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1D Shallow Water Equations
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Figure: Notation of the 1D Shallow Water Equations

The Shallow Water Equations in one dimension:
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Spherical Shallow Water Equations

Scheme based on1. We use cartesian coordinates and therefore have a 4D state vector

q =
[
ϕ ϕu ϕv ϕw

]T
. (3)

The Spherical Shallow Water equations in conservation form are then

∂q

∂t
+∇ · F(q) = S(x,q), (4)

where the divergence acts on the unit vectors î, ĵ, k̂ of the flux

F(q) =


ϕu

ϕu2 + 1
2
ϕ2

ϕuv
ϕuw

î +


ϕv
ϕuv

ϕv2 + 1
2
ϕ2

ϕvw

ĵ +


ϕw
ϕuw
ϕvw

ϕw2 + 1
2
ϕ2

k̂. (5)

The source term incorporates Coriolis force, bottom topography and the Lagrangian
forcing term µ:

S(x,q) = −2Ωzϕ

R2
x× u− ϕ∇τ + µx, (6)

where x is the coordinate (radius) vector.
1F X Giraldo, Jan S Hesthaven, and T Warburton. “Nodal High-Order Discontinuous Galerkin Methods for the Spherical

Shallow Water Equations”. In: Journal of Computational Physics 181.2 (Sept. 2002), pp. 499–525.
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Representation of the solution

The exact solution is represented by piecewise polynomials of degree N2 in each of the
cells Dk:

q(x, t) ≈ qN (x, t) =

K⊕
k=1

qkN (x, t). (7)

Using the (N + 1)2 Legendre-Gauss-Lobatto quadrature points on the reference element
I = [−1, 1]× [−1, 1]we define the (N + 1)2 Lagrange-polynomials Lj(ξ). Using these
polynomials, the solution is represented by

qkN (x) =

(N+1)2∑
j=1

qkN (xi)Lj(ξ(x)). (8)

in each of the cells Dk.
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Figure: Transformation into the reference element.
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Discontinuous Galerkin formulation

We use the common weak form of the Discontinuous Galerkin method, which is based on
the variational formulation of the problem:

Weak Form/Green’s Form

∀k, i :
∫
Dk

(
∂qN

∂t
− FN · ∇− SN

)
Li(x)dx = −

∮
δDk

n̂ · F∗
N Li(x) dx (9)

An additional integration by parts yields the less common strong form:

Strong Form/Divergence Form

∀k, i :
∫
Dk

(
∂qN

∂t
+∇ · FN − SN

)
Li(x)dx =

∮
δDk

n̂ · (FN − F∗
N ) Li(x) dx (10)

where FN , SN are the numerical representations of the flux and source terms and
F∗
N (q+,q−) is a suitable numerical flux.
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Numerical Integration

We introduce shorthand operators for the gaussian quadrature:

N
∫
D

f(x)dx :=

N∑
i,j=1

f(x(ξi, ηj))J(ξi, ηj)ω
ξ
i ω

η
j

≈
∫
D

f(x)dx =

∫
I

f(x(ξ))J(ξ)dξ (11)

Surface Integrals:

N
∮
δD

f(x)dx :=
N∑
i=1

f(x(ξi,−1))J(ξi,−1)ωξi +
N∑
j=1

f(x(1, ηj))J(1, ηj)ω
η
j

+
N∑
i=1

f(x(ξi, 1))J(ξi, 1)ωξi +
N∑
j=1

f(x(−1, ηj))J(−1, ηj)ω
η
j

≈
∮
δD

f(x)dx =

∮
δI

f(x(ξ))J(ξ)dξ (12)

By replacing the integrals and solutions with their numerical counterparts, we retreive the
discontinuous Galerkin scheme.
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Icosahedral Grid

The quadrilateral grids are generated on an initial icosahedron or cube through
subdivision and projection.

(a) nref = 0 (b) nel = 6

(c) nref = 1 (d) nel = 6

Figure: Construction of icosahedral grids
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Well-Balanced Property

Geophysical Systems often have steady-state solutions q such that

∂q

∂t
= 0⇔∇ · F(q) = S(x,q). (13)

We are mostly interested in the so-called ’water at rest’ solution, which is given as

ϕ(x, t) = ϕ0 − τ(x), (14)

u(x, t) = 0. (15)

Most of the relevant scenarios involve solutions are (initially) merely a perturbation of
this solution. Thus, a common requirement is the well-balanced property:

Well-Balanced Property

A scheme is called well-balanced, if the truncation error disappears for the numerical
representation of the steady-state solution qN :

RHS(qN ,x, t) = 0. (16)
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Is the Weak Form well-balanced?

We represent the bottom topography with τN , which is in the same polynomial space as
qN . In this case

qN =

[
ϕ0 − τN

0

]
(17)

satisfies ∇ · F(qN ) = S(qN ,x). We require the bottom topography to be continuous
and insert this into the righthand-side of the weak form:

RHS(qN ,x) =N
∫
D

FN (qN ) · ∇Li(x) dx−N
∫
D

SN (qN ,x)Li(x) dx

+N
∮
δD

n̂ · FN (qN ) Li(x) dx (18)

Remark
In general, for the weak form, we can only guarantee the well-balanced property if
numerical integration is exact! Due to the rational Jacobian, this is not the case here.
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Video

(wellbalancing.mp4)
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Strong Form

If we proceed similiarly in the case of the strong form we find that

RHS(qN ,x) =N
∫
D

(∇ · FN (qN )− SN (x,qN ))Li(x)dx

−N
∮
δD

n̂ · (FN (qN )− F∗
N (q+

N ,q
−
N )) Li(x) dx

=N
∫
D

0 Li(x)dx−N
∮
δD

n̂ · 0 Li(x) dx = 0. (19)

Remark
Each of the integrants becomes point-wise zero, which means that the strong form is
well-balanced by construction. This does not require exact numerical integration and
generalizes for all continuous steady-state solutions.
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Video

(floodedwb.mp4)
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well-balanced Adaptive Mesh Refinement

We use non-conforming AMR as presented in2. As volume-integrals vanish in the strong
form, the well-balanced property carries over nicely to AMR.

Πe1
s

Πe1
g

Πe2
s

Πe2
g

q+
NΠe2

s q−
N

well-balanced AMR
Evaluate n̂ · (F− F∗) directly on the children edges and project it back to parent:

1

2
Πe1
g

[
n̂ ·
[
FN
(
Πe1
s q−

N

)
− F∗

N

(
Πe1
s q−

N ,q
+
N

)]]
+

1

2
Πe2
g

[
n̂ ·
[
FN
(
Πe2
s q−

N

)
− F∗

N

(
Πe2
s q−

N ,q
+
N

)]]
(20)

2Michal A Kopera and Francis X Giraldo. “Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of
the compressible Euler equations with application to atmospheric simulations”. In: Journal of Computational Physics 275 (Oct.
2014), pp. 92–117.
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Issues with Wetting/Drying

Some possibilities to handle the wet/dry interface:
• Grid conforming to the wet/dry interface.

+ Accurate treatment of the interface.
− Expensive re-meshing and treatment of boundary conditions required.

• Fixed mesh but dry cells are turned off.
+ Simple to handle.
− Sudden inclusion/exclusion of the dry elements breaks conservation.

• Keep a thin layer on drying nodes.
+ Not very expensive and avoids the sudden inclusion/exclusion.
− Treatment of artificial pressure gradients due to the dry nodes.

Some of the issues at the wet/dry interface:
• How do we maintain positivity on nearly dry nodes?

• How do we evaluate (ϕu)2

ϕ
for small ϕ?

• How can we keep the well-balanced property at the wet/dry interface?
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Preserving Positivity of the Average

Idea: Ensure positivity of the average

ϕ =

∫
Dk

ϕ(x)dx (21)

in each cell, then rescale the nodal values in order to be positive3.

CFL-like condition
Assuming exact integration, we can show that under the condition

Je

J
∆tα ≤ ω1

2
(22)

where α is the signal velocity, ω1 the first weight of the numerical integration an J ,Je are
the Jacobians of the volume and edge parametrizations respectively.

If we use a convex combination of Euler forward steps, this property is retained.
Strong-stability preserving Runge-Kutta (SSPRK) schemes are such schemes4.

3Yulong Xing, Xiangxiong Zhang, and Chi-Wang Shu. “Positivity-preserving high order well-balanced discontinuous Galerkin
methods for the shallow water equations”. In: Advances in Water Resources 33.12 (Dec. 2010), pp. 1476–1493.

4Sigal Ketcheson David I Shu Chi-Wang Gottlieb. Strong Stability Preserving Runge-Kutta and Multistep Time
Discretizations. World Scientific Publishing Co., Dec. 2010.
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Positivity Limiter

Dk

ϕ∗
N

ϕN

ϕN

Figure: Application of the positivity limiter

With the average being positive, we can rescale the solution around the average such
that the minimal nodal value is ensured to be positive:

θ = min

{
1,

ϕN
ϕN −m

}
, (23)

m = min
i
{ϕN (xi)}. (24)

The rescaled solution is then:

ϕ∗
N = θ ∗ (ϕN − ϕN ) + ϕN . (25)
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Well-Balanced Wet/Dry Interface

D̄k D̃k

ϕ+ τ

τ

(a) exact solution

Dk

ϕN + τN

τN

(b) numerical approximation

Figure: Interface in the exact and numerical case.

Remark
The positivity limiter ensures positivity, but if we do not allow negative waterheights, we
can not ensure ϕN∇ϕN = −ϕN∇τN Therefore well-balancedness is lost.
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Video

(1dwbshore.mp4)
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Video

(3dwbshore.mp4)
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Well-Balanced Wet/Dry Interface

Solution: Track partly dry cells and set g = 0 there5.

+ Spurious waves disapear.

− Partly dry cells keep filling up until they are full.

− Conservation of momentum is lost at the interface.

5Stefan Vater, Nicole Beisiegel, and Jörn Behrens. “A limiter-based well-balanced discontinuous Galerkin method for
shallow-water flows with wetting and drying: One-dimensional case”. In: Advances in Water Resources 85 (Nov. 2015),
pp. 1–13.
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Video

(tohoku.mp4)

Figure: 15360 elements with 16 high-order points.
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Conclusion & Outlook

Conclusion

• Stable, parallelizable method for the simulation of large-scale Tsunamis.
• The method is adaptive and well-balanced by construction.
• Under the timestep restriction the method is positivity-preserving.
• It handles effects of Earth’s curvature natively.
• Boundary conditions are not necessary due to the periodicity of the grid.
• Our results on well-balancedness generalize to curved elements.

Outlook

• Adaptive Mesh Refinement and Wetting/Drying
• Alternative Solutions for Wetting/Drying
• Accuracy of the Wetting/Drying method
• Numerical Experiments & Benchmarks
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