# Large-Scale Tsunami Simulations using the Discontinuous Galerkin Method

Boris Bonev  $^1$  Francis X. Giraldo  $^2$  Jan S. Hesthaven  $^1$ 

<sup>1</sup>Ecole Polytechnique Fédérale de Lausanne <sup>2</sup>Naval Postgraduate School, Monterey

27th Biennial Conference on Numerical Analysis Glasgow, June 27, 2017





## Overview

1 Physical Model & Numerical Scheme

Well-Balanced Property

3 Wetting/Drying

4 Conclusion

# Section 1

# Physical Model & Numerical Scheme

#### 1D Shallow Water Equations



Figure: Notation of the 1D Shallow Water Equations

The Shallow Water Equations in one dimension:

$$\frac{\partial}{\partial t}\varphi + \frac{\partial}{\partial x}(\varphi u) = 0 \tag{1}$$

$$\frac{\partial}{\partial t}(\varphi u) + \frac{\partial}{\partial x}\left(\varphi u^2 + \frac{1}{2}\varphi^2\right) = -\frac{\partial}{\partial x}\tau$$
(2)

#### Spherical Shallow Water Equations

Scheme based on<sup>1</sup>. We use cartesian coordinates and therefore have a 4D state vector

$$\mathbf{q} = \begin{bmatrix} \varphi & \varphi u & \varphi v & \varphi w \end{bmatrix}^T.$$
(3)

The Spherical Shallow Water equations in conservation form are then

$$\frac{\partial \mathbf{q}}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{F}(\mathbf{q}) = \mathbf{S}(\mathbf{x}, \mathbf{q}), \tag{4}$$

where the divergence acts on the unit vectors  ${\bf \hat{i}}, {\bf \hat{j}}, {\bf \hat{k}}$  of the flux

$$\mathbf{F}(\mathbf{q}) = \begin{bmatrix} \varphi u \\ \varphi u^2 + \frac{1}{2}\varphi^2 \\ \varphi uv \\ \varphi uw \end{bmatrix} \mathbf{\hat{i}} + \begin{bmatrix} \varphi v \\ \varphi uv \\ \varphi vv \\ \varphi v^2 + \frac{1}{2}\varphi^2 \\ \varphi vw \end{bmatrix} \mathbf{\hat{j}} + \begin{bmatrix} \varphi w \\ \varphi uw \\ \varphi uw \\ \varphi vw \\ \varphi w^2 + \frac{1}{2}\varphi^2 \end{bmatrix} \mathbf{\hat{k}}.$$
 (5)

The source term incorporates Coriolis force, bottom topography and the Lagrangian forcing term  $\mu$ :

$$\mathbf{S}(\mathbf{x},\mathbf{q}) = -\frac{2\Omega z\varphi}{R^2}\mathbf{x} \times \mathbf{u} - \varphi \nabla \tau + \mu \mathbf{x},$$
(6)

where  $\mathbf{x}$  is the coordinate (radius) vector.

<sup>&</sup>lt;sup>1</sup>F X Giraldo, Jan S Hesthaven, and T Warburton. "Nodal High-Order Discontinuous Galerkin Methods for the Spherical Shallow Water Equations". In: *Journal of Computational Physics* 181.2 (Sept. 2002), pp. 499–525.

#### Representation of the solution

The exact solution is represented by piecewise polynomials of degree  $N^2$  in each of the cells  $D^k\colon$ 

$$\mathbf{q}(\mathbf{x},t) \approx \mathbf{q}_N(\mathbf{x},t) = \bigoplus_{k=1}^{K} \mathbf{q}_N^k(\mathbf{x},t).$$
(7)

Using the  $(N + 1)^2$  Legendre-Gauss-Lobatto quadrature points on the reference element  $I = [-1, 1] \times [-1, 1]$  we define the  $(N + 1)^2$  Lagrange-polynomials  $L_j(\xi)$ . Using these polynomials, the solution is represented by

$$\mathbf{q}_{N}^{k}(\mathbf{x}) = \sum_{j=1}^{(N+1)^{2}} \mathbf{q}_{N}^{k}(\mathbf{x}_{i}) L_{j}(\xi(\mathbf{x})).$$
(8)

in each of the cells  $D^k$ .



Figure: Transformation into the reference element.

## Discontinuous Galerkin formulation

We use the common weak form of the Discontinuous Galerkin method, which is based on the variational formulation of the problem:

Weak Form/Green's Form

$$\forall k, i : \int_{D^k} \left( \frac{\partial \mathbf{q}_N}{\partial t} - \mathbf{F}_N \cdot \boldsymbol{\nabla} - \mathbf{S}_N \right) L_i(\mathbf{x}) \mathrm{d}\mathbf{x} = -\oint_{\delta D^k} \hat{\mathbf{n}} \cdot \mathbf{F}_N^* \ L_i(\mathbf{x}) \ \mathrm{d}\mathbf{x} \tag{9}$$

An additional integration by parts yields the less common strong form:

Strong Form/Divergence Form

$$\forall k, i : \int_{D^k} \left( \frac{\partial \mathbf{q}_N}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{F}_N - \mathbf{S}_N \right) L_i(\mathbf{x}) d\mathbf{x} = \oint_{\delta D^k} \mathbf{\hat{n}} \cdot (\mathbf{F}_N - \mathbf{F}_N^*) \ L_i(\mathbf{x}) \ d\mathbf{x}$$
(10)

where  $\mathbf{F}_N$ ,  $\mathbf{S}_N$  are the numerical representations of the flux and source terms and  $\mathbf{F}_N^*(\mathbf{q}^+, \mathbf{q}^-)$  is a suitable numerical flux.

#### Numerical Integration

We introduce shorthand operators for the gaussian quadrature:

$$\mathcal{N}\!\!\int_{D} f(\mathbf{x}) \mathrm{d}\mathbf{x} \coloneqq \sum_{i,j=1}^{N} f(\mathbf{x}(\xi_{i},\eta_{j})) J(\xi_{i},\eta_{j}) \omega_{i}^{\xi} \omega_{j}^{\eta}$$
$$\approx \int_{D} f(\mathbf{x}) \mathrm{d}\mathbf{x} = \int_{I} f(\mathbf{x}(\xi)) J(\xi) \mathrm{d}\xi \tag{11}$$

Surface Integrals:

$$\mathcal{N} \oint_{\delta D} f(\mathbf{x}) \mathrm{d}\mathbf{x} \coloneqq \sum_{i=1}^{N} f(\mathbf{x}(\xi_{i}, -1)) J(\xi_{i}, -1) \omega_{i}^{\xi} + \sum_{j=1}^{N} f(\mathbf{x}(1, \eta_{j})) J(1, \eta_{j}) \omega_{j}^{\eta} + \sum_{i=1}^{N} f(\mathbf{x}(\xi_{i}, 1)) J(\xi_{i}, 1) \omega_{i}^{\xi} + \sum_{j=1}^{N} f(\mathbf{x}(-1, \eta_{j})) J(-1, \eta_{j}) \omega_{j}^{\eta} \approx \oint_{\delta D} f(\mathbf{x}) \mathrm{d}\mathbf{x} = \oint_{\delta I} f(\mathbf{x}(\xi)) J(\xi) \mathrm{d}\xi$$
(12)

By replacing the integrals and solutions with their numerical counterparts, we retreive the discontinuous Galerkin scheme.

## Icosahedral Grid

The quadrilateral grids are generated on an initial icosahedron or cube through subdivision and projection.



# Section 2

# Well-Balanced Property

## Well-Balanced Property

Geophysical Systems often have steady-state solutions  $\overline{\mathbf{q}}$  such that

$$\frac{\partial \overline{\mathbf{q}}}{\partial t} = 0 \Leftrightarrow \boldsymbol{\nabla} \cdot \mathbf{F}(\overline{\mathbf{q}}) = \mathbf{S}(\mathbf{x}, \overline{\mathbf{q}}).$$
(13)

We are mostly interested in the so-called 'water at rest' solution, which is given as

$$\varphi(\mathbf{x},t) = \varphi_0 - \tau(\mathbf{x}),\tag{14}$$

$$\mathbf{u}(\mathbf{x},t) = \mathbf{0}.\tag{15}$$

Most of the relevant scenarios involve solutions are (initially) merely a perturbation of this solution. Thus, a common requirement is the well-balanced property:

#### Well-Balanced Property

A scheme is called well-balanced, if the truncation error disappears for the numerical representation of the steady-state solution  $\overline{\mathbf{q}}_N$ :

$$RHS(\overline{\mathbf{q}}_N, \mathbf{x}, t) = 0.$$
(16)

#### Is the Weak Form well-balanced?

We represent the bottom topography with  $\tau_N$ , which is in the same polynomial space as  $\mathbf{q}_N$ . In this case

$$\overline{\mathbf{q}}_{N} = \begin{bmatrix} \varphi_{0} - \tau_{N} \\ \mathbf{0} \end{bmatrix}$$
(17)

satisfies  $\nabla \cdot \mathbf{F}(\overline{\mathbf{q}}_N) = \mathbf{S}(\overline{\mathbf{q}}_N, \mathbf{x})$ . We require the bottom topography to be continuous and insert this into the righthand-side of the weak form:

RHS(
$$\overline{\mathbf{q}}_N, \mathbf{x}$$
) = $\mathcal{N} \int_D \mathbf{F}_N(\overline{\mathbf{q}}_N) \cdot \nabla L_i(\mathbf{x}) \, \mathrm{d}\mathbf{x} - \mathcal{N} \int_D \mathbf{S}_N(\overline{\mathbf{q}}_N, \mathbf{x}) L_i(\mathbf{x}) \, \mathrm{d}\mathbf{x}$   
+ $\mathcal{N} \oint_{\delta D} \mathbf{\hat{n}} \cdot \mathbf{F}_N(\overline{\mathbf{q}}_N) \, L_i(\mathbf{x}) \, \mathrm{d}\mathbf{x}$  (18)

#### Remark

In general, for the *weak form*, we can only guarantee the well-balanced property if numerical integration is exact! Due to the rational Jacobian, this is not the case here.

# Video

(wellbalancing.mp4)

## Strong Form

If we proceed similiarly in the case of the strong form we find that

RHS(
$$\overline{\mathbf{q}}_N, \mathbf{x}$$
) = $\mathcal{N} \int_D (\mathbf{\nabla} \cdot \mathbf{F}_N(\overline{\mathbf{q}}_N) - \mathbf{S}_N(\mathbf{x}, \overline{\mathbf{q}}_N)) L_i(\mathbf{x}) d\mathbf{x}$   
 $- \mathcal{N} \oint_{\delta D} \mathbf{\hat{n}} \cdot (\mathbf{F}_N(\overline{\mathbf{q}}_N) - \mathbf{F}_N^*(\overline{\mathbf{q}}_N^+, \overline{\mathbf{q}}_N^-)) L_i(\mathbf{x}) d\mathbf{x}$   
= $\mathcal{N} \int_D 0 L_i(\mathbf{x}) d\mathbf{x} - \mathcal{N} \oint_{\delta D} \mathbf{\hat{n}} \cdot \mathbf{0} L_i(\mathbf{x}) d\mathbf{x} = 0.$  (19)

#### Remark

Each of the integrants becomes point-wise zero, which means that the strong form is well-balanced by construction. This does not require exact numerical integration and generalizes for all continuous steady-state solutions.

# Video

(floodedwb.mp4)

#### well-balanced Adaptive Mesh Refinement

We use non-conforming AMR as presented in<sup>2</sup>. As volume-integrals vanish in the strong form, the well-balanced property carries over nicely to AMR.



#### well-balanced AMR

Evaluate  $\hat{\mathbf{n}} \cdot (\mathbf{F} - \mathbf{F}^*)$  directly on the children edges and project it back to parent:

$$\frac{1}{2}\Pi_{g}^{e1} \left[ \hat{\mathbf{n}} \cdot \left[ \mathbf{F}_{N} \left( \Pi_{s}^{e1} \mathbf{q}_{N}^{-} \right) - \mathbf{F}_{N}^{*} \left( \Pi_{s}^{e1} \mathbf{q}_{N}^{-}, \mathbf{q}_{N}^{+} \right) \right] \right] \\ + \frac{1}{2}\Pi_{g}^{e2} \left[ \hat{\mathbf{n}} \cdot \left[ \mathbf{F}_{N} \left( \Pi_{s}^{e2} \mathbf{q}_{N}^{-} \right) - \mathbf{F}_{N}^{*} \left( \Pi_{s}^{e2} \mathbf{q}_{N}^{-}, \mathbf{q}_{N}^{+} \right) \right] \right]$$
(20)

<sup>&</sup>lt;sup>2</sup>Michal A Kopera and Francis X Giraldo. "Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of the compressible Euler equations with application to atmospheric simulations". In: *Journal of Computational Physics* 275 (Oct. 2014), pp. 92–117.

# Section 3

# Wetting/Drying

# Issues with Wetting/Drying

Some possibilities to handle the wet/dry interface:

- Grid conforming to the wet/dry interface.
  - + Accurate treatment of the interface.
  - Expensive re-meshing and treatment of boundary conditions required.
- Fixed mesh but dry cells are turned off.
  - + Simple to handle.
  - $-\,$  Sudden inclusion/exclusion of the dry elements breaks conservation.
- Keep a thin layer on drying nodes.
  - + Not very expensive and avoids the sudden inclusion/exclusion.
  - Treatment of artificial pressure gradients due to the dry nodes.

Some of the issues at the wet/dry interface:

- How do we maintain positivity on nearly dry nodes?
- How do we evaluate  $\frac{(\varphi u)^2}{\varphi}$  for small  $\varphi$ ?
- How can we keep the well-balanced property at the wet/dry interface?

#### Preserving Positivity of the Average

Idea: Ensure positivity of the average

$$\overline{\varphi} = \int_{D^k} \varphi(\mathbf{x}) \mathrm{d}\mathbf{x}$$
(21)

in each cell, then rescale the nodal values in order to be positive<sup>3</sup>.

#### CFL-like condition

Assuming exact integration, we can show that under the condition

$$\frac{J^{\mathbf{e}}}{J}\Delta t\alpha \le \frac{\omega_1}{2} \tag{22}$$

where  $\alpha$  is the signal velocity,  $\omega_1$  the first weight of the numerical integration an  $J, J^e$  are the Jacobians of the volume and edge parametrizations respectively.

If we use a convex combination of Euler forward steps, this property is retained. Strong-stability preserving Runge-Kutta (SSPRK) schemes are such schemes<sup>4</sup>.

<sup>&</sup>lt;sup>3</sup>Yulong Xing, Xiangxiong Zhang, and Chi-Wang Shu. "Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations". In: Advances in Water Resources 33.12 (Dec. 2010), pp. 1476–1493.

<sup>&</sup>lt;sup>4</sup>Sigal Ketcheson David I Shu Chi-Wang Gottlieb. Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations. World Scientific Publishing Co., Dec. 2010.

#### Positivity Limiter



Figure: Application of the positivity limiter

With the average being positive, we can rescale the solution around the average such that the minimal nodal value is ensured to be positive:

$$\theta = \min\left\{1, \frac{\overline{\varphi}_N}{\overline{\varphi}_N - m}\right\},\tag{23}$$

$$m = \min_{i} \{\varphi_N(\mathbf{x}_i)\}.$$
 (24)

The rescaled solution is then:

$$\varphi_N^* = \theta * (\varphi_N - \overline{\varphi}_N) + \overline{\varphi}_N.$$
(25)

20 / 28

#### Well-Balanced Wet/Dry Interface



Figure: Interface in the exact and numerical case.

#### Remark

The positivity limiter ensures positivity, but if we do not allow negative waterheights, we can not ensure  $\varphi_N \nabla \varphi_N = -\varphi_N \nabla \tau_N$  Therefore well-balancedness is lost.

# Video

(1dwbshore.mp4)

# Video

(3dwbshore.mp4)

Solution: Track partly dry cells and set g = 0 there<sup>5</sup>.

- + Spurious waves disapear.
- Partly dry cells keep filling up until they are full.
- $-\,$  Conservation of momentum is lost at the interface.

<sup>&</sup>lt;sup>5</sup>Stefan Vater, Nicole Beisiegel, and Jörn Behrens. "A limiter-based well-balanced discontinuous Galerkin method for shallow-water flows with wetting and drying: One-dimensional case". In: *Advances in Water Resources* 85 (Nov. 2015), pp. 1–13.

(tohoku.mp4)

Figure: 15360 elements with 16 high-order points.

# Section 4

Conclusion

# Conclusion & Outlook

#### Conclusion

- Stable, parallelizable method for the simulation of large-scale Tsunamis.
- The method is adaptive and well-balanced by construction.
- Under the timestep restriction the method is positivity-preserving.
- It handles effects of Earth's curvature natively.
- Boundary conditions are not necessary due to the periodicity of the grid.
- Our results on well-balancedness generalize to curved elements.

#### Outlook

- Adaptive Mesh Refinement and Wetting/Drying
- Alternative Solutions for Wetting/Drying
- Accuracy of the Wetting/Drying method
- Numerical Experiments & Benchmarks

Thank you for your attention.