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Abstract. Shared objects are the means by which processes gather and
exchange information about the state of a distributed system. Objects
that disclose more information about the system are therefore more desir-
able. In this paper, we propose the schedule reconstruction (SR) problem
as a new metric for the disclosure power of shared memory objects. In
schedule reconstruction, processes take steps which are interleaved to
form a schedule; each process needs to be able to reconstruct the sched-
ule up to its last step. We show that objects can be ranked in a hierarchy
according to their ability to solve SR. In this hierarchy, stronger objects
can implement weaker objects via a SR-based universal construction. We
identify a connection between SR and consensus and prove that SR is at
least as hard as consensus. Perhaps surprisingly, we show that objects
that are powerful in solving consensus—such as compare-and-swap—are
not always powerful in their ability to solve SR.

1 Introduction

Programming a computing system in a centralized way is significantly more
powerful than doing so in a distributed way. The main difficulty of distributed
programming comes from the lack of knowledge that a process has about the
state of the other processes and the overall state of the system. The more infor-
mation a process has about the state of the system, the easier it is to write
an algorithm for that process to achieve a task in coordination with the other
processes. In a distributed system, this information can only be obtained by
processes from shared objects. So, intuitively, the more information an object
discloses about the rest of the system, the more appealing it is.

In this paper, we propose the schedule reconstruction (SR) problem as a new
metric for the disclosure power of shared objects. In order to solve SR, processes
in a shared memory system need to be able to accurately identify the interleaving
of steps (shared memory accesses) taken by all processes (the schedule). It is
easy to see why objects that can identify the schedule are desirable. Knowing
the schedule basically equates knowing the full system state and thus overcoming
the main difficulty of distributed programming, as mentioned above.

We associate a SR number with each object A, representing the maximum
number of processes of a system in which A can solve SR. Objects can thus be
organized in a hierarchy, with each level corresponding to a different SR number.
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There is a natural connection between disclosure power as measured by the
SR number and synchronization power as measured by the consensus number [2].
Intuitively, synchronization is a means of restricting the very large space of
executions of a concurrent algorithm, whereas SR is a way of identifying which
one of these possible executions actually occurred. At first glance, one would
expect that objects with a high reconstruction power (high SR number) should
also have a high synchronization power (high consensus number). We confirm
this intuition by showing that SR is at least as hard as consensus: the SR number
of an object is at most its consensus number.

Due to this connection between SR and consensus, intuition might also pre-
dict the inverse relationship to hold true: that objects with a high consensus
number should also possess a high SR number. Surprisingly, this is not always
the case, as we show in this paper. We prove that compare-and-swap, a very
powerful, even universal [2], synchronization primitive, is no more powerful than
simple read-write registers in terms of schedule reconstruction.

An object A’s position in the SR hierarchy also determines A’s power to
implement other objects. We show that in the SR hierarchy a stronger object
A is always able to implement a weaker object B, by providing a universal
construction based on SR objects. We also show that B is unable to implement
A in such a way that the implementation maintains the same disclosure power
as A. In other words, implementing a stronger object from a weaker one always
entails losing disclosure power.

2 Model and Problem Statement

2.1 Processes

We consider a set of n processes P = {Py,..., P,} that communicate through
shared memory using a set of memory access primitives. The processes are exe-
cuting an algorithm A, which consists of a sequence of shared memory accesses
and local steps. We assume local steps to be instantaneous and shared memory
steps to be atomic.

An execution of algorithm A by a set of processes P is modeled by a sched-
ule—a finite or infinite sequence of process identifiers which represents the inter-
leaving of steps taken by the processes. When describing a schedule, we ignore
local steps, so a schedule defines a global total order on the shared memory
accesses done by all processes participating in the execution.

2.2 Schedule Reconstruction Object

A schedule reconstruction object (or SR object) provides two methods, step
and reconstruct, neither of which takes any arguments. Basically, a call to
reconstruct by a process p returns the schedule up to the last step call by
p. The two methods need to satisfy the following conditions:
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— the execution of each call to step performs exactly one primitive shared mem-
ory access and any number of local steps.

— reconstruct may only be implemented using local steps and shared memory
accesses that do not modify the state of shared memory (such as reads).

— a call to reconstruct by process p returns the schedule as a mapping from
step numbers to process ids or an empty mapping if there are no step calls
by p preceding the reconstruct call.

We are interested in wait-free implementations of SR objects that correctly
reconstruct any possible schedule (any interleaving of step calls). We call any
such implementation a SR algorithm. A class C of objects solves n-process sched-
ule reconstruction if there exists an SR algorithm A that solves n-process sched-
ule reconstruction using any number of objects of class C' and any number of
atomic registers. We define the schedule reconstruction number (or SR number)
of a class C' to be the largest n for which C' solves n-process schedule reconstruc-
tion. If no largest n exists, we say that the SR number of the class is infinite.

3 SR and Consensus

In this section, we establish a connection between SR and consensus: SR is at
least as hard as consensus.

Theorem 1. Any class C of objects that solves n-process SR also solves m-
PTOCesSs CONSENSuUS.

Proof. Let A be an algorithm solving n-process SR using only objects of class
C and atomic registers. We use A to solve consensus. Each process writes its
proposed value in a single-writer, multi-reader register. Then, each processes calls
step once and then calls reconstruct. Thus, every process knows the schedule
and is able to decide on the value proposed by the process which was scheduled
first.

Corollary 1. The SR number of a class C is at most equal to its consensus
number.

4 The SR Hierarchy

We examine specific classes of objects according to their ability to solve SR. Due
to space limitations, we omit full proofs throughout this section and refer the
reader to the full version of the paper [1]. Proof sketches are provided.

4.1 Fetch-and-Increment

Fetch-and-increment objects have consensus number 2 [3] and thus have SR num-
ber at most 2 (Corollary 1). We now show that they have SR number exactly 2.
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Theorem 2. Fetch-and-increment has SR number 2.

Proof. Consider the following protocol for 2-process SR. The two processes share
a fetch-and-increment object which initially has value 0. A step call simply
invokes getAndIncrement and receives a (unique) ticket number, which it appends
the result to a local list of observations. A reconstruct call by p simply assigns to
p the steps corresponding to the tickets in p’s local observation list and assigns
to the other process the steps corresponding to the gaps in p’s observation list.

4.2 Compare-and-Swap: A Surprising Result

In this section, we show that the SR number of compare-and-swap (CAS) is 1.
We know that it is (trivially) at least 1, by the same argument used for atomic
registers. It remains to show that it is also at most 1.

Theorem 3. CAS has SR number at most 1.

Proof. We assume towards a contradiction that there exists some algorithm A
for 2-process SR using only CAS objects and registers and examine the first step
of A by each process. This first step cannot be a read, since reads do not modify
the observable state of the system and thus cannot be reconstructed. The first
step of a process p cannot be a register write either, because immediately after
a write p cannot establish whether its write was performed before or after the
other process’s step. Thus, the first step of both processes must be a CAS. Both
CAS’s must succeed, because a failed CAS does not modify the observable system
state. Moreover, both CAS’s must be executed on the same memory location,
otherwise they would commute. However, if two CAS’s succeed in some schedule
S, at least one of them will fail in a schedule S’ in which the order of the CAS’s
is reversed—making S’ not reconstructible by A, a contradiction.

4.3 Multiple Atomic Append: Every Level Is Populated

An append register is similar to a regular register, except that every write
appends its value to the current value of the register, instead of overwriting
it. A k-writer append register is an append register from which any number
of processes can read but to which only k£ processes can append. Interestingly,
append registers have been studied in a Byzantine setting as well [4].

Theorem 4. k-writer append registers have SR number s = k.

Proof. First, we show that s > k. A SR algorithm for k processes using a shared
k-writer append register r is as follows. A step call appends the invoking process’s
id to r. A reconstruct call reads r and assigns step numbers to processes accord-
ing to the order of id’s in r. It remains to show that s < k + 1. Assume towards
a contradiction that there exists a SR algorithm for k + 1 processes using only
k-writer append registers and atomic read-write registers. We consider the first
step of the algorithm for each process. Similarly to the proof of Theorem 3,
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all processes must access append registers during their first step. Because there
are k + 1 processes but the append registers only support k writers, there must
exist two processes which do not write to the same append register for their first
step. Thus, their appends commute and are not reconstructible.

4.4 SWAP3: the Hierarchy is Infinite

We define a new primitive called SWAP3. SWAP3 takes three arguments a, b and c.
It atomically writes the value of b into ¢ and the value of a into b.

Theorem 5. SWAP3 has SR number co.

Proof. We describe an algorithm that solves SR for any number of processes.
The processes maintain a shared linked list which encodes the schedule. A step
call prepares a new node with the invoking process’s id and appends it to the
head of the list (a single global step using SWAP3: atomically assign the head of
the list to point to the new node and the new node’s next field to the old value
of the head). Reconstructing the schedule is done by traversing the linked list
and assigning step numbers to processes in reverse order.

5 A SR-Based Universal Construction

In this section, we examine the relationships between the levels in the SR hier-
archy. We give two main results: a positive one—stronger objects can implement
weaker objects—and a negative one—weaker objects cannot implement stronger
objects in a way that preserves reconstructibility.

We begin with the positive result: in a system of n processes, given any object
A with SR number > n and any deterministic object B, A implements B. By
definition of SR number, A can be used to implement SR objects in a system of n
processes. Furthermore, B can be implemented from SR objects in the following
way (full details in our paper [1]). The processes use an SR object to determine
the order in which their invocations take effect and then use this information to
simulate the execution on local copies of B.

We have just shown that in the SR hierarchy, as in the consensus hierarchy,
there exist objects that are universal. Given sufficiently many of them, any object
with a sequential specification can be implemented in a wait-free linearizable way.

We now turn to the negative result: in a system of n processes, given any
object A with SR number > n and any object B with SR number < n, B
cannot 1-implement A. We say that A 1-implements B if A implements B and
the implementation performs at most one shared memory accesses per call to B’s
methods. Towards a contradiction, assume that B can 1-implement A in a system
of n processes. Since A has SR number > n, there exists an implementation of a
SR object from A and atomic registers. By replacing A in this implementation
with its 1-implementation from B, we obtain a valid implementation of an SR
object from B, a contradiction of the fact that B’s SR number is less than n.
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Note that this negative result does not contradict the universality of objects
in the sense of consensus, which states that an object with consensus number
at least n can implement any object in a system of n or less processes. Our
negative result states that objects with lower SR number cannot 1-implement
objects with higher SR number. So, for instance, CAS has infinite consensus
number, so it can implement any object, but it has SR number 1, so it cannot
implement in a single step any object with SR number larger than 1 (e.g., fetch-
and-increment) in a system of 2 or more processes. In other words, no such object
can be implemented from CAS in such a way that the implementation has the
same SR number as the abstract object.

6 Conclusion

In this paper, we propose the schedule reconstruction problem and the SR num-
ber as a new measure for the disclosure power of objects in shared memory
systems. Objects can be organized in a dense hierarchy where strong objects
implement weaker objects via a universal construction based on SR. Further-
more, we identify a link between SR and consensus and show that SR is at least
as hard as consensus. Finally, we evaluate the SR number of well known objects
and show that universal consensus objects are not always universal SR objects.
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