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1D Shallow Water Equations

o Surface Elevation

Topography

Figure: Notation of the 1D Shallow Water Equations

The Shallow Water Equations in one dimension:
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Spherical Shallow Water Equations

Scheme based on®. We use cartesian coordinates and therefore have a 4D state vector

T
a=[r pu v pw] . (3)
The Spherical Shallow Water equations in conservation form are then

4 4 v Fla)=S(x.a), *)

where the divergence acts on the unit vectors i,j, k of the flux

pu U pw
2, 1,2
_ eyt + 597 | QYuv 2 puw ~
F(q) = ouv 1+ ov? + Lip? J+ ovw k. (5)
puw prw gan + %QDQ

The source term incorporates Coriolis force, bottom topography and the Lagrangian

forcing term p:
2Qz¢
S(X, q) = R2

where x is the coordinate (radius) vector.

x X u— V7T + ux, (6)

1F X Giraldo, Jan S Hesthaven, and T Warburton. “Nodal High-Order Di i Galerkin Methods for the Spherical
Shallow Water Equations’. In: Journal of Computational Physics 181.2 (Sept. 2002), pp. 499-525.
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Representation of the solution

The exact solution is represented by piecewise polynomials of degree N2 in each of the
cells D*:

a(x,t) ~ an (%, 1) @qw X, t). )

Using the (N + 1)? Legendre-Gauss-Lobatto quadrature points on the reference element
I =[-1,1] x [~1, 1]we define the (N 4 1)? Lagrange-polynomials L;(¢). Using these
polynomials, the solution is represented by

(N+1)?
an(x) = Y qr(x:)L;(E(x). (8)
=1
in each of the cells D*.
(—1,+1) (+1,+1)
£ =¥(x) I
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x 13

Figure: Transformation into the reference element.
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Discontinuous Galerkin formulation

We use the common weak form of the Discontinuous Galerkin method, which is based on
the variational formulation of the problem:

Weak Form/Green’s Form

Vk,i:/ (&l—NfFN-VfSN>Li(x)dx:7% f-FY Li(x) dx (9)
Dk Bt S§Dk

An additional integration by parts yields the less common strong form:

Strong Form/Divergence Form

Yk, : / (BLN +V.Fy— SN)Li(x)dx = f A (Fy — FY) Li(x) dx (10)
Dk ot 5§Dk

where F, Sy are the numerical representations of the flux and source terms and
F&(q',q7) is a suitable numerical flux.
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Numerical Integration

We introduce shorthand operators for the gaussian quadrature:

N 16 x = 37 fx(€ ) (€t

1,7=1

~ /D f(x)dx = / Fx(€)T(€)de (11)

Surface Integrals:

/\/f;Df(X)dx:Zf(X(&,—l)) (&, — 1)t +Zf x(L, 7)) (1, 7;)?

N
+Zf( (& 1) (6ir 1 w+Zf —1,m;)) (=1, 1)

f fx dx—ff J(€)d (12)

By replacing the integrals and solutions with their numerical counterparts, we retreive the
discontinuous Galerkin scheme.
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Icosahedral Grid

The quadrilateral grids are generated on an initial icosahedron or cube through

subdivision and projection.
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Well-Balanced Property

Geophysical Systems often have steady-state solutions @ such that

94

ot

We are mostly interested in the so-called 'water at rest’ solution, which is given as

—0e V-F@) = S(x,9). (13)

W(Xv t) = Y0 — T(X)7 (14)
u(x,t) =0. (15)

Most of the relevant scenarios involve solutions are (initially) merely a perturbation of
this solution. Thus, a common requirement is the well-balanced property:

Well-Balanced Property

A scheme is called well-balanced, if the truncation error disappears for the numerical
representation of the steady-state solution q:

RHS(qy, x, t) = 0. (16)
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Is the Weak Form well-balanced?

We represent the bottom topography with 7, which is in the same polynomial space as
qn. In this case
— N
a =75 ™] (a7

satisfies V - F(q,) = S(qy,x). We require the bottom topography to be continuous
and insert this into the righthand-side of the weak form:

RIS (g, x N/ Fy(dy) - VLi(x) dx N/ S (dy, %) Li(x) dx

+N;{Dﬁ P (@y) Li(x) dx (18)

Remark

In general, for the weak form, we can only guarantee the well-balanced property if
numerical integration is exact! Due to the rational Jacobian, this is not the case here.
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Video

(wellbalancing.mp4)
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wellbalancing.mp4
Media File (video/mp4)


Strong Form

If we proceed similiarly in the case of the strong form we find that
RIS (@, %) =N (V- Fx(diy) = S, ))Li(x)dx
N (B~ Fiv(a.ay) L) dx

:N/ OLi(x)dxf'/\/'j{ n-0 L;(x) dx = 0. (19)
D 5D

Remark

Each of the integrants becomes point-wise zero, which means that the strong form is

well-balanced by construction. This does not require exact numerical integration and
generalizes for all continuous steady-state solutions.
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Video

(floodedwb.mp4)
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well-balanced Adaptive Mesh Refinement

We use non-conforming AMR as presented in?. As volume-integrals vanish in the strong
form, the well-balanced property carries over nicely to AMR.

me! S DD
. . o ¢ —> g

g

IPay af

well-balanced AMR
Evaluate n - (F — F*) directly on the children edges and project it back to parent:

1 el el — * el — e
1 e2 e2 * e2
i - — AT
+3Mg [A - [Fa(TPay) — Fiv (M ay, ax)]] (20)
2Michal A Kopera and Francis X Giraldo. "Analysis of adaptive mesh refi for IMEX di i Galerkin soluti of
the pressible Euler i with lication to heric simulations”. In: Journal of Computational Physics 275 (Oct

2014), pp. 92-117.
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Issues with Wetting/Drying

Some possibilities to handle the wet/dry interface:
e Grid conforming to the wet/dry interface.

+ Accurate treatment of the interface.
— Expensive re-meshing and treatment of boundary conditions required.

e Fixed mesh but dry cells are turned off.

+ Simple to handle.
— Sudden inclusion/exclusion of the dry elements breaks conservation.

o Keep a thin layer on drying nodes.

+ Not very expensive and avoids the sudden inclusion/exclusion.
— Treatment of artificial pressure gradients due to the dry nodes.

Some of the issues at the wet/dry interface:
e How do we maintain positivity on nearly dry nodes?

for small ©?

2
e How do we evaluate %

e How can we keep the well-balanced property at the wet/dry interface?
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Preserving Positivity of the Average

Idea: Ensure positivity of the average
o= [ el (21)
Dk

in each cell, then rescale the nodal values in order to be positive®.

CFL-like condition

Assuming exact integration, we can show that under the condition

Je w1

—Ata < — 22

7 £3 (22)
where « is the signal velocity, wy the first weight of the numerical integration an J,J¢ are
the Jacobians of the volume and edge parametrizations respectively.

If we use a convex combination of Euler forward steps, this property is retained.
Strong-stability preserving Runge-Kutta (SSPRK) schemes are such schemes®.

3Yulong Xing, Xiangxiong Zhang, and Chi-Wang Shu. “Positivity-preserving high order well-bal d di i Galerkin
hods for the shallow water In: Ad in Water Resources 33.12 (Dec. 2010), pp. 1476—1493.

4sigal Ketcheson David | Shu ch..Wang Gottlieb. Strong Stability Preserving Runge-Kutta and Multistep Time
Discretizations. World Scientific Publishing Co., Dec. 2010.
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Positivity Limiter

Figure: Application of the positivity limiter

With the average being positive, we can rescale the solution around the average such
that the minimal nodal value is ensured to be positive:

9:min{1,7¢7N}, (23)

YNy —m
m= miin {on(xi)}. (24)
The rescaled solution is then:
on =0 (pN —Pn) + Py (25)
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Well-Balanced Wet/Dry Interface

o+T PN + TN
T TN
L L Dk
(a) exact solution (b) numerical approximation

Figure: Interface in the exact and numerical case.

Remark

The positivity limiter ensures positivity, but if we do not allow negative waterheights, we
can not ensure pnVon = —pn V7N Therefore well-balancedness is lost.
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Video

(1dwbshore.mp4)
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Video

(3dwbshore.mp4)
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Well-Balanced Wet/Dry Interface

Solution: Track partly dry cells and set g = 0 there®.
+ Spurious waves disapear.
— Partly dry cells keep filling up until they are full.

— Conservation of momentum is lost at the interface.

BStefan Vater, Nicole Beisiegel, and J5rn Behrens. “A limiter-based well-bal d di i Galerkin hod for
shallow-water flows with wetting and drying: One-dimensional case”. In: Advances in Water Resources 85 (Nov. 2015),
pp. 1-13.
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Video

(tohoku.mp4)

Figure: 15360 elements with 16 high-order points.
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Conclusion & Outlook

Conclusion

Stable, parallelizable method for the simulation of large-scale Tsunamis.

The method is adaptive and well-balanced by construction.

Under the timestep restriction the method is positivity-preserving.

It handles effects of Earth's curvature natively.

Boundary conditions are not necessary due to the periodicity of the grid.

e Qur results on well-balancedness generalize to curved elements.

Outlook

Adaptive Mesh Refinement and Wetting/Drying

Alternative Solutions for Wetting/Drying

Accuracy of the Wetting/Drying method

e Numerical Experiments & Benchmarks



Thank you for your attention.
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