
Brief Announcement: Byzantine-Tolerant Machine Learning

Peva Blanchard

Swiss Federal Institute of Technology, Lausanne

peva.blanchard@ep�.ch

El Mahdi El Mhamdi
∗†

Swiss Federal Institute of Technology, Lausanne

elmahdi.elmhamdi@ep�.ch

Rachid Guerraoui

Swiss Federal Institute of Technology, Lausanne

rachid.guerraoui@ep�.ch

Julien Stainer
‡

Swiss Federal Institute of Technology, Lausanne

julien.stainer@ep�.ch

ABSTRACT
We report on Krum, the �rst provably Byzantine-tolerant aggrega-

tion rule for distributed Stochastic Gradient Descent (SGD). Krum

guarantees the convergence of SGD even in a distributed setting

where (asymptotically) up to half of the workers can be malicious

adversaries trying to attack the learning system.

CCS CONCEPTS
•Mathematics of computing → Stochastic processes; Di�er-
ential calculus; •Hardware→ Robustness; •Theory of compu-
tation→Machine learning theory;

KEYWORDS
Distributed Stochastic Gradient Descent ; Adversarial Machine

Learning

1 INTRODUCTION
The increasing amount of data involved as well as the growing

complexity of models has led to learning schemes that require a lot

of computational resources. As a consequence, most industry-grade

machine-learning implementations are now distributed [1]. For

example, as of 2012, Google reportedly used 16.000 processors to

train an image classi�er [8]. However, distributing a computation

over several machines induces a higher risk of failures, including

crashes and computation errors. In the worst case, the system may

undergo Byzantine failures [5], i.e., completely arbitrary behaviors

of some of the machines involved. In practice, such failures may

be due to stalled processes, or biases in the way the data samples

are distributed among the processes.

A classical approach to mask failures in distributed systems is

to use a state machine replication protocol [11], which requires

∗
E.M. El Mhamdi’s work is funded by the Swiss National Science Foundation under

the grant 200021_169588 TARBDA (a Theoretical Approach to Robustness in Biological

Distributed Algorithms).

†
Corresponding author.

‡
P. Blanchard and J. Stainer are supported in part by the European ERC Grant 339539

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or

a fee. Request permissions from permissions@acm.org.

PODC’17, July 25–27, 2017, Washington, DC, USA.

© 2017 ACM. 978-1-4503-4992-5/17/07. . . $15.00.

DOI: http://dx.doi.org/10.1145/3087801.3087861

however state transitions to be applied by all processes. In the

case of distributed machine learning, this constraint can be seen in

two ways: either (a) the processes agree on a sample of data based

on which they update their local parameter vectors, or (b) they

agree on how the parameter vector should be updated. In case (a),

the sample of data has to be transmitted to each process, which

then has to perform a heavyweight computation to update its local

parameter vector. This entails communication and computational

costs that defeat the entire purpose of distributing the work. In case

(b), the processes have no way to check if the chosen update for

the parameter vector has indeed been computed correctly on real

data (a Byzantine process could have proposed the update). Byzan-

tine failures may easily prevent the convergence of the learning

algorithm. Neither of these solutions is satisfactory in a realistic

distributed machine learning setting.

In fact, most learning algorithms today rely on a core component,

namely stochastic gradient descent (SGD) [4]. In a machine learning

setting, a cost function – depending on the parameter vector – is

minimized based on stochastic estimates of its gradient. Distributed

implementations of SGD [12] typically take the following form: a

single parameter server is in charge of updating the parameter vec-

tor, while worker processes perform the actual update estimation,

based on the share of data they draw from un unknown distribu-

tion. The parameter server executes synchronous rounds, during

each of which, the parameter vector is broadcast to the workers.

In turn, each worker computes an estimate of the update to apply

(an estimate of the gradient), and the parameter server aggregates

their results to �nally update the parameter vector. Today, this

aggregation is typically implemented through averaging [10], or

variants of it [6,12].

The motivation of this work is the question of how a distributed

SGD can be devised to tolerate f Byzantine processes among the n
workers. We provide the �rst provable answer to this question.

Contributions. We �rst show that no linear combination (current

approaches) of the updates proposed by the workers can tolerate

a single Byzantine worker. A non-linear, distance-based choice

function, that chooses, among the proposed vectors, the vector

“closest to everyone else” (for example by taking the vector that

minimizes the sum of the distances to every other vector), might

look appealing. Yet, such a distance-based choice tolerates only

a single Byzantine worker. Two Byzantine workers can collude,

one helping the other to be selected, by moving the barycenter

of all the vectors farther from the “correct area”. We formulate a

Byzantine resilience property capturing su�cient conditions for

the parameter server’s choice to tolerate f Byzantine workers. Es-

sentially, to guarantee that the cost will decrease despite Byzantine

workers, we require the parameter server’s choice (a) to point,

on average, to the same direction as the gradient and (b) to have

statistical moments (up to the fourth moment) bounded above by

a homogeneous polynomial in the moments of a correct estimator

of the gradient. One way to ensure such a resilience property is

to consider a majority-based approach, looking at every subset of

n − f vectors, and considering the subset with the smallest diame-

ter. While this approach is more robust to Byzantine workers that

propose vectors far from the correct area, its exponential computa-

tional cost is prohibitive. Interestingly, combining the intuitions of

the majority-based and distance-based methods, we can choose the

vector that is somehow the closest to its n − f neighbors. Namely,

the one that minimizes a distance-based criteria, but only within its

n − f neighbors. This is the main idea behind our choice function

we call Krum
1
. We show (using techniques from multi-dimensional

stochastic calculus) that our Krum function satis�es the resilience

property aforementioned and the corresponding machine learning

scheme converges. An important advantage of the Krum function

is that it requires O (n2 · d) local computation time, where d is the

dimension of the parameter vector. This contrasts with the prohib-

itive O (nd) cost of approximate agreement [9]. (In deep learning,

the dimension d of the parameter vector may take values in the

hundreds of billions.)

2 MODEL
We consider a general distributed system consisting of a param-

eter server
2

[1], and n workers, f of them possibly Byzantine.

Computation is divided into (in�nitely many) synchronous rounds.

During round t , the parameter server broadcasts its parameter vec-

tor xt ∈ R
d

to all the workers. Each correct worker p computes an

estimateV t
p = G (xt , ξ

t
p) of the gradient∇Q (xt) of the cost function

Q , where ξ tp is a random variable representing, e.g., the sample

drawn from the dataset. A Byzantine worker b proposes a vector

V t
b which can be arbitrary (see Figure 1).

The parameter server computes a vector F (V t
1
, . . . ,V t

n) by ap-

plying a deterministic function F to the vectors received. We re-

fer to F as the choice function of the parameter server. The pa-

rameter server updates the parameter vector using the follow-

ing SGD equation:xt+1 = xt − γt · F (V
t
1
, . . . ,V t

n). We assume

that the correct (non-Byzantine) workers compute unbiased es-

timates of the gradient ∇Q (xt). More precisely, in every round

t , the vectors V t
i ’s proposed by the correct workers are indepen-

dent identically distributed random vectors, V t
i ∼ G (xt , ξ

t
i) with

EG (xt , ξ
t
i) = ∇Q (xt). This can be achieved by ensuring that each

sample of data used for computing the gradient is drawn uniformly

and independently, as classically assumed in the literature of ma-

chine learning [3]. The Byzantine workers have full knowledge of

the system, including the choice function F , the vectors proposed

by the other workers and can collaborate with each other [7].

1
Krum, in Greek Κρούµος, was a Bulgarian Khan of the end of the eighth century,

who undertook o�ensive attacks against the Byzantine empire. Bulgaria doubled in

size during his reign.

2
The parameter server is assumed to be reliable. Classical techniques of state-machine

replication can be used to avoid this single point of failure.

3 BYZANTINE RESILIENCE
In most SGD-based learning algorithms used today [3,4], the choice

function consists in computing the average of the input vectors.

Figure 1: The gradient es-
timates of correct workers
(black dashed arrows) are dis-
tributed around the actual
gradient (blue solid arrow) of
the cost function (thin black
curve). A Byzantine worker
can propose an arbitrary vec-
tor (red dotted arrow).

Lemma 3.1 below states

that no linear combination

of the vectors can tolerate

a single Byzantine worker.

In particular, averaging is

not robust to Byzantine

failures.

Lemma 3.1. Consider a

choice function Fl in of the

form: Fl in (V1, . . . ,Vn) =∑n
i=1 λi ·Vi , where the λi ’s

are non-zero scalars. LetU
be any vector in Rd . A sin-

gle Byzantine worker can

make F always selectU . In

particular, a single Byzan-

tine worker can prevent con-

vergence.

Intuitively, the choice function should output a vector F that is

not too far from the “real” gradient д, more precisely, the vector

that points to the steepest direction of the cost function being

optimized. This is expressed as a lower bound (condition (i)) on the

scalar product of the (expected) vector F and д. If EF belongs to the

ball centered at д with radius r , then the scalar product is bounded

below by a term involving sinα = r/‖д‖. Condition (ii) is more

technical, and states that the moments of F should be controlled

by the moments of the (correct) gradient estimator G. The bounds

on the moments of G are classically used to control the e�ects of

the discrete nature of the SGD dynamics [3]. Condition (ii) allows

to transfer this control to the choice function.

De�nition 3.2 ((α , f)-Byzantine Resilience). Let 0 ≤ α < π/2
be any angular value, and any integer 0 ≤ f ≤ n. Let V1, . . . ,Vn
be any independent identically distributed random vectors in Rd ,

Vi ∼ G, with EG = д. Let B1, . . . ,Bf be any random vectors in

Rd , possibly dependent on theVi ’s. Choice function F is said to be

(α , f)-Byzantine resilient if, for any 1 ≤ j1 < · · · < jf ≤ n, the vec-

tor F = F (V1, . . . , B1︸︷︷︸
j1

, . . . , Bf︸︷︷︸
jf

, . . . ,Vn) satis�es (i) 〈EF ,д〉 ≥

(1 − sinα) · ‖д‖2 > 0 and (ii) for r = 2, 3, 4, E ‖F ‖r is bounded

above by a linear combination of terms E ‖G‖r1 . . . E ‖G‖rn−1 with

r1 + · · · + rn−1 = r .

4 THE KRUM FUNCTION
The barycentric choice function Fbary =

1

n
∑n
i=1Vi can be de�ned

as the vector in Rd that minimizes the sum of squared distances

to the Vi ’s
∑n
i=1

Fbary −Vi

2

. Lemma 3.1, however, states that

this approach does not tolerate even a single Byzantine failure.

One could try to de�ne the choice function in order to select,

among the Vi ’s, the vector U ∈ {V1, . . . ,Vn } that minimizes the

sum

∑
i ‖U −Vi ‖

2
. Intuitively, vector U would be close to every

proposed vector, including the correct ones, and thus would be

close to the “real” gradient. However, all Byzantine workers but

one may propose vectors that are large enough to move the total

barycenter far away from the correct vectors, while the remaining

Byzantine worker proposes this barycenter. Since the barycenter

always minimizes the sum of squared distance, this last Byzantine

worker is certain to have its vector chosen by the parameter server.

This situation is depicted in Figure 2. In other words, since this

choice function takes into account all the vectors, including the

very remote ones, the Byzantine workers can collude to force the

choice of the parameter server.

C B

b

Figure 2: Selecting the vector that minimizes the sum of
the squared distances to other vectors does not prevent ar-
bitrary vectors proposed by Byzantine workers from being
selected if f ≥ 2. If the gradients computed by the correct
workers lie in area C, the Byzantine workers can collude to
propose up to f − 1 vectors in an arbitrarily remote area
B, thus allowing another Byzantine vector b, close to the
barycenter of proposed vectors, to be selected.

Our approach to circumvent this issue is to preclude the vectors

that are too far away. More precisely, we de�ne our Krum choice

function Kr(V1, . . . ,Vn) as follows. For any i , j, we denote by

i → j the fact that Vj belongs to the n − f − 2 closest vectors to Vi .

Then, we de�ne for each worker i , the score s (i) =
∑
i→j

Vi −Vj

2

where the sum runs over the n − f − 2 closest vectors toVi . Finally,

Kr(V1, . . . ,Vn) = Vi∗ where i∗ refers to the worker minimizing the

score, s (i∗) ≤ s (i) for all i .3

Lemma 4.1. The Krum Function Kr(V1, . . . ,Vn), whereV1, . . . ,Vn
are d-dimensional vectors, is computed in O (n2 · d) time at the pa-

rameter server.

Resilience. Proposition 4.2 below states that, if 2f + 2 < n and

the gradient estimator is accurate enough, (its standard deviation

is relatively small compared to the norm of the gradient), then

the Krum function is (α , f)-Byzantine-resilient, where angle α de-

pends on the ratio of the deviation over the gradient. When the

Krum function selects a correct vector (i.e., a vector proposed by a

correct worker), the proof of this fact is relatively easy, since the

probability distribution of this correct vector is that of the gradient

estimator G. The core di�culty occurs when the Krum function

selects a Byzantine vector (i.e., a vector proposed by a Byzantine

worker), because the distribution of this vector is completely ar-

bitrary, and may even depend on the correct vectors. In a very

general sense, this part of our proof is reminiscent of the geometric

median technique and is discussed in details in the full paper [2].

Proposition 4.2. Let V1, . . . ,Vn be any independent and identi-

cally distributed randomd-dimensional vectors s.tVi ∼ G , with EG =

д and E

G − д

2 = dσ 2. Let B1, . . . ,Bf be any f random vectors,

3
If two or more workers have the minimal score, we choose the vector of the worker

with the smallest identi�er.

possibly dependent on theVi ’s. If 2f +2 < n and η(n, f)
√
d ·σ < ‖д‖,

where η(n, f) =

{
O (n) if f = O (n)
O (
√
n) if f = O (1)

, then the Krum function

Kr is (α , f)-Byzantine resilient where 0 ≤ α < π/2 is de�ned by

sinα =
η (n,f) ·

√
d ·σ

‖д ‖ .

Convergence. The SGD equation is expressed as follows: xt+1 =
xt − γt · Kr(V

t
1
, . . . ,V t

n), where at least n − f vectors among the

V t
i ’s are correct, while the other ones may be Byzantine. For a

correct index i , V t
i = G (xt , ξ

t
i) where G is the gradient estima-

tor. We de�ne the local standard deviation σ (x) by d · σ 2 (x) =

E

G (x , ξ) − ∇Q (x)

2 .

Proposition 4.3. We assume that (i) the cost function Q is three

times di�erentiable with continuous derivatives, and is non-negative,

Q (x) ≥ 0; (ii) the learning rates satisfy

∑
t γt = ∞ and

∑
t γ

2

t < ∞;

(iii) the gradient estimator satis�es EG (x , ξ) = ∇Q (x) and ∀r ∈
{2, . . . , 4}, E‖G (x , ξ)‖r ≤ Ar + Br ‖x ‖

r
for some constants Ar ,Br ;

(iv) there exists a constant 0 ≤ α < π/2 such that for all x η(n, f) ·
√
d · σ (x) ≤ ‖∇Q (x)‖ · sinα ; (v) �nally, beyond a certain horizon,

‖x ‖2 ≥ D, there exist ϵ > 0 and 0 ≤ β < π/2 − α such that

‖∇Q (x)‖ ≥ ϵ > 0 and
〈x,∇Q (x)〉
‖x ‖ · ‖∇Q (x) ‖ ≥ cos β . Then the sequence of

gradients ∇Q (xt) converges almost surely to zero.

Proposition 4.3 basically says that in the presence of Byzantine

workers, the parameter vector xt almost surely reaches a basin

around points where the gradient is small (‖∇Q ‖ ≤ η(n, f) ·
√
d ·σ),

i.e., points where the cost landscape is “almost �at”.

Note that the convergence analysis is based only on the fact

that function Kr is (α , f)-Byzantine resilient. The detailed proof of

convergence, as well as its qualitative interpretation, can be found

in the full paper [2].

Acknowledgment. We are very grateful to Lê Nguyen Hoang for

fruitful discussions.

REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, et al. Tensor�ow: A system for large-scale machine learning.

In Proceedings of the 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI). Savannah, Georgia, USA, 2016.

[2] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer. Byzantine-tolerant

machine learning. arXiv preprint arXiv:1703.02757, 2017.

[3] L. Bottou. Online learning and stochastic approximations. Online learning in

neural networks, 17(9):142, 1998.

[4] L. Bottou. Large-scale machine learning with stochastic gradient descent. In

Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[5] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM

Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401,

1982.

[6] X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous parallel stochastic gradient for

nonconvex optimization. In Advances in Neural Information Processing Systems,

pages 2737–2745, 2015.

[7] N. A. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[8] J. Marko�. How many computers to identify a cat? 16,000. New York Times, pages

06–25, 2012.

[9] H. Mendes and M. Herlihy. Multidimensional approximate agreement in byzan-

tine asynchronous systems. In Proceedings of the forty-�fth annual ACM sympo-

sium on Theory of computing, pages 391–400. ACM, 2013.

[10] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by

averaging. SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

[11] F. B. Schneider. Implementing fault-tolerant services using the state machine

approach: A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[12] S. Zhang, A. E. Choromanska, and Y. LeCun. Deep learning with elastic averaging

sgd. In Advances in Neural Information Processing Systems, pages 685–693, 2015.

	Introduction
	Model
	Byzantine Resilience
	The Krum Function

