
Diss. ETH No. 20013

Sparse Convex Optimization

Methods for Machine Learning

A dissertation submitted to

ETH Zürich

for the degree of

Doctor of Sciences

presented by

Martin Jaggi
Dipl. Math. ETH

born Mai 23, 1982

citizen of Lenk BE, Switzerland

accepted on the recommendation of

Prof. Dr. Emo Welzl, examiner

Dr. Bernd Gärtner, co-examiner

Dr. Elad Hazan, co-examiner

Prof. Dr. Joachim Giesen, co-examiner

Prof. Dr. Joachim M. Buhmann, co-examiner

2011

Abstract

Convex optimization is at the core of many of today’s analysis tools for
large datasets, and in particular machine learning methods. In this the-
sis we will study the general setting of optimizing (minimizing) a convex
function over a compact convex domain.

In the first part of this thesis, we study a simple iterative approximation
algorithm for that class of optimization problems, based on the classical
method by Frank & Wolfe. The algorithm only relies on supporting hy-
perplanes to the function that we need to optimize. In each iteration,
we move slightly towards a point which (approximately) minimizes the
linear function given by the supporting hyperplane at the current point,
where the minimum is taken over the original optimization domain. In
contrast to gradient-descent-type methods, this algorithm does not need
any projection steps in order to stay inside the optimization domain.

Our framework generalizes the sparse greedy algorithm of Frank & Wolfe
and its recent primal-dual analysis by Clarkson (and the low-rank SDP
approach by Hazan) to arbitrary compact convex domains. Analogously,
we give a convergence proof guaranteeing ε-small error — which in our
context is the duality gap — after O(1

ε) iterations.
This method allows us to understand the sparsity of approximate so-

lutions for any `1-regularized convex optimization problem (and for opti-
mization over the simplex), expressed as a function of the approximation
quality. Here we obtain matching upper and lower bounds of Θ

(
1
ε

)
for the

sparsity. The same bounds apply to low-rank semidefinite optimization
with bounded trace, showing that rank O

(
1
ε

)
is best possible here as well.

For some classes of geometric optimization problems, our algorithm has
a simple geometric interpretation, which is also known as the coreset con-
cept. Here we will study linear classifiers such as support vector machines
(SVM) and perceptrons, as well as general distance computations between
convex hulls (or polytopes). Here the framework will allow us to under-
stand the sparsity of SVM solutions, here being the number of support
vectors, in terms of the required approximation quality.

iii

For matrix optimization problems, we show that our proposed first-
order method also applies to convex optimization over bounded nuclear
norm or max-norm. This class of optimization problems has prominent
applications in several areas, such as low-rank recovery, matrix completion
and recommender systems. We demonstrate the practical efficiency and
scalability of our algorithm for large matrix problems, as e.g. the Netflix
dataset. For general convex optimization over bounded matrix max-norm,
our algorithm is the first with a convergence guarantee, to the best of our
knowledge.

In the last part of this thesis, we will consider convex optimization prob-
lems which are parameterized by a single additional parameter, as for ex-
ample a time or regularization parameter. In several applications, one is
interested in the entire path of the solution, as the parameter changes.

Here, a continuity argument together with our simple concept of opti-
mization duality for compact domains will allow us to obtain solution paths
(of some guaranteed approximation quality) for such problems. We show
that piecewise constant solutions can be obtained, and that O

(
1
ε

)
many

such solutions are enough in order to guarantee approximation quality ε
along the entire path, independent of the dimension of the problem. Our
method allows us to compute solution paths for e.g. SVMs, `1- or `∞-
regularized problems, nuclear norm regularized problems such as matrix
completion, and robust principal component analysis.

iv

Zusammenfassung

Konvexe Optimierung steht im Mittelpunkt von vielen der heute ver-
fügbaren Analyse-Methoden für grosse Datenmengen, insbesondere von
Methoden des maschinellen Lernens. In dieser Arbeit untersuchen wir das
allgemeine Problem der Optimierung (bzw Minimierung) einer konvexen
Funktion über einem kompakten konvexen Gebiet.

Im ersten Teil dieser Arbeit untersuchen wir einen einfachen iterativen
Algorithmus für diese Klasse von Optimierungsproblemen, basierend auf
der klassischen Methode von Frank & Wolfe. Der Algorithmus benützt
stützende Hyperebenen der zu optimierenden Funktion. In jeder Iteration
bewegen wir uns etwas in die Richtung eines Punktes, welcher die lineare
Funktion gegeben durch eine momentane stützende Ebene (annähernd)
minimiert, wobei das Minimum über das ursprüngliche Optimierungs-
Gebiet genommen wird. Im Gegensatz zu Gradienten-Abstiegs-Methoden
benötigt dieser Algorithmus keine Projektions-Schritte, um innerhalb des
zulässigen Gebiets zu bleiben.

Unser Ansatz verallgemeinert den Sparse-Greedy-Algorithmus von Frank
& Wolfe und seine neuere primal-duale Analysis durch Clarkson (sowie die
semi-definite Optimierungsmethode mittels kleinem Rang von Hazan) auf
beliebige kompakte konvexe Gebiete. Unser Konvergenz-Beweis garantiert
ε-kleinen Fehler (Dualitäts-Lücke) nach O

(
1
ε

)
Iterationen.

Die Methode ermöglicht es uns die Dünnbesetztheit (Sparsity) von ap-
proximativen Lösungen für `1-regularisierte konvexe Optimierungs-Prob-
leme (und für die Optimierung über dem Simplex), als Funktion der Appro-
ximations-Güte zu verstehen. Hier erhalten wir passende obere und untere
Schranken von Θ

(
1
ε

)
für die Dünnbesetztheit. Die gleichen Grenzen gelten

für semi-definite Optimierung unter beschränkter Spur, in Bezug auf den
Matrix-Rang. Hier zeigen wir dass Rang O

(
1
ε

)
ebenfalls optimal ist.

Für einige Klassen von geometrischen Optimierungsproblemen hat unser
Algorithmus eine einfache geometrische Interpretation, die auch als das
Konzept der Coresets bekannt ist. Hier untersuchen wir lineare Klassi-
fikatoren wie zum Beispiel Support Vector Machines (SVM), sowie all-
gemeine Entfernungsberechnungen zwischen konvexen Hüllen (oder Poly-

v

topen). Hier ermöglicht unser Framework die Dünnbesetztheit der SVM-
Lösungen zu verstehen, was in diesem Zusammenhang die Anzahl der
Support-Vektoren bedeutet, in Abhängigkeit der erforderlichen Approxi-
mations-Güte.

Unsere Methode ist ebenfalls direkt anwendbar für Matrix-Optimie-
rungs-Probleme, insbesondere für konvexe Optimierung unter beschränk-
ter Spur-Norm oder Max-Norm. Diese Klasse von Optimierungsproblemen
hat prominente Anwendungen in verschiedenen Bereichen, wie z.B. die
Rekonstruktion von Matrizen von kleinem Rang, oder die Komplettierung
von Matrizen zum Beispiel bei Empfehlungs-Systemen. Wir demonstrieren
die praktische Effizienz und Skalierbarkeit unseres Algorithmus für grosse
Matrix-Probleme, wie z.B. dem Netflix-Datenset. Für allgemeine konvexe
Optimierung unter beschränkter Matrix Max-Norm ist unser Algorithmus
nach unserem Wissen die erste Methode mit einer Konvergenz-Garantie.

Im letzten Teil dieser Arbeit betrachten wir konvexe Optimierungspro-
bleme die von einem zusätzlichen Parameter abhängen, wie z.B. einem
Zeit- oder Regularisierungs-Parameter. In einigen Anwendungen ist man
am gesamten Pfad der Lösung interessiert, in Abhängigkeit des zusätzlichen
Parameters.

Mittels eines Stetigkeits-Arguments, zusammen mit unserem einfachen
alternativen Konzept der Dualität für Optimierung über kompaktem Ge-
biet, erhalten wir die vollständigen Lösungspfade (für eine garantierte
Approximations-Güte) für solche Probleme. Wir zeigen, dass stückweise
konstante Lösungen existieren, und dass O

(
1
ε

)
viele solcher Lösungen ge-

nügen, um eine Approximations-Güte von ε entlang dem gesamten Pfad
zu garantieren, unabhängig von der Dimension des Problems. Unsere
Methode erlaubt das Berechnen von Lösungspfaden für z.B. SVMs, `1-
oder `∞-regularisierte Probleme, Spur-Norm-regularisierte Probleme wie
Matrix-Komplettierung, sowie robuste Hauptkomponentenanalyse (PCA).

vi

Acknowledgments

I would like to express my gratitude to my advisor Bernd Gärtner. Without
his continuous support, openness and patience, this thesis would never have
been written. I am also very grateful to Emo Welzl for letting me be part
of his research group, and for providing a working environment that could
not possibly be any better.

Furthermore I would like to thank Joachim Giesen for sparking my inter-
est in support vector machines, for the collaboration on path algorithms,
for inviting me to Saarbrücken and Jena, and for co-refereeing this thesis.

Many thanks to Elad Hazan and Joachim Buhmann for agreeing to be
co-examiners and for providing many helpful comments. For the research
collaboration, I would like to thank Soeren Laue and Marek Sulovský.

All members of the Gremo team made the time at ETH unforgettable:
Andrea Francke, Andrea Salow, Anna Gundert, Heidi Gebauer, Michael
Hoffmann, Robin Moser, Sebastian Stich, Timon Hertli, Uli Wagner, Vin-
cent Kusters, Yves Brise, as well as all former members whom I had the
pleasure to meet: Tobias Christ, Gabriel Nivasch, Marek Sulovský, Do-
minik Scheder, Floris Tschurr, Patrick Traxler, Andreas Razen, Philipp
Zumstein, Tibor Szabó, Robert Berke, Eva Schuberth, and Leo Rüst.

I am indebted to Heidi, Tobias and Sebastian for proof-reading parts
of this thesis, and to Robert Carnecky for the 3d visualization of con-
vex minimization. For helpful and inspiring discussions and support, I
would like to thank Andreas Krause, Arkadi Nemirovski, Christian Lorenz
Müller, Christoph Krautz, Clément Maria, Florian Jug, Gabriel Katz,
Mark Cieliebak, Michael Bürgisser, Michel Baes, Michel Verlinden, Pankaj
Agarwal, Simon Meier and Yves Ineichen.

For gently introducing me to some real-world machine learning appli-
cations, I am very grateful to Daniel Mahler, Hartmut Maennel and Lars
Engebretsen from Google, and to Francois Rüf from Netbreeze.

I want to thank all friends, WG-gspänli and climbing partners, to ETH
mensa for roughly a decade of calories, and to Minimum and Milandia for
all the nicely arranged colorful plastic holds.

Last but not least I want to thank my family for always being there, my
parents Theres and Walter, my brother Thomas; and Nadja for her love
and understanding.

vii

Contents

1. Introduction 1
1.1. Convex Optimization . 2
1.2. Sparsity and Generalizations Thereof 3
1.3. Regularization Methods . 5

1.3.1. Least Squares Regression 6
1.3.2. Two equivalent Variants of Regularization 7
1.3.3. Linear Classifiers and Support Vector Machines 8

1.4. Geometric Problems . 9
1.5. Solution Path Methods . 10
1.6. Notation and Terminology . 11

2. Convex Optimization without Projection Steps 13
2.1. Introduction . 13
2.2. The Poor Man’s Approach to Convex Optimization and Duality 17

2.2.1. Subgradients of a Convex Function 17
2.2.2. A Duality for Convex Optimization over Compact Domain 18

2.3. A Projection-Free First-Order Method for Convex Optimization . 20
2.3.1. The Algorithm . 20
2.3.2. Obtaining a Guaranteed Small Duality Gap 26
2.3.3. Choosing the Optimal Step-Size by Line-Search 28
2.3.4. The Curvature Measure of a Convex Function 29
2.3.5. Optimizing over Convex Hulls 32
2.3.6. Randomized Variants, and Stochastic Optimization 33
2.3.7. Relation to Classical Convex Optimization 34

3. Applications to Sparse and Low Rank Approximation 37
3.1. Sparse Approximation over the Simplex 37

3.1.1. Upper Bound: Sparse Greedy on the Simplex 39
3.1.2. Ω(1

ε
) Lower Bound on the Sparsity 41

3.2. Sparse Approximation with Bounded `1-Norm 43
3.2.1. Relation to Matching Pursuit and Basis Pursuit in Com-

pressed Sensing . 47
3.3. Optimization with Bounded `∞-Norm 48
3.4. Semidefinite Optimization with Bounded Trace 50

3.4.1. Low-Rank Semidefinite Optimization with Bounded Trace:
The O(1

ε
) Algorithm by Hazan 51

3.4.2. Solving Arbitrary SDPs 57

ix

Contents

3.4.3. Two Improved Variants of Algorithm 6 58
3.4.4. Ω(1

ε
) Lower Bound on the Rank 59

3.5. Semidefinite Optimization with `∞-Bounded Diagonal 61
3.6. Sparse Semidefinite Optimization 64
3.7. Submodular Optimization . 67

4. Optimization with the Nuclear and Max-Norm 69
4.1. Introduction . 69
4.2. The Nuclear Norm for Matrices 74

4.2.1. Weighted Nuclear Norm 76
4.3. The Max-Norm for Matrices . 77
4.4. Optimizing with Bounded Nuclear Norm and Max-Norm 79

4.4.1. Optimization with a Nuclear Norm Regularization 80
4.4.2. Optimization with a Max-Norm Regularization 82

4.5. Applications . 84
4.5.1. Robust Principal Component Analysis 84
4.5.2. Matrix Completion and Low Norm Matrix Factorizations 85
4.5.3. The Structure of the Resulting Eigenvalue Problems . . . 88
4.5.4. Relation to Simon Funk’s SVD Method 89

4.6. Experimental Results . 90
4.7. Conclusion . 92

5. A Geometric Optimization Method, and Coresets for Polytope Distance
and SVMs 95
5.1. Introduction . 96
5.2. Concepts and Definitions . 99

5.2.1. Polytope Distance . 99
5.2.2. Distance Between Two Polytopes 100
5.2.3. Relation to our General Setting of Convex Optimization

Over Bounded Domain . 101
5.3. Lower Bounds on the Sparsity of ε-Approximations 103

5.3.1. Distance of One Polytope from the Origin 103
5.3.2. Distance Between Two Polytopes 105

5.4. Upper Bounds: Algorithms to Construct Coresets 108
5.4.1. Gilbert’s Algorithm . 108
5.4.2. An Improved Version of Gilbert’s Algorithm for Two Poly-

topes . 112
5.4.3. Smaller Coresets by “Away” Steps 117

5.5. Applications to Machine Learning 118
5.5.1. Sparsity of SVM and Perceptron Solutions 119
5.5.2. Linear Time Training of SVMs and Perceptrons 121

6. Solution Paths for Convex Optimization Problems over Vectors 123
6.1. Introduction . 123

x

Contents

6.2. Approximation Quality Measures 126
6.3. Optimizing Parameterized Functions 128

6.3.1. Stability of ε-Approximations 129
6.3.2. Bounding the Path Complexity 130
6.3.3. Lower Bound . 131
6.3.4. Relative Approximation 133
6.3.5. The Weighted Sum of Two Convex Functions 133

6.4. Applications . 136
6.4.1. A Parameterized Polytope Distance Problem 136
6.4.2. The Regularization Path of Support Vector Machines . . 139
6.4.3. Multiple Kernel Learning 141
6.4.4. Minimum Enclosing Ball of Points under Linear Motion . 142

6.5. Experimental Results . 143
6.5.1. The Regularization Path of Support Vector Machines . . 143
6.5.2. Multiple Kernel Learning 145

6.6. Conclusion . 147

7. Solution Paths for Semidefinite Optimization 149
7.1. Introduction . 150
7.2. The Duality Gap . 153
7.3. Optimizing Parameterized Semidefinite Problems 154

7.3.1. Computing Approximate Solution Paths 157
7.3.2. Plugging-in Existing Methods for Semidefinite Optimization158

7.4. Applications . 159
7.4.1. Matrix Completion . 159
7.4.2. Solution Paths for the Weighted Nuclear Norm 160
7.4.3. Solution Paths for Robust PCA 160
7.4.4. Solution Paths for Sparse PCA and Maximum Variance

Unfolding . 161
7.5. Experimental Results . 162
7.6. Conclusion . 164

A. Optimization Basics 165
A.1. Constrained Optimization Problems over Vectors 165
A.2. Matrix Optimization Problems & Generalized Inequality Con-

straints . 166
A.3. Convex Optimization and the Wolfe Dual 167
A.4. Convex Optimization over the Simplex 169
A.5. Convex Optimization with `∞-Norm Regularization 171
A.6. Semidefinite Optimization with Bounded Trace 172
A.7. Semidefinite Optimization with `∞-Bounded Diagonal 175

Bibliography 179

xi

1
Introduction

With the immense growth of available digital data, algorithmic analysis
techniques for large datasets have become increasingly important. The effi-
ciency and scalability of many such techniques, in particular from the area
of machine learning, is often limited by the currently available methods to
solve the underlying convex optimization problems.

Machine Learning. In an informal sense, machine learning is the task
of building a model for some quantity (or function) that we would like to
predict, or in other words, learn. The model is usually built from a set of
“training” data for which the corresponding quantity of interest is known.
Later, the obtained model is used to predict on new or unknown data,
where we will then evaluate the performance of the obtained model. So
far, this task description strikingly resembles classical regression, which is
not a coincidence.

Concrete practical examples of such machine learning questions include
classifying handwritten characters, reconstructing radio signals from very
noisy sources, detecting a disease from MRI brain images, recommending
movies or other products depending on personal ratings given to other
items, ranking websites in a search engine based on their text content,
modeling the terrain from the data from the sensor of an autonomous car,
and predicting climate parameters or stock prices based on historical data,
as well as many other applications.

1

2 Introduction

1.1. Convex Optimization

The first part of this thesis addresses the general topic of convex opti-
mization over bounded domains. Such convex optimization problems have
applications in a very large variety of different areas, such as signal pro-
cessing, computational biology, control theory, combinatorial optimization,
communications and networking, statistics, finance, data mining, and —
last but not least — in machine learning.

In Chapter 2, we consider a simple first-order1 method for minimizing a
convex objective function over a bounded convex domain. The algorithm
is a generalization of an existing method originally proposed by Frank
& Wolfe [FW56]. In contrast to gradient descent, our method does not
need any projection steps in order to stay inside the optimization domain.
Instead, in each iteration, we solve a linear optimization problem over
the same domain. More precisely, the algorithm in each iteration moves
towards an approximate minimizer of a linear supporting hyperplane at the
current point, where the minimum is taken over the original optimization
domain. Our analysis generalizes the convergence analysis of [Cla10] for
optimization over the unit simplex to the more general setting of arbitrary
convex optimization domains.

Furthermore, we suggest to use a very simple alternative duality con-
cept for optimizing over bounded domain, which will allow us to efficiently
compute certificates for the approximation quality of any candidate solu-
tion. The concept will later also allow us to track approximate solution
paths to convex optimization problems that change over time, i.e. are pa-
rameterized by a single additional parameter. This solution path idea will
be explained in the last two Chapters 6 and 7.

Consequences and Applications. One of the main interesting conse-
quences of the described optimization approach is that the obtained ap-
proximate solutions during the run of the algorithm always have a “sparse”
representation. This property will be studied for several applications in
this thesis, and is also a very desirable property in many applications, in
particular for regularized optimization methods.

1Here the term “first-order” refers to optimization methods that only use knowledge
obtained from the first derivatives of the objective function (e.g. the gradient), or
in other words do not use any information from second or higher derivatives.

Sparsity and Generalizations Thereof 3

1.2. Sparsity and Generalizations Thereof

Suppose we are given a convex optimization problem, namely that we need
to minimize a convex function over Rn. In many practical situations, we
would not only like to have any (approximate) solution, but we want a
solution which has the additional property that it is also sparse, or in
other words contains just few non-zero coordinates, say just k < n many
of these.

Unfortunately, the additional requirement of sparsity immediately turns
the original convex problem (for which efficient algorithms are known)
into a very hard combinatorial problem. Solving it would require us to try
all possible patterns of

(
n
k

)
non-zeros in a brute-force way, requiring time

exponential in k. Also note that the set of sparse vectors (at most k many
non-zero coordinates) is not a convex set anymore.

Convex Relaxations by Using the `1-Norm. To allow for more efficient
convex optimization approaches, we need the domain to be a convex set.
In the literature, a widely successful approach has been to replace the
requirement of sparsity by optimizing over the `1-ball instead. The `1-
ball is the set of all vectors in Rn, for which the absolute values of the
coordinates sum up to at most one (this quantity is known as the `1-
norm). Also, it is not hard to see that the `1-ball is exactly the convex
hull of the “sparsest possible” vectors, namely the standard basis vectors
(and their negatives), i.e. the vectors with only one non-zero coordinate.

A Geometric Intuition. As one attempt to explain the usefulness of the
`1-ball as a domain for obtaining sparse solutions, a simple geometric fact
comes into play. It has been known for a very long time that for optimizing
any linear function cTx over the `1-ball, there will always be a vertex of
the ball where the optimum value is obtained. In other words there will
always be an optimal solution of the best possible sparsity.

This fact has been widely cited as the motivation to apply the very
same `1-relaxation trick as described above, also for the case of non-linear
convex optimization problems over Rn, when sparse solutions are desired.
Intuitively, the hope is that also for these more general functions, optimiz-
ing over the `1-ball would “often” return sparse solutions. More formally,
one can show that the `1-norm is the convex function that best approxi-
mates the sparsity.

4 Introduction

Sparsity as a Function of the Approximation Quality. In this thesis, we
can quantify this sparsity more precisely, by studying its dependency on
the desired approximation quality. We say that a point is an ε-approximate
solution to the optimization problem if its value is at least ε-close to the
unknown true optimal value.

We show that if an approximation quality of ε > 0 is required, then the
very simple greedy algorithm that we described above will always provide
sparse solutions of only O

(
1
ε

)
non-zero entries, if the optimization domain

is the `1-ball. The analysis will follow analogously to the result of [Cla10]
for the unit simplex. Also, we provide an asymptotically matching lower
bound, that for some natural convex function, at least Ω

(
1
ε

)
non-zero

entries are strictly necessary for any ε-approximate solution.
This means we can characterize the sparsity as a function of the ap-

proximation quality. In other words, we have translated the fact that
every linear optimization problem has a 1-sparse solution, to arbitrary
non-linear convex optimization problems, where we obtain O

(
1
ε

)
-sparse

approximate solutions. This is particularly remarkable because we are not
making any assumptions about the sparsity of the true optimal solution,
which might be completely dense for example. Our approach is not limited
to the domain being the `1-ball or the unit simplex, but in fact works on
every bounded convex set, which is useful as follows:

Generalizing Sparsity to Description Complexity. Our generalized sparse
greedy optimization approach for arbitrary bounded convex domains will
also allow us to slightly generalize the concept of sparse solutions. For the
convex hull of arbitrary elements of some vector space, it is easy to see
that every linear function obtains its minimum at a vertex, or in other
words one of the original “atomic” elements.

This implies that the algorithm will only ever use elements from the ini-
tial “atoms” as the step direction in each iteration. In other words it will
obtain an ε-approximate solution which is a convex combination (there-
fore a weighted sum) of just O

(
1
ε

)
many of the original atomic elements.

Alternatively we say that each obtained approximate solution has a low
description complexity, in terms of the elements defining the convex hull,
which is our optimization domain. This idea is also closely related to the
recent concept of structured sparsity, which refers to the same idea of mea-
suring the complexity of an element in terms of e.g. how many atomic
elements of some defined structure are needed to represent the element of
consideration.

There are many interesting applications building upon such convex com-

Regularization Methods 5

binations of various objects. One prominent example is given by the sym-
metric rank-1 matrices of unit trace, whose convex hull is known to be the
set of all positive semidefinite matrices of bounded trace. In this example,
we will recover the approach of Hazan [Haz08] for semidefinite optimiza-
tion, and obtain solutions of rank O

(
1
ε

)
. This particular class of opti-

mization problems has many prominent examples e.g. in dimensionality
reduction, low-rank recovery, or recommender systems, as we will discuss
in more details in Chapter 4, where we will show how the algorithm can be
used to solve arbitrary nuclear norm or max-norm constrained optimiza-
tion problems over matrices.

Coresets. The coreset approach originally proposed in computational ge-
ometry is another name for the same concept of sparse solutions for the
case of point set problems. Clarkson [Cla10] has already translated this
concept to convex optimization over the unit simplex. Here we extend this
concept also to convex optimization over bounded domains in arbitrary
vector spaces.

1.3. Regularization Methods

In many real world applications, the available data is not perfect, but
contains small errors, additional noise, or other kinds of corruptions. This
issue has only increased with the advancement of technology and the grow-
ing amount of available data of all kinds, and proposes a significant chal-
lenge for all methods to analyze and/or further process such data. Reg-
ularization is widely used as a way to make existing techniques robust to
noise or corruptions in the data, and has seen many successful applications.
Stephen Boyd and Emmanuel Candes, two of the leading researchers in this
area, are referring to `1-regularized optimization methods as the “least-
squares approach” of the 21st century, because of the simplicity and wide
applicability of such techniques.

One is probably tempted to think that in order to successfully attack
machine learning tasks (such as regression over noisy data), much more
complex models would have to be used than for classical regression, say.
However, the idea of regularization is in a sense exactly the opposite,
namely that a model of small complexity should be used instead.

An Example. Here we will briefly introduce the regularization idea for a
concrete example, for two different methods of data analysis and machine

6 Introduction

learning. Suppose that we are given a set of m holiday pictures. We can
represent each such digital image as a point xi ∈ Rn, being the large vector
consisting of the numerical values (or colors) of each pixel of the image,
stored one after each other. In other words x1, . . . , xm ∈ Rn are the points
representing the m pictures, and n is the number of pixels of our digital
camera.

1.3.1. Least Squares Regression

We assume that for each holiday image xi, 1 ≤ i ≤ m, we are also given a
numerical value yi describing how much we like that particular picture (say
on a scale from 1 to 5). We would like to “learn” or “fit” a linear function
to this data, so that we can later apply this function to a set of arbitrary
images (e.g. from Google image search), with the hope to automatically
identify the best suitable future holiday destination for our taste.

Formally, we now search for a linear function (described by a vector
ω ∈ Rn) that minimizes the squared error

L(ω) :=

m∑
i=1

(xTi ω − yi)2 = ‖Aω − y‖22 .

Here A ∈ Rm×n is the matrix that contains all our m datapoints xTi as its
rows, and y ∈ Rm is the vector consisting of the values yi that we would
like to approximate.

Now the convex optimization problem minω∈Rn L(ω) can definitely be
solved efficiently. However, most solutions will very likely be totally mean-
ingless, because the number of variables n is much higher than the number
of data points (m) that we have. In other words, since the system is ex-
tremely under-determined, we will definitely suffer from the “curse of too
many parameters”. Changing only a single pixel in one of our holiday
pictures will likely result in a totally different solution vector ω.

Here, regularization comes into play. The idea is that if there is any
meaningful solution (or model) ω to our problem at all, then that solution
should be of small complexity. The same paradigm is known as Occam’s
razor, that if there are several explanations for some phenomenon, then the
simplest one should be preferred. In our case, we will simply measure the
complexity of each model ω by its `1-norm. Instead of solving the original
unconstrained optimization version minω∈Rn L(ω), we will now restrict to
ω being of small complexity, by constraining on a suitably scaled version

Regularization Methods 7

of the `1-ball, or formally

min
ω∈Rn
‖ω‖1≤t

L(ω) . (1.1)

This formulation is called the `1-regularized version of the original (uncon-
strained) least squares problem. Solutions to this problem tend to be much
more meaningful for almost all applications where the available data is sub-
ject to noise, or systems that have a very large number of free parameters.
The question of what “suitable” means for the so called regularization
parameter t will be studied in Chapters 6 and 7 in more details.

Applying our simple greedy convex optimization procedure to `1-regu-
larized least squares, we will obtain ε-approximate solutions ω which are
additionally sparse, i.e. have O

(
1
ε

)
non-zero coordinates, which will be

explained in Chapter 2.

1.3.2. Two equivalent Variants of Regularization

As a small technical remark, we note that there are two equivalent vari-
ants of adding regularization to a given original optimization problem
minω∈Rn L(ω). Here we assume L(ω) is an arbitrary convex objective func-
tion that we would like to optimize. If the model complexity of any ω is
measured by a convex function R(ω), then the following two formulations
are equivalent. In machine learning terms, the function R(.) is usually
called the regularization term, while L(.) is called the loss function. The
constrained variant of the regularized problem is given by

min
ω∈Rn
R(ω)≤t

L(ω) . (1.2)

The analogous trade-off version, for some trade-off parameter λ > 0 is
given by

min
ω∈Rn

L(ω) + λR(ω) . (1.3)

The two parameters t and λ are in a direct correspondence. For choice
of λ > 0 together with some optimal solution ω(λ) to the trade-off vari-
ant (1.3), setting t(λ) := R(ω(λ)) in the constrained variant (1.2) will result
in the same objective value L(ω(λ)) for the optimum of (1.2). On the other
hand, formulation (1.3) is also known as the Lagrangian version of (1.2).
For any fixed t, there is always some choice of λ = λ(t) such that the op-
timum of (1.3) has the same loss value L(ω(t)) as an optimal solution ω(t)

to (1.2).

8 Introduction

This direct correspondence between the solutions to the two problem
variants is the reason that both variants are used interchangeably in most
applications of regularization methods. The following short section on
linear classifiers is an example where it is more common to work with the
trade-off variant (1.3).

1.3.3. Linear Classifiers and Support Vector Machines

As a second example, we would like to present linear classifiers. In the same
setting as for the holiday pictures x1, . . . , xm ∈ Rn as given in the above
setting, we now consider classification instead of regression. This means
that each of the pictures xi ∈ Rn comes together with a label yi ∈ ±1. We
think of this label yi being +1 if the picture xi contains the face of some
person, and yi = −1 otherwise. We would like to find a linear classifier
for such images, or in other words we again search for a linear function
ωTx determined by ω ∈ Rn, such that hopefully ωTxi > 0 for pictures xi
containing faces, and ωTxi < 0 otherwise. This approach is widely known
as the linear Perceptron.

Regularization and Support Vector Machines. It turns out that instead
of just solving the above constraints for some optimal ω, a much better and
more robust classifier ωTx is obtained by adding a regularization on the
complexity of ω. Here, by a geometric interpretation that we will study in
more details in Chapter 5, the effect of the regularization will be that one
obtains a linear function that separates the datapoints not just in some
way, but with the best possible margin of separation. This type of large
margin linear classifier is called the support vector machine (SVM).

The standard optimization problem for the linear SVM is given by

min
ω∈Rn

1

m

m∑
i=1

(
1− yiωTxi

)+
+ λ ‖ω‖22

Here the notation (.)+ returns the positive part of its argument, meaning
that (s)+ is equal to s for s ≥ 0, and zero otherwise. The interpretation of

the loss-term L(ω) := 1
m

∑m
i=1

(
1− yiωTxi

)+
is that all points which are

on their correct side of the hyperplane (given by ωTx = 0) and are at least
some distance away from the plane, i.e. yiω

Txi > 1, will not contribute
to the loss L(ω). All other points that are too close to the hyperplane —
or do lie on the wrong side corresponding to the opposite label — will be
punished by the term L(ω).

Geometric Problems 9

For linear classifiers, the effect of the above regularization term ‖ω‖2 on
the resulting solution ω is well studied, and is equivalent to choosing the
separating hyperplane ω of the largest possible separation margin. It can
be shown this particular hyperplane indeed results in the best expected
prediction accuracy on unknown “test” data, where we only have to assume
that the test data is drawn from the same distribution as the “training”
points (from which we have obtained the hyperplane). Results of this
type are often proven by using the concept of Rademacher complexity, see
e.g. [STC04].

Also in this completely different optimization approach as compared
to our first example of `1-regularized regression, it turns out that the
regularization idea (here by constraining ‖ω‖2 as compared to ‖ω‖1), is an
extremely powerful tool in practice. For classification tasks, SVMs have
become the basic tool of choice in most applications.

The idea of adding regularization to linear classifiers — and thereby
also enabling its application to “noisy” point sets that are not perfectly
linearly separable — was originally proposed by [CV95], and was awarded
the ACM Paris Kanellakis Theory and Practice Award in 2008.

Sparsity and the Number of Support Vectors. Using optimization dual-
ity, it is not hard to see that every meaningful hyperplane for an SVM can
be expressed as a convex combination of the original datapoints. Applying
our simple greedy convex optimization procedure to SVMs, we will obtain
coresets (small sets of support vectors) of size O

(
1
ε

)
, see Chapter 5. We

also provide examples showing that this is best possible up to a constant
factor. This means we can understand the number of support vectors as a
function of the approximation quality ε.

1.4. Geometric Problems

In Chapter 5, we will study the geometric interpretation of the general
convex optimization technique described above, for the case of computing
distances between convex hulls (or polytopes). This problem also appears
naturally in collision detection for geometric objects in physical simulations
or computer games.

However, here we will focus mostly on applications to linear classifiers for
machine learning applications, and in particular support vector machines
(SVM) and perceptrons. As mentioned above, our method translates the
coreset concept to these problems, and allows us to understand the sparsity

10 Introduction

of SVM solutions, here being the number of support vectors.

1.5. Solution Path Methods

In the two last Chapters 6 and 7, we will study convex optimization prob-
lems which are parameterized by a single additional parameter, as for
example a time or regularization parameter.

A continuity argument together with our simple proposed concept of
optimization duality for compact domains will allow us to study solution
paths (of some guaranteed approximation quality) for such problems. We
show that piecewise constant solutions can be obtained, and that O

(
1
ε

)
many such solutions are enough in order to guarantee approximation qual-
ity ε along the entire path, independent of the dimension of the problem.

The entire path of solutions to a parameterized problem is interesting
in many application areas, in particular for regularization methods as de-
scribed above. Here the parameter of interest is the regularization param-
eter t in (1.2), or λ in (1.3), and one would like to study the performance
of the solutions (such as e.g. the prediction quality on a separate set of
test data) for the continuous path of the solution, as the regularization
parameter changes. Other applications of such continuation or homotopy
methods can be found e.g. in control theory.

Notation and Terminology 11

1.6. Notation and Terminology

Convexity. A subset D of some vector space is called convex, if for any
choice of two points a, b ∈ D, the line segment

[a, b] :=
{
λa+ (1− λ)b

∣∣ 0 ≤ λ ≤ 1
}
⊆ D

is also contained in D. A real-valued function D → R is called convex, if

f
(
λa+ (1− λ)b

)
≤ λf(a) + (1− λ)f(b) ∀a, b ∈ D, 0 ≤ λ ≤ 1

or in other words the line segment connecting the function values at a and
b must lie above the graph of the function f .

Spaces and Norms. Consider a vector space X equipped with an inner
product 〈., .〉. As the most prominent example of such a space, the reader
might always think of the standard n-dimensional Euclidean space X = Rn
with 〈x, y〉 = xT y being the standard scalar product.

For any norm ‖.‖ on X , the corresponding dual norm is defined by

‖x‖∗ := sup
y∈X ,‖y‖≤1

〈y, x〉 .

Vectors. For a vector x ∈ Rn, we write x ≥ 0 if and only if xi ≥ 0 ∀i holds
coordinate-wise. The sparsity, or cardinality, of x ∈ Rn, also written as
card(x), is the number of non-zero coordinates xi. The `1-norm of a vector
is defined as ‖x‖1 =

∑n
i=1 |xi|. The standard Euclidean norm is given by

‖x‖2 =
√∑n

i=1 x
2
i , and the max-norm is defined as ‖x‖∞ = maxni=1 |xi|.

Observe that ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1.

Matrices. For real matrices in Rm×n, the standard inner product is de-
fined as A • B := Tr(ATB), and the (squared) Frobenius matrix norm is

given by ‖A‖2Fro := A•A, the sum of all squared entries in the matrix. We
will use of the fact that the inner product is symmetric, i.e. A•B = B •A,
which equivalently means that Tr(ATB) = Tr(BTA).

We will sometimes write Ai: for the i-th row of a matrix A ∈ Rm×n, and
A:j for the j-th column.

Sn×n is the set of symmetric n × n matrices. We write λmax(A) for
the largest eigenvalue of a matrix A ∈ Sn×n, and λmin(A) for the smallest
eigenvalue respectively. A is called positive semidefinite (PSD), written as
A � 0, iff vTAv ≥ 0 ∀v ∈ Rn. We observe that vTAv = A • vvT .

2
Convex Optimization

without Projection Steps

In this chapter, we study the general problem of minimizing a convex
function over a compact convex domain. We will investigate a simple
iterative approximation algorithm that does not need projection steps in
order to stay inside the optimization domain.

2.1. Introduction

Motivation. For the performance of large scale approximation algorithms
for convex optimization, the trade-off between the number of iterations on
one hand, and the computational cost per iteration on the other hand, is of
crucial importance. The lower complexity per iteration is among the main
reasons why first-order methods (i.e., methods using only information from
the first derivative of the objective function), as for example stochastic
gradient descent, are currently used much more widely and successfully
in many machine learning applications — despite the fact that they often
need a larger number of iterations than for example second-order methods.

Classical gradient descent optimization techniques usually require a pro-
jection step in each iteration, in order to get back to the feasible region.
For a variety of applications, this is a non-trivial and costly step. One

13

14 Convex Optimization without Projection Steps

prominent example is semidefinite optimization, where the projection of
an arbitrary symmetric matrix back to the PSD matrices requires the com-
putation of a complete eigenvalue-decomposition.

Here we study a simple first-order approach that does not need any
projection steps, and is applicable to any convex optimization problem
over a compact convex domain. The algorithm is a generalization of an
existing method originally proposed by Frank & Wolfe [FW56], which was
recently extended and analyzed in the seminal paper of Clarkson [Cla10]
for optimization over the unit simplex.

Instead of a projection, the primitive operation of the optimizer here is
to minimize a linear approximation to the function over the same (com-
pact) optimization domain. Any (approximate) minimizer of this simpler
linearized problem is then chosen as the next step-direction. Because all
such candidates are always feasible for the original problem, the algorithm
will automatically stay in our convex feasible region. The analysis will
show that the number of steps needed is roughly identical to classical gra-
dient descent schemes, meaning that O

(
1
ε

)
steps suffice in order to obtain

an approximation quality of ε > 0.
The main question about the efficiency per iteration of our algorithm,

compared to a classical gradient descent step, can not be answered gen-
erally in favor of one or the other. Whether a projection or a linearized
problem is computationally cheaper will crucially depend on the shape
and the representation of the feasible region. Interestingly, if we consider
convex optimization over the Euclidean ‖.‖2-ball, the two approaches fully
coincide, i.e., we exactly recover classical gradient descent. However there
are several classes of optimization problems where the linearization ap-
proach we present here is definitely very attractive, and leads to faster
and simpler algorithms. This includes for example `1-regularized prob-
lems, which we discuss in Sections 3.1 and 3.2, as well as semidefinite
optimization under bounded trace, as studied by [Haz08], see Section 3.4.

Sparsity and Low-Rank. For these mentioned specific classes of convex
optimization problems, we will in Chapter 3 additionally demonstrate that
our algorithm leads to (optimally) sparse or low-rank solutions. This prop-
erty is a crucial side-effect that can usually not be achieved by classical
optimization techniques, and corresponds to the coreset concept known
from computational geometry, see also Chapter 5. More precisely, we
show matching upper and lower bounds of Θ

(
1
ε

)
for the sparsity of solu-

tions to general `1-regularized problems, and also for optimizing over the
simplex, if the required approximation quality is ε. For matrix optimiza-

Introduction 15

tion, an analogous statement will hold for the rank in case of nuclear norm
regularized problems.

Applications. Applications of the first mentioned class of `1-regularized
problems do include many machine learning algorithms ranging from sup-
port vector machines (SVMs) to boosting and multiple kernel learning,
as well as `2-support vector regression (SVR), mean-variance analysis in
portfolio selection [Mar52], the smallest enclosing ball problem [BC07],
`1-regularized least squares (also known as basis pursuit de-noising in
compressed sensing), the Lasso [Tib96], and `1-regularized logistic re-
gression [KKB07] as well as walking of artificial dogs over rough ter-
rain [KBP+10].

The second mentioned class of matrix problems, that is, optimizing over
semidefinite matrices with bounded trace, has applications in low-rank
recovery [FHB01, CR09, CT10], dimensionality reduction, matrix factor-
ization and completion problems, as well as general semidefinite programs
(SDPs). Further applications to nuclear norm and max-norm optimiza-
tion, such as sparse/robust PCA will also be discussed in Chapter 4.

History and Related Work. The class of first-order optimization methods
in the spirit of Frank and Wolfe [FW56] has a rich history in the literature.
Although the focus of the original paper was on quadratic programming, its
last section [FW56, Section 6] already introduces the general algorithm for
minimizing convex functions using the above mentioned linearization idea,
when the optimization domain is given by linear inequality constraints. In
this case, each intermediate step consists of solving a linear program. The
given convergence guarantee bounds the primal error, and assumes that
all internal problems are solved exactly.

Later [DH78] has generalized the same method to arbitrary convex do-
mains, and improved the analysis to also work when the internal sub-
problems are only solved approximately, see also [Dun80]. Patriksson
in [Pat93, Pat98] then revisited the general optimization paradigm, in-
vestigated several interesting classes of convex domains, and coined the
term “cost approximation” for this type of algorithms. More recently,
[Zha03] considered optimization over convex hulls, and studies the crucial
concept of sparsity of the resulting approximate solutions. However, this
proposed algorithm does not use linear subproblems.

The most recent work of Clarkson [Cla10] provides a good overview of
the existing lines of research, and investigates the sparsity solutions when
the optimization domain is the unit simplex, and establishing the con-

16 Convex Optimization without Projection Steps

nection to coreset methods from computational geometry. Furthermore,
[Cla10] was the first to introduce the stronger notion of convergence in
primal-dual error for this class of problems, and relating this notion of
duality gap to Wolfe duality.

Our Contributions. The character of this chapter mostly lies in review-
ing, re-interpreting and generalizing the existing approach given by [Cla10],
[Haz08] and the earlier papers by [Zha03, DH78, FW56], who do deserve
credit for the analysis techniques. Our contribution here is to transfer
these methods to the more general case of convex optimization over arbi-
trary bounded convex subsets of a vector space, while providing stronger
primal-dual convergence guarantees. To do so, we propose a very simple al-
ternative concept of optimization duality, which will allow us to generalize
the stronger primal-dual convergence analysis which [Cla10] has provided
for the the simplex case, to optimization over arbitrary convex domains.
So far, no such guarantees on the duality gap were known in the litera-
ture for the Frank-Wolfe-type algorithms [FW56], except when optimizing
over the simplex. Furthermore, we generalize Clarkson’s analysis [Cla10]
to work when only approximate linear internal optimizers are used, and to
arbitrary starting points. Also, we study the sparsity of solutions in more
detail, obtaining upper and lower bounds for the sparsity of approximate
solutions for a wider class of domains.

Our proposed notion of duality gives simple certificates for the current
approximation quality, which can be used for any optimization algorithm
for convex optimization problems over bounded domain, even in the case
of non-differentiable objective functions.

We demonstrate the broad applicability of our general technique to
several important classes of optimization problems, such as `1- and `∞-
regularized problems, as well as semidefinite optimization with uniformly
bounded diagonal, and sparse semidefinite optimization.

Later in Chapter 4 we will give a simple transformation in order to apply
the first-order optimization techniques we review here also to nuclear norm
and max-norm matrix optimization problems.

The Poor Man’s Approach to Convex Optimization and Duality 17

2.2. The Poor Man’s Approach to Convex
Optimization and Duality

The Idea of a Duality given by Supporting Hyperplanes. Suppose we
are given the task of minimizing a convex function f over a bounded convex
set D ⊂ Rn, and let us assume for the moment that f is continuously
differentiable.

Then for any point x ∈ D, it seems natural to consider the tangen-
tial “supporting” hyperplane to the graph of the function f at the point
(x, f(x)). Since the function f is convex, any such linear approximation
must lie below the graph of the function.

Using this linear approximation for each point x ∈ D, we define a dual
function value ω(x) as the minimum of the linear approximation to f at
point x, where the minimum is taken over the domain D. We note that
the point attaining this linear minimum also seems to be good direction
of improvement for our original minimization problem given by f , as seen
from the current point x. This idea will lead to the optimization algorithm
that we will discuss below.

As the entire graph of f lies above any such linear approximation, it is
easy to see that ω(x) ≤ f(y) holds for each pair x, y ∈ D. This fact is
called weak duality in the optimization literature.

This rather simple definition already completes the duality concept that
we will need in this thesis. We will provide a slightly more formal and
concise definition in the next subsection, which is useful also for the case
of non-differentiable convex functions. The reason we call this concept
a poor man’s duality is that we think it is considerably more direct and
intuitive for the setting here, when compared to classical Lagrange duality
or Wolfe duality, see e.g. [BV04].

2.2.1. Subgradients of a Convex Function

In the following, we will work over a general vector space X equipped with
an inner product 〈., .〉. As the most prominent example in our investiga-
tions, the reader might always think of the case X = Rn with 〈x, y〉 = xT y
being the standard Euclidean scalar product.

We consider general convex optimization problems given by a convex

18 Convex Optimization without Projection Steps

function f : X → R over a compact1 convex domain D ⊆ X , or formally

minimize
x∈D

f(x) . (2.1)

In order to develop both our algorithm and the notion of duality for
such convex optimization problems in the following, we need to formally
define the supporting hyperplanes at a given point x ∈ D. These planes
coincide exactly with the well-studied concept of subgradients of a convex
function.

For each point x ∈ D, the subdifferential at x is defined as the set
of normal vectors of the affine linear functions through (x, f(x)) that lie
below the function f . Formally

∂f(x) := {dx ∈ X | f(y) ≥ f(x) + 〈y − x, dx〉 ∀y ∈ D} . (2.2)

Any element dx ∈ ∂f(x) is called a subgradient to f at x. Note that for
each x, ∂f(x) is a closed convex set. Furthermore, if f is differentiable,
then the subdifferential consists of exactly one element for each x ∈ D,
namely ∂f(x) = {∇f(x)}, as explained e.g. in [Nem05, KZ05].

If we assume that f is convex and lower semicontinuous2 on D, then it
is known that ∂f(x) is non-empty, meaning that there exists at least one
subgradient dx for every point x ∈ D. For a more detailed investigation
of subgradients, we refer the reader to one of the works of e.g. [Roc97,
BV04, Nem05, KZ05, BL06].

2.2.2. A Duality for Convex Optimization over Compact
Domain

For a given point x ∈ D, and any choice of a subgradient dx ∈ ∂f(x), we
define a dual function value

ω(x, dx) := min
y∈D

f(x) + 〈y − x, dx〉 . (2.3)

In other words ω(x, dx) ∈ R is the minimum of the linear approximation
to f defined by the subgradient dx at the supporting point x, where the

1Here we call a set D ⊆ X compact if it is closed and bounded. See [KZ05] for more
details.

2The assumption that our objective function f is lower semicontinuous on D, is equiv-
alent to the fact that its epigraph — i.e. the set {(x, t) ∈ D × R | t ≥ f(x)} of all
points lying on or above the graph of the function — is closed, see also [KZ05,
Theorem 7.1.2].

The Poor Man’s Approach to Convex Optimization and Duality 19

minimum is taken over the domain D. This minimum is always attained,
since D is compact, and the linear function is continuous in y.

By the definition of the subgradient — as lying below the graph of the
function f — we readily attain the property of weak-duality, which is at
the core of the optimization approach we will study below.

Lemma 2.1 (Weak duality). For all pairs x, y ∈ D, it holds that

ω(x, dx) ≤ f(y)

Proof. Immediately from the definition of the dual ω(., .):

ω(x, dx) = minz∈D f(x) + 〈z − x, dx〉
≤ f(x) + 〈y − x, dx〉
≤ f(y) .

Here the last inequality is by the definition (2.2) of a subgradient.

Geometrically, this fact can be understood as that any function value
f(y), which is “part of” the graph of f , always lies higher than the mini-
mum over any linear approximation (given by dx) to f .

In the case that f is differentiable, there is only one possible choice for a
subgradient, namely dx = ∇f(x), and so we will then denote the (unique)
dual value for each x by

ω(x) := ω(x,∇f(x)) = min
y∈D

f(x) + 〈y − x,∇f(x)〉 . (2.4)

The Duality Gap as a Measure of Approximation Quality. The above
duality concept allows us to compute a very simple measure of approxi-
mation quality, for any candidate solution x ∈ D to problem (2.1). This
measure will be easy to compute even if the true optimum value f(x∗) is
unknown, which will very often be the case in practical applications. The
duality gap g(x, dx) at any point x ∈ D and any subgradient subgradient
dx ∈ ∂f(x) is defined as

g(x, dx) := f(x)− ω(x, dx) = max
y∈D
〈x− y, dx〉 , (2.5)

or in other words as the difference of the current function value f(x) to
the minimum value of the corresponding linearization at x, taken over the
domain D. The quantity g(x, dx) = f(x) − ω(x, dx) will be called the
duality gap at x, for the chosen dx.

20 Convex Optimization without Projection Steps

By the weak duality Lemma 2.1, we obtain that for any optimal solution
x∗ to problem (2.1), it holds that

g(x, dx) ≥ f(x)− f(x∗) ≥ 0 ∀x ∈ D, ∀dx ∈ ∂f(x) . (2.6)

Here the quantity f(x) − f(x∗) is what we call the primal error at point
x, which is usually impossible to compute due to x∗ being unknown. The
above inequality (2.6) now gives us that the duality gap — which is easy to
compute, given dx — is always an upper bound on the primal error. This
property makes the duality gap an extremely useful measure for example
as a stopping criterion in practical optimizers or heuristics.

We call a point x ∈ X an ε-approximation if g(x, dx) ≤ ε for some choice
of subgradient dx ∈ ∂f(x).

For the special case that f is differentiable, we will again use the simpler
notation g(x) for the (unique) duality gap for each x, i.e.

g(x) := g(x,∇f(x)) = max
y∈D
〈x− y,∇f(x)〉 .

Relation to Duality of Norms. In the special case when the optimization
domain D is given by the unit ball of some norm on the space X , we observe
the following:

Observation 2.2. For optimization over any domain D = {x ∈ X | ‖x‖ ≤ 1}
being the unit ball of some norm ‖.‖, the duality gap for the optimization
problem min

x∈D
f(x) is given by

g(x, dx) = ‖dx‖∗ + 〈x, dx〉 ,

where ‖.‖∗ is the dual norm of ‖.‖.

Proof. Directly by the definitions of the dual norm ‖x‖∗ = sup‖y‖≤1〈y, x〉,
and the duality gap g(x, dx) = maxy∈D 〈y,−dx〉+ 〈x, dx〉 as in (2.5).

2.3. A Projection-Free First-Order Method for
Convex Optimization

2.3.1. The Algorithm

In the following we will generalize the sparse greedy algorithm of [FW56]
and its analysis by [Cla10] to convex optimization over arbitrary compact

A Projection-Free First-Order Method for Convex Optimization 21

convex sets D ⊆ X of a vector space. More formally, we assume that the
space X is a Hilbert space, and consider problems of the form (2.1), i.e.,

minimize
x∈D

f(x) .

Here we suppose that the objective function f is differentiable over the
domain D, and that for any x ∈ D, we are given the gradient ∇f(x) via
an oracle.

The existing algorithms so far did only apply to convex optimization over
the simplex (or convex hulls in some cases) [Cla10], or over the spectahe-
dron of PSD matrices [Haz08], or then did not provide guarantees on the
duality gap. Inspired by the work of Hazan [Haz08], we can also relax the
requirement of exactly solving the linearized problem in each step, to just
computing approximations thereof, while keeping the same convergence
results. This allows for more efficient steps in many applications.

Also, our algorithm variant works for arbitrary starting points, without
needing to compute the best initial “starting vertex” of D as in [Cla10].

The Primal-Dual Idea. We are motivated by the geometric interpretation
of the “poor man’s” duality gap, as explained in the previous Section 2.2.
This duality gap is the maximum difference of the current value f(x), to
the linear approximation to f at the currently fixed point x, where the
linear maximum is taken over the domain D. This observation leads to
the algorithmic idea of directly using the current linear approximation
(over the convex domain D) to obtain a good direction for the next step,
automatically staying in the feasible region.

The general optimization method with its two precision variants is given
in Algorithm 1. For the approximate variant, the constant Cf > 0 is an
upper bound on the curvature of the objective function f , which we will
explain below in more details.

The Linearized Optimization Primitive. The internal “step direction”
procedure ExactLinear(c,D) used in Algorithm 1 is a method that min-
imizes the linear function 〈x, c〉 over the compact convex domain D. For-
mally it must return a point s ∈ D such that 〈s, c〉 = min

y∈D
〈y, c〉. In terms

of the smooth convex optimization literature, the vectors y that have neg-
ative scalar product with the gradient, i.e. 〈y,∇f(x)〉 < 0, are called
descent directions, see e.g. [BV04, Chapter 9]. The main difference to clas-
sical convex optimization is that we always choose descent steps staying in
the domain D, where traditional gradient descend techniques usually use

22 Convex Optimization without Projection Steps

Algorithm 1 Greedy on a Convex Set

Input: Convex function f , convex set D, target accuracy ε
Output: ε-approximate solution for problem (2.1)
Pick an arbitrary starting point x(0) ∈ D
for k = 0 . . .∞ do

Let α := 2
k+2

Compute s := ExactLinear
(
∇f(x(k)), D

)
{Solve the linearized primitive problem exactly}

—or—
Compute s := ApproxLinear

(
∇f(x(k)), D, αCf

)
{Approximate the linearized primitive problem}

Update x(k+1) := x(k) + α(s− x(k))
end for

x
s D

f(x)

Figure 2.1.: Visualization of a step of Algorithm 1, moving from the current
point x = x(k) towards a linear minimizer s ∈ D. Here the two-
dimensional domain D is part of the ground plane, and we plot the
function values vertically. Visualization by Robert Carnecky.

A Projection-Free First-Order Method for Convex Optimization 23

arbitrary directions and need to project back onto D after each step. We
will comment more on this analogy in Section 2.3.7.

In the alternative interpretation of our duality concept from Section 2.2,
the linearized sub-task means that we search for a point s that “realizes”
the current duality gap g(x), that is the distance to the linear approxima-
tion, as given in (2.5).

In the special case that the set D is given by an intersection of linear
constraints, this sub-task is exactly equivalent to linear programming, as
already observed by [FW56, Section 6]. However, for many other repre-
sentations of important specific feasible domains D, this internal primitive
operation is significantly easier to solve, as we will see in the later sections.

The alternative approximate variant of Algorithm 1 uses the procedure
ApproxLinear (c,D, ε′) as the internal “step-direction generator”. Anal-
ogously to the exact primitive, this procedure approximates the minimum
of the linear function 〈x, c〉 over the convex domain D, with additive error
ε′ > 0. Formally ApproxLinear (c,D, ε′) must return a point s ∈ D such
that 〈s, c〉 ≤ min

y∈D
〈y, c〉+ ε′. For several applications, this can be done sig-

nificantly more efficiently than the exact variant, see e.g. the applications
for semidefinite programming in Section 3.4.

The Curvature. Everything we need for the analysis of Algorithm 1 is
that the linear approximation to our (convex) function f at any point x
does not deviate from f by too much, when taken over the whole opti-
mization domain D.

The curvature constant Cf of a convex and differentiable function f :
Rn → R, with respect to the compact domain D is defined as.

Cf := sup
x,s∈D,
α∈[0,1],

y=x+α(s−x)

1
α2 (f(y)− f(x)− 〈y − x,∇f(x)〉) . (2.7)

A motivation to consider this quantity follows if we imagine our optimiza-
tion procedure at the current point x = x(k), and choosing the next iterate
as y = x(k+1) := x+α(s−x). Bounded Cf then means that the deviation
of f at y from the “best” linear prediction given by ∇f(x) is bounded,
where the acceptable deviation is weighted by the inverse of the squared
step-size α. For linear functions f for example, it holds that Cf = 0.

The defining term f(y)− f(x)− 〈y − x, dx〉 is also widely known as the
Bregman divergence defined by f . The quantity Cf turns out to be small
for many relevant applications, some of which we will discuss later, or see
also [Cla10].

24 Convex Optimization without Projection Steps

The assumption of bounded curvature Cf is indeed very similar to a
Lipschitz assumption on the gradient of f , see also the discussion in Sec-
tions 2.3.4 and 2.3.7. In the optimization literature, this property is some-
times also called Cf -strong smoothness.

It will not always be possible to compute the constant Cf exactly. How-
ever, for all algorithms in the following, and also their analysis, it is suf-
ficient to just use some upper bound on Cf . We will comment in some
more details on the curvature measure in Section 2.3.4.

Convergence. The following theorem shows that after O
(

1
ε

)
many it-

erations, Algorithm 1 obtains an ε-approximate solution. The analysis
essentially follows the approach of [Cla10], inspired by the earlier work
of [FW56, DH78, Pat93] and [Zha03]. Later, in Section 3.1.2, we will show
that this convergence rate is indeed best possible for this type of algorithm,
when considering optimization over the unit-simplex. More precisely, we
will show that the dependence of the sparsity on the approximation qual-
ity, as given by the algorithm here, is best possible up to a constant factor.
Analogously, for the case of semidefinite optimization with bounded trace,
we will prove in Section 3.4.4 that the obtained (low) rank of the approx-
imations given by this algorithm is optimal, for the given approximation
quality.

Theorem 2.3 (Primal Convergence). For each k ≥ 1, the iterate x(k) of the
exact variant of Algorithm 1 satisfies

f(x(k))− f(x∗) ≤ 4Cf
k + 2

,

where x∗ ∈ D is an optimal solution to problem (2.1). For the approximate
variant of Algorithm 1, it holds that

f(x(k))− f(x∗) ≤ 8Cf
k + 2

.

(In other words both algorithm variants deliver a solution of primal error
at most ε after O(1

ε) many iterations.)

The proof of the above theorem on the convergence-rate of the primal
error crucially depends on the following Lemma 2.4 on the improvement
in each iteration. We recall from Section 2.2 that the duality gap for
the general convex problem (2.1) over the domain D is given by g(x) =
max
s∈D
〈x− s,∇f(x)〉.

A Projection-Free First-Order Method for Convex Optimization 25

Lemma 2.4. For any step x(k+1) := x(k) +α(s− x(k)) with arbitrary step-
size α ∈ [0, 1], it holds that

f(x(k+1)) ≤ f(x(k))− αg(x(k)) + α2Cf

if s is given by s := ExactLinear (∇f(x), D).
If the approximate primitive s := ApproxLinear (∇f(x), D, αCf) is

used instead, then it holds that

f(x(k+1)) ≤ f(x(k))− αg(x(k)) + 2α2Cf .

Proof. We write x := x(k), y := x(k+1) = x + α(s − x), and dx := ∇f(x)
to simplify the notation, and first prove the second part of the lemma. We
use the definition of the curvature constant Cf of our convex function f ,
to obtain

f(y) = f(x+ α(s− x))
≤ f(x) + α〈s− x, dx〉+ α2Cf .

Now we use that the choice of s := ApproxLinear (dx, D, ε
′) is a good

“descent direction” on the linear approximation to f at x. Formally, we
are given a point s that satisfies 〈s, dx〉 ≤ min

y∈D
〈y, dx〉+ε′, or in other words

we have
〈s− x, dx〉 ≤ miny∈D〈y, dx〉 − 〈x, dx〉+ ε′

= −g(x, dx) + ε′ ,

from the definition (2.5) of the duality gap g(x) = g(x, dx). Altogether,
we obtain

f(y) ≤ f(x) + α(−g(x) + ε′) + α2Cf
= f(x)− αg(x) + 2α2Cf ,

the last equality following by our choice of ε′ = αCf . This proves the
lemma for the approximate case. The first claim for the exact linear prim-
itive ExactLinear() follows by the same proof for ε′ = 0.

Having Lemma 2.4 at hand, the proof of our above primal convergence
Theorem 2.3 now follows along the same idea as in [Cla10, Theorem 2.3]
or [Haz08, Theorem 1]. Note that a weaker variant of Lemma 2.4 was
already proven by [FW56].

Proof of Theorem 2.3. From Lemma 2.4 we know that for every step of the
exact variant of Algorithm 1, it holds that f(x(k+1)) ≤ f(x(k))−αg(x(k))+
α2Cf .

26 Convex Optimization without Projection Steps

Writing h(x) := f(x) − f(x∗) for the (unknown) primal error at any
point x, this implies that

h(x(k+1)) ≤ h(x(k))− αg(x(k)) + α2Cf
≤ h(x(k))− αh(x(k)) + α2Cf
= (1− α)h(x(k)) + α2Cf ,

(2.8)

where we have used weak duality h(x) ≤ g(x) as given by in (2.6). We will
now use induction over k in order to prove our claimed bound, i.e.,

h(x(k+1)) ≤ 4Cf
k + 1 + 2

k = 0 . . .∞ .

The base-case k = 0 follows from (2.8) applied for the first step of the
algorithm, using α = α(0) = 2

0+2 = 1.
Now considering k ≥ 1, the bound (2.8) gives us

h(x(k+1)) ≤ (1− α(k))h(x(k)) + α(k)2
Cf

= (1− 2
k+2)h(x(k)) + (2

k+2)2Cf

≤ (1− 2
k+2)

4Cf
k+2 + (2

k+2)2Cf ,

where in the last inequality we have used the induction hypothesis for x(k).
Simply rearranging the terms gives

h(x(k+1)) ≤ 4Cf
k+2 −

8Cf
(k+2)2 +

4Cf
(k+2)2

= 4Cf

(
1
k+2 − 1

(k+2)2

)
=

4Cf
k+2

k+2−1
k+2

≤ 4Cf
k+2

k+2
k+3

=
4Cf
k+3 ,

which is our claimed bound for k ≥ 1.
The analogous claim for Algorithm 1 using the approximate linear prim-

itive ApproxLinear() follows from the exactly same argument, by replac-
ing every occurrence of Cf in the proof here by 2Cf instead (compare to
Lemma 2.4 also).

2.3.2. Obtaining a Guaranteed Small Duality Gap

From the above Theorem 2.3 on the convergence of Algorithm 1, we have
obtained small primal error. However, the optimum value f(x∗) is un-
known in most practical applications, where we would prefer to have an

A Projection-Free First-Order Method for Convex Optimization 27

easily computable measure of the current approximation quality, for exam-
ple as a stopping criterion of our optimizer in the case that Cf is unknown.
The duality gap g(x) that we defined in Section 2.2 satisfies these require-
ments, and always upper bounds the primal error f(x)− f(x∗).

By a nice argument of Clarkson [Cla10, Theorem 2.3], the convergence
on the simplex optimization domain can be extended to obtain the stronger
property of guaranteed small duality gap g(x(k)) ≤ ε, after at most O(1

ε)
many iterations. This stronger convergence result was not yet known in
earlier papers of [FW56, DH78, Jon92, Pat93] and [Zha03]. Here we will
generalize the primal-dual convergence to arbitrary compact convex do-
mains. The proof of our theorem below again relies on Lemma 2.4.

Theorem 2.5 (Primal-Dual Convergence). Let K :=
⌈

4Cf
ε

⌉
. We run the

exact variant of Algorithm 1 for K iterations (recall that the step-sizes are
given by α(k) := 2

k+2 , 0 ≤ k ≤ K), and then continue for another K + 1

iterations, now with the fixed step-size α(k) := 2
K+2 for K ≤ k ≤ 2K + 1.

Then the algorithm has an iterate x(k̂), K ≤ k̂ ≤ 2K + 1, with duality
gap bounded by

g(x(k̂)) ≤ ε .
The same statement holds for the approximate variant of Algorithm 1,

when setting K :=
⌈

8Cf
ε

⌉
instead.

Proof. The proof follows the idea of [Cla10, Section 7].
By our previous Theorem 2.3 we already know that the primal error

satisfies h(x(K)) = f(x(K)) − f(x∗) ≤ 4Cf
K+2 after K iterations. In the

subsequent K+1 iterations, we will now suppose that g(x(k)) always stays

larger than
4Cf
K+2 . We will try to derive a contradiction to this assumption.

Putting the assumption g(x(k)) >
4Cf
K+2 into the step improvement bound

given by Lemma 2.4, we get that

f(x(k+1))− f(x(k)) ≤ −α(k)g(x(k)) + α(k)2
Cf

< −α(k) 4Cf
K+2 + α(k)2

Cf

holds for any step size α(k) ∈ (0, 1]. Now using the fixed step-size α(k) =
2

K+2 in the iterations k ≥ K of Algorithm 1, this reads as

f(x(k+1))− f(x(k)) < − 2
K+2

4Cf
K+2 + 4

(K+2)2Cf

= − 4Cf
(K+2)2

28 Convex Optimization without Projection Steps

Summing up over the additional steps, we obtain

f(x(2K+2))− f(x(K)) =
2K+1∑
k=K

f(x(k+1))− f(x(k))

< −(K + 2)
4Cf

(K+2)2 = − 4Cf
K+2 ,

which together with our known primal approximation error f(x(K)) −
f(x∗) ≤ 4Cf

K+2 would result in f(x(2K+2)) − f(x∗) < 0, a contradiction.

Therefore there must exist k̂, K ≤ k̂ ≤ 2K + 1, with g(x(k̂)) ≤ 4Cf
K+2 ≤ ε.

The analysis for the approximate variant of Algorithm 1 follows using
the analogous second bound from Lemma 2.4.

Following [Cla10, Theorem 2.3], one can also prove a similar primal-
dual convergence theorem for the line-search algorithm variant that uses
the optimal step-size in each iteration, as we will discuss in the next Sec-
tion 2.3.3. This is somewhat expected as the line-search algorithm in each
step is at least as good as the fixed step-size variant we consider here.

2.3.3. Choosing the Optimal Step-Size by Line-Search

Alternatively, instead of the fixed step-size α = 2
k+2 in Algorithm 1, one

can also find the optimal α ∈ [0, 1] by line-search. This will not improve
the theoretical convergence guarantee, but might still be considered in
practical applications if the best α is easy to compute. Experimentally, we
observed that line-search can improve the numerical stability in particular
if approximate step directions are used, which we will discuss e.g. for
semidefinite matrix completion problems in Section 4.5.

Formally, given the chosen direction s, we then search for the α of best
improvement in the objective function f , that is

α := arg min
α∈[0,1]

f
(
x(k) + α(s− x(k))

)
. (2.9)

The resulting modified version of Algorithm 1 is depicted again in Algo-
rithm 2, and was precisely analyzed in [Cla10] for the case of optimizing
over the simplex.

In many cases, we can solve this line-search analytically in a straight-
forward manner, by differentiating the above expression with respect to α:

Consider fα := f
(
x

(k+1)
(α)

)
= f

(
x(k) + α

(
s− x(k)

))
and compute

0
!
=

∂

∂α
fα =

〈
s− x(k),∇f

(
x

(k+1)
(α)

)〉
. (2.10)

A Projection-Free First-Order Method for Convex Optimization 29

Algorithm 2 Greedy on a Convex Set, using Line-Search

Input: Convex function f , convex set D, target accuracy ε
Output: ε-approximate solution for problem (3.1)
Pick an arbitrary starting point x(0) ∈ D
for k = 0 . . .∞ do

Compute s := ExactLinear
(
∇f(x(k)), D

)
—or—

Compute s := ApproxLinear
(
∇f(x(k)), D,

2Cf
k+2

)
Find the optimal step-size α := arg min

α∈[0,1]

f
(
x(k) + α(s− x(k))

)
Update x(k+1) := x(k) + α(s− x(k))

end for

If this equation can be solved for α, then the optimal such α can directly
be used as the step-size in Algorithm 1, and the convergence guarantee of
Theorem 2.3 still holds. This is because the improvement in each step will
be at least as large as if we were using the older (potentially sub-optimal)
fixed choice of α = 2

k+2 . Here we have assumed that α(k) ∈ [0, 1] always
holds, which can be done when using some caution, see also [Cla10].

Note that the line-search can also be used for the approximate variant
of Algorithm 1, where we keep the accuracy for the internal primitive
method ApproxLinear

(
∇f(x(k)), D, ε′

)
fixed to ε′ = αfixedCf =

2Cf
k+2 .

Theorem 2.3 then holds as as in the original case.

2.3.4. The Curvature Measure of a Convex Function

For the case of differentiable f over the space X = Rn, we recall the
definition of the curvature constant Cf with respect to the domainD ⊂ Rn,
as stated in (2.7),

Cf := sup
x,s∈D,
α∈[0,1],

y=x+α(s−x)

1
α2

(
f(y)− f(x)− (y − x)T∇f(x)

)
.

An overview of values of Cf for several classes of functions f over do-
mains that are related to the unit simplex can be found in [Cla10].

Asymptotic Curvature. As Algorithm 1 converges towards some optimal
solution x∗, it also makes sense to consider the asymptotic curvature C∗f ,

30 Convex Optimization without Projection Steps

defined as

C∗f := sup
s∈D,
α∈[0,1],

y=x∗+α(s−x∗)

1
α2

(
f(y)− f(x∗)− (y − x∗)T∇f(x∗)

)
. (2.11)

Clearly C∗f ≤ Cf . As described in [Cla10, Section 4.4], we expect that as
the algorithm converges towards x∗, also the improvement bound as given
by Lemma 2.4 should be determined by C∗f + o(1) instead of Cf , resulting
in a better convergence speed constant than given Theorem 2.3, at least for
large k. The class of strongly convex functions is an example for which the
convergence of the relevant constant towards C∗f is easy to see, since for
these functions, convergence in the function value also imlies convergence
in the domain, towards a unique point x∗, see e.g. [BV04, Section 9.1.2].

Relating the Curvature to the Hessian Matrix. Before we can compare
the assumption of bounded curvature Cf to a Lipschitz assumption on the
gradient of f , we will need to relate Cf to the Hessian matrix (matrix of
all second derivatives) of f .

Here the idea described in [Cla10, Section 4.1] is to make use of the
degree-2 Taylor-expansion of our function f at the fixed point x, as a
function of α, which is

f(x+ α(s− x)) = f(x) + α(s− x)T∇f(x) +
α2

2
(s− x)T∇2f(z)(s− x) ,

where z is a point on the line-segment [x, y] ⊆ D ⊂ Rd between the two
points x ∈ Rn and y = x+ α(s− x) ∈ Rn. To upper bound the curvature
measure, we can now directly plug in this expression for f(y) into the
above definition of Cf , obtaining

Cf ≤ sup
x,y∈D,

z∈[x,y]⊆D

1

2
(y − x)T∇2f(z)(y − x) . (2.12)

From this bound, it follows that Cf is upper bounded by the largest eigen-
value of the Hessian matrix of f , scaled with the domain’s Euclidean di-
ameter, or formally

Lemma 2.6. For any twice differentiable convex function f over a compact
convex domain D, it holds that

Cf ≤
1

2
diam(D)2 · sup

z∈D
λmax

(
∇2f(z)

)
.

A Projection-Free First-Order Method for Convex Optimization 31

Note that as f is convex, the Hessian matrix ∇2f(z) is positive semidef-
inite for all z, see e.g. [KZ05, Theorem 7.3.6].

Proof. Applying the Cauchy-Schwarz inequality to (2.12) for any x, y ∈ D
(as in the definition of Cf), we get

(y − x)T∇2f(z)(y − x) ≤ ‖y − x‖2
∥∥∇2f(z)(y − x)

∥∥
2

≤ ‖y − x‖22
∥∥∇2f(z)

∥∥
spec

≤ diam(D)2 · sup
z∈D

λmax

(
∇2f(z)

)
.

The middle inequality follows from the variational characterization of the

matrix spectral norm, i.e. ‖A‖spec := supx 6=0
‖Ax‖2
‖x‖2

. Finally, in the last

inequality we have used that by convexity of f , the Hessian matrix ∇2f(z)
is PSD, so that its spectral norm is its largest eigenvalue.

Note that in the case of D being the unit simplex (see also the following
Section 3.1), we have that diam(∆n) =

√
2, meaning the scaling factor

disappears, i.e. Cf ≤ sup
z∈∆n

λmax

(
∇2f(z)

)
.

Bounded Curvature vs. Lipschitz-Continuous Gradient. Our core as-
sumption on the given optimization problems is that that the curvature
Cf of the function is bounded over the domain. Equivalently, this means
that the function does not deviate from its linear approximation by too
much. Here we will explain that this assumption is in fact very close to the
natural assumption that the gradient ∇f is Lipschitz-continuous, which is
often assumed in classical convex optimization literature, where it is some-
times called Cf -strong smoothness, see e.g. [Nem05, KSST09] (or [d’A08]
if the gradient information is only approximate).

Lemma 2.7. Let f be a convex and twice differentiable function, and as-
sume that the gradient ∇f is Lipschitz-continuous over the domain D with
Lipschitz-constant L > 0. Then

Cf ≤
1

2
diam(D)2L .

Proof. Having ‖∇f(y)−∇f(x)‖2 ≤ L ‖y − x‖2 ∀x, y ∈ D by the Cauchy-

Schwarz inequality implies that (y − x)T (∇f(y) − ∇f(x)) ≤ L ‖y − x‖22,
so that

f(y) ≤ f(x) + (y − x)T∇f(x) +
L

2
‖y − x‖22 . (2.13)

32 Convex Optimization without Projection Steps

If f is twice differentiable, it can directly be seen that the above con-
dition implies that L · I � ∇2f(z) holds for the Hessian of f , that is
λmax

(
∇2f(z)

)
≤ L.

Together with our result from Lemma 2.6, the claim follows.

The above bound (2.13) which is implied by Lipschitz-continuous gra-
dient means that the function is not “curved” by more than L in some
sense, which is an interesting property. In fact this is exactly the opposite
inequality compared to the property of strong convexity, which is an as-
sumption on the function f that we do not impose here. Strong convexity
on a compact domain means that the function is always curved at least by
some constant (as our L). We just note that for strongly convex functions,
“accelerated” algorithms with an even faster convergence of 1

k2 (meaning
O(1√

ε
) steps) do exist [Nes04, Nes07a].

2.3.5. Optimizing over Convex Hulls

In the case that the optimization domain D is given as the convex hull of
a (finite or infinite) subset V ⊂ X , i.e.

D = conv(V) ,

then it is particularly easy to solve the linear optimization subproblems as
needed in our Algorithm 1. Recall that conv(V) is defined as the set of
all finite convex combinations

∑
i αivi for a finite subset {v1, . . . , vk} ⊆ V ,

while V can also be an infinite set.

Lemma 2.8 (Linear Optimization over Convex Hulls). Let D = conv(V) for
any subset V ⊂ X , and D compact. Then any linear function y 7→ 〈y, c〉
will attain its minimum and maximum over D at some “vertex” v ∈ V .

Proof. W.l.g. we will only show the case for the maximum. Let s ∈ D
be a point attaining the linear optimum 〈s, c〉 = maxy∈D〈y, c〉. Then

by definition of D, we have that s =
∑k
i=1 αivi, meaning that s is the

weighted average of some finite set of “vertices” v1, . . . , vk ∈ V , with αi ≥
0,
∑
i αi = 1. By linearity of the inner product,

〈s, c〉 =

〈
k∑
i=1

αivi, c

〉
=

k∑
i=1

αi〈vi, c〉 ,

and therefore we must have that 〈vi, c〉 ≥ 〈s, c〉 for at least one of the
indices i, meaning that vi ∈ V is also attaining the linear maximum.

A Projection-Free First-Order Method for Convex Optimization 33

In the following we will discuss several application where this simple
fact will be useful to solve the linearized subproblems ExactLinear()
more efficiently, as the set V is often much easier to describe than the full
compact domain D.

The setting of convex optimization over a convex hull in a vector space
was already studied by [Zha03]. There, each iteration of the optimizer
consists of greedily selecting the point (or “vertex”) of V which promises
best improvement. [Zha03] then gave a similar primal convergence guar-
antee as in our Theorem 2.3 (but no primal-dual convergence result on
general convex hulls was known so far, to the best of our knowledge). The
above Lemma 2.8 in a sense explains the relation to our linearized internal
problem. The main difference is that the algorithm of [Zha03] always eval-
uates the original non-linear function f at all vertices V , while our slightly
more general framework only relies on the linear subproblem, and allows
for arbitrary means to approximately solve the subproblem.

2.3.6. Randomized Variants, and Stochastic Optimization

For a variety of classes of our convex optimization problems, randomization
can help to solve the linearized subproblem more efficiently. This idea is
strongly related to online and stochastic optimization, see e.g. [Nes11], and
also the popular stochastic gradient descent (SGD) techniques [Bot10].

We can also apply such cheaper randomized steps in our described frame-
work, instead of deterministically solving the internal linear problem in
each iteration. Assumed that the user of our method is able to decompose
the linearized problem in some arbitrary way using randomization, and if
the randomization is such that the linearized problem will be solved “ac-
curately enough” with some probability p > 0 in each iteration, then our
convergence analysis still holds also in this probabilistic setting as follows:

Formally, we assume that we are given access to a randomized pro-
cedure RandomLinear (c,D, ε′), which returns a point s ∈ D such that
〈s, c〉 ≤ min

y∈D
〈y, c〉+ε′ with probability at least p > 0. In other words, with a

positive probability, RandomLinear() will behave like ApproxLinear().
In each iteration of the line-search variant of our algorithm (see Algo-
rithm 2), we will now use that randomized internal procedure instead. The
expected improvement given by a step towards s = RandomLinear() is
at least p times the amount given in Lemma 2.4. (Here we have used that in
the events of “failure” of RandomLinear(), the objective function value
will at least not become worse, due to the use of line-search).

In other words if we perform 1
p times more iterations than required

34 Convex Optimization without Projection Steps

for the deterministic Algorithm 1, then we have that the convergence by
Theorem 2.3 also holds for the randomized variant described here.

Stochastic Gradient Descent (SGD). A classical example is when the
linearized problem is given by simply finding the maximum over say n
coordinates, as we will e.g. see in the following Sections 3.1 and 3.2 for
optimizing over the simplex, or over bounded `1-norm. In this case, by
sampling uniformly at random, with probability 1

n we will pick the correct
coordinate, for which the step improvement is as in the deterministic Al-
gorithm 1. Therefore we have obtained the same convergence guarantee
as for the deterministic algorithm, but the necessary number of steps is
multiplied by n.

For unconstrained convex optimization, the convergence of SGD and
other related methods was analyzed e.g. in [Nes11] and also the earlier pa-
per [Nes07b, Section 6]. Also here, a comparable slow-down was observed
when using the cheaper randomized steps.

2.3.7. Relation to Classical Convex Optimization

Relation to Gradient Descent and Steepest Descent. The internal lin-
ear optimizer in our Algorithm 1 can also be interpreted in terms of descent
directions. Recall that all vectors y that have negative scalar product with
the current gradient, i.e. 〈y,∇f(x)〉 < 0, are called descent directions, see
e.g. [BV04, Chapter 9.4]. Also observe that 〈y,∇f(x)〉 is the directional
derivative of f in direction of y if y is of unit length. Our method there-
fore chooses the best descent direction over the entire domain D, where
the quality is measured as the best possible absolute improvement as sug-
gested by the linearization at the current point x. In any iteration, this
will crucially depend on the global shape of the domain D, even if the
actual step-size α(k) might be very small.

This crucially contrasts classical gradient descent techniques, which only
use local information to determine the step-directions, facing the risk of
walking out of the domain D and therefore requiring projection steps after
each iteration.

Relation to Inaccurate and Missing Gradient Information. The ability
of our Algorithm 1 to deal with only approximate internal linear optimizers
as in ApproxLinear() is also related to existing methods that assume
that gradient information is only available with noise, or in a stochastic or
sampling setting.

A Projection-Free First-Order Method for Convex Optimization 35

For the case of optimizing smooth convex functions, [d’A08] has used a
similar measure of error, namely that the linearization given by the “noisy”
version d̃x of the gradient ∇f(x) does not differ by more than say ε′ when
measured over the entire domain D, or formally∣∣∣〈y − z, d̃x〉 − 〈y − z,∇f(x)〉

∣∣∣ ≤ ε′ , ∀x, y, z ∈ D .

This assumption is similar, but stronger than the additive approximation
quality that we require in our above setting (we only need that the lin-
earized optimal values are within ε′). Also, the algorithm as well as the
analysis in [d’A08] are more complicated than the method proposed here,
due to the need of projections and proximal operators.

We have discussed the case where gradient information is available only
in a stochastic oracle (e.g. such that the gradient is obtained in expecta-
tion) in the above Subsection 2.3.6. For an overview of related randomized
methods in unconstrained convex optimization, we refer the reader to the
recent work by [Nes11], which also applies when the gradient itself is not
available and has to be estimated by oracle calls to the function alone.

If gradient information can be constructed in any way such that the
linearized problem ApproxLinear() can be solved to the desired additive
error, then our above analysis of Algorithm 1 will still hold.

Relation to Mirror Descent, Proximal Methods and Conjugate Func-
tions. Our proposed method is related to mirror descent as well as prox-
imal methods in convex optimization, but our approach is usually simpler.
The mirror descent technique originates from e.g. [BT03, BTN05]. For
a brief overview of proximal methods with applications to some of the
classes of sparse convex optimization problems as studied here, we refer
to [BJMO11, Section 3].

To investigate the connection, we write flin|x(y) := f(x) + 〈y−x, dx〉 for
the linearization given by the (sub)gradient dx = ∇f(x) at a fixed point
x ∈ D. A variant of mirror descent, see e.g. [BTN05, Haz11] is to find the
next iterate y as the point maximizing the Bregman divergence

f(y)− f(x)− 〈y − x, dx〉 = f(y)− flin|x(y) (2.14)

relative to the currently fixed old iterate x. This is the same task as maxi-
mizing the gap between the function f(y) and its linear approximation at x,
or equivalently we evaluate the conjugate function f∗(z) := sup

y∈D
〈y, z〉−f(y)

at z = dx. The definition of the conjugate dual is also known as Fenchel

36 Convex Optimization without Projection Steps

duality, see e.g. [BL06]. In [Nem05], the conjugate function is also called
the Legendre transformation.

However in our approach, the inner task ExactLinear(dx, D) as well as
ApproxLinear(dx, D, ε

′) is a simpler linear problem. Namely, we directly
minimize the linearization at the current point x, i.e. we maximize

− f(x)− 〈y − x, dx〉 = −flin|x(y) (2.15)

and then move towards an approximate maximizer y. In terms of Fenchel
duality, this simpler linear problem is the evaluation of the conjugate dual
of the characteristic function of our domain D, i.e.

1∗D(z) := sup
y∈X
〈y, z〉 − 1D(y) ,

where this function is evaluated at the current subgradient z = dx. The
characteristic function 1D : X → R of a set D ⊆ X is defined as 1D(y) = 0
for y ∈ D and 1D(y) =∞ otherwise.

Compared to our algorithm, mirror descent schemes require a “projec-
tion” step in each iteration, sometimes also called the proximal or mirror
operator. This refers to minimizing the linearization plus a strongly con-
vex prox-function that punishes the distance to the starting point. If the
squared Euclidean norm is used, the mirror operator corresponds to the
standard projection back onto the domain D. Our method uses no such
prox-function, and neither is the zero-function a strongly convex one, as
would be required for mirror descent to work. It is expected that the com-
putational cost per iteration of our method will in most application cases
be lower compared to mirror descent schemes.

For convex optimization over the simplex, which we will study in more
details in the following Section 3.1, [BT03] have proposed a mirror de-
scent algorithm, obtaining a convergence of f(x(k))− f(x∗) ≤

√
2 lnn L√

k
.

This however is worse than the convergence of our methods as given by
Theorem 2.3. Our convergence is independent of the dimension n, and
goes with 1

k instead of 1√
k

. Also the earlier paper by [BTMN01] only ob-

tained a convergence of O
(

1√
k

)
for the case of Lipschitz-continuous convex

functions over the simplex.
The NERML optimizer by [BTN05] is a variant of mirror descent that

memorizes several past linearizations of the objective function, to improve
the available knowledge about the current function landscape. It is an
open research question if this idea could also help in our setting here, or
for stochastic gradient descent schemes [Bot10].

3
Applications to Sparse and

Low Rank Approximation

3.1. Sparse Approximation over the Simplex

As a first application of the general optimization scheme from the previous
Chapter 2, we will now consider optimization problems defined over the
unit simplex, or in other words the non-negative vectors of `1-norm equal
to one. This will serve as a warm-up case before considering `1-norm
regularized problems in the next Section 3.2.

Our approach here will allow us to understand the best achievable spar-
sity of approximate solutions, as a function of the approximation quality,
as already shown by [Cla10].

In particular, we will show that our main Algorithm 1 on page 22 and
its analysis do lead to Clarkson’s approach [Cla10] for optimizing over the
simplex. In this case, it was already known that sparsity O

(
1
ε

)
can always

be achieved by applying Algorithm 1 to the simplex domain, see [Cla10].
We will also show that this is indeed optimal, by providing an asymp-
totically matching lower bound in Section 3.1.2. Also, our analysis holds
even if the linear subproblems are only solved approximately, and allows
arbitrary starting points, in contrast to [Cla10].

Having this efficient algorithm giving sparsity O
(

1
ε

)
is in particularly at-

37

38 Applications to Sparse and Low Rank Approximation

tractive in view of the computational complexity of vector cardinality min-
imization, which is known to be NP-hard, by a reduction to Exact-Cover,
see [Nat95]. Vector cardinality minimization here refers to finding the
sparsest vector that is an ε-approximation to some given convex minimiza-
tion problem. Formally, finding the sparsest x that satisfies ‖Ax− b‖2 ≤ ε
for given A, b and ε.

Set-Up. We suppose that a basis has been chosen in the space X , so that
we can assume X = Rn with the standard inner product 〈x, y〉 = xT y. Here
we consider one special class of the general optimization problems (2.1),
namely we optimize over non-negative vectors that sum up to one, that is

minimize
x∈Rn

f(x)

s.t. ‖x‖1 = 1 ,
x ≥ 0 .

(3.1)

In the following we write ∆n := {x ∈ Rn |x ≥ 0, ‖x‖1 = 1} for the unit
simplex in Rn. As the objective function f is now defined over Rn, all
subgradients or gradients of f will also be represented by vectors in Rn in
the following.

Note that the alternative case of optimizing under an inequality con-
straint ‖x‖1 ≤ 1 instead of ‖x‖1 = 1 can easily be reduced to the above
form (3.1) by introducing a new “slack” variable. Formally, one uses vec-
tors x̂ = (x1, . . . , xn, xn+1) ∈ Rn+1 instead and optimizes the function

f̂(x̂) := f(x1, . . . , xn) over the simplex domain ‖x̂‖1 = 1, x̂ ≥ 0.

Coresets. The coreset concept was originally introduced in computa-
tional geometry by [BHPI02] and [APV02]. For point-set problems, the
coreset idea refers to identifying a very small subset (coreset) of the points,
such that the solution just on the coreset is guaranteed to be a good ap-
proximation to original problem, as we e.g. describe in Chapter 5. Here
for general convex optimization, the role of the coreset points is taken by
the non-zero coordinates of our sought vector x instead. The coreset size
then corresponds to the sparsity of x.

Formally if there exists an ε-approximate solution x ∈ D ⊆ Rn to the
convex optimization problem (2.1), using only k many non-zero coordi-
nates, then we say that the corresponding coordinates of x form an ε-
coreset of size k for problem (2.1).

In other words, the following upper and lower bounds of O
(

1
ε

)
on the

sparsity of approximations for problem (3.1) are indeed matching upper

Sparse Approximation over the Simplex 39

and lower bounds on the coreset size for convex optimization over the
simplex, analogous to what we have found in the geometric problem setting
of Chapter 5.

3.1.1. Upper Bound: Sparse Greedy on the Simplex

Here we will show how the general algorithm and its analysis from the
previous Section 2.3 do in particular lead to Clarkson’s approach [Cla10]
for minimizing any convex function over the unit simplex. The algorithm
follows directly from Algorithm 1, and will have a running time of O

(
1
ε

)
many gradient evaluations. We will crucially make use of the fact that
every linear function attains its minimum at a vertex of the simplex ∆n.
Formally, for any vector c ∈ Rn, it holds that min

s∈∆n

sT c = min
i
ci . This

property is easy to verify in the special case here, but is also a direct
consequence of the small Lemma 2.8 which we have proven for general
convex hulls, if we accept that the unit simplex is the convex hull of the
unit basis vectors. We have obtained that the internal linearized primitive
can be solved exactly by choosing

ExactLinear (c,∆n) := ei with i = arg min
i

ci .

Algorithm 3 Sparse Greedy on the Simplex

Input: Convex function f , target accuracy ε
Output: ε-approximate solution for problem (3.1)
Set x(0) := e1

for k = 0 . . .∞ do
Compute i := arg mini

(
∇f(x(k))

)
i

Let α := 2
k+2

Update x(k+1) := x(k) + α(ei − x(k))
end for

Observe that in each iteration, this algorithm only introduces at most
one new non-zero coordinate, so that the sparsity of x(k) is always upper
bounded by the number of steps k, plus one, given that we start at a
vertex. Since Algorithm 3 only moves in coordinate directions, it can be
seen as a variant of coordinate descent. The convergence result directly
follows from the general analysis we gave in the previous Section 2.3.

40 Applications to Sparse and Low Rank Approximation

Theorem 3.1 ([Cla10, Theorem 2.3], Convergence of Sparse Greedy on the
Simplex). For each k ≥ 1, the iterate x(k) of Algorithm 3 satisfies

f(x(k))− f(x∗) ≤ 4Cf
k + 2

.

where x∗ ∈ ∆n is an optimal solution to problem (3.1).

Furthermore, for any ε > 0, after at most 2
⌈

4Cf
ε

⌉
+ 1 = O

(
1
ε

)
many

steps1, it has an iterate x(k) of sparsity O
(

1
ε

)
, satisfying g(x(k)) ≤ ε.

Proof. This is a corollary of Theorem 2.3 and Theorem 2.5.

Duality Gap. We recall from Section 2.2 that the duality gap (2.5) at
any point x ∈ ∆n is easily computable from any subgradient, and in our
case becomes

g(x, dx) = xT dx −min
i

(dx)i , and

g(x) = xT∇f(x)−min
i

(∇f(x))i .
(3.2)

Here we have again used the observation that linear functions attain their
minimum at a vertex of the domain, i.e, min

s∈∆n

sT c = min
i
ci.

Applications. Many practically relevant optimization problems do fit into
our setting (3.1) here, allowing the application of Algorithm 3. This in-
cludes linear classifiers such as support vector machines (SVMs), see also
Chapter 5, as well as kernel learning (finding the best convex combina-
tion among a set of base kernels) [BLJ04]. Some other applications that
directly fit into our framework are `2-support vector regression (SVR),
AdaBoost [Zha03], mean-variance analysis in portfolio selection [Mar52],
the smallest enclosing ball problem [BC07], and estimating mixtures of
probability densities [Cla10]. For more applications we refer to [Cla10].

Line-Search for the Best Step-Size. In most applications it will be a
straight-forward task to find the optimal step-size α ∈ [0, 1] in each step
instead, as described in Section 2.3.3.

1Note that in order for our Theorem 2.5 on the bounded duality gap to apply, the
step-size in the second half of the iterations needs to be fixed to α(k) := 2

K+2
,

see Section 2.3.2. This remark also applies to the later applications of our general
Algorithm 1 in this chapter. We already mentioned above that if line-search is used
instead, then no such technicality is necessary, see also [Cla10].

Sparse Approximation over the Simplex 41

For the special case of polytope distance and SVM problems, the result-
ing method then exactly corresponds to Gilbert’s geometric algorithm [Gil66],
which we will study in Chapter 5. Here the wording of “line-search” makes
geometric sense in that we need to find the point s on a given line, such
that s is closest to the origin.

Away Steps. By performing more work with the currently non-zero coor-
dinates, one can get the sparsity even smaller. More precisely the number

of non-zeros can be improved close to
2Cf
ε instead of 2

⌈
4Cf
ε

⌉
as given by

the above Theorem 3.1. The idea of away-steps introduced by [TY07] is to
keep the total number of non-zero coordinates (i.e. the coreset size) fixed
over all iterations, by removing the smallest non-zero coordinate from x
after each adding step. We will discuss this idea for the geometric formu-
lation of coresets in Chapter 5. For more background we refer to [Cla10,
Algorithm 9.1].

3.1.2. Ω(1
ε
) Lower Bound on the Sparsity

We will now show that sparsity O
(

1
ε

)
, as obtained by the greedy algorithm

we analyzed in the previous section is indeed best possible, by providing
a lower bound of Ω

(
1
ε

)
. In the language of coresets, this means we will

provide a matching lower bound on the size of coresets for convex opti-
mization over the simplex. Together with the upper bound, this therefore
completely characterizes the trade-off between sparsity and approxima-
tion quality for the family of optimization problems of the form (3.1).
The same matching sparsity upper and lower bounds will also hold for
optimizing over the `1-ball instead, see Section 3.2.

For the following lower bound construction we consider the differentiable
function f(x) := ‖x‖22 = xTx. This function has gradient ∇f(x) = 2x.
Its curvature constant is Cf = 2, which follows directly from the defini-
tion (2.7), and the fact that here f(y)−f(x)−(y−x)T∇f(x) = yT y−xTx−
(y−x)T 2x = ‖x− y‖22, so that Cf = supx,s∈∆n

‖x− s‖22 = diam(∆n)2 = 2.

The following lemmata show that the sparse greedy algorithm of [Cla10]
from Section 3.1.1 is indeed optimal for the approximation quality (primal
as well as dual error respectively), giving best possible sparsity, up to a
small multiplicative constant.

42 Applications to Sparse and Low Rank Approximation

Lemma 3.2. For f(x) := ‖x‖22, and 1 ≤ k ≤ n, it holds that

min
x∈∆n

card(x)≤k

f(x) =
1

k
.

Proof. We prove the inequality min
x..

f(x) ≥ 1
k by induction on k.

Case k = 1 For any unit length vector x ∈ ∆n having just a single
non-zero entry, f(x) = ‖x‖2 = ‖x‖1 = 1.

Case k > 1 For every x ∈ ∆n of sparsity card(x) ≤ k, we can pick a
coordinate i with xi 6= 0, and write x = (1− α)v + αei as the sum of two
orthogonal vectors v and a unit basis vector ei, where v ∈ ∆n of sparsity
≤ k − 1, vi = 0, and α = xi. So for every x ∈ ∆n of sparsity ≤ k, we
therefore get that

f(x) = ‖x‖22 = xTx
= ((1− α)v + αei)

T ((1− α)v + αei)
= (1− α)2vT v + α2

≥ (1− α)2 1
k−1 + α2

≥ min0≤β≤1(1− β)2 1
k−1 + β2

= 1
k .

In the first inequality we have applied the induction hypothesis for v ∈ ∆n

of sparsity ≤ k − 1.
Equality: The function value f(x) = 1

k is obtained by setting k of the
coordinates of x to 1

k each.

In other words for any vector x of sparsity card(x) = k, the primal error
f(x)− f(x∗) is always lower bounded by 1

k − 1
n . For the duality gap g(x),

the lower bound is even slightly higher:

Lemma 3.3. For f(x) := ‖x‖22, and any k ∈ N, k < n, it holds that

g(x) ≥ 2

k
∀x ∈ ∆n s.t. card(x) ≤ k.

Proof. g(x) = xT∇f(x) − mini(∇f(x))i = 2(xTx − mini xi). We now
use mini xi = 0 because card(x) < n, and that by Lemma 3.2 we have
xTx = f(x) ≥ 1

k .

Note: We could also consider the function f(x) := γ ‖x‖22 instead, for
some γ > 0. This f has curvature constant Cf = 2γ, and for this scaling,

our above lower bound on the duality gap will also scale linearly, giving
Cf
k .

Sparse Approximation with Bounded `1-Norm 43

3.2. Sparse Approximation with Bounded
`1-Norm

In this second application case, will apply the general greedy approach
from Section 2.3 in order to understand the best achievable sparsity for
convex optimization under bounded `1-norm, as a function of the approxi-
mation quality. Here the situation is indeed extremely similar to the above
Section 3.1 of optimizing over the simplex, and the resulting algorithm will
again have a running time of O

(
1
ε

)
many gradient evaluations.

It is known that the vector ‖.‖1-norm is the best convex approximation
to the sparsity (cardinality) of a vector, that is card(.). More precisely,
the function ‖.‖1 is the convex envelope of the sparsity, meaning that it is
the “largest” convex function that is upper bounded by the sparsity on the
convex domain of vectors {x | ‖x‖∞ ≤ 1}. This can be seen by observing

that card(x) ≥ ‖x‖1
‖x‖∞

, see e.g. [RFP10]. We will discuss the analogous

generalization to matrices in Chapter 4, namely using the matrix nuclear
norm as the “best” convex approximation of the matrix rank.

Set-Up. Here we consider one special class of the general optimization
problem (2.1), namely problems over vectors in Rn with bounded ‖.‖1-
norm, that is

minimize
x∈Rn

f(x)

s.t. ‖x‖1 ≤ 1 .
(3.3)

We write ♦n := {x ∈ Rn | ‖x‖1 ≤ 1} for the `1-ball in Rn. Note that
one can simply rescale the function argument to allow for more general
constraints ‖x‖1 ≤ t for t > 0. Again we have X = Rn with the standard
inner product 〈x, y〉 = xT y, so that also the subgradients or gradients of
f are represented as vectors in Rn.

The Linearized Problem. As already in the simplex case, the subprob-
lem of optimizing a linear function over the `1-ball is particularly easy to
solve, allowing us to provide a fast implementation of the internal primitive
procedure ExactLinear (c,♦n).

Namely, it is again easy to see that every linear function attains its mini-
mum/maximum at a vertex of the ball ♦n, as we have already seen for gen-
eral convex hulls in our earlier Lemma 2.8, and ♦n = conv({±ei | i ∈ [n]}).
Here this crucial observation can also alternatively be interpreted as the
known fact that the dual norm to the `1-norm is in fact the `∞-norm, see
also our earlier Observation 2.2.

44 Applications to Sparse and Low Rank Approximation

Observation 3.4. For any vector c ∈ Rn, it holds that

ei · sign(ci) ∈ arg max
y∈♦n

yT c

where i ∈ [n] is an index of a maximal coordinate of c measured in absolute
value, or formally i ∈ arg maxj |cj |.

Using this observation for c = −∇f(x) in our general Algorithm 1, we
therefore directly obtain the following simple method for `1-regularized
convex optimization, as depicted in the Algorithm 4.

Algorithm 4 Sparse Greedy on the `1-Ball

Input: Convex function f , target accuracy ε
Output: ε-approximate solution for problem (3.3)
Set x(0) := 0
for k = 0 . . .∞ do

Compute i := arg maxi
∣∣(∇f(x(k))

)
i

∣∣,
and let s := ei · sign

((
−∇f(x(k))

)
i

)
Let α := 2

k+2

Update x(k+1) := x(k) + α(s− x(k))
end for

Observe that in each iteration, this algorithm only introduces at most
one new non-zero coordinate, so that the sparsity of x(k) is always upper
bounded by the number of steps k. This means that the method is again
of coordinate-descent-type, as in the simplex case of the previous Sec-
tion 3.1.1. Its convergence analysis again directly follows from the general
analysis from Section 2.3.

Theorem 3.5 (Convergence of Sparse Greedy on the `1-Ball). For each k ≥ 1,
the iterate x(k) of Algorithm 4 satisfies

f(x(k))− f(x∗) ≤ 4Cf
k + 2

.

where x∗ ∈ ♦n is an optimal solution to problem (3.3).

Furthermore, for any ε > 0, after at most 2
⌈

4Cf
ε

⌉
+ 1 = O

(
1
ε

)
many

steps, it has an iterate x(k) of sparsity O
(

1
ε

)
, satisfying g(x(k)) ≤ ε.

Proof. This is a corollary of Theorem 2.3 and Theorem 2.5.

Sparse Approximation with Bounded `1-Norm 45

The Duality Gap, and Duality of the Norms. We recall the definition
of the duality gap (2.5) given by the linearization at any point x ∈ ♦n,
see Section 2.2. Thanks to our Observation 2.2, the computation of the
duality gap in the case of the `1-ball here becomes extremely simple, and
is given by the norm that is dual to the `1-norm, namely the `∞-norm of
the used subgradient, i.e.,

g(x, dx) = ‖dx‖∞ + xT dx, and

g(x) = ‖∇f(x)‖∞ + xT∇f(x) .

Alternatively, the same expression can also be derived directly (without
explicitly using duality of norms) by applying the Observation 3.4.

A Lower Bound on the Sparsity. The lower bound of Ω
(

1
ε

)
on the spar-

sity as proved in Section 3.1.2 for the simplex case in fact directly translates
to the `1-ball as well. Instead of choosing the objective function f as the
distance to the origin (which is part of the `1-ball), we consider the opti-

mization problem min
‖x‖1≤1

f(x) := ‖x− r‖22 with respect to the fixed point

r := (2
n , . . . ,

2
n) ∈ Rn. This problem is of the form (3.3), and corresponds

to optimizing the Euclidean distance to the point r given by mirroring the
origin at the positive facet of the `1-ball. Here by the “positive facet”, we
mean the hyperplane defined by the intersection of the boundary of the
`1-ball with the positive orthant, which is exactly the unit simplex. There-
fore, the proof for the simplex case from Section 3.1.2 holds analogously
for our setting here.

We have thus obtained that sparsity O
(

1
ε

)
as obtained by the greedy Al-

gorithm 4 is indeed best possible for `1-regularized optimization problems
of the form (3.3).

Using Barycentric Coordinates Instead. Clarkson [Cla10, Theorem 4.2]
already observed that Algorithm 3 over the simplex ∆n can be used to
optimize a convex function f(y) over arbitrary convex hulls, by just using
barycentric coordinates y = Ax, x ∈ ∆n, for A ∈ Rn×m being the ma-
trix containing all m vertices of the convex domain as its columns. Here
however we saw that for the `1-ball, the steps of the algorithm are even
slightly simpler, as well as that the duality gap can be computed instantly
from the `∞-norm of the gradient.

Applications. Our Algorithm 4 applies to arbitrary convex vector opti-
mization problems with an ‖.‖1-norm regularization term, giving a guar-

46 Applications to Sparse and Low Rank Approximation

anteed sparsity of O
(

1
ε

)
for all these applications.

A classical example for problems of this class is given by the impor-
tant ‖.‖1-regularized least squares regression approach, which we already
discussed in our introductory Section 1.3.1. Formally,

min
x∈Rn

‖Ax− b‖22 + µ ‖x‖1

for a fixed matrix A ∈ Rm×n, a vector b ∈ Rm and a fixed regularization
parameter µ > 0. The same problem is also known as basis pursuit de-
noising in the compressed sensing literature, which we will discuss more
precisely in Section 3.2.1. The above formulation is in fact the Lagrangian
formulation of the corresponding constrained problem for ‖x‖1 ≤ t for
some fixed parameter t corresponding to µ, see also Section 1.3.2. This
equivalent formulation is also known as the Lasso problem [Tib96] which
is

min
x∈Rn

‖Ax− b‖22
s.t. ‖x‖1 ≤ t .

The above formulation is exactly a problem of our above form (3.3), namely

min
x̂∈♦n

‖tAx̂− b‖22 ,

if we rescale the argument x =: tx̂ so that ‖x̂‖1 ≤ 1.

Another important application for our result is logistic regression with
‖.‖1-norm regularization, see e.g. [KKB07], which is also a convex opti-
mization problem [Ren05]. The reduction to an `1-problem of our form (3.3)
works exactly the same way as described here.

Related Work. As we mentioned above, the optimization problem (3.3)
— if f is the squared error of a linear function — is very well studied as the
Lasso approach, see e.g. [Tib96] and the references therein. For general
objective functions f of bounded curvature, the above interesting trade-off
between sparsity and the approximation quality was already investigated
by [SSSZ10], and also by our earlier paper [GJ09] (see also Chapter 5) for
the analogous case of optimizing over the simplex. [SSSZ10, Theorem 2.4]
shows a sparse convergence analogous to our above Theorem 3.5, for the
“forward greedy selection” algorithm on problem (3.3), but only for the
case that f is differentiable.

Sparse Approximation with Bounded `1-Norm 47

3.2.1. Relation to Matching Pursuit and Basis Pursuit in
Compressed Sensing

Both our sparse greedy Algorithm 3 for optimizing over the simplex and
also Algorithm 4 for general `1-problems are very similar to the technique
of matching pursuit, which is one of the most popular techniques in sparse
recovery in the vector case [Tro04].

Suppose we want to recover a sparse signal vector x ∈ Rn from a
noisy measurement vector Ax = y ∈ Rm. For a given dictionary matrix
A ∈ Rm×n, matching pursuit iteratively chooses the dictionary element
Ai ∈ Rm that has the highest inner product with the current residual,
and therefore reduces the representation error f(x) = ‖Ax− y‖22 by the
largest amount. This choice of coordinate i = arg maxj A

T
j (Ax−y) exactly

corresponds2 to the choice of i := arg minj
(
∇f(x(k))

)
j

in Algorithm 3.

Another variant of matching pursuit, called orthogonal matching pur-
suit (OMP) [Tro04, TG07], includes an extra orthogonalization step, and
is closer related to the coreset algorithms that optimize over the all exist-
ing set of non-zero coordinates before adding a new one, see e.g. [Cla10,
Algorithm 8.2], or the analogous “fully corrective” variant of [SSSZ10]. If
y = Ax, with x sparse and the columns of A sufficiently incoherent, then
OMP recovers the sparsest representation for the given y [Tro04].

The paper [Zha11] recently proposed another algorithm that generalizes
OMP, comes with a guarantee on correct sparse recovery, and also corre-
sponds to “completely optimize within each coreset”. The method uses

the same choice of the new coordinate i := arg maxj

∣∣∣(∇f(x(k))
)
j

∣∣∣ as in

our Algorithm 4. However the analysis of [Zha11] requires the not only
bounded curvature as in our case, but also needs strong convexity of the
objective function (which then also appears as a multiplicative factor in
the number of iterations needed). Our Algorithm 4 as well as the earlier
method by [Zha03] are simpler to implement, and have a lower complexity
per iteration, as we do not need to optimize over several currently non-
zero coordinates, but only change one coordinate by a fixed amount in
each iteration.

Our Algorithm 4 for general `1-regularized problems also applies to solv-
ing the so called basis pursuit problem [CDS98, FNW07] and [BV04, Sec-
tion 6.5.4], which is minx∈Rn ‖x‖1 s.t. Ax = y. Note that this is in fact
just the constrained variant of the corresponding “robust” `1-regularized

2The objective function f(x) := ‖Ax− y‖22 can be written as f(x) = (Ax− y)T (Ax−
y) = xTATAx − 2yTAx − yT y, so its gradient is ∇f(x) = 2ATAx − 2AT y =
2AT (Ax− y) ∈ Rn.

48 Applications to Sparse and Low Rank Approximation

least squares regression problem

min
x∈Rn

‖Ax− y‖22 + µ ‖x‖1 ,

which is the equivalent trade-off variant of our problem of the form (3.3).
[FNW07] propose a traditional gradient descent technique for solving the
above least squares problem, but do not give a convergence analysis.

We will discuss solution path algorithms with approximation guarantees
for this problem (obtaining solutions for all values of the tradeoff param-
eter µ) in Chapter 6.

3.3. Optimization with Bounded `∞-Norm

Applying our above general optimization framework for the special case of
the domain being the ‖.‖∞-norm unit ball, we again obtain a very simple
greedy algorithm. The running time will again correspond to O

(
1
ε

)
many

gradient evaluations. Formally, we consider problems of the form

minimize
x∈Rn

f(x)

s.t. ‖x‖∞ ≤ 1 .
(3.4)

We denote the feasible set, i.e. the ‖.‖∞-norm unit ball, by �n :=
{x ∈ Rn | ‖x‖∞ ≤ 1}. For this set, it will again be very simple to imple-
ment the internal primitive operation of optimizing a linear function over
the same domain. The following crucial observation allows us to implement
ExactLinear (c,�n) in a very simple way. This can also alternatively be
interpreted as the known fact that the dual-norm to the `∞-norm is the
`1-norm, which also explains why the greedy algorithm we will obtain here
is very similar to the `1-version from the previous Section 3.2.

Observation 3.6. For any vector c ∈ Rn, it holds that

sc ∈ arg max
y∈�n

yT c

where sc ∈ Rn is the sign-vector of c, defined by the sign of each individual
coordinate, i.e. (sc)i = sign(ci) ∈ {−1, 1}.

Using this observation for c = −dx in our general Algorithm 1, we
directly obtain the following simple method for optimization over a box-
domain �n, as depicted in Algorithm 5.

The convergence analysis again directly follows from the general analysis
from Section 2.3.

Optimization with Bounded `∞-Norm 49

Algorithm 5 Sparse Greedy on the Cube

Input: Convex function f , target accuracy ε
Output: ε-approximate solution for problem (3.4)
Set x(0) := 0
for k = 0 . . .∞ do

Compute the sign-vector s of ∇f(x(k)), such that
si = sign

((
−∇f(x(k))

)
i

)
, i = 1..n

Let α := 2
k+2

Update x(k+1) := x(k) + α(s− x(k))
end for

Theorem 3.7. For each k ≥ 1, the iterate x(k) of Algorithm 5 satisfies

f(x(k))− f(x∗) ≤ 4Cf
k + 2

.

where x∗ ∈ �n is an optimal solution to problem (3.4).

Furthermore, for any ε > 0, after at most 2
⌈

4Cf
ε

⌉
+ 1 = O

(
1
ε

)
many

steps, it has an iterate x(k) with g(x(k)) ≤ ε.

Proof. This is a corollary of Theorem 2.3 and Theorem 2.5.

The Duality Gap, and Duality of the Norms. We recall the definition
of the duality gap (2.5) given by the linearization at any point x ∈ �n,
see Section 2.2. Thanks to our Observation 2.2, the computation of the
duality gap in the case of the `∞-ball here becomes extremely simple, and
is given by the norm that is dual to the `∞-norm, namely the `1-norm of
the used subgradient, i.e.,

g(x, dx) = ‖dx‖1 + xT dx, and

g(x) = ‖∇f(x)‖1 + xT∇f(x) .

Alternatively, the same expression can also be derived directly (without
explicitly using duality of norms) by applying the Observation 3.6.

Sparsity and Compact Representations. The analogue of “sparsity” as
in Sections 3.1 and 3.2 in the context of our Algorithm 5 means that we
can describe the obtained approximate solution x as a convex combination
of few (i.e. O(1

ε) many) cube vertices. This does not imply that x has few

50 Applications to Sparse and Low Rank Approximation

non-zero coordinates, but that we have a compact representation given
by only O(1

ε) many binary n-vectors indicating the corresponding cube
vertices, of which x is a convex combination.

Applications. Any convex problem under coordinate-wise upper and lower
constraints can be transformed to the form (3.4) by re-scaling the optimiza-
tion argument. A specific interesting application was given by [MR11], who
have demonstrated that integer linear programs can be relaxed to convex
problems of the above form, such that the solutions coincide with high
probability under some mild additional assumptions.

Using Barycentric Coordinates Instead. Clarkson [Cla10, Theorem 4.2]
already observed that Algorithm 3 over the simplex ∆n can be used to
optimize a convex function f(y) over arbitrary convex hulls, by just using
barycentric coordinates y = Ax, x ∈ ∆n, for A ∈ Rn×m being the ma-
trix containing all m vertices of the convex domain as its columns. Here
however we saw that for the unit box, the steps of the algorithm are much
simpler, as well as that the duality gap can be computed instantly, with-
out having to explicitly deal with the exponentially many vertices (here
m = 2n) of the cube.

3.4. Semidefinite Optimization with Bounded
Trace

We will now apply the greedy approach from the previous Section 2.3 to
semidefinite optimization problems, for the case of bounded trace. The
main paradigm in this section will be to understand the best achievable
low-rank property of approximate solutions as a function of the approxi-
mation quality.

In particular, we will show that our general Algorithm 1 and its analy-
sis do lead to Hazan’s method for convex semidefinite optimization with
bounded trace, as given by [Haz08]. Hazan’s algorithm can also be used as
a simple solver for general SDPs. [Haz08] has already shown that guaran-
teed ε-approximations of rank O

(
1
ε

)
can always be found. Here we will also

show that this is indeed optimal, by providing an asymptotically match-
ing lower bound in Section 3.4.4. Furthermore, we fix some problems in
the original analysis of [Haz08], and require only a weaker approximation
quality for the internal linearized primitive problems. We also propose two
improvement variants for the method in Section 3.4.3.

Semidefinite Optimization with Bounded Trace 51

Later in Chapter 4, we will discuss the application of these algorithms
for nuclear norm and max-norm optimization problems, which have many
important applications in practice, such as dimensionality reduction, low-
rank recovery as well as matrix completion and factorizations.

We now consider convex optimization problems of the form (2.1) over
the space X = Sn×n of symmetric matrices, equipped with the standard
Frobenius inner product 〈X,Y 〉 = X • Y . It is left to the choice of the

reader to identify the symmetric matrices either with Rn2

and consider
functions with f(X) = f(XT), or only “using” the variables in the upper
right (or lower left) triangle, corresponding to Rn(n+1)/2. In any case, the
subgradients or gradients of our objective function f need to be available
in the same representation (same choice of basis for the vector space X).

Formally, we consider the following special case of the general optimiza-
tion problems (2.1), i.e.,

minimize
X∈Sn×n

f(X)

s.t. Tr(X) = 1 ,
X � 0

(3.5)

We will write S := {X ∈ Sn×n |X � 0, Tr(X) = 1} for the feasible set,
that is the PSD matrices of unit trace. The set S is sometimes called
the Spectahedron, and can be seen as a natural generalization of the unit
simplex to symmetric matrices. By the Cholesky factorization, it can be
seen that the Spectahedron is the convex hull of all rank-1 matrices of
unit trace (i.e. the matrices of the form vvT for a unit vector v ∈ Rn,
‖v‖2 = 1).

3.4.1. Low-Rank Semidefinite Optimization with Bounded
Trace: The O(1

ε
) Algorithm by Hazan

Applying our general greedy Algorithm 1 that we studied in Section 2.3
to the above semidefinite optimization problem, we directly obtain the
following Algorithm 6, which is Hazan’s method [Haz08, GM11].

Note that this is now a first application of Algorithm 1 where the inter-
nal linearized problem ApproxLinear() is not trivial to solve, contrasting
the applications for vector optimization problems we studied above. The
algorithm here obtains low-rank solutions (sum of rank-1 matrices) to any
convex optimization problem of the form (3.5). More precisely, it guaran-
tees ε-small duality gap after at most O

(
1
ε

)
iterations, where each iteration

only involves the calculation of a single approximate eigenvector of a ma-

52 Applications to Sparse and Low Rank Approximation

trix M ∈ Sn×n. We will see that in practice for example Lanczos’ or the
power method can be used as the internal optimizer ApproxLinear().

Algorithm 6 Hazan’s Algorithm / Sparse Greedy for Bounded Trace

Input: Convex function f with curvature Cf , target accuracy ε
Output: ε-approximate solution for problem (3.5)
Set X(0) := vvT for an arbitrary unit length vector v ∈ Rn.
for k = 0 . . .∞ do

Let α := 2
k+2

Compute v := v(k) = ApproxEV
(
∇f(X(k)), αCf

)
Update X(k+1) := X(k) + α(vvT −X(k))

end for

Here ApproxEV(A, ε′) is a subroutine that delivers an approximate
smallest eigenvector (the eigenvector corresponding to the smallest eigen-
value) to a matrix A with the desired accuracy ε′ > 0. More precisely, it
must return a unit length vector v such that vTAv ≤ λmin(A) + ε′. Note
that as our convex function f takes a symmetric matrix X as an argument,
its gradients ∇f(X) are given as symmetric matrices as well.

If we want to understand this proposed Algorithm 6 as an instance
of the general convex optimization Algorithm 1, we just need to explain
why the largest eigenvector should indeed be a solution to the internal
linearized problem ApproxLinear(), as required in Algorithm 1. For-
mally, we have to show that v := ApproxEV(A, ε′) does approximate the
linearized problem, that is

vvT •A ≤ min
Y ∈S

Y •A+ ε′

for the choice of v := ApproxEV(A, ε′), and any matrix A ∈ Sn×n.

This fact is formalized in Lemma 3.8 below, and will be the crucial
property enabling the fast implementation of Algorithm 6.

Alternatively, if exact eigenvector computations are available, we can
also implement the exact variant of Algorithm 1 using ExactLinear(),
thereby halving the total number of iterations.

Observe that an approximate eigenvector here is significantly easier to
compute than a projection onto the feasible set S. If we were to find the
‖.‖Fro-closest PSD matrix to a given symmetric matrix A, we would have
to compute a complete eigenvector decomposition of A, and only keep-
ing those corresponding to positive eigenvalues, which is computationally

Semidefinite Optimization with Bounded Trace 53

expensive. By contrast, a single approximate smallest eigenvector com-
putation as in ApproxEV(A, ε′) can be done in near linear time in the
number of non-zero entries of A. We will discuss the implementation of
ApproxEV(A, ε′) in more detail further below.

Sparsity becomes Low Rank. As the rank-1 matrices are indeed the
“vertices” of the domain S as shown in Lemma 3.8 below, our Algorithm 6
can be therefore seen as a matrix generalization of the sparse greedy ap-
proximation algorithm of [Cla10] for vectors in the unit simplex, see Sec-
tion 3.1, which has seen many successful applications. Here sparsity just
gets replaced by low rank. By the analysis of the general algorithm in
Theorem 2.3, we already know that we obtain ε-approximate solutions for
any convex optimization problem (3.5) over the spectahedron S. Because
each iterate X(k) is represented as a sum (convex combination) of k many
rank-1 matrices vvT , it follows that X(k) is of rank at most k. Therefore,
the resulting ε-approximations are of low rank, i.e. rank O

(
1
ε

)
.

For large-scale applications where 1
ε � n, the representation of X(k) as a

sum of rank-1 matrices is much more efficient than storing an entire matrix
X(k) ∈ Sn×n. Later in Section 4.5 (or see also [JS10]) we will demonstrate
that Algorithm 6 can readily be applied to practical problems for n ≥ 106

on an ordinary computer, well exceeding the possibilities of interior point
methods.

[Haz08] already observed that the same Algorithm 6 with a well-crafted
function f can also be used to approximately solve arbitrary SDPs with
bounded trace, which we will briefly explain in Section 3.4.2.

Linearization, the Duality Gap, and Duality of the Norms. Here we will
prove that the general duality gap (2.5) can be calculated very efficiently
for the domain being the spectahedron S. From the following Lemma 3.8,
we obtain that

g(X) =X • ∇f(X) + λmax(−∇f(X))

=X • ∇f(X)− λmin(∇f(X)) .
(3.6)

As predicted by our Observation 2.2 on formulating the duality gap, we
have again obtained the dual norm to the norm that determines the domain
D. It can be seen that over the space of symmetric matrices, the dual norm
of the matrix trace-norm (also known as the nuclear norm) is given by the
spectral norm, i.e. the largest eigenvalue. To see this, we refer the reader
to the later Section 4.2 on the properties of the nuclear norm and its dual
characterization.

54 Applications to Sparse and Low Rank Approximation

The following Lemma 3.8 shows that any linear function attains its
minimum and maximum at a “vertex” of the Spectahedron S, as we have
already proved for the case of general convex hulls in Lemma 2.8.

Lemma 3.8. The spectahedron is the convex hull of the rank-1 matrices,

S = conv(
{
vvT

∣∣ v ∈ Rn, ‖v‖2 = 1
}

) .

Furthermore, for any symmetric matrix A ∈ Sn×n, it holds that

max
X∈S

A •X = λmax(A) .

Proof. Clearly, it holds that vvT ∈ S for any unit length vector v ∈ Rn,
as Tr(vvT) = ‖v‖22. To prove the other inclusion, we consider an arbitrary
matrix X ∈ S, and let X = UTU be its Cholesky factorization. We let αi
be the squared norms of the rows of U , and let ui be the row vectors of
U , scaled to unit length. From the observation 1 = Tr(X) = Tr(UTU) =
Tr(UUT) =

∑
i αi it follows that any X ∈ S can be written as a convex

combination of at most n many rank-1 matrices X =
∑n
i=1 αiuiu

T
i with

unit vectors ui ∈ Rn, proving the first part of the claim. Furthermore, this
implies that we can write

max
X∈S

A •X = max
ui,αi

A •
n∑
i=1

αiuiu
T
i = max

ui,αi

n∑
i=1

αi(A • uiuTi),

where the maximization maxui,αi is taken over unit vectors ui ∈ Rn,
‖ui‖ = 1, for 1 ≤ i ≤ n, and real coefficients αi ≥ 0, with

∑n
i=1 αi = 1.

Therefore

max
X∈S

A •X = max
ui,αi

n∑
i=1

αi(A • uiuTi)

= max
v∈Rn,‖v‖=1

A • vvT

= max
v∈Rn,‖v‖=1

vTAv

= λmax (A) ,

where the last equality is the variational characterization of the largest
eigenvalue.

Curvature. We know that the constant in the actual running time for a
given convex function f : Sd×d → R is given by the curvature constant Cf
as given in (2.7), which for the domain S becomes

Cf := sup
X,V ∈S, α∈[0,1],
Y=X+α(V−X)

1
α2

(
f(Y)− f(X) + (Y −X) • ∇f(X)

)
. (3.7)

Semidefinite Optimization with Bounded Trace 55

Convergence. We can now see the convergence analysis for Algorithm 6
following directly as a corollary of our simple analysis of the general frame-
work in Section 2.3. The following theorem proves that O

(
1
ε

)
many iter-

ations are sufficient to obtain primal error ≤ ε. This result was already
known in [Haz08, Theorem 1], or [GM11, Chapter 5] where some correc-
tions to the original paper were made.

Theorem 3.9. For each k ≥ 1, the iterate X(k) of Algorithm 6 satisfies

f(X(k))− f(X∗) ≤ 8Cf
k + 2

.

where X∗ ∈ S is an optimal solution to problem (3.5).

Furthermore, for any ε > 0, after at most 2
⌈

8Cf
ε

⌉
+ 1 = O

(
1
ε

)
many

steps, it has an iterate X(k) of rank O
(

1
ε

)
, satisfying g(X(k)) ≤ ε.

Proof. This is a corollary of Theorem 2.3 and Theorem 2.5.

Approximating the Largest Eigenvector. Approximating the smallest
eigenvector of a symmetric matrix ∇f(X) (which is the largest eigenvector
of −∇f(X)) is a well-studied problem in the literature. We will see in the
following that the internal procedure ApproxEV(M, ε′), can be performed
in near-linear time, when measured in the number of non-zero entries of
the gradient matrix ∇f(X). This will follow from the analysis of [KW92]
for the power method or Lanczos’ algorithm, both with a random start
vector. A similar statement has been used in [AHK05, Lemma 2].

Theorem 3.10. Let M ∈ Sn×n be a positive semidefinite matrix. Then
with high probability, both

i) O
(

log(n)
γ

)
iterations of the power method, or

ii) O
(

log(n)√
γ

)
iterations of Lanczos’ algorithm

will produce a unit vector x such that xTMx
λ1(M) ≥ 1− γ.

Proof. The statement for the power method follows from [KW92, Theorem
3.1(a)], and for Lanczos’ algorithm by [KW92, Theorem 3.2(a)].

The only remaining obstacle to use this result for our internal procedure
ApproxEV(M, ε′) is that our gradient matrix M = −∇f(X) is usually not
PSD. However, this can easily be fixed by adding a large enough constant t

56 Applications to Sparse and Low Rank Approximation

to the diagonal, i.e. M̂ := M + tI, or in other words shifting the spectrum
of M so that the eigenvalues satisfy λi(M̂) = λi(M)+t ≥ 0 ∀i. The choice
of t = −λmin(M) is good enough for this to hold.

Now by setting γ := ε′

L ≤ ε′

λmax(M̂)
for some upper bound L ≥ λmax(M̂) =

λmax(M)−λmin(M), this implies that our internal procedure ApproxEV(M, ε′)

can be implemented by performing O
(

log(n)
√
L√

ε′

)
many Lanczos steps (that

is matrix-vector multiplications). Note that a simple choice for L is given
by the spectral norm of M , since 2 ‖M‖spec = 2 maxi λi(M) ≥ λmax(M)−
λmin(M). We state the implication for our algorithm in the following
corollary.

Theorem 3.11. For M ∈ Sn×n, and ε′ > 0, the procedure ApproxEV(M, ε′)

requires a total of O
(
Nf

log(n)
√
L√

ε′

)
many arithmetic operations, with high

probability, by using Lanczos’ algorithm.

Here Nf is the number of non-zero entries in M , which in the setting of
Algorithm 6 is the gradient matrix −∇f(X). We have also assumed that
the spectral norm of M is bounded by L.

Since we already know the number of necessary “outer” iterations of
Algorithm 6, by Theorem 3.9, we conclude with the following analysis
of the total running time. Here we again use that the required internal
accuracy is given by ε′ = αCf ≤ εCf .

Corollary 3.12. When using Lanczos’ algorithm for the approximate eigen-
vector procedure ApproxEV(., .), then Algorithm 6 provides an ε-approximate

solution in O
(

1
ε

)
iterations, requiring a total of Õ

(
Nf
ε1.5

)
arithmetic oper-

ations (with high probability).

Here the notation Õ(.) suppresses the logarithmic factor in n. This
corollary improves the original analysis of [Haz08] by a factor of 1√

ε
,

since [Haz08, Algorithm 1] as well as the proof of [Haz08, Theorem 1]
used an internal accuracy bound of ε′ = O

(
1
k2

)
instead of the sufficient

choice of ε′ = O
(

1
k

)
as in our general analysis here.

Representation of the Estimate X in the Algorithm. The above result
on the total running time assumes the following: After having obtained
an approximate eigenvector v, the rank-1 update X(k+1) := (1−α)X(k) +
αvvT can be performed efficiently, or more precisely in time Nf . In the
worst case, when a fully dense matrix X is needed, this update cost is Nf =
n2. However, there are many interesting applications where the function f

Semidefinite Optimization with Bounded Trace 57

depends only on a small fraction of the entries of X, so that Nf � n2.
Here, a prominent example is matrix completion for recommender systems.
In this case, only those Nf many entries of X will be stored and affected
by the rank-1 update, see also our Section 4.5.

An alternative representation of X consists of the low-rank factorization,
given by the v-vectors of each of the O

(
1
ε

)
many update steps, using a

smaller memory of size O
(
n
ε

)
. However, computing the gradient ∇f(X)

from this representation of X might require more time then.

3.4.2. Solving Arbitrary SDPs

In [Haz08] it was established that Algorithm 6 can also be used to approx-
imately solve arbitrary semidefinite programs (SDPs) in feasibility form,
i.e.,

find X s.t. Ai •X ≤ bi i = 1..m
X � 0 .

(3.8)

Also every classical SDP with a linear objective function

maximize
X

C •X
s.t. Ai •X ≤ bi i = 1..m′

X � 0 .

(3.9)

can be turned into a feasibility SDP (3.8) by “guessing” the optimal value
C •X by binary search [AHK05, Haz08].

Here we will therefore assume that we are given a feasibility SDP of
the form (3.8) by its constraints Ai •X ≤ bi, which we want to solve for
X. We can represent the constraints of (3.8) in a smooth optimization
objective instead, using the soft-max function

f(X) :=
1

σ
log

(
m∑
i=1

eσ(Ai•X−bi)
)
. (3.10)

Suppose that the original SDP was feasible, then after O
(

1
ε

)
many iter-

ations of Algorithm 6, for a suitable choice of σ, we have obtained X such
that f(X) ≤ ε, which implies that all constraints are violated by at most
ε. This means that Ai • X ≤ bi + ε, or in other words we say that X is
ε-feasible [Haz08, GM11]. It turns out the best choice for the parameter
σ is logm

ε , and the curvature constant Cf (σ) for this function is bounded
by σ ·maxi λmax(Ai)

2. The total number of necessary approximate eigen-

vector computations is therefore in O
(

logm
ε2

)
. In fact, Algorithm 6 when

58 Applications to Sparse and Low Rank Approximation

applied to the function (3.10) is very similar to the multiplicative weights
method [AHK05]. Note that the soft-max function (3.10) is convex in X,
see also [Ren05]. For a slightly more detailed exhibition of this approach
of using Algorithm 6 to approximately solving SDPs, we refer the reader
to the book of [GM11].

Note that this technique of introducing the soft-max function is closely
related to smoothing techniques in the optimization literature [Nem04,
BB09], where the soft-max function is introduced to get a smooth approx-
imation to the largest eigenvalue function. The transformation to a smooth
saddle-point problem suggested by [BB09] is more complicated than the
simple notion of ε-feasibility suggested here, and will lead to a comparable
computational complexity in total.

3.4.3. Two Improved Variants of Algorithm 6

Choosing the Optimal α by Line-Search. As we mentioned already for
the general algorithm for convex optimization in Section 2.3, the optimal
α in Algorithm 6, i.e. the α ∈ [0, 1] of best improvement in the objective
function f can be found by line-search.

In particular for matrix completion problems, which we will discuss in
more details in Section 4.5, the widely used squared error is easy to an-
alyze in this respect: If the optimization function is given by f(X) =
1
2

∑
ij∈P (Xij − Yij)2, where P is the set of observed positions of the ma-

trix Y , then the optimality condition (2.10) from Section 2.3.3 is equivalent
to

α =

∑
ij∈P (Xij − yij)(Xij − vivj)∑

ij∈P (Xij − vivj)2
. (3.11)

Here X = X(k), and v is the approximate eigenvector v(k) used in step
k of Algorithm 6. The above expression is computable very efficiently
compared to the eigenvector approximation task.

Immediate Feedback in the Power Method. As a second improvement,
we propose a heuristic to speed up the eigenvector computation, i.e. the
internal procedure ApproxEV (∇f(X), ε′). Instead of multiplying the
current candidate vector vk with the gradient matrix ∇f(X) in each power
iteration, we multiply with 1

2

(
∇f(X) +∇f(X)

)
, or in other words the av-

erage between the current gradient and the gradient at the new candidate

location X =
(
1 − 1

k

)
X(k) + 1

kv
(k)v(k)T . Therefore, we immediately take

into account the effect of the new feature vector v(k). This heuristic (which

Semidefinite Optimization with Bounded Trace 59

unfortunately does not fall into our current theoretical guarantee) is in-
spired by stochastic gradient descent as in Simon Funk’s method, which
we will describe in Section 4.5.4. In practical experiments, this proposed
slight modification will result in a significant speed-up of Algorithm 6, as
we will observe e.g. for matrix completion problems in Section 4.5.

3.4.4. Ω(1
ε
) Lower Bound on the Rank

Analogous to the vector case discussed in Section 3.1.2, we can also show
that the rank of O

(
1
ε

)
, as obtained by the greedy Algorithm 6 is indeed

optimal, by providing a lower bound of Ω
(

1
ε

)
. In other words we can now

exactly characterize the trade-off between rank and approximation quality,
for convex optimization over the spectahedron.

For the lower bound construction, we consider the convex function f(X) :=

‖X‖2Fro = X • X over the symmetric matrices Sn×n. This function has
gradient ∇f(X) = 2X. We will later see that its curvature constant is
Cf = 2.

The following lemmata show that the above sparse SDP Algorithm 6 is
optimal for the approximation quality (primal as well as dual error respec-
tively), giving lowest possible rank, up to a small multiplicative constant.

Lemma 3.13. For f(X) := ‖X‖2Fro, and 1 ≤ k ≤ n, it holds that

min
X∈S

Rk(X)≤k
f(X) =

1

k
.

We will see that this claim can be reduced to the analogous Lemma 3.2
for the vector case, by the standard technique of diagonalizing a symmet-
ric matrix. (This idea was suggested by Elad Hazan). Alternatively, an
explicit (but slightly longer) proof without requiring the spectral theo-
rem can be obtained by using the Cholesky-decomposition together with
induction on k.

Proof. We observe that the objective function ‖.‖2Fro, the trace, as well as
the property of being positive semidefinite, are all invariant under orthog-
onal transformations (or in other words under the choice of basis).

By the standard spectral theorem, for any symmetric matrixX of Rk(X) ≤
k, there exists an orthogonal transformation mapping X to a diagonal ma-
trix X ′ with at most k non-zero entries on the diagonal (being eigenvalues
of X by the way). For diagonal matrices, the ‖.‖Fro matrix norm coin-
cides with the ‖.‖2 vector norm of the diagonal of the matrix. Finally by

60 Applications to Sparse and Low Rank Approximation

applying the vector case Lemma 3.2 for the diagonal of X ′, we obtain that
f(X) = f(X ′) ≥ 1

k .

To see that the minimum can indeed be attained, one again chooses
the “uniform” example X := 1

k Ik ∈ S, being the matrix consisting of k
non-zero entries (of 1

k each) on the diagonal. This gives f(X) = 1
k .

Recall from Section 3.4.1 that for convex problems of the form (3.5)
over the Spectahedron, the duality gap is the non-negative value g(X) :=
f(X)−ω(X) = X •∇f(X)−λmin(∇f(X)). Also, by weak duality as given
in Lemma 2.1, this value is always an upper bound for the primal error,
that is f(X)− f(X∗) ≤ g(X) ∀X.

Lemma 3.14. For f(X) := ‖X‖2Fro, and any k ∈ N, k < n, it holds that

g(X) ≥ 1

k
∀X ∈ S s.t. Rk(X) ≤ k.

Proof. g(X) = λmax(−∇f(X)) +X • ∇f(X) = −λmin(X) +X • 2X. We
now use that λmin(X) = 0 for all symmetric PSD matrices X that are not
of full rank n, and that by Lemma 3.13, we have X • X = Tr(XTX) =
f(X) ≥ 1

k .

The Curvature. We will compute the curvature Cf of our function f(X) :=
X •X, showing that Cf = 2 in this case. Using the definition (2.7), and
the fact that here

f(Y)− f(X)− (Y −X) • ∇f(X)
= Y • Y −X •X − (Y −X) • 2X

= ‖X − Y ‖2Fro ,

one obtains that Cf = supX,Y ∈S ‖X − Y ‖2Fro = diamFro(S)2 = 2. Finally
the following Lemma 3.15 shows that the diameter is indeed 2.

Lemma 3.15 (Diameter of the Spectahedron).

diamFro(S)2 = 2 .

Proof. Using the fact that the spectahedron S is the convex hull of the
rank-1 matrices of unit trace, see Lemma 3.8, we know that the diameter
must be attained at two vertices of S, i.e. u, v ∈ Rn with ‖u‖2 = ‖v‖2 = 1,
and

Semidefinite Optimization with `∞-Bounded Diagonal 61

∥∥vvT − uuT∥∥2

Fro

= vvT • vvT + uuT • uuT − 2vvT • uuT
= vT vvT v + uTuuTu− 2uT vvTu

= ‖v‖4 + ‖u‖4 − 2(uT v)2 .

Clearly, this quantity is maximized if u and v are orthogonal.

Note: We could also study f(X) := γ ‖X‖2Fro instead, for some γ > 0.
This function has curvature constant Cf = 2γ, and for this scaling our

above lower bounds will also just scale linearly, giving
Cf
k instead of 1

k .

3.5. Semidefinite Optimization with
`∞-Bounded Diagonal

Here we specialize our general Algorithm 1 to semidefinite optimization
problems where all diagonal entries are individually constrained. This will
result in a new optimization method that can also be applied to max-norm
optimization problems, which we will discuss in more detail in Chapter 4.
As in the previous Section 3.4, here we also consider matrix optimization
problems over the space X = Sn×n of symmetric matrices, equipped with
the standard Frobenius inner product 〈X,Y 〉 = X • Y .

Formally, we consider the following special case of the general optimiza-
tion problems (2.1), i.e.

minimize
X∈Sn×n

f(X)

s.t. Xii ≤ 1 ∀i,
X � 0 .

(3.12)

We will write � := {X ∈ Sn×n |X � 0, Xii ≤ 1 ∀i} for the feasible set
in this case, that is the PSD matrices whose diagonal entries are all upper
bounded by one. This class of optimization problems has become widely
known for the linear objective case when f(X) = A • X, if A being the
Laplacian matrix of a graph. In this case, one obtains the standard SDP
relaxation of the Max-Cut problem [GW95], which we will briefly discuss
below. Also, this optimization domain is strongly related to the matrix
max-norm, which we study in more detail in Section 4.3.

Our general optimization Algorithm 1 directly applies to this specialized
class of optimization problems as well, in which case it becomes the method
depicted in the following Algorithm 7.

62 Applications to Sparse and Low Rank Approximation

Algorithm 7 Sparse Greedy for Max-Norm Bounded Semidefinite Opt.

Input: Convex function f with curvature Cf , target accuracy ε
Output: ε-approximate solution for problem (3.12)
Set X(0) := vvT for an arbitrary unit length vector v ∈ Rn.
for k = 0 . . .∞ do

Let α := 2
k+2

Compute S := ApproxLinear
(
∇f(X(k)),�, αCf

)
Update X(k+1) := X(k) + α(S −X(k))

end for

The Linearized Problem. Here, the internal subproblem ApproxLinear()
of approximately minimizing a linear function over the domain � of PSD
matrices is a non-trivial task. Every call of ApproxLinear(A,�, ε′) in
fact means that we have to solve a semidefinite program minY ∈� Y •A for
a given matrix A, or in other words

minimize
Y

Y •A
s.t. Yii ≤ 1 ∀i,

Y � 0

(3.13)

up to an additive approximation error of ε′ = αCf .

Relation to Max-Cut. In [AHK05, Kal07], the same linear problem is de-
noted by (MaxQP). In the special case that A is chosen as the Laplacian
matrix of a graph, then the above SDP is widely known as the standard
SDP relaxation of the Max-Cut problem [GW95] (not to be confused with
the combinatorial Max-Cut problem itself, which is known to be NP-hard).
In fact the original relaxation uses equality constraints Yii = 1 on the di-
agonal instead, but for any matrix A of positive diagonal entries (such as
e.g. a graph Laplacian), this condition follows automatically in the max-
imization variant of (3.13), see [KL96], or also [GM11, Kal07] for more
background.

Duality and Duality of Norms. In Section 4.3 we will see that the above
quantity (3.13) that determines both the step in our greedy Algorithm 7,
but also the duality gap, is in fact the norm of A that is dual to the matrix
max-norm.

Additionally, in the appendix Section A.7 we will explain that also for
optimization problems of the form (3.12), the poor-man’s duality given by

Semidefinite Optimization with `∞-Bounded Diagonal 63

the linearization here (see also Section 2.2) indeed coincides with classical
Wolfe-duality from the optimization literature.

Fortunately, it was shown by [AHK05] that also this linearized convex
optimization problem (3.13) — and therefore also our internal procedure
ApproxLinear(.) — can be solved relatively efficiently, if the matrix A
(i.e. ∇f(X) in our case) is sparse.3

Theorem 3.16. The algorithm of [AHK05] delivers an additive ε′-approx-
imation to the linearized problem (3.13) in time

Õ

(
n1.5L2.5

ε′2.5
NA

)
where the constant L > 0 is an upper bound on the maximum value of
Y •A over Y ∈ �, and NA is the number of non-zeros in A.

Proof. The results of [AHK05, Theorem 3] and [Kal07, Theorem 33] give a

running time of order Õ
(
n1.5

ε2.5 ·min
{
N, n

1.5

εα∗

})
to obtain a multiplicative

(1− ε)-approximation, where α∗ is the value of an optimal solution. For-
mally we obtain S ∈ � with S •A ≥ (1− ε)α∗. In other words by using an

accuracy of ε := ε′

α∗ , we obtain an additive ε′-approximation to (3.13).

Here the notation Õ(.) again suppresses poly-logarithmic factors in n,
and N is the number of non-zero entries of the matrix A. Note that analo-
gous to the approximate eigenvector computation for Hazan’s Algorithm 6,
we need the assumption that the linear function given by Y • ∇f(X) is
bounded over the domain Y ∈ �. However this is a reasonable assump-
tion, as our function has bounded curvature Cf (corresponding to ∇f(X)
being Lipschitz-continuous over the domain �), and the diameter of � is
bounded.

The reason we need an absolute approximation quality lies in the anal-
ysis of Algorithm 1, even if it would feel much more natural to work with
relative approximation quality in many cases.

3Also, Kale in [Kal07, Theorem 14] has shown that this problem can be solved very
efficiently if the matrix A = −∇f(X) is sparse. Namely if A is the Laplacian
matrix of a weighted graph, then a multiplicative ε-approximation to (3.13) can be

computed in time Õ(∆2

d2
NA) time, where NA is the number of non-zero entries of

the matrix A. Here ∆ is the maximum entry on the diagonal of A, and d is the
average value on the diagonal.

64 Applications to Sparse and Low Rank Approximation

Convergence. The convergence result for the general Algorithm 1 di-
rectly gives us the analysis for the specialized algorithm here. Note that
the curvature over the domain � here is given by

Cf := sup
X,V ∈�, α∈[0,1],
Y=X+α(V−X)

1
α2

(
f(Y)− f(X) + (Y −X) • ∇f(X)

)
. (3.14)

Theorem 3.17. For each k ≥ 1, the iterate X(k) of Algorithm 7 satisfies

f(X(k))− f(X∗) ≤ 8Cf
k + 2

.

where X∗ ∈ S is an optimal solution to problem (3.12).

Furthermore, after at most 2
⌈

8Cf
ε

⌉
+ 1 = O(1

ε) many steps, it has an

iterate X(k) with g(X(k)) ≤ ε.

Proof. This is a corollary of Theorem 2.3 and Theorem 2.5.

Applications. The new algorithm can be used to solve arbitrary max-
norm constrained convex optimization problems, such as max-norm reg-
ularized matrix completion problems, which we will study in the next
Chapter 4.

3.6. Sparse Semidefinite Optimization

Another interesting optimization domain among the semidefinite matrices
is given by the matrices with only one non-zero off-diagonal entry. Here
we specialize our general Algorithm 1 to convex optimization over the
convex hull given by such matrices. Our algorithm will therefore obtain
ε-approximate solutions given by only O

(
1
ε

)
such sparse matrices, or in

other words solutions of sparsity O
(

1
ε

)
.

Why bother? The same sparse matrices are also used in the graph spar-
sification approach by [BSS09]4. Furthermore, sparse solutions to convex
matrix optimization problems have gained interest in dimensionality re-
duction, as in sparse PCA, see [ZdG10] for an overview.

4The theoretical result of [BSS09] guarantees that all eigenvalues of the resulting sparse
matrix (corresponding to the Laplacian of a sparse graph) do not differ too much
from their counterparts in the original graph.

Sparse Semidefinite Optimization 65

Setup. Formally, here we again use the standard Frobenius inner prod-
uct 〈X,Y 〉 = X • Y over the symmetric matrices Sn×n, and consider the

sparse PSD matrices given by P (ij) := (ei + ej)(ei + ej)
T =

(· · · · ·
· 1 · 1 ·
· · · · ·
· 1 · 1 ·
· · · · ·

)
,

for any fixed pair of indices i, j ∈ [n], i 6= j. In other words P
(ij)
uv = 1

for u ∈ {i, j}, v ∈ {i, j}, and zero everywhere else. We also consider
the analogous “negative” counterparts of such matrices, namely N (kl) :=

(ei−ej)(ei−ej)
T =

(· · · · ·
· 1 · −1 ·
· · · · ·
· −1 · 1 ·
· · · · ·

)
, i.e. N

(ij)
uv = −1 for the two off-diagonal

entries (u, v) ∈ {(i, j), (j, i)}, and N
(ij)
uv = 1 for the two diagonal entries

(u, v) ∈ {(i, i), (j, j)}, and zero everywhere else.

Analogously to the two previous applications of our method to semidef-
inite optimization, we now optimize a convex function, i.e.

minimize
X∈S4

sparse

f(X) (3.15)

over the domain

D = S4
sparse := conv

⋃
ij

P (ij) ∪
⋃
ij

N (ij)

 .

Optimizing over Sparse Matrices, and Solving the Linearization. Ap-
plying our general Algorithm 1 to this class of problems (3.15) becomes
very simple, as the linear primitive problem ExactLinear

(
DX ,S4

sparse

)
for any fixed matrix DX ∈ Sn×n is easily solved over S4

sparse. From our
simple Lemma 2.8 on linear functions over convex hulls, we know that this
linear minimum is attained by the single sparse matrix P (ij) or N (ij) that
maximizes the inner product with −DX . The optimal pair of indices (k, l)
can be found by a linear pass through the gradient DX = ∇f(X). This
means that the linearized problem is much easier to solve than in the above
two Sections 3.4 and 3.5. Altogether, Algorithm 1 will build approximate
solutions X(k), each of which is a convex combination of k of the atomic
matrices P (ij) or N (ij), as formalized in the following theorem:

Theorem 3.18. Let n ≥ 2 and let X(0) := P (12) be the starting point.
Then for each k ≥ 1, the iterate X(k) of Algorithm 1 has at most 4(k+ 1)
non-zero entries, and satisfies

f(X(k))− f(X∗) ≤ 8Cf
k + 2

.

66 Applications to Sparse and Low Rank Approximation

where X∗ ∈ S4
sparse is an optimal solution to problem (3.15).

Furthermore, for any ε > 0, after at most 2
⌈

8Cf
ε

⌉
+ 1 = O

(
1
ε

)
many

steps, it has an iterate X(k) of only O
(

1
ε

)
many non-zero entries, satisfying

g(X(k)) ≤ ε.

Proof. This is a corollary of Theorem 2.3 and Theorem 2.5. The spar-
sity claim follows from our observation that the step directions given by
ExactLinear

(
∇f(X),S4

sparse

)
are always given by one of the sparse ma-

trices P (ij) or N (ij).

Optimizing over Non-Negative Matrix Factorizations. We also consider
the slight variant of (3.15), namely optimizing only over one of the two
types of matrices as the domain D, i.e. only combinations of positive
P (ij) or only of negative N (ij). This means that the domain is given by

D = S4+
sparse := conv

(⋃
ij P

(ij)
)

or D = S4−
sparse := conv

(⋃
ij N

(ij)
)

. The

above analysis for Algorithm 1 holds in exactly the same way. Now for
S4+

sparse, each step direction s = s(k) used by the algorithm is given by

s = P (ij) = (ei + ej)(ei + ej)
T for some i, j, and so we have that each

of the approximations X(k) is a sum of k many positive rank-1 factors
of this form. In other words in each step k, X(k) = LRT is a product
of two (entry-wise) non-negative matrices of at most k columns each, i.e.
L ∈ Rn×k and Rn×k. Consequently, our algorithm provides solutions that
are non-negative matrix factorizations, which is a successful technique in
matrix completion problems from recommender systems, see e.g. [Wu07].

Relation to Bounded Trace and Diagonally Dominant Matrices. Ob-
serve the matrices in S4

sparse form a subset of the bounded trace PSD
matrices S that we studied in the previous Section 3.4, since every matrix
P (ij) or N (ij) is PSD and has trace equal two. Furthermore, we observe
that all matrices X ∈ S4

sparse are diagonally dominant, meaning that

|Xii| ≥
∑
j 6=i
|Xij | ∀i ∈ [n]

In the case that we restrict to using only one of the two types of matri-
ces S4+

sparse or S4−
sparse as the domain, then we have that equality |Xii| =∑

j 6=i |Xij | always holds, since this equality is preserved under taking con-

vex combinations, and holds for the atomic matrices P (ij) and N (ij).

Submodular Optimization 67

The Curvature. The above reasoning also implies that the curvature Cf
for problems of the form (3.15) is upper bounded by the curvature in the
spectahedron-case as given in (3.7), since S4+

sparse ⊆ S4
sparse ⊆ 2 · S.

Applications and Future Research. Computationally, the approach here
looks very attractive, as the cost of a “sparse” step here is much cheaper
than an approximate eigenvector computation which is needed in the
bounded trace case as explained in Section 3.4.

Also, it will be interesting to see how a regularization by constraining to
a scaled domain S4

sparse or S4+
sparse will perform in practical machine learning

applications as for example dimensionality reduction, compared to nuclear
norm regularization that we will discuss in the following Chapter 4.

It also remains to investigate further on whether we can approximate
general bounded trace semidefinite problems of the form (3.5) by using
only sparse matrices.

3.7. Submodular Optimization

For a finite ground set S, a real valued function defined on all subsets of
S, is called submodular, if

g(X ∩ Y) + g(X ∪ Y) ≤ g(X) + g(Y) ∀X,Y ⊆ S

For any given submodular function g with g(∅) = 0, the paper [Lov83,
Section 3] introduces a corresponding convex set in R|S|, called the sub-
modular polyhedron (or also Lovasz polyhedron),

Pg :=

{
x ∈ R|S|

∣∣∣∣∣ ∑
i∈T

xi ≤ g(T) ∀T ⊆ S
}

.

We would now like to study convex optimization problems over such do-
mains, which become compact convex sets if we intersect with the positive

orthant, i.e. D := Pg ∩ R|S|≥0.
Nicely for our optimization framework, [Lov83, Section 3] already showed

that there is a simple greedy algorithm which optimizes any linear function
over the domain Pg, i.e. it solves max

x∈Pg
cTx, or in other words it exactly

solves our internal problem ExactLinear (c,Pg).
Lovasz [Lov83] already demonstrated how to use this kind of linear opti-

mization over Pg to solve submodular minimization problems. It remains

68 Applications to Sparse and Low Rank Approximation

to investigate if there are interesting applications for the wider class of
more general convex (non-linear) functions f over such domains, as ad-
dressed by our Algorithm 1.

4
Optimization with the

Nuclear and Max-Norm

Matrix optimization problems with a nuclear norm or max-norm regular-
ization, such as e.g. low norm matrix factorizations, have seen many appli-
cations recently, ranging from low-rank recovery, dimensionality reduction,
to recommender systems. We propose two new first-order approximation
methods building upon two of the simple semidefinite optimizers from the
previous Chapter, that is the approximate SDP solver of [Haz08] from
Section 3.4 on one hand, and our bounded diagonal optimizer from Sec-
tion 3.5 on the other hand. The algorithms come with strong convergence
guarantees.

In contrast to existing methods, our nuclear norm optimizer does not
need any Cholesky or singular value decompositions internally, and pro-
vides guaranteed approximations that are simultaneously of low rank. The
method is free of tuning parameters, and easy to parallelize.

4.1. Introduction

In this chapter we consider convex optimization problems over matrices,
which come with a regularization on either the nuclear norm or the max-
norm of the optimization variable.

69

70 Optimization with the Nuclear and Max-Norm

Convex optimization with the nuclear norm has become a very success-
ful technique in various machine learning, computer vision and compressed
sensing areas such as low-rank recovery [FHB01, CR09, CT10], dimension-
ality reduction (such as robust principal component analysis [CLMW11]),
and also recommender systems and matrix completion. Here matrix fac-
torizations [SRJ04, KBV09] — regularized by the nuclear or max-norm —
have gained a lot of attention with the recently ended Netflix Prize com-
petition. Many more applications of similar optimization problems can be
found among dimensionality reduction, matrix classification, multi-task
learning, spectral clustering and others. The success of these methods is
fueled by the property of the nuclear norm being a natural convex relax-
ation of the rank, allowing the use of scalable convex optimization tech-
niques.

Based on the semidefinite optimization methods that we have presented
in the above Sections 3.4 and 3.5, we propose two new, yet simple, first-
order algorithms for nuclear norm as well as max-norm regularized convex
optimization.

For the nuclear norm case, our proposed method builds upon the first-
order scheme for semidefinite optimization by [Haz08], which we have in-
vestigated in Section 3.4.1. This approach allows us to significantly reduce
the computational complexity per iteration, and therefore scale to much
larger datasets: While existing methods need an entire and exact singular
value decomposition (SVD) in each step, our method only uses a single
approximate eigenvector computation per iteration, which can be done by
e.g. the power method. A conference version of our work for nuclear norm
regularized problems has appeared in [JS10].

In the same spirit, we will also give a new algorithm with a convergence
guarantee for optimizing with a max-norm regularization. For matrix com-
pletion problems, experiments show that the max-norm can result in an
improved generalization performance compared to the nuclear norm in
some cases [SRJ04, LRS+10].

Nuclear Norm Regularized Convex Optimization. We consider the fol-
lowing convex optimization problems over matrices:

min
Z∈Rm×n

f(Z) + µ ‖Z‖∗ (4.1)

and the corresponding constrained variant

min
Z∈Rm×n, ‖Z‖∗≤ t2

f(Z) (4.2)

Introduction 71

where f(Z) is any differentiable convex function (usually called the loss
function), ‖.‖∗ is the nuclear norm of a matrix, also known as the trace
norm (sum of the singular values, or `1-norm of the spectrum). Here
µ > 0 and t > 0 respectively are given parameters, usually called the
regularization parameter.

The nuclear norm is know as the natural generalization of the (sparsity
inducing) `1-norm for vectors, to the case of semidefinite matrices. When

choosing f(X) := ‖A(X)− b‖22 for some linear map A : Rn×m → Rp,
the above formulation (4.1) is the matrix generalization of the problem

minx∈Rn ‖Ax− b‖22 + µ ‖x‖1, for a fixed matrix A, which is the important
`1-regularized least squares problem, also known as the basis pursuit de-
noising problem in the compressed sensing literature, see also Section 3.2.1.
The analoguous vector variant of (4.2) is the Lasso problem [Tib96] which

is minx∈Rn
{
‖Ax− b‖22

∣∣∣ ‖x‖1 ≤ t}.

Max-Norm Regularized Convex Optimization. Intuitively, one can think
of the matrix max-norm as the generalization of the vector `∞-norm to
PSD matrices. Here we consider optimization problems with a max-norm
regularization, which are given by

min
Z∈Rm×n

f(Z) + µ ‖Z‖max (4.3)

and the corresponding constrained variant being

min
Z∈Rm×n, ‖Z‖max≤t

f(Z) . (4.4)

Our Contribution. Applying our general optimization method from the
previous Chapters 2 and 3, we present a much simpler algorithm to solve
problems of the form (4.2), which does not need any internal SVD com-
putations. The same approach will also solve the max-norm regularized
problems (4.4). We achieve this by transforming the problems to the con-
vex optimization setting over positive semidefinite matrices which we have
studied in the above Sections 3.4.1 and 3.5.

Our new approach has several advantages for nuclear norm optimiza-
tion when compared to the existing algorithms such as “proximal gradient”
methods (APG) and “singular value thresholding” (SVT), see e.g. [GLW+09,
CCS10, TY10, JY09], and also in comparison to the alternating-gradient-
descent-type methods (as e.g. [RS05, Lin07]).

72 Optimization with the Nuclear and Max-Norm

i) By employing the approximate SDP solver by [Haz08], see Algo-
rithm 6, we obtain a guaranteed ε-approximate solution Z after
O
(

1
ε

)
iterations. Crucially, the resulting solution Z is simultane-

ously of low rank, namely rank O
(

1
ε

)
. Also the algorithm main-

tains a compact representation of Z in terms of a low-rank matrix
factorization Z = LRT (with the desired bounded nuclear norm),
and can therefore even be applied if the full matrix Z would be far
too large to even be stored.

ii) Compared to the alternating-gradient-descent-type methods from
machine learning, we overcome the problem of working with non-
convex formulations of the form f(LRT), which is NP-hard, and
instead solve the original convex problem in f(Z).

iii) The total running time of our algorithm for nuclear norm problems
grows linear in the problem size, allows to take full advantage of
sparse problems such as e.g. for matrix completion. More precisely,

the algorithm runs in time O
(
Nf
ε1.5

)
, where Nf is the number of

matrix entries on which the objective function f depends. Per it-
eration, our method consists of only a single approximate (largest)
eigenvector computation, allowing it to scale to any problem size
where the power method (or Lanczos’ algorithm) can still be ap-
plied. This also makes the method easy to implement and to par-
allelize. Existing APG/SVT methods by contrast need an entire
SVD in each step, which is significantly more expensive.

iv) On the theory side, our simple convergence guarantee of O
(

1
ε

)
steps holds even if the used eigenvectors are only approximate. In
comparison, those existing methods that come with a convergence
guarantee do require an exact SVD in each iteration, which might
not always be a realistic assumption in practice.

We demonstrate that our new algorithm on standard datasets improves
over the state of the art methods, and scales to large problems such as
matrix factorizations on the Netflix dataset.

Hazan’s Algorithm 6 can be interpreted as the generalization of the
coreset approach to problems on symmetric matrices, which we have ex-
plained in the previous Section 3.4.1. Compared to the O(1/

√
ε) conver-

gence methods in the spirit of [Nes83, Nes07a], our number of steps is
larger, which is however more than compensated by the improved step
complexity, being lower by a factor of roughly (n+m).

Our new method for the nuclear norm case can also be interpreted as
a modified, theoretically justified variant of Simon Funk’s popular SVD

Introduction 73

heuristic [Web06] for regularized matrix factorization. To our knowledge
this is the first guaranteed convergence result for this class of alternating-
gradient-descent-type algorithms.

Related Work. For nuclear norm optimization, there are two lines of ex-
isting methods. On the one hand, in the optimization community, [TY10,
LST09], [GLW+09] and [JY09] independently proposed algorithms that
obtain an ε-accurate solution to (4.1) in O(1/

√
ε) steps, by improving the

algorithm of [CCS10]. These methods are known under the names “acceler-
ated proximal gradient” (APG) and “singular value thresholding” (SVT).
More recently also [MHT10] and [MGC09] proposed algorithms along the
same idea. Each step of all those algorithms requires the computation of
the singular value decomposition (SVD) of a matrix of the same size as the
solution matrix, which is expensive even with the currently available fast
methods such as PROPACK. [TY10] and [JY09] and also [GLW+09] show
that the primal error of their algorithm is smaller than ε after O(1/

√
ε)

steps, using an analysis inspired by [Nes83] and [BT09]. For an overview of
related algorithms, we also refer the reader to [CLMW11]. As mentioned
above, the method presented here has a significantly lower computational
cost per iteration (one approximate eigenvector compared to a full exact
SVD), and is also faster in practice on large matrix completion problems.

On the other hand, in the machine learning community, research origi-
nated from matrix completion and factorization [SRJ04], later motivated
by the Netflix prize challenge, getting significant momentum from the fa-
mous blog post by [Web06]. Only very recently an understanding has
formed that many of these methods can indeed by seen as optimizing with
regularization term closely related to the nuclear norm, see Section 4.5.4
and [SS10]. The majority of the currently existing machine learning meth-
ods such as for example [RS05, Lin07] and later also [Pat07, ZWSP08,
KBV09, TPNT09, IR10, GNHS11] are of the type of “alternating” gradi-
ent descent applied to f(LRT), where at each step one of the factors L and
R is kept fixed, and the other factor is updated by a gradient or stochastic
gradient step. Therefore, despite working well in many practical applica-
tions, all these mentioned methods can get stuck in local minima — and
so are theoretically not well justified, see also the discussion in [DeC06]
and our Section 4.4.

The same issue also comes up for max-norm optimization, where for
example [LRS+10] optimize over the non-convex factorization (4.8) for
bounded max-norm. To our knowledge, no algorithm with a convergence
guarantee was known so far.

74 Optimization with the Nuclear and Max-Norm

Furthermore, optimizing with a rank constraint was recently shown to
be NP-hard [GG10]. In practical applications, nearly all approaches for
large scale problems are working over a factorization Z = LRT of bounded
rank, therefore ruling out their ability to obtain a solution in polynomial
time in the worst-case, unless P = NP.

Our new method for both nuclear and max-norm avoids all the above
described problems by solving an equivalent convex optimization problem,
and provably runs in near linear time in the nuclear norm case.

4.2. The Nuclear Norm for Matrices

The nuclear norm ‖Z‖∗ of a rectangular matrix Z ∈ Rm×n, also known
as the trace norm or Ky Fan norm, is given by the sum of the singular
values of Z, which is equal to the `1-norm of the singular values of Z
(because singular values are always non-negative). Therefore, the nuclear
norm is often called the Schatten `1-norm. In this sense, it is a natural
generalization of the `1-norm for vectors which we have studied earlier.

The nuclear norm has a nice equivalent characterization in terms of
matrix factorizations of Z, i.e.

‖Z‖∗ := min
LRT=Z

1

2

(
‖L‖2Fro + ‖R‖2Fro

)
, (4.5)

where the number of columns of the factors L ∈ Rm×k and Rn×k is not
constrained [FHB01, SRJ04]. In other words, the nuclear norm constrains
the average Euclidean row or column norms of any factorization of the
original matrix Z.

Furthermore, the nuclear norm is dual to the standard spectral matrix
norm (i.e. the matrix operator norm), meaning that

‖Z‖∗ = max
B,‖B‖spec≤1

B • Z ,

see also [RFP10]. Recall that ‖B‖spec is defined as the first singular value
σ1(B) of the matrix B.

Similarly to the property of the vector ‖.‖1-norm being the best convex
approximation to the sparsity of a vector, as we discussed in Section 3.2
the nuclear norm is the best convex approximation of the matrix rank.
More precisely, ‖.‖∗ is the convex envelope of the rank [FHB01], meaning
that it is the largest convex function that is upper bounded by the rank on

the convex domain of matrices
{
Z
∣∣∣ ‖Z‖spec ≤ 1

}
. This motivates why

The Nuclear Norm for Matrices 75

the nuclear norm is widely used as a proxy function (or convex relaxation)
for rank minimization, which otherwise is a hard combinatorial problem.

Its relation to semidefinite optimization — which explains why the nu-
clear norm is often called the trace norm — is that

‖Z‖∗ = minimize
V,W

t

s.t.

(
V Z
ZT W

)
� 0 and

Tr(V) + Tr(W) ≤ 2t .

(4.6)

Here the two optimization variables range over the symmetric matri-
ces V ∈ Sm×m and W ∈ Sn×n. This semidefinite characterization will
in fact be the central tool for our algorithmic approach for nuclear norm
regularized problems in the following. The equivalence of the above charac-
terization to the earlier “factorization” formulation (4.5) is a consequence
of the following simple Lemma 4.1. The Lemma gives a correspondence
between the (rectangular) matrices Z ∈ Rm×n of bounded nuclear norm
on one hand, and the (symmetric) PSD matrices X ∈ S(m+n)×(m+n) of
bounded trace on the other hand.

Lemma 4.1 ([FHB01, Lemma 1]). For any non-zero matrix Z ∈ Rm×n and
t ∈ R, it holds that

‖Z‖∗ ≤
t

2
if and only if

∃ symmetric matrices V ∈ Sm×m,W ∈ Sn×n

s.t.

(
V Z
ZT W

)
� 0 and Tr(V) + Tr(W) ≤ t .

Proof. ⇒ Using the characterization (4.5) of the nuclear norm ‖Z‖∗ =

minLRT=Z
1
2 (‖L‖2Fro+‖R‖2Fro) we get that ∃ L,R, LRT = Z s.t. ‖L‖2Fro+

‖R‖2Fro = Tr(LLT) + Tr(RRT) ≤ t, or in other words we have found a

matrix
(
LLT Z
ZT RRT

)
= (LR)(LR)T � 0 of trace ≤ t.

⇐ As the matrix
(
V Z
ZT W

)
is symmetric and PSD, it can be (Cholesky)

factorized to (L;R)(L;R)T s.t. LRT = Z and t ≥ Tr(LLT) + Tr(RRT) =

‖L‖2Fro + ‖R‖2Fro, therefore ‖Z‖∗ ≤ t
2 .

Interestingly, for characterizing bounded nuclear norm matrices, it does
not make any difference whether we enforce an equality or inequality con-
straint on the trace. This fact will turn out to be useful in order to apply
our Algorithm 6 later on.

76 Optimization with the Nuclear and Max-Norm

Corollary 4.2. For any non-zero matrix Z ∈ Rm×n and t ∈ R, it holds that

‖Z‖∗ ≤
t

2

if and only if

∃ symmetric matrices V ∈ Sm×m,W ∈ Sn×n

s.t.

(
V Z
ZT W

)
� 0 and Tr(V) + Tr(W) = t .

Proof. ⇒ From Lemma 4.1 we obtain a matrix
(
V Z
ZT W

)
=: X � 0 of

trace say s ≤ t. If s < t, we add (t− s) to the top-left entry of V , i.e. we
add to X the PSD rank-1 matrix (t − s)e1e

T
1 (which again gives a PSD

matrix). ⇐ follows directly from Lemma 4.1.

4.2.1. Weighted Nuclear Norm

A promising weighted nuclear norm regularization for matrix completion
was recently proposed by [SS10]. For fixed weight vectors p ∈ Rm, q ∈ Rn,
the weighted nuclear norm ‖Z‖nuc(p,q) of Z ∈ Rm×n is defined as

‖Z‖nuc(p,q) := ‖PZQ‖∗ ,

where P = diag(
√
p) ∈ Rm×m denotes the diagonal matrix whose i-th

diagonal entry is
√
pi, and analogously for Q = diag(

√
q) ∈ Rn×n. Here

p ∈ Rm is the vector whose entries are the probabilities p(i) > 0 that the
i-th row is observed in the sampling Ω. Analogously, q ∈ Rn contains the
probability q(j) > 0 for each column j. The opposite weighting (using 1

p(i)

and 1
q(j) instead of p(i),q(j)) has also been suggested by [WKS08].

Any optimization problem with a weighted nuclear norm regularization

min
Z∈Rm×n, ‖Z‖nuc(p,q)≤ t/2

f(Z) (4.7)

and arbitrary loss function f can therefore be formulated equivalently over
the domain ‖PZQ‖∗ ≤ t/2, such that it reads as (if we substitute Z̄ :=
PZQ),

min
Z̄∈Rm×n,‖Z̄‖∗≤ t/2

f(P−1Z̄Q−1).

Hence, we have reduced the task to our standard convex problem (4.2) for

f̂ that here is defined as

f̂(X) := f(P−1Z̄Q−1),

The Max-Norm for Matrices 77

where X =:
(
V Z̄
Z̄TW

)
. This equivalence implies that any algorithm solv-

ing (4.2) also serves as an algorithm for weighted nuclear norm regulariza-
tion. In particular, Hazan’s Algorithm 6 does imply a guaranteed approx-
imation quality of ε for problem (4.7) after O

(
1
ε

)
many rank-1 updates,

as we discussed in Section 3.4. So far, to the best of our knowledge, no
approximation guarantees were known for the weighted nuclear norm.

We will discuss solution path algorithms (maintaining approximation
guarantees when the regularization parameter t changes) also for the weighted
nuclear norm case in Chapter 7.

4.3. The Max-Norm for Matrices

We think of the matrix max-norm as a generalization of the vector `∞-
norm to the case of positive semidefinite matrices, which we have studied
before.

In some matrix completion applications, the max-norm has been ob-
served to provide solutions of better generalization performance than the
nuclear norm [SRJ04]. Both matrix norms can be seen as a convex surro-
gate of the rank [SS05].

The max-norm ‖Z‖max of a rectangular matrix Z ∈ Rm×n has a nice
characterization in terms of matrix factorizations of Z, i.e.

‖Z‖max := min
LRT=Z

max{‖L‖22,∞ , ‖R‖22,∞} , (4.8)

where the number of columns of the factors L ∈ Rm×k and Rn×k is not
constrained [LRS+10]. Here ‖L‖2,∞ is the maximum `2-norm of any row

Li: of L, that is ‖L‖2,∞ := maxi ‖Li:‖2 = maxi
√∑

k L
2
ik. Compared to

the nuclear norm, we therefore observe that the max-norm constrains the
maximal Euclidean row-norms of any factorization of the original matrix
Z, see also [SS05]. 1

An alternative formulation of the max-norm was given by [LMSS07]
and [SS05], stating that

‖Z‖max = min
LRT=Z

(max
i
||Li:||2)(max

i
||Ri:||2) .

1Note that the max-norm does not coincide with the matrix norm induced by the

vector ‖.‖∞-norm, that is ‖Z‖∞ := supx 6=0
‖Zx‖∞
‖x‖∞

. The latter matrix norm by

contrast is known to be the maximum of the row sums of Z (i.e. the `1-norms of
the rows).

78 Optimization with the Nuclear and Max-Norm

The dual norm to the max-norm, as given in [SS05], is

‖Z‖∗max = max
‖Y ‖max≤1

Z • Y

= max
k,

li∈Rk,‖li‖2≤1

rj∈Rk,‖rj‖2≤1

∑
i,j

Zij l
T
i rj ,

where the last equality follows from the characterization (4.8).
The relation of the max-norm to semidefinite optimization — which also

explains the naming of the max-norm — is that

‖Z‖max = minimize
V,W

t

s.t.

(
V Z
ZT W

)
� 0 and

Vii ≤ t ∀i ∈ [m],
Wii ≤ t ∀i ∈ [n]

(4.9)

Here the two optimization variables range over the symmetric matrices
V ∈ Sm×m and W ∈ Sn×n, see for example [LRS+10]. As already in
the nuclear norm case, this semidefinite characterization will again be the
central tool for our algorithmic approach for max-norm regularized prob-
lems in the following. The equivalence of the above characterization to
the earlier “factorization” formulation (4.8) is a consequence of the follow-
ing simple Lemma 4.3. The Lemma gives a correspondence between the
(rectangular) matrices Z ∈ Rm×n of bounded max-norm on one hand, and
the (symmetric) PSD matrices X ∈ S(m+n)×(m+n) of uniformly bounded
diagonal on the other hand.

Lemma 4.3. For any non-zero matrix Z ∈ Rn×m and t ∈ R:

‖Z‖max ≤ t
if and only if

∃ symmetric matrices V ∈ Sm×m,W ∈ Sn×n

s.t.

(
V Z
ZT W

)
� 0 and

Vii ≤ t ∀i ∈ [m],
Wii ≤ t ∀i ∈ [n]

Proof. ⇒ Using the characterization (4.8) of the max-norm, i.e. ‖Z‖max =

minLRT=Z max{‖L‖22,∞ , ‖R‖22,∞}, we get that there exist L,R with LRT =

Z, s.t. max{‖L‖22,∞ , ‖R‖22,∞} = max{maxi ‖Li:‖22 ,maxi ‖Ri:‖22} ≤ t, or

in other words we have found a matrix
(
LLT Z
ZT RRT

)
= (L;R)(L;R)T � 0

where every diagonal element is at most t, that is ‖Li:‖22 = (LLT)ii ≤

Optimizing with Bounded Nuclear Norm and Max-Norm 79

t ∀i ∈ [m], and ‖Ri:‖22 = (RRT)ii ≤ t ∀i ∈ [n].
⇐ As the matrix

(
V Z
ZT W

)
is symmetric and PSD, it can be (Cholesky)

factorized to (L;R)(L;R)T s.t. LRT = Z and ‖Li:‖22 = (LLT)ii ≤ t ∀i ∈
[m] and ‖Ri:‖22 = (RRT)ii ≤ t ∀i ∈ [n], which implies ‖Z‖max ≤ t.

4.4. Optimizing with Bounded Nuclear Norm
and Max-Norm

Most of the currently known algorithms for matrix factorizations as well
as nuclear norm or max-norm regularized optimization problems, such
as (4.1), (4.2), (4.3) or (4.4), do suffer from the following problem:

In order to optimize the convex objective function f(Z) while controlling
the norm ‖Z‖∗ or ‖Z‖max, the methods instead try to optimize f(LRT),
with respect to both factors L ∈ Rm×k and R ∈ Rn×k, with the corre-
sponding regularization constraint imposed on L and R. This approach is
of course very tempting, as the constraints on the factors — which orig-
inate from the matrix factorization characterizations (4.5) and (4.8) —
are simple and in some sense easier to enforce.

Unhealthy Side-Effects of Factorizing. However, there is a significant
price to pay: Even if the objective function f(Z) is convex in Z, the very
same function expressed as a function f(LRT) of both the factor variables
L and R becomes a severely non-convex problem, naturally consisting of a
large number of saddle-points (consider for example just the smallest case
L,R ∈ R1×1 together with the identity function f(Z) = Z ∈ R).

The majority of the currently existing methods such as for example [RS05,
Lin07] and later also [Pat07, ZWSP08, KBV09, TPNT09, IR10, GNHS11]
is of this “alternating” gradient descent type, where at each step one of
the factors L and R is kept fixed, and the other factor is updated by e.g.
a gradient or stochastic gradient step. Therefore, despite working well in
many practical applications, all these mentioned methods can get stuck
in local minima — and so are theoretically not well justified, see also the
discussion in [DeC06].

The same issue also comes up for max-norm optimization, where for
example [LRS+10] optimize over the non-convex factorization (4.8) for
bounded max-norm.

Concerning the fixed rank of the factorization, [GG10] have shown that
finding the optimum under a rank constraint (even if the rank is one) is

80 Optimization with the Nuclear and Max-Norm

NP-hard (here the used function f was the standard squared error on an
incomplete matrix). On the positive side, [BM03] have shown that if the
rank k of the factors L and R exceeds the rank of the optimum solution
X∗, then — in some cases — it can be guaranteed that the local minima
(or saddle points) are also global minima. However, in nearly all practi-
cal applications it is computationally infeasible for the above mentioned
methods to optimize with the rank k being in the same order of magnitude
as the original matrix size m and n (as e.g. in the Netflix problem, such
factors L,R could possibly not even be stored on a single machine2).

Relief: Optimizing Over an Equivalent Convex Problem. Here we sim-
ply overcome this problem by using the transformation to semidefinite ma-
trices, which we have outlined in the above Corollary 4.2 and Lemma 4.3.
These bijections of bounded nuclear and max-norm matrices to the PSD
matrices over the corresponding natural convex domains do allow us to
directly optimize a convex problem, avoiding the factorization problems
explained above. We describe this simple trick formally in the next two
Subsections 4.4.1 and 4.4.2.

But what if you really need a Matrix Factorization? In some applica-
tions (such as for example embeddings or certain collaborative filtering
problems) of the above mentioned regularized optimization problems over
f(Z), one would still want to obtain the solution (or approximation) Z
in a factorized representation, that is Z = LRT . We note that this is
also straight-forward to achieve when using our transformation: An ex-
plicit factorization of any feasible solution to the transformed problem (3.5)
or (3.12) — if needed — can always be directly obtained since X � 0.

Alternatively, algorithms for solving the transformed problem (3.5) can
directly maintain the approximate solution X in a factorized representa-
tion (as a sum of rank-1 matrices), as achieved for example by Algorithms 6
and 7.

4.4.1. Optimization with a Nuclear Norm Regularization

Having Lemma 4.1 at hand, we immediately get to the crucial observation
of this section, allowing us to apply Algorithm 6:

2Algorithm 6 in contrast does never need to store a full estimate matrix X, but
instead just keeps the rank-1 factors v obtained in each step, maintaining a factorized
representation of X.

Optimizing with Bounded Nuclear Norm and Max-Norm 81

Any optimization problem over bounded nuclear norm matrices (4.2) is
in fact equivalent to a standard bounded trace semidefinite problem (3.5).
The same transformation also holds for problems with a bound on the
weighted nuclear norm, as given in (4.7).

Corollary 4.4. Any nuclear norm regularized problem of the form (4.2) is
equivalent to a bounded trace convex problem of the form (3.5), namely

minimize
X∈S(m+n)×(m+n)

f̂(X)

s.t. Tr(X) = t ,
X � 0

(4.10)

where f̂ is defined by f̂(X) := f(Z) for Z ∈ Rm×n being the upper
right part of the symmetric matrix X. Formally we again think of X ∈
S(n+m)×(n+m) as consisting of the four parts X =:

(
V Z
ZT W

)
with V ∈

Sm×m,W ∈ Sn×n and Z ∈ Rm×n.

Here “equivalent” means that for any feasible point of one problem, we
have a feasible point of the other problem, attaining the same objective
value. The only difference to the original formulation (3.5) is that the
function argument X needs to be rescaled by 1

t in order to have unit
trace, which however is a very simple operation in practical applications.
Therefore, we can directly apply Hazan’s Algorithm 6 for any max-norm
regularized problem as follows:

Algorithm 8 Nuclear Norm Regularized Solver

Input: A convex nuclear norm regularized problem (4.2),
target accuracy ε

Output: ε-approximate solution for problem (4.2)

1. Consider the transformed symmetric problem for f̂ ,
as given by Corollary 4.4

2. Adjust the function f̂ so that it first rescales its argument by t
3. Run Hazan’s Algorithm 6 for f̂(X) over the domain X ∈ S.

Using our analysis of Algorithm 6 from Section 3.4.1, we see that Algo-
rithm 8 runs in time near linear in the number Nf of non-zero entries of the
gradient ∇f . This makes it very attractive in particular for recommender
systems applications and matrix completion, where ∇f is a sparse matrix
(same sparsity pattern as the observed entries), which we will discuss in
more detail in Section 4.5.

82 Optimization with the Nuclear and Max-Norm

Corollary 4.5. After at most O
(

1
ε

)
many iterations (i.e. approximate

eigenvalue computations), Algorithm 8 obtains a solution that is ε close

to the optimum of (4.2). The algorithm requires a total of Õ
(
Nf
ε1.5

)
arith-

metic operations (with high probability).

Proof. We use the transformation from Corollary 4.4 and then rescale all
matrix entries by 1

t . Then result then follows from Corollary 3.12 on
page 56 on the running time of Hazan’s algorithm.

The fact that each iteration of our algorithm is computationally very
cheap — consisting only of the computation of an approximate eigenvector
— strongly contrasts the existing “proximal gradient” and “singular value
thresholding” methods [GLW+09, JY09, MGC09, LST09, CCS10, TY10],
which in each step need to compute an entire SVD. Such a single incom-
plete SVD computation (first k singular vectors) amounts to the same
computational cost as an entire run of our algorithm (for k steps). Fur-
thermore, those existing methods which come with a theoretical guarantee,
in their analysis assume that all SVDs used during the algorithm are exact,
which is not feasible in practice. By contrast, our analysis is rigorous even
if the used eigenvectors are only ε′-approximate.

Another nice property of Hazan’s method is that the returned solution
is guaranteed to be simultaneously of low rank (k after k steps), and that
by incrementally adding the rank-1 matrices vkv

T
k , the algorithm automat-

ically maintains a matrix factorization of the approximate solution.

Also, Hazan’s algorithm, as being an instance of our general framework
from Chapter 2, is designed to automatically stay within the feasible region
S, where most of the existing methods do need a projection step to get back
to the feasible region (as e.g. [Lin07, LST09]), making both the theoretical
analysis and implementation more complicated.

4.4.2. Optimization with a Max-Norm Regularization

The same approach works analogously for the max-norm, by using Lemma 4.3
in order to apply Algorithm 7:

Any optimization problem over bounded max-norm matrices (4.4) is in
fact equivalent to a semidefinite problem (3.12) over the “box” of matrices
where each element on the diagonal is bounded above by t. We think
of this domain as generalizing the positive cube of vectors, to the PSD
matrices.

Optimizing with Bounded Nuclear Norm and Max-Norm 83

Corollary 4.6. Any max-norm regularized problem of the form (4.4) is
equivalent to a bounded diagonal convex problem of the form (3.12), i.e.,

minimize
X∈S(m+n)×(m+n)

f̂(X)

s.t. Xii ≤ 1 ∀i,
X � 0

(4.11)

where f̂ is defined by f̂(X) := f(Z) for Z ∈ Rm×n being the upper right
part of the symmetric matrix X. Formally we again think of any X ∈
S(n+m)×(n+m) as consisting of the four parts X =:

(
V Z
ZT W

)
with V ∈

Sm×m,W ∈ Sn×n and Z ∈ Rm×n.

Again the only difference to the original formulation (3.12) is that the
function argument X needs to be rescaled by 1

t in order to have the diago-
nal bounded by one, which however is a very simple operation in practical
applications. This means we can directly apply Algorithm 7 for any max-
norm regularized problem as follows:

Algorithm 9 Max-Norm Regularized Solver

Input: A convex max-norm regularized problem (4.4),
target accuracy ε

Output: ε-approximate solution for problem (4.4)

1. Consider the transformed symmetric problem for f̂ ,
as given by Corollary 4.6

2. Adjust the function f̂ so that it first rescales its argument by t
3. Run Algorithm 7 for f̂(X) over the domain X ∈ �.

Using the analysis of our new Algorithm 7 from Section 3.4.1, we obtain
the following guarantee:

Corollary 4.7. After
⌈

8Cf
ε

⌉
many iterations, Algorithm 9 obtains a solution

that is ε close to the optimum of (4.4).

Proof. We use the transformation from Corollary 4.6 and then rescale all
matrix entries by 1

t . Then the running time of the algorithm follows from
Theorem 3.17.

Maximum Margin Matrix Factorizations. In the case of matrix comple-
tion, the “loss” function f is defined as measuring the error from X to some

84 Optimization with the Nuclear and Max-Norm

fixed observed matrix, but just at a small fixed set of “observed” positions
of the matrices. As we already mentioned, semidefinite optimization over
X as above can always be interpreted as finding a matrix factorization, as
a symmetric PSD matrix X always has a (unique) Cholesky factorization.

Now for the setting of matrix completion, it is known that the above de-
scribed optimization task under bounded max-norm, can be geometrically
interpreted as learning a maximum margin separating hyperplane for each
user/movie. In other words the factorization problem decomposes into a
collection of SVMs, one for each user or movie, if we think of the corre-
sponding other factor to be fixed for a moment [SRJ04]. We will discuss
matrix completion in more detail in Section 4.5.

Other Applications of Max-Norm Optimization. Apart from matrix
completion, optimization problems employing the max-norm have other
prominent applications in spectral methods, spectral graph properties,
low-rank recovery, and combinatorial problems such as Max-Cut.

4.5. Applications

Our Algorithm 8 directly applies to arbitrary nuclear norm regularized
problems of the form (4.2). Since the nuclear norm is in a sense the most
natural generalization of the sparsity-inducing `1-norm to the case of low
rank matrices (see also the discussion in the previous chapters) there are
many applications of this class of optimization problems.

4.5.1. Robust Principal Component Analysis

One prominent example of a nuclear norm regularized problem in the area
of dimensionality reduction is given by the technique of robust PCA as
introduced by [CLMW11], also called principal component pursuit, which
is the optimization task

min
Z∈Rm×n

‖Z‖∗ + µ ‖M − Z‖1 . (4.12)

Here M ∈ Rm×n is the given data matrix, and ‖.‖1 denotes the entry-wise
`1-norm. By considering the equivalent constrained variant ‖Z‖∗ ≤ t

2
instead, we obtain a problem the form (4.2), suitable for our Algorithm 8.
However, since the original objective function f(Z) = ‖M − Z‖1 is not
differentiable, a smoothed version of the `1-norm has to be used instead.

Applications 85

This situation is analogous to the hinge-loss objective in maximum margin
matrix factorization [SRJ04].

Existing algorithms for robust PCA do usually require a complete (and
exact) SVD in each iteration, as e.g. [TY10, AGI11], and are often harder
to analyze compared to our approach. The first algorithm with a con-
vergence guarantee of O

(
1
ε

)
was given by [AGI11], requiring a SVD com-

putation per step. Our Algorithm 8 obtains the same guarantee in the
same order of steps, but only requires a single approximate eigenvector
computation per step, which is significantly cheaper.

Last but not least, the fact that our algorithm delivers approximate
solutions to (4.12) of rank O

(
1
ε

)
will be interesting for practical dimen-

sionality reduction applications, as it re-introduces the important concept
of low-rank factorizations as in classical PCA. In other words our algorithm
produces an embedding into at most O

(
1
ε

)
many new dimensions, which is

much easier to deal with in practice compared to the full rank n solutions
resulting from the existing solvers for robust PCA, see e.g. [CLMW11] and
the references therein.

We did not yet perform practical experiments for robust PCA, but chose
to demonstrate the practical performance of Algorithm 6 for matrix com-
pletion problems first.

4.5.2. Matrix Completion and Low Norm Matrix
Factorizations

For matrix completion problems as for example in collaborative filtering
and recommender systems [KBV09], our algorithm is particularly suitable
as it retains the sparsity of the observations, and constructs the solution
in a factorized way. In the setting of a partially observed matrix such as
in the Netflix case, the loss function f(X) only depends on the observed
positions, which are very sparse, so ∇f(X) — which is all we need for our
algorithm — is also sparse.

We want to approximate a partially given matrix Y (let Ω be the set of
known training entries of the matrix) by a product Z = LRT such that
some convex loss function f(Z) is minimized. By Ωtest we denote the
unknown test entries of the matrix we want to predict.

Complexity. Just recently it has been shown that the standard low-rank
matrix completion problem — that is finding the best approximation to
an incomplete matrix by the standard `2-norm — is an NP-hard problem,

86 Optimization with the Nuclear and Max-Norm

if the rank of the approximation is constrained. The hardness is claimed
to hold even for the rank 1 case [GG10].

In the light of this hardness result, the advantage of relaxing the rank
by replacing it by the nuclear norm (or max-norm) is even more evident.

Our near linear time Algorithm 8 relies on a convex optimization formu-
lation and does indeed deliver an guaranteed ε-accurate solution for the
nuclear norm regularization, for arbitrary ε > 0. Such a guarantee is lack-
ing for the “alternating” descent heuristics such as [RS05, Lin07, Pat07,
ZWSP08, KBV09, TPNT09, IR10, GNHS11, SS10, LRS+10, RR11] (which
build upon the non-convex factorized versions (4.5) and (4.8) while con-
straining the rank of the used factors L and R).

Different Regularizations. Regularization by the weighted nuclear norm
is observed by [SS10] to provide better generalization performance than
the classical nuclear norm. As it can be simply reduced to the nuclear
norm, see Section 4.2.1, our Algorithm 8 can directly be applied in the
weighted case as well.

On the other hand, experimental evidence also shows that the max-norm
sometimes provides better generalization performance than the nuclear
norm [SRJ04, LRS+10]. For any convex loss function, our Algorithm 9
solves the corresponding max-norm regularized matrix completion task.

Different Loss Functions. Our method applies to any convex loss func-
tion on a low norm matrix factorization problem, and we will only mention
two loss functions in particular:

Maximum Margin Matrix Factorization (MMMF) [SRJ04] can directly
be solved by our Algorithm 8. Here the original (soft margin) formulation
is the trade-off formulation (4.1) with f(Z) :=

∑
ij∈Ω |Zij − yij | being the

hinge or `1-loss. Because this function is not differentiable, the authors
recommend using the differentiable smoothed hinge loss instead.

When using the standard squared loss function f(Z) :=
∑
ij∈Ω(Zij −

yij)
2, the problem is known as Regularized Matrix Factorization [Wu07],

and both our algorithms directly apply. This loss function is widely used
in practice, has a very simple gradient, and is the natural matrix gener-
alization of the `2-loss (notice the analogous Lasso and regularized least
squares formulation). The same function is known as the rooted mean
squared error, which was the quality measure used in the Netflix compe-
tition. We write RMSEtrain and RMSEtest for the rooted error on the
training ratings Ω and test ratings Ωtest respectively.

Applications 87

Running time and memory. From Corollary 4.5 we have that the running
time of our nuclear norm optimization Algorithm 8 is linear in the size of
the input: Each matrix-vector multiplication in Lanczos’ or the power
method exactly costs |Ω| (the number of observed positions of the matrix)
operations, and we know that in total we need at most O

(
1/ε1.5

)
many

such matrix-vector multiplications.
Also the memory requirements are very small: Either we store the entire

factorization of X(k) (meaning the O
(

1
ε

)
many vectors v(k)) — which is

still much smaller than the full matrix X — or then instead we can only

update and store the prediction values X
(k)
ij for ij ∈ Ω∪Ωtest in each step.

This, together with the known ratings yij determines the sparse gradient
matrix ∇f(X(k)) during the algorithm. Therefore, the total memory re-
quirement is only |Ω ∪ Ωtest| (the size of the output) plus the size (n+m)
of a single feature vector v.

The constant Cf in the running time of Algorithm 6. One might ask if
the constant hidden in the O(1

ε) number of iterations is indeed controllable.
Here we show that for the standard squared error on any fixed set of
observed entries Ω, this is indeed the case. For more details on the constant
Cf , we refer the reader to Sections 2.3.4 and 3.4.1.

Lemma 4.8. For the squared error f(Z) = 1
2

∑
ij∈Ω(Zij − yij)2 over the

spectahedron S, it holds that Cf̂ ≤ 1.

Proof. In Lemma 2.6, we have seen that the constant Cf̂ is upper bounded
by half the diameter of the domain, times the largest eigenvalue of the
Hessian ∇2f̂(~X). Here we consider f̂ as a function on vectors ~X ∈ Rn2

corresponding to the matrices X ∈ Sn×n. However for the squared error
as in our case here, the Hessian will be a diagonal matrix. One can di-
rectly compute that the diagonal entries of ∇2f̂(~X) are 1 at the entries
corresponding to Ω, and zero everywhere else. Furthermore, the squared
diameter of the spectahedron is upper bounded by 2, as we have shown in
Lemma 3.15. Therefore Cf̂ ≤ 1 for the domain S.

If the domain is the scaled spectahedron t ·S as used in our Algorithm 8,
then the squared diameter of the domain is 2t2, compare to Lemma 3.15.
This means that the curvature is upper bounded by Cf̂ ≤ t2 in this case.

Alternatively, the same bound for the curvature of f̃(X) := f̂(tX) can
be obtained along the same lines as for the spectahedron domain in the
previous lemma, and the same factor of t2 will be the scaling factor of the
Hessian, resulting from the chain-rule for taking derivatives.

88 Optimization with the Nuclear and Max-Norm

4.5.3. The Structure of the Resulting Eigenvalue
Problems

For the actual computation of the approximate largest eigenvector in Algo-

rithm 6, i.e. the internal procedure ApproxEV
(
−∇f̂(X(k)),

2Cf̂
k+2

)
, either

Lanczos’ method or the power method (as in PageRank, see e.g. [Ber05])
can be used. In our Theorem 3.10 of Section 3.4.1, we stated that both
the power method as well as Lanczos’ algorithm do provably obtain the
required approximation quality in a bounded number of steps if the matrix
is PSD, with high probability, see also [KW92, AHK05].

Both methods are known to scale well to very large problems and can
be parallelized easily, as each iteration consists of just one matrix-vector
multiplication. However, we have to be careful that we obtain the eigen-
vector for the largest eigenvalue which is not necessarily the principal one
(largest in absolute value). In that case the spectrum can be shifted by
adding an appropriate constant to the diagonal of the matrix.

For arbitrary loss function f , the gradient −∇f̂(X), which is the matrix
whose largest eigenvector we have to compute in the algorithm, is always a

symmetric matrix of the block form ∇f̂(X) =

(
0 G
GT 0

)
for G = ∇f(Z),

when X =:

(
V Z
ZT W

)
. In other words ∇f̂(X) is the adjacency matrix

of a weighted bipartite graph. One vertex class corresponds to the n rows
of the original matrix X2 (users in recommender systems), the other class
corresponds to the m columns (items or movies). It is easy to see that the

spectrum of ∇f̂ is always symmetric: Whenever (vw) is an eigenvector for
some eigenvalue λ, then (v

−w) is an eigenvector for −λ.
Hence, we have exactly the same setting as in the established Hubs and

Authorities (HITS) model [Kle99]. The first part of any eigenvector is
always an eigenvector of the hub matrix GTG, and the second part is an
eigenvector of the authority matrix GGT .

Repeated squaring. In the special case that the matrix G is very rect-
angular (n � m or n � m), one of the two square matrices GTG or
GGT is very small. Then it is known that one can obtain an exponen-
tial speed-up in the power method by repeatedly squaring the smaller
one of the matrices, analogously to the “square and multiply”-approach
for computing large integer powers of real numbers. In other words we
can perform O(log 1

ε) many matrix-matrix multiplications instead of O(1
ε)

matrix-vector multiplications.

Applications 89

4.5.4. Relation to Simon Funk’s SVD Method

Interestingly, our proposed framework can also be seen as a theoretically
justified variant of Simon Funk’s [Web06] and related approximate SVD
methods, which were used as a building block by most of the teams par-
ticipating in the Netflix competition (including the winner team). Those
methods have been further investigated by [Pat07, TPNT09] and also [KBC07],
which already proposed a heuristic using the HITS formulation. These
approaches are algorithmically extremely similar to our method, although
they are aimed at a slightly different optimization problem, and do not
directly guarantee bounded nuclear norm. Recently, [SS10] observed that
Funk’s algorithm can be seen as stochastic gradient descent to optimize (4.1)
when the regularization term is replaced by a weighted variant of the nu-
clear norm.

Simon Funk’s method considers the standard squared loss function f̂(X) =
1
2

∑
ij∈S(Xij − yij)2, and finds the new rank-1 estimate (or feature) v by

iterating v := v + λ(−∇f̂(X)v −Kv), or equivalently

v := λ

(
−∇f̂(X) +

(
1

λ
−K

)
I

)
v , (4.13)

a fixed number of times. Here λ is a small fixed constant called the learn-
ing rate. Additionally a decay rate K > 0 is used for regularization, i.e. to
penalize the magnitude of the resulting feature v. This matrix-vector mul-
tiplication formulation (4.13) is equivalent to a step of the power method
applied within our framework3, and for small enough learning rates λ the
resulting feature vector will converge to the largest eigenvector of −∇f̂(Z).

However in Funk’s method, the magnitude of each new feature strongly
depends on the starting vector v0, the number of iterations, the learning
rate λ as well as the decay K, making the convergence very sensitive
to these parameters. This might be one of the reasons that so far no
results on the convergence speed could be obtained. Our method is free
of these parameters, the k-th new feature vector is always a unit vector
scaled by 1√

k
. Also, we keep the Frobenius norm ‖U‖2Fro + ‖V ‖2Fro of

the obtained factorization exactly fixed during the algorithm, whereas in
Funk’s method — which has a different optimization objective — this norm
strictly increases with every newly added feature.

3Another difference of our method to Simon Funk’s lies in the stochastic gradient
descent type of the latter, i.e. “immediate feedback”: During each matrix multipli-
cation, it already takes the modified current feature v into account when calculating
the loss f̂(Z), whereas our Algorithm 6 alters Z only after the eigenvector compu-
tation is finished.

90 Optimization with the Nuclear and Max-Norm

Our described framework therefore gives theoretically justified variant
of the experimentally successful method [Web06] and its related variants
such as [KBC07, Pat07, TPNT09].

4.6. Experimental Results

We run our algorithm for the following standard datasets4 for matrix com-
pletion problems, using the squared error function.

dataset #ratings n m

MovieLens 100k 105 943 1682
MovieLens 1M 106 6040 3706
MovieLens 10M 107 69878 10677
Netflix 108 480189 17770

Any eigenvector method can be used as a black-box in our algorithm.
To keep the experiments simple, we used the power method5, and per-
formed 0.2 · k power iterations in step k. If not stated otherwise, the only
optimization we used is the improvement by averaging the old and new
gradient as explained in Section 3.4.3. All results were obtained by our
(single-thread) implementation in Java 6 on a 2.4 GHz Intel C2D laptop.

Sensitivity. The generalization performance of our method is relatively
stable under changes of the regularization parameter, see Figure 4.1:

Movielens. Table 4.1 reports the running times of our algorithm on the
three MovieLens datasets. Our algorithm gives an about 5.6 fold speed
increase over the reported timings by [TY10], which is a very similar
method to [JY09]. [TY10] already improves the “singular value thresh-
olding” methods [CCS10] and [MGC09]. For MMMF, [RS05] report an
optimization time of about 5 hours on the 1M dataset, but use the dif-
ferent smoothed hinge loss function so that the results cannot be directly
compared. [MGC09], [SJ03] and [JY09] only obtained results on much
smaller datasets.

In the following experiments on the MovieLens and Netflix datasets we
have pre-normalized all training ratings to the simple average

µi+µj
2 of

4See www.grouplens.org and archive.ics.uci.edu/ml.
5We used the power method starting with the uniform unit vector. 1

2
of the approx-

imate eigenvalue corresponding to the previously obtained feature vk−1 was added
to the matrix diagonal to ensure good convergence.

http://www.grouplens.org
http://archive.ics.uci.edu/ml/datasets/Netflix+Prize

Experimental Results 91

0.89

0.91

0.93

0.95

0 15000 30000 45000 60000
Trace regularization t

RMSE test
k=1000

Figure 4.1.: Sensitivity of the method on the choice of the regularization param-
eter t in (4.2), on MovieLens 1M.

the user and movie mean values, for the sake of being consistent with
comparable literature.

For MovieLens 10M, we used partition rb provided with the dataset (10
test ratings per user). The regularization parameter t was set to 48333. We
obtained a RMSEtest of 0.8617 after k = 400 steps, in a total running time
of 52 minutes (16291 matrix multiplications). Our best RMSEtest value
was 0.8573, compared to 0.8543 obtained by [LU09] using their non-linear
improvement of MMMF.

Algorithm Variants. Comparing the proposed algorithm variants from
Section 3.4.3, Figure 4.2 demonstrates moderate improvements compared
to our original Algorithm 8.

Netflix. Table 4.2 compares our method to the two “hard impute” and
“soft impute” singular value thresholding methods of [MHT10] on the Net-
flix dataset, where they used Matlab/PROPACK on an Intel Xeon 3 GHz
processor. The “soft impute” variant uses a constrained rank heuristic
in each update step, and an “un-shrinking” or fitting heuristic as post-
processing. Both are advantages for their method, and were not used for
our implementation. Nevertheless, our algorithm seems to perform com-
petitive compared to the reported timings of [MHT10].

Note that the primary goal of this experimental section is not to compete

92 Optimization with the Nuclear and Max-Norm

Table 4.1.: Running times tour (in seconds) of our algorithm on the three Movie-
Lens datasets compared to the reported timings tTY of [TY10]. The
ratings {1, . . . , 5} were used as-is and not normalized to any user
and/or movie means. In accordance with [TY10], 50% of the rat-
ings were used for training, the others were used as the test set.
Here NMAE is the mean absolute error, times 1

5−1
, over the to-

tal set of ratings. k is the number of iterations of our algorithm,
#mm is the total number of sparse matrix-vector multiplications
performed, and tr is the used trace parameter t in (4.2). They used
Matlab/PROPACK on an Intel Xeon 3.20 GHz processor.

NMAE tTY tour k #mm tr

100k 0.205 7.39 0.156 15 33 9975
1M 0.176 24.5 1.376 35 147 36060
10M 0.164 202 36.10 65 468 281942

Table 4.2.: Running times tour (in hours) of our algorithm on the Netflix
dataset compared to the reported timings tM,hard for “hard impute”
by [MHT09] and tM,soft for “soft impute” by [MHT10].

RMSEtest tM,hard tM,soft tour k #mm tr

0.986 3.3 n.a. 0.144 20 50 99592
0.977 5.8 n.a. 0.306 30 109 99592
0.965 6.6 n.a. 0.504 40 185 99592
0.962 n.a. 1.36 1.08 45 243 174285
0.957 n.a. 2.21 1.69 60 416 174285
0.954 n.a. 2.83 2.68 80 715 174285
0.9497 n.a. 3.27 6.73 135 1942 174285
0.9478 n.a. n.a. 13.6 200 4165 174285

with the prediction quality of the best engineered recommender systems
(which are usually ensemble methods, i.e. combinations of many different
individual methods). We just demonstrate that our method solves nuclear
norm regularized problems of the form (4.2) on large sample datasets,
obtaining strong performance improvements.

4.7. Conclusion

We have introduced a new method to solve arbitrary convex problems
with a nuclear norm regularization, which is simple to implement and to

Conclusion 93

0.63

0.708

0.785

0.863

0.94

0 100 200 300 400
k

RMSE

MovieLens 10M rb

1/k, test

best on line segm., test

gradient interp., test

1/k, train

best on line segm., train

gradient interp., train

Figure 4.2.: Improvements for the two algorithm variants described in Sec-
tion 3.4.3, when running on MovieLens 10M. The thick lines above
indicate the error on the test set, while the thinner lines indicate
the training error.

parallelize. The method is parameter-free and comes with a convergence
guarantee. This guarantee is, to our knowledge, the first guaranteed con-
vergence result for the class of Simon-Funk-type algorithms, as well as the
first algorithm with a guarantee for max-norm regularized problems.

It remains to investigate if our algorithm can be applied to other matrix
factorization problems such as (potentially only partially observed) low
rank approximations to kernel matrices as used e.g. by the PSVM tech-
nique [CZW+07], regularized versions of latent semantic analysis (LSA),
or non-negative matrix factorization [Wu07].

5
A Geometric Optimization
Method, and Coresets for

Polytope Distance and
SVMs

In this chapter, we translate the coreset framework to the problems of find-
ing the point closest to the origin inside a polytope, finding the shortest dis-
tance between two polytopes, Perceptrons, and soft- as well as hard-margin
Support Vector Machines (SVM). To do so, we will study a geometric
equivalent of Clarkson’s optimization approach over the simplex [Cla10],
which we have described in Chapters 2 and 3.

We prove asymptotically matching upper and lower bounds on the size
of coresets, stating that ε-coresets of size d(1 + o(1))E∗/εe do always exist
as ε → 0, and that this is optimal. The crucial quantity E∗ is what we
call the excentricity of a polytope, or a pair of polytopes, corresponding
to the curvature constant in the general convex optimization setting in
Chapter 2.

Additionally, we prove linear convergence speed of Gilbert’s algorithm,
one of the earliest known approximation algorithms for polytope distance,
and generalize both the algorithm and the proof to the two polytope case.

95

96
A Geometric Optimization Method, and Coresets for Polytope Distance

and SVMs

Interestingly, our coreset bounds also imply that we can for the first
time prove asymptotically matching upper and lower bounds for the spar-
sity of Perceptron and SVM solutions (which in this case is the number of
support vectors), as a function of the approximation quality.

This chapter is based on the paper [GJ09] with Bernd Gärtner.

5.1. Introduction

Coresets. The concept of coresets has proven to be a very successful one
for approximation algorithms for many discrete geometric problems. On
one hand coreset algorithms are much faster than exact algorithms, and on
the other hand they simultaneously ensure that the obtained approximate
solutions still have very compact (sparse) representations, making them
very appealing for many practical applications e.g. in machine learning.

Originally introduced for smallest enclosing ball problem and clustering
by [BHPI02], and for extent measures by [APV02], the idea of a coreset is
the following: instead of solving the original problem, one tries to identify
a very small subset (coreset) of the points, such that the solution just on
the coreset is guaranteed to be a good approximation of the true solution
to the original problem. For the problem of finding the smallest enclosing
ball of n points P ∈ Rd, and ε > 0, an ε-coreset S is a small subset of
the points P such that the smallest enclosing ball of just S, blown up by a
factor of 1 + ε, contains all the original points P . It was shown that here
ε-coresets of size d1/εe do always exist [BC03, BC07] and that this is best
possible [BC07]. This is very remarkable because the size of the coreset
is independent of the dimension d of the space, and also independent of
the number of points n, making it very attractive for the use in large scale
problems (high n) and kernel methods (high d). This nice property is
in contrast to many other geometric problems for which coresets usually
have size exponential in the dimension, e.g. Θ(1/ε(d−1)/2) for the extent
problem [AHPV04]. For a nice review on existing coreset algorithms we
refer to [AHPV05].

Clarkson in [Cla10] significantly widened the class of problems where the
coreset idea can be applied, and showed that the nice property of constant
O(1/ε) sized coresets indeed holds for the general problem of minimizing a
convex function over the unit simplex. In the previous Chapter 2, we have
generalized this coreset technique to optimizing over arbitrary compact
domains, and have obtained matching lower bounds on the coreset size for

Introduction 97

the simplex as well as for general `1-regularized convex problems.

Our Contributions and Related Work. Following the approach of [Cla10],
we translate the coreset framework to the polytope distance problem of one
polytope (w.r.t. the origin), distance between two polytopes, and hard- as
well as soft-margin support vector machines, and introduce the geometric
meaning of coresets and strong primal-dual approximation in this context.

We prove a new lower bound of
⌈
E∗

ε

⌉
+ 1 for the size of ε-coresets

for polytope distance, where E∗ is what we call the excentricity of the

polytope. Together with the upper bound of
⌈
E∗(1+o(1))

ε

⌉
as ε → 0, this

shows that the size of the obtained ε-coresets is asymptotically optimal.
We also show tight bounds (up to a factor of two) for the distance problem
between two polytopes.

For Gilbert’s algorithm [Gil66], one of the earliest known approximation
algorithms for polytope distance, we give the first two proofs of convergence
speed: First by observing that is in fact just an instance of the Frank
Wolfe approximation algorithm for quadratic programs [FW56], which is
now often called sparse greedy approximation, and secondly by giving a
slightly easier geometric interpretation of the analytic proof of [Cla10].
Also, we generalize Gilbert’s algorithm to the distance problem between
two polytopes, where we are able to prove the same convergence speed.
Furthermore, we can get rid of the expensive search for a starting point
in this case which in previous approaches needed time quadratic in the
number of points [Roo00, VSM03].

Applications to Machine Learning. On the application side, it is our goal
to apply concepts and algorithms from computational geometry to machine
learning. Support Vector Machines (SVM) [BGV92, CV95, Bur98] are
among the most established and successful classification tools in machine
learning, where from the name it is not immediately clear that the concept
refers to nothing else than the separation of two classes of points by a
hyperplane, with the largest possible margin. From the formulation as a
quadratic program it follows that the problem is equivalent to the polytope
distance problem, either for one or for two polytopes, depending on which
SVM variant is considered (See Section 5.5). The Perceptron [Ros58] refers
to the case where we search for any hyperplane that separates two point
classes, not necessarily one of maximum margin. The term kernel methods
summarizes SVMs and Perceptrons where the points are assumed to live
in an implicit high-dimensional feature space where we just know their

98
A Geometric Optimization Method, and Coresets for Polytope Distance

and SVMs

pairwise scalar-products which is then called the kernel.

Sparsity of solutions. Our main contribution is to relate the coreset con-
cept to sparsity of solutions of kernel methods: Using our bounds for the
size of coresets, we derive a new fundamental property of SVMs and Per-
ceptrons, giving nearly matching upper and lower bounds on the sparsity
of their solutions, a parameter which is absolutely crucial for the practi-
cal performance of these methods on large scale problems. More precisely
we show that any solution for a SVM or Perceptron, attaining at least a

fraction µ of the optimal margin, must have at least
⌈
E∗

1−µ

⌉
+ 1 many (or⌈

1
2E
∗

1−µ

⌉
+2 in the two class case) non-zero coefficients in the worst case, and

that a solution with
⌈
E∗(1+o(1))

1−µ

⌉
many non-zero coefficients can always be

obtained for all instances. We are not aware of any existing lower bounds
on the sparsity in the literature.

Training SVM in linear time. For any fixed fraction 0 ≤ µ < 1, we show
that Gilbert’s algorithm in time O(n) finds a solution attaining at least a
µ-fraction of the optimal margin to the SVM and Perceptron (no matter if
a kernel is used or not). This guarantee contrasts most of the existing SVM
training algorithms which run in time usually cubic in n, or then often have
no theoretical approximation guarantees except from converging in a finite
number of steps [Pla99], or have guarantees only on the primal or dual ob-
jective value, but not both. Tsang et al. have already applied the smallest
enclosing ball coreset approach to train SVMs under the name Core Vector
Machine (CVM) [TKC05, TKK07], for one particular SVM variant (`2-loss
with regularized offset), in the case that all points have the same norm.
In this case the smallest enclosing ball problem is equivalent to finding
the distance of one polytope from the origin. In another work [HPRZ07]
directly used coresets to solve the problem of separating two polytopes by
a hyperplane passing through the origin, but this is again equivalent to a
one polytope distance problem. Both approaches are therefore generalized
by [Cla10] and this work, proving faster algorithm convergence and smaller
coresets. Here we generalize the coreset methods further to the two poly-
tope case, encompassing all the currently most used hard- and soft-margin
SVM variants with arbitrary kernels, with both `1 and `2-loss, in particu-
lar the special case of the CVM [TKC05, TKZ06, TKK07] and [HPRZ07],
while obtaining faster convergence and smaller coresets. Our generaliza-
tion shows that all of the mostly used SVM variants can be trained in time

Concepts and Definitions 99

linear in the number of sample points n, i.e. using linearly many kernel
evaluations, for arbitrary kernels. Until now this was only known for the
CVM case for radial base function kernels and for linear SVMs without
using a kernel [Joa06].

5.2. Concepts and Definitions

5.2.1. Polytope Distance

Let P ⊂ Rd be a finite set of points. We want to compute the shortest
distance ρ = ρ(P) of any point inside the polytope conv(P) to the origin.
In the following we will assume ρ > 0.

For v, x ∈ Rd, Let v|x := 〈v,x〉
‖x‖ denote the signed length of the projection

of v onto the direction of the vector x. In this chapter, ‖.‖ will always
denote the Euclidean norm ‖.‖2.

pi

0

pi|x

x

Definition 5.1. For any ε > 0,

i) A point x ∈ conv(P) is called
an ε-approximation1 to the
optimal polytope distance, iff

‖x‖ − p|x ≤ ε ‖x‖ ∀p ∈ P .

ii) A set of points S ⊆ P with
the property that the (optimal)
closest point of conv(S) to the
origin is an ε-approximation
to the distance of conv(P) is
called an ε-coreset of P .

Definition 5.2.
The sparsity of a convex combination

∑n
i=1 αipi ∈ conv(P),

∑n
i=1 αi =

1, αi ≥ 0 is the number of αi that are non-zero.

By definition, any ε-coreset of size s implies that we have an ε-approxi-
mation of sparsity at most s.

1Note that this is a multiplicative or relative approximation measure, where sometimes
in the literature also additive ε-approximations are used. The corresponding coresets
are sometimes called multiplicative ε-coresets to distinguish them from additive
coresets [Cla10].

100
A Geometric Optimization Method, and Coresets for Polytope Distance

and SVMs

The Duality Gap as a Certificate of Approximation Quality. Being
an ε-approximation can be interpreted as the multiplicative gap between
the “primal” distance f(x) = ‖x‖, and the corresponding “dual” value
ω(x) = min

p∈P
p|x, being small, analogously to our concept of the “poor-

man’s” duality as described in Section 2.2. We will explain this connection
in more detail in Section 5.2.3 below.

Also, the weak-duality observation (2.6), as we have seen for our general
convex optimization setting from Section 2.2 has a clear geometric meaning
here: Our geometric definition of an approximation automatically implies
that the current distance ‖x‖ must already be close to the (unknown)
optimal value ρ, i.e.

Lemma 5.3. If x is an ε-approximation, then (1− ε) ‖x‖ ≤ ρ ≤ ‖x‖ .
Proof. RHS: Clear by definition of the distance ρ. LHS: By definition of an
ε-approximation, we have a closed halfspace (normal to x), with distance
(1− ε) ‖x‖ from the origin, which contains conv(P), which itself contains
the optimal point x∗ with ‖x∗‖ = ρ.

Excentricity and Curvature.

Definition 5.4. We define the excentricity of a point set P as E := D2

ρ2 ,

where D := maxp,q∈P ‖p− q‖ is the diameter of the polytope and ρ is the
true polytope distance to the origin.

Also, we define the asymptotic excentricity E∗ := R2

ρ2 , where we call

R := maxp∈P ‖p− c‖ the radius of the polytope. Here c is the unique2

point attaining the minimum distance ρ to the origin.

It immediately follows that E∗ ≤ E ≤ 4E∗ by triangle inequality (R ≤
D ≤ 2R).

Also, the quantities E and E∗ do indeed correspond to the curvature
or “non-linearity” introduced by [Cla10], that we studied in Section 2.3.4.
We will explain this correspondence in the following Section 5.2.3.

5.2.2. Distance Between Two Polytopes

It is easy to see that the problem of finding the shortest distance between
two polytopes is equivalent to finding the shortest vector in a single poly-

2We note that the point c attaining the optimal distance minp∈P ‖p‖ of the polytope
to the origin is always unique: Assume there would be two distinct points c1, c2
attaining the minimum, then their mid-point 1

2
(c1 + c2) would have even shorter

distance to the origin, contradicting the assumption of optimality of c1.

Concepts and Definitions 101

tope, their Minkowski difference:

Definition 5.5. The Minkowski difference

MD(P1, P2) := {u− v |u ∈ conv(P1), v ∈ conv(P2)}
of two polytopes conv(P1) and conv(P2) is the set (in fact it is also a
polytope [Zie95]) consisting of all difference vectors.

Observe that conv(P1) and conv(P2) are separable by a hyperplane iff
0 /∈ MD(P1, P2). We call a vector x = x1 − x2 an ε-approximation for the
distance problem between the two polytopes conv(P1) and conv(P2) iff x
is an ε-approximation for MD(P1, P2). By the sparsity of a convex combi-
nation in MD(P1, P2) we always mean the minimum number of non-zero
coefficients of a representation as a difference of two convex combinations
in the original polytopes. An ε-coreset is a subset P ′1 ∪ P ′2 of the two
original point sets, P ′1 ⊆ P1, P

′
2 ⊆ P2, such that the shortest vector in the

restricted Minkowski difference MD(P ′1, P
′
2) is an ε-approximation.

Definition 5.6. We define the excentricity of a pair of two polytopes as

EP1,P2
:= (D1+D2)2

ρ2 and the asymptotic excentricity as E∗P1,P2
:= (R1+R2)2

ρ2 ,

with Dk, Rk denoting diameter and radius3, ρ being the true distance be-
tween the two polytopes.

Interpreting this excentricity in comparison to the equivalent single poly-
tope problem given by the Minkowski difference, it is easy to see that
EMD(P1,P2) ≤ EP1,P2

, since diam(MD(P1, P2)) ≤ diam(P1) + diam(P2).

Alternatively, for comparison, we can also write EP1,P2
= (D1+D2)2

ρ2 =(√
E1 +

√
E2

)2
and E∗P1,P2

=
(√

E∗1 +
√
E∗2
)2

if we think of the Ek, E
∗
k are

being the “individual” excentricities of each polytope conv(Pk), k = 1, 2,
here with respect to the corresponding closest point in the other polytope
(if the closest pair is unique).

5.2.3. Relation to our General Setting of Convex
Optimization Over Bounded Domain

Duality. Comparing the above geometric concept of approximation to our
general optimization framework from Chapter 2, we observe that there is
indeed a direct correspondence:

3Here the radius Rk is with respect to the corresponding endpoint of the optimal pair
attaining the closest distance between the two polytopes. When using E∗P1,P2

, we
will assume that the optimal pair is unique.

102
A Geometric Optimization Method, and Coresets for Polytope Distance

and SVMs

For the choice of convex objective function f(x) := ‖x‖, the gradient
is given by ∇f(x) = x

‖x‖ for any x 6= 0. Therefore, the corresponding

“poor-man’s” dual value for each point x as given in equation (2.4) is in
fact exactly the same geometric quantity as used in Definition 5.1,

ω(x) = min
p∈P
‖x‖+ (p− x)T

x

‖x‖
= min

p∈P
pT

x

‖x‖
= min

p∈P
p|x .

Alternatively, one can also reduce the polytope distance problem to
convex optimization over the simplex, as in Clarkson’s framework [Cla10],
by using barycentric coordinates, see also Section 3.1. In this case, the
corresponding convex objective function is f(x) := ‖Ax‖, where A ∈ Rd×n
is the matrix containing all points of P as columns.

Curvature. The above defined excentricity and the more general curva-
ture constant Cf of a convex function are in fact closely related.

Lemma 5.7. For the objective function f(x) := ‖x‖ over the domain D =
conv(P), the curvature of f is bounded by the excentricity as follows.

Cf ≤
ρ

2
E and C∗f ≤

ρ

2
E∗ .

Proof. Using that ∇f(x) = x
‖x‖ for any x 6= 0, we can consider the Hessian

matrix (∇2f(x))ij = ∂f(x)
∂xi∂xj

, and calculate

∇2f(x) =
I

‖x‖ −
xxT

‖x‖3
.

Here I is the n×n identity matrix. Plugging this expression into the upper
bound for the curvature Cf as given by inequality (2.12) from Section 2.3.4,
we obtain

Cf ≤ sup
x,y∈D,

z∈[x,y]⊆D

1
2 (y − x)T

(
I
‖z‖ − zzT

‖z‖3
)

(y − x)

= sup
x,y∈D,

z∈[x,y]⊆D

1
2

(
‖y−x‖2
‖z‖ − (y−x)T zzT (y−x)

‖z‖3
)

= sup
x,y∈D,

z∈[x,y]⊆D

1
2

(
‖y−x‖2−((y−x)|z)2

‖z‖

)

Lower Bounds on the Sparsity of ε-Approximations 103

To obtain the middle equality, we have just rewritten the second term
(y−x)T zzT (y−x)

‖z‖3 =
‖(y−x)T z

‖z‖‖2
‖z‖ = ((y−x)|z)2

‖z‖ using the definition of the

projection v|z.
The desired upper bound Cf ≤ ρ

2E = D2

2ρ now directly follows from just
ignoring the negative term in the above expression of the supremum.

Analogously, when using the definition (2.11) of the asymptotic curva-
ture C∗f , together with the fact that the closest point x∗ is the unique
optimum, we have that

C∗f ≤ sup
y∈D,

z∈[x∗,y]⊆D

1
2

(
‖y−x∗‖2−((y−x∗)|z)2

‖z‖

)
,

for which again ignoring the projection term, the optimum choice of z := x∗

will result in the bound C∗f ≤ ρ
2E
∗ = R2

2ρ .

5.3. Lower Bounds on the Sparsity of
ε-Approximations

In this Section we will give two constructions of point sets, such that no
small ε-coresets can possibly exist for the polytope distance problem. The
geometric interpretation of these constructions is in fact very simple:

5.3.1. Distance of One Polytope from the Origin

Warm-Up. Consider the (d−1)-simplex spanned by P being the set of the
d standard unit vectors in Rd, but imagine the simplex being just slightly
blown up (scaled linearly) from its barycenter c. Then the projection of
any point pi ∈ P onto any convex combination x of some of the other
points becomes negative, implying that no ε-coresets of size < d (and
also no ε-approximations of sparsity < d) can exist for any ε ≤ 1. We
will make this more formal in the following lemma. The unit simplex has
D =

√
2 and ρ = 1√

d
so the excentricity of our polytope conv(P) is roughly

E = 2d, or E∗ = d − 1 respectively. In the following we will see that the
quantities 1

2E and E∗ + 1 can indeed be turned into lower bounds on the
size of ε-coresets and the sparsity of ε-approximations, in terms of the
approximation quality ε. The following lemma explains the construction:

Lemma 5.8. For any given 0 < ε < 1, and for any d ≥ 2, there exists a
set of d points P ⊂ Rd, such that

104
A Geometric Optimization Method, and Coresets for Polytope Distance

and SVMs

i) any ε-coreset of P has size d (i.e. no strict subset can possibly be
an ε-coreset).

ii) any ε-approximation of P has sparsity exactly d.

iii) any vector x ∈ conv(P), satisfying p|x
ρ ≥ 1−ε ∀p ∈ P , has sparsity

exactly d.
iv) the excentricity of conv(P) is E = 2εd and the asymptotic excen-

tricity is E∗ = ε(d− 1).

pi

α

α

Rd

c

c′ S′

0

Proof. By definition we already know
that i) ⇐ ii) ⇐ iii), but we will prove
the former statement first:

i) Let λ > 0 be a real parameter
to be fixed later, and let our points be
pj := λej + (1 − λ)c ∈ Rd for j ∈ [d],
with the barycenter c = (1

d , . . . ,
1
d)T be-

ing the point closest to the origin of the
standard (d − 1)-simplex in Rd. I.e. we
just linearly scale the unit simplex from
its barycenter.

We will now show that for this particular set of points P , for some
suitable choice of λ, no strict subset can possibly be an ε-coreset. To
do so, let pi be an arbitrary point of P and denote by c′ the barycenter
c′ := 1

d−1

∑
j 6=i pj which is the point closest to the origin of the sub-simplex

S′ := conv(P \ {pi}).
By definition we have ‖c′ − c‖2 = λ2

d(d−1) , ‖c′ − pi‖2 = λ2d
d−1 and ‖c′‖2 =

d−1+λ2

d(d−1) . From planar geometry in the triangle c′, pi and the origin we have

that sin(α) :=
‖c′‖−pi|c′
‖c′−pi‖ =

‖c′−c‖
‖c′‖ , which implies 1− pi|c′

‖c′‖ =
‖c′−c‖‖c′−pi‖

‖c′‖2

=

√
λ2

d(d−1)

√
dλ2

d−1

d−1+λ2

d(d−1)

= dλ2

d−1+λ2 .

Now if we choose our parameter λ :=
√
ε, the above term on the right

hand side is dε
d−1+ε > ε. In other words we now have that ‖c′‖ − pi|c′ >

ε ‖c′‖, so we have shown that no strict subset of the points can possibly
be an ε-coreset.

ii) Using the construction above, we have shown that the barycenter
c′ ∈ S′ is not an ε-approximation, because it results in an insufficient ap-

proximation ratio pi|c′
‖c′‖ < 1− ε. Now for every other point x ∈ S′, we can

Lower Bounds on the Sparsity of ε-Approximations 105

show that the ratio becomes even worse, if we argue as follows: In the de-
nominator we know that c′ is the point in S′ of minimum norm, and in the
numerator it holds that pi|c′ ≥ pi|x ∀x ∈ S′. The last inequality follows
from the fact that the distance of a point x to a linear space is always at
most as large as the distance to a subspace of it — or more formally if p(x),
p(c′) are the two projections of pi onto x and c′ respectively, we get that∥∥pi − p(x)

∥∥ ≥ ∥∥∥pi − p(c′)
∥∥∥ since x ∈ lin(S′) and pi|c′ =

∥∥∥p(c′)
∥∥∥ = pi|lin(S′).

But by the Pythagorean theorem this implies pi|x ≤ pi|c′ . We have shown
that no ε-approximation of sparsity < d can possibly exist for our given
point set.

iii) Let again λ2 := ε, and suppose x ∈ S′ = conv(P \{pi}) for some pi ∈
P is such a convex combination of sparsity ≤ d−1. We use the above result

and calculate pi|x
ρ ≤

pi|c′
ρ = ‖c′‖ (1− dε

d−1+ε)
√
d =

√
d−1+ε
d(d−1)

(d−1)(1−ε)
d−1+ε

√
d =√

d−1
d−1+ε (1− ε) < 1− ε.
iv) It is straightforward to calculate that our point set has diameterD2 =

‖p1 − p2‖2 = 2λ2, radius R2 = λ2 d−1
d , and true distance ρ2 = ‖c‖2 = 1

d ,
so for the excentricity we obtain E = 2εd and E∗ = ε(d− 1).

Theorem 5.9. For any given 0 < ε < 1, for any d ≥ 2, there exists a set
of d points P ⊂ Rd, such that the sparsity of any ε-approximation, and the
size of any ε-coreset of P is at least⌈ 1

2E

ε

⌉
and

⌈
E∗

ε

⌉
+ 1

Proof. The point set P from Lemma 5.8 satisfies
1
2E

ε = d, and E∗

ε =
d− 1.

Note that the bound using E is by a factor of 2 better than if we would
just have used the trivial bound E ≤ 4E∗ together with the result for E∗.

5.3.2. Distance Between Two Polytopes

Observation 5.10. If we have two point sets, one consisting of just one
point and the other consisting of d points, and we consider the polytope
distance problem between the corresponding two polytopes, the lower bound
of Lemma 5.8 directly applies to the Minkowski difference, resulting in the

lower bounds
⌈

1
2E

ε

⌉
+ 1 and

⌈
E∗

ε

⌉
+ 2 because we always need the single

point of the second class in any linear combination. In this case the pair

106
A Geometric Optimization Method, and Coresets for Polytope Distance

and SVMs

excentricities EP1,P2
, E∗P1,P2

coincide with the single polytope excentricities
E,E∗ of the Minkowski difference.

However, we can generalize the lower bound construction of Lemma 5.8
to the distance problem between two polytopes spanned by equally sized
point classes:

Lemma 5.11. For any given 0 < ε < 1, for any d ≥ 2, there exist two
equally sized point sets P1, P2 ⊂ Rd=2d′ , each consisting of d′ points, such
that

i) any ε-coreset of MD(P1, P2) has size d (i.e. no strict subset can
possibly be an ε-coreset).

ii) any ε-approximation of MD(P1, P2) has sparsity exactly d.

iii) any vector x ∈ MD(P1, P2) satisfying p|x
ρ ≥ 1−ε ∀p ∈ MD(P1, P2)

has sparsity d.
iv) the excentricity of the polytope pair is EP1,P2 = 8εd′ or E∗P1,P2

=
4ε(d′ − 1) respectively.

Rd′

Rd′

c2

c1

c′1

pi

α

α
c′

S′

Proof. By definition we already
know that i) ⇐ ii) ⇐ iii), but we
will prove the former statement
first:

Consider the two point classes
P1 = {p1 . . . pd′} and
P2 = {pd′+1 . . . p2d′} living in Rd,
d = 2d′,

with

pi :=

{
λei + (1− λ)c1 for 1 ≤ i ≤ d′
λei + (1− λ)c2 for d′ + 1 ≤ i ≤ d

where c1 := (1
d′ ,. . .,

1
d′ , 0,. . ., 0) and c2 := (0,. . ., 0, 1

d′ ,. . .,
1
d′). I.e. we have

two ’copies’ of scaled unit simplices. It is not hard to see that the shortest
vector in the Minkowski difference is c1 − c2.

i) Analogously to the single-polytope case of Lemma 5.8, we will now
show that for suitable λ, no strict subset of P1 ∪ P2 is an ε-coreset of
MD(P1, P2). To do so, let pi be an arbitrary point of P1 and define c′ :=

Lower Bounds on the Sparsity of ε-Approximations 107

c′1 − c2 where the barycenter c′1 := 1
d′−1

∑
j 6=i pj is the point of the sub-

simplex S′ := conv(P1 \ {pi}) closest to c2. It is easy to check that c′ is
indeed the new shortest distance after removal of pi.

By definition we have ‖c′1 − c1‖2 = λ2

d′(d′−1) , ‖c′1 − pi‖2 = λ2d′

d′−1 and

‖c′‖2 = 2(d′−1)+λ2

d′(d′−1) . From planar geometry in the triangle c′1, pi and c2 we

again have that

sin(α) :=
‖c′‖−(pi−c2)|c′
‖c′1−pi‖ =

‖c′1−c1‖
‖c′‖ , which implies 1− (pi−c2)|c′

‖c′‖

=
‖c′1−c1‖‖c′1−pi‖

‖c′‖2 =

√
λ2

d′(d′−1)

√
d′λ2
d′−1

2(d′−1)+λ2

d′(d′−1)

= d′λ2

2(d′−1)+λ2 .

Now if we choose our parameter λ :=
√

2ε, the above term on the right
hand side is d′2ε

2(d′−1)+2ε > ε. In other words we now have that ‖c′‖ − (pi −
c2)|c′ > ε ‖c′‖, so we have shown that no strict subset of the 2d′ points can
possibly be an ε-coreset.

ii) The argument that the approximation ratio p|x
‖x‖ is indeed best for the

distance vector x := c′ — and thus there really is no ε-approximation of
sparsity < d — is the same as in the proof of Lemma 5.8, and additionally
using that (pi − y2)|c′ = (pi − c2)|c′ ∀y2 ∈ conv(P2), as c′ is orthogonal
on conv(P2).

iii) Let again λ2 := 2ε, and suppose x ∈ S′ = conv(P1 \ {pi}) for some
pi ∈ P1 is such a convex combination of sparsity ≤ d−1. We use the above

result and calculate (pi−c2)|x
ρ ≤ (pi−c2)|c′

ρ = ‖c′‖ (1− d′2ε
2(d′−1)+2ε)

√
d′
2

=
√

2(d′−1)+2ε
d′(d′−1)

(d′−1)(1−ε)
d′−1+ε

√
d′
2 =

√
d′−1
d′−1+ε (1− ε) < 1− ε.

iv) Check that each of our two polytopes has diameter D2 = 2λ2 and

radius R2 = λ2 d′−1
d′ . Since the optimal distance ρ2 = 2

d′ , it follows that the

pair excentricity is EP1,P2
= (
√

2λ+
√

2λ)2

2/d′ = 8λ2

2/d′ = 8εd′ and the asymptotic

pair excentricity is E∗P1,P2
=

(√
d′−1
d′ λ+

√
d′−1
d′ λ

)2

2/d′ =
4 d
′−1
d′ λ

2

2/d′ = 4ε(d′ −
1).

Theorem 5.12. For any given 0 < ε < 1, for any d ≥ 2, there exist two
equally sized point sets P1, P2 ⊂ Rd=2d′ , each consisting of d′ points, such
that the sparsity of any ε-approximation of MD(P1, P2), and the size of
any ε-coreset is at least⌈ 1

4EP1,P2

ε

⌉
and

⌈
1
2E
∗
P1,P2

ε

⌉
+ 2 .

108
A Geometric Optimization Method, and Coresets for Polytope Distance

and SVMs

Proof. P1 and P2 from Lemma 5.11 satisfy
1
4EP1,P2

ε = 2d′ = d, and
1
2E
∗
P1,P2

ε + 2 = 2(d′ − 1) + 2 = d.

5.4. Upper Bounds: Algorithms to Construct
Coresets

5.4.1. Gilbert’s Algorithm

In Section 3.1, we already studied the general sparse greedy Algorithm 1
for bounded convex domains. Here we will see that following geometric
algorithm is a special case of our Algorithm 1. The algorithm below was
originally introduced by Frank and Wolfe [FW56] as an approximation
algorithm for quadratic programs. Since then, it has independently been
proposed again several times under different names. For polytope distance,
it is known as Gilbert’s algorithm [Gil66]. As we saw in Section 3.1,
this algorithm provides ε-approximations of sparsity O(1

ε) for any convex
minimization problem on the standard simplex [Cla10].

Algorithm 10 Gilbert’s approximation algorithm for polytope dis-
tance [Gil66]

Input: Polytope P
Output: ε-approximate solution to the polytope distance problem
Start with x1 := p0, p0 ∈ P being the closest point to the origin.
for i = 1 . . .∞ do

Find the point pi ∈ P with smallest projection pi|xi , and move to
xi+1 being the point on the line segment [xi, pi] which is closest to the
origin.
We stop as soon as xi+1 is an ε-approximation.

end for

Note that in order to run the algorithm, we only need to compute the
projections of all points onto a given direction, and find the point closest
to the origin on a line. Both can easily be achieved by evaluating scalar
products, thus the algorithm works fine for kernel methods. Also, it can
directly run on the Minkowski difference for the two polytope case.

Correspondence to the General Optimization Framework. As we have
mentioned in Section 5.2.3, the point pi minimizing the projection pi|xi

Upper Bounds: Algorithms to Construct Coresets 109

(which is then used as the step-direction in the above Algorithm 10) is
exactly a solution to the linearized problem ExactLinear (∇f(xi), D),
for the convex function f(x) := ‖x‖ over the domain D = conv(P). This
means that Algorithm 10 in fact coincides with the general line-search
Algorithm 2 for this choice of objective function and domain.

Variants and applications. Gilbert’s geometric algorithm has been ap-
plied to SVM training in the case of hard-margin as well as soft-margin
with both `2-loss [KSBM00] and `1-loss [MST06, MT06]4. A variant of
Gilbert’s algorithm, the GJK algorithm, is one of the most popular algo-
rithm for collision detection in 3 dimensional space [GJK88]. For SVM
training, Gilbert’s algorithm was recently also implemented on FPGA
hardware [PB08].

Another important variant of this, called the MDM algorithm [MDM74],
is in fact equivalent to one of the most used SVM training algorithms,
SMO [Pla99, LBD08]. For SVM training, [KSBM00] obtained good exper-
imental results with a combination of Gilbert’s and the MDM algorithm.

Convergence speed and running time. All mentioned algorithms in the
above paragraph have in common that they converge, were successfully
applied in practice, but no convergence speed or bound on the running
time has ever been proved so far. Here we prove the convergence speed for
Gilbert’s algorithm, on one hand by observing for the first time that it is
nothing else than the Frank-Wolfe algorithm [FW56] applied to the stan-
dard quadratic programming formulation of polytope distance5, and on
the other hand by giving a new slightly easier geometric variant of recent
proofs by [AST08, Cla10] and our Chapter 2 on the convergence speed of
sparse greedy approximation.

For the following analysis, let fi := ‖xi‖ be the current distance, hi :=
fi − ρ be the primal error, and let gi := fi − ωi denote the ’primal-dual’

4Note that [MST06, Proposition 3] is not true the way stated therein. The Minkowski
sum of two reduced convex hulls is in general not the reduced hull of the Minkowski
sum. However this does not effect the applicability of Gilbert’s algorithm to soft
margin `1-SVMs.

5The quadratic programming formulation is minx f(x) = (Ax)2, xi ≥ 0,
∑
i xi = 1

when A is the d × n-matrix containing all points as columns. Then the gradient
∇f(x)T = AT (Ax) consists of the scaled projections of all points onto the current
vector Ax, so the Frank-Wolfe algorithm’s choice (see Algorithm 3 or [Cla10, Algo-
rithm 1.1]) of the smallest coordinate of the gradient is equivalent to moving towards
the point with minimum projection, as in Gilbert’s Algorithm [Gil66].

110
A Geometric Optimization Method, and Coresets for Polytope Distance

and SVMs

gap of our current estimate, with ωi := minp∈P p|xi . The key fact enabling
linear convergence is the following bound, originally due to [AST08]:

xixi+1

�

�

�i

pi

0

fifi+1

Figure 5.1.: A step of Gilbert’s algorithm.

Lemma 5.13 (Geometric variant of Lemma 2.4 or [Cla10, Theorem 2.1]). In
each step of Gilbert’s algorithm, the improvement in the primal error hi is
at least

hi − hi+1 ≥
1

2Eρ
g2
i

Proof. Suppose xi+1 is perpendicular to the line segment [xi, pi]: Then we
have fi − fi+1 = (1 − cosα)fi. Using the inequality61 − cosα ≥ 1

2 sin2 α,
we get

(1− cosα)fi ≥
1

2
sin2 αfi =

g2
i

2 ‖pi − xi‖2
fi (5.1)

but now we use the fact that since both xi and pi are inside conv(P),
‖pi − xi‖ is at most D. Now we already have proven the claim, since by
definition fi ≥ ρ:

hi − hi+1 = fi − fi+1 ≥
ρ

2D2
g2
i =

1

2Eρ
g2
i (5.2)

The case that xi+1 is at the endpoint pi will in fact never occur: this would
contradict the fact that the starting point for the algorithm was the point
of shortest norm (since fi decreases in each step).

6This inequality is equivalent to (1− cosα)2 ≥ 0.

Upper Bounds: Algorithms to Construct Coresets 111

The following theorem can be seen as a purely geometric analysis of
the analogous primal-dual convergence Theorem 2.5 for the more general
sparse greedy algorithm for convex optimization.

Theorem 5.14. Gilbert’s algorithm succeeds after at most 2
⌈

2E
ε

⌉
many

steps.

Proof. Using Lemma 5.13, we can now follow along the same lines as in our
Theorem 2.5, or [Cla10, Theorem 2.3]: If we switch to a re-scaled version
of the error-parameters, h′i := 1

2Eρhi, g
′
i := 1

2Eρgi, then the inequality
becomes

h′i − h′i+1 ≥ g′i
2 ≥ h′i

2
(5.3)

(gi ≥ hi does always hold by definition) or equivalently h′i+1 ≤ h′i(1− h′i):
Plugging in 1 − γ ≤ 1

1+γ for γ ≥ −1 gives h′i+1 ≤ h′i
1+h′i

= 1
1+ 1

h′
i

. Then

by induction it is easy to obtain h′k ≤ 1
k+1 and therefore h′k < ε′ for

k ≥ K :=
⌈

1
ε′
⌉
, if we can just show the induction hypothesis that h′1 ≤ 1

2 .
But this follows since our starting point is the point of shortest norm,

which implies x2 will always see x1 and the origin in a right angle, therefore

‖x1 − x2‖2 = f2
1 − f2

2 ≤ D2, which implies f1 − f2 ≤ D2

2ρ and therefore

h′1
2 ≤ g′12 ≤ h′1 − h′2 ≤ 1

4 by using (5.3).
Now we have obtained small h′i, but this does not necessarily imply yet

that g′i is also sufficiently small. For this we continue Gilbert’s algorithm
for another K steps, and suppose that in these subsequent steps, g′ always
remains ≥ ε′, then we always have that h′i−h′i+1 ≥ ε′2, and so h′K−h′2K ≥
Kε′2 ≥ ε′, but this implies that h′2K < 0, a contradiction. Thus for some
K ≤ k ≤ 2K, we must have that g′k < ε′.

If we choose our ε′ := 1
2E ε, we know that after at most 2K = 2

⌈
2E
ε

⌉
steps of the algorithm, the obtained primal-dual error is gk < ερ ≤ εfk,
thus xk is an ε-approximation.

0

s

x∗

Observation 5.15. (Asymptotic convergence
of Gilbert’s Algorithm). Note that if we are
are already very close to the true solution x∗, i.e.
assume fi − ρ is small, say hi = fi − ρ < γ for
some γ > 0, then the inequality ‖pi − xi‖ ≤ D
can be improved as follows: Observe that xi is
inside the optimal halfspace of distance ρ from
the origin (as the entire polytope is), intersected with the ball of radius

112
A Geometric Optimization Method, and Coresets for Polytope Distance

and SVMs

ρ+γ around the origin. Let s be the furthest distance from x∗ of any point
in this intersection area. It is easy to see that s = O(

√
γ) is also small.

By triangle inequality we have ‖pi − xi‖ ≤ ‖pi − x∗‖+ s, so we get the

stronger inequality ‖pi − xi‖2 ≤ R2 +O(
√
γ) in the proof of Lemma 5.13.

Therefore, Gilbert’s algorithm always succeeds in at most

2
⌈

2Eρ
γ

⌉
+ 2

⌈
2(E∗+O(

√
γ))

ε

⌉
= 2

⌈
2E∗(1+o(1))

ε

⌉
many steps, as ε→ 0.

Note that the above analysis also proves the existence of ε-coresets of

size 2
⌈

2E
ε

⌉
(and of size 2

⌈
2E∗(1+o(1))

ε

⌉
in the asymptotic notation), be-

cause the same improvement bound applies to the “exact” combinatorial
algorithm [Cla10, Algorithm 4.1] that, when adding a new point to the
set, computes the exact polytope distance of the new set.

5.4.2. An Improved Version of Gilbert’s Algorithm for
Two Polytopes

Coresets for the distance between two polytopes. All coreset methods
for the single polytope case can directly be applied to the distance prob-
lem between two polytopes conv(P (1)) and conv(P (1)) by just running on
the Minkowski difference MD(P1, P2). This already makes the coreset ap-
proach available for all machine learning methods corresponding to a two
polytope problem (as for example the standard SVM), see Section 5.5.

However, using the Minkowski difference has two major disadvantages:
On one hand every vertex of MD(P1, P2) always corresponds to two original
vertices, one from each point class. Apart from potentially doubling the
coreset size, this is a very unfortunate restriction if the shapes of the two
point classes are very unbalanced, as e.g. in the one-against-all approach
for multi-class classification, as it will create unnecessarily many non-zero
coefficients in the smaller class. On the other hand, to run Gilbert’s algo-
rithm (or also the abstract version [Cla10, Algorithm 1.1] or the reduced
hull variant [MST06]) on MD(P1, P2), we have to determine the starting
point of shortest norm and therefore have to consider all pairs of original
points. Although this starting configuration was used in practice (see e.g.
the DirectSVM [Roo00] and SimpleSVM [VSM03] implementations), this
should definitely be avoided for large sets of points. We overcome both
difficulties as follows:

An Improved Algorithm for Two Polytopes. The following modified al-

gorithm maintains a difference vector x
(1)
i −x

(2)
i between the two polytopes,

Upper Bounds: Algorithms to Construct Coresets 113

with x
(1)
i ∈ conv(P (1)) and x

(2)
i ∈ conv(P (2)). We again fix some notation

first: Let fi :=
∥∥∥x(1)

i − x
(2)
i

∥∥∥ be the current distance, hi := fi − ρ be the

primal error, and let ωi := minp∈P (1),q∈P (2)(p− q)|
(x

(1)
i −x

(2)
i)

be the ’dual’

value. Then we can interpret g
(1)
i := maxp∈P (1)(p − x(1)

i)|
(x

(2)
i −x

(1)
i)

and

g
(2)
i := maxp∈P (2)(p−x(2)

i)|
(x

(1)
i −x

(2)
i)

as being the two contributions to the

’primal-dual’-gap, so that gi := fi − ωi = g
(1)
i + g

(2)
i , see Figure 5.2.

x
(1)
i

x
(2)
i

g
(2)
i

g
(1)
i

p
(1)
i

p
(2)
i

fi

�(1)

�(2)

�i

Figure 5.2.: A step of Algorithm 11.

Geometrically, the choice of k ∈ {1, 2} in the algorithm corresponds to
choosing the polytope for which the angle α(k) is largest (see Figure 5.2),
and in the following we will show how this is beneficial for the improve-
ment in each step.

Rectangular steps and hit steps. If the new point x
(k)
i+1 lies in the interior

of the line segment [x
(k)
i , p

(k)
i], we say that this step is a rectangular step,

as indicated e.g. in the upper polytope in Figure 5.2. However if the

new point ends up at the endpoint p
(k)
i of the line segment, then we say

114
A Geometric Optimization Method, and Coresets for Polytope Distance

and SVMs

Algorithm 11 Improved Gilbert’s algorithm for distance between two poly-
topes

Input: Two polytopes P (1), P (2)

Output: ε-approximate solution to the polytope distance problem

Start with an arbitrary point pair (x
(1)
1 ∈ P (1), x

(2)
1 ∈ P (2)).

for i = 1 . . .∞ do
Find the points p

(1)
i ∈ P (1) and p

(2)
i ∈ P (2) with smallest projection

(p
(1)
i − p

(2)
i)|

(x
(1)
i −x

(2)
i)

, and now decide in which of the two polytopes

to do a Gilbert step:
Choose the polytope k ∈ {1, 2} for which the ratio

g
(k)
i

max

{∥∥∥x(k)
i −p

(k)
i

∥∥∥,√g(k)i fi

} is maximal, and move to x
(k)
i+1 being the point

on the line segment [x
(k)
i , p

(k)
i] which is closest to the “opposite” point

x
(k̄)
i+1 := x

(k̄)
i , which we keep unchanged.

We stop as soon as x
(1)
i − x

(2)
i is an ε-approximation.

end for

that this is a hit step in polytope k, as e.g. in the lower polytope in
Figure 5.2. It is not hard to see that a hit step in polytope k occurs if

and only if
∥∥∥x(k)

i − p
(k)
i

∥∥∥ ≤√g(k)
i fi, and otherwise the step is rectangular.

Note that in the single polytope case as in Lemma 5.13, hit steps are
impossible by choice of the starting point, but here in the two polytope
case this might indeed happen. From a computational perspective, hit
steps are advantageous, as in each such step the number of points involved
to describe the current approximation point inside one of the polytopes
(called the number of support vectors in the SVM setting) decreases from
a possibly large number down to one. However in the analysis of the
algorithm, these hit steps pose some technical difficulties:

Lemma 5.16. The improvement in the primal error hi in each step of
Algorithm 11 is either

hi − hi+1 ≥
1

2ρEP1,P2

g2
i (5.4)

or hi − hi+1 ≥ CP1,P2
gi (5.5)

for CP1,P2
:= ρ

4(ρ+D(1)+D(2))

(
min D(1)

D(2) ,
D(2)

D(1)

)2

otherwise.

Upper Bounds: Algorithms to Construct Coresets 115

Proof. Case R : In the case that the steps in both polytopes are rectan-
gular we can follow the proof of Lemma 5.13: Assuming that the polytope
chosen by the algorithm is k, we can follow (5.1) and (5.2) to get

hi − hi+1 ≥ ρ
2

(
g
(k)
i∥∥∥x(k)

i −p
(k)
i

∥∥∥
)2

≥ ρ
2

(
max
m=1,2

g
(m)
i

D(m)

)2

≥ ρ
2

(
g
(1)
i +g

(2)
i

D(1)+D(2)

)2

= 1
2ρEP1,P2

g2
i , (5.6)

where we used max
(
a
c ,

b
d

)
≥ a+b

c+d ∀a, b, c, d ≥ 0, Definition 5.6 of the Ex-

centricity, and that gi = g
(1)
i + g

(2)
i .

Case M : In the “mixed” case that the step in one polytope (r) is rectan-

gular, but in the other polytope (h) is a hit step (due to
∥∥∥x(h)

i − p
(h)
i

∥∥∥2

≤
g

(h)
i fi), we can argue as follows:

Case M(r) : If the algorithm chooses polytope (r), we can proceed

analogously to (5.6) to obtain

hi − hi+1 ≥ ρ
2

g
(r)
i

2∥∥∥x(r)
i −p

(r)
i

∥∥∥2 = ρ
2 max

{
g
(r)
i

2∥∥∥x(r)
i −p

(r)
i

∥∥∥2 , g
(h)
i

2

g
(h)
i fi

}
, (5.7)

but now there are two cases: If g
(h)
i fi ≤ D(h)2

, then we use the same
arithmetic trick as in (5.6),

hi − hi+1 ≥ ρ
2

(
max
m=1,2

g
(m)
i

D(m)

)2

≥ 1
2ρEP1,P2

g2
i . (5.8)

However if g
(h)
i fi ≥ D(h)2

, we have to argue differently: By the choice of

the algorithm we know that g
(r)
i ≥ g

(h)
i because

g
(r)
i

fi
=

g
(r)
i

2

g
(r)
i fi

≥ g
(r)
i

2∥∥∥x(r)
i −p

(r)
i

∥∥∥2 ≥
g
(h)
i

fi
. As in (5.7), the improvement in the step can then be bounded by

hi − hi+1 ≥ ρ
2

g
(r)
i

2∥∥∥x(r)
i −p

(r)
i

∥∥∥2 ≥ ρ
2

g
(r)
i

2

D(r)2
≥ ρ

2

g
(h)
i g

(r)
i

D(r)2
which by our assumption

is ≥ ρ
2
D(h)2

D(r)2fi
g

(r)
i ≥ ρ

2
D(h)2

D(r)2fi

1
2

(
g

(r)
i + g

(h)
i

)
≥ CP1,P2gi . The last inequal-

ity follows because fi is always smaller than D(1) + D(2) + ρ by triangle
inequality.

Case M(h) : If the choice criterium is
g
(r)
i

2∥∥∥x(r)
i −p

(r)
i

∥∥∥2 ≤ g
(h)
i

2

g
(h)
i fi

, then

algorithm will choose the polytope (h) where a hit step will occur. The

116
A Geometric Optimization Method, and Coresets for Polytope Distance

and SVMs

improvement in a hit step is worst if x
(h)
i+1 ends up exactly at distance√

fig
(h)
i from x

(h)
i — i.e. on the Thales ball over fi — therefore f2

i −f2
i+1 ≥

fig
(h)
i ⇒ hi − hi+1 = fi − fi+1 ≥ 1

2g
(h)
i ≥ ρ

2

g
(h)
i

fi
. Now if we again assume

that g
(h)
i fi ≤ D(h)2

, then analogously to (5.7), (5.8) we have hi − hi+1≥
ρ
2

g
(h)
i

fi
= ρ

2 max

{
g
(r)
i

2∥∥∥x(r)
i −p

(r)
i

∥∥∥2 , g
(h)
i

2

g
(h)
i fi

}
≥ 1

2ρEP1,P2
g2
i . On the other hand if

g
(h)
i fi ≥ D(h)2

, we distinguish two cases: First if g
(h)
i ≥ g(r)

i , then directly

hi−hi+1 ≥ 1
2g

(h)
i ≥ 1

4 (g
(h)
i +g

(r)
i) = 1

4gi ≥ CP1,P2gi. Secondly if g
(r)
i ≥ g

(h)
i ,

we use that by the choice of the algorithm
g
(h)
i

fi
≥ g

(r)
i

2∥∥∥x(r)
i −p

(r)
i

∥∥∥2 ≥ g
(r)
i

2

D(r)2
, so

we have hi − hi+1 ≥ ρ
2

g
(r)
i

2

D(r)2
≥ CP1,P2

gi analogous to the last part of the

previous case M(r).

Case H : If there is a hit step in both polytopes, then we use that the

algorithm has chosen the one with the larger value of g
(k)
i , therefore again

by the “angle constraint” reasoning that for hit steps f2
i − f2

i+1 ≥ fig
(k)
i

we obtain fi − fi+1 ≥ fi
2fi
g

(k)
i = 1

2g
(k)
i ≥ 1

4gi ≥ CP1,P2
gi.

Theorem 5.17. Algorithm 11 succeeds after at most

2
⌈

2EP1,P2

ε

⌉
+ 3 + 1

CP1,P2
log D(1)+D(2)

ρCP1,P2
ε = O(1/ε) many steps.

Proof. We count the steps of quadratic improvement (5.4) and those of
linear improvement (5.5) separately, using that each kind of step results
in strict improvement in the primal error hi:

i) For quadratic improvement (5.4) we follow exactly along the proof
of Theorem 5.14, for EP1,P2 being the pair excentricity: If we rescale by
h′i := 1

2EP1,P2
ρhi, (5.4) gives 1

h′i+1
≥ 1 + 1

h′i
. Now we just use that initially

h′1 is finite, therefore 1
h′1
≥ 0 and by induction we get 1

h′k
≥ k − 1 for

all k ≥ 2. It follows that h′k ≤ ε′ for k ≥ K :=
⌈

1
ε′
⌉

+ 1. By the
same argument as in the proof of Theorem 5.14, we have that after at

most 2K = 2
⌈

2EP1,P2

ε

⌉
+ 2 many rectangular steps, gk < ερ ≤ εfk, thus

x
(1)
k − x

(2)
k is an ε-approximation.

ii) On the other hand we can bound the number of steps of linear im-
provement (5.5) by an easier argument: Let C := CP1,P2 . Now hi−hi+1 ≥
Cgi ≥ Chi is equivalent to hi+1 ≤ (1 − C)hi (recall that 0 < C < 1).
Using that initially h1 ≤ D(1) + D(2), we get hk ≤ (1 − C)k−1h1 ≤

Upper Bounds: Algorithms to Construct Coresets 117

(1 − C)k−1(D(1) + D(2)) for all k ≥ 2, which is ≤ ε′ as soon as k − 1 ≥
log D(1)+D(2)

ε′
− log(1−C) , which in particular holds if k − 1 ≥ 1

C log D(1)+D(2)

ε′ by using

the inequality λ < − log(1 − λ) for 0 < λ < 1. For ε′ := ρC ε, this is
enough because ε′ ≥ hk ≥ hk − hk+1 ≥ Cgk implies gk ≤ ερ ≤ εfk, or
in other words the algorithm obtains an ε-approximation after at most
1
C log D(1)+D(2)

ρC ε + 1 many steps of linear improvement.

Generalization of our algorithm for convex optimization over products of
simplices. We can also generalize our above new variant of sparse greedy
approximation in terms of the general framework by Clarkson [Cla10],
when we extend it to solving any concave maximization problem over a
product of finitely many simplices or convex hulls. To do so, we can prove
the same step improvement (5.4) also for the case of convex functions
defined on any product of simplices. We are currently investigating the
details in this setting.

5.4.3. Smaller Coresets by “Away” Steps

Gilbert’s algorithm and also its “exact” variant, due to their greedy nature,
are not optimal in the size of the coresets they deliver. However, Clarkson
showed that a modified procedure [Cla10, Algorithm 5.1] based on an idea
by [TY07], called the away steps algorithm, obtains smaller coresets. The
following Theorem, together with our lower bounds from Section 5.3.1,
will settle the question on the size of coresets for the distance problem of
one polytope to the origin, because the size of the coreset obtained by the
algorithm matches our lower bound, and therefore is best possible:

Theorem 5.18. For any ε > 0, the away steps algorithm [Cla10, Algorithm

5.1] returns an ε-coreset of size at most
⌈
E
ε

⌉
, and at most

⌈
E∗(1+o(1))

ε

⌉
as

ε→ 0.

Proof. We consider the equivalent convex optimization description of the
polytope distance problem by f(x) = ‖Ax‖, as described in our Sec-
tion 5.2.3. In this setting, [Cla10, Theorem 5.1] shows that the away
steps algorithm delivers a subset of coordinate indices N of size

⌈
1
ε′
⌉

such
that f(xN)−ω(xN) ≤ 2Cfε

′, where xN is the true optimal solution of the
problem restricted to the coordinates in N . By the scaling ε′ := ρε

2Cf
, this

means that in our setting, the away steps algorithm returns an ε-coreset

of size
⌈

2Cf
ρε

⌉
≤
⌈
E
ε

⌉
, and

⌈
2C∗f (1+o(1)

ρε

⌉
≤
⌈
E∗(1+o(1)

ε

⌉
in the asymptotic

case; the last two inequalities holding by Lemma 5.7.

118
A Geometric Optimization Method, and Coresets for Polytope Distance

and SVMs

Away steps in the case of two polytopes. We can adjust [Cla10, Algo-
rithm 5.1] for two polytopes as follows: Start with the closest point pair

(x
(1)
1 ∈ P (1), x

(2)
1 ∈ P (2)), and proceed as in [Cla10, Algorithm 5.1]. In

each step choose the polytope according to the choice criterium of our Al-
gorithm 11, but with the modification that whenever a hit step is possible
one either side, we choose to do this hit step.

Theorem 5.19. For any ε > 0, the modified away steps algorithm on

two polytopes returns an ε-coreset of size at most
⌈
EP1,P2

ε

⌉
, and at most⌈

E∗P1,P2
(1+o(1))

ε

⌉
as ε→ 0.

Proof. Sketch: We can follow the proof of [Cla10, Theorem 5.1] using
our Lemma 5.16, and observe that a hit step never increases the coreset
size. The key point is that for any step that increases the coreset size,
the improvement bound (5.4) always holds. The induction hypothesis
h′1 := 1

2EP1,P2
ρh1 ≤ 1

2 follows if we start at the closest pair.

5.5. Applications to Machine Learning

The advantage of the coreset approach is that both the running time of
the algorithms and the sparsity of the obtained solutions is independent
of the dimension d of the space and independent of the number of points
n. This property makes the approach very attractive for kernel methods,
where the points are implicitly assumed to live in a (possibly very high
dimensional) feature space.

Table 5.5 briefly recapitulates the fact that nearly all well known SVM
variants are equivalent to a polytope distance problem between either one
or two polytopes, showing that all these variants do fit into our frame-
work of coresets. This also holds for the soft-margin variants [CV95] if the
punishment of the outliers is proportional to the squared distance to the
classification hyperplane (`2-loss SVM). In the table, xi ∈ Rd, 1 ≤ i ≤ n
denote the original points, φ(xi) are their implicit images in the feature
space defined by the kernel, and in the two class cases the labels of the
points are given by yi = ±1. ω and b are the normal and offset of the max-
imum margin hyperplane that we are searching for, and the ξi represent
slack variables for the case of possible (punished) outliers.

Applications to Machine Learning 119

SVM Variant Primal Problem Equivalent Polytope
Distance Formulation

1a one-class SVM min
w,ρ

1
2
‖w‖2 − ρ one polytope

(hard-margin) wTφ(xi) ≥ ρ ∀i
1b one-class `2-SVM min

w,ρ,ξ

1
2
‖w‖2 − ρ+ C

2

∑
i ξ

2
i one polytope

(soft-margin) wTφ(xi) ≥ ρ− ξi ∀i [TKC05, Eqn. (8)]

1c two-class `2-SVM min
w,b,ρ,ξ

1
2
(‖w‖2+b2)−ρ+ C

2

∑
i ξ

2
i one polytope

(with regularized yi(w
Tφ(xi)− b) ≥ ρ− ξi ∀i [TKC05, Eqn.(13)],

or no offset) [HPRZ07]

2a two-class SVM, Per- min
w,b

1
2
‖w‖2 two polytopes

ceptron (hard-margin) yi(w
Tφ(xi)− b) ≥ 1 ∀i

2b two-class `2-SVM min
w,b,ξ

1
2
‖w‖2 + C

2

∑
i ξ

2
i two polytopes

(standard version) yi(w
Tφ(xi)− b) ≥ 1− ξi ∀i [KSBM00, Sect. II]

2c two-class `1-SVM min
w,b,ξ

1
2
‖w‖2 + C

∑
i ξi two (reduced)

(C-SVM) yi(w
Tφ(xi)− b) ≥ 1− ξi, polytopes [BB00]

ξi≥0 ∀i
2d two-class `1-SVM min

w,b,ρ,ξ

1
2
‖w‖2 − ρ+ ν

2

∑
i ξi two (reduced)

(ν-SVM) yi(w
Tφ(xi)− b) ≥ ρ− ξi, polytopes [CB00]

ξi≥0 ∀i

Table 5.1.: SVM variants and their equivalent polytope distance formulations.

5.5.1. Sparsity of SVM and Perceptron Solutions

The sparsity of kernel SVM and Perceptron solutions is the crucial ingre-
dient for the performance of these methods on large scale problems: If we
have an approximate solution ω, then still for every evaluation of the clas-
sifier (this means we are given a new “unseen” point and have to answer on
which side of the hyperplane it lies), the scalar products to all points which
appear with non-zero coefficient in ω (those are called the support vectors)
have to be evaluated. The computational performance in practical use is
therefore directly proportional to the sparsity of ω. Interestingly not much
is known in the literature on this question, in particular no lower bounds
are known to our knowledge. Using the above equivalences, we are now
for the first time able to prove asymptotically matching upper and lower
bounds for the sparsity of approximate SVM and Perceptron solutions:

Theorem 5.20. (Characterization of the Sparsity of Perceptron
and SVM solutions using the Excentricity). For any fraction
0 ≤ µ < 1, the sparsity of an approximate solution attaining at least a

µ-fraction of the optimal margin7, is bounded from above by
⌈

E
1−µ

⌉
and

7In the single polytope case this means there is a separating hyperplane of distance µρ

120
A Geometric Optimization Method, and Coresets for Polytope Distance

and SVMs⌈
E∗(1+o(1))

1−µ

⌉
as µ → 1 for the single polytope variants 1a),1b),1c) and

by
⌈
EP1,P2

1−µ

⌉
and

⌈
E∗P1,P2

(1+o(1))

1−µ

⌉
as µ → 1 for the two polytope variants

2a),2b) and 2c),2d)8.

The sparsity is bounded from below by
⌈

1
2E

1−µ

⌉
and

⌈
E∗

1−µ

⌉
+ 1 for SVM

variant 1a), and by
⌈

1
4EP1,P2

1−µ

⌉
and

⌈
1
2E
∗
P1,P2

1−µ

⌉
+ 2 for the standard SVM

or Perceptron 2a).

Proof. Upper bound: This is a direct consequence of Theorem 5.18 in the
single polytope case, and Theorem 5.19 in the two polytope case, showing
that the away steps algorithm returns an (1 − µ)-coreset of the desired
size, whose corresponding (1−µ)-approximation proves our upper bound.

Lower bound: Any approximate solution that attains at least a µ-
fraction of the optimal margin, is represented by a convex combination
x ∈ conv(P) (or x ∈ MD(P1, P2) in the two polytope case) such that

p|x ≥ µρ ∀p ∈ P , or in other words p|x
ρ ≥ 1−ε if we set ε := 1−µ. By iii)

of Lemma 5.8 (or Lemma 5.11 respectively), we have constructed a point
set such that the sparsity of any such x has to be at least the claimed lower
bound.

Corollary 5.21. The sparsity of any separating solution to a standard hard-
margin two-class SVM or Perceptron is at least d 1

2E
∗
P1,P2

e + 2, and at

least d 1
4EP1,P2

e for some training point sets, whereas solutions of sparsity
dEP1,P2

e do always exist for all instances.

Interpretation of the excentricity in the SVM and Perceptron case.
For the Perceptron, [GHW00] have proven a similar upper bound on the
sparsity of separating solutions, and found it remarkable that it depends
on the margin between the two classes. Our lower bound now confirms
that this indeed has to be the case. For SVM, already [Bur98, Section
7.5] conjectured, on the basis of empirical results, that it might be good to
choose the free kernel parameters so that the quantity E is minimized. By

from the origin, whereas in the two polytope case it refers to a separating hyperplane
such that all points have distance at least µ ρ

2
from the plane.

8For the `1-loss SVM variants 2c),2d), our stated upper bound holds for the number of
reduced hulls vertices [BB00, CB00, MST06] that are needed to represent a solution,
however each vertex of a reduced hull corresponds to a fixed larger subset of non-zero
coefficients when expressed in the original points. Thus the sparsity upper bound
when expressed in the original points has to be multiplied by this factor, which for
the ν-SVM variant 2d) is

⌈
νn
2

⌉
[CB00].

Applications to Machine Learning 121

our derived bounds we can now confirm that this choice is indeed good in
the sense that it result in the best possible sparsity of the solutions. [Bur98,
Theorem 6] also showed that E gives an upper bound for the VC dimension
of gap tolerant classifiers, a concept closely related to the complexity of
the classification problem.

5.5.2. Linear Time Training of SVMs and Perceptrons

The following is a direct consequence of the analysis of Gilbert’s Algorithm
and our geometric interpretation of approximation in the one and two
polytope setting:

Theorem 5.22. For all SVM and Perceptron variants 1a) up to 2b), for
arbitrary kernels, and for any fixed fraction 0 ≤ µ < 1, we can find a
solution attaining at least a µ-fraction of the optimal margin in time lin-
ear in the number of training points n, using Gilbert’s Algorithm 10 or
Algorithm 11 respectively.

Proof. Theorem 5.14 and Theorem 5.17 show that the number of Gilbert
steps needed is a constant independent of n and the dimension d. By
keeping the lengths of all projections onto the previous estimate in memory,
one can in each step update all projections by just calculating n scalar
products (of the new point pi to all points in P) [KSBM00], therefore the
number of kernel evaluations (scalar product computations) is n in each
Gilbert step, and O(n) in total.

The above theorem also holds the reduced hull SVM variants 2c),2d),
but there the number of kernel evaluations has to be multiplied with the
previously mentioned factor8.

Comparison to Existing SVM Training Algorithms. Our above result
means that we removed the need for the detour of reducing SVM to a
smallest enclosing ball problem, which was a theoretically and experimen-
tally very successful method suggested by Tsang under the name Core
Vector Machine (CVM) [TKC05, TKK07], for the SVM variants 1b),1c),
in the case that all points have the same norm. This is because in that
special case the single polytope distance problem is equivalent to a small-
est enclosing ball problem. The improved version of the CVM [TKK07]
uses Panigrahy’s algorithm [Pan04] to obtain a coreset of size O(1/ε2) in
the same number of steps. In another work [HPRZ07] also proved the

122
A Geometric Optimization Method, and Coresets for Polytope Distance

and SVMs

existence of coresets of size O(1/ε2) for the problem of separating two
polytopes by a hyperplane that goes through the origin (without using
kernels), which is a special case of SVM variant 1c) and also equivalent
to a single polytope distance problem. Using cutting-plane algorithms,
also [Joa06] proved that SVM variant 2d) when no kernel is used can be
trained by a method called SVM-Perf in linear time, using O(n/ε2) scalar
product evaluations.

Our contributions can be summarized as follows:

• By generalizing the coreset approach to the two-polytope case, we
encompass all the currently most used hard- and soft-margin SVM
variants with arbitrary kernels, with both `1 and `2-loss.

• Our obtained coreset sizes — as well as the algorithm running times
— are one order of magnitude smaller in terms of ε, and also have
a smaller constant than most existing methods such as [TKC05,
TKZ06, TKK07], [HPRZ07] and [Joa06].

• Our method works for arbitrary kernels, and is easier to apply in
practice because we do not require the exact solution of small sub-
problems, overcoming two disadvantages of [TKC05, TKZ06] and
also [HPRZ07].

• The obtained coreset sizes are worst-case optimal.

Perceptrons. In the special case µ := 0, our above Theorem gives a
bound similar to the well known result that the traditional Perceptron

algorithm [Ros58] achieves perfect separation after M2

ρ2 many steps, where

M := maxp∈P ‖p‖ is the largest norm of a sample point [Nov63]. For cases

of large margin, our bound of 2d2Ee steps is faster than the M2

ρ2 many

steps guaranteed by the currently known bounds for (kernel) Perceptron
algorithms [Nov63, SSS05]. Another advantage of our result is that we can
not only guarantee separation but simultaneously large margin.

Practical Experiments. [KY10] provide more experimental results, show-
ing that our proposed improved version of Gilbert’s algorithm for SVMs in
the case of two polytope performs quite well in practice. In the following
Chapter 6, we will use the proposed coreset algorithm as the internal opti-
mizer for the solution path tracking approach for SVMs, that is to calculate
guaranteed ε-coresets that are valid along the entire SVM regularization
path.

6
Solution Paths for Convex

Optimization Problems over
Vectors

We consider parameterized convex optimization problems over the unit
simplex or over the box, that depend on a single additional parameter.
We provide a simple and efficient scheme for maintaining an ε-approximate
solution (and a corresponding ε-coreset) along the entire parameter path.
We prove correctness and optimality of the method. Practically relevant
instances of our studied parameterized optimization problems include for
example regularization paths of support vector machines (SVMs), multi-
ple kernel learning, `1-regularized least squares or logistic regression, or
geometric problems such as the minimum enclosing ball of moving points.

This is joint work with Joachim Giesen and Soeren Laue [GJL10, GJL12a].

6.1. Introduction

We study convex optimization problems that are parameterized by a single
parameter. We are interested in the whole solution path in that parameter,

123

124 Solution Paths for Convex Optimization Problems over Vectors

i.e. the set of optimal solutions for all parameter values. We provide a sim-
ple algorithmic framework for tracking guaranteed approximate solutions
along the parameter path. We obtain strict guarantees on the approxi-
mation quality (continuously along the path) as well as the running time.
The main idea of our scheme is to compute at a parameter value an ap-
proximate solution that is slightly better than the required quality, and
then to keep this solution as the parameter changes, exactly as long as the
required approximation quality can still be guaranteed. Only when the
approximation quality is no longer sufficient, a new solution is computed.

We prove that, if an approximation guarantee of ε > 0 is required for
the entire path, then the number of necessary updates along the path is
only O

(
1
ε

)
, independently of the number of variables used. We also show

that this obtained path complexity of O
(

1
ε

)
is indeed best possible.

The practical need to understand the entire path of (near) optimal solu-
tions to parameterized problems comes from many different fields, such as
control theory, various multi-objective optimization applications, and most
notably from regularization methods in machine learning. The question of
parameter selection — e.g. the choice of the best regularization parameter
— is often a non-trivial task. Many approaches have been proposed in the
last decade for tracking exact solution paths for optimization problems,
in the case that the paths are piecewise linear. However there are many
applications where this assumption does not hold, and even if it does, the
path might have exponential complexity in the worst case [GJM10]. Our
new framework strongly contrasts the existing approaches in the litera-
ture, and proves a path complexity independent of the input size (only
depending on the desired approximation accuracy ε), for a wider class of
problems.

Our framework is not tied to a specific algorithm, and very simple to im-
plement: Any existing optimizer or heuristic of choice can be used to com-
pute an approximate solution at fixed parameter values. Warm-starting
the optimizer with the previous solution at each update step can be used
to further improve speed in practice.

Parameterized Optimization. Our goal is to compute the entire solution
path (with a continuously guaranteed approximation quality) for parame-
terized optimization problems over the ‖.‖1-ball, the ‖.‖∞-ball, or the unit
simplex., i.e. optimization problems of the form (3.3)

min
x∈Rn

ft(x)

s.t. ‖x‖1 ≤ 1 ,
(6.1)

Introduction 125

or the analogous box-constrained variant (3.4)

min
x∈Rn

ft(x)

s.t. ‖x‖∞ ≤ 1 ,
(6.2)

or problems over the simplex as in (3.1), i.e.,

min
x∈Rn

ft(x)

s.t. ‖x‖1 = 1 ,
x ≥ 0 ,

(6.3)

where ft is a family of convex functions, parameterized by t ∈ R. Note that
a variety of other problems can also be reduced to the above form (6.1), (6.2)
or (6.3), by introducing “slack” variables and/or re-scaling. All three for-
mulations have prominent applications in various areas.

Motivation and Applications. Despite our path framework being very
simple, we demonstrate that it is well applicable for practical large scale
problems. Our experiments demonstrate that the computation of an entire
ε-approximate solution path is only marginally more expensive than the
computation of a single approximate solution.

Our work is motivated by several important machine learning tech-
niques, some of which we have mentioned in Chapters 2 and 3, which
naturally come with a parameter that is non-trivial to choose (e.g. a regu-
larization parameter). We apply the algorithm to compute the entire regu-
larization path for `1-regularized least squares (also known as basis pursuit
de-noising in compressed sensing [CDS98, FNW07]), the Lasso [Tib96], `1-
regularized logistic regression [KKB07], support vector machines (SVMs),
and to find the best combination of two kernels, which is a special case of
multiple kernel learning [BLJ04].

Other applications that directly fit into our framework include `2-support
vector regression (SVR), AdaBoost, mean-variance analysis in portfolio se-
lection [Mar52], the smallest enclosing ball problem [BC07], and also any
box-constrained convex optimization problems.

Related Work. Solution path algorithms (sometimes also called homo-
topy methods) have a long history, in particular in the optimization com-
munity [Rit62, Rit84, Osb92] and in control theory (e.g. model predic-
tive control, [GPM89, HHB99]). More recently these methods had an
independent revival in machine learning, in particular for computing ex-
act solution paths in the context of support vector machines and related

126 Solution Paths for Convex Optimization Problems over Vectors

problems [HRTZ04, WZLS08, GGJW09], and also regression techniques
such as `1-regularized least squares [OPT00, EHJT04, MCW05, Tur05,
RZ07, HYZ08]. Similar methods were also applied by [EHJT04, GZ05,
LC06, WCYL06, BHH06, WYL06, LGC07, LS07, Wan08] to special cases
of quadratic programs, in particular cases where the solution path is piece-
wise linear. However, three relatively severe problems remained unresolved
to large parts:

i) The assumption of piecewise linearity of the path does only hold
for a small class of parameterized optimization problems, mostly
quadratic programs with linearly parameterized objective or right
hand side [GGJW09].

ii) The complexity of exact solution paths can be very large in the worst
case, e.g., it can grow exponentially in the input size as it has been
shown for support vector machines with `1-loss [GJM10].

iii) Almost all of the above mentioned existing path algorithms rely on
the inversion of principal sub-matrices of large matrices, leading to
numerical instability as well as combinatorial problems [HRTZ04,
Section 5.2], [GGJW09].

Our proposed framework here overcomes the above issues by moving
away from exact solution paths, towards paths of guaranteed ε-approx-
imation quality. Our algorithm works for arbitrary non-linear solution
paths, under weak continuity assumptions.

Approximation algorithms and warm-start heuristics for parameter se-
lection have gained interest in various areas, such as e.g. in machine learn-
ing [FHHT07, KKB07], compressed sensing [HYZ08], or multi-objective
optimization [BGP09]. However, to the best of our knowledge, so far no
approximation guarantees along the path could be given for these existing
algorithms, which sample the path at discrete parameter values.

6.2. Approximation Quality Measures

In this small section we will briefly recall the practical approximation qual-
ity measures for convex optimization problems of the form (6.3) and (6.2),
which we have proposed in Chapter 2 using the “poor-man’s” duality ap-
proach. For this it will be crucial to consider the gradient ∇ft(x) of the
objective function ft with respect to x. We assume the function ft(x) to
be convex and continuously differentiable in x, for each t ∈ R.

Approximation Quality Measures 127

Lemma 6.1. The duality gap (2.5) at any candidate x ∈ Rn is given by
the difference of ft(x) to its corresponding dual value ωt(x), and equals

gt(x) = ‖∇ft(x)‖∞ + xT∇ft(x) for problem (6.1),

gt(x) = ‖∇ft(x)‖1 + xT∇ft(x) for problem (6.2),

gt(x) = max
i

(−∇ft(x))i + xT∇ft(x) for problem (6.3),

If x is feasible for the respective optimization problem, gt(x) ≥ 0. Further-
more, in each case it holds that ft(x) − ft(x∗) ≤ gt(x) for any feasible x,
for x∗ being an optimal solution.

Proof. Directly from the definition of the duality gap as in (2.5). We
already considered these expressions in Sections 3.1, 3.2 and 3.3.

Notation. Recall that we write ♦n := {x ∈ Rn | ‖x‖1 ≤ 1} for the `1-
ball in Rn as being the optimization domain for problem (6.1), �n :=
{x ∈ Rn | ‖x‖∞ ≤ 1} for the unit box of non-negative vectors as in prob-
lem (6.2), as well as ∆n := {x ∈ Rn |x ≥ 0, ‖x‖1 = 1} for the unit sim-
plex, see problem (6.3).

The Duality Gap as a Stopping Criterion. For practical optimizers, the
last mentioned fact in Lemma 6.1 — which is weak-duality — makes the
duality gap an extremely useful measure of approximation and stopping
criterion, because the optimum x∗ is usually unknown. For all variants,
the quantity gt is easily computable for any candidate solution x even for
very large problems.

As explained in Section 3.1, the gap gt can be interpreted as the dif-
ference of the function value to the minimum value of the linear approx-
imation to f at point x, where the minimum is taken over the feasible
region. Alternatively, the above Lemma 6.1 also follows from standard
Wolfe duality theory [BV04], see the also our appendix Section A.4.

Definition 6.2. A candidate vector x ∈ Rn that is feasible for one of the
above optimization problems at some parameter value t is called an additive
ε-approximation if

gt(x) ≤ ε .
It is called a relative ε-approximation if gt(x) ≤ εft(x).

A subset C ⊆ [n] is called an ε-coreset at “time” t, if there exists an
ε-approximation x at parameter value t with xi = 0, ∀i ∈ [n] \ C.

128 Solution Paths for Convex Optimization Problems over Vectors

Relative Approximation. When considering relative approximation, we
assume that ft(x) ≥ 0 for all x in the domain. Sometimes in the literature,
a multiplicative ε-approximation is defined more restrictively as g(x) ≤
εf(x∗), relative to the optimal value f(x∗) of the primal optimization
problem. Note that this can directly be obtained from our slightly weaker
definition by setting ε in the definition of an ε-approximation to ε′ := ε

1+ε ,
because g(x) ≤ ε

1+εf(x)⇔ (1+ε)(f(x)−ω(x)) ≤ εf(x)⇔ g(x) ≤ εω(x) ≤
εf(x∗), recalling weak duality from Section 2.2. Note that when looking
at the relative error for maximization instead of minimization problems,
no such distinction is necessary.

6.3. Optimizing Parameterized Functions

We are interested in ε-approximations for problems (6.1), (6.2) and (6.3)
for all valid parameter values t ∈ R, and will study the complexity of such
solution paths in the following.

Definition 6.3. The ε-approximation path complexity of a parameterized
optimization problem is defined as the minimum number of intervals over
all possible partitions of the parameter range [tmin, tmax] ⊆ R, such that for
each individual interval, there is a single solution that is an ε-approximation
for that entire interval.

The following simple lemma is at the core of our discussion and char-
acterizes how far we can change the parameter t such that a given ε

γ -

approximate solution x (for γ > 1) at t stays an ε-approximate solution.
The idea is a simple continuity argument for the duality gap, as the pa-
rameter changes. Lemma 6.4 gives the stability result for the case of
bounded `1-norm (6.1), and Lemma 6.5 considers the `∞-case (6.2), which
is in a sense dual to the `1-case. The lemmata each give two alternative
conditions, which both imply the desired stability of the approximation.
Two important consequences will follow from these stability results: First
we will obtain that the global ε-approximation path complexity is O(1

ε).
Secondly, for most practical problems, we will be able to locally exactly
compute the largest possible parameter-interval over which some specific
ε-approximate solution stays valid, which in practice will lead to intervals
much longer than the worst-case upper bound.

Optimizing Parameterized Functions 129

6.3.1. Stability of ε-Approximations

Lemma 6.4 (Stability of an Approximation under Bounded `1-Norm). Let
x ∈ ♦n be an ε

γ -approximation to problem (6.1) for some fixed parameter

value t, for some γ > 1. Then for all t′ ∈ R that satisfy either

gt′(x)− gt(x) =
‖∇ft′(x)‖∞ − ‖∇ft(x)‖∞
+xT

(
∇ft′(x)−∇ft(x)

) ≤ ε
(

1− 1

γ

)
, (6.4)

or

(1 + ‖x‖1) ‖∇ft′(x)−∇ft(x)‖∞ ≤ ε
(

1− 1

γ

)
, (6.5)

it holds that the solution x is still an ε-approximation to problem (6.1) at
the changed parameter value t′.

Proof. We first prove the statement assuming that (6.4) is satisfied. To
do so, we add to (6.4) the inequality stating that x is an ε

γ -approximate
solution at value t, i.e.

‖∇ft(x)‖∞ + xT∇ft(x) ≤ ε

γ
.

This directly results in the claimed bound ‖∇ft′(x)‖∞ + xT∇ft′(x) ≤ ε
on the duality gap at t′.

We will prove the second part of the lemma by showing that the second
condition (6.5) in fact implies the condition (6.4). On one hand, by the
(reversed) triangle inequality, the first term in (6.4) is upper bounded as
follows.

‖∇ft′(x)‖∞ − ‖∇ft(x)‖∞ ≤ ‖∇ft′(x)−∇ft(x)‖∞ .

On the other hand, from the general norm inequality1 xT y ≤ ‖x‖ · ‖y‖∗
together with the fact that the `∞-norm is dual to the `1-norm, we have

xT (∇ft′(x)−∇ft(x)) ≤ ‖x‖1 · ‖∇ft′(x)−∇ft(x)‖∞ .

Altogether, this means that (6.5) implies (6.4), or in other words we have
reduced the case to the already verified first case of the lemma.

1The inequality xT y ≤ ‖x‖ · ‖y‖∗ can be seen as the generalization of the Cauchy-
Schwarz inequality to arbitrary norms ‖.‖ and their corresponding dual norms
‖y‖∗ := sup

‖x‖≤1
xT y, and follows directly from the definition of the dual norm.

130 Solution Paths for Convex Optimization Problems over Vectors

Lemma 6.5 (Stability of an Approximation under Bounded `∞-Norm). Let
x ∈ �n be an ε

γ -approximation to problem (6.2) for some fixed parameter

value t, for some γ > 1. Then for all t′ ∈ R that satisfy either

gt′(x)− gt(x) =
‖∇ft′(x)‖1 − ‖∇ft(x)‖1
+xT

(
∇ft′(x)−∇ft(x)

) ≤ ε
(

1− 1

γ

)
, (6.6)

or

(1 + ‖x‖∞) ‖∇ft′(x)−∇ft(x)‖1 ≤ ε
(

1− 1

γ

)
, (6.7)

it holds that the solution x is still an ε-approximation to problem (6.2) at
the changed parameter value t′.

Proof. Completely analogous to the proof of Lemma 6.4, by swapping the
roles of ‖.‖1 and ‖.‖∞.

Lemma 6.6 (Stability of an Approximation over the Simplex). Let x ∈ ∆n

be an ε
γ -approximation to problem (6.3) for some fixed parameter value t,

for some γ > 1. Then for all t′ ∈ R that satisfy either

gt′(x)− gt(x) =
max
i

(
∇ft(x)−∇ft′(x)

)
i

+xT
(
∇ft′(x)−∇ft(x)

) ≤ ε

(
1− 1

γ

)
, (6.8)

or

(1 + ‖x‖1) ‖∇ft′(x)−∇ft(x)‖∞ ≤ ε
(

1− 1

γ

)
, (6.9)

it holds that the solution x is still an ε-approximation to problem (6.3) at
the changed parameter value t′.

Proof. Using the inclusion ∆n ⊂ ♦n, we can follow the same proof as in
Lemma 6.4. Then the first claim will follow from the fact that

max
i

(
∇ft(x)−∇ft′(x)

)
i
≤ ‖∇ft′(x)−∇ft(x)‖∞ ,

see also the definition of the duality gap given in Lemma 6.1 for the simplex
domain.

6.3.2. Bounding the Path Complexity

The following main theorem on the path complexity bounds the param-
eter interval lengths in the worst case. Here we assume that the global
parameter range of interest, [tmin, tmax] ⊂ R, is finite.

Optimizing Parameterized Functions 131

Theorem 6.7. Let ft be convex and continuously differentiable in x, and
let ∇ft(x) be Lipschitz continuous in t for all feasible x. Then the ε-
approximation path complexity of problems (6.1), (6.2) and (6.3) over the
parameter range t ∈ [tmin, tmax] ⊂ R is O

(
1
ε

)
.

Proof. We prove the `1-case first. In order for the condition (6.5) in
Lemma 6.4 to be satisfied, we first use that for any x ∈ ♦n,

(1 + ‖x‖1) ‖∇ft′(x)−∇ft(x)‖∞
≤ 2 · ‖∇ft′(x)−∇ft(x)‖∞
≤ 2 · L · |t′ − t| .

Here L is the supremum of the Lipschitz constants with respect to t of the
derivatives ∇ft(x), taken over the compact feasible domain ♦n for x. It
follows that condition (6.5) in the Lemma is satisfied for any x ∈ ♦n, if
we require the parameter intervals to be of length |t′ − t| ≤ ε

2L

(
1− 1

γ

)
.

Dividing the total parameter range |tmax − tmin| by this interval length,
the claim follows directly: The path complexity is at most⌈

1
ε · |tmax − tmin| · 2L γ

γ−1

⌉
.

For the `∞-case, we argue the same way, applying condition (6.7). The
case of optimization over the simplex also follows from the argument for
the `1-case.

Optimality. One might expect that the above path complexity result of
O
(

1
ε

)
is best possible. As ∇ft(x) changes with t, the interval length where

gt(x) ≤ ε holds can not be larger than Θ(ε) in the worst case. The next
small section will formally prove that the path complexity obtained above
is indeed worst-case optimal.

6.3.3. Lower Bound

We provide an explicit lower bound on the path complexity for optimizing
over the simplex (being a subset of the `1-ball ♦n), showing that the above
complexity from Theorem 6.7 is indeed best possible up to a constant
factor. We consider the following instance of a parameterized optimization
problem (6.3) or (6.1):

minimize
x∈Rn

ft(x) := xTh(t)

s.t. x ∈ ∆n

(6.10)

132 Solution Paths for Convex Optimization Problems over Vectors

where h(t) = (h1(t), . . . , hn(t)) is a vector of n parameterized values, de-
fined as

hi(t) := |t− iε′| ,

For some parameter ε′. We assume that n ≥ 1
ε′ . Observe that each of the

“coordinate” functions hi(t) attains its minimum value (zero) at t = iε′,
see also Figure 6.1. As ft(x) is a linear function of x for each t, ft is
convex in x. Considering the discrete time-points ti := iε′, we have that
hi(ti) = 0 and hj(ti) ≥ ε′ for each j 6= i. In other words the optimum at
time ti is attained by x being the i-th standard basis vector ei.

iε′(i− 1)ε′ (i+ 1)ε′
t

hi(t)

hi+1(t)hi−1(t)

ε′

ε′
2

Figure 6.1.: Construction of our parameterized linear function ft(x) =
xT (h1(t), . . . , hn(t)).

Moving our focus towards approximations instead of optimal solutions,
we make the following crucial observation: Let ε < ε′

2 , and assume that x is
an ε-approximation to (6.10) at time ti, implying that fti(x)−0 ≤ gti(x) <
ε′

2 . Then since fti(x) is just the convex combination of the univariate
functions hi, weighted by x ∈ ∆n, it must hold that the i-th coordinate of
x must be large, or formally that xi >

1
2 . Therefore, no ε-approximation

at ti can be an ε-approximation at any other time-point tj for j 6= i.

This means the ε-approximation path complexity of problem (6.10) over
the parameter range t ∈ [0, 1] is at least n ≥

⌊
1
ε′
⌋
, which is at least

⌊
1
2ε

⌋
−1

by choosing ε close to ε′/2.

Optimality of the Path Complexity. Our above example shows that the
path complexity is at least Ω

(
1
ε

)
in the worst case. Furthermore, we can

even show that the constants in our main Theorem 6.7 are in fact best
possible up to a constant factor.

To do so, we observe that ‖h(t′)− h(t)‖∞ ≤ |t′ − t|. In other words the
Lipschitz-constant Lx with respect to t of ∇xft(x) = h(t) is constantly

Optimizing Parameterized Functions 133

equal to 1, independent of x. This means the upper bound from Theo-

rem 6.7 for the path complexity gives precisely
⌈

1
ε · |1− 0| · 2 · 1 γ

γ−1

⌉
=⌈ |tmax−tmin|·2 γ

γ−1

ε

⌉
many intervals. If we choose the improvement parame-

ter γ as being very large (corresponding to large intervals of constant solu-
tions), we therefore have that the path complexity given by Theorem 6.7 is
optimal up to a constant multiplicative factor of 4 + δ, for δ > 0 arbitrary
small. For γ := 2, the corresponding factor becomes 8 + δ. Indeed, also
the dependence on the Lipschitz-constant L w.r.t the parameter t is tight:
contracting the functions hi(t) along the t-direction will linearly increase
the Lipschitz constant L of (∇ft(x))i, together with the complexity 1

ε′ in
our construction.

6.3.4. Relative Approximation

Our framework for the stability of approximations also applies for rela-
tive instead of additive error. The approximation path complexity result
also translates analogously. Here we only state the relative approximation
condition for optimization over the simplex. A similar result for `1- and
`∞-problems follows analogously by using Lemma 6.4 and 6.5.

Lemma 6.8. Let x ∈ ∆n be a relative ε
γ -approximation to problem (6.3)

for some fixed parameter value t, and for some γ > 1. Then for all t′ ∈ R
that satisfy

gt′(x)− gt(x) =
max
i

(
∇ft(x)−∇ft′(x)

)
i

+xT
(
∇ft′(x)−∇ft(x)

) ≤ ε

(
ft′(x)− 1

γ
ft(x)

)
,

it holds that the solution x is still a relative ε-approximation to prob-
lem (6.3) at the changed parameter value t′.

Proof. Analogous to the additive approximation as in Lemma 6.6.

6.3.5. The Weighted Sum of Two Convex Functions

We are particularly interested in a special case of problem (6.3): For
any two convex, continuously differentiable functions f (1), f (2) : Rn → R
that are non-negative on the simplex ∆n, we consider the weighted sum
ft(x) := f (1)(x) + tf (2)(x) for a real parameter t ≥ 0. The parameterized
optimization problem (6.3) in this case becomes

minx f (1)(x) + tf (2)(x)
s.t. x ∈ ∆n .

(6.11)

134 Solution Paths for Convex Optimization Problems over Vectors

This class of optimization problems has many relevant applications, in par-
ticular for regularization methods, as we have mentioned in Section 1.3.2.
For this formulation, the change of the gradients ∇ft(x) with the param-
eter t will be very easy to control. We have the following corollary of the
“approximation stability” Lemma 6.8:

Corollary 6.9. Let x ∈ ∆n be a relative ε
γ -approximation to problem (6.11)

for some fixed parameter value t ≥ 0, and for some γ > 1. Then for all
t′ ≥ 0 that satisfy

(t′ − t)
(
xT∇f (2)(x)−

(
∇f (2)(x)

)
i
− εf (2)(x)

)
≤ ε

(
1− 1

γ

)
ft(x), ∀i ∈ [n]

(6.12)

it holds that x is still a relative ε-approximation to problem (6.11) at the
changed parameter value t′.

Proof. Follows directly from Lemma 6.8, and observing that ft′(x)−ft(x) =
(t′ − t)f (2)(x).

This allows us to exactly calculate the entire interval of admissible pa-
rameter values t′ such that an ε

γ -approximation at t is still an ε-approxi-

mation at t′:

Corollary 6.10. Let x be a relative ε
γ -approximation to the problem (6.11)

for some fixed parameter value t ≥ 0, for γ > 1, and let

u := xT∇f (2)(x)−min
i

(
∇f (2)(x)

)
i
− εf (2)(x)

l := xT∇f (2)(x)−max
i

(
∇f (2)(x)

)
i
− εf (2)(x),

then l ≤ u and x remains a relative ε-approximation for all 0 ≤ t′ = t+ δ
for the following values of δ:

(i) If l < 0 and 0 < u, then the respective admissible values for δ are

ε

(
1− 1

γ

)
ft(x)

l
≤ δ ≤ ε

(
1− 1

γ

)
ft(x)

u

(ii) If u ≤ 0, then δ (and thus t′) can become arbitrarily large.

(iii) If l ≥ 0, then δ can become as small as −t, and so t′ can become
zero.

Optimizing Parameterized Functions 135

Proof. Directly from solving condition (6.12) for δ := t′ − t.

Note that the ε-approximation path complexity for problem (6.11) for
a given value of γ > 1 can be upper bounded by the minimum number of
points tj ≥ 0 such that the admissible intervals of ε

γ -approximate solutions

xj at tj cover the whole parameter range [0, tmax].

Corollary 6.10 immediately suggests two variants of an algorithmic frame-
work (forward- and backward version) maintaining ε-approximate solu-
tions over the entire parameter interval, or in other words, tracking a
guaranteed ε-approximate solution path. Note that as the internal opti-
mizer, any arbitrary approximation algorithm can be used here, as long as
it provides an approximation guarantee on the relative primal-dual gap.
For example the standard Frank-Wolfe sparse greedy Algorithm 3 that we
described in Chapter 3 is particularly suitable here, as its resulting coreset
solutions are also sparse, see also [Cla10, Algorithm 1.1]. The forward vari-
ant is depicted in Algorithm 12 and the backward variant in Algorithm 13.

Algorithm 12 ApproximationPath—ForwardVersion

Input: convex function ft = f (1)(x) + tf (2)(x), tmin, tmax, ε, γ
Output: ε-approximate solution path for problem (6.11)
Set t := tmin.
Compute an ε-approximation x to (6.11) at parameter tmin.
repeat

Improve x (which is now still ε-approximate) to an at least
ε
γ -approximate solution at t, by applying steps of any optimizer.

u := xT∇f (2)(x)−mini
(
∇f (2)(x)

)
i
− εf (2)(x)

if u > 0 then
δ := ε

(
1− 1

γ

)
ft(x)
u > 0

t := t+ δ
else
t := tmax

until t ≥ tmax

136 Solution Paths for Convex Optimization Problems over Vectors

Algorithm 13 ApproximationPath—BackwardVersion

Input: convex function ft = f (1)(x) + tf (2)(x), tmax, tmin, ε, γ
Output: ε-approximate solution path for problem (6.11)
Set t := tmax.
Compute an ε-approximation x to (6.11) at parameter tmax.
repeat

Improve x (which is now still ε-approximate) to an at least
ε
γ -approximate solution at t, by applying steps of any optimizer.

l := xT∇f (2)(x)−maxi
(
∇f (2)(x)

)
i
− εf (2)(x)

if l < 0 then
δ := ε

(
1− 1

γ

)
ft(x)
l < 0

t := t+ δ
else
t := tmin

until t ≤ tmin

6.4. Applications

Special cases of the parameterized problem (6.11), and of course also the
more general problems (6.1), (6.2) and (6.3), have applications in many
areas, in particular computational geometry, machine learning, compressed
sensing and finance. In the following we discuss three of these applications
in more detail, namely, regularization paths of support vector machines
(SVMs), multiple kernel learning, and smallest enclosing balls of linearly
moving points. The first two applications for SVMs are special instances of
the weighted sum problem (6.11) and more specifically of a parameterized
polytope distance problem that we discuss at first.

6.4.1. A Parameterized Polytope Distance Problem

In the setting of Section 6.3.5, we consider the case f (1)(x) := xTK(1)x and
f (2)(x) := xTK(2)x, for two positive semi-definite matrices K(1),K(2) ∈
Rn×n, or formally

minx f (1)(x) + tf (2)(x) = xT
(
K(1) + tK(2)

)
x

s.t. x ∈ ∆n .
(6.13)

The geometric interpretation of this problem is as follows, compare also
to our Chapter 5: let A(t) ∈ Rn×r, r ≤ n, be a matrix such A(t)TA(t) =

Applications 137

K(1)+tK(2) (Cholesky decomposition), for some large enough r. The solu-
tion x∗ to problem (6.13) is the point in the convex hull of the column vec-
tors of the matrix A(t) that is closest to the origin. Hence, problem (6.13)
is a parameterized polytope distance problem. For the geometric inter-
pretation of an ε-approximation in this context we refer to [GJ09]. In the
following we will consider two geometric parameters for any fixed polytope
distance problem:

Definition 6.11. For a positive semi-definite matrix K ∈ Rn×n, we define

ρ(K) := min
x∈∆n

xTKx and R(K) := max
i
Kii

or in other words when considering the polytope associated with K, ρ(K)

is the minimum (squared) distance to the origin, and R(K) is the largest
squared norm of a point in the polytope. We say that the polytope distance
problem min

x∈∆n

xTKx is separable if ρ(K) > 0.

For the parameterized problem (6.13), the two quantities u and l that
determine the admissible parameter intervals in Corollary 6.10 and the
step size in both approximate path algorithms take the simpler form

u = (2− ε)xTK(2)x− 2 mini(K
(2)x)i

and l = (2− ε)xTK(2)x− 2 maxi(K
(2)x)i,

since ∇f (2)(x) = 2K(2)x. We can now use the following lemma to bound
the path complexity for instances of problem (6.13).

Lemma 6.12. Let 0 < ε ≤ 1 and γ > 1. Then for any parameter t ≥ ε,
the length of the interval [t − δ, t] with δ > 0, on which a relative ε

γ -

approximation x to problem (6.13) at parameter value t remains a relative
ε-approximation, is at least

lf (ε, γ) :=
ε

2

(
1− 1

γ

)
ρ(K(1))

R(K(2))

= Ω(ε) . (6.14)

Proof. In the special case l ≥ 0, the interval length given by Corollary 6.10
is as long as t ≥ ε. Otherwise, for l = (2−ε)xTK(2)x−2 maxi(K

(2)x)i < 0,
we get from Corollary 6.10 that the length of the “left” interval [t − δ, t]
at point x is of length at least

ε

(
1− 1

γ

)
ft(x)

−l .

138 Solution Paths for Convex Optimization Problems over Vectors

For any t ≥ 0, we have the lower bound

ft(x) ≥ f (1)(x) = xTK(1)x ≥ min
x∈∆n

xTK(1)x = ρ(K(1)),

and for ε ≤ 1 we have the upper bound

−l = 2 max
i

(K(2)x)i − (2− ε)xTK(2)x ≤ 2 max
i

(K(2)x)i,

because f (2)(x) ≥ 0. The value maxi(K
(2)x)i = maxi e

T
i K

(2)x is the
inner product between two points in the convex hull of the columns of any
factorization of the positive semi-definite matrix K(2) (see the discussion
at the beginning of this section, or the geometric Chapter 5). Let these
two points be u, v ∈ Rn. Using the Cauchy-Schwarz inequality we get

max
i

(K(2)x)i = uT v ≤
√
‖u‖2 ‖v‖2 ≤ 1

2
(‖u‖2 + ‖v‖2)

≤ max{‖u‖2 , ‖v‖2} ≤ max
x∈∆n

xTK(2)x,

where the last expression gives the norm of the longest vector with endpoint
in the convex hull of the columns of the square root of K(2). However, the
largest such norm (in contrast to the smallest norm) is always attained at
a vertex of the polytope (which can be seen by writing any such optimal
point as a convex combination of some vertices). Formally, this means

that maxx∈∆n
xTK(2)x = maxi e

T
i K

(2)ei = maxiK
(2)
ii = R(K(2)). Hence,

−l ≤ 2R(K(2)). Combining the lower bound for ft(x) and the upper bound
for −l gives the stated bound on the interval length.

Now, to upper bound the approximation path complexity, we split the
domain [0,∞] into two parts: the range [0, 1] can be covered by at most
1/lf (ε, γ) admissible “left” intervals [t − δ, t], i.e., by at most 1/lf (ε, γ)
many admissible intervals.

We reduce the analysis for the range t ∈ [1,∞] to the analysis for [0, 1]
by interchanging the roles of f (1) and f (2). For any t ≥ 1, x is an ε-
approximate solution to minx∈∆n

ft(x) := f (1)(x) + tf (2)(x) if and only if
x is an ε-approximate solution to minx∈∆n

f̃t′(x) := t′f (1)(x) + f (2)(x) for
t′ = 1

t ≤ 1, because the definition of an ε-approximation is invariant under
scaling the objective function. Note that by allowing t = ∞ we just refer
to the case t′ = 0 in the equivalent problem for f̃t′(x) with t′ = 1

t ∈ [0, 1].
Using the lower bounds on the interval lengths lf (ε, γ) and lf̃ (ε, γ) (for

the problem for f̃t′(x) with t′ ∈ [0, 1]) on both intervals we get an upper

Applications 139

bound of
⌈

1
lf (ε,γ)

⌉
+
⌈

1
lf̃ (ε,γ)

⌉
on the path complexity as is detailed in the

following theorem:

Theorem 6.13. Given any 0 < ε ≤ 1 and γ > 1, and assuming that the
distance problems associated to K(1) and K(2) are both separable, we have
that the ε-approximation path complexity of problem (6.13) is at most

γ

γ − 1

(
R(K(2))

ρ(K(1))

+
R(K(1))

ρ(K(2))

)
2

ε
+ 2 = O

(
1

ε

)
.

This result on the path complexity immediately implies a bound on the
time complexity of our approximation path Algorithm 12. In particular we
have obtained a linear running time of O

(
n
ε2

)
many arithmetic operations

for computing the global solution path, when using Algorithm 3 as the
internal optimizer. This follows because the number of path intervals is
O
(

1
ε

)
, and computing a single ε

γ -approximate solution for each interval

takes O
(
γ
ε

)
many iterations of Algorithm 3, each iteration having cost n

to compute (update to) the new gradient.
There are interesting applications of this result, because it is known

that instances of problem (6.13) include for example computing the solu-
tion path of a support vector machine – as the regularization parameter
changes – and also finding the optimal combination of two kernel matrices
in the setting of kernel learning. We will discuss these applications in the
following sections.

6.4.2. The Regularization Path of Support Vector
Machines

Support Vector Machines (SVMs) are well established machine learning
techniques for classification and related problems. In Chapter 5 (see
also [GJ09]) we have seen that most of the practically used SVM vari-
ants are equivalent to a polytope distance problem, i.e., finding the point
in the convex hull of a set of data points that is closest to the origin. In
particular the so called one class SVM with `2-loss term [TKC05, Equation
(8)], and the two class `2-SVM without offset as well as with penalized off-
set, see [TKC05, Equation (13)] for details, are instances of the following
polytope distance problem

minx xT
(
K + 1

c I
)
x

s.t. x ∈ ∆n
(6.15)

140 Solution Paths for Convex Optimization Problems over Vectors

where the so called kernel matrix K is an arbitrary positive semi-definite
matrix consisting of the inner products Kij = 〈Ψ(pi),Ψ(pj)〉 of the data
points p1, . . . , pn ∈ Rd mapped into a kernel feature space H by Ψ : Rd →
H. The parameter c (= 1

t) is called the regularization parameter, and
controls the trade-off between the regularization and the loss term in the
objective function. Selecting the right regularization parameter value and
by that balancing between low model complexity and overfitting is a very
important problem for SVMs and machine learning methods in general
and highly influences the prediction accuracy of the method.

Problem (6.15) is a special case of (6.13) with K(2) = I, and in this case
the quantities u and l (used in Corollary 6.10 and the approximate path
Algorithm 12 and Algorithm 13 now have the even simpler form

u = (2− ε)xTx− 2 min
i
xi and l = (2− ε)xTx− 2 max

i
xi,

and from Lemma 6.12 we get the following corollary for the complexity
of an approximate regularization path, i.e., the approximation path com-
plexity for problem (6.15).

Corollary 6.14. Let 0 < ε ≤ 1, γ > 1 and cmin ≤ 1. We assume that the
distance problem associated to K is separable.

Then the ε-approximation path complexity of the regularization parame-
ter path for problem (6.15) for c ∈ [cmin,∞) is at most

γ

γ − 1

R(K) + cmin

ρ(K) · cmin
· 2

ε
+ 2 = O

(
R(K)

ρ(K)cmin · ε

)
= O

(
1

ε · cmin

)
.

Proof. As in the proof of Theorem 6.13, the number of admissible intervals
that are necessary to cover the parameter range [0, 1] 3 1

c = t can be
bounded by

γ

γ − 1

1

ρ(K)

2

ε
= O

(
1

ε

)
,

because R(I) = max
i

Iii = 1.

The interval t ∈ [1, 1/cmin] or equivalently c ∈ [cmin, 1] (and f̃c(x) =
xT Ix+ c ·xTKx) can also be analyzed following the proof of Lemma 6.12.
Only, now we bound the function value as follows

f̃c(x) = xT Ix+ cxTKx ≥ cxTKx ≥ cmin min
x∈∆n

xTKx = cminρ(K)

Applications 141

to lower bound the length of an admissible interval. Hence, the number of
admissible intervals needed to cover [cmin, 1] is at most

γ

γ − 1

1

cmin

R(K)

ρ(K)

2

ε
.

Adding the complexities of both intervals gives the claimed complexity for
the regularization path.

Of course we could also have used our “path complexity” Theorem 6.13
directly, but using ρ(I) = 1

n would only give a complexity bound that is
proportional to n. However, if we choose to stay above cmin, then we can
obtain the better bound as described in the above theorem.

Globally Valid Coresets. Using the above Theorem 6.13 for the number

O
(

1
ε·cmin

)
of intervals of constant solutions, and combining this with the

size O
(

1
ε

)
of a coreset at a fixed parameter value, as e.g. provided by

the sparse greedy algorithms from Chapter 3, we can just build the union

of those individual coresets to get an ε-coreset of size O
(

1
ε2·cmin

)
that is

valid over the entire solution path. This means we have upper bounded the
overall number of support vectors used in a solution valid over the entire
parameter range c ∈ [cmin,∞). This is particularly nice as this number is
independent of both the number of data points and the dimension of the
feature space, and can easily be constructed by our Algorithms 12 and 13.

In Section 6.5.1 we report experimental results using this algorithmic
framework for choosing the best regularization parameter.

6.4.3. Multiple Kernel Learning

Another immediate application of the parameterized framework in the
context of SVMs is “learning” the best combination of two kernels. This is
a special case of the multiple kernel learning problem, where the optimal
kernel to be used in a SVM is not known a priori, but needs to be selected
out of a set of candidates. This set of candidates is often chosen to be
the convex hull of a few given “base” kernels, see for example [BLJ04]. In
our setting with two given kernel matrices K(1),K(2), the kernel learning
problem can be written as follows:

minx xT
(
λK(1) + (1− λ)K(2) + 1

c I
)
x

s.t. x ∈ ∆n
(6.16)

142 Solution Paths for Convex Optimization Problems over Vectors

where 0 ≤ λ ≤ 1, is the parameter that we want to learn. To simplify

the notation, let us define the matrices K
(1)
c := K(1) + 1

c and K
(2)
c :=

K(2) + 1
c . By scaling the objective function by 1/λ (where λ is assumed

to be non-zero), problem (6.16) can be transformed to a special case of
problem (6.13), where t = 1−λ

λ (note again that the scaling does not affect
our measure of primal-dual approximation error, because the error measure
is relative):

minx xTK
(1)
c x+ t · xTK(2)

c x
s.t. x ∈ ∆n

(6.17)

This again allows us to apply both approximation path Algorithms 12
and 13, and to conclude from Theorem 6.13 that the complexity of an
ε-approximate path for problem (6.17) for t ∈ [0,∞] is in O

(
1
ε

)
. Here the

assumption that the distance problems associated to K
(1)
c and K

(2)
c are

both separable holds trivially because 1/c > 0.

In the case that we have more than two base kernels we can still apply the
above approach if we fix the weights of all kernels except one. We can then
navigate along the solution paths optimizing each kernel weight separately,
and therefore try to find total weights with a hopefully best possible cross-
validation accuracy. Cross-validation refers to using splitting the available
data into two disjoint sets, the training and the test set. The training set
is used to obtain the model x (by solving the optimization problem), and
later the separate test set is used to validate the quality of the model x.

In Section 6.5.2 we report experimental results to determine the best
combination of two kernels to achieve the highest prediction accuracy.

6.4.4. Minimum Enclosing Ball of Points under Linear
Motion

The framework described here can also be used to solve the smallest en-
closing ball problem for points in Rd that exhibit a linear motion in time,
see [GJL10, GJL12a]. Here our algorithm improves the size of a coreset
that is valid at all time-points to O(1

ε2), where the previous upper bound

was 2O(1
ε2

log 1
ε) due to [AHPY07], or O(1/ε2d) for maintaining the more

informative extent measures of the moving points [AHPV04].

Experimental Results 143

6.5. Experimental Results

The parameterized framework from Section 6.3 is also useful in practice.
For support vector machines and multiple kernel learning, we have imple-
mented the approximation path Algorithms 12 and 13 in Java. As the
internal optimizer, we used the sparse greedy Algorithm 3 as described
in Chapters 2 and 3. This algorithm can be implemented in a straight-
forward way to work directly with the kernel matrix, without requiring ex-
plicit representations of the datapoints in the kernel-space. We have seen
in Chapter 5 that the method coincides with Gilbert’s algorithm [Gil66]
in the geometric setting. In our implementations, we have also used the
alternative MDM [MDM74] variant, also directly applied to the kernel
matrix.

We have tested our implementations on the following standard binary
classification datasets (n points originally living in Rd each) from the UCI
repository2: ionosphere (n = 280, d = 34), breast-cancer (n = 546, d = 10),
and MNIST 4k (n = 4000, d = 780). The timings were obtained by our
single-threaded Java 6 implementation of MDM, using kernels (and no
caching of kernel evaluations), on an Intel C2D 2.4 GHz processor.

6.5.1. The Regularization Path of Support Vector
Machines

Using the SVM formulation of problem (6.15) (for the `2-SVM without
offset), we compute approximate regularization paths for c ∈ [cmin =

1
100000 , cmax = 100000] using the polynomial kernel (〈pi, pj〉 + 1)2. As
experimental results we report in Table 6.1 the following quantities: (a)
the time Tinit (in seconds) needed to compute an initial ε

γ -approximate

solution as the starting point, (b) the time Tpath (in seconds) needed to
follow the entire ε-approximate regularization path, when starting from
the initial solution, (c) for comparison the time T3 (in seconds) needed
to compute a static ε-approximate solution at the three fixed parameter
values c = cmin, 1 and cmax, and (d) the path complexity, i.e. the number
#int of obtained admissible parameter intervals of constant ε-approximate
solutions along the path. The lower part of the table demonstrates the de-
pendency of the path complexity on the choice of the parameter γ.

These experimental results show that the path complexity is indeed

2All datasets are available from www.csie.ntu.edu.tw/˜ cjlin/libsvmtools/datasets. In
our experiments, all features were scaled to [-1,1]. For MNIST, the first 5000 ’one’
or ’seven’ images of the original dataset were used.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

144 Solution Paths for Convex Optimization Problems over Vectors

0.7

0.8

0.9

1.0

0.001 0.01 0.1 1 10 100 1000 10000 100000

C
ro

s
s
-V

a
li
d

a
ti

o
n

 A
c

c
u

ra
c

y

1/C

ionosphere
breast-cancer

Figure 6.2.: Continuous cross-validation along the (ε = 0.2)-approximate regu-
larization path.

dataset ‘Forward’ ‘Backward’
Algorithm 12 Algorithm 13

γ = 2 #int Tpath Tinit #int Tpath Tinit T3

ε = 0.5 ionosphere 53 5.2 2.8 98 4.3 0.3 3.3
breast-cancer 65 4.7 3.3 102 5.2 0.4 3.3
MNIST 4k 20 170.9 32.4 58 148.1 129.7 174.3

ε = 0.1 ionosphere 294 32.8 4.7 438 24.2 0.4 5.8
breast-cancer 365 35.9 6.8 445 27.6 0.5 6.3
MNIST 4k 103 837.1 52.3 274 722.7 169.7 264.0

ε = 0.01 ionosphere 3012 361.8 7.9 4251 251.7 0.6 9.9
breast-cancer 3730 443.9 16.8 4307 305.9 0.7 16.5
MNIST 4k 1030 8885.7 91.4 2692 7245.5 246.6 396.7

ε = 0.1 ‘Forward’ Algorithm 12
γ = 5 γ = 2 γ = 1.2

dataset #int Tpath Tinit #int Tpath Tinit #int Tpath Tinit T3

ionosphere 188 53.6 5.9 294 32.8 4.7 808 26.0 4.2 5.8
breast-cancer 235 67.3 12.2 365 35.9 6.8 983 26.5 5.5 6.3
MNIST 4k 66 1487.9 70.9 103 837.1 52.3 288 656.9 47.5 264.0

Table 6.1.: Path complexity and running times, depending on ε and γ.

Experimental Results 145

small if ε is not too small. We note that the method can be sped up
further by using a more sophisticated internal optimization procedure. In
practice, already relatively large values as for example ε = 1 are sufficient
for good generalization performance, as a primal-dual gap of ε implies that
more than a (1 − ε

2)-fraction of the best possible classification margin is
already obtained [GJ09].

Warm Start and Running Time. The “improvement” parameter γ, as
shown in the lower part of Table 6.1, is in an interesting trade-off with
the computational complexity: As the required quality improvement goes
down (γ → 1), the total running time of the algorithm in our experiment
decreases, despite the fact that more path intervals need to be computed.
This is due to the warm start of the internal optimizer at the previous
solution xt being more efficient when t′ is closer to t.

Warm-starting SVM related problems at slightly varied parameter val-
ues with a previous solution has already been used for a long time [DW00],
but our framework is the first to provide any guarantees for a continuous
solution between the fixed parameter values. It remains to investigate if
the coreset framework can also be applied in the case of varying non-linear
kernel hyper-parameters [WYL07].

Cross-Validation. From every dataset, a separate set of 1/5 of the orig-
inal data points was kept for cross-validation. This means the computed
classifier is evaluated on a small set of ncv test points that have not been
used to solve the SVM optimization problem. Since our approximate reg-
ularization path has complexity at most O

(
1
ε

)
(and we have a constant, ε-

approximate solution on each admissible interval along the path), the cost
of calculating all continuous cross-validation values, i.e., the percentages
of correctly classified data points among the test points, along the entire
regularization path is just O

(
ncv
ε

)
kernel evaluations. Cross-validation

values along the path are shown in Figure 6.2.

6.5.2. Multiple Kernel Learning

In the multiple kernel learning setting of problem (6.16), we used our
implementation to compute approximate solution paths for t ∈ [tmin =

1
100000 , tmax = 100000], for the problem to learn the best convex combi-

nation of the Gaussian kernel K(1) of width σ = 8.5, and the polynomial
kernel K(2) = (〈pi, pj〉+ 1)2 on the same data sets as before. We chose a
fixed regularization parameter value of c = 1.5. In Table 6.2 we report for

146 Solution Paths for Convex Optimization Problems over Vectors

Forward-Algorithm 12 (a) the time Tinit (in seconds) needed compute an
initial εγ -approximate solution as the starting point tmin, (b) the time Tpath
(in seconds) needed to follow the entire ε-approximate regularization path,
when starting from the initial solution, (c) for comparison the time T3 (in
seconds) needed to compute a static ε-approximate solution at the three
fixed parameter values t = tmin, 1 and tmax, and (d) the path complexity,
i.e. the number #int of admissible parameter intervals with constant ε-
approximate solutions along the path. Again a separate set of 1/5 of the
original points was used to compute the resulting cross-validation values
for an ε-approximate solution along the entire solution path, as shown in
Figure 6.3.

0.85

0.90

0.95

1.00

0 0.001 0.01 0.1 1 10 100

C
ro

s
s
-V

a
li
d

a
ti

o
n

 A
c

c
u

ra
c

y

t

ionosphere
breast-cancer

Figure 6.3.: Continuous cross-validation along the (ε = 0.2)-approximate solu-
tion path.

γ = 2 dataset #int Tpath Tinit T3

ε = 0.5 ionosphere 53 14.1 4.4 6.8
breast-cancer 71 4.0 2.4 3.7
MNIST 4k 30 355.5 139.1 312.5

ε = 0.1 ionosphere 281 87.0 8.2 12.9
breast-cancer 382 23.5 4.6 6.8
MNIST 4k 150 2155.5 249.4 573.5

Table 6.2.: Path complexity and running times

Conclusion 147

In practice, there are related methods that optimize a joint objective
function over both the classifier weights and the combination of multiple
kernels [BLJ04, RBCG08]. These methods are experimentally fast, but
are not directly comparable to ours as they do not obtain a solution path
and are therefore unable to provide guarantees such as an optimal cross-
validation value along a parameter path.

6.6. Conclusion

We have presented a framework to optimize convex functions over the
unit simplex that are parameterized by an additional parameter. This
allows us to maintain a guaranteed approximation quality along the entire
continuous solution path, by piecewise constant solutions. Also, for many
practical cases, we can efficiently compute the exact interval length over
which a solution stays valid, allowing to adapt to the local shape of the
optimization function in the parameter. The framework is general, simple
and has been proven to be practical on a number of machine learning
problems.

7
Solution Paths for

Semidefinite Optimization

We devise a framework for computing an approximate solution path for an
important class of parameterized semidefinite problems that is guaranteed
to be ε-close to the exact solution path. As a result, we can compute the
entire regularization path for most matrix completion and factorization
approaches, as well as nuclear norm or weighted nuclear norm regularized
convex optimization problems. This also includes robust PCA and variants
of sparse PCA and maximum variance unfolding. On the theoretical side,
we show that the complexity of the approximate path is independent of
the size of the input matrix. More precisely, the path complexity only
grows linearly with the inverse of the desired approximation quality ε, and
with the model complexity (regularization). This implies that the whole
solution path can be computed in near linear time in the size of the input.
Our experiments demonstrate the practical efficiency of the approach for
large matrix completion problems.

This chapter is joint work with Joachim Giesen and Soeren Laue [GJL12b],
and generalizes the path method from the previous Chapter 6 to the case
of semidefinite optimization over bounded trace.

149

150 Solution Paths for Semidefinite Optimization

7.1. Introduction

We provide an algorithmic framework for tracking approximate solutions
of parameterized semidefinite optimization problems along the parameter
path. The algorithm is very simple and comes with strong guarantees on
the approximation quality (continuously along the path) as well as the
running time. The idea of our scheme is the same as in the previous
Chapter 6: We compute at a parameter value an approximate solution
that is slightly better than the required quality, and then keep this solution
as the parameter changes, exactly as long as the required approximation
quality can still be guaranteed. Only when the approximation quality is
no longer sufficient, a new solution needs to be computed. As already
in the vector case in Chapter 6, we prove that the number of necessary
updates along the entire path is only O

(
1
ε

)
, if an approximation guarantee

of ε > 0 is required along the path. The path complexity therefore again
is independent of the size of the problem (number of variables).

The task of considering and computing the entire path of (near) optimal
solutions to parameterized problems appears naturally in various different
fields, such as control theory, various multi-objective optimization applica-
tions, and most notably from regularization methods in machine learning.
The question of parameter selection — e.g. the choice of the best reg-
ularization parameter — is often a non-trivial task. Many approaches
have been proposed in the last decade for tracking exact solution paths
for vector optimization problems, in the case that the paths are piecewise
linear. However there are many applications where this assumption does
not hold, and even if it does, the path might have exponential complexity
in the worst case [GJM10]. Our new framework strongly contrasts the ex-
isting approaches in the literature, and proves a path complexity of O

(
1
ε

)
for a wider class of problems.

Again as in Chapter 6, our framework here is not tied to a specific algo-
rithm, and very simple to implement: Any existing semidefinite optimizer
or heuristic of choice can be used to compute an approximate solution at
fixed parameter values. We only need to compute a bound on the duality
gap for a given candidate at a fixed parameter value, in order to be able to
apply our path framework. We show that the duality gap can efficiently
be computed by a single eigenvalue computation. Despite the framework
being very simple, we demonstrate that it is well applicable for practical
large scale problems. Furthermore, as we have already argued for vec-
tor optimization problems, the path complexity of O

(
1
ε

)
is indeed best

possible in the worst case.

Introduction 151

Our experiments demonstrate that often, the computation of an entire
ε-approximate solution path is only marginally more expensive than the
computation of a single approximate solution.

Parameterized Semidefinite Optimization. Our goal is to compute the
entire solution path (with a continuously guaranteed approximation qual-
ity) for parameterized semidefinite problems over bounded trace, i.e. op-
timization problems of the form (3.5)

min
X

ft(X)

s.t. Tr(X) = 1 ,
X � 0 ,

(7.1)

or the analogous inequality-constrained variant

min
X

ft(X)

s.t. Tr(X) ≤ 1 ,
X � 0 ,

(7.2)

where ft is a family of convex functions, parameterized by t ∈ R, defined
on symmetric matrices X ∈ Sn×n. We are in particular interested in the
special case where the parameterization is given by the trace itself, i.e.

min
X

f(X)

s.t. Tr(X) ≤ t ,
X � 0 .

(7.3)

All three formulations have prominent applications in various areas.
Clearly the last formulation can be seen as a special case of (7.2), for the
function ft(X) := f(tX) that re-scales its argument. Furthermore (7.2) is
a special case of (7.1), as we can always add an additional slack row/column
(of which the function does not depend) to the matrix.

Motivation and Applications. Our work is motivated by nuclear norm
regularized optimization problems, see also Chapter 4, which have be-
come central to many applications in machine learning and compressed
sensing, as for example low-rank recovery [FHB01, CR09, CT10], robust
PCA [CLMW11], and matrix completion [SRJ04, RS05, Web06, Lin07,
KBV09, TPNT09, SS10]. Formally we study problems of the form

min
Z∈Rm×n

f(Z) + λ ‖Z‖∗ (7.4)

152 Solution Paths for Semidefinite Optimization

for a convex function f (the loss function), where ‖.‖∗ is the nuclear norm.
We recall that the equivalent constrained formulation (4.2) is

min
Z∈Rm×n, ‖Z‖∗≤ t/2

f(Z) . (7.5)

Both problems are parameterized by a real regularization parameter (λ
and t respectively). Note that the former is the Lagrangian formulation of
the latter.

To relate the above nuclear norm regularized problems (7.4) and (7.5)
to semidefinite optimization, the straightforward transformation that we
explained in Section 4.4 (or see e.g. [FHB01, SRJ04, JS10]) comes to help.
This along the way also explains why the nuclear norm is widely called the
trace norm: Any problem of the form (7.5) is equivalent to optimizing the

semidefinite version (7.3) for a function f̂ : S(m+n)×(m+n) → R, where f̂
is defined as

f̂(X) = f̂

((
V Z
ZT W

))
:= f(Z) (7.6)

for Z ∈ Rm×n being the upper right part of X. Formally we again think
of the variable X ∈ S(m+n)×(m+n) as consisting of the four parts X =:(
V Z
ZT W

)
with V ∈ Sm×m,W ∈ Sn×n and Z ∈ Rm×n. Observe that f̂ is

convex whenever f is convex.

Related Work. For kernel methods and many other machine learning
techniques, the resulting optimization problems often turn out to be pa-
rameterized convex quadratic programs, and in recent years a plenitude of
algorithms and heuristics have been developed to “track” these solution
paths, see e.g. [HRTZ04, LGC07, RZ07, LS07, PH07]. However, the exact
piecewise linear solution path of parameterized quadratic programs (in par-
ticular for the SVM) is known to be of exponential complexity in the worst
case [GJM10]. In the work here by contrast we show that just constantly
many intervals of the parameter are sufficient for any fixed desired contin-
uous approximation quality ε > 0. For vector optimization problems such
as SVMs, we have described in the previous Chapter 6 on how guarantees
along the entire path can be obtained, see also [GJL10, GJL12a].

To our best knowledge, no path algorithms were known so far for the
more general case of semidefinite optimization. The solution path for
sparse principal component analysis (PCA) was investigated by [dBG07],
which however is parameterized over discrete integral values from 1 to n,
where n is the number of variables. For a variant of low-rank matrix com-
pletion, [MHT10] suggest to perform a grid search on the regularization

The Duality Gap 153

parameter interval, computing a single approximate solution at each pa-
rameter t. However, they provide no approximation guarantee between
the chosen grid points.

7.2. The Duality Gap

In this small section we will briefly recall the practical approximation qual-
ity measures for convex optimization problems of the form (7.1), (7.2)
or (7.3), which we have discussed in more detail in Section 3.4. For this
we will assume that our objective function ft(X) is continuously differen-
tiable1. We consider the gradient ∇ft(X) with respect to X, which is a
symmetric matrix in Sn×n.

We write X • Y for the entry-wise inner product of two matrices.

Lemma 7.1. The duality gap at any matrix X ∈ Sn×n is given by the
difference of ft(X) to its corresponding dual value ωt(X), and equals

gt(X) = λmax (−∇ft(X)) +X • ∇ft(X) for problem (7.1),

gt(X) = max {0, λmax (−∇ft(X))}+X • ∇ft(X) for problem (7.2),

gt(X) = t ·max {0, λmax (−∇f(X))}+X •∇f(X) for problem (7.3).

Furthermore, it holds that ft(X)− ft(X∗) ≤ gt(X) for any feasible X, for
X∗ being an optimal solution to the respective optimization problem.

Proof. We have calculated the duality gap for problem (7.1) in equa-
tion (3.6) in Section 3.4, using the fact that the spectahedron domain
S := {X ∈ Sn×n |X � 0, Tr(X) = 1} is the convex hull of the rank-1 ma-
trices of unit trace. The expressions for the later two problem variants
then follow from the same result, because both problems can be reduced
to the first formulation (7.1) as described above.

The last mentioned fact makes the duality gap an extremely useful
measure of approximation and stopping criterion for practical optimiz-
ers: While the optimum value ft(X

∗) is usually unknown, the gap gt(X)
readily guarantees a simple upper bound on the current difference to this
optimum value. For all variants, the quantity gt is easily computable for
any candidate solution X even for very large problems, as we only need

1If ft(X) is convex but not differentiable, the concepts of standard Lagrange duality
can be still generalized for subgradients analogously, so that any element of the
subgradient will give an upper bound on the approximation error, see Chapter 2.

154 Solution Paths for Semidefinite Optimization

to perform a single eigenvalue computation, assumed that the gradient is
available.

Having these nice mentioned properties, one would think that the achieved
duality gap is the standard or routine measure when comparing different
heuristics for the same optimization problems. However, in the current
machine learning literature, this is not yet done as often as one would
wish.

As explained in Chapter 2, the duality gap gt can also be interpreted
as the difference of the function value to the minimum value of the linear
approximation to f at point X, where the minimum is taken over the
feasible region. Alternatively, the above Lemma can also be obtained from
standard duality theory [BV04, Section 5.9] or [Haz08].

Definition 7.2. Let ε > 0. A matrix X ∈ Sn×n that is feasible for one
of the above optimization problems at some parameter value t is called an
ε-approximation if the duality gap satisfies

gt(X) ≤ ε .

7.3. Optimizing Parameterized Semidefinite
Problems

We are interested in ε-approximations for problems (7.1), (7.2) and (7.3)
for all valid parameter values t ∈ R, and will study the complexity of such
solution paths in the following. This definition coincides with the measure
we used for vector problems in Chapter 6.

Definition 7.3. The ε-approximation path complexity of a parameterized
optimization problem is defined as the minimum number of intervals over
all possible partitions of the parameter range [tmin, tmax] ⊂ R, such that for
each individual interval, there is a single solution that is an ε-approximation
for that entire interval.

General Parameterized Functions. The following simple lemma is at the
core of our discussion of approximation paths, and characterizes how far
we can change the parameter t such that a given ε

γ -approximate solution

X (for γ > 1) at t stays an ε-approximate solution.

Lemma 7.4 (Stability of an Approximation). Let X be an ε
γ -approximation

to problem (7.1) for some fixed parameter value t, and for some γ > 1.

Optimizing Parameterized Semidefinite Problems 155

Then for all parameters t′ ∈ R and feasible X ′ that satisfy

λmax (−∇ft′(X ′))− λmax (−∇ft(X))

+ X ′ • ∇ft′(X ′) − X • ∇ft(X) ≤ ε
(

1− 1
γ

)
,

(7.7)

it holds that X ′ is an ε-approximation to problem (7.1) at the changed
parameter value t′.

Proof. In the equality constrained case, we have to show that gt′(X
′) =

λmax (−∇ft′(X ′)) + X ′ • ∇ft′(X ′) ≤ ε. To do so, we add to the inequal-
ity (7.7) the inequality stating that X is an ε

γ -approximate solution at
value t, i.e.

λmax (−∇ft(X)) +X • ∇ft(X) ≤ ε

γ
,

to obtain the claimed bound on the gap at the new parameter value t′.

The above Lemma 7.4 does also apply for the inequality-constrained
case (7.2), if we just replace the two λmax(.)-terms in condition (7.7) by
max {0, λmax(.)} instead. The proof follows analogously. Alternatively,
this change can also be seen by adding a slack row/column to X, and
therefore reducing to the equality constrained case (7.1).

The following alternative (more restrictive) criterion is simpler to eval-
uate in a concrete implementation of our path algorithms, as for example
for more complicated parameterizations of (7.1) or (7.2).

Lemma 7.5. Let X be an ε
γ -approximation for problem (7.1) or (7.2) for

some fixed parameter value t, and for some γ > 1. Then for all t′ ∈ R that
satisfy

(1 + ‖X‖Fro) ‖∇ft′(X)−∇ft(X)‖Fro ≤ ε
(

1− 1

γ

)
,

it holds that X is still an ε-approximation at parameter value t′.

Proof. We aim to apply Lemma 7.4, and therefore try to upper bound
the terms on the left hand side of inequality (7.7) for X ′ = X. We start
by upper bounding the difference in the λmax-values: Weyl’s perturbation
theorem on the eigenvalues of a matrix A′ = A+ E states that

|λmax(A′)− λmax(A)| ≤ ‖E‖spec .

See e.g. [Nak10]. The matrix spectral norm always satisfies ‖E‖spec ≤
‖E‖Fro. Applying Weyl’s theorem to A′ = −∇ft′(X) and A = −∇ft(X)

156 Solution Paths for Semidefinite Optimization

gives
|λmax (−∇ft′(X))− λmax (−∇ft(X))|
≤ ‖∇ft′(X)−∇ft(X)‖Fro .

(7.8)

It remains to upper bound the term X • (∇ft′(X)−∇ft(X)), which can
be done by using the Cauchy-Schwarz inequality

|X • (∇ft′(X)−∇ft(X))| ≤ ‖X‖Fro · ‖∇ft′(X)−∇ft(X)‖Fro .
Hence, the inequality in the assumption of this lemma implies that in-
equality (7.7) in Lemma 7.4 holds, with X ′ = X, from which we obtain
our claimed approximation quality gt′(X) ≤ ε for the equality constrained
Problem (7.1).

For the inequality constrained case of Problem (7.2), the same result
follows since the bound (7.8) that we obtained from Weyl’s theorem in
particular also implies that

|max {0, λmax (−∇ft′(X))} −max {0, λmax (−∇ft(X))}|
≤ ‖∇ft′(X)−∇ft(X)‖Fro .

This follows by observing that |max{0, a} −max{0, b}| ≤ |a− b|. This
means we have the desired bound on the approximation quality at t′ also
for the duality gap for problem version (7.2).

For the following main theorem on the path complexity, we again assume
that the global parameter range of interest, [tmin, tmax] ⊂ R, is finite.

Theorem 7.6. Let ft be convex and continuously differentiable in X, and
let ∇ft(X) be Lipschitz continuous in t, for all feasible X. Then the ε-
approximation path complexity of problems (7.1) and (7.2) over the pa-
rameter range t ∈ [tmin, tmax] ⊂ R is in O

(
1
ε

)
.

Proof. In order for the condition of Lemma 7.5 to be satisfied, we first use
that for any X � 0,Tr(X) ≤ 1,

(1 + ‖X‖Fro) ‖∇ft′(X)−∇ft(X)‖Fro
≤ (1 + ‖X‖Fro) · L · |t′ − t|
≤ 2 · L · |t′ − t| .

Here L is the supremum of the Lipschitz constants w.r.t. t of the derivatives
∇ft(X), taken over the compact feasible domain for X. So if we require the

intervals to be of length |t′ − t| ≤ ε
2L

(
1− 1

γ

)
, we have that the condition

in Lemma 7.5 is satisfied for any X � 0,Tr(X) ≤ 1.
Dividing the total parameter range |tmax − tmin| by this interval length

of ε
2L

(
1− 1

γ

)
, the bound on the path complexity follows directly.

Optimizing Parameterized Semidefinite Problems 157

Optimality. This path complexity result is in fact best possible. When
∇ft(X) does effectively change with t with rate LX (here LX is the Lips-
chitz constant w.r.t. t of ∇ft(X)), then the interval length where gt(X) ≤
ε holds can not be longer than Θ(ε). For an explicit example of a function
resulting in this worst-case complexity, we refer to our discussion for the
vector case in Section 6.3.3. To adapt this to the case of trace one matri-
ces, one can consider the analogous linear function ft(X) := X •H(t), for
H(t) := diag(h(t)) being diagonal.

Optimizing with Growing Trace. In the special case of problem (7.3),
the calculation of the lengths of intervals of guaranteed ε-approximation
quality becomes considerably simpler:

Lemma 7.7. Let X be an ε
γ -approximate solution of problem (7.3) for some

fixed parameter value t, and for some γ > 1. Then for all t′ ≥ t ∈ R that
satisfy

(t′ − t) · λmax (−∇f(X)) ≤ ε
(

1− 1
γ

)
, (7.9)

the solution X is still an ε-approximation to problem (7.3) at the parameter
value t′.

Proof. Follows from Lemma 7.4 applied to the function ft(X
′) := f(tX ′),

if we set the new approximation to X ′ := t
t′X. An alternative direct proof

also goes along the same lines as in Lemma 7.4.

7.3.1. Computing Approximate Solution Paths

The above Lemmata 7.4 and 7.7 on “preserving the approximation quality”
do immediately suggest two simple algorithms to compute ε-approximate
solution paths, which are depicted in Algorithms 14 and 15. Furthermore,
they imply that we can efficiently and locally compute the exact largest
possible interval length for each given pair (X, t) in practice. In those
regions where f changes only slowly in t, this makes the algorithms much
more efficient than if we would just work with the guaranteed O(ε) worst-
case upper bound on the interval lengths.

By Theorem 7.6 (or Lemma 7.7 respectively), the running time of this
method is O(T (εγ)/ε), where T (ε′) is the time to compute a single ε′-
approximate solution for problem (7.1), (7.2) or (7.3) at a fixed parameter
value.

158 Solution Paths for Semidefinite Optimization

Algorithm 14 General SDP-Path

Input: convex function ft, tmin, tmax, ε, γ
Output: ε-approximate solution path for problem (7.1) or (7.2)
Set t := tmin.
repeat

Compute an ε
γ -approximation X at parameter value t.

Compute t′ > t such that

(1 + ‖X‖Fro) ‖∇ft′(X)−∇ft(X)‖Fro ≤ ε
(

1− 1
γ

)
.

Update t := t′.
until t ≥ tmax

Algorithm 15 Growing Trace SDP-Path

Input: convex function f, tmin, tmax, ε, γ
Output: ε-approximate solution path for problem (7.3)
Set t := tmin.
repeat

Compute an ε
γ -approximation X

to problem (7.3) at parameter value t.

Update t := t+
ε(1− 1

γ)

λmax(−∇f(X)) .

until t ≥ tmax

7.3.2. Plugging-in Existing Methods for Semidefinite
Optimization

We briefly review some of the existing solvers that can be used internally
in our described path optimization framework. In our experiments we used
Algorithm 6, originally by [Haz08], see also Section 3.4.1, because it scales
well to large inputs, provides approximate solutions with guarantees, and
only requires a single approximate eigenvector computation in each of its
iterations. Furthermore, it returns a matrix factorization of the resulting
estimates X for free, see also the discussion in Section 4.4.

There are many other popular methods to solve nuclear norm regular-
ized problems. Alternating gradient descent or stochastic gradient descent
(SGD) methods were used extensively in particular for matrix completion
problems, see e.g. [RS05, Web06, Lin07, KBV09, TPNT09, RR11]. How-
ever, these methods optimize a non-convex formulation of (4.1) and can
get stuck in local minima, and therefore — in contrast to Hazan’s method

Applications 159

with our convex transformation (7.6) — come with no convergence guaran-
tee. On the other hand, there are also several known convex optimization
methods of “proximal gradient” and “singular value thresholding”-type
from the optimization community, see e.g. [TY10], which however experi-
mentally perform slower than Hazan’s method [JS10].

Nevertheless, any of these other methods and heuristics can still be
used as the internal optimizer in our path-following framework, as we can
always compute the duality gap as a certificate for the quality of the found
approximate solution.

7.4. Applications

Using our above path approximation framework, we directly obtain piece-
wise constant solution paths of guaranteed approximation quality for any
problem of the form (7.1), (7.2) or (7.3), including all nuclear norm reg-
ularized problems (7.4) and (7.5), such as standard matrix completion
problems, which we introduce next.

7.4.1. Matrix Completion

Our path framework applies to matrix completion problems with any con-
vex differentiable loss function, such as the smoothed hinge loss or the
standard squared loss, and includes the classical maximum-margin matrix
factorization variants [SRJ04].

The regularized matrix completion task is exactly problem (7.5) where
the function f is given by the loss over the observed entries of the matrix,
Ω ⊆ [n]× [m], i.e. f(Z) =

∑
(i,j)∈Ω L(Zij , Yij). Here L(., .) is an arbitrary

loss-function that is convex in its Z-argument. By far the most widely
used variant employs the squared loss, given by

f(Z) =
1

2

∑
(i,j)∈Ω

(Zij − Yij)2. (7.10)

Using the notation (A)Ω for the matrix that coincides with A on the indices
Ω and is zero otherwise, ∇f(Z) can be written as

∇f(Z) = (Z − Y)Ω .

This implies that the symmetric gradient matrix ∇f̂(X) ∈ S(m+n)×(m+n)

for our transformed problem (7.6) that we use in our algorithm is also

160 Solution Paths for Semidefinite Optimization

of this simple form (recall the notation X =
(
V Z
ZT W

)
). As this matrix

is sparse — it has only |Ω| non-zero entries — storage and approximate
eigenvector computations can be performed much more efficiently than for
dense problems. An equivalent matrix factorization of any approximation
X for problem (7.3) can always be obtained directly from the Cholesky
decomposition of X, because X � 0.

7.4.2. Solution Paths for the Weighted Nuclear Norm

We recall from Section 4.2.1 that any convex problem with a constrained
weighted nuclear norm

min
Z∈Rm×n, ‖Z‖nuc(p,q)≤ t/2

f(Z) (7.11)

is equivalent to a classical nuclear norm regularized problem

min
Z̄∈Rm×n,‖Z̄‖∗≤ t/2

f(P−1Z̄Q−1).

(this corresponds to substituting Z̄ := PZQ for some fixed diagonal ma-
trices P,Q). Therefore the problem can be directly formulated in the form
of (7.3), and our path tracking Algorithm 15 applies without modifications.

7.4.3. Solution Paths for Robust PCA

With principal component analysis (PCA) being today’s most widely used
tool for the analysis of high-dimensional data and dimensionality reduc-
tion, but being very sensitive to errors and noise in just a single data-
point, [CLMW11] have proposed the following robust version of PCA, also
called principal component pursuit

min
Z∈Rm×n

‖Z‖∗ + λ′ ‖M − Z‖1 .

Here ‖.‖1 is the entry-wise `1-norm, and M ∈ Rm×n is the given data
matrix. This problem is already of the form (7.4), for λ = 1

λ′ . Therefore
we can obtain the entire path in the nuclear norm regularization parameter
λ, and the corresponding constrained variant (7.5), by using our simple
Algorithm 15 for growing trace.

As the internal optimizer, any existing method for robust PCA can be
used. If the ‖.‖1-norm is smoothened (see also Section 4.5.1), then the
same stopping criterion determined by the duality gap from Lemma 7.1

Applications 161

applies. Alternatively, if the original non-smooth formulation (7.5) over
the domain

{
Z ∈ Rm×n

∣∣ ‖Z‖∗ ≤ t
2

}
is solved approximately by some ar-

bitrary optimizer, then we can use our generalization of the duality gap
to the case of non-smooth functions, see Section 2.2. In this case, any
subgradient DZ of our objective function ‖M − Z‖1 gives a certificate for
some value of a duality gap g(Z,DZ) as defined in equation (2.5).

We therefore obtain piecewise constant solutions together with a con-
tinuous ε-approximation guarantee along the entire regularization path.

7.4.4. Solution Paths for Sparse PCA and Maximum
Variance Unfolding

Sparse PCA. The concept of sparse PCA is to approximate a given data
matrix A ∈ Sn×n by approximate eigenvectors that are additionally sparse,
see [ZdG10] for an overview. Many algorithms have been proposed for
sparse PCA, see e.g. [SB08] and [dBG07], the latter also considering the
discrete solution path, as the sparsity changes.

The SDP-relaxation of [dGJL07, Equation 3.2] for sparse PCA of a
matrix A is given by

min
X�0

ρ · 1T |X|1− Tr(AX)

s.t. Tr(X) = 1 ,
X � 0 .

(7.12)

Here |X| is element-wise for the matrix X, and 1 ∈ Rn is the all-one
vector. Using our path Algorithm 14, we can compute the approximate
solution path in the penalty parameter ρ of this relaxation, which is of the
form (7.1).

Maximum Variance Unfolding. Another interesting technique for non-
linear dimensionality reduction is named maximum variance unfolding
(MVU). Here we consider the Laplacian regularized MVU formulation

min
X�0

∑
i∼j

(
(QXQT)ii+(QWQT)jj−2(QXQT)ij−d2

ij

)2− 1

ν
Tr(X) , (7.13)

see [WSZS07, Formulation (7)]. Here the notation i ∼ j means that the
vertices i and j form an edge in the underlying graph. In this formulation,
a previously fixed low-rank matrix Q is used to represent the local neigh-
borhood structure of the graph, given by the bottom-most eigenvectors of
the graph Laplacian. This directly fits into problem (7.3), therefore our
Algorithm 15 applies for parameter 1

ν .

162 Solution Paths for Semidefinite Optimization

7.5. Experimental Results

Set-up. We demonstrate the practicability of our framework by applying
it to nuclear norm regularized matrix completion tasks on the standard
MovieLens data sets2.

#ratings m = #users n = #movies

MovieLens 100k 105 943 1682
MovieLens 1M 106 6040 3706
MovieLens 10M 107 69878 10677

The goal of these experiments is to demonstrate that the full regular-
ization path for nuclear norm regularized problems is indeed efficiently
computable for large datasets, and that our described approximation guar-
antees are practical. Many existing papers additionally employ low-rank
heuristics for practical reasons. Since low-rank constraints do form a non-
convex domain, these methods loose the merits and possible guarantees
for convex optimization methods. Here we can approximate the original
convex problems (7.5) and (7.11) with guaranteed approximation quality,
without any restrictions on the rank, for both nuclear norm as well as
weighted nuclear norm regularized problems.

In all our experiments we have used the “growing trace” Algorithm 15,
for optimizing the squared loss (7.10). We calculated the full regulariza-
tion paths for the nuclear norm ‖.‖∗ regularized problem (7.5), as well as
for regularization by the weighted nuclear norm ‖.‖nuc(p,q) as in formula-

tion (4.7).
To compute the primal-dual gap gt(X) for each candidate X, we com-

puted 300 iterations of the power method to get an accurate bound on
λmax. As the internal optimizer within Algorithm 15 we have chosen
Hazan’s algorithm, and used the power method as the eigenvector subrou-
tine. We employed both slight improvements suggested in Section 3.4.1, see
also [JS10]. That is, we used averaging between the new and old gradient in
each power iteration, and performing a line search at each rank-1-update.
All experiments were performed on a standard laptop computer.

All the provided ratings were used “as-is”, without normalization to any
kind of prior3. Each dataset was uniformly split into 50% test ratings, and

2See www.grouplens.org.
3Users or movies which do appear in the test set but not in the training set were kept

as is, as our model is robust under this case. These ratings are accounted in the
test RMSE, which is slightly worse therefore (our prediction X will always remain
at the worst value, zero, at any such rating).

http://www.grouplens.org

Experimental Results 163

50% training ratings. The accuracy ε was chosen as the relative error, with
respect to the initial function value ft(X = 0) at t = 0, i.e. ε = ε′f0(0).
As f is the squared loss, f0(0) equals the Frobenius norm of the observed
training ratings, see (7.10).

Results. Figures 7.1 and 7.2 show the rooted mean squared error (RMSE)
values along a guaranteed (ε′ = 0.05)-approximate piecewise constant so-
lution path for the three MovieLens datasets. We used a quality improve-
ment factor of γ = 2 in all experiments.

0

0.4

0.8

1.2

1.6

2.0

1000 10000 100000
0

0.4

0.8

1.2

1.6

2.0

10000 100000 1000000
0

0.4

0.8

1.2

1.6

2.0

100000 1000000 10000000

0

0.4

0.8

1.2

1.6

2.0

1 10 100
0

0.4

0.8

1.2

1.6

2.0

1 10 100
0

0.4

0.8

1.2

1.6

2.0

1 10 100

104 105 106

RMSE test

RMSE train

MovieLens 1M

t 105 106
0

0.4

0.8

1.2

1.6

2.0

100000 1000000 10000000

0

0.4

0.8

1.2

1.6

2.0

1 10 100

RMSE test

RMSE train

MovieLens 10M

t104 105
0

0.4

0.8

1.2

1.6

2.0

1000 10000 100000
0

0.4

0.8

1.2

1.6

2.0

10000 100000 1000000
0

0.4

0.8

1.2

1.6

2.0

100000 1000000 10000000

0

0.4

0.8

1.2

1.6

2.0

1 10 100
0

0.4

0.8

1.2

1.6

2.0

1 10 100
0

0.4

0.8

1.2

1.6

2.0

1 10 100

Weighted nuclear norm

0

0.4

0.8

1.2

1.6

2.0

1000 10000 100000
0

0.4

0.8

1.2

1.6

2.0

10000 100000 1000000
0

0.4

0.8

1.2

1.6

2.0

100000 1000000 10000000

0

0.4

0.8

1.2

1.6

2.0

1 10 100
0

0.4

0.8

1.2

1.6

2.0

1 10 100
0

0.4

0.8

1.2

1.6

2.0

1 10 100

Weighted nuclear norm

RMSE test

RMSE train

MovieLens 100k

t

R
M

SE

Figure 7.1.: The nuclear norm regularization path for the three MovieLens
datasets.

0

0.4

0.8

1.2

1.6

2.0

1000 10000 100000
0

0.4

0.8

1.2

1.6

2.0

10000 100000 1000000
0

0.4

0.8

1.2

1.6

2.0

100000 1000000 10000000

0

0.4

0.8

1.2

1.6

2.0

1 10 100
0

0.4

0.8

1.2

1.6

2.0

1 10 100
0

0.4

0.8

1.2

1.6

2.0

1 10 100

Weighted nuclear norm

10 205 50

RMSE test

RMSE train

MovieLens 1M

t

0

0.4

0.8

1.2

1.6

2.0

1000 10000 100000
0

0.4

0.8

1.2

1.6

2.0

10000 100000 1000000
0

0.4

0.8

1.2

1.6

2.0

100000 1000000 10000000

0

0.4

0.8

1.2

1.6

2.0

1 10 100
0

0.4

0.8

1.2

1.6

2.0

1 10 100
0

0.4

0.8

1.2

1.6

2.0

1 10 100

Weighted nuclear norm

0

0.4

0.8

1.2

1.6

2.0

1000 10000 100000
0

0.4

0.8

1.2

1.6

2.0

10000 100000 1000000
0

0.4

0.8

1.2

1.6

2.0

100000 1000000 10000000

0

0.4

0.8

1.2

1.6

2.0

1 10 100
0

0.4

0.8

1.2

1.6

2.0

1 10 100
0

0.4

0.8

1.2

1.6

2.0

1 10 100

Weighted nuclear norm

10 205 50

RMSE test

RMSE train

MovieLens 100k

t

R
M

SE

0

0.4

0.8

1.2

1.6

2.0

1 10 10010 30

RMSE test

RMSE train

MovieLens 10M

t
20

Figure 7.2.: The regularization path for the weighted nuclear norm ‖.‖nuc(p,q).

164 Solution Paths for Semidefinite Optimization

Table 7.1.: Dependency of the path complexity (#int) on the accuracy ε.

Regularization Accuracy MovieLens 100k, γ = 2
ε/f0(0) tmin tmax #int ∆avg

t f train
tmax

f test
opt

Nuclear norm 0.05 1000 60000 21 4515 0.0150 0.9912
‖.‖∗ 0.01 1000 60000 97 582 0.0054 0.9905

0.002 1000 60000 386 175 0.0009 0.9981

Weighted 0.05 2 50 17 3.21 0.0619 0.9607
nuclear norm 0.01 2 50 72 1.18 0.0147 0.9559
‖.‖nuc(p,q) 0.002 2 50 325 0.140 0.0098 0.9581

Table 7.1 shows that the dependency of the path complexity on the
approximation quality is indeed favorably weak. Here #int denotes the
number of intervals with constant solution of guaranteed ε-small duality
gap; ∆avg

t is the average length of an interval of constant solution; f train
tmax

is
the RMSE on the training data at the largest parameter value tmax; and
finally f test

opt is the best RMSEtest value obtained over the whole computed
regularization path.

7.6. Conclusion

We have presented a simple but efficient framework that allows to track
approximate solutions for parameterized semidefinite programs with guar-
antees. Many well known semidefinite optimization problems such as reg-
ularized matrix factorization/completion as well as maximum variance un-
folding do fit into this framework. Our experiments show a surprisingly
small path complexity when measured in the number of intervals of guar-
anteed ε-accurate constant solutions for the considered problems, even for
large matrices. The experiments do confirm our theoretical result that the
complexity is essentially independent of the input size, i.e. it only scales
with O

(
1
ε

)
in the desired accuracy, and with the largest trace parameter,

which is the regularization bound imposed.
In the future we plan to explore more applications of semidefinite op-

timization, where our path framework could potentially also deepen the
insight into these parameterized optimization problems. In particular, it
will be interesting to investigate kernel learning, metric learning and other
relaxations of sparse PCA in more detail.

A
Optimization Basics

In the following, we will give a brief (yet mostly self-contained) introduc-
tion to classical convex optimization and Lagrange duality.

This will allow us to show that for most classes of optimization problems
that are of interest in this thesis, the concept of Wolfe duality will in fact
coincide with our “poor-man’s” duality as defined in Section 2.2.

A.1. Constrained Optimization Problems over
Vectors

Let f, g1, . . . , gm be arbitrary functions from Rn → R, and let the domain
D ⊆ Rn be an arbitrary set.

We consider optimization problems under inequality constraints

minimize
x∈D

f(x)

gi(x) ≤ 0, i = 1 . . .m
(A.1)

and we assume that the functions as well as the domain D are chosen such
that the minimum exists. A vector x ∈ Rn is called a feasible point if
x ∈ D, and gi(x) ≤ 0 for i = 1 . . .m. The feasible region is the set of all

165

166 Optimization Basics

feasible points. The Lagrangian of problem (A.1) is defined as

L(x, λ) := f(x) +

m∑
i=1

λigi(x) , (A.2)

where λ ∈ Rm are called the Lagrange multipliers associated with the
corresponding constraints. From this definition it follows that for any λ ∈
Rm, λ ≥ 0, together with any feasible point x, it holds that L(x, λ) ≤ f(x).
The Lagrange dual problem to (A.1) is given by

maximize
λ∈Rm

ϕ(λ)

λ ≥ 0 ,
(A.3)

with ϕ(λ) := infx∈D L(x, λ) being the Lagrange dual function, where we
observe that ϕ : Rm → R is always a concave function of λ (even in the
case that f is not convex!). By our previous observation we have that weak
duality

ϕ(λ′) ≤ sup
λ≥0

ϕ(λ) ≤ inf
x∈D,
gi(x)≤0

f(x) ≤ f(x′) (A.4)

holds, for any feasible x′ (meaning that gi(x
′) ≤ 0), and any λ′ ≥ 0.

A.2. Matrix Optimization Problems &
Generalized Inequality Constraints

Optimizing over matrices instead of vectors is not in any way different than
described above. We can always identify a matrix variable X ∈ Rn×n by
the corresponding vector in Rn2

, or R 1
2n(n+1) for the case of symmetric

matrices.
In any optimization problem (no matter if over vectors or matrices) we

can also consider general inequality constraints. Here we will discuss one
class of such constraints in more detail, namely semi-definite constraints,
which are very important and appear naturally in many optimization tasks.
For this we consider “constraint” functions pi : D → Sn×n that map our
optimization domain D to symmetric matrices.

minimize
X∈D

f(X)

gi(X) ≤ 0, i = 1 . . .mg

hi(X) = 0, i = 1 . . .mh

pi(X) � 0, i = 1 . . .mp

(A.5)

Convex Optimization and the Wolfe Dual 167

The Lagrangian of problem (A.5) is defined exactly as in the vector case

L(X,λ, µ, ν) := f(X)+

mg∑
i=1

λigi(X)+

mh∑
i=1

µihi(X)+

mp∑
i=1

νi •pi(X) . (A.6)

Using A•B ≥ 0 if A � 0 and B � 0, we see that the last term of the above
sum is non-positive whenever νi � 0 and −pi(X) � 0, i.e. pi(X) � 0. The
Lagrange dual function is again given by ϕ(λ, µ, ν) := infX∈D L(X,λ, µ, ν),
resulting in the Lagrange dual problem to (A.5) being

maximize
λ,µ,ν

ϕ(λ, µ, ν)

λ ∈ Rmg , λ ≥ 0 ,
µ ∈ Rmh ,
νi ∈ Rn×n, νi � 0 ∀i .

(A.7)

See also [BV04, Section 5.9] for more details. In this more general form,
weak duality

ϕ(λ′, µ′, ν′) ≤ sup
λ≥0,µ,νi�0

ϕ(λ, µ, ν) ≤ inf
X∈D,

X feasible

f(X) ≤ f(X ′) (A.8)

holds for any feasible X ′, and any λ′ ≥ 0, µ′ ∈ Rmh , and ν′i � 0.

A.3. Convex Optimization and the Wolfe Dual

If the functions f, g1, . . . , gm are convex and continuously differentiable,
and the domain D ⊆ Rn is a convex set, then the corresponding optimiza-
tion problem (A.1) has many further desirable properties, some of which
we will briefly recall here.

Now for fixed non-negative multipliers λ, a point x̄ is a minimizer of
L(x, λ) if and only if ∇xL(x̄, λ) = 0, assumed that D = Rn, and that
ϕ(λ) = infx∈D L(x, λ) is attained1. This holds because f and gi are
convex and differentiable. Other domains D can be considered as well,
making the characterization of these minimizers a bit harder. This means
that the Lagrange dual optimization problem (A.3) is now equivalent to
maximizing the so called Wolfe dual function ω(x), which is defined as
ω(x) := supλ≥0 L(x, λ) under the constraint ∇xL(x̄, λ) = 0, or in other

1Do we need to say more about ϕ(λ) = infx∈D L(x, λ) being a minimum, and the case
that it is not attained?

168 Optimization Basics

words
ω(x) := sup

λ∈Rm
f(x) +

∑m
i=1 λigi(x)

∇f(x) +
∑m
i=1 λi∇gi(x) = 0 ,

λ ≥ 0 .

(A.9)

If for some x the above problem becomes infeasible (meaning there exists
no λ satisfying the constraints), then we set ω(x) := −∞. The optimiza-
tion problem

maximize
x∈Rn

ω(x) (A.10)

is called the Wolfe dual problem. In other words we were able to remove
the minimization over x in the Lagrange dual function ϕ(λ), by adding the
equivalent optimality constraint ∇xL = 0 instead. The definition of ω(x)
directly extends to generalized inequalities as in Section A.2, meaning that
the supremum is now taken over all three parameters λ, µ and ν.

In some important cases we will have that this constraint ∇xL = 0
will specify a single feasible λ for each x, thus turning the problem (A.9)
into a trivial function evaluation, which will be very practical for actual
approximation algorithms, and their convergence analysis.

Lemma A.1 (Weak duality). For any pair of points x, x′ ∈ D, it holds that

ω(x) ≤ f(x′) (A.11)

if x′ is additionally feasible (meaning that gi(x
′) ≤ 0 ∀i)

Proof. This follows from the inequality ω(x) ≤ supλ≥0 ϕ(λ) (which holds
for any x ∈ Rn, because we just have put more restrictions on λ), to-
gether with the weak duality formulation (A.4), meaning that sup

λ≥0
ϕ(λ) ≤

inf
x∈D, gi(x)≤0

f(x) ≤ f(x′) for x′ feasible.

The Duality Gap. The non-negative quantity g(x) := f(x)−ω(x) is what
we call the duality gap at any feasible point x, and will play a very impor-
tant role as the main measure of approximation quality in the following of
this work.

Probably the most useful property of the duality gap is that it serves as
a certificate for the current primal error, meaning that for any feasible x,
we have

f(x)− f(x∗) ≤ g(x) .

In other words that the duality gap is always an upper bound on the
current error to the unknown true optimum value f(x∗).

Convex Optimization over the Simplex 169

This inequality directly follows from weak duality ω(x) ≤ f(x∗) as given
by (A.11), since the optimum point x∗ is feasible.

Furthermore, convexity together with the existence of a Slater point
(i.e. a point x ∈ relintD such that all inequality constrains are strictly
satisfied, i.e. gi(x) < 0) implies that strong duality holds, i.e. the middle
inequality in (A.4) is in fact an equality. This means that the optimum
value of the Lagrange dual problem (A.7), and therefore also the Wolfe
dual problem (A.10), coincides with the primal optimum. See also [BV04,
Section 5] for more details.

A.4. Convex Optimization over the Simplex

We consider optimizing a convex and differentiable function over the unit
simplex, scaled with a fixed parameter t > 0. Formally, this means that
the feasible region is given by t ·∆n =

{
x ∈ Rn

∣∣x ≥ 0, xT1 = t
}

, and we
study problems of the form

minimize
x

f(x)

s.t. ‖x‖1 = t ,
x ≥ 0 .

(A.12)

Why? The class of convex optimization problems over the simplex (A.12)
includes many important problems from optimization and machine learn-
ing, namely `1-regularized least squares, the Lasso [Tib96], but also most
variants of support vector machines, support vector regression, AdaBoost,
multiple kernel learning over a fixed set of base kernels, the smallest enclos-
ing ball problem, or financial applications such as mean-variance analysis
for portfolio selection. Some of these applications we have discussed in
more details in Chapters 2 and 6.

The Dual Problem. For the above optimization problem (A.12), the La-
grange dual problem (A.3) is the following:

maximize
λ≥0,µ

inf
x

L(x, λ, µ) = f(x)−
∑
i

λixi + µ(xT1− t)

We know by convexity and differentiability of f that the infimum over x
is attained if and only if ∇xL(x̄, λ, µ) = 0 (see also Section A.3). This is
equivalent to ∇f(x)−λ+µ1 = 0, or in other words λ = ∇f(x)+µ1. If we
rewrite the objective function by plugging in this expression for λ, we have

170 Optimization Basics

L(x, λ, µ) = f(x)−xTλ+µ(xT1−t) = f(x)−xT (∇f(x)+µ1)+µ(xT1−t) =
f(x)− xT∇f(x)− µ · t, and therefore the Wolfe dual problem is

maximize
x,µ

f(x)− xT∇f(x)− µ · t
s.t. ∇f(x) + µ1 ≥ 0

where the inequality constraint can be written as mini(∇f(x))i + µ ≥ 0,
so we know that for any fixed x, the maximum is always attained for
µ = −mini(∇f(x))i ≥ 0, or equivalently the Wolfe dual problem is

maximize
x

ω(x) := f(x)− xT∇f(x) + t ·min
i

(∇f(x))i (A.13)

This quantity indeed coincides with our definition of the “poor man’s”
dual for optimizing over the simplex, as we have explained in Sections 2.2
and 3.1.

The Duality Gap. Using the above definition of the dual, we immediately
get a simple expression for the duality gap at any point x ∈ Rn:

g(x) := f(x)− ω(x)
= xT∇f(x)− t ·mini(∇f(x))i

(A.14)

This quantity is easily computable. From weak duality, we know that g(x)
is a very useful measure of approximation quality, that can be used to track
guaranteed progress of any arbitrary optimization procedure or heuristic.
Also observe that g(x) is non-negative for every feasible x ∈ D (this is
exactly the point-wise weak duality we mentioned in Section A.3).

Note that x :=
(
t
n , . . . ,

t
n

)
∈ relint(D) is a Slater point satisfying all

inequalities strictly (as xi > 0), so we also know that strong duality must
hold.

Optimization with Bounded Instead of Fixed ‖.‖1-Norm. We also con-
sider slight relaxations of problem (A.12), where we only have an inequality
constraint on the norm of x, i.e.

minimize
x

f(x)

s.t. ‖x‖1 ≤ t ,
x ≥ 0 .

(A.15)

Using the simple trick of adding an extra slack variable, we can immedi-
ately reduce this to the equality constrained formulation (A.12) that we

Convex Optimization with `∞-Norm Regularization 171

discussed before. We consider an additional variable xn+1 where our new
function does not depend on xn+1, formally f̄(x1, . . . , xn+1) := f(x1, . . . , xn)
so that (∇f̄(x))n+1 = 0.

The duality gap (A.14) in this case becomes

g(x) := xT∇f(x)− t ·min{0,min
i

(∇f(x))i} , (A.16)

which is again easy to compute, non-negative for every feasible x, and
always at least as large as the traditional duality gap for the equality
constrained case (A.14).

A.5. Convex Optimization with `∞-Norm
Regularization

We consider optimizing a convex and differentiable function over the unit
box, scaled with a fixed parameter t > 0. Formally, this means that the
feasible region is given by t · �n = {x ∈ Rn | ‖x‖∞ ≤ t}, and we study
problems of the form

minimize
x

f(x)

s.t. ‖x‖∞ ≤ t .
(A.17)

Why? [MR11] have demonstrated that integer linear programs can be
relaxed to convex problems of the above form, such that the solutions
coincide with high probability under some mild additional assumptions.

The Dual Problem. For the above optimization problem (A.17), the con-
straints on each coordinate are xi ≤ t and xi ≥ −t, so the Lagrange dual
problem (A.3) is the following:

maximize
λ≥0,µ≥0

inf
x
L(x, λ, µ) = f(x)−

∑
i

λi(xi + t) +
∑
i

µi(xi − t)

Again by convexity and differentiability of f , we have that the infimum
over x is attained if and only if ∇xL(x̄, λ, µ) = 0 (see also Section A.3).
This is equivalent to ∇f(x) − λ + µ = 0. We can therefore equivalently
write the above dual optimization problem in its Wolfe dual form (A.10),
if we replace λ in the objective function L(X,λ, µ) = f(x) − (∇f(x) +

172 Optimization Basics

µ)T (x + t1) + µT (x − t1) = f(x) − (x + t1)T∇f(x) − 2tµT1. The Wolfe
dual can therefore be written as

maximize
X,µ≥0

f(x)− (x+ t1)T∇f(x)− 2t · µT1
s.t. ∇f(x) + µ ≥ 0

from which we can see that an optimal µ will always be −∇f(X) (or 0
in case that becomes negative), or formally µi = max{−(∇f(x))i, 0} =
−min{(∇f(x))i, 0}. This means the above objective function becomes

f(x)− (x+ t1)T∇f(x) + 2t
∑
i min{0, (∇f(x))i}

= f(x)− xT∇f(x) + t
∑
i min{0, (2∇f(x))i} − (∇f(x))i

= f(x)− xT∇f(x) + t
∑
i min{−(∇f(x))i, (∇f(x))i}

= f(x)− xT∇f(x)− t · ‖∇f(x)‖1
In other words the Wolfe dual problem is

maximize
x

ω(x) := f(x)− xT∇f(x)− t · ‖∇f(x)‖1 . (A.18)

Again, this quantity indeed coincides with our definition of the “poor
man’s” dual for optimizing over the ‖.‖∞-norm unit ball, as we have ex-
plained in Sections 2.2 and 3.3.

The Duality Gap. Using the above definition of the dual, we immediately
get a simple expression for the duality gap at any point x ∈ Rn, i.e.

g(x) := f(x)− ω(x)
= t · ‖∇f(x)‖1 + xT∇f(x)

(A.19)

This quantity is again easily computable, and a very useful measure of
approximation quality, in the light of weak duality.

A.6. Semidefinite Optimization with Bounded
Trace

We consider convex optimization problems where the feasible region is the
spectahedron t ·Sn = {X ∈ Sn×n |X � 0, Tr(X) = t}, scaled with a fixed
parameter t > 0, or formally

minimize
X∈Sn×n

f(X)

s.t. Tr(X) = t ,
X � 0

(A.20)

Semidefinite Optimization with Bounded Trace 173

Why? The class of convex optimization problems (A.20) includes many
important problems from machine learning and compressed sensing, such
as any nuclear norm regularized convex optimization problem (A.21) as
outlined in the following paragraph (and more in depth in Section 4.2).
It also includes many variants of matrix completion, matrix factorizations
and low rank recovery, kernel learning and also variants of metric learning
as well as manifold learning. We have investigated some of these applica-
tions in more details in Section 3.4 and Chapter 4, and studied solution
paths of such problems in Chapter 7.

The Nuclear Norm for Matrices. The nuclear norm ‖A‖∗ of any rect-
angular matrix A ∈ Rm×n, also known as the trace norm, is given by the
sum of the singular values, or `1-norm of the spectrum of A. Alternatively,
‖A‖∗ is the optimal value to the following SDP:

‖A‖∗ = minimize
V,W

t

s.t.

(
V A
AT W

)
� 0 and

Tr(V) + Tr(W) ≤ 2t .

Here the two variables are symmetric matrices V ∈ Sm×m and W ∈ Sn×n.
From this transformation one can obtain that optimizing over rectangular
matrices A with bounded nuclear-norm, i.e.

minimize
A∈Rm×n, ‖A‖∗≤ t

f(A) , (A.21)

is indeed equivalent to our above formulation (A.20) optimizing over sym-
metric matrices X � 0 of bounded trace. Both the nuclear norm and this
transformation are explained in more detail in Sections 4.2 and 4.4, ob-
taining a simple optimization algorithm for any nuclear norm regularized
convex optimization problem of the form (A.21).

The Dual Problem. For the above optimization problem (A.20), the La-
grange dual problem (A.7) is the following:

maximize
µ∈R,ν�0

inf
X

L(X,µ, ν) = f(X) + µ(Tr(X)− t)− ν •X .

We know by convexity and differentiability of f that the infimum over X
is attained if and only if ∇XL(X̄, µ, ν) = 0 (see also Section A.3). This is
equivalent to ∇f(X) + µI− ν = 0 (using Tr(X) = I •X so ∇Tr(X) = I),

174 Optimization Basics

or in other words ∇f(X) + µI = ν. We can therefore equivalently write
the above dual optimization problem in its Wolfe dual form (A.10), if we
replace ν in the objective function L(X,µ, ν) = f(X)+µ(Tr(X)− t)−X •
(∇f(X) + µI) = f(X)−X • ∇f(X)− µ · t. The Wolfe dual can therefore
be written as

maximize
X,µ∈R

f(X)−X • ∇f(X)− µ · t
s.t. ∇f(X) + µI � 0

from which we can see that an optimal µ will always be minus the smallest
eigenvalue of ∇f(X) (or equivalently the largest eigenvalue of −∇f(X)),

meaning that µ = λmax(−∇f(X)) = − max
v∈Rn,v 6=0

−vT∇f(X)v

‖v‖2
, or in other

words the Wolfe dual function is given by

ω(X) := f(X)−X • ∇f(X)− t · λmax(−∇f(X)) , (A.22)

which coincides with our definition of the “poor man’s” dual for semidefi-
nite optimization over bounded trace, as we have explained in Sections 2.2
and 3.4.

The Duality Gap. This means that we have a duality gap

g(X) := f(X)− ω(X)
= t · λmax(−∇f(X)) +X • ∇f(X) .

(A.23)

This quantity is easily computable in practice.
From weak duality we again know that g(X) is a very useful measure of

approximation quality, that can be used to track guaranteed progress of
any arbitrary optimization procedure or heuristic. Also observe that g(x)
is non-negative for every feasible x ∈ St, which also follows from the weak
duality.

Note that X := t · I is a Slater point satisfying all inequalities strictly
(as I � 0), so we know that strong duality must hold.

The following lemma shows that analogously to the vector case over
the simplex, any linear function over the spectahedron St does attain its
minimum at a vertex (or extreme point) of the domain St, namely at the
specific rank-1 matrix given by the smallest eigenvector.

Lemma A.2. For any symmetric matrix G ∈ Sn×n, it holds that

max
X∈St

G •X = t · λmax(G)

Semidefinite Optimization with `∞-Bounded Diagonal 175

Proof. Exactly follows from the proof of Lemma 3.8, with the slight mod-
ification that

∑
i αi = t instead of one.

Optimization with Bounded Instead of Fixed Nuclear Norm. We also
consider slight relaxations of problem (A.20), where we only have an in-
equality constraint on the trace of X, i.e.

minimize
X∈Sn×n

f(X)

s.t. Tr(X) ≤ t ,
X � 0

(A.24)

has the Wolfe dual problem being

maximize
X,µ∈R

f(X)−X • ∇f(X)− µ · t
s.t. ∇f(X) + µI � 0 ,

µ ≥ 0

which means that µ = max {0,−λmin(∇f(X))}, or in other words

ω(X) = f(X)−X • ∇f(X) + t ·min {0, λmin(∇f(X))} (A.25)

The duality gap (A.23) now becomes

g≤t(x) := X • ∇f(X) + t ·max {0, λmax(−∇f(X))} . (A.26)

Alternatively, to derive this duality gap we can simply reduce our prob-
lem (A.24) to the equality constrained version (A.20), by appending an
additional slack row/column to the matrix X, on which the function f
does not depend.

In any case, the obtained duality gap here is again easy to compute, non-
negative for every feasible X, and always at least as large as the traditional
duality gap g(X) for the equality constrained case (A.23).

A.7. Semidefinite Optimization with
`∞-Bounded Diagonal

We can generalize the `∞-constrained (or “box”-constrained) vector opti-
mization problems (A.17) to semidefinite matrices as follows: For a fixed
parameter t > 0, we consider convex optimization problems of the form

minimize
X∈Sn×n

f(X)

s.t. Xii ≤ t ∀i,
X � 0 .

(A.27)

176 Optimization Basics

Why? The class of convex optimization problems (A.27) includes many
important problems from machine learning, such as any max-norm reg-
ularized convex optimization problem (A.28) as outlined in the following
paragraph (and more in depth in Section 4.3). It also includes applica-
tions from spectral methods, spectral graph properties, as well as relax-
ations of combinatorial problems such as Max-Cut. For matrix completion
problems, [SRJ04, LRS+10] argue that the max-norm does provide better
generalization performance than the nuclear norm in some cases. We have
investigated some of these applications in more details in Section 3.5 and
Chapter 4.

The Max-Norm for Matrices. In Section 4.3, we will study max-norm
regularized optimization problems in more detail. The max-norm ‖A‖max

of any rectangular matrix A ∈ Rm×n, is given by the optimum of the
semidefinite program

‖A‖max = minimize
V,W

t

s.t.

(
V A
AT W

)
� 0 and

Vii ≤ t ∀i ∈ [m],
Wii ≤ t ∀i ∈ [n]

Here the two optimization variables are again symmetric matrices V ∈
Sm×m and W ∈ Sn×n. From this transformation one can obtain that
optimizing over matrices A with bounded max-norm, i.e.

minimize
A∈Rm×n, ‖A‖max≤ t

f(A) , (A.28)

is indeed equivalent to our above formulation (A.27) optimizing over X � 0
of bounded diagonal. We have studied this transformation in more detail
in Sections 4.3 and 4.4, obtaining simple optimization algorithms and guar-
antees for any max-norm regularized convex optimization problem of the
form (A.28).

The Dual Problem. For the above optimization problem (A.27), the La-
grange dual problem (A.7) is the following:

maximize
µ≥0,ν�0

inf
X

L(X,µ, ν) = f(X) +
∑
i

µi(Xii − t)− ν •X .

We know by convexity and differentiability of f that the infimum over X is
attained if and only if ∇XL(X̄, µ, ν) = 0, which is equivalent to ∇f(X) +
diag(µ)− ν = 0 (using

∑
i µiXii = diag(µ) •X so that ∇X diag(µ) •X =

Semidefinite Optimization with `∞-Bounded Diagonal 177

diag(µ)). We can therefore equivalently write the above dual optimization
problem in its Wolfe dual form (A.10), if we replace ν in the objective
function L(X,µ, ν) = f(X)+diag(µ)• (X− tI)− (∇f(X)+diag(µ))•X =
f(X)−X • ∇f(X)− t · µT1. The Wolfe dual can therefore be written as

maximize
X,µ≥0

f(X)−X • ∇f(X)− t · µT1
s.t. ∇f(X) + diag(µ) � 0 .

(A.29)

For any fixed X, the above optimum is attained at µ = µ(X) ∈ Rn being
the solution to the SDP

minimize
µ

µT1

s.t. ∇f(X) + diag(µ) � 0 ,
µ ≥ 0 .

(A.30)

So the duality gap is given by

g(X) := f(X)− ω(X)
= X • ∇f(X) + t · µT(X)1,

(A.31)

where µ(X) ∈ Rn is the optimal solution to the SDP (A.30). We observe
that any sub-optimal solution µ for (A.30) immediately gives an upper
bound on the true duality gap g(X), which is given by the optimal µ(X).

This again coincides with our definition of the “poor man’s” dual for
semidefinite optimization over bounded diagonal, as we have explained in
Sections 2.2 and 3.5. However, the alternative derivation from Lagrange
and Wolfe duality only works for differentiable objective functions, and
is significantly more complicated that the linearization approach in Sec-
tion 2.2.

Using standard SDP duality, see e.g. [BV04], we obtain that the dual to
the “helper” SDP (A.30) is in fact given by

maximize
Y

Y • (−∇f(X))

s.t. Yii ≤ 1 ∀i,
Y � 0 .

(A.32)

This is in fact the linearized version of the original problem (A.27) we want
to solve. We have discussed the applications of this subproblem in more
detail in Section 3.5.

178 Optimization Basics

Max-Cut. Note that if we would drop the µ ≥ 0 constraint in (A.30), and
if −∇f(X) = A would be the adjacency matrix of a graph, then instead
of (A.32) we would in fact obtain the famous standard relaxation of the
Max-Cut problem [GW95], namely

maximize
Y

A • Y
s.t. Yii = 1 ∀i,

Y � 0 .

(A.33)

for a fixed matrix A, see also Section 3.5, or the references [KGST03]
and [BV04, page 219] where this is called the two-way partitioning prob-
lem.

Bibliography

[AGI11] Necdet Serhat Aybat, Donald Goldfarb, and Garud Iyengar. Fast
First-Order Methods for Stable Principal Component Pursuit. arXiv
math.OC, May 2011.

[AHK05] Sanjeev Arora, Elad Hazan, and Satyen Kale. Fast algorithms
for approximate semidefinite programming using the multiplicative
weights update method. FOCS 2005 - 46th Annual IEEE Sympo-
sium on Foundations of Computer Science, pages 339–348, 2005.

[AHPV04] Pankaj Agarwal, Sariel Har-Peled, and Kasturi Varadarajan. Ap-
proximating extent measures of points. Journal of the ACM,
51(4):606–635, 2004.

[AHPV05] Pankaj Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Ge-
ometric approximation via coresets. Combinatorial and Computa-
tional Geometry, MSRI Publications, 52:1–30, 2005.

[AHPY07] Pankaj Agarwal, Sariel Har-Peled, and Hai Yu. Embeddings of sur-
faces, curves, and moving points in euclidean space. SCG ’07: Pro-
ceedings of the twenty-third annual Symposium on Computational
Geometry, 2007.

[APV02] Pankaj Agarwal, Cecilia Procopiuc, and Kasturi Varadarajan. Ap-
proximation Algorithms for k-Line Center. In Algorithms — ESA
2002, pages 425–432. 2002.

[AST08] Selin Damla Ahipasaoglu, Peng Sun, and Michael Todd. Linear
convergence of a modified Frank–Wolfe algorithm for computing
minimum-volume enclosing ellipsoids. Optimization Methods and
Software, 23(1):5–19, 2008.

[BB00] Kristin P Bennett and Erin J Bredensteiner. Duality and geometry
in SVM classifiers. ICML ’00: Proceedings of the 17nd International
Conference on Machine Learning, 2000.

[BB09] Michel Baes and Michael Buergisser. Smoothing techniques for solv-
ing semidefinite programs with many constraints. Optimization On-
line, 2009.

[BC03] Mihai Bădoiu and Kenneth L Clarkson. Smaller core-sets for balls.
SODA ’03: Proceedings of the fourteenth annual ACM-SIAM Sym-
posium on Discrete Algorithms, 2003.

179

http://arxiv.org/pdf/1105.2126
http://arxiv.org/pdf/1105.2126
http://dx.doi.org/10.1145/1250790.1250823
http://dx.doi.org/10.1145/1250790.1250823
http://dx.doi.org/10.1145/1250790.1250823
http://dx.doi.org/10.1145/1008731.1008736
http://dx.doi.org/10.1145/1008731.1008736
http://library.msri.org/books/Book52/files/01agar.pdf
http://library.msri.org/books/Book52/files/01agar.pdf
http://dx.doi.org/10.1145/1247069.1247135
http://dx.doi.org/10.1145/1247069.1247135
http://dx.doi.org/10.1145/1247069.1247135
http://dx.doi.org/10.1007/3-540-45749-6_9
http://dx.doi.org/10.1007/3-540-45749-6_9
http://dx.doi.org/10.1080/10556780701589669
http://dx.doi.org/10.1080/10556780701589669
http://dx.doi.org/10.1080/10556780701589669
http://www.rpi.edu/~bennek/ebredensteiner1.ps
http://www.rpi.edu/~bennek/ebredensteiner1.ps
http://www.optimization-online.org/DB_HTML/2009/10/2414.html
http://www.optimization-online.org/DB_HTML/2009/10/2414.html
http://portal.acm.org/citation.cfm?id=644108.644240
http://portal.acm.org/citation.cfm?id=644108.644240

180 Bibliography

[BC07] Mihai Bădoiu and Kenneth L Clarkson. Optimal core-sets for balls.
Computational Geometry: Theory and Applications, 40(1):14–22,
2007.

[Ber05] Pavel Berkhin. A survey on PageRank computing. Internet mathe-
matics, 2(1):73, 2005.

[BGP09] Jean-François Bérubé, Michel Gendreau, and Jean-Yves Potvin. An
exact ε-constraint method for bi-objective combinatorial optimiza-
tion problems: Application to the Traveling Salesman Problem with
Profits. European Journal of Operational Research, 194(1):39–50,
2009.

[BGV92] Bernhard Boser, Isabelle Guyon, and Vladimir Vapnik. A training
algorithm for optimal margin classifiers. COLT ’92: Proceedings of
the fifth annual workshop on Computational Learning Theory, 1992.

[BHH06] Francis Bach, David Heckerman, and Eric Horvitz. Considering Cost
Asymmetry in Learning Classifiers. Journal of Machine Learning
Research, 7:1713–1741, 2006.

[BHPI02] Mihai Bădoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clus-
tering via core-sets. STOC ’02: Proceedings of the thiry-fourth an-
nual ACM Symposium on Theory of Computing, 2002.

[BJMO11] Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume
Obozinski. Optimization with Sparsity-Inducing Penalties. Techni-
cal report, August 2011.

[BL06] Jonathan M Borwein and Adrian S Lewis. Convex analysis and
nonlinear optimization: theory and examples. CMS books in math-
ematics. Springer, 2006.

[BLJ04] Francis Bach, Gert R.G. Lanckriet, and Michael I Jordan. Multiple
kernel learning, conic duality, and the SMO algorithm. ICML ’04:
Proceedings of the twenty-first international conference on Machine
learning, 2004.

[BM03] Samuel Burer and Renato D C Monteiro. A nonlinear programming
algorithm for solving semidefinite programs via low-rank factoriza-
tion. Mathematical Programming, 95(2):329–357, 2003.

[Bot10] Léon Bottou. Large-Scale Machine Learning with Stochastic Gra-
dient Descent. In COMPSTAT’2010 - Proceedings of the 19th In-
ternational Conference on Computational Statistics, pages 177–187,
2010.

[BSS09] Joshua Batson, Daniel Spielman, and Nikhil Srivastava. Twice-
ramanujan sparsifiers. STOC ’09: Proceedings of the 41st annual
ACM Symposium on Theory of Computing, 2009.

http://dx.doi.org/10.1016/j.comgeo.2007.04.002
http://projecteuclid.org/euclid.im/1128530802
http://dx.doi.org/10.1016/j.ejor.2007.12.014
http://dx.doi.org/10.1016/j.ejor.2007.12.014
http://dx.doi.org/10.1016/j.ejor.2007.12.014
http://dx.doi.org/10.1016/j.ejor.2007.12.014
http://dx.doi.org/10.1145/130385.130401
http://dx.doi.org/10.1145/130385.130401
http://portal.acm.org/citation.cfm?id=1248547.1248610
http://portal.acm.org/citation.cfm?id=1248547.1248610
http://dx.doi.org/10.1145/509907.509947
http://dx.doi.org/10.1145/509907.509947
http://arxiv.org/pdf/1108.0775
http://dx.doi.org/10.1007/978-0-387-31256-9
http://dx.doi.org/10.1007/978-0-387-31256-9
http://dx.doi.org/10.1145/1015330.1015424
http://dx.doi.org/10.1145/1015330.1015424
http://dx.doi.org/10.1007/s10107-002-0352-8
http://dx.doi.org/10.1007/s10107-002-0352-8
http://dx.doi.org/10.1007/s10107-002-0352-8
http://leon.bottou.org/papers/bottou-2010
http://leon.bottou.org/papers/bottou-2010
http://dx.doi.org/10.1145/1536414.1536451
http://dx.doi.org/10.1145/1536414.1536451

Bibliography 181

[BT03] Amir Beck and Marc Teboulle. Mirror descent and nonlinear pro-
jected subgradient methods for convex optimization. Operations
Research Letters, 31(3):167–175, 2003.

[BT09] Amir Beck and Marc Teboulle. A Fast Iterative Shrinkage-
Thresholding Algorithm for Linear Inverse Problems. SIAM Journal
on Imaging Sciences, 2(1):183, 2009.

[BTMN01] Aharon Ben-Tal, Tamar Margalit, and Arkadi Nemirovski. The Or-
dered Subsets Mirror Descent Optimization Method with Applica-
tions to Tomography. SIAM Journal on Optimization, 12(1):79,
2001.

[BTN05] Aharon Ben-Tal and Arkadi Nemirovski. Non-euclidean restricted
memory level method for large-scale convex optimization. Mathe-
matical Programming, 102(3):407–456, 2005.

[Bur98] Christopher Burges. A Tutorial on Support Vector Machines for Pat-
tern Recognition. Data Mining and Knowledge Discovery, 2(2):121–
167, 1998.

[BV04] Stephen P Boyd and Lieven Vandenberghe. Convex optimization.
2004.

[CB00] David J Crisp and Christopher J C Burges. A Geometric Interpre-
tation of ν-SVM Classifiers. NIPS ’00: Advances in Neural Infor-
mation Processing Systems 12, 2000.

[CCS10] Jian-Feng Cai, Emmanuel J Candes, and Zuowei Shen. A Singu-
lar Value Thresholding Algorithm for Matrix Completion. SIAM
Journal on Optimization, 20(4):1956–1982, 2010.

[CDS98] Scott Shaobing Chen, David L Donoho, and Michael A Saunders.
Atomic Decomposition by Basis Pursuit. SIAM Journal on Scien-
tific Computing, 20(1):33, 1998.

[Cla10] Kenneth L Clarkson. Coresets, Sparse Greedy Approximation, and
the Frank-Wolfe Algorithm. ACM Transactions on Algorithms,
6(4):1–30, 2010.

[CLMW11] Emmanuel J Candes, Xiaodong Li, Yi Ma, and John Wright. Robust
principal component analysis? Journal of the ACM, 58(3), May
2011.

[CR09] Emmanuel J Candes and Benjamin Recht. Exact Matrix Comple-
tion via Convex Optimization. Foundations of Computational Math-
ematics, 9(6):717–772, 2009.

[CT10] Emmanuel J Candes and Terence Tao. The Power of Convex Re-
laxation: Near-Optimal Matrix Completion. IEEE Transactions on
Information Theory, 56(5):2053–2080, 2010.

http://dx.doi.org/10.1016/S0167-6377(02)00231-6
http://dx.doi.org/10.1016/S0167-6377(02)00231-6
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1137/S1052623499354564
http://dx.doi.org/10.1137/S1052623499354564
http://dx.doi.org/10.1137/S1052623499354564
http://dx.doi.org/10.1007/s10107-004-0553-4
http://dx.doi.org/10.1007/s10107-004-0553-4
http://dx.doi.org/10.1023/A:1009715923555
http://dx.doi.org/10.1023/A:1009715923555
http://www.stanford.edu/~boyd/cvxbook/
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=A6J8kzUhCcAC&oi=fnd&pg=PA244&dq=crisp+burges+a+geometric+interpretation&ots=K1e470gF5q&sig=tRnr09i4MPAHMsa-uoic4UiYJxw
http://books.google.com/books?hl=en&lr=&ie=UTF-8&id=A6J8kzUhCcAC&oi=fnd&pg=PA244&dq=crisp+burges+a+geometric+interpretation&ots=K1e470gF5q&sig=tRnr09i4MPAHMsa-uoic4UiYJxw
http://dx.doi.org/10.1137/080738970
http://dx.doi.org/10.1137/080738970
http://dx.doi.org/10.1137/S1064827596304010
http://dx.doi.org/10.1145/1824777.1824783
http://dx.doi.org/10.1145/1824777.1824783
http://dx.doi.org/10.1145/1970392.1970395
http://dx.doi.org/10.1145/1970392.1970395
http://dx.doi.org/10.1007/s10208-009-9045-5
http://dx.doi.org/10.1007/s10208-009-9045-5
http://dx.doi.org/10.1109/TIT.2010.2044061
http://dx.doi.org/10.1109/TIT.2010.2044061

182 Bibliography

[CV95] Corinna Cortes and Vladimir Vapnik. Support-Vector Networks.
Machine Learning, 20(3):273–297, 1995.

[CZW+07] Edward Chang, Kaihua Zhu, Hao Wang, Hongjie Bai, Jian Li, Zhi-
huan Qiu, and Hang Cui. PSVM: Parallelizing Support Vector Ma-
chines on Distributed Computers. In NIPS ’07: Advances in Neural
Information Processing Systems 20, pages 257–264, 2007.

[d’A08] Alexandre d’Aspremont. Smooth Optimization with Approximate
Gradient. SIAM Journal on Optimization, 19(3):1171, 2008.

[dBG07] Alexandre d’Aspremont, Francis Bach, and Laurent El Ghaoui. Full
regularization path for sparse principal component analysis. ICML
’07: Proceedings of the 24th International Conference on Machine
Learning, 2007.

[DeC06] Dennis DeCoste. Collaborative prediction using ensembles of Max-
imum Margin Matrix Factorizations. ICML ’06: Proceedings of the
23rd International Conference on Machine Learning, 2006.

[dGJL07] Alexandre d’Aspremont, Laurent El Ghaoui, Michael I Jordan, and
Gert R.G. Lanckriet. A Direct Formulation for Sparse PCA Using
Semidefinite Programming. SIAM Review, 49(3):434–448, 2007.

[DH78] Joseph C Dunn and S Harshbarger. Conditional gradient algorithms
with open loop step size rules. Journal of Mathematical Analysis and
Applications, 62(2):432–444, 1978.

[Dun80] Joseph C Dunn. Convergence Rates for Conditional Gradient Se-
quences Generated by Implicit Step Length Rules. SIAM Journal
on Control and Optimization, 18(5):473, 1980.

[DW00] Dennis DeCoste and Kiri Wagstaff. Alpha seeding for support vec-
tor machines. KDD ’00: Proceedings of the sixth ACM SIGKDD
international conference on Knowledge Discovery and Data Mining,
2000.

[EHJT04] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshi-
rani. Least angle regression. Annals of Statistics, 32(2):407–499,
2004.

[FHB01] Maryam Fazel, Haitham Hindi, and Stephen P Boyd. A Rank Min-
imization Heuristic with Application to Minimum Order System
Approximation. Proceedings American Control Conference, 6:4734–
4739, 2001.

[FHHT07] Jerome Friedman, Trevor Hastie, Holger Höfling, and Robert Tib-
shirani. Pathwise coordinate optimization. The Annals of Applied
Statistics, 1(2):302–332, 2007.

[FNW07] Mario A T Figueiredo, Robert D Nowak, and Stephen J Wright.
Gradient Projection for Sparse Reconstruction: Application to

http://dx.doi.org/10.1007/BF00994018
http://books.nips.cc/papers/files/nips20/NIPS2007_0435.pdf
http://books.nips.cc/papers/files/nips20/NIPS2007_0435.pdf
http://dx.doi.org/10.1137/060676386
http://dx.doi.org/10.1137/060676386
http://dx.doi.org/10.1145/1273496.1273519
http://dx.doi.org/10.1145/1273496.1273519
http://dx.doi.org/10.1145/1143844.1143876
http://dx.doi.org/10.1145/1143844.1143876
http://dx.doi.org/10.1137/050645506
http://dx.doi.org/10.1137/050645506
http://dx.doi.org/10.1016/0022-247X(78)90137-3
http://dx.doi.org/10.1016/0022-247X(78)90137-3
http://dx.doi.org/10.1137/0318035
http://dx.doi.org/10.1137/0318035
http://dx.doi.org/10.1145/347090.347165
http://dx.doi.org/10.1145/347090.347165
http://www.jstor.org/stable/3448465
http://dx.doi.org/10.1109/ACC.2001.945730
http://dx.doi.org/10.1109/ACC.2001.945730
http://dx.doi.org/10.1109/ACC.2001.945730
http://dx.doi.org/10.1214/07-AOAS131
http://dx.doi.org/10.1109/JSTSP.2007.910281
http://dx.doi.org/10.1109/JSTSP.2007.910281

Bibliography 183

Compressed Sensing and Other Inverse Problems. IEEE Journal
of Selected Topics in Signal Processing, 1(4):586–597, 2007.

[FW56] Marguerite Frank and Philip Wolfe. An algorithm for quadratic
programming. Naval Research Logistics Quarterly, 3:95–110, 1956.

[GG10] Nicolas Gillis and François Glineur. Low-Rank Matrix Approxima-
tion with Weights or Missing Data is NP-hard. arXiv math.OC,
2010.

[GGJW09] Bernd Gärtner, Joachim Giesen, Martin Jaggi, and Torsten Welsch.
A Combinatorial Algorithm to Compute Regularization Paths.
arXiv.org, cs.LG, 2009.

[GHW00] Thore Graepel, Ralf Herbrich, and Robert C Williamson. From
Margin To Sparsity. NIPS ’00: Advances in Neural Information
Processing Systems 12, 2000.

[Gil66] Elmer G Gilbert. An Iterative Procedure for Computing the Min-
imum of a Quadratic Form on a Convex Set. SIAM Journal on
Control, 4(1):61–80, 1966.

[GJ09] Bernd Gärtner and Martin Jaggi. Coresets for polytope distance.
SCG ’09: Proceedings of the 25th Annual Symposium on Computa-
tional Geometry, 2009.

[GJK88] Elmer G Gilbert, Daniel W Johnson, and S Sathiya Keerthi. A fast
procedure for computing the distance between complex objects in
three-dimensional space. IEEE Journal of Robotics and Automation,
4(2):193–203, 1988.

[GJL10] Joachim Giesen, Martin Jaggi, and Sören Laue. Approximating
Parameterized Convex Optimization Problems. In ESA 2010 - Pro-
ceedings of the 18th annual European Conference on Algorithms:
Part I, pages 524–535. LNCS, 2010.

[GJL12a] Joachim Giesen, Martin Jaggi, and Sören Laue. Approximating
Parameterized Convex Optimization Problems. To appear in ACM
Transactions on Algorithms, 2012.

[GJL12b] Joachim Giesen, Martin Jaggi, and Sören Laue. Regularization
Paths with Guarantees for Convex Semidefinite Optimization. To
appear in AISTATS - Fifteenth International Conference on Artifi-
cial Intelligence and Statistics, 2012.

[GJM10] Bernd Gärtner, Martin Jaggi, and Clément Maria. An Exponential
Lower Bound on the Complexity of Regularization Paths. arXiv,
cs.LG, 2010.

[GLW+09] Arvind Ganesh, Zhouchen Lin, John Wright, Leqin Wu, Minming
Chen, and Yi Ma. Fast Algorithms for Recovering a Corrupted Low-
Rank Matrix. In CAMSAP - 3rd IEEE International Workshop

http://dx.doi.org/10.1109/JSTSP.2007.910281
http://dx.doi.org/10.1109/JSTSP.2007.910281
http://dx.doi.org/10.1002/nav.3800030109
http://dx.doi.org/10.1002/nav.3800030109
http://arxiv.org/pdf/1012.0197
http://arxiv.org/pdf/1012.0197
http://arxiv.org/pdf/0903.4856
http://books.nips.cc/papers/files/nips13/GraepelHerbrichWilliamson.pdf
http://books.nips.cc/papers/files/nips13/GraepelHerbrichWilliamson.pdf
http://dx.doi.org/10.1137/0304007
http://dx.doi.org/10.1137/0304007
http://dx.doi.org/10.1145/1542362.1542370
http://dx.doi.org/10.1109/56.2083
http://dx.doi.org/10.1109/56.2083
http://dx.doi.org/10.1109/56.2083
http://dx.doi.org/10.1007/978-3-642-15775-2_45
http://dx.doi.org/10.1007/978-3-642-15775-2_45
http://arxiv.org/pdf/0903.4817
http://arxiv.org/pdf/0903.4817
http://dx.doi.org/10.1109/CAMSAP.2009.5413299
http://dx.doi.org/10.1109/CAMSAP.2009.5413299

184 Bibliography

on Computational Advances in Multi-Sensor Adaptive Processing,
pages 213–216, 2009.

[GM11] Bernd Gärtner and Jǐŕı Matoušek. Approximation Algorithms and
Semidefinite Programming. Springer, December 2011.

[GNHS11] Rainer Gemulla, Erik Nijkamp, Peter J Haas, and Yannis Sismanis.
Large-Scale Matrix Factorization with Distributed Stochastic Gra-
dient Descent. In KDD ’11 - Proceedings of the 17th ACM SIGKDD
international conference on Knowledge Discovery and Data Mining,
2011.

[GPM89] Carlos Garćıa, David Prett, and Manfred Morari. Model predictive
control: Theory and practice - A survey. Automatica, 25(3):335–348,
1989.

[GW95] Michel Goemans and David Williamson. Improved approxima-
tion algorithms for maximum cut and satisfiability problems using
semidefinite programming. Journal of the ACM, 42(6), 1995.

[GZ05] Lacey Gunter and Ji Zhu. Computing the Solution Path for the
Regularized Support Vector Regression. NIPS ’05: Advances in
Neural Information Processing Systems 18, 2005.

[Haz08] Elad Hazan. Sparse Approximate Solutions to Semidefinite Pro-
grams. In LATIN 2008, pages 306–316. Springer, 2008.

[Haz11] Elad Hazan. The convex optimization approach to regret minimiza-
tion. In Optimization for Machine Learning. ie.technion.ac.il, 2011.

[HHB99] Arash Hassibi, Jonathan How, and Stephen P Boyd. A path-
following method for solving BMI problems in control. In Proceed-
ings of the 1999 American Control Conference, pages 1385–1389
vol.2., 1999.

[HPRZ07] Sariel Har-Peled, Dan Roth, and Dav Zimak. Maximum margin
coresets for active and noise tolerant learning. IJCAI, 2007.

[HRTZ04] Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. The
Entire Regularization Path for the Support Vector Machine. Journal
of Machine Learning Research, 5:1391–1415, 2004.

[HYZ08] Elaine T Hale, Wotao Yin, and Yin Zhang. Fixed-Point Continu-
ation for `1-Minimization: Methodology and Convergence. SIAM
Journal on Optimization, 19(3):1107, 2008.

[IR10] Alexander Ilin and Tapani Raiko. Practical Approaches to Principal
Component Analysis in the Presence of Missing Values. Journal of
Machine Learning Research, pages 1–44, 2010.

[Joa06] Thorsten Joachims. Training linear SVMs in linear time. KDD ’06:
Proceedings of the 12th ACM SIGKDD international conference on
Knowledge Discovery and Data Mining, 2006.

http://www.springer.com/mathematics/applications/book/978-3-642-22014-2
http://www.springer.com/mathematics/applications/book/978-3-642-22014-2
http://dx.doi.org/10.1145/2020408.2020426
http://dx.doi.org/10.1145/2020408.2020426
http://dx.doi.org/10.1016/0005-1098(89)90002-2
http://dx.doi.org/10.1016/0005-1098(89)90002-2
http://dx.doi.org/10.1145/227683.227684
http://dx.doi.org/10.1145/227683.227684
http://dx.doi.org/10.1145/227683.227684
http://books.nips.cc/papers/files/nips18/NIPS2005_0360.pdf
http://books.nips.cc/papers/files/nips18/NIPS2005_0360.pdf
http://dx.doi.org/10.1007/978-3-540-78773-0_27
http://dx.doi.org/10.1007/978-3-540-78773-0_27
http://ie.technion.ac.il/~ehazan/papers/opt_book.pdf
http://ie.technion.ac.il/~ehazan/papers/opt_book.pdf
http://dx.doi.org/10.1109/ACC.1999.783595
http://dx.doi.org/10.1109/ACC.1999.783595
http://www.aaai.org/Papers/IJCAI/2007/IJCAI07-134.pdf
http://www.aaai.org/Papers/IJCAI/2007/IJCAI07-134.pdf
http://portal.acm.org/citation.cfm?id=1005332.1044706
http://portal.acm.org/citation.cfm?id=1005332.1044706
http://dx.doi.org/10.1137/070698920
http://dx.doi.org/10.1137/070698920
http://dl.acm.org/citation.cfm?id=1859890.1859917
http://dl.acm.org/citation.cfm?id=1859890.1859917
http://dx.doi.org/10.1145/1150402.1150429

Bibliography 185

[Jon92] Lee K Jones. A Simple Lemma on Greedy Approximation in Hilbert
Space and Convergence Rates for Projection Pursuit Regression and
Neural Network Training. The Annals of Statistics, 20(1):608–613,
1992.

[JS10] Martin Jaggi and Marek Sulovský. A Simple Algorithm for Nuclear
Norm Regularized Problems. ICML 2010: Proceedings of the 27th
International Conference on Machine Learning, 2010.

[JY09] Shuiwang Ji and Jieping Ye. An accelerated gradient method for
trace norm minimization. ICML ’09: Proceedings of the 26th Annual
International Conference on Machine Learning, 2009.

[Kal07] Satyen Kale. Efficient Algorithms using the Multiplicative Weights
Update Method. PhD thesis, cs.princeton.edu, 2007.

[KBC07] Miklós Kurucz, Andras A Benczur, and Karoly Csalogany. Methods
for large scale SVD with missing values. KDD Cup and Workshop
at the 13th ACM SIGKDD Conference, 2007.

[KBP+10] Mrinal Kalakrishnan, Jonas Buchli, Peter Pastor, Michael Mistry,
and Stefan Schaal. Fast, robust quadruped locomotion over chal-
lenging terrain. In ICRA 2010 - IEEE International Conference on
Robotics and Automation, pages 2665–2670, 2010.

[KBV09] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix Factor-
ization Techniques for Recommender Systems. IEEE Computer,
42(8):30–37, 2009.

[KGST03] Jaz Kandola, Thore Graepel, and John Shawe-Taylor. Reducing
Kernel Matrix Diagonal Dominance Using Semi-definite Program-
ming. In Learning Theory And Kernel Machines, LNCS, pages 288–
302. Springer Berlin / Heidelberg, 2003.

[KKB07] Kwangmoo Koh, Seung-Jean Kim, and Stephen P Boyd. An
interior-point method for large-scale l1-regularized logistic regres-
sion. Journal of Machine Learning Research, 8:1519–1555, 2007.

[KL96] Philip Klein and Hsueh-I Lu. Efficient approximation algorithms
for semidefinite programs arising from MAX CUT and COLOR-
ING. In STOC ’96: Proceedings of the twenty-eighth annual ACM
Symposium on Theory of Computing, 1996.

[Kle99] Jon M Kleinberg. Authoritative sources in a hyperlinked environ-
ment. Journal of the ACM, 46(5), 1999.

[KSBM00] S Sathiya Keerthi, Shirish K Shevade, Chiranjib Bhattacharyya, and
K R K Murthy. A fast iterative nearest point algorithm for support
vector machine classifier design. IEEE Transactions on Neural Net-
works, 11(1):124–136, 2000.

http://dx.doi.org/10.1214/aos/1176348546
http://dx.doi.org/10.1214/aos/1176348546
http://dx.doi.org/10.1214/aos/1176348546
http://www.icml2010.org/papers/196.pdf
http://www.icml2010.org/papers/196.pdf
http://dx.doi.org/10.1145/1553374.1553434
http://dx.doi.org/10.1145/1553374.1553434
http://www.cs.princeton.edu/~satyen/papers/thesis.pdf
http://www.cs.princeton.edu/~satyen/papers/thesis.pdf
http://datamining.sztaki.hu/files/netflix.pdf
http://datamining.sztaki.hu/files/netflix.pdf
http://dx.doi.org/10.1109/ROBOT.2010.5509805
http://dx.doi.org/10.1109/ROBOT.2010.5509805
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1007/978-3-540-45167-9_22
http://dx.doi.org/10.1007/978-3-540-45167-9_22
http://dx.doi.org/10.1007/978-3-540-45167-9_22
http://jmlr.csail.mit.edu/papers/volume8/koh07a/koh07a.pdf
http://jmlr.csail.mit.edu/papers/volume8/koh07a/koh07a.pdf
http://jmlr.csail.mit.edu/papers/volume8/koh07a/koh07a.pdf
http://dx.doi.org/10.1145/237814.237980
http://dx.doi.org/10.1145/237814.237980
http://dx.doi.org/10.1145/237814.237980
http://dx.doi.org/10.1145/324133.324140
http://dx.doi.org/10.1145/324133.324140
http://dx.doi.org/10.1109/72.822516
http://dx.doi.org/10.1109/72.822516

186 Bibliography

[KSST09] Sham M Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. On
the duality of strong convexity and strong smoothness: Learning
applications and matrix regularization. Technical report, Toyota
Technological Institute - Chicago, USA, 2009.

[KW92] Jacek Kuczyński and Henryk Woźniakowski. Estimating the Largest
Eigenvalue by the Power and Lanczos Algorithms with a Ran-
dom Start. SIAM Journal on Matrix Analysis and Applications,
13(4):1094–1122, 1992.

[KY10] Piyush Kumar and E Alper Yildirim. A Linearly Convergent Linear-
Time First-Order Algorithm for Support Vector Classification with
a Core Set Result. INFORMS Journal on Computing, 2010.

[KZ05] Andrew Kurdila and Michael Zabarankin. Convex functional anal-
ysis. Birkhäuser Verlag, 2005.

[LBD08] Jorge López, Álvaro Barbero, and José Dorronsoro. On the Equiv-
alence of the SMO and MDM Algorithms for SVM Training. In
Machine Learning and Knowledge Discovery in Databases, pages
288–300. 2008.

[LC06] Yoonkyung Lee and Zhenhuan Cui. Characterizing the solution path
of multicategory support vector machines. Statistica Sinica, 2006.

[LGC07] Gaëlle Loosli, Gilles Gasso, and Stéphane Canu. Regularization
Paths for nu-SVM and nu-SVR. ISNN, International Symposium
on Neural Networks, LNCS, 4493:486, 2007.

[Lin07] Chih-Jen Lin. Projected Gradient Methods for Nonnegative Matrix
Factorization. Neural Comput., 19(10):2756–2779, 2007.

[LMSS07] Nathan Linial, Shahar Mendelson, Gideon Schechtman, and Adi
Shraibman. Complexity measures of sign matrices. Combinatorica,
27(4):439–463, 2007.

[Lov83] László Lovász. Submodular functions and convexity. Mathematical
programming: The state of the art, 1983.

[LRS+10] Jason Lee, Benjamin Recht, Ruslan Salakhutdinov, Nathan Srebro,
and Joel A Tropp. Practical Large-Scale Optimization for Max-
Norm Regularization. NIPS 2010: Advances in Neural Information
Processing Systems 23, 2010.

[LS07] Gyemin Lee and Clayton D Scott. The One Class Support Vector
Machine Solution Path. ICASSP 2007 - IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, 2:521–524, 2007.

[LST09] Yong-Jin Liu, Defeng Sun, and Kim-Chuan Toh. An Implementable
Proximal Point Algorithmic Framework for Nuclear Norm Minimiza-
tion. Optimization Online, 2009.

http://ttic.uchicago.edu/~shai/papers/KakadeShalevTewari09.pdf
http://ttic.uchicago.edu/~shai/papers/KakadeShalevTewari09.pdf
http://ttic.uchicago.edu/~shai/papers/KakadeShalevTewari09.pdf
http://dx.doi.org/10.1137/0613066
http://dx.doi.org/10.1137/0613066
http://dx.doi.org/10.1137/0613066
http://dx.doi.org/10.1287/ijoc.1100.0412
http://dx.doi.org/10.1287/ijoc.1100.0412
http://dx.doi.org/10.1287/ijoc.1100.0412
http://dx.doi.org/10.1007/3-7643-7357-1
http://dx.doi.org/10.1007/3-7643-7357-1
http://dx.doi.org/10.1007/978-3-540-87479-9_37
http://dx.doi.org/10.1007/978-3-540-87479-9_37
http://www3.stat.sinica.edu.tw/statistica/password.asp?vol=16&num=2&art=4
http://www3.stat.sinica.edu.tw/statistica/password.asp?vol=16&num=2&art=4
http://dx.doi.org/10.1007/978-3-540-72395-0_62
http://dx.doi.org/10.1007/978-3-540-72395-0_62
http://dx.doi.org/10.1162/neco.2007.19.10.2756
http://dx.doi.org/10.1162/neco.2007.19.10.2756
http://dx.doi.org/10.1007/s00493-007-2160-5
http://www.cs.elte.hu/~lovasz/scans/submodular.pdf
http://books.nips.cc/papers/files/nips23/NIPS2010_0678.pdf
http://books.nips.cc/papers/files/nips23/NIPS2010_0678.pdf
http://dx.doi.org/10.1109/ICASSP.2007.366287
http://dx.doi.org/10.1109/ICASSP.2007.366287
http://www.optimization-online.org/DB_FILE/2009/07/2340.pdf
http://www.optimization-online.org/DB_FILE/2009/07/2340.pdf
http://www.optimization-online.org/DB_FILE/2009/07/2340.pdf

Bibliography 187

[LU09] Neil Lawrence and Raquel Urtasun. Non-linear matrix factorization
with Gaussian processes. ICML ’09: Proceedings of the 26th Annual
International Conference on Machine Learning, 2009.

[Mar52] Harry Markowitz. Portfolio Selection. The Journal of Finance,
7(1):77–91, 1952.

[MCW05] Dmitry M Malioutov, Müjdat Cetin, and Alan S Willsky. Homo-
topy continuation for sparse signal representation. In ICASSP ’05
- IEEE International Conference on Acoustics, Speech, and Signal
Processing, pages 733–736 Vol. 5, 2005.

[MDM74] B Mitchell, V Dem’yanov, and V Malozemov. Finding the Point
of a Polyhedron Closest to the Origin. SIAM Journal on Control,
1974.

[MGC09] Shiqian Ma, Donald Goldfarb, and Lifeng Chen. Fixed point and
Bregman iterative methods for matrix rank minimization. Mathe-
matical Programming, 128(1):321–353, 2009.

[MHT09] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral
Regularization Algorithms for Learning Large Incomplete Matrices.
Submitted to JMLR, 2009.

[MHT10] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral
Regularization Algorithms for Learning Large Incomplete Matrices.
Journal of Machine Learning Research, 11:1–36, 2010.

[MR11] Olvi L Mangasarian and Benjamin Recht. Probability of unique
integer solution to a system of linear equations. European Journal
of Operational Research, In Press, 2011.

[MST06] Michael E Mavroforakis, Margaritis Sdralis, and Sergios Theodor-
idis. A novel SVM Geometric Algorithm based on Reduced Convex
Hulls. ICPR ’06: 18th International Conference on Pattern Recog-
nition, 2:564–568, 2006.

[MT06] Michael E Mavroforakis and Sergios Theodoridis. A geometric ap-
proach to Support Vector Machine (SVM) classification. IEEE
Transactions on Neural Networks, 17(3):671–682, 2006.

[Nak10] Yuji Nakatsukasa. Absolute and relative Weyl theorems for gen-
eralized eigenvalue problems. Linear Algebra and Its Applications,
432(1):242–248, 2010.

[Nat95] Balas Kausik Natarajan. Sparse Approximate Solutions to Linear
Systems. SIAM Journal on Computing, 24(2):227–234, 1995.

[Nem04] Arkadi Nemirovski. Prox-Method with Rate of Convergence O(1/t)
for Variational Inequalities with Lipschitz Continuous Monotone
Operators and Smooth Convex-Concave Saddle Point Problems.
SIAM Journal on Optimization, 15(1):229, 2004.

http://dx.doi.org/10.1145/1553374.1553452
http://dx.doi.org/10.1145/1553374.1553452
http://www.jstor.org/stable/2975974
http://dx.doi.org/10.1109/ICASSP.2005.1416408
http://dx.doi.org/10.1109/ICASSP.2005.1416408
http://dx.doi.org/10.1137/0312003
http://dx.doi.org/10.1137/0312003
http://dx.doi.org/10.1007/s10107-009-0306-5
http://dx.doi.org/10.1007/s10107-009-0306-5
http://www-stat.stanford.edu/~hastie/Papers/SVD_JMLR.pdf
http://www-stat.stanford.edu/~hastie/Papers/SVD_JMLR.pdf
http://www.jmlr.org/papers/volume11/mazumder10a/mazumder10a.pdf
http://www.jmlr.org/papers/volume11/mazumder10a/mazumder10a.pdf
http://dx.doi.org/10.1016/j.ejor.2011.04.010
http://dx.doi.org/10.1016/j.ejor.2011.04.010
http://dx.doi.org/10.1109/ICPR.2006.143
http://dx.doi.org/10.1109/ICPR.2006.143
http://dx.doi.org/10.1109/TNN.2006.873281
http://dx.doi.org/10.1109/TNN.2006.873281
http://dx.doi.org/10.1016/j.laa.2009.08.001
http://dx.doi.org/10.1016/j.laa.2009.08.001
http://dx.doi.org/10.1137/S0097539792240406
http://dx.doi.org/10.1137/S0097539792240406
http://dx.doi.org/10.1137/S1052623403425629
http://dx.doi.org/10.1137/S1052623403425629
http://dx.doi.org/10.1137/S1052623403425629

188 Bibliography

[Nem05] Arkadi Nemirovski. Lectures on modern convex optimization. Geor-
gia Institute of Technology, 2005.

[Nes83] Yurii Nesterov. A method of solving a convex programming problem
with convergence rate O(1/sqr(k)). Soviet Mathematics Doklady,
27:372–376, 1983.

[Nes04] Yurii Nesterov. Smooth minimization of non-smooth functions.
Mathematical Programming, 103(1):127–152, 2004.

[Nes07a] Yurii Nesterov. Gradient methods for minimizing composite ob-
jective function. Technical report, CORE and INMA, Université
catholique de Louvain, Belgium, 2007.

[Nes07b] Yurii Nesterov. Primal-dual subgradient methods for convex prob-
lems. Mathematical Programming, 120(1):221–259, 2007.

[Nes11] Yurii Nesterov. Random gradient-free minimization of convex func-
tions. CORE Tech Report, February 2011.

[Nov63] Albert B Novikoff. On convergence proofs for perceptrons. In
Proceedings of the Symposium on the Mathematical Theory of Au-
tomata, pages 615–622, 1963.

[OPT00] Michael R Osborne, Brett Presnell, and Berwin A Turlach. A new
approach to variable selection in least squares problems. IMA Jour-
nal of Numerical Analysis, 20(3):389–403, 2000.

[Osb92] Michael R Osborne. An effective method for computing regression
quantiles. IMA Journal of Numerical Analysis, 12(2):151–166, 1992.

[Pan04] Rina Panigrahy. Minimum Enclosing Polytope in High Dimensions.
arXiv, cs.CG, 2004.

[Pat93] Michael Patriksson. Partial linearization methods in nonlinear
programming. Journal of Optimization Theory and Applications,
78(2):227–246, 1993.

[Pat98] Michael Patriksson. Cost Approximation: A Unified Framework
of Descent Algorithms for Nonlinear Programs. SIAM Journal on
Optimization, 8(2):561, 1998.

[Pat07] Arkadiusz Paterek. Improving regularized singular value decompo-
sition for collaborative filtering. KDD Cup and Workshop at the
13th ACM SIGKDD Conference, 2007.

[PB08] Markos Papadonikolakis and Christos-Savvas Bouganis. Efficient
FPGA mapping of Gilbert’s algorithm for SVM training on large-
scale classification problems. FPL 2008 - International Conference
on Field Programmable Logic and Applications, pages 385–390, 2008.

[PH07] Mee Young Park and Trevor Hastie. L1-regularization path algo-
rithm for generalized linear models. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 69(4):659–677, 2007.

http://www2.isye.gatech.edu/~nemirovs/Lect_ModConvOpt.pdf
http://www.core.ucl.ac.be/~nesterov/Research/Papers/DAN83.pdf
http://www.core.ucl.ac.be/~nesterov/Research/Papers/DAN83.pdf
http://dx.doi.org/10.1007/s10107-004-0552-5
http://www.ecore.be/DPs/dp_1191313936.pdf
http://www.ecore.be/DPs/dp_1191313936.pdf
http://dx.doi.org/10.1007/s10107-007-0149-x
http://dx.doi.org/10.1007/s10107-007-0149-x
http://www.ucl.be/cps/ucl/doc/core/documents/coredp2011_1web.pdf
http://www.ucl.be/cps/ucl/doc/core/documents/coredp2011_1web.pdf
http://citeseer.comp.nus.edu.sg/context/494822/0
http://dx.doi.org/10.1093/imanum/20.3.389
http://dx.doi.org/10.1093/imanum/20.3.389
http://dx.doi.org/10.1093/imanum/12.2.151
http://dx.doi.org/10.1093/imanum/12.2.151
http://arxiv.org/pdf/cs/0407020v1
http://dx.doi.org/10.1007/BF00939668
http://dx.doi.org/10.1007/BF00939668
http://dx.doi.org/10.1137/S105262349427577X
http://dx.doi.org/10.1137/S105262349427577X
http://www.cs.uic.edu/~liub/KDD-cup-2007/proceedings/Regular-Paterek.pdf
http://www.cs.uic.edu/~liub/KDD-cup-2007/proceedings/Regular-Paterek.pdf
http://dx.doi.org/10.1109/FPL.2008.4629968
http://dx.doi.org/10.1109/FPL.2008.4629968
http://dx.doi.org/10.1109/FPL.2008.4629968
http://dx.doi.org/10.1111/j.1467-9868.2007.00607.x
http://dx.doi.org/10.1111/j.1467-9868.2007.00607.x

Bibliography 189

[Pla99] John C Platt. Fast training of support vector machines using sequen-
tial minimal optimization. In Advances in kernel methods: support
vector learning, pages 185–208. 1999.

[RBCG08] Alain Rakotomamonjy, Francis Bach, Stéphane Canu, and Yves
Grandvalet. SimpleMKL. Journal of Machine Learning Research,
9:2491–2521, 2008.

[Ren05] Jason D M Rennie. Regularized Logistic Regression is Strictly Con-
vex. people.csail.mit.edu, 2005.

[RFP10] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed
Minimum-Rank Solutions of Linear Matrix Equations via Nuclear
Norm Minimization. SIAM Review, 52(3):471–501, 2010.

[Rit62] Klaus Ritter. Ein Verfahren zur Lösung parameter-abhängiger,
nicht-linearer Maximum-Probleme. Unternehmensforschung, 6:149–
166, 1962.

[Rit84] Klaus Ritter. On Parametric Linear and Quadratic Programming
Problems. Mathematical Programming: Proceedings of the Interna-
tional Congress on Mathematical Programming. Rio de Janeiro, 6-8
April, 1981, pages 307–335, 1984.

[Roc97] R Tyrrell Rockafellar. Convex analysis. Princeton University Press,
1997.

[Roo00] Danny Roobaert. DirectSVM: a fast and simple support vector
machine perceptron. Neural Networks for Signal Processing X, 2000.
Proceedings of the 2000 IEEE Signal Processing Society Workshop,
1:356–365 vol.1, 2000.

[Ros58] Frank Rosenblatt. The perceptron: a probabilistic model for infor-
mation storage and organization in the brain. Psychological Review,
65(6):386–408, 1958.

[RR11] Benjamin Recht and Christopher Ré. Parallel Stochastic Gradient
Algorithms for Large-Scale Matrix Completion. submitted, 2011.

[RS05] Jason D M Rennie and Nathan Srebro. Fast maximum margin ma-
trix factorization for collaborative prediction. ICML ’05: Proceed-
ings of the 22nd International Conference on Machine Learning,
2005.

[RZ07] Saharon Rosset and Ji Zhu. Piecewise linear regularized solution
paths. The Annals of Statistics, 35(3):1012–1030, 2007.

[SB08] Christian D Sigg and Joachim M Buhmann. Expectation-
Maximization for Sparse and Non-Negative PCA. In ICML ’08:
Proceedings of the 25th International Conference on Machine Learn-
ing, pages 960–967, 2008.

http://portal.acm.org/citation.cfm?id=299094.299105
http://portal.acm.org/citation.cfm?id=299094.299105
http://jmlr.csail.mit.edu/papers/volume9/rakotomamonjy08a/rakotomamonjy08a.pdf
http://people.csail.mit.edu/jrennie/writing/convexLR.pdf
http://people.csail.mit.edu/jrennie/writing/convexLR.pdf
http://dx.doi.org/10.1137/070697835
http://dx.doi.org/10.1137/070697835
http://dx.doi.org/10.1137/070697835
http://books.google.com/books?id=1TiOka9bx3sC
http://dx.doi.org/10.1109/NNSP.2000.889427
http://dx.doi.org/10.1109/NNSP.2000.889427
http://pages.cs.wisc.edu/~brecht/papers/11.Rec.Re.IPGM.pdf
http://pages.cs.wisc.edu/~brecht/papers/11.Rec.Re.IPGM.pdf
http://dx.doi.org/10.1145/1102351.1102441
http://dx.doi.org/10.1145/1102351.1102441
http://dx.doi.org/10.1214/009053606000001370
http://dx.doi.org/10.1214/009053606000001370
http://dx.doi.org/10.1145/1390156.1390277
http://dx.doi.org/10.1145/1390156.1390277

190 Bibliography

[SJ03] Nathan Srebro and Tommi Jaakkola. Weighted Low-Rank Approx-
imations. ICML ’03: Proceedings of the 20th International Confer-
ence on Machine Learning, 2003.

[SRJ04] Nathan Srebro, Jason D M Rennie, and Tommi Jaakkola.
Maximum-margin matrix factorization. NIPS ’04: Advances in Neu-
ral Information Processing Systems 17, 17:1329–1336, 2004.

[SS05] Nathan Srebro and Adi Shraibman. Rank, Trace-Norm and Max-
Norm. COLT ’05: Proceedings of the 18st annual Workshop on
Computational Learning Theory, 3559:545–560, 2005.

[SS10] Ruslan Salakhutdinov and Nathan Srebro. Collaborative Filtering
in a Non-Uniform World: Learning with the Weighted Trace Norm.
NIPS 2010: Advances in Neural Information Processing Systems 23,
2010.

[SSS05] Shai Shalev-Shwartz and Yoram Singer. A New Perspective on an
Old Perceptron Algorithm. In Learning Theory, LNCS, pages 264–
278. 2005.

[SSSZ10] Shai Shalev-Shwartz, Nathan Srebro, and Tong Zhang. Trading
Accuracy for Sparsity in Optimization Problems with Sparsity Con-
straints. SIAM Journal on Optimization, 20:2807, 2010.

[STC04] John Shawe-Taylor and Nello Cristianini. Kernel methods for pat-
tern analysis. Cambridge University Press, 2004.

[TG07] Joel A Tropp and Anna Gilbert. Signal Recovery From Random
Measurements Via Orthogonal Matching Pursuit. IEEE Transac-
tions on Information Theory, 53(12):4655–4666, 2007.

[Tib96] Robert Tibshirani. Regression Shrinkage and Selection via the
Lasso. Journal of the Royal Statistical Society. Series B (Method-
ological), pages 267–288, 1996.

[TKC05] Ivor W Tsang, James T Kwok, and Pak-Ming Cheung. Core Vector
Machines: Fast SVM Training on Very Large Data Sets. Journal of
Machine Learning Research, 6:363–392, 2005.

[TKK07] Ivor W Tsang, Andras Kocsor, and James T Kwok. Simpler core
vector machines with enclosing balls. ICML ’07: Proceedings of the
24th International Conference on Machine Learning, 2007.

[TKZ06] Ivor W Tsang, James T Kwok, and Jacek M Zurada. Generalized
Core Vector Machines. IEEE Transactions on Neural Networks,
17(5):1126–1140, 2006.

[TPNT09] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos
Tikk. Scalable Collaborative Filtering Approaches for Large Recom-
mender Systems. Journal of Machine Learning Research, 10, 2009.

https://www.aaai.org/Papers/ICML/2003/ICML03-094.pdf
https://www.aaai.org/Papers/ICML/2003/ICML03-094.pdf
http://books.nips.cc/papers/files/nips17/NIPS2004_0588.pdf
http://dx.doi.org/10.1007/11503415_37
http://dx.doi.org/10.1007/11503415_37
http://books.nips.cc/papers/files/nips23/NIPS2010_0779.pdf
http://books.nips.cc/papers/files/nips23/NIPS2010_0779.pdf
http://dx.doi.org/10.1007/11503415_18
http://dx.doi.org/10.1007/11503415_18
http://dx.doi.org/10.1137/090759574
http://dx.doi.org/10.1137/090759574
http://dx.doi.org/10.1137/090759574
http://books.google.com/books?id=9i0vg12lti4C
http://books.google.com/books?id=9i0vg12lti4C
http://dx.doi.org/10.1109/TIT.2007.909108
http://dx.doi.org/10.1109/TIT.2007.909108
http://www.jstor.org/stable/2346178
http://www.jstor.org/stable/2346178
http://jmlr.csail.mit.edu/papers/volume6/tsang05a/tsang05a.pdf
http://jmlr.csail.mit.edu/papers/volume6/tsang05a/tsang05a.pdf
http://dx.doi.org/10.1145/1273496.1273611
http://dx.doi.org/10.1145/1273496.1273611
http://dx.doi.org/10.1109/TNN.2006.878123
http://dx.doi.org/10.1109/TNN.2006.878123
http://portal.acm.org/citation.cfm?id=1577069.1577091
http://portal.acm.org/citation.cfm?id=1577069.1577091

Bibliography 191

[Tro04] Joel A Tropp. Greed is good: algorithmic results for sparse approx-
imation. IEEE Transactions on Information Theory, 50(10):2231–
2242, 2004.

[Tur05] Berwin A Turlach. On Algorithms for Solving Least Squares Prob-
lems under an L1 Penalty or an L1 Constraint. Proc. American
Statistical Association; Statistical Computing Section, 2005.

[TY07] Michael Todd and E Alper Yildirim. On Khachiyan’s algorithm for
the computation of minimum-volume enclosing ellipsoids. Discrete
Applied Mathematics, 155(13):1731–1744, 2007.

[TY10] Kim-Chuan Toh and Sangwoon Yun. An accelerated proximal gra-
dient algorithm for nuclear norm regularized linear least squares
problems. Pacific Journal of Optimization, 2010.

[VSM03] S V N Vishwanathan, Alex J Smola, and M Narasimha Murty. Sim-
pleSVM. In ICML ’03: Proceedings of the 20th International Con-
ference on Machine Learning, pages 760–767, 2003.

[Wan08] Gang Wang. A New Solution Path Algorithm in Support Vector
Regression. IEEE Transactions on Neural Networks, 2008.

[WCYL06] Gang Wang, Tao Chen, Dit-Yan Yeung, and Frederick H Lochovsky.
Solution Path for Semi-Supervised Classification with Manifold Reg-
ularization. Data Mining, 2006. ICDM ’06. Sixth International Con-
ference on, pages 1124–1129, 2006.

[Web06] Brandyn Webb. Netflix Update: Try This at Home. Blog post
sifter.org/˜ simon/journal/20061211.html, 2006.

[WKS08] Markus Weimer, Alexandros Karatzoglou, and Alex J Smola. Im-
proving maximum margin matrix factorization. Machine Learning,
72(3):263–276, 2008.

[WSZS07] Kilian Q Weinberger, Fei Sha, Qihui Zhu, and Lawrence K Saul.
Graph Laplacian regularization for large-scale semidefinite program-
ming. In NIPS ’07: Advances in Neural Information Processing
Systems 20, 2007.

[Wu07] Mingrui Wu. Collaborative filtering via ensembles of matrix fac-
torizations. KDD Cup and Workshop at the 13th ACM SIGKDD
Conference, 2007.

[WYL06] Gang Wang, Dit-Yan Yeung, and Frederick H Lochovsky. Two-
dimensional solution path for support vector regression. ICML ’06:
Proceedings of the 23rd International Conference on Machine Learn-
ing, pages 993–1000, 2006.

[WYL07] Gang Wang, Dit-Yan Yeung, and Frederick H Lochovsky. A kernel
path algorithm for support vector machines. ICML ’07: Proceedings
of the 24th International Conference on Machine Learning, 2007.

http://dx.doi.org/10.1109/TIT.2004.834793
http://dx.doi.org/10.1109/TIT.2004.834793
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.261&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.261&rep=rep1&type=pdf
http://dx.doi.org/10.1016/j.dam.2007.02.013
http://dx.doi.org/10.1016/j.dam.2007.02.013
http://www.math.nus.edu.sg/~mattohkc/papers/mc11.pdf
http://www.math.nus.edu.sg/~mattohkc/papers/mc11.pdf
http://www.math.nus.edu.sg/~mattohkc/papers/mc11.pdf
http://www.hpl.hp.com/conferences/icml2003/papers/352.pdf
http://www.hpl.hp.com/conferences/icml2003/papers/352.pdf
http://dx.doi.org/10.1109/TNN.2008.2002077
http://dx.doi.org/10.1109/TNN.2008.2002077
http://dx.doi.org/10.1109/ICDM.2006.150
http://dx.doi.org/10.1109/ICDM.2006.150
http://sifter.org/~simon/journal/20061211.html
http://sifter.org/~simon/journal/20061211.html
http://dx.doi.org/10.1007/s10994-008-5073-7
http://dx.doi.org/10.1007/s10994-008-5073-7
http://books.nips.cc/papers/files/nips19/NIPS2006_0638.pdf
http://books.nips.cc/papers/files/nips19/NIPS2006_0638.pdf
http://www.cs.uic.edu/~liub/KDD-cup-2007/proceedings/matrix-fact-Wu.pdf
http://www.cs.uic.edu/~liub/KDD-cup-2007/proceedings/matrix-fact-Wu.pdf
http://dx.doi.org/10.1145/1143844.1143969
http://dx.doi.org/10.1145/1143844.1143969
http://dx.doi.org/10.1145/1273496.1273616
http://dx.doi.org/10.1145/1273496.1273616

192 Bibliography

[WZLS08] Zhi-li Wu, Aijun Zhang, Chun-hung Li, and Agus Sudjianto. Trace
Solution Paths for SVMs via Parametric Quadratic Programming.
KDD ’08 DMMT Workshop, 2008.

[ZdG10] Youwei Zhang, Alexandre d’Aspremont, and Laurent El Ghaoui.
Sparse PCA: Convex Relaxations, Algorithms and Applications.
arXiv math.OC, 2010.

[Zha03] Tong Zhang. Sequential greedy approximation for certain convex
optimization problems. IEEE Transactions on Information Theory,
49(3):682–691, 2003.

[Zha11] Tong Zhang. Sparse Recovery with Orthogonal Matching Pursuit
under RIP. IEEE Transactions on Information Theory, 57(9):6215–
6221, September 2011.

[Zie95] Günter M Ziegler. Lectures on Polytopes, volume 152 of Graduate
Texts in Mathematics. Springer Verlag, 1995.

[ZWSP08] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan.
Large-Scale Parallel Collaborative Filtering for the Netflix Prize. In
Algorithmic Aspects in Information and Management, pages 337–
348. 2008.

http://users.cs.fiu.edu/~taoli/kdd08-workshop/dmmt08_Zhili.pdf
http://users.cs.fiu.edu/~taoli/kdd08-workshop/dmmt08_Zhili.pdf
http://arxiv.org/pdf/1011.3781v2
http://dx.doi.org/10.1109/TIT.2002.808136
http://dx.doi.org/10.1109/TIT.2002.808136
http://dx.doi.org/10.1109/TIT.2011.2162263
http://dx.doi.org/10.1109/TIT.2011.2162263
http://www.springer.com/math/geometry/book/978-0-387-94365-7
http://dx.doi.org/10.1007/978-3-540-68880-8_32

Curriculum Vitae

Martin Jaggi

born Mai 23, 1982 in St.Gallen, Switzerland,
citizen of Lenk, BE, Switzerland

1997 - 2001 Kantonsschule am Burggraben, St.Gallen, Switzerland
Degree: Matura, Type C

2001 - 2006 Studies of Mathematics at ETH Zürich, Switzerland
Degree: Dipl. Math. ETH

since 2007 Ph.D. student at ETH Zürich, Switzerland
Institute of Theoretical Computer Science

	Introduction
	Convex Optimization
	Sparsity and Generalizations Thereof
	Regularization Methods
	Least Squares Regression
	Two equivalent Variants of Regularization
	Linear Classifiers and Support Vector Machines

	Geometric Problems
	Solution Path Methods
	Notation and Terminology

	Convex Optimization without Projection Steps
	Introduction
	The Poor Man's Approach to Convex Optimization and Duality
	Subgradients of a Convex Function
	A Duality for Convex Optimization over Compact Domain

	A Projection-Free First-Order Method for Convex Optimization
	The Algorithm
	Obtaining a Guaranteed Small Duality Gap
	Choosing the Optimal Step-Size by Line-Search
	The Curvature Measure of a Convex Function
	Optimizing over Convex Hulls
	Randomized Variants, and Stochastic Optimization
	Relation to Classical Convex Optimization

	Applications to Sparse and Low Rank Approximation
	Sparse Approximation over the Simplex
	Upper Bound: Sparse Greedy on the Simplex
	(1) Lower Bound on the Sparsity

	Sparse Approximation with Bounded 1-Norm
	Relation to Matching Pursuit and Basis Pursuit in Compressed Sensing

	Optimization with Bounded -Norm
	Semidefinite Optimization with Bounded Trace
	Low-Rank Semidefinite Optimization with Bounded Trace: The O(1) Algorithm by Hazan
	Solving Arbitrary SDPs
	Two Improved Variants of Algorithm 6
	(1) Lower Bound on the Rank

	Semidefinite Optimization with -Bounded Diagonal
	Sparse Semidefinite Optimization
	Submodular Optimization

	Optimization with the Nuclear and Max-Norm
	Introduction
	The Nuclear Norm for Matrices
	Weighted Nuclear Norm

	The Max-Norm for Matrices
	Optimizing with Bounded Nuclear Norm and Max-Norm
	Optimization with a Nuclear Norm Regularization
	Optimization with a Max-Norm Regularization

	Applications
	Robust Principal Component Analysis
	Matrix Completion and Low Norm Matrix Factorizations
	The Structure of the Resulting Eigenvalue Problems
	Relation to Simon Funk's SVD Method

	Experimental Results
	Conclusion

	A Geometric Optimization Method, and Coresets for Polytope Distance and SVMs
	Introduction
	Concepts and Definitions
	Polytope Distance
	Distance Between Two Polytopes
	Relation to our General Setting of Convex Optimization Over Bounded Domain

	Lower Bounds on the Sparsity of -Approximations
	Distance of One Polytope from the Origin
	Distance Between Two Polytopes

	Upper Bounds: Algorithms to Construct Coresets
	Gilbert's Algorithm
	An Improved Version of Gilbert's Algorithm for Two Polytopes
	Smaller Coresets by ``Away'' Steps

	Applications to Machine Learning
	Sparsity of SVM and Perceptron Solutions
	Linear Time Training of SVMs and Perceptrons

	Solution Paths for Convex Optimization Problems over Vectors
	Introduction
	Approximation Quality Measures
	Optimizing Parameterized Functions
	Stability of -Approximations
	Bounding the Path Complexity
	Lower Bound
	Relative Approximation
	The Weighted Sum of Two Convex Functions

	Applications
	A Parameterized Polytope Distance Problem
	The Regularization Path of Support Vector Machines
	Multiple Kernel Learning
	Minimum Enclosing Ball of Points under Linear Motion

	Experimental Results
	The Regularization Path of Support Vector Machines
	Multiple Kernel Learning

	Conclusion

	Solution Paths for Semidefinite Optimization
	Introduction
	The Duality Gap
	Optimizing Parameterized Semidefinite Problems
	Computing Approximate Solution Paths
	Plugging-in Existing Methods for Semidefinite Optimization

	Applications
	Matrix Completion
	Solution Paths for the Weighted Nuclear Norm
	Solution Paths for Robust PCA
	Solution Paths for Sparse PCA and Maximum Variance Unfolding

	Experimental Results
	Conclusion

	Optimization Basics
	Constrained Optimization Problems over Vectors
	Matrix Optimization Problems & Generalized Inequality Constraints
	Convex Optimization and the Wolfe Dual
	Convex Optimization over the Simplex
	Convex Optimization with -Norm Regularization
	Semidefinite Optimization with Bounded Trace
	Semidefinite Optimization with -Bounded Diagonal

	Bibliography

