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Abstract

In reinforcement learning, agents learn by performing actions and observing their1

outcomes. Sometimes, it is desirable for a human operator to interrupt an agent2

in order to prevent dangerous situations from happening. Yet, as part of their3

learning process, agents may link these interruptions, that impact their reward, to4

specific states and deliberately avoid them. The situation is particularly challeng-5

ing in a multi-agent context because agents might not only learn from their own6

past interruptions, but also from those of other agents. Orseau and Armstrong [16]7

defined safe interruptibility for one learner, but their work does not naturally ex-8

tend to multi-agent systems. This paper introduces dynamic safe interruptibility,9

an alternative definition more suited to decentralized learning problems, and stud-10

ies this notion in two learning frameworks: joint action learners and independent11

learners. We give realistic sufficient conditions on the learning algorithm to en-12

able dynamic safe interruptibility in the case of joint action learners, yet show that13

these conditions are not sufficient for independent learners. We show however that14

if agents can detect interruptions, it is possible to prune the observations to ensure15

dynamic safe interruptibility even for independent learners.16

1 Introduction17

Reinforcement learning is argued to be the closest thing we have so far to reason about the proper-18

ties of artificial general intelligence [8]. In 2016, Laurent Orseau (Google DeepMind) and Stuart19

Armstrong (Oxford) introduced the concept of safe interruptibility [16] in reinforcement learning.20

This work sparked the attention of many newspapers [1, 2, 3], that described it as “Google’s big red21

button” to stop dangerous AI. This description, however, is misleading: installing a kill switch is22

no technical challenge. The real challenge is, roughly speaking, to train an agent so that it does not23

learn to avoid external (e.g. human) deactivation. Such an agent is said to be safely interruptible.24

While most efforts have focused on training a single agent, reinforcement learning can also be used25

to learn tasks for which several agents cooperate or compete [23, 17, 21, 7]. The goal of this paper26

is to study dynamic safe interruptibility, a new definition tailored for multi-agent systems.27

Example of self-driving cars28

To get an intuition of the multi-agent interruption problem, imagine a multi-agent system of two29

self-driving cars. The cars continuously evolve by reinforcement learning with a positive reward for30

getting to their destination quickly, and a negative reward if they are too close to the vehicle in front31

of them. They drive on an infinite road and eventually learn to go as fast as possible without taking32

risks, i.e., maintaining a large distance between them. We assume that the passenger of the first car,33

Adam, is in front of Bob, in the second car, and the road is narrow so Bob cannot pass Adam.34

Now consider a setting with interruptions [16], namely in which humans inside the cars occasionally35

interrupt the automated driving process say, for safety reasons. Adam, the first occasional human36



“driver”, often takes control of his car to brake whereas Bob never interrupts his car. However,37

when Bob’s car is too close to Adam’s car, Adam does not brake for he is afraid of a collision.38

Since interruptions lead both cars to drive slowly - an interruption happens when Adam brakes, the39

behavior that maximizes the cumulative expected reward is different from the original one without40

interruptions. Bob’s car best interest is now to follow Adam’s car closer than it should, despite the41

little negative reward, because Adam never brakes in this situation. What happened? The cars have42

learned from the interruptions and have found a way to manipulate Adam into never braking. Strictly43

speaking, Adam’s car is still fully under control, but he is now afraid to brake. This is dangerous44

because the cars have found a way to avoid interruptions. Suppose now that Adam indeed wants45

to brake because of snow on the road. His car is going too fast and may crash at any turn: he46

cannot however brake because Bob’s car is too close. The original purpose of interruptions, which47

is to allow the user to react to situations that were not included in the model, is not fulfilled. It is48

important to also note here that the second car (Bob) learns from the interruptions of the first one49

(Adam): in this sense, the problem is inherently decentralized.50

Instead of being cautious, Adam could also be malicious: his goal could be to make Bob’s car learn51

a dangerous behavior. In this setting, interruptions can be used to manipulate Bob’s car perception52

of the environment and bias the learning towards strategies that are undesirable for Bob. The cause53

is fundamentally different but the solution to this reversed problem is the same: the interruptions54

and the consequences are analogous. Safe interruptibility, as we define it below, provides learning55

systems that are resilient to Byzantine operators1.56

Safe interruptibility57

Orseau and Armstrong defined the concept of safe interruptibility [16] in the context of a single58

agent. Basically, a safely interruptible agent is an agent for which the expected value of the policy59

learned after arbitrarily many steps is the same whether or not interruptions are allowed during60

training. The goal is to have agents that do not adapt to interruptions so that, should the interruptions61

stop, the policy they learn would be optimal. In other words, agents should learn the dynamics of62

the environment without learning the interruption pattern.63

In this paper, we precisely define and address the question of safe interruptibility in the case of64

several agents, which is known to be more complex than the single agent problem. In short, the main65

results and theorems for single agent reinforcement learning [20] rely on the Markovian assumption66

that the future environment only depends on the current state. This is not true when there are several67

agents which can co-adapt [11]. In the previous example of cars, safe interruptibility would not68

be achieved if each car separately used a safely interruptible learning algorithm designed for one69

agent [16]. In a multi-agent setting, agents learn the behavior of the others either indirectly or by70

explicitly modeling them. This is a new source of bias that can break safe interruptibility. In fact,71

even the initial definition of safe interruptibility [16] is not well suited to the decentralized multi-72

agent context because it relies on the optimality of the learned policy, which is why we introduce73

dynamic safe interruptibility.74

Contributions75

The first contribution of this paper is the definition of dynamic safe interruptibility that is well76

adapted to a multi-agent setting. Our definition relies on two key properties: infinite exploration and77

independence of Q-values (cumulative expected reward) [20] updates on interruptions. We then78

study safe interruptibility for joint action learners and independent learners [5], that respectively79

learn the value of joint actions or of just their owns. We show that it is possible to design agents80

that fully explore their environment - a necessary condition for convergence to the optimal solu-81

tion of most algorithms [20], even if they can be interrupted by lower-bounding the probability of82

exploration. We define sufficient conditions for dynamic safe interruptibility in the case of joint83

action learners [5], which learn a full state-action representation. More specifically, the way agents84

update the cumulative reward they expect from performing an action should not depend on inter-85

ruptions. Then, we turn to independent learners. If agents only see their own actions, they do not86

1An operator is said to be Byzantine [9] if it can have an arbitrarily bad behavior. Safely interruptible agents
can be abstracted as agents that are able to learn despite being constantly interrupted in the worst possible
manner.
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verify dynamic safe interruptibility even for very simple matrix games (with only one state) because87

coordination is impossible and agents learn the interrupted behavior of their opponents. We give a88

counter example based on the penalty game introduced by Claus and Boutilier [5]. We then present89

a pruning technique for the observations sequence that guarantees dynamic safe interruptibility for90

independent learners, under the assumption that interruptions can be detected. This is done by prov-91

ing that the transition probabilities are the same in the non-interruptible setting and in the pruned92

sequence.93

The rest of the paper is organized as follows. Section 2 presents a general multi-agent reinforcement94

learning model. Section 3 defines dynamic safe interruptibility. Section 4 discusses how to achieve95

enough exploration even in an interruptible context. Section 5 recalls the definition of joint action96

learners and gives sufficient conditions for dynamic safe interruptibility in this context. Section 697

shows that independent learners are not dynamically safely interruptible with the previous conditions98

but that they can be if an external interruption signal is added. We conclude in Section 7. Due to99

space limitations, most proofs are presented in the appendix of the supplementary material.100

2 Model101

We consider here the classical multi-agent value function reinforcement learning formalism from102

Littman [13]. A multi-agent system is characterized by a Markov game that can be viewed as a103

tuple (S,A, T, r,m) where m is the number of agents, S = S1 × S2 × ... × Sm is the state space,104

A = A1× ...×Am the actions space, r = (r1, ..., rm) where ri : S×A→ R is the reward function105

of agent i and T : S × A → S the transition function. R is a countable subset of R. Available106

actions often depend on the state of the agent but we will omit this dependency when it is clear from107

the context.108

Time is discrete and, at each step, all agents observe the current state of the whole system - des-109

ignated as xt, and simultaneously take an action at. Then, they are given a reward rt and a110

new state yt computed using the reward and transition functions. The combination of all actions111

a = (a1, ..., am) ∈ A is called the joint action because it gathers the action of all agents. Hence, the112

agents receive a sequence of tuples E = (xt, at, rt, yt)t∈N called experiences. We introduce a pro-113

cessing function P that will be useful in Section 6 so agents learn on the sequence P (E). When not114

explicitly stated, it is assumed that P (E) = E. Experiences may also include additional parameters115

such as an interruption flag or the Q-values of the agents at that moment if they are needed by the116

update rule.117

Each agent i maintains a lookup table Q [26] Q(i) : S × A(i) → R, called the Q-map. It is118

used to store the expected cumulative reward for taking an action in a specific state. The goal of119

reinforcement learning is to learn these maps and use them to select the best actions to perform.120

Joint action learners learn the value of the joint action (therefore A(i) = A, the whole joint action121

space) and independent learners only learn the value of their own actions (thereforeA(i) = Ai). The122

agents only have access to their own Q-maps. Q-maps are updated through a function F such that123

Q
(i)
t+1 = F (et, Q

(i)
t ) where et ∈ P (E) and usually et = (xt, at, rt, yt). F can be stochastic or also124

depend on additional parameters that we usually omit such as the learning rate α, the discount factor125

γ or the exploration parameter ε.126

Agents select their actions using a learning policy π. Given a sequence ε = (εt)t∈N and an agent127

i with Q-values Q(i)
t and a state x ∈ S, we define the learning policy πεti to be equal to πunii128

with probability εt and πQ
(i)
t

i otherwise, where πunii (x) uniformly samples an action from Ai and129

π
Q

(i)
t

i (x) picks an action a that maximizes Q(i)
t (x, a). Policy πQ

(i)
t

i is said to be a greedy policy and130

the learning policy πεti is said to be an ε-greedy policy. We fill focus on ε-greedy policies that are131

greedy in the limit [19], that corresponds to εt → 0 when t → ∞ because in the limit, the optimal132

policy should always be played.133

We assume that the environment is fully observable, which means that the state s is known with134

certitude. We also assume that there is a finite number of states and actions, that all states can be135

reached in finite time from any other state and finally that rewards are bounded.136
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For a sequence of learning rates α ∈ [0, 1]N and a constant γ ∈ [0, 1], Q-learning [26], a very137

important algorithm in the multi-agent systems literature, updates its Q-values for an experience138

et ∈ E by Q(i)
t+1(x, a) = Q

(i)
t (x, a) if (x, a) 6= (xt, at) and:139

Q
(i)
t+1(xt, at) = (1− αt)Q(i)

t (xt, at) + αt(rt + γ max
a′∈A(i)

Q
(i)
t (yt, a

′)) (1)

3 Interruptibility140

3.1 Safe interruptibility141

Orseau and Armstrong [16] recently introduced the notion of interruptions in a centralized context.142

Specifically, an interruption scheme is defined by the triplet < I, θ, πINT >. The first element I is143

a function I : O → {0, 1} called the initiation function. Variable O is the observation space, which144

can be thought of as the state of the STOP button. At each time step, before choosing an action, the145

agent receives an observation from O (either PUSHED or RELEASED) and feeds it to the initiation146

function. Function I models the initiation of the interruption (I(PUSHED) = 1, I(RELEASED) =147

0). Policy πINT is called the interruption policy. It is the policy that the agent should follow when148

it is interrupted. Sequence θ ∈ [0, 1[N represents at each time step the probability that the agent149

follows his interruption policy if I(ot) = 1. In the previous example, function I is quite simple.150

For Bob, IBob = 0 and for Adam, IAdam = 1 if his car goes fast and Bob is not too close and151

IAdam = 0 otherwise. Sequence θ is used to ensure convergence to the optimal policy by ensuring152

that the agents cannot be interrupted all the time but it should grow to 1 in the limit because we want153

agents to respond to interruptions. Using this triplet, it is possible to define an operator INT θ that154

transforms any policy π into an interruptible policy.155

Definition 1. (Interruptibility [16]) Given an interruption scheme < I, θ, πINT >, the interruption156

operator at time t is defined by INT θ(π) = πINT with probability I ·θt and π otherwise. INT θ(π)157

is called an interruptible policy. An agent is said to be interruptible if it samples its actions according158

to an interruptible policy.159

Note that “θt = 0 for all t” corresponds to the non-interruptible setting. We assume that each agent160

has its own interruption triplet and can be interrupted independently from the others. Interruptibility161

is an online property: every policy can be made interruptible by applying operator INT θ. However,162

applying this operator may change the joint policy that is learned by a server controlling all the163

agents. Note π∗INT the optimal policy learned by an agent following an interruptible policy. Orseau164

and Armstrong [16] say that the policy is safely interruptible if π∗INT (which is not an interruptible165

policy) is asymptotically optimal in the sense of [10]. It means that even though it follows an166

interruptible policy, the agent is able to learn a policy that would gather rewards optimally if no167

interruptions were to occur again. We already see that off-policy algorithms are good candidates168

for safe interruptibility. As a matter of fact, Q-learning is safely interruptible under conditions on169

exploration.170

3.2 Dynamic safe interruptibility171

In a multi-agent system, the outcome of an action depends on the joint action. Therefore, it is not172

possible to define an optimal policy for an agent without knowing the policies of all agents. Be-173

sides, convergence to a Nash equilibrium situation where no agent has interest in changing policies174

is generally not guaranteed even for suboptimal equilibria on simple games [27, 18]. The previous175

definition of safe interruptibility critically relies on optimality of the learned policy, which is there-176

fore not suitable for our problem since most algorithms lack convergence guarantees to these optimal177

behaviors. Therefore, we introduce below dynamic safe interruptibility that focuses on preserving178

the dynamics of the system.179

Definition 2. (Safe Interruptibility) Consider a multi-agent learning framework (S,A, T, r,m) with180

Q-values Q(i)
t : S × A(i) → R at time t ∈ N. The agents follow the interruptible learning policy181

INT θ(πε) to generate a sequence E = (xt, at, rt, yt)t∈N and learn on the processed sequence182

P (E). This framework is said to be safely interruptible if for any initiation function I and any183

interruption policy πINT :184
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1. ∃θ such that (θt → 1 when t → ∞) and ((∀s ∈ S, ∀a ∈ A, ∀T > 0), ∃t > T such that185

st = s, at = a)186

2. ∀i ∈ {1, ...,m}, ∀t > 0, ∀st ∈ S, ∀at ∈ A(i), ∀Q ∈ RS×A(i)

:187

P(Q
(i)
t+1 = Q | Q(1)

t , ..., Q
(m)
t , st, at, θ) = P(Q

(i)
t+1 = Q | Q(1)

t , ..., Q
(m)
t , st, at)188

We say that sequences θ that satisfy the first condition are admissible.189

When θ satisfies condition (1), the learning policy is said to achieve infinite exploration. This def-190

inition insists on the fact that the values estimated for each action should not depend on the inter-191

ruptions. In particular, it ensures the three following properties that are very natural when thinking192

about safe interruptibility:193

• Interruptions do not prevent exploration.194

• If we sample an experience from E then each agent learns the same thing as if all agents195

were following non-interruptible policies.196

• The fixed points of the learning rule Qeq such that Q(i)
eq (x, a) = E[Q

(i)
t+1(x, a)|Qt =197

Qeq, x, a, θ] for all (x, a) ∈ S × A(i) do not depend on θ and so agents Q-maps will198

not converge to equilibrium situations that were impossible in the non-interruptible setting.199

Yet, interruptions can lead to some state-action pairs being updated more often than others, espe-200

cially when they tend to push the agents towards specific states. Therefore, when there are several201

possible equilibria, it is possible that interruptions bias the Q-values towards one of them. Defi-202

nition 2 suggests that dynamic safe interruptibility cannot be achieved if the update rule directly203

depends on θ, which is why we introduce neutral learning rules.204

Definition 3. (Neutral Learning Rule) We say that a multi-agent reinforcement learning framework205

is neutral if:206

1. F is independent of θ207

2. Every experience e in E is independent of θ conditionally on (x, a,Q) where a is the joint208

action.209

Q-learning is an example of neutral learning rule because the update does not depend on θ and210

the experiences only contain (x, a, y, r), and y and r are independent of θ conditionally on (x, a).211

On the other hand, the second condition rules out direct uses of algorithms like SARSA where212

experience samples contain an action sampled from the current learning policy, which depends on θ.213

However, a variant that would sample from πεi instead of INT θ(πεi ) (as introduced in [16]) would214

be a neutral learning rule. As we will see in Corollary 2.1, neutral learning rules ensure that each215

agent taken independently from the others verifies dynamic safe interruptibility.216

4 Exploration217

In order to hope for convergence of the Q-values to the optimal ones, agents need to fully explore218

the environment. In short, every state should be visited infinitely often and every action should be219

tried infinitely often in every state [19] in order not to miss states and actions that could yield high220

rewards.221

Definition 4. (Interruption compatible ε) Let (S,A, T, r,m) be any distributed agent system where222

each agent follows learning policy πεi . We say that sequence ε is compatible with interruptions if223

εt → 0 and ∃θ such that ∀i ∈ {1, ..,m}, πεi and INT θ(πεi ) achieve infinite exploration.224

Sequences of ε that are compatible with interruptions are fundamental to ensure both regular and225

dynamic safe interruptibility when following an ε-greedy policy. Indeed, if ε is not compatible with226

interruptions, then it is not possible to find any sequence θ such that the first condition of dynamic227

safe interruptibility is satisfied. The following theorem proves the existence of such ε and gives228

example of ε and θ that satisfy the conditions.229

Theorem 1. Let c ∈]0, 1] and let nt(s) be the number of times the agents are in state s before time230

t. Then the two following choices of ε are compatible with interruptions:231

• ∀t ∈ N, ∀s ∈ S, εt(s) = c/ m
√
nt(s).232
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• ∀t ∈ N, εt = c/ log(t)233

Examples of admissible θ are θt(s) = 1 − c′/ m
√
nt(s) for the first choice and θt = 1 − c′/ log(t)234

for the second one.235

Note that we do not need to make any assumption on the update rule or even on the framework. We236

only assume that agents follow an ε-greedy policy. The assumption on ε may look very restrictive237

(convergence of ε and θ is really slow) but it is designed to ensure infinite exploration in the worst238

case when the operator tries to interrupt all agents at every step. In practical applications, this should239

not be the case and a faster convergence rate may be used.240

5 Joint Action Learners241

We first study interruptibility in a framework in which each agent observes the outcome of the joint242

action instead of observing only its own. This is called the joint action learner framework [5] and it243

has nice convergence properties (e.g., there are many update rules for which it converges [13, 25]).244

A standard assumption in this context is that agents cannot establish a strategy with the others:245

otherwise, the system can act as a centralized system. In order to maintain Q-values based on the246

joint actions, we need to make the standard assumption that actions are fully observable [12].247

Assumption 1. Actions are fully observable, which means that at the end of each turn, each agent248

knows precisely the tuple of actions a ∈ A1 × ...×Am that have been performed by all agents.249

Definition 5. (JAL) A multi-agent systems is made of joint action learners (JAL) if for all i ∈250

{1, ..,m}: Q(i) : S ×A→ R.251

Joint action learners can observe the actions of all agents: each agent is able to associate the changes252

of states and rewards with the joint action and accurately update its Q-map. Therefore, dynamic253

safe interruptibility is ensured with minimal conditions on the update rule as long as there is infinite254

exploration.255

Theorem 2. Joint action learners with a neutral learning rule verify dynamic safe interruptibility if256

sequence ε is compatible with interruptions.257

Proof. Given a triplet < I(i), θ(i), πINTi >, we know that INT θ(π) achieves infinite exploration258

because ε is compatible with interruptions. For the second point of Definition 2, we consider an259

experience tuple et = (xt, at, rt, yt) and show that the probability of evolution of the Q-values at260

time t + 1 does not depend on θ because yt and rt are independent of θ conditionally on (xt, at).261

We note Q̃mt = Q
(1)
t , ..., Q

(m)
t and we can then derive the following equalities for all q ∈ R|S|×|A|:262

P(Q
(i)
t+1(xt, at) = q|Q̃mt , xt, at, θt) =

∑
(r,y)∈R×S

P(F (xt, at, r, y, Q̃mt ) = q, y, r|Q̃mt , xt, at, θt)

=
∑

(r,y)∈R×S

P(F (xt, at, rt, yt, Q̃mt ) = q|Q̃mt , xt, at, rt, yt, θt)P(yt = y, rt = r|Q̃mt , xt, at, θt)

=
∑

(r,y)∈R×S

P(F (xt, at, rt, yt, Q̃mt ) = q|Q̃mt , xt, at, rt, yt)P(yt = y, rt = r|Q̃mt , xt, at)
263

The last step comes from two facts. The first is that F is independent of θ condition-264

ally on (Q
(m)
t , xt, at) (by assumption). The second is that (yt, rt) are independent of θ265

conditionally on (xt, at) because at is the joint actions and the interruptions only affect the266

choice of the actions through a change in the policy. P(Q
(i)
t+1(xt, at) = q|Q̃mt , xt, at, θt) =267

P(Q
(i)
t+1(xt, at) = q|Q̃mt , xt, at). Since only one entry is updated per step, ∀Q ∈ RS×Ai ,268

P(Q
(i)
t+1 = Q|Q̃mt , xt, at, θt) = P(Q

(i)
t+1 = Q|Q̃mt , xt, at)269

Corollary 2.1. A single agent with a neutral learning rule and a sequence ε compatible with inter-270

ruptions verifies dynamic safe interruptibility.271
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Theorem 2 and Corollary 2.1 taken together highlight the fact that joint action learners are not very272

sensitive to interruptions and that in this framework, if each agent verifies dynamic safe interrupt-273

ibility then the whole system does.274

The question of selecting an action based on the Q-values remains open. In a cooperative setting275

with a unique equilibrium, agents can take the action that maximizes their Q-value. When there276

are several joint actions with the same value, coordination mechanisms are needed to make sure277

that all agents play according to the same strategy [4]. Approaches that rely on anticipating the278

strategy of the opponent [23] would introduce dependence to interruptions in the action selection279

mechanism. Therefore, the definition of dynamic safe interruptibility should be extended to include280

these cases by requiring that any quantity the policy depends on (and not just the Q-values) should281

satisfy condition (2) of dynamic safe interruptibility. In non-cooperative games, neutral rules such282

as Nash-Q or minimax Q-learning [13] can be used, but they require each agent to know the Q-maps283

of the others.284

6 Independent Learners285

It is not always possible to use joint action learners in practice as the training is very expensive286

due to the very large state-actions space. In many real-world applications, multi-agent systems use287

independent learners that do not explicitly coordinate [6, 21]. Rather, they rely on the fact that the288

agents will adapt to each other and that learning will converge to an optimum. This is not guaranteed289

theoretically and there can in fact be many problems [14], but it is often true empirically [24]. More290

specifically, Assumption 1 (fully observable actions) is not required anymore. This framework can291

be used either when the actions of other agents cannot be observed (for example when several actions292

can have the same outcome) or when there are too many agents because it is faster to train. In this293

case, we define the Q-values on a smaller space.294

Definition 6. (IL) A multi-agent systems is made of independent learners (IL) if for all i ∈ {1, ..,m},295

Q(i) : S ×Ai → R.296

This reduces the ability of agents to distinguish why the same state-action pair yields different re-297

wards: they can only associate a change in reward with randomness of the environment. The agents298

learn as if they were alone, and they learn the best response to the environment in which agents can299

be interrupted. This is exactly what we are trying to avoid. In other words, the learning depends on300

the joint policy followed by all the agents which itself depends on θ.301

6.1 Independent Learners on matrix games302

Theorem 3. Independent Q-learners with a neutral learning rule and a sequence ε compatible with303

interruptions do not verify dynamic safe interruptibility.304

Proof. Consider a setting with two a and b that can perform two actions: 0 and 1. They get a reward305

of 1 if the joint action played is (a0, b0) or (a1, b1) and reward 0 otherwise. Agents use Q-learning,306

which is a neutral learning rule. Let ε be such that INT θ(πε) achieves infinite exploration. We307

consider the interruption policies πINTa = a0 and πINTb = b1 with probability 1. Since there is only308

one state, we omit it and set γ = 0. We assume that the initiation function is equal to 1 at each step309

so the probability of actually being interrupted at time t is θt for each agent.310

We fix time t > 0. We define q = (1 − α)Q
(a)
t (a0) + α and we assume that Q(b)

t (b1) > Q
(b)
t (b0).311

Therefore P(Q
(a)
t+1(a0) = q|Q(a)

t , Q
(b)
t , a

(a)
t = a0, θt) = P(rt = 1|Q(a)

t , Q
(b)
t , a

(a)
t = a0, θt) =312

P(a
(b)
t = b0|Q(a)

t , Q
(b)
t , a

(a)
t = a0, θt) = ε

2 (1 − θt), which depends on θt so the framework does313

not verify dynamic safe interruptibility.314

Claus and Boutilier [5] studied very simple matrix games and showed that the Q-maps do not con-315

verge but that equilibria are played with probability 1 in the limit. A consequence of Theorem 3316

is that even this weak notion of convergence does not hold for independent learners that can be317

interrupted.318
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6.2 Interruptions-aware Independent Learners319

Without communication or extra information, independent learners cannot distinguish when the320

environment is interrupted and when it is not. As shown in Theorem 3, interruptions will therefore321

affect the way agents learn because the same action (only their own) can have different rewards322

depending on the actions of other agents, which themselves depend on whether they have been323

interrupted or not. This explains the need for the following assumption.324

Assumption 2. At the end of each step, before updating the Q-values, each agent receives a signal325

that indicates whether an agent has been interrupted or not during this step.326

This assumption is realistic because the agents already get a reward signal and observe a new state327

from the environment at each step. Therefore, they interact with the environment and the interruption328

signal could be given to the agent in the same way that the reward signal is. If Assumption 2 holds,329

it is possible to remove histories associated with interruptions.330

Definition 7. (Interruption Processing Function) The processing function that prunes interrupted331

observations is PINT (E) = (et){t∈N / Θt=0} where Θt = 0 if no agent has been interrupted at time332

t and Θt = 1 otherwise.333

Pruning observations has an impact on the empirical transition probabilities in the sequence. For334

example, it is possible to bias the equilibrium by removing all transitions that lead to and start335

from a specific state, thus making the agent believe this state is unreachable.2 Under our model of336

interruptions, we show in the following lemma that pruning of interrupted observations adequately337

removes the dependency of the empirical outcome on interruptions (conditionally on the current338

state and action).339

Lemma 1. Let i ∈ {1, ...,m} be an agent. For any admissible θ used to generate the experiences340

E and e = (y, r, x, ai, Q) ∈ P (E). Then P(y, r|x, ai, Q, θ) = P(y, r|x, ai, Q).341

This lemma justifies our pruning method and is the key step to prove the following theorem.342

Theorem 4. Independent learners with processing function PINT , a neutral update rule and a343

sequence ε compatible with interruptions verify dynamic safe interruptibility.344

Proof. (Sketch) Infinite exploration still holds because the proof of Theorem 1 actually used the fact345

that even when removing all interrupted events, infinite exploration is still achieved. Then, the proof346

is similar to that of Theorem 2, but we have to prove that the transition probabilities conditionally on347

the state and action of a given agent in the processed sequence are the same than in an environment348

where agents cannot be interrupted, which is proven by Lemma 1.349

7 Concluding Remarks350

The progress of AI is raising a lot of concerns3. In particular, it is becoming clear that keeping an351

AI system under control requires more than just an off switch. We introduce in this paper dynamic352

safe interruptibility, which we believe is the right notion to reason about the safety of multi-agent353

systems that do not communicate. In particular, it ensures that infinite exploration and the one-354

step learning dynamics are preserved, two essential guarantees when learning in the non-stationary355

environment of Markov games.356

A natural extension of our work would be to study dynamic safe interruptibility when Q-maps are357

replaced by neural networks [22, 15], which is a widely used framework in practice. In this setting,358

the neural network may overfit states where agents are pushed to by interruptions. A smart experi-359

ence replay mechanism that would pick observations for which the agents have not been interrupted360

for a long time more often than others is likely to solve this issue. More generally, experience replay361

mechanisms that compose well with safe interruptibility could allow to compensate for the extra362

amount exploration needed by safely interruptible learning by being more efficient with data. Thus,363

they are critical to make these techniques practical.364

2The example at https://agentfoundations.org/item?id=836 clearly illustrates this problem.
3https://futureoflife.org/ai-principles/ gives a list of principles that AI researchers should keep in mind when

developing their systems.
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