of LazyL verify SP10.

Theorem 2. The original lazy linked list algorithm [17] (denoted with OLazyL) is not sequentially proximal
with respect to SeqL.

Proof. OLazyL is not sequential proximal with respect to SeqL since it does not satisfy SP6. This means
that OLazyL does not have insert read-only unsuccessful modifications. Consider that we execute solo the
following history S = (p, entry insert v), (p, exit insert true), (p, entry insert v), (p, exit insert false). The first
insertion returns true since the list does not contain v initially, but the second insert operation is unsuccessful
since v resides already in the list. This means that the second unsuccessful insert operation should not issue
any write. But OLazyL first locks a node, and therefore issues a global write (e.g., write or compare-and-swap
instruction), and then verifies if v is in the list or not. This means that OLazyL does not satisfy SP6 and
therefore it is not sequential proximal.

6 Harris Linked List Proof

In this section we prove that a slightly modified version (Figure 6.1) of Harris concurrent linked list [16] is
sequentially proximal w.r.t. the sequential linked list of Figure 5.1.

The differences between the program presented in Figure 6.1 (denoted HarrisL) and the original Harris
concurrent linked list [16] are the following: (a) the search operation is modified so that it becomes read-only
(in the original algorithm, cleaning-up stores were issued during parse phases) and (b) the parse phases of
update operations do not restart on failed cleaning-up stores anymore.

The proof being similar to the one of the lazy linked list in Section 5, we present detailed proofs of lemmas
only when they differ from those of this previous proof.

Lemma 22. Every execution π of HarrisL is well-formed.

Proof. Similar arguments as those used in the proof of Lemma 1 apply here.

Lemma 23. HarrisL has search read-only traversals: For any search entry transition ten in an execu-
tion π ∈ JLazyLK, there is no transition executing a write instruction in any sequence of traversals(ten, π).

Proof. The proof is similar to the proof of Lemma 2.

Lemma 24. The value of a node remains unchanged in HarrisL: The value field of a node after it
is inserted in the list never changes.

1 Node i n i t G

2

3 f unct ion i n i t () {
4 a l l o c a t e (head)
5 head . v a l u e = −∞
6 a l l o c a t e (t a i l)
7 t a i l . v a l u e = +∞
8 i n i t G = head
9 i n i t G . nex t = t a i l

10 }
11

12 f unct ion i n s e r t (v) {
13 beg-pa r s e
14 Node p r e v i o u s = i n i t G

15 Node c u r r e n t = p r e v i o u s . nex t
16 wh i l e (c u r r e n t . v a l u e < v) {
17 p r e v i o u s = cu r r e n t
18 c u r r e n t = cu r r e n t . nex t
19 }
20 pr = (c u r r e n t . v a l u e 6= v)
21 end-pa r s e pr
22 i f (not pr)
23 r e t u r n f a l s e
24

25 beg-modi fy
26 a l l o c a t e (newNode)
27 newNode . v a l u e = v
28 newNode . nex t = cu r r e n t
29 p r e v i o u s . nex t = newNode (GW)
30 end-modi fy t r u e
31 r e t u r n t r u e
32 }

Algorithm 1.1. Linked list with no global lock
during traversals.

33 f unct ion search (v) {
34 Node c u r r e n t = i n i t G

35 wh i l e (c u r r e n t . v a l u e < v) {
36 c u r r e n t = cu r r e n t . nex t
37 }
38 r e t u r n c u r r e n t . v a l u e = v
39 }
40

41 f unct ion de le te (v) {
42 beg-pa r s e
43 Node p r e v i o u s = i n i t G

44 Node c u r r e n t = p r e v i o u s . nex t
45 wh i l e (c u r r e n t . v a l u e < v) {
46 p r e v i o u s = cu r r e n t
47 c u r r e n t = cu r r e n t . nex t
48 }
49 pr = (c u r r e n t . v a l u e = v)
50 end-pa r s e pr
51 i f (not pr)
52 r e t u r n f a l s e
53

54 beg-modi fy
55 p r e v i o u s . nex t = cu r r e n t . nex t (GW)
56 end-modi fy t r u e
57 r e t u r n t r u e
58 }

Algorithm 1.2. Linked list with no global lock
during traversals.

Fig. 5.1. Sequential Linked List.

Proof. The same arguments as in the proof of Lemma 3 apply here.

Lemma 25. Nodes are stored in increasing order of values in HarrisL: Given two nodes n1 and
n2 in HarrisL such that the next field of n1 points to n2 then n1.value< n2.value at any point during an
execution of HarrisL.

Proof. The proof of this lemma is similar to the proof of Lemma 25. Meaning that we initially show that
the nodes are stored in increasing order and then show that the inequality still holds after an insert or delete
operation is applied.

Initially, after the execution of the init operation, it is the case that head.next = tail and head.value =
−∞ < +∞ = tail.value, so the inequality holds.

The searchHelper always returns a pair of nodes (left˙node, right˙node) such that following at least one next
pointer from left node will lead to right node. The pair of nodes (left˙node, right˙node) returned by search-
Helper satisfies the inequality left˙node.value ¡ right˙node.value. searchHelper stops when it reads something
greater than the searched value v. It is then the case that left˙node.value ¡ v ≤ right˙node.value.

We now examine all the cases where a next field is being modified. We first check the case of an insert
operation. An insert issues a compare-and-swap instruction at line 47, where it atomically does two operations:
checks if previous.next points to current and, if this is the case, makes previous.next to point to newNode.
Furthermore newNode.next already points to current due to the assignment at line 45. Since newNode.value
corresponds to v that is between previous.value and current.value, the inequality still holds.

The case of a delete operation is similar. At line 84 a physical removal that removes the node current
from the list takes place. Since previous.value ≤ current.value ≤ current.next.value, after the deletion it holds
that previous.next = current and obviously still previous.value ≤ current.value. The reason is that the compare-
and-swap instruction is atomic. Similarly to the delete operation, after a successful CAS write at line 26 of
searchHelper, the inequality still holds.

Lemma 26. HarrisL has search no back-step traversals: For any execution π ∈ JProgK, for any search
entry transition ten taken by process p in π, in every sequence in traversals(ten, π), process p has no back-
steps in trav.

Proof. Using the same argument as in Lemma 6 and applying Lemma 25 is enough to achieve this proof.

Lemma 27. HarrisL has search non-blocking traversals: There exists an n ∈ N such that for any
execution π ∈ JProgK, for any search entry transition ten taken in π by a process p, p is n steps non-blocking
in every sequence of traversals(ten, π).

Proof. The same reasoning as in Lemma 7 applies here by taking n = 2 and by using Lemma 25 instead of
Lemma 5.

Lemma 28. HarrisL has no insert or delete back-steps during a parse phase in LazyL: For any
execution π ∈ JProgK, for any update entry transition ten taken by process p in π, p has no backsteps in
every sequence of traversals(ten, π).

Proof. The arguments of Lemma 8 apply to this proof, here again by replacing the use of Lemma 5 by its
counterpart for HarrisL, Lemma 25.

Lemma 29. HarrisL has insert and delete non-blocking traversals: There exists an n ∈ N such that
for any execution π ∈ JProgK, for any update entry transition ten taken by a process p in π, p is n steps
non-blocking in every sequence of traversals(ten, π).

Proof. The same reasoning as in Lemma 9 applies here by using Lemma 25. Different nodes are traversed
during the searchHelper operation, following next fields until the tail of the list is read. The operation then
exits the while loop. Other than this while loop, there is no possible place for blocking inside a traversal, in
either insert or delete operations.

Lemma 30. HarrisL has no allocation traversals and no allocation modifications: For any search
transition ten taken in π, there is no transition executing an allocate instruction in any sequence of
traversals(ten, π). Furthermore, for any transition ten taken in π that executes entry delete, there is no
transition executing an allocate instruction in any sequence of modifications(ten, π).

Proof. Similarly to the case of Lemma 10, the proof is done by checking that the functions insert and delete
do not contain any allocate instruction.

Lemma 31. HarrisL has insert and delete read-clean traversals: For every update entry transition
ten in π ∈ JHarrisLK, if a transition tw executes a write instruction in a sequence of traversals(ten, π), tw
is a cleaning-up store.

Proof. As in the proof of Lemma 11, it is enough to verify that the only global write or compare-and-swap
instructions that are executed between a beg-parse and an end-parse statement are cleaning-up stores. It
can be verified by remarking that the only global instruction executed in parse phases is the compare-
and-swap instruction of line 26 in the auxiliary function searchHelper. This instruction only takes place on
logically deleted (marked) nodes and, when it succeeds, it replaces left.next, the only pointer that makes
right reachable. It is consequently a cleaning-up store.

Lemma 32. HarrisL has insert and delete read-only unsuccessful modifications: For any complete
sequential history S ∈ SpecSDS and any sequence of processes P , the solo execution π = se(S, Prog, P)
verifies that: For every entry op transition ten in π that has a matching exit op false statement in hs(π),
it is the case that modifications(ten, π) = ∅.

Proof. Similarly to the case of Lemma 12. Since restarts can happen only due to a concurrent operation
taking place (Lemma 36), there are no restarts in solo executions. Furthermore, a modify phase either
restarts or returns true. false is only returned at line 40 and line 71 of the parse phase of an insert or a delete
operation respectively. Therefore, an unsuccessful operation never enters the modification phase.

Lemma 33. Number of stores: HarrisL has a sequential number of stores per modification, with respect
to SeqL.

Proof. Table 3 displays the number of write and compare-and-swap operations executed by insert and delete
operations. Comparing these numbers to those of SeqL appearing in Table 1 allows to conclude that the
relations of property SP8 are verified.

HarrisL Number of Stores and Compare-and-Swaps

insert
|CASOps(modi)|= 1

|OtherNodeWrites(modi, π)|= 0

delete
|CASOps(modi)|= 2

|OtherNodeWrites(modi, π)|= 0
Table 3. Number of stores and compare-and-swap operations by Harris linked list.

Lemma 34. No marked or locked nodes exist in a steady state in HarrisL: In any steady state
π ∈ JHarrisLK that is produced by a solo execution, there is no reachable marked or locked node.

Proof. First, note that HarrisL does not use locks. To show that no node is marked between operations of a
solo execution, remark that in the absence of concurrency, the two compare-and-swap instructions of lines 76
and 84 cannot fail. The deleted node is consequently properly unlinked during each delete operation of a solo
execution.

Lemma 35. Each node is associated with exactly one value in HarrisL: There is a one to one
correspondence between a node and its value.

Proof. The proof is the same as the one of Lemma 17.

Lemma 36. HarrisL has valid conflict restart modifications, with respect to SeqL: For any com-
plete sequential history S′ with at least four tuples, (S′, SeqL, HarrisL) is a valid restart triple.

Proof. This proof is similar as the one of Lemma 19. We assume by the way of contradiction that a complete
sequential history S′ = S, en0, ex0, en1, ex1 exists such that (S′, SeqL, HarrisL) is not a valid restart triple.
Similar to Lemma 19, we assume that the transitions ten0

and ten1
that correspond to the entry statements

en0 and en1 respectively, are conflict-free in the solo execution of se(S′, SeqL, PS). Therefore, we can argue
that the operations write to nodes with different values, implying that by executing the operations en0 and
en1 concurrently in HarrisL will lead to writes to disjoint nodes. Therefore, no operation can alter the
behaviour of the other, which means there are no restarts. A contradiction.

Lemma 37. Nodes created by solo executions of HarrisL and SeqL that contain the same value,
are associated with the same relative node: Consider a sequential history S that is executed solo by
HarrisL and SeqL. At the end of the execution, HarrisL contains a node nHarris that is reachable from the
head of the list generated by HarrisL. While SeqL contains a node nSeq that is reachable from the head of the
list generated by SeqL. Consider that the node nHarris is associated with the relative node rnHarris, while the
node nSeq is associated with the relative node rnSeq. If nHarris.value = nSeq.value then rnHarris = rnSeq.

Proof. The same reasoning as the one of the proof of Lemma 20 applies here, using Lemma 34 instead of
Lemma 16.

Lemma 38. Region of stores per modification: HarrisL has a valid region of stores per modification
with respect to SeqL.

Proof. Remember that the region of stores applies only for solo execution. Meaning that the same complete
sequential history is executed in both HarrisL and SeqL. Since we are talking about solo executions there
are no marked nodes in the list of HarrisL due to Lemma 34. Similarly to Lemma 21, we argue that parse
phases of update operations are going to stop at the same node in both HarrisL and SeqL, and therefore
they are going to write similar nodes. Note that as explained in Lemma 21, because the executions are
solo, update operations are executing at most one modify phase, so the written nodes of all modifications
correspond to the written nodes of at most one modification. The exact same argument applies to HarrisL.

Theorem 3. HarrisL is sequentially proximal with respect to SeqL.

Proof. Lemma 23 entails that search operations of HarrisL follow SP1. Lemma 27 implies they respect SP2,
Lemma 26 shows that they fulfill SP3, while Lemma 30 proves that they respect SP4.

By Lemma 29, the parse phases of update operations in HarrisL follow SP2. Lemma 28 shows that they
also fulfill SP3, Lemma 30 proves they verify SP4, and Lemma 31 ensures that they respect SP5.

Finally, Lemma 32 implies that the modify phases of update operations in HarrisL verify SP6, Lemma 36
shows they fulfill SP7, by Lemma 33 they respect SP8, and by Lemma 38 SP9. Moreover, Lemma 30 entails
that delete operations of HarrisL verify SP10.

Theorem 4. The original HarrisL algorithm [16] (denoted with OHarrisL) is not sequentially proximal
with respect to SeqL.

Proof. OHarrisL does not satisfy property SP1 and therefore it is not sequential proximal. Specifically,
OHarrisL does not have search read-only traversals since during a search operation it could possibly issue
writes. The writes are issued for cleaning-up purposes.

Additionally, in OHarrisL update operations restart their parse phase if they fail a cleaning-up store.
This entails that OHarrisL does not verify SP3 that forbids to visit several times the same shared memory
location of a node if another node is accessed in between.

7 Sequential Proximity in Action

We illustrate the usefulness of sequential proximity (SP). We start by showing how we can create a scalable
linked list using SP. We then present a table that includes 24 state-of-the-art algorithms with details about
which SP properties each algorithm follows. Finally, we discuss specific examples of algorithms violating each
SP property.

7.1 Using SP to Design a Linked List

The simplest concurrent linked list is a sorted sequential list protected by a global lock. We show that such
an algorithm does not satisfy most SP properties. By fixing those SP properties, following simple steps,
we gradually improve the scalability of the linked list. The end result is an SP-compliant highly-scalable
algorithm. For simplicity, we omit memory reclamation in our algorithms.
Introducing Global Lock. Our first concurrent linked list corresponds to a sequential linked list augmented
with a global lock (Algorithm 1.7). As the name suggests, the sequential˙search and sequential˙parse functions
correspond to sequential implementations for search and parse, respectively. Both these functions traverse the
list looking for the target value v, and return true if v is found or false otherwise. sequential˙parse additionally
returns two pointers to nodes, previous and current, such that the node that corresponds to previous points
to current during traversal. Furthermore, if value v is found, node current contains it, otherwise value v is
in-between the values of nodes previous and current. We can easily prove that this algorithm does not satisfy
SP1 since memory is written during traversals (e.g., write at line 2). It does not satisfy SP2 since a traversal
needs to grab the lock and subsequently wait until a lock is released (e.g., line 10).
Furthermore, SP3 is not satisfied because glock is read at the beginning of an operation and later, after

traversing other nodes, glock is accessed again. SP4 is satisfied since no allocation takes place during traver-
sals. SP5 is not satisfied since non-cleaning-up writes are issued during traversals (writes to glock). SP6 is
not satisfied since an insert or a delete operation issues a store even if the operation returns false. SP7 is
satisfied since the algorithm has no restarts. SP8 is satisfied since there is at most one lock acquisition (glock)
and one write both while inserting and deleting. SP9 is not satisfied: Assume that an insertion takes place
between two nodes a and b. In this case the insertion is going to write to node a, as well as the node that
contains glock. In contrast, a standard sequential linked list would have only written to node a. Finally, SP10

is satisfied since no memory is allocated during deletions.

1 f unct ion search (v) {
2 l ock (g l o ck)
3 r e s = s e q u e n t i a l s e a r c h (v)
4 unlock (g l o ck)
5 r e t u r n r e s
6 }
7

8 f unct ion i n s e r t (v) {
9 beg-pa r s e

10 l ock (g l o ck)
11 (r e s , p r e v i ou s , c u r r e n t) = s e q u e n t i a l p a r s e (v)
12 i f (r e s) unlock (g l o ck)
13 end-pa r s e (not r e s)
14 i f (r e s) r e t u r n f a l s e
15

16 beg-modi fy
17 a l l o c a t e (n)
18 n . v a l u e = v ; n . nex t = cu r r e n t ; p r e v i o u s . nex t = n
19 unlock (g l o ck)
20 end-modi fy t r u e
21 r e t u r n t r u e
22 }
23

24 f unct ion de le te (v) {
25 beg-pa r s e
26 l ock (g l o ck)
27 (r e s , p r e v i ou s , c u r r e n t) = s e q u e n t i a l p a r s e (v)
28 i f (not r e s) unlock (g l o ck)
29 end-pa r s e r e s
30 i f (not r e s) r e t u r n f a l s e

31

32 beg-modi fy
33 p r e v i o u s . nex t = cu r r e n t . nex t
34 unlock (g l o ck)
35 end-modi fy t r u e
36 r e t u r n t r u e
37 }

Algorithm 1.7. Linked list–global lock.

1 f unct ion i n s e r t (v) {
2 s t a r t :
3 beg-pa r s e
4 vn = g l o ck . v e r s i o n
5 (r e s , p r e v i ou s , c u r r e n t) = s e q u e n t i a l p a r s e (v)
6 end-pa r s e (not r e s)
7 i f (r e s) r e t u r n f a l s e
8

9 beg-modi fy
10 l ock (g l o ck)
11 i f (vn 6= g l o ck . v e r s i o n − 1)
12 mr = r e s t a r t
13 e l s e
14 a l l o c a t e (n)
15 n . v a l u e = v ; n . nex t = cu r r e n t ; p r e v i o u s . nex t = n
16 mr = t r u e
17 unlock (g l o ck)
18 end-modi fy mr
19

20 i f (mr = r e s t a r t) goto s t a r t
21 e l s e r e t u r n t r u e
22 }
23

24 f unct ion de le te (v) {
25 s t a r t :
26 beg-pa r s e
27 vn = g l o ck . v e r s i o n
28 (r e s , p r e v i ou s , c u r r e n t) = s e q u e n t i a l p a r s e (v)
29 end-pa r s e r e s
30 i f (not r e s) r e t u r n f a l s e
31

32 beg-modi fy
33 l ock (g l o ck)
34 i f (vn 6= g l o ck . v e r s i o n − 1)
35 mr = r e s t a r t
36 e l s e
37 p r e v i o u s . nex t = cu r r e n t . nex t
38 unlock (g l o ck)
39 end-modi fy mr
40

41 i f (mr = r e s t a r t) goto s t a r t
42 e l s e r e t u r n t r u e
43 }

Algorithm 1.8. Linked list–Lock-free traversals.

1 f unct ion v a l i d a t e (p , c) {

2 r e t u r n (not p . marked) ∧ (p . nex t = c)
3 }
4

5 f unct ion i n s e r t (v) {
6 beg-pa r s e
7 (r e s , p r e v i ou s , c u r r e n t) = s e q u e n t i a l p a r s e (v)
8 end-pa r s e (not r e s)
9 i f (r e s) r e t u r n f a l s e

10

11 beg-modi fy
12 l ock (p r e v i o u s . l o c k f)
13 i f (not v a l i d a t e (p r e v i ou s , c u r r e n t))
14 mr = r e s t a r t
15 e l s e
16 a l l o c a t e (n)
17 n . v a l u e = v ; n . nex t = cu r r e n t ; p r e v i o u s . nex t = n
18 mr = t r u e
19 unlock (p r e v i o u s . l o c k f)
20 end-modi fy mr
21

22 i f (mr = r e s t a r t) goto s t a r t
23 e l s e r e t u r n t r u e
24 }
25

26 f unct ion search (v) {
27 Node c u r r e n t = headG

28 wh i l e (c u r r e n t . v a l u e < v)
29 c u r r e n t = cu r r e n t . nex t
30

31 r e t u r n (c u r r e n t . v a l u e = v) ∧ (not c u r r e n t . marked)
32 }
33

34 f unct ion de le te (v) {
35 beg-pa r s e
36 (r e s , p r e v i ou s , c u r r e n t) = s e q u e n t i a l p a r s e (v)
37 end-pa r s e r e s
38 i f (not r e s) r e t u r n f a l s e
39

40 beg-modi fy
41 l ock (p r e v i o u s . l o c k f)
42 l ock (c u r r e n t . l o c k f)
43 i f (not v a l i d a t e (p r e v i ou s , nex t))
44 mr = r e s t a r t
45 e l s e
46 c u r r e n t . marked = t r u e
47 p r e v i o u s . nex t = cu r r e n t . nex t
48 mr = t r u e
49 unlock (c u r r e n t . l o c k f)
50 unlock (p r e v i o u s . l o c k f)
51 end-modi fy mr
52

53 i f (mr = r e s t a r t) goto s t a r t
54 e l s e r e t u r n t r u e
55 }

Algorithm 1.9. Linked list–Fine-grained locking.

Fixing SP1. Algorithm 1.7 does not satisfy (among others) SP1. Search operations do not apply any
modifications, thus we can remove the acquisition and release of the lock from the search operation. The
algorithm can be proven correct since if a search operation finds an element that was just removed, the
deletion was concurrent with the search and the order of their linearization can be fixed. Not acquiring the
lock additionally fixes SP2 for search operations. Still, our new algorithm satisfies SP1 but does not overall
satisfy SP2−3, SP5−6, and SP9.

Fixing SP2, SP5, and SP6. To fix SP2, we remove the global lock from traversals. As a result, insertions
and deletions acquire the global lock only in the modify phase. This modification introduces the following
problem: If an update wants to modify node a, between accessing a in the parse phase and locking a, another
process can modify a. In order to solve this problem, we augment the global lock with a version number that is
incremented whenever the lock is acquired (based on the idea of OPTIK locks [15]) as seen in Algorithm 1.8.
We can detect whether there were any modifications on the data structure by comparing the current version
number with the version that is read in the beginning of the parse phase. We can prove that this new
algorithm satisfies SP2. It also satisfies SP5 since no writes are issued during traversals anymore and SP6

because if an operation is going to return false it does not issue any write. However, this algorithm does not
satisfy SP7 because an update operation can restart due to a modification in a totally unrelated part of the
list.

Fixing SP3, SP7, and SP9. SP3, SP7 and SP9 are not satisfied due to the global lock/version. To avoid
using a global lock, we introduce per-node locks (field lockf). Furthermore, we introduce a marked field in our
nodes (an idea taken from Harris [16] and the lazy linked list [17]). Before a node is actually removed from
our list, we first mark it and then physically excise it from the list. To check if a node is actually in the list,
we can now just check if it is marked or not. Algorithm 1.9 implements these changes. The validate operation
has been introduced to check if the nodes returned by sequential˙parse are still in the list and previous points
to current. Furthermore, the delete operation contains an extra statement at line 46 for marking the node
to be deleted. Both insert and delete operations lock the node that is going to have its next field modified.
Deletes also lock the node to be deleted in order to mark it. This new algorithm avoids spurious restarts
and therefore satisfies SP7. The resulting algorithm is almost identical to the lazy linked list by Heller et
al. [17]. Still, the original lazy algorithm might acquire the lock(s) although the operation is doomed to fail,
violating SP6.

Experimental Results Figure 7.2 compares the linked lists we optimize with SP to the classic lazy
linked list (LAZY) [17]. Clearly, each SP property brings significant scalability benefits. Fixing SP1−2 (GL-
SP1) transforms the lock-based search operation to wait-free and brings important performance benefits.
Still, update operations are fully serialized behind the global lock. GL-SP2,5,6 improves over GL-SP1 by
additionally offering wait-free parsing. However, the global lock for modifications and the spurious restarts
still limit scalability. The SP-compliant linked list (FG-SP) solves all the aforementioned problems and offers
good scalability. FG-SP performs better than LAZY due to SP6: In contrast to LAZY, FG-SP returns
without locking when the operation cannot be performed.

7.2 The Road to SP CSDSs

Table 4 includes 24 CSDS algorithms, sorted by their release year. This table also shows which and how
many (column 3 of the table) SP properties each algorithm satisfies.3 Clearly, over the years, there has
been a tendency towards algorithms that are either sequential proximal, or satisfy most SP properties. As a
rule of thumb, newer algorithms are more scalable than the older ones of the same type. Additionally, prior
work [9, 15] has experimentally shown that, indeed, the SP-compliant data structures in Table 4 are more
scalable than the rest. Consequently, the tendency towards SP-compliant algorithms goes hand in hand with
better scalability. In what follows, we describe this tendency for linked lists and skip lists.

3 With regard to “standard” baseline sequential algorithms–see Figure 5.1.

SP Property
Year DS Type Conf. Ref. 1 2 3 4 5 6 7 8 9 10 3 Important characteristic(s)
1990 ll lock-based Tech. Rep. [35] 3 3 7 3 3 7 3 7 3 3 7 Deletions employ pointer reversal so that a traversal always finds a correct path.
1990 sl lock-based Tech. Rep. [35] 3 3 7 3 3 7 3 7 3 3 7 Maintains several levels of [35] lists.
1995 ll lock-free PODC [37] 3 3 3 3 3 3 3 7 7 3 8 One auxiliary node is inserted for every “real” node.
2001 ll lock-free DISC [16] 7 3 7 3 3 3 3 3 3 3 8 Nodes are deleted in two steps: mark with CAS and delete with a second CAS.
2002 ll lock-free SPAA [31] 7 3 7 3 3 3 3 3 3 3 8 A refactored implementation of [16] for easier memory management.
2003 ht lock-based – [26] 3 3 3 3 7 7 3 3 7 3 7 Java’s ConcurrentHashMap. Protects the hash table with a fixed number of locks.
2003 sl lock-free PhD Thesis [12] 7 3 7 3 3 3 3 7 3 3 7 Optimistically traverses the list and then does CAS at each level (for updates).
2004 ll lock-based – [33] 3 7 3 7 7 7 3 3 7 7 4 Java’s CopyOnWriteArrayList. Updates are protected by a global lock.
2004 ht lock-based – [33] 3 7 3 3 7 7 3 3 3 7 6 Uses one CopyOnWriteArrayList list per bucket, with a single per-bucket lock.
2005 ll lock-based OPODIS [17] 3 3 3 3 3 7 3 3 3 3 9 Nodes are deleted in two steps: marking and physical deletion.
2006 ht lock-based – [24] 7 7 3 3 7 7 3 7 7 3 4 Part of Intel’s Thread Building Blocks library. Uses reader-writer locks.
2007 sl lock-based SIROCCO [22] 3 3 3 3 3 3 3 3 3 3 10 Optimistically find the node to update and then acquire the locks at all levels.
2010 bst lock-based PPoPP [7] 3 7 7 3 3 3 3 7 7 3 6 A search/parse can block waiting for a concurrent update to complete.
2010 bst lock-free PODC [11] 3 3 3 3 3 3 3 7 3 7 8 Updates help outstanding operations on the nodes that they intend to modify.
2012 bst lock-free SPAA [23] 7 3 7 7 7 3 3 7 3 7 4 All three operations perform helping and might need to restart.
2014 bst lock-based PPoPP [10] 3 3 7 3 3 7 3 7 3 3 7 Acquires ≥ 3 locks for removals. Can restart while traversing.
2014 bst lock-free PPoPP [32] 3 3 3 3 3 3 3 3 3 3 10 Marks edges instead of nodes for deletions in order to minimize CAS.
2015 ll lock-based DISC [14] 3 3 3 3 3 3 3 3 3 3 10 Performs fine-grained locking with version-based validation.
2015 ht lock-based ASPLOS [9] 3 3 7 3 3 3 3 3 3 3 9 Takes a snapshot of key/value pairs while traversing and per-bucket locking.
2015 bst lock-based ASPLOS [9] 3 3 3 3 3 3 3 3 3 3 10 Protects each node with a combination of a lock and a version number.
2016 ll lock-based PPoPP [15] 3 3 3 3 3 3 7 3 7 3 8 Protects the list with a combination of a global lock and a version number.
2016 ll lock-based PPoPP [15] 3 3 3 3 3 3 3 3 3 3 10 Protects each node with a combination of a lock and a version number.
2016 ht lock-based PPoPP [15] 3 3 3 3 3 3 3 3 3 3 10 Protects each bucket with a combination of a lock and a version number.
2016 sl lock-based PPoPP [15] 3 3 3 3 3 3 3 3 3 3 10 Protects each node with a combination of a lock and a version number.

Table 4. State-of-the-art algorithms for linked lists (ll), hash tables (ht), skip lists (sl), and binary search trees
(bst), sorted by release year. The table highlights which and how many (column 3) SP properties each algorithm
satisfies.

Linked Lists. Valois [37] introduced the first lock-free linked-list algorithm. This list employs auxiliary
nodes in order to avoid concurrency issues, such as the ABA problem [37]. These extra nodes are not allowed
by SP for various reasons: (i) the number of writes/atomic operations is large (against SP8), and (ii) the
region of stores is not similar to a standard sequential implementation (violating SP9).

Harris [16] designed a much simpler lock-free linked list, where instead of extra nodes, updates employ
pointer marking to indicate deletion. The resulting algorithm solves the SP8−9 problems of Valois’ list, but
assigns some cleaning-up tasks to search operations that might therefore write (violating SP1) and might
restart (against SP3).

Heller et al. [17] recognized Harris list’s shortcomings and opted for a “lazy” lock-based design with
wait-free traversals (adhering to SP1 and SP3). However, updates grab the lock although the operation is
doomed to be unsuccessful (e.g., deleting a non-existent key), thus violating SP6.

David et al. [9] (as well as [14, 15]) recognized and fixed the SP6 problem of the lazy linked list. The
former ([9]) fix the problem directly in the lazy list algorithm, while the latter two ([14, 15]) introduce new
list algorithms based on trylocks and version numbers.

Hash Tables. The history of the hash tables in Table 4 is not as interesting as the history of lists. Still, the
latest two hash tables in the table are almost sequential proximal. Interestingly, the ASPLOS’15 hash table [9]
trades SP3 for SP6. In short, in paragraph to return without locking in case the operation is not feasible,
this hash table performs a read-only parse of the bucket before locking and re-parsing (iff the operation is
feasible). Parsing twice violates SP3.

Skip lists. The first concurrent skip-list design by Pugh [35] might acquire a large number of locks, thus
violating SP8. Additionally, the traversal path of a search or an update might back-step due to concurrency,
violating SP3. Finally, failed updates acquire locks (against SP6).

Fraser [12] designed a lock-free skip list that solves some of the issues of Pugh’s algorithm, but introduces
others. Similarly to Harris’ list [16], Fraser’s skip list marks pointers for deletion and might perform cleaning-
up of those marked nodes while searching (violating SP1). If cleaning-up fails, the operations are restarted
(violating SP3).

Herlihy et al. [22] recognized and solved the shortcomings of Fraser’s skip list with a new lock-based
algorithm that adheres SP. Guerraoui and Trigonakis [15] introduced another SP-compliant skip list based
on version-number validation.

7.3 Violating SP

The negative scalability effect of violating an SP property depends (i) on the property, and (ii) on the way
it is violated. For example, violating SP9 because of a global lock is much worse for scalability than just
writing on a node that is one hop away than the nodes that should be normally written. We illustrate these
differences through various examples.
SP1. Intel’s TBB hash table [24] protects search operations with reader-writer locks (translates to writing).
This violation is more heavyweight than Harris’ linked list [16] that might infrequently write to the list for
cleaning up.
SP2. Again, Intel’s TBB hash table [24] might block waiting for the lock, which is more heavyweight than
the infrequent waiting in the BST by Bronson et al. [7].
SP3. Double parsing in the hash table by David et al. [9] is more lightweight than potential restarts after
traversing a large list in linked lists (e.g., [16, 31]).
SP4. The lock-free tree by Howley and Jones [23] performs helping in all operations and therefore might
need to allocate nodes or help records while traversing. CopyOnWriteArrayList [33] inherently requires the
allocation of a new copy of the data structure on every update.
SP5. The lock-free tree by Howley and Jones [23] performs heavyweight helping while parsing the list. Still,
this helping is lighter than acquiring the lock before traversing the list as in Java’s CopyOnWriteArrayList
list [33].
SP6. Many algorithms (e.g., [17, 26, 35]) acquire locks although the operation is doomed to fail. In hash
tables, such as [26], violating SP6 is more problematic than in lists, such as [17, 35], because the operations
are much shorter.
SP7. Most algorithms restart “appropriately.” Only the global-lock-based with version validation list [15]
can restart due to unrelated modifications in the list.
SP8. The list by Pugh [35] employs pointer reversal and might thus acquire more locks than allowed. This
SP8 violation is far less expensive than the BST from by Drachsler et al. [10] that acquires more than three
locks per update.
SP9. SP9 is often violated due to the granularity of locks. For example, Table 4 includes list algorithms
that use global locks [15, 33]. This violation is more problematic than other algorithms, such as Java’s
ConcurrentHashMap [26], that employ lock striping.
SP10. Allocations during delete operations are typically due to helping: The operation creates a “help
record” to be inserted in the set so that others can later help (e.g., [11, 23]).

1 Node i n i t G

2

3 f unct ion i n i t () {
4 a l l o c a t e (head)
5 head . v a l u e = −∞
6 a l l o c a t e (t a i l)
7 t a i l . v a l u e = +∞
8 i n i t G = head
9 i n i t G . nex t = t a i l

10 }
11

12 f unct ion v a l i d a t e (p r e v i ou s , c u r r e n t)
{

13 r e t u r n (not p r e v i o u s . marked)∧(not
c u r r e n t . marked)∧

14 (p r e v i o u s . nex t = cu r r e n t)
15 }
16

17 f unct ion i n s e r t (v) } {
18 r e s t a r t :
19 beg-pa r s e
20 Node p r e v i o u s = i n i t G

21 Node c u r r e n t = p r e v i o u s . nex t
22 wh i l e (c u r r e n t . v a l u e < v) {
23 p r e v i o u s = cu r r e n t
24 c u r r e n t = cu r r e n t . nex t
25 }
26 pr = (c u r r e n t . v a l u e 6=v∨ c u r r e n t .

marked∨
27 p r e v i o u s . marked)
28 end-pa r s e pr
29 i f (not pr)
30 r e t u r n f a l s e
31

32 beg-modi fy
33 l ock (p r e v i o u s . l o c k f)
34 i f (v a l i d a t e (p r e v i ou s , c u r r e n t))

{
35 i f (c u r r e n t . v a l u e = v)
36 mr = f a l s e
37 e l s e
38 a l l o c a t e (newNode)
39 newNode . v a l u e = v
40 newNode . nex t = cu r r e n t
41

42 p r e v i o u s . nex t = newNode (GW
)

43

44 mr = t r u e
45 }
46 e l s e {
47 mr = r e s t a r t
48 }
49 unlock (p r e v i o u s . l o c k f)
50 end-modi fy mr
51 i f (mr = r e s t a r t) goto r e s t a r t
52 e l s e r e t u r n mr
53 }

Algorithm 1.3. Linked list with no global lock
during traversals.

54 f unct ion search (v) {
55 Node c u r r e n t = i n i t G

56 wh i l e (c u r r e n t . v a l u e < v) {
57 c u r r e n t = cu r r e n t . nex t
58 }
59 r e t u r n (c u r r e n t . v a l u e = v)∧(not

c u r r e n t . marked)
60 }
61

62 f unct ion de le te (v) {
63 r e s t a r t :
64 beg-pa r s e
65 Node p r e v i o u s = i n i t G

66 Node c u r r e n t = p r e v i o u s . nex t
67 wh i l e (c u r r e n t . v a l u e < v) {
68 p r e v i o u s = cu r r e n t
69 c u r r e n t = cu r r e n t . nex t
70 }
71 pr = (c u r r e n t . v a l u e = v∨ c u r r e n t .

marked∨
72 p r e v i o u s . marked)
73 end-pa r s e pr
74 i f (not pr)
75 r e t u r n f a l s e
76

77 beg-modi fy
78 l ock (p r e v i o u s . l o c k f)
79 l ock (c u r r e n t . l o c k f)
80 i f (v a l i d a t e (p r e v i ou s , c u r r e n t)) {

81 i f (v 6= c u r r e n t . v a l u e) {
82 mr = f a l s e
83 }
84 e l s e {
85 c u r r e n t . marked = t r u e (GW)
86 p r e v i o u s . nex t = cu r r e n t . nex t (

GW)
87 mr = t r u e
88 }
89 }
90 e l s e {
91 mr = r e s t a r t
92 }
93 unlock (c u r r e n t . l o c k f)
94 unlock (p r e v i o u s . l o c k f)
95 end-modi fy mr
96 i f (mr = r e s t a r t) goto r e s t a r t
97 e l s e r e t u r n mr
98 }

Algorithm 1.4. Linked list with no global lock
during traversals.

Fig. 5.2. Concurrent Lazy Linked List.

1 Node headG

2 Node t a i l G
3

4 f unct ion i n i t () {
5 a l l o c a t e (headG)
6 headG . v a l u e = −∞
7 a l l o c a t e (t a i l G)
8 t a i l G . v a l u e = +∞
9 headG . nex t = t a i l G

10 }
11

12 f unct ion searchHelper (v) {
13 Node l e f t n o d e = headG

14 Node r i g h t n o d e = headG . nex t
15

16 wh i l e (t r u e) {
17 i f (r i g h t n o d e . nex t i s not marked) {
18 i f (r i g h t n o d e . v a l u e ≥ v) {
19 break
20 }
21 l e f t n o d e = r i g h t n o d e
22 }
23 e l s e {
24 // unmarked r i g h t n o d e
25 unm r igh t = unmarked (r i g h t n o d e .

nex t)
26 CAS(& l e f t n o d e . next , r i g h t nod e ,

unm r igh t) (GW)
27 }
28

29 r i g h t n o d e = unmarked (r i g h t n o d e . nex t)
30 }
31 r e t u r n (l e f t n o d e , r i g h t n o d e)
32 }
33

34 f unct ion i n s e r t (v) {
35 r e s t a r t :
36 beg-pa r s e
37 (p r e v i ou s , c u r r e n t) = searchHelper (v)
38 pr = (c u r r e n t = t a i l G) ∨ (c u r r e n t . v a l u e

6= v)
39 end-pa r s e pr
40 i f (not pr) r e t u r n f a l s e
41

42 beg-modi fy
43 a l l o c a t e (newNode)
44 newNode . v a l u e = v
45 newNode . nex t = cu r r e n t
46

47 i f (CAS(& p r e v i o u s . next , c u r r en t , newNode)=
cu r r e n t) (GW)

48 mr = t r u e
49 e l s e
50 mr = r e s t a r t
51 end-modi fy mr
52 i f (mr = r e s t a r t) goto r e s t a r t
53 e l s e r e t u r n mr
54 }

Algorithm 1.5. Linked list with no global lock during
traversals.

55 f unct ion search (v) {
56 Node c u r r e n t = headG

57

58 wh i l e (c u r r e n t . v a l u e < v) {
59 c u r r e n t = unmarked (c u r r e n t . nex t)
60 }
61 r e t u r n (c u r r e n t . v a l u e = v)∧
62 (c u r r e n t . nex t i s not marked)
63 }
64

65 f unct ion de le te (v) {
66 r e s t a r t :
67 beg-pa r s e
68 (p r e v i ou s , c u r r e n t) = searchHelper (v)
69 pr = (c u r r e n t 6= t a i l)∧(c u r r e n t . v a l u e = v)
70 end-pa r s e pr
71 i f (not pr) r e t u r n f a l s e
72

73 beg-modi fy
74 tmp = cu r r e n t . nex t
75 i f (tmp i s not marked) {
76 i f ! (CAS(& cu r r e n t . next , tmp , marked (tmp)

) = tmp) (GW)
77 mr = t r u e
78 e l s e
79 mr = r e s t a r t
80 }
81 e l s e
82 mr = r e s t a r t
83

84 CAS(& p r e v i o u s . next , c u r r en t , tmp) (GW)
85 end-modi fy mr
86 i f (mr = r e s t a r t) goto r e s t a r t
87 e l s e r e t u r n mr
88 }

Algorithm 1.6. Linked list with no global lock during
traversals.

Fig. 6.1. Harris Concurrent Linked List.

 0

 5

 10

 15

 20

 25

 30

 1 10 20 30 40

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

Small List
(128 elements, 20% updates)

O
p

te
ro

n
X

e
o

n

 0

 0.5

 1

 1.5

 2

 2.5

 1 10 20 30 40

Large List
(2048 elements, 20% updates)

O
p

te
ro

n
X

e
o

n

 0

 3

 6

 9

 12

 15

 1 12 24 36 48

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

Threads

O
p

te
ro

n
X

e
o

n

 0

 1

 2

 3

 4

 1 12 24 36 48
Threads

O
p

te
ro

n
X

e
o

n

GL GL-SP1 GL-SP2,5,6 FG-SP LAZY

Fig. 7.2. Comparing the various linked lists of Section 7.1 on Xeon and Opteron. Xeon is a 2-socket, 20-core (40
hardware contexts) Intel E5-2680 v2 multi-core, while Opteron is a 48-core AMD multi-core with four 6172 Opteron
multi-chip modules. Each data point is the median of 11 repetitions of 5 seconds each. We collect data points with
1, 2, 4, 6, ... threads. Threads execute in a loop; at every iteration each thread randomly chooses an operation based
on the read/update ratio (updates are split 50/50 between insertions and deletions). At each iteration, the threads
also randomly choose a key to operate on (the key range is twice the initial size of the list). Due to this experimental
configuration, (i) roughly half of the updates are unsuccessful, and (ii) the size of the list remains close to the initial
throughout the experiment. The global-lock lists are protected by a scalable MCS lock [30].

Bibliography

[1] D. Alistarh, K. Censor-Hillel, and N. Shavit. Are Lock-free Concurrent Algorithms Practically Wait-
free? STOC ’14.

[2] K. Antoniadis, R. Guerraoui, J. Stainer, and V. Trigonakis. Sequential proximity: Towards provably
scalable concurrent search algorithms. NETYS’ 17.

[3] M. Arbel and H. Attiya. Concurrent Updates with RCU: Search Tree As an Example. PODC ’14.
[4] M. Arbel and A. Morrison. Predicate RCU: An RCU for Scalable Concurrent Updates. PPoPP ’15.
[5] A. Atalar, P. Renaud-Goud, and P. Tsigas. Analyzing the Performance of Lock-Free Data Structures:

A Conflict-Based Model. DISC ’15.
[6] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. M. Michael, and M. T. Vechev. Laws of Order:

Expensive Synchronization in Concurrent Algorithms Cannot be Eliminated. POPL ’11.
[7] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. A Practical Concurrent Binary Search Tree.

PPoPP ’10.
[8] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler. The Scalable Commutativity

Rule: Designing Scalable Software for Multicore Processors. SOSP ’13.
[9] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized Concurrency: The Secret to Scaling Con-

current Search Data Structures. ASPLOS ’15.
[10] D. Drachsler, M. Vechev, and E. Yahav. Practical Concurrent Binary Search Trees via Logical Ordering.

PPoPP ’14.
[11] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel. Non-blocking Binary Search Trees. PODC ’10.
[12] K. Fraser. Practical Lock-Freedom. PhD thesis, University of Cambridge, 2004.
[13] J. Gibson and V. Gramoli. Why Non-blocking Operations Should be Selfish. DC ’15.
[14] V. Gramoli, P. Kuznetsov, S. Ravi, and D. Shang. Brief Announcement: A Concurrency-Optimal List-

Based Set. DISC ’15.
[15] R. Guerraoui and V. Trigonakis. Optimistic Concurrency with OPTIK. PPoPP ’16.
[16] T. Harris. A Pragmatic Implementation of Non-blocking Linked Lists. DISC ’01.
[17] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer, and N. Shavit. A Lazy Concurrent

List-Based Set Algorithm. OPODIS ’05.
[18] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat Combining and the Synchronization-parallelism

Tradeoff. SPAA ’10.
[19] M. Herlihy. Wait-Free Synchronization. TOPLAS ’91.
[20] M. Herlihy and J. Moss. Transactional Memory: Architectural Support for Lock-free Data Structures.

ISCA ’93.
[21] M. Herlihy and J. Wing. Linearizability: A Correctness Condition for Concurrent Objects. TOPLAS

’90.
[22] M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit. A Simple Optimistic Skiplist Algorithm. SIROCCO

’07.
[23] S. V. Howley and J. Jones. A Non-blocking Internal Binary Search Tree. SPAA ’12.
[24] Intel. Intel Thread Building Blocks. https://www.threadingbuildingblocks.org.
[25] A. Israeli and L. Rappoport. Disjoint-Access-Parallel Implementations of Strong Shared Memory Prim-

itives. PODC ’94.
[26] D. Lea. Overview of Package util.concurrent Release 1.3.4. http://gee.cs.oswego.edu/dl/classes/

EDU/oswego/cs/dl/util/concurrent/intro.html, 2003.
[27] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller. Remote Core Locking: Migrating Critical-

section Execution to Improve the Performance of Multithreaded Applications. ATC ’12.
[28] A. Matveev, N. Shavit, P. Felber, and P. Marlier. Read-Log-Update: A Lightweight Synchronization

Mechanism for Concurrent Programming. SOSP ’15.
[29] P. E. McKenney and J. D. Slingwine. Read-copy Update: Using Execution History to Solve Concurrency

Problems. PDCS ’98.
[30] J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable Synchronization on Shared-Memory

Multiprocessors. TOCS ’91.

https://www.threadingbuildingblocks.org
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html

[31] M. M. Michael. High Performance Dynamic Lock-free Hash Tables and List-based Sets. SPAA ’02.
[32] A. Natarajan and N. Mittal. Fast Concurrent Lock-free Binary Search Trees. PPoPP ’14.
[33] Oracle. Java CopyOnWriteArrayList. http://docs.oracle.com/javase/7/docs/api/java/util/

concurrent/CopyOnWriteArrayList.html.
[34] C. H. Papadimitriou. The Serializability of Concurrent Database Updates. JACM ’79.
[35] W. Pugh. Concurrent Maintenance of Skip Lists. Technical report, 1990.
[36] N. Shavit and D. Touitou. Software Transactional Memory. PODC ’97.
[37] J. D. Valois. Lock-free Linked Lists Using Compare-and-swap. PODC ’95.

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CopyOnWriteArrayList.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CopyOnWriteArrayList.html

	Sequential Proximity

