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Abstract—Re-use of patients’ health records can provide tremendous benefits for clinical research. One of the first essential steps for
many research studies, such as clinical trials or population health studies, is to effectively identify, from electronic health record
systems, groups of well-characterized patients who meet specific inclusion and exclusion criteria. This procedure is called cohort
exploration. Yet, when researchers need to compile specific cohorts of patients, privacy issues represent one of the major obstacles to
accessing the data, especially when sensitive/identifying data, such as genomic data, are involved. Because of this, cohort exploration
can be extremely difficult and time-consuming. In this joint paper between the École Polytechnique Fédérale de Lausanne (EPFL) and
the Lausanne University Hospital (CHUV), we address the challenge of designing and deploying in a real operational setting an efficient
privacy-preserving explorer for genetic cohorts. Our solution is built on top of i2b2 (Informatics for Integrating Biology and the Bedside),
the state-of-the-art open-source framework for clinical cohorts exploration, and leverages cutting-edge privacy-enhancing technologies
(PETs) such as homomorphic encryption and differential privacy. Solutions involving homomorphic encryption are often believed to be
costly and still immature for use in operational environments. Here, we show that, contrary to these assumptions, this kind of PETs can
be very efficient enablers, at least for specific use cases. Indeed, the proposed solution outperforms the state-of-the-art by enabling a
researcher to securely explore 3,000 genetic variants over a cohort of 5,000 individuals in less than 5 seconds with commodity
hardware. To the best of our knowledge, this is the first privacy-preserving solution to be successfully deployed and tested in a real
operational environment within a hospital, more specifically, as one of the services of the clinical research data-warehouse of CHUV.
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1 INTRODUCTION

S ECONDARY use of electronic health records and omics
data is critical for accelerating clinical research and

translational medicine. Yet, as nowadays most medical insti-
tutions have clinical and omics data stored across a variety
of systems, getting the information that is needed into the
hands of researchers often requires substantial time and
resources.

Recently, many academic medical institutions have taken
important steps to address this problem. For example, since
2015, the Lausanne University Hospital (CHUV) has been
setting up a service to support clinical research [1] that
is in charge of building a centralized, secure and compre-
hensive research data-warehouse (DWH)1 for storing the
diverse clinical and molecular data. The goal is to provide
researchers with an easy and cost-effective way to access
the vast amount of data necessary for identifying new pre-
dictive biomarkers and rapidly finding subjects with similar
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1. A research data-warehouse is a repository that integrates de-
identified information on patients from multiple sources. These can
include electronic health records, lab results, genetic and research data,
as well as demographic information.

clinical and omics characteristics.
Yet, because of the inherent sensitivity of these types of

data, ensuring their security and privacy is a fundamental
requirement for the success of such initiatives. Reinforc-
ing the feeling of trust between patients and healthcare
providers is key for fully realizing the benefits of person-
alized medicine.

For this reason, in the last few years, researchers from
both the computer science and medical fields have started
collaborating to design new solutions that protect individ-
uals’ medical privacy and, in particular, genomic privacy
[2], [3]. Because of their identifying nature, it is in the area
of genomic data that privacy issues are the most acute.
However, to obtain acceptance and to be adopted in the real
world, these solutions need to be deployed and assessed in
concrete operational scenarios.

In this paper, we describe how this challenge can be
effectively addressed. In particular, we designed, developed
and, for the first time – to the best of our knowledge –
successfully deployed in a real operational environment
for clinical research a privacy-preserving solution based
on cutting-edge privacy-enhancing technologies (PETs). The
proposed solution makes use of differential privacy and
homomorphic encryption (so far believed unpractical) to
protect patients’ medical and genomic privacy. This work is
the result of a joint effort between the École Polytechnique
Fédérale de Lausanne (EPFL) and the Lausanne University
Hospital (CHUV).
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We focus on the problem of privacy-preserving ex-
ploratory analyses for genetic cohorts. Exploratory analyses
represent a first and fundamental step for many types of
research studies. They enable researchers to quickly gen-
erate new research hypotheses and to effectively identify
large groups of well-characterized patients for clinical trials
or population health studies. Yet, very often these types
of analyses are heavily hindered by privacy and ethical
regulations within the institution itself that make it difficult,
if not impossible, to access patients’ private and sensitive
information such as genomic data. Our solution enables re-
searchers at a medical institution to efficiently and securely
explore this information for large cohorts of individuals
without compromising their privacy.

More specifically, we built our solution on top of the i2b2
(Informatics for Integrating Biology and the Bedside) [4]
framework that represents the state-of-the-art open-source
system for exploring clinical research data-warehouses. The
i2b2 framework was jointly developed by the Harvard
Medical School and MIT to enable clinical researchers to
use existing clinical data and IRB-approved genomic data
for discovery research and design of target therapies. It is
already widespread in the US, as more than 100 universities
and hospitals are currently using it for translational research
or academic purposes [5]. Yet, as other cohort explorers,
i2b2 does not provide any convincing protection for ge-
nomic data other than standard access control and data
de-identification, both proven to be ineffective [6], [7], [8],
[9], [10], [11], [12]. This represents a substantial limitation
for exploring these types of data in less controlled and
protected environments. Thanks to our solution, patients’
genetic data are homomorphically encrypted and stored in
a centralized i2b2 server along with pseudonymized and
de-identified clinical data. These data can be queried in a
privacy-preserving way (i.e., without ever decrypting the
original genomic data) by researchers willing to determine
the aggregate total number of patients (or other summary
statistics such as allele frequency) who meet a given set
of inclusion and exclusion criteria (currently demograph-
ics, diagnoses, medications, genomics or laboratory values).
According to their different access rights, researchers can
receive either slightly perturbed (with noise satisfying the
notion of differential privacy) – but still useful – or unper-
turbed query results.

We extensively tested the performance of our solution in
a real operational setting on real data for different cohort
sizes, and we found the overhead introduced by privacy-
preserving techniques to be entirely acceptable. The re-
sponse time is linear in the number of selected patients and
always in the order of a few seconds for simple types of
realistic queries and cohort sizes.

The rest of this paper is organized as follows. In the next
section, we summarize the related work. In Section 3, we
briefly describe the i2b2 frameworks and the main concepts
in genomics and cryptography used throughout the paper.
In Section 4, we introduce the system and threat models and
describe the proposed solution in detail. In Section 5, we
describe its implementation and evaluate the performance
using real genetic data in the operational setting of CHUV.
In Section 6, we discuss our findings and we conclude the
paper in Section 7. In the Appendix, we discuss a benchmark

of some state-of-the-art homomorphic cryptosystems that
we have evaluated for our solution.

2 RELATED WORK

For many years, researchers have assumed that releasing
anonymized genomic data for research purposes would
not compromise participants’ privacy. However, it has been
shown at multiple rounds [6], [7], [8], [9], [10], [11], [12]
that standard anonymization techniques are ineffective on
genomic data. As a response to these concerns, many solu-
tions were proposed in the past few years, with the goal
of protecting genomic data and enabling their utility for
medical research. We can put them in two main categories:
(i) approaches that focus on the protection of data con-
fidentiality against illegitimate access and (ii) approaches
that mitigate the risk of sensitive attribute inference from
legitimate accessed genomic data.

The first category includes works such as the one by
Canim et al. [13] where the authors describe how to out-
source analyses on genomic data to a commercially available
cryptographic hardware. Also in this category, a more recent
study by Kamm et al. [14] proposes a new scheme for
generating aggregated statistics on genomic data by using
secure multi-party computation based on homomorphic
secret sharing. Their technique requires the presence of
multiple non-colluding servers. Xie et al. introduce in their
work [15] a novel cryptographic strategy based on secure
multi-party computation to securely perform meta-analysis
for genetic association studies in large consortia, whereas
Wang et al. [16] also rely on secure multi-party computation
techniques to securely compare genomes across institutions.
Finally, several other recent works [17], [18], [19], [20], [21]
propose using homomorphic encryption to protect genomic
information in order to allow researchers to perform some
statistics directly on the encrypted data and decrypt only
the final result.

The second category includes the work by Uhler et
al. [22] that proposes new methods for releasing aggregate
results from genome-wide association studies (GWAS) with-
out compromising a participant’s privacy, by focusing on
the differentially private release of minor allele frequen-
cies. A similar approach is also adopted by Johnson and
Shmatikov [23], Yu et al. [24] and Simmons and Berger [25],
[26], [27], whereas Tramer et al. [28] investigated a relaxation
of differential privacy providing a better tradeoff between
privacy and utility.

In our work, contrarily to those mentioned above that
address a single problem, we mitigate both risks simul-
taneously. Our solution makes use of both homomorphic
encryption (HE) to protect patients’ genomic data con-
fidentiality against illegitimate access at rest and during
processing, and differential privacy (DP) to protect against
re-identification attacks. Whereas for the latter we propose
a straightforward application of DP, for the former we
designed a new optimized solution based on HE that out-
performs the state-of-the-art. Moreover, to the best of our
knowledge, our solution is the first to be deployed and
tested in a real medical research environment. Another work
by McLaren et al. [29] describes a successful deployment in
a medical operational environment. Yet, in that work HE is
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used to protect data for personalized medicine and not for
research purposes.

Two research contributions from the i2b2 academic com-
munity describe how to use genomic data within the i2b2
framework: Phillips et al. [30] propose to use a genomic
ontology directly in the i2b2 native framework, whereas
Gabetta et al. propose BigQ [31], an i2b2 plugin handling
genomic variants and their annotations. Yet, both works
do not at all address privacy problems due to the use of
genomic information. They simply rely on the i2b2 standard
security protections that are based on simple access control
mechanisms as described in the work by Murphy et al. [32].
To the best of our knowledge, our work is the first to com-
bine i2b2 with advanced privacy-enhancing technologies for
genomic data protection.

3 PRELIMINARIES

In this section, we briefly summarize the main concepts in
cryptography and genomics that are used in the paper.

3.1 Notation

In this paper, we denote the cardinality of a set A by |A|.
We denote x uniformly chosen from the set X as x U←− X .
Moreover, we use boldface letters to represent vectors and
regular letters for polynomials.

3.2 Cryptographic Background

In this section, we briefly explain the cryptographic
concepts necessary for understanding the rest of the paper.

Homomorphic Encryption. Homomorphic encryption
(HE) is a special type of encryption that supports com-
putation on encrypted data. In 2009, Craig Gentry [33]
introduced for the first time a special type of HE enabling
for arbitrary computations on ciphertexts called fully homo-
morphic encryption (FHE).

More formally, FHE could be described as follows. Let
CS(Kp,Ks, P, C, E ,D) be a cryptosystem with the public
key space Kp, the secret key space Ks, the plaintext space
P , the ciphertext space C , the encryption function E : P ×
Kp → C , and the decryption function D : C × Ks → P .
We say that the cryptosystem CS is fully homomorphic if and
only if for any function f : P × P → P in the plaintext
domain, there exists another function h : C ×C → C in the
ciphertext domain such that

D(h(E(m1, kp), E(m2, kp)), ks) = f(m1,m2) (1)

for any m1,m2 ∈ P , (kp, ks) ∈ Kp ×Ks.
Yet, despite its complete functionality, FHE is unpractical

as it introduces significant computational and storage over-
heads that make it unusable for real-world applications. For
this reason, many variations of FHE have been proposed
in the past few years with the goal of moving towards
better efficiency by sacrificing some flexibility. Such cryp-
tosystems are called practical homomorphic cryptosystems,
and according to their functionality, they can be classified
as additively homomorphic if they only satisfy addition
of ciphertexts, multiplicatively homomorphic if they only

satisfy multiplication, or somewhat homomorphic if they
support addition and a limited number of multiplications.

Our proposed solution is based on the Fan and Ver-
cauteren (FV) cryptosystem [34] which is the state-of-the-
art lattice-based leveled homomorphic encryption scheme
based on the Ring Learning With Errors (RLWE) problem.
The FV scheme ensures indistinguishability against chosen
plaintext attack if the standard RLWE problem is hard.
Moreover, as other lattice-based cryptosystems, it is sup-
posed to be quantum-resistant. Let ` be a power of 2 and a
polynomial degree, q be a coefficient modulus, t be a plain-
text modulus, X be a noise distribution over a polynomial
ring Zq[x]/(x` + 1), and m ∈ Zt[x]/(x` + 1) be a plaintext
polynomial. Let s U←− Zq[x]/(x` + 1) be the secret key and
p = (p0, p1) = (−(a · s + e) mod q, a), be the public key
where e← X and a U←− Zq[x]/(x` + 1). Then the FV scheme
works as follows:

• Encryption (with u, e1, e2 ← X ):

Enc(m,p) = (c0, c1) = (2)

((p0 · u+ e1 + bq
t
c ·m) mod q, (p1 · u+ e2) mod q),

• Decryption:

Dec(c, s) =
⌊ t
q
· ((c0 + c1 · s) mod q)

⌉
mod t (3)

• Homomorphic addition:

Add(c, c′) = ((c0 + c′0) mod q, (c1 + c′1) mod q) (4)

We do not report the definition of homomorphic
multiplication as it is not used in our solution. For
further details we refer the reader to the original paper
[34]. Note that we chose the FV scheme because, to the
best of our knowledge, it provides the best performance in
terms of homomorphic computations and storage overhead
for the operations required in the proposed solution. We
also compared the FV scheme with the Elliptic curve
ElGamal (EC-ElGamal) cryptosystem [35] and Yet Another
Somewhat Homomorphic Encryption (YASHE) scheme [36].
Benchmark details can be found in the Appendix.

Ciphertext Packing. Ciphertext packing [37] is a tech-
nique that can be used to reduce the overall size of the
ciphertext and improve the efficiency of homomorphic op-
erations. Despite recent advances, practical HE is still quite
expensive. This is because security considerations require
ciphertexts to be large, thus slowing down homomorphic
computations. Ciphertext packing represents the main tech-
nique for dealing with this problem as a vector of plaintext
values, and not a single value, can be encrypted in only one
ciphertext. Homomorphic operations are applied to these
vectors component-wise.

More formally, let CS(Kp,Ks, P, C, E ,D) be a cryptosys-
tem, and m0, m1, ..., be the messages to be encrypted where
mi ∈ M, ∀i. Let also n =

⌊
|P |
|M |

⌋
and P1, P2, ..., Pn be n

independent subspaces of P where |Pj | ≥ |M |, ∀j. When
|P | ≥ 2 · |M |, we can encrypt at most n messages into one
ciphertext by encrypting m′ = m1p1 +m2p2 + · · ·+mnpn,
where pj is the basis of the subspace Pj .
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For example, when P = Zq[x]/(x` + 1) and M = Zt,
we can encrypt at most ` messages into one ciphertext with
m′ = m0 +m1x+ · · ·+m`−1x

`−1.

Differential Privacy. Differential privacy is an approach
to privacy-preserving reporting of results, introduced by
Cynthia Dwork [38], that guarantees that a given random-
ized statistic, f(D) = R, computed on a dataset D1 behaves
almost the same when computed on the neighbor datasetD2

that differs from D1 in exactly one element. More formally
we have that

Pr [f(D1) = R0] ≤ exp(ε) · Pr [f(D2) = R0] , (5)

where the parameter ε is a privacy parameter: the closer it is
to 0 the more privacy is ensured. The most straightforward
method [39] for achieving ε-differential privacy consists in
perturbing the output of the statistic with noise drawn from
the Laplace distribution with mean 0 and scale ∆f

ε , where
∆f is known as the sensitivity of f :

∆f = max
D1,D2

||f(D1)− f(D2)||1. (6)

Differently from k-anonymity, differential privacy guarantees
privacy against an adversary regardless of his prior knowl-
edge.

3.3 Genomic Background
In this section, we briefly introduce the basic genomic
concepts used in this paper.

Genomic Variant. The human genome consists of
almost 3 billion base pairs made of a 4-letter alphabet (A, C,
T and G). Around 99.9% of it is identical between any two
individuals and the remaining part (∼0.1%) is referred to
as genetic variation. Most commonly, this genetic variation
comes from differences in single nucleotides, called single
nucleotide variants (SNVs). Yet, there exist many other types
of genetic differences also involving multiple nucleotides
such as insertions/deletions (INDELs), duplications (DUPs),
copy number variants (CNVs) and more complex structural
variants (SVs). In the human population, a given genetic
locus can have several possible versions (or alleles) with
different genetic variations. Due to the diploid nature of
somatic human cells, a human genome comprises two
sets of chromosomes – one inherited from each parent.
Therefore, each individual either has two copies of the
same allele/variant (homozygous) or two copies of different
alleles/variants (heterozygous).

Variant Call Format (VCF). The Variant Call Format
(VCF) [40] is the main format for storing genetic variants
of one or more individuals with respect to the reference
genome. The VCF consists of two parts: header and content.
The header contains the meta-information about the file and
data along with the definition of file variables. The content
holds the information about the genetic variants for each
individual. Each variant is uniquely identified by (i) its
chromosomal position (CHR, POS), (ii) the reference allele
(REF), and (iii) the alternate allele (ALT) We can separate the
content into two parts by the characteristics of the data. Each
line of the content corresponds to the information about a

variant and the genotype (i.e., the value) of this variant for
each individual in the VCF. We call the information about
the variant, such as CHR, POS, REF, ALT, meta-data. Meta-
data is not sensitive from the privacy perspective as it is
public information, as opposed to genotype information that
is sensitive and must be protected.

In the VCF file, a genotype is represented by two num-
bers separated by either ‘|’ or ‘/’. When it is separated
by ‘|’, the genotype is phased (i.e, we know which of the
two chromosomes holds which allele). Whereas, when it
is separated by /, the genotype is unphased (i.e., there is
no information on which chromosome holds which allele).
Each number represents the allele value. When it is 0, it
means that the allele value is equal to the reference allele.
When it is 1, it means the allele value is equal to the alternate
allele. When the allele has not been genotyped correctly and
there is no information about its value, we put ‘.’ instead of
any number. Such an event is named no-call.

In our solution, we assume that the VCF file was pro-
cessed in such a way that entries with multiple alternate
alleles were separated in several lines, with one allele per
line.

4 METHODOLOGY

In this section, we introduce CHUV’s system and threat
models. We then outline the functional requirements that
our system should satisfy and finally we describe our pro-
posed privacy-preserving solution in detail. Note that these
system and threat models can be easily adapted to other
similar healthcare providers.

4.1 System Model
The CHUV’s information system consists of two physically
separated networks, as depicted in Fig.1. Each of them hosts
different services: (i) the main network of the hospital, also
called clinical network and (ii) a research network that is shared
with the University of Lausanne (UNIL).
• Clinical network. The clinical network is used for hos-

pital’s clinical daily activities. It hosts all services used
for daily healthcare and administration purposes along
with the clinical research data-warehouse2 (DWH-RC)
that contains pseudonymized clinical and genomic data
of patients. This network is very controlled and pro-
tected by a firewall that blocks all incoming network
traffic. Authorized users are authenticated and their
activities are constantly logged.

• Research network. The research network is also protected
by a firewall that blocks all incoming network traffic ex-
cept that coming from the clinical network but the level
of control is weaker with respect to the clinical network
as users’ activities are not logged. It hosts multiple ser-
vices used by clinical or academic researchers in their
research activities; i2b2 is one of these services. The
i2b2 service is composed of (i) an i2b2 server to which
pseudonymized and de-identified clinical data along
with pseudonymized and encrypted genomic data are
pushed from the DWH-RC and (ii) a proxy server

2. The detailed description of the clinical network is out of the scope
of this work.
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which is devoted to support the decryption phase and
the storage of partial decryption keys. Both servers
are physically separated from each other, protected
by different firewalls and equipped with an intrusion
detection system. Moreover, the two servers cannot
communicate with each other. Researchers already in
the network access the i2b2 service after authentication
through an internal Web-client.

The main purpose of the CHUV’s IT architecture is to isolate
data that is used for clinical care and that is accessible
only to a few trusted and authorized individuals from data
used for research activities that can be accessed by several
researchers through less restrictive authorization and au-
thentication procedures. All communications are protected
through encryption.

4.2 Threat Model
In this paper, we consider two types of potential attackers:
(i) a honest-but-curious (or semi-honest) adversary at the i2b2
server or at the proxy server who honestly follows the pro-
tocol but tries to passively infer some private information
about the patients, and (ii) a malicious-but-covert adversary
who wants to re-identify a patient by performing multiple
malicious, but legitimate, queries to the i2b2 service. We con-
sider the DWH-RC as a trusted party as it is the generator
and owner of the data.
• The honest-but-curious attacker can be represented by

a careless or disgruntled employee of the hospital (i.e.,
an insider) or a hacker who has illegitimate access
to the i2b2 server and tries to obtain patients’ pri-
vate genomic and clinical information without alter-
ing the protocol. Note that although this information
was pseudonymized and there is no direct link with
patients’ identities, re-identification would still be pos-
sible due to the identifying nature of the genome and
to some auxiliary (and often publicly available) in-
formation (e.g., public genomic databases, recreational
websites, online social networks, etc.) that the attacker
might exploit [6], [7], [8], [9], [10], [11], [12]. As a con-
sequence, a potential loss of clinical and genomic data
could be extremely dangerous, not only for the patients
but also for the reputation of the medical institution
itself. Re-identified health-care records are nowadays
extremely valuable for hackers as, according to a recent
report by IBM [41], their value on the black market is
as much as 60 times more than that of stolen credit
cards. We assume that the i2b2 server and the proxy
server do not collude or, in other words, that they are
not simultaneously compromised.

• The malicious-but-covert adversary can be represented
by a malicious but legitimate user of i2b2 (e.g., a mali-
cious researcher) or hacker who breaks into the research
network and uses the i2b2 service to re-identify an
individual in a subset of patients with specific clinical
characteristics. In particular, an attacker with already
some genomic information about the victim (e.g., the
value of some of her genetic variants) might repeatedly
query the i2b2 service with this genomic information
and use the system as an oracle. As such, he could
re-identify the presence of the victim in a sensitive

subset of individuals (e.g., all cancer patients or all HIV-
positive patients, etc.) and infer his/her health status.
For example, the attacker could exploit the aggregate
information obtained from the cohort explorer as de-
scribed in well-known attacks such as Homer’s attack
[6] and the Beacon attack [7].

Therefore, with these adversarial models, there are two
potential privacy threats that we need to address with our
proposed solution: (i) loss of patients’ health data confi-
dentiality due to illegitimate data access and (ii) patients’
re-identification and resulting sensitive attribute disclosure
from legitimate data access. Data confidentiality can be pro-
tected at rest and during processing by using HE, whereas
the re-identification risk can be mitigated by perturbing the
query result in order to satisfy the notion of differential
privacy.

4.3 Functional and Computational Requirements
According to CHUV, the functional requirements of our
privacy-preserving cohort explorer should be based on
other well-known tools for exploration of genetic cohorts
such as the Beacon system of Global Alliance for Genomics
& Health (GA4GH) [42] and the ExAC browser of the Broad
Institute [43]. For example, through the Beacon system re-
searchers can query a database of genomes for the presence
of a specific mutation, whereas researchers using the ExAC
browser can also have information about the alternate allele
count and frequency of the queried mutation.

As such, a user of our system should be able to obtain
for all genetic variants in a selected chromosomal range:
• Reference/alternate allele frequencies
• Number of mutated genotypes (i.e., with at least one

alternate allele)
• Number/frequency of genotypes that are homozygous

with respect to the reference/alternate allele
• Number/frequency of genotypes that are heterozygous

(with or without phase information)
Moreover, the storage overhead introduced by encryption
should be kept at the lowest possible level and the query
round trip time in the order of seconds for a smooth user-
experience.

4.4 Proposed Solution
Our solution for the privacy-preserving exploration of
genomic cohorts consists of three main parts: (i) system
initialization where cryptographic keys are generated and
the genetic variants in the VCF file are encoded, encrypted
and pushed to the i2b2 server along with de-identified
clinical data for secure storage, (ii) user assignment, where
access rights and cryptographic keys are assigned to each
new user in the system and (iii) query execution, where the
user builds a new query that is then sent to the i2b2 server
and processed in a privacy-preserving way, i.e., without
ever decrypting the input data. The query result is then
decrypted by the user via the i2b2 Web-client.

System Initialization. The system initialization phase
takes place at the clinical research data-warehouse (DWH-
RC) where clinical and genomic data are stored with pa-
tients’ pseudonyms and can be accessed only by a group
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Fig. 1: Architecture of the proposed solution.

Genotype value Genotype encoding
gt1 gt2 gt3 no-call

.|. 0 0 0 2
.|0 0 0 0 1
.|1 1 0 0 1
0|. 0 0 1 1
1|. 0 1 0 1
0|0 0 0 0 0
0|1 1 0 0 0
1|0 0 1 0 0
1|1 0 0 1 0

TABLE 1: Encoding for phased genotypes.

of a few trusted and authorized individuals. The first step
consists in setting the parameters of the FV cryptosystem
(l, t and q) according to the desired security level (e.g., 80
bits security) and the maximum number of additions and
multiplications to be supported by the system. In our case,
the maximum number of additions should be at least twice
the number of individuals in the database because it cor-
responds to the maximum number of alleles that could be
involved in a counting query. Multiplication is not needed.
For the optimal selection of the FV parameters, we refer the
reader to the original work by Fan and Vercauteren [34].
Then, a public key p and a secret key s are generated as
described in Section 3.2.

After key generation, the VCF file is parsed and each
genotype is encoded following the scheme described either
in Table 1 (for phased genotypes) or in Table 2 (for un-
phased genotypes). For simplicity, in the rest of the paper
we describe only the encoding for unphased genotypes
described in Table 2 (but the encoding in Table 1 is equally
supported by the proposed solution). As the number of
potential genotype values is 6 (we are also including no-calls
as they can be used when allele or genotype frequencies
are computed), we use three values for genotype encoding:
the first two values indicate the presence of zero, one or two
alternate alleles, whereas the third value reports the number
of no-calls in the genotype.

For each individual in the VCF file, consecutive geno-
types are packed into 3 sets of polynomials by us-
ing the packing technique described in Section 3.2. Let
(gt1i, gt2i, no-calli) be the encoded genotype for variant i.

Genotype value Genotype encoding
gt1 gt2 no-call

./. 0 0 2
./0 0 1 1
./1 1 0 1
0/0 0 0 0
0/1 1 0 0
1/1 0 1 0

TABLE 2: Encoding for unphased genotypes

Then, we can pack at most ` genotypes in three polynomials

gt1j =
`−1∑
k=0

gt1j`+kx
k, (7)

gt2j =
`−1∑
k=0

gt2j`+kx
k, (8)

no-callj =
`−1∑
k=0

no-callj`+kxk, (9)

where ` is the polynomial degree and j the
ciphertext index. Polynomials gt1j and gt2j are
finally encrypted with the public key p at the DWH-
RC to obtain cipher gt1j = Enc(gt1j,p) and
cipher gt2j = Enc(gt2j,p) which are pushed to the
i2b2 server for storage along with no-callj , patients’
pseudonyms, de-identified clinical data, and p, as shown
in Fig.2a. Note that no-callj does not need to be encrypted
as it does not leak any information on the value of the
genotype.

User Assignment. Assignment of a new user also takes
place at the DWH-RC. During this phase, for each new user,
the secret key s is randomly divided into two shares s1 and
s2 such that s = s1+s2. The two partial secret keys s1 and s2

are then sent, for storage, to the i2b2 server and proxy server,
respectively. This procedure avoids a single point of failure
in the system: if one of the two servers is compromised,
data are still protected because only with the full secret key
s the attacker can successfully decrypt. Note that ideally, to
ensure better security, the i2b2 server and the proxy server
should be part of two completely different organizations.
Yet, because of the CHUV’s infrastructure these two servers
are within the same network. Nevertheless, they are phys-
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gen_encrypted_genotypes

cipher_gt1 bytea

cipher_gt2 bytea

no_calls bytea

gen_patient_mapping

pid_i2b2 int

patient_group int

Entity

chromosome varchar(3)

position bigint

reference varchar(500)

alternate varchar(500)

gene_name varchar(50)

rs_number varchar(50)

gen_variants

PK cipher_id bigint

PK degree int

gen_encrypted_genotypes

PK cipher_id bigint

PK pid_gen int

gen_patient_mapping

PK pid_gen int

(a) Scheme for storing encrypted genetic variants.

gen_user_roles

role_name varchar(50)

epsilon double precision

gen_filter_range

access_level int

chromosome varchar(3)

start_position bigint

end_position bigint

gen_filter_patient_set

access_level int

patient_group int

gen_noisy_result

query_type varchar(50)

count bigint

result bigint

gen_noisy_result

PK cipher_id bigint

PK degree int

PK access_level int

PK patient_set_id int

gen_user_roles

PK access_level int

(b) Scheme for storing users’ access rights.

Fig. 2: Database schemes for the proposed solution.

ically separated, managed by different administrators and
cannot communicate with each other.

Access rights for each new user are also assigned during
this phase and stored on the i2b2 server, as shown in
Fig.2b. Different users might have different rights to ac-
cess patients’ private information. Our system provides full
customization on three different levels of access: (i) query
result, (ii) patients’ set, and (iii) variants’ set. For example, a
junior researcher might have access only to perturbed query
results, where some noise has been added on the true result
to satisfy the notion of differential privacy, whereas a senior
researcher can obtain accurate information. Also, depending
on his specialization or on the IRB-approved study protocol,
a researcher might have access only to a given subset of
patients or a given subset of genetic variants. For example,
an oncologist might have access only to data of patients with
cancer and might not be allowed to query genetic variants
related to other diseases such as diabetes or coronary artery
disease.

We acknowledge that if the i2b2 server is compromised
by a honest-but-curious adversary, information on users’
access rights could leak because they are stored in the clear.
Protecting users’ access rights is not the focus of this project.
Yet, we are planning to address such an issue in future
work by exploring even more sophisticated solutions based
on attribute-based somewhat homomorphic encryption (ABSHE)
[44].

Query Execution. The query execution consists of five
phases: (i) the query generation at the user-side and (ii) the
query processing at the server-side, (iii) result perturbation
at the server-side, (iv) result partial decryption at the server-
side and (v) result decryption at the client-side.

(i) Query generation. In the query generation, after
password-based authentication, the user of our pri-

vacy preserving cohort explorer (i.e., CHUV researcher)
builds his query in two steps through the i2b2 Web-
client. In the first step, he selects a set of inclusion
and exclusion clinical criteria in order to identify the
set of patients for which he wants to explore their
genetic data. For example, a researcher might want
some aggregate genetic information on some specific
variants for patients with cancer who underwent a
specific treatment and who had a positive outcome. In
the second step, once the patient set has been identified,
the user selects the set of variants of interest and the
summary statistics he wants to obtain from the ones
specified in Section 4.3 and finally submits the query.

(ii) Query processing. During the query processing, the i2b2
server verifies the access rights of the querier and
his query definition. If the verification is successful,
the server retrieves from the database the list of ci-
phertexts containing the encrypted genotypes of the
variants specified by the query. The ciphertexts are
then used to homomorphically compute the summary
statistics requested by the user. We designed different
secure algorithms for computing the different summary
statistics described in Section 4.3. The details of these
algorithms are explained in Section 4.6.

(iii) Result perturbation. Depending on the role and access
level of the user, the i2b2 server can perturb the en-
crypted query result to satisfy the notion of differential
privacy and prevent re-identification attacks. In partic-
ular, we assume i2b2 users hold a single account and do
not collude. This assumption is reasonable in practice,
as by definition, in order to collude, a user must involve
someone else. Moreover, users are assigned a total
privacy budget εtot whose value is decided by i2b2
administrators and may depend on the user’s role and
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level of trustworthiness. For each new query i from the
same user, the i2b2 server draws independent noise
from the Laplace distribution with mean 0 and scale
∆f
εi

, where f is the requested aggregation function, en-
crypts it and homomorphically adds it to the encrypted
query result in order to satisfy εtot-differential privacy.
The user’s privacy budget εtot is then reduced by εi and
keeps decreasing every time a new query is answered;
the i2b2 server will keep on providing query answers
to the user until his budget runs out. The value of εi
can be fixed, if set by the database administrator, or
adaptive, if set by the user who may use a small value of
εi and incur more noise for preliminary queries whose
expected result is large and save the budget for more
specific queries. What is the right value of εi is out of
the scope of this paper. We note that ∆f is equal to 1
for count queries and to 1

n for predicate queries (i.e.,
queries asking the fraction of elements in a database
that satisfy a specific predicate), where n is the number
of patients in the database. For consecutive queries, ∆f
grows linearly.

(iv) Result partial decryption. After computation of per-
turbed/unperturbed encrypted summary statistics, the
i2b2 server partially decrypts them with the first part
of the users’ secret key s1 (which is stored in the i2b2
database). In particular, from a ciphertext c = (c0, c1)
we obtain, after partial decryption, a new ciphertext
c′ = (c′0, c

′
1), as described in Section 4.5. Finally, the i2b2

server sends back to the user the encrypted polynomial
c′1 and the coefficients of the encrypted polynomial
c′0 matching the variants specified by the query and
user’s access level. Note that, for the sake of informa-
tion minimization, only the specified coefficients of the
encrypted polynomial c′0 are sent by the server to the
user. In other words, we do not want the user to obtain
the summary statistics of all the variants packed in the
same ciphertext, but only the ones he has requested
access to.

(v) Result decryption. At the user-side, the Web-client
fetches the second part of the user’s secret key s2 from
the proxy server and performs the full decryption to ob-
tain the final results of the query, as described in Section
4.5. For performance reasons, part of the full decryption
(i.e., the polynomial multiplication c′1 · s2) could be run
at the proxy server. Note that, by observing only s2 and
c′1, the proxy server cannot infer anything about the
plaintext.

4.5 Partial Decryption With FV Scheme

As the Fan and Vercauteren (FV) secret key s has been
split into two shares stored at the i2b2 server and at the
proxy server respectively, decryption has to be done in two
steps. The original FV cryptosystem does not have a partial
decryption algorithm. Here we describe how this additional
feature can be easily achieved.

Definition 1 (Partial Key Generation). Let q be the ciphertext
modulus, ` be the polynomial degree and s ∈ Zq[x]/(x` + 1)
be the secret key [34]. Then, the partial key set (s0, s1) can be
generated as s0

U←− Zq[x]/(x` + 1) and s1 = s− s0.

Definition 2 (Partial Decryption). Let q be the modulus, ` be
the polynomial degree, t be the plaintext modulus, (s0, s1) be the
partial key set from Definition 1 and c = (c0, c1) be the ciphertext
where c0, c1 ∈ Zq[x]/(x` + 1). Then, we can define the partial
decryption and the full decryption as follows,

Partial Dec(c, s0) = c′ = (c′0, c
′
1) = (c0 + c1 · s0, c1)

Full Dec(c′, s1) = Dec(c′, s1), (10)

where Full Dec(Partial Dec(c, s0), s1) = Dec(c, s).

Proof. We have

Full Dec(Partial Dec(c, s0), s1)

=
⌊ t
q

((c0 + c1 · s0 + c1 · s1) mod q)
⌉

mod t

=
⌊ t
q

((c0 + c1 · s) mod q)
⌉

mod t (11)

= Dec(c, s)

By Definition 1, s0 + s1 = s, so Eq.(11) holds.
Thus, Full Dec(Partial Dec(c, s0), s1) is equivalent to
Dec(c, s).

4.6 Secure Algorithms

Algorithm 1: Secure allele frequency
Input : P , V , Np for p ∈ P , and Gp for p ∈ P .
Output: M

1 M ← an empty set of key-value pairs
M.addEntry(V, (Enc(0), 0))

2 for p ∈ P do
3 ones← Set of variants in V whose Np = 1
4 twos← Set of variants in V whose Np = 2
5 M ′ ← an empty map
6 for (key, value) ∈M do
7 if key ∩ twos 6= ∅ then
8 M ′.addEntry(key ∩ twos, value)

// Computation for genotype ./.
9 end

10 if key ∩ ones 6= ∅ then
11 M ′.addEntry(key ∩ ones, (value[0]⊕

Gp.cipher gt1, value[1] + 1))
// Computation for genotypes ./0
and ./1

12 end
13 if key \ (ones ∪ twos) 6= ∅ then
14 M ′.addEntry(key \ (ones ∪ twos), (value[0]⊕

Gp.cipher gt1⊕2·Gp.cipher gt2, value[1]+2))
// Computation for genotypes 0/0,
0/1 and 1/1

15 end
16 end
17 M ←M ′

18 end
19 return M . value[0]/value[1] will be computed at the client side

In this Section, we describe the algorithms developed
to securely compute the summary statistics outlined in
Section 4.3. We use ⊕ to represent homomorphic addi-
tion. All secure algorithms take as input the patient set
P satisfying the clinical predicate specified by the query
(e.g., patients with HIV), the variant set V of the vari-
ants in the range specified by the query and packed into
the same ciphertext, the set of the number of no calls
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Np of each patient p ∈ P , and set of encrypted geno-
types Gp of each patient p ∈ P . Note that Gp con-
sists of two ciphertexts Gp.cipher gt1 and Gp.cipher gt2.
The output is a set of key-value pairs containing the en-
crypted results per set of variants that can be computed
together. Algorithms 1-5 enable the secure computation of
any allele frequency, the number of mutations, the number
of homozygous-alternate/heterozygous genotypes, the fre-
quency of homozygous-alternate/heterozygous genotypes
and the number/frequency of homozygous-reference geno-
types, respectively.

Algorithm 2: Secure mutation count
Input : P , V , Np for p ∈ P , and Gp for p ∈ P .
Output: M

1 M ← an empty set of key-value pairs M.addEntry(V,Enc(0))
2 for p ∈ P do
3 ones← Set of variants in V whose Np = 1
4 M ′ ← an empty map
5 for (key, value) ∈M do
6 if key ∩ ones 6= ∅ then
7 M ′.addEntry(key ∩ ones, value⊕Gp.cipher gt1)

// Computation for genotype ./0 and
./1

8 end
9 if key \ ones 6= ∅ then

10 M ′.addEntry(key \ ones, value⊕Gp.cipher gt1⊕
Gp.cipher gt2) // Computation for
genotype ./., 0/0, 0/1 and 1/1

11 end
12 end
13 M ←M ′

14 end
15 return M

Algorithm 3: Secure homozygous-alternate or het-
erozygous count

Input : P , V , Np for p ∈ P , and Gp for p ∈ P .
Output: M

1 M ← an empty set of key-value pairs
2 M.addEntry(V,Enc(0))
3 for p ∈ P do
4 ones← Set of variants in V whose Np = 1
5 M ′ ← an empty map
6 for (key, value) ∈M do
7 if key ∩ ones 6= ∅ then
8 M ′.addEntry(key ∩ ones, value)

// Computation for genotype ./0 and
./1

9 end
10 if key \ ones 6= ∅ then
11 M ′.addEntry(key \ ones, value⊕Gp.cipher gt2)

. cipher gt1 instead of cipher gt2 for
heterozygous // Computation for
genotype ./., 0/0, 0/1 and 1/1

12 end
13 end
14 M ←M ′

15 end
16 return M

4.7 Security Analysis

In this section, we discuss about the security of our system
with respect to the protection of genomic data. The protec-
tion of clinical data is not the focus of this paper. How-
ever, differently from genomic data, various anonymization

Algorithm 4: Secure homozygous-alternate or het-
erozygous frequency

Input : P , V , Np for p ∈ P , and Gp for p ∈ P .
Output: M

1 M ← an empty set of key-value pairs
2 M.addEntry(V, (Enc(0), 0))
3 for p ∈ P do
4 zeros← Set of variants in V whose Np = 0
5 M ′ ← an empty map
6 for (key, value) ∈M do
7 if key \ zeros 6= ∅ then
8 M ′.addEntry(key \ zeros, value)

// Computation for genotype ./.,
./0 and ./1

9 end
10 if key ∩ zeros 6= ∅ then
11 M ′.addEntry(key ∩ zeros, (value[0]⊕

Gp.cipher gt2, value[1] + 1)
// Computation for genotype 0/0,
0/1 and 1/1

12 . cipher gt1 instead of cipher gt2 for
heterozygous

13 end
14 end
15 M ←M ′

16 end
17 return M . value[0]/value[1] will be computed at the client side

Algorithm 5: Secure homozygous-reference count or
frequency

Input : P , V , Np for p ∈ P , and Gp for p ∈ P .
Output: M

1 M ← an empty set of key-value pairs
2 M.addEntry(V, (Enc(0), 0))
3 for p ∈ P do
4 zeros← Set of variants in V whose Np = 0
5 M ′ ← an empty map
6 for (key, value) ∈M do
7 if key \ zeros 6= ∅ then
8 M ′.addEntry(key \ zeros, value)

// Computation for genotypes ./.,
./0 and ./1

9 end
10 if key ∩ zeros 6= ∅ then
11 M ′.addEntry(key ∩ zeros, (value[0]⊕

Gp.cipher gt1⊕Gp.cipher gt2, value[1] + 1))
// Computation for genotype 0/0,
0/1 and 1/1

12 end
13 end
14 M ←M ′

15 end
16 for (key, value) ∈M do
17 value[0]← Enc(value[1] + value[1]x+ value[1]x2 + · · ·+

value[1]x`−1)⊕−value[0]
18 end
19 return M . value[0]/value[1] will be computed at the client side

for the homozygous reference frequency

techniques can be applied to protect clinical data and sat-
isfy formal notions of privacy such as k-anonymity [45], l-
diversity [46] or t-closeness [47]. Because using anonymiza-
tion techniques could modify the original clinical data and
reduce the overall utility of the system, our system can also
be adapted to clinical data in case full accuracy is required.

Our system consists of four different participants: the
data-warehouse (DWH), the i2b2 server (IS), the proxy
server (PS) and the i2b2 user (U). As DWH is trusted, we
only focus on IS, PS and U. As discussed in Section 4.2,
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we assume the honest-but-curious adversarial model for
both IS and PS and the malicious-but-covert model for U.
Moreover, we recall that s1 represents the partial secret key
stored at IS and s2 represents the partial secret key stored
at PS for a specific user. Similarly, s1 and s2 represent the
sets of partial keys for all users in the system at IS and PS,
respectively.

i2b2 Server. If the i2b2 server is compromised, the
adversary can access the encrypted genomic data, the set
of partial secret keys s1, the role and access level of each
user, the amount of noise used for perturbing query results,
accessible chromosomal ranges, and the history of queries.
Moreover, from the history of queries and the accessible
chromosomal ranges, the attacker can infer users’ access
patterns, their potential interests and medical specialties.
Yet, we note that our goal is to preserve the privacy of
patients, not of i2b2 users.

As such, although the adversary has encrypted
genomic data and s2, he cannot obtain any sensitive
genomic information about the patients as he still needs
s1 to decrypt. However, because IS and PS cannot be
simultaneously compromised by assumption, the attacker
cannot obtain any partial key in s1 from PS. In addition, the
recovery of a partial secret key s2 at PS is still hard even if
numerous partial keys s1 ∈ s1 are known. The adversary
has to perform approximately O(2l) operations where l
is the polynomial degree. Hence, the sensitive genomic
data remain secure if PS discards its set of partial keys s2
as soon as it detects that IS is compromised. In this case,
there is no need to re-encrypt genomic data with a new
secret key as the full secret key is never revealed. Only new
partial keys need to be regenerated for all users in order to
avoid the decryption of leaked data with a later attack on PS.

Proxy Server. If the proxy server is compromised, only
the set of partial secret keys s2 is leaked. As before, because
PS and IS cannot collude, the attacker cannot obtain any
sensitive genomic information. Also in this case, new
partial keys need to be generated for all users in order to
avoid the decryption of leaked data with a later attack on IS.

User. If a user is compromised, his credentials can be
stolen and used by a malicious-but-covert adversary. Then,
the adversary can get any aggregated query result which is
accessible by the user. Since the adversary can also deduce
the identifier of the user’s partial keys s1 and s2, he can get
s2 from PS by sending a polynomial 1 along with the partial
key identifier. This problem could be easily addressed by
adding some noise after the multiplication at PS. Yet, this
additional protection mechanism is not necessary as PS
simply stores s2 of a user on his behalf and the adversary
has no mean to reconstruct the full secret key. Hence, there
is no leakage of sensitive genomic information even if a user
can obtain s2.

Yet, if the compromised user’s role allows the ad-
versary to obtain unperturbed query results, patients re-
identification is still possible. An additional system inde-
pendent from the user’s privacy budget εtot should be put
in place at IS to detect suspicious requests. We leave this
investigation for future work.

5 EXPERIMENT AND RESULTS

In this section, we describe how we implemented and
deployed our solution in the real operational setting of the
Lausanne University Hospital. We evaluate its performance
on real genomic and clinical data.

5.1 Plugin Implementation

We implemented our privacy-preserving solution as a plu-
gin of the i2b2 framework. The i2b2 architecture consists of
two major pieces: The first is the back-end infrastructure
(the “Hive”) that is responsible for the security aspects,
the access rights and for managing the underlying data
repository. The second piece is the user Web-client: a front-
end application suite of query and mining tools that enables
users to ask questions about patients’ data on the i2b2
server. The native version of i2b2 does not include any sup-
port neither for privacy-preserving data processing nor for
managing genomic data but it is only focused around cohort
identification based mostly on clinical and demographic
data. As shown in Fig.3, after logging in, a user can drag-
and-drop search terms from the clinical ontology (1) into
the Venn diagram-like interface (2) to construct his cohort of
patients. Yet, i2b2 is easily extensible thanks to its modular
design. As a consequence, we implemented our privacy-
preserving plugin as a totally independent module that can
be easily loaded during the setup of i2b2. Our plugin is
composed of four main parts: (i) a data importation tool,
(ii) a back-end module for the i2b2 server, (iii) a back-end
module for the proxy server, and (iv) a front-end module
for the i2b2 native Web-client.

In the followings, we briefly describe each of these
components.

Data Importation Tool. The importation tool is written
in C++ and is responsible for the system initialization and
the new user assignment. For the system initialization, it
takes as input the VCF file, the access rights policies and
the FV public and secret keys. The tool parses the VCF
file, encodes and packs the genotypes into polynomials
and encrypts them by using the FV public key. The final
output is a SQL script that can be used to import data in
the i2b2 SQL database. For the new user assignment, the
importation tool takes as input the new user’s identifier, his
access level and the FV secret key. As output, it generates
a SQL script to import into the i2b2 server the new user’s
access level along with the first part of the secret key and
into the proxy server the second part of the secret key.

i2b2 Server Module. The i2b2 server back-end module
consists of two parts: the “main cell” and the “crypto
engine”. The main cell is written in Java and is part of
the i2b2 server application. It is responsible for managing
the data repository, handling the queries, computing
homomorphic addition of ciphertexts, and, according to
the user’s access rights, adding noise on the computation
result to satisfy the notion of differential privacy. The crypto
engine is written in C++ and it is used for the partial
decryption at server side. The Java Native Interface (JNI)
is used to call function in the C++ crypto engine from the
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Fig. 3: i2b2 native Web-client.

main cell.

Proxy Server Module. The proxy server back-end
module has a similar structure to the i2b2 server module.
The main cell, written in Java, is responsible for managing
users’ partial keys stored in the data repository, whereas the
crypto engine is responsible for helping the user with the
full decryption by performing polynomial multiplication.

Web-client Module. The Web-client front-end module is
written in JavaScript and can be loaded from the native i2b2
Web-client. It consists of a query builder (Fig.4a), where the
user can drag-and-drop a patient set (previously constructed
through the native interface) and type into a search bar a set
of genetic variants of interest, and a result visualizer (Fig.4b),
where the user can visualize the results of his current
and previous queries. The user is allowed to enter genetic
variants by gene name, dbSNP identifier or chromosomal
position and to select the summary statistic he is interested
in.

5.2 Performance Evaluation

To evaluate the performance of our proposed solution in
the real operational setting of the Lausanne University
Hospital, we have performed several tests on real cohorts
of patients with clinical and genomic data.

Experimental Setup. To show the practicality of our
solution, we used only commodity hardware for our experi-
ments. The i2b2 server module and the proxy server module
run on two servers in the CHUV’s research network. Their
configurations are described in Table 3. For both servers,
we limited the number of threads to 8. At the user side,
we used an off-the-shelf laptop equipped with Windows 10,
intel i7-3517U processor and 10 GB of memory. We ran the
i2b2 Web-client on Firefox 47.0.1.

Data warehouse
i2b2 Server Proxy server

Operating System Ubuntu 14.04 Ubuntu 14.04
Processor Intel Xeon E3-1270 Intel Core i7-620M
Memory 16 GB 4 GB

Max Memory for JVM 8 GB 512 MB
Database PostgreSQL 9.4 MySQL 5.6

TABLE 3: Server Setting

We used the implementation of the FV cryptosystem
provided within the NFLlib library by Aguilar-Melchor et
al. [48]. The NFLlib is an optimized open-source C++ library
dedicated to ideal lattice cryptography in the polynomial
ring Zq[x]/(xl + 1) for l a power of 2. We chose this library
because, to the best of our knowledge, it is the most efficient
one for computations over polynomials. Indeed, NFLlib
uses a mixed NTT-CRT representation to reduce computa-
tional costs: Number-Theoretic Transform (NTT) for polyno-
mials [49] and Chinese Remainder Theorem (CRT) for their
coefficients.

We used the FV encryption parameters, as reported in
Table 4, in order to have 128 bits of security level.

Parameter Value
Polynomial Degree 2048

Ciphertext Modulus 4,611,686,018,326,724,609 (62 bits)
Plaintext Modulus 1,000,000 (20 bits)

TABLE 4: Encryption Parameters

We used real genomic data coming from the exome
sequencing of 392 samples giving a genotyping for 472,845
variants each. The resulting VCF file contained a total of
185,355,240 unphased genotypes. For clinical data, we used
90,454 clinical records from 134 patients available from the
i2b2 demo version [50]. Patients from the i2b2 demo were
duplicated in order to match the number of patients with
genomic records. As a result, we had an initial cohort of
392 individuals with both clinical and genomic data. To test
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(a) Query Builder.

(b) Result Visualizer.

Fig. 4: i2b2 front-end plugin.

the scalability of our solution, this initial cohort was further
extended by replicating individuals in order to obtain a
cohort of 5,000 patients.

Performance Analysis. We assessed the performance of
our proposed solution in terms of storage and computa-
tional overheads.

To measure the storage overhead, we compared the
initial size of genotypes within the original VCF file with
the size of the encrypted genotypes stored on the i2b2
server. We did not consider the meta-data in the VCF file
as this information is never modified before being stored
on the i2b2 server. In general, in a VCF file, a genotype is
represented by 4 bytes: 2 bytes for 2 alleles, 1 byte for ‘/’
or ‘|’, and 1 byte for a delimiter. As there were a total of

185,355,240 genotypes in our VCF file, their corresponding
size was 707.07 MB. After encoding, packing and encrypting
all genotypes in the VCF file, we obtained a set of 181,104
ciphertexts whose size is 5.82 GB. This corresponds to a
storage overhead of 8x compared to the unencrypted VCF.

To measure the computational overhead, we ran experi-
ments on all the privacy-preserving algorithms for summary
statistics for different sets of variants and different cohort
sizes. Experiments were run 100 times for each scenario and
we report the average execution time in the following. We
evaluated the different steps of the query execution phase,
described in detail in Section 4.4.

Fig.5a and Fig.5b show the total execution time at the
i2b2 server needed to compute the different summary statis-
tics for increasing cohort sizes and a fixed query including
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(a) With no-calls.
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(b) Without no-calls.

Fig. 5: Total query execution time at i2b2 server per number
of patients in the cohort for a query involving 3000 genetic
variants.

3,000 genetic variants with and without no-calls. It is easy to
observe how the execution time increases linearly with the
number of patients in the cohort and how the presence of no-
calls in the VCF file has a significant impact on performance.
Differences between the execution time for computing ho-
mozygous alternate/heterozygous counts/frequencies (yel-
low and purple curves) and the other summary statistics are
mainly due to the different number of ciphertexts involved
in the computation.

The execution time at the i2b2 does not depend only on
the number of patients in the cohort but also on the number
of consecutive genetic variants specified in the query, as
shown in Fig.6. The differences in execution time between
the different summary statistics depend on genotypes with
no-call values. In particular, the computations of the number
of mutations (blue curve) and the number of homozygous
alternate/heterozygous (yellow curve) are significantly in-
fluenced only by the existence of genotypes with 1 no-
call, whereas the other computations are also influenced
by genotypes with 2 no-calls. Note that in our data we do
not have genotypes with 1 no-call. From Fig.7a and Fig.7b
we can observe that most of the computational time at the
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Fig. 6: Total execution time at i2b2 server per number of
consecutive genetic variants.

i2b2 server is due to data retrieval from the database and
homomorphic computations.

Finally, Fig.8a and Fig.8b show the execution time for a
full decrpytion of the query results for an increasing number
of consecutive genetic variants for the contribution of the
proxy server and the client, respectively. It is easy to observe
that the execution time at the proxy server is similar to the
execution time at the i2b2 server for partial decryption as the
number of processed ciphertexts is the same. At the client
side, we can observe a different behavior for the execution
time as decryption is done variant-by-variant instead of
ciphertext-by-ciphertext. Note that, because of genotypes
with no-call values, the number of ciphertexts including the
query results can be different from the number of ciphertexts
including genetic variants.

6 DISCUSSION

We have thoroughly evaluated the performance of our
solution on real data. Results show that generally privacy-
preserving solutions, such as the one proposed in this work,
can already be used in medical settings as new efficient
enablers. Yet, some important points need to be further
discussed.

Performance. As it can be observed from the results
of Fig. 5a and Fig. 5b, the main bottleneck for the execu-
tion time of queries involving specific types of summary
statistics (e.g., allele or genotype frequencies) is due to
the presence of genotypes with no-call values. Indeed, the
number of key-value pairs (i.e., set of variants that can be
processed in parallel) generated by Algorithms 1, 4 and 5
at the i2b2 server can significantly grow if the distribution
of no-calls is very different among patients. Yet, some quick
alternative approaches can be used to easily address this
issue. A first potential approach consists in using a different
encoding for genotype values, as the one shown in Table 5,
which maximizes performance at the expense of increasing
the storage overhead from a factor of 8 to a factor of 20. Note
that a storage overhead of 20x can be prohibitive for most
institutions in case of large studies such as whole genome
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(a) Partial decryption.
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(b) Data retrieval and homomorphic computations.

Fig. 7: Breakdown of total execution time at i2b2 server per
number of consecutive genetic variants.

sequencing. It is definitely acceptable for studies on the
exome. Another potential approach would be to perform
genotype imputation before the genotype encoding in order
to replace no-calls with imputed values at the expense of a
slight decrease in accuracy. This said, it is easy to observe
how the first alternative approach prioritizes high perfor-
mance and high accuracy instead of low storage overhead,
whereas the second approach ensures high performance and
low storage overhead rather than full accuracy. Note that,
by slightly sacrificing performance, our current solution
assigns the highest priority to low storage cost and high
accuracy as specified by CHUV’s requirements (see Section
4.3). We leave for future work further investigations on how
to improve our secure algorithms in Section 4.6 in order to
optimize both performance and storage without sacrificing
accuracy.

As it is well-known in the security field, the perfect
solution does not exist. It is always a matter of finding the
best trade-offs between protection overhead, efficiency, and
accuracy of the result. Our proposed solution is general
enough to be fine-tuned according to the requirements.

Query result perturbation. As explained in Section
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Fig. 8: Execution time for full decryption for queries with
increasing number of consecutive genetic variants.

Genotype value Genotype encoding
gt1 gt2 gt3 gt4 gt5

./. 0 0 0 0 0
./0 0 0 0 1 0
./1 0 0 0 1 1
0/0 1 0 0 2 0
0/1 0 1 0 2 1
1/1 0 0 1 2 2

TABLE 5: Genotype encoding optimizing performance.

4.4, our solution applies the standard and well-established
Laplace mechanism [39] to independently perturb query re-
sults in order to satisfy the notion of differential privacy and
prevent patient re-identification. Yet, the amount of noise
that the i2b2 server needs to add to new queries of a given
user grows linearly with the number of queries already
answered for that user. This can substantially degrade the
utility of the system as the results of later queries would
be useless or, in other words, the number of useful queries
would be limited. For this reason more sophisticated mecha-
nisms could be used to obtain sublinear noise. For example,
the median mechanism [51], the exponential mechanism [52]
or the multiplicative weights mechanism [53] can answer ex-
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ponentially more predicate queries than the Laplace mecha-
nism. Indeed, the algorithm proposed by Vinterbo et al. [54]
provides the option to incorporate user preferences with
regard to individual query responses, thereby increasing
utility to users without compromising privacy. The authors
propose as well an evaluation of the privacy/utility trade-
off with i2b2 which shows the efficacy of their method. This
can be easily implemented in our system.

7 CONCLUSION

In this paper, we have described how we designed, im-
plemented and deployed, for the first time, a secure and
efficient privacy-preserving solution for exploring genomic
cohorts in a real operational scenario at the Lausanne
University Hospital. So far, without proper security and
privacy guarantees, the exploration of genetic cohorts has
been extremely difficult and time-consuming. Thanks to its
efficiency and strong security, we believe that our solution
represents a powerful enabler in this context, especially
when there is a need for sharing sensitive information
in less protected environments. The adoption of privacy-
preserving systems such as ours will undoubtedly foster
data sharing and translational research on a larger scale.

To conclude, we acknowledge that the proposed solution
addresses a simple use case by providing genomic summary
statistics that can be securely computed through homo-
morphic additions. Yet, thanks to the flexibility of the FV
scheme, more complex use cases such as privacy-preserving
phenome-wide association studies (PheWAS) or GWAS can
be envisioned and be developed on top of our solution.
We are planning to extend the functional capabilities of the
current system by addressing more complex use cases in
future work. Finally, we want to emphasize that the goal of
this paper was not to discuss the parameters’ values that
determine the best privacy and accuracy trade-off when
using differential privacy, but to provide the tools that
enable privacy-preserving exploration of genetic cohorts.
We believe that such a discussion should be a prerogative
of database administrators, end-users and hospitals’ institu-
tional review boards.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
comments and for their help in improving this paper. The
authors would like to thank also Sebastien Rocher and
Gianni Benezet, from CHUV’s data-warehouse team, for
their precious and valuable feedback and their support
during the deployment phase at CHUV of the proposed
solution, Patrick Zosso from the Informatics Department
of CHUV, for his help in setting up the i2b2 and proxy
server and, finally, Carlos Aguilar-Melchor from the Uni-
versity of Toulouse, France, and Marc-Olivier Killijian from
CNRS, Toulouse, France, for their instrumental help with
the NFLlib library.

REFERENCES
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APPENDIX A
A.1 Benchmark of Tested Homomorphic Encryption
Schemes
In order to choose the best cryptosystem for our solu-
tion in terms of storage and computational overheads, we
compared three C++ libraries: Elliptic curve ElGamal (EC-
ElGamal) [35], Fan and Vercauteren (FV) scheme [34] with
NTT-based fast lattice library (NFLlib) [55], and Simple En-
crypted Arithmetic Library (SEAL) [56] which is an imple-
mentation of Yet Another Somewhat Homomorphic Encryp-
tion (YASHE) scheme [36]. We compared the performance of
these libraries on a laptop with the i7-3517U processor and
10 GB of RAM. The results are as on Table 6 and Table 7.
Based on this benchmark, we chose the FV scheme with
NFLlib for our solution.

EC-ElGamal (Java) FV + NFLlib (C++) SEAL (C++)

No Packing Packing
(n=4096) No Packing Packing

(n=4096)
Ciphertext Size 360 Bytes 128 KB 128 KB 64 KB 64 KB

Number of Required Ciphertext 1 million 1 million 245 1 million 245
Storage Size 343.3 MB 122 GB 30.6 MB 61 GB 15.5 MB

TABLE 6: Storage requirement to encrypt 1 million variants
with 256 bits of security level
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EC-ElGamal FV + NFLlib SEAL
Encryption 4 ms 1 ms 71 ms
Decryption 10 ms 2.5 ms 70 ms

Homomorphic Addition 0.2 ms 0.1 ms 0.2 ms
Homomorphic Multiplication - 18 ms 1286 ms

TABLE 7: Execution time of each operation
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