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Abstract

Two of the most fundamental prototypes of greedy
optimization are the matching pursuit and Frank-
Wolfe algorithms. In this paper, we take a unified
view on both classes of methods, leading to the
first explicit convergence rates of matching pur-
suit methods in an optimization sense, for general
sets of atoms. We derive sublinear (1/t) conver-
gence for both classes on general smooth objec-
tives, and linear convergence on strongly convex
objectives, as well as a clear correspondence of
algorithm variants. Our presented algorithms and
rates are affine invariant, and do not need any
incoherence or sparsity assumptions.

1 Introduction
During the past decade, greedy algorithms have attracted sig-
nificant attention and led to many success stories in machine
learning and signal processing (e.g., compressed sensing),
and optimization in general. The most prominent represen-
tatives are matching pursuit (MP) algorithms on one hand
(Mallat & Zhang, 1993), such as, e.g., orthogonal matching
pursuit (OMP) (Chen et al., 1989; Tropp, 2004), and on
the other hand Frank-Wolfe (FW)-type algorithms (Frank
& Wolfe, 1956). Both operate in the setting of minimizing
an objective over (combinations of) a given set of atoms, or
dictionary elements.

The two classes of methods have very strong similarities,
in the sense that they in each iteration rely on the very
same subroutine, namely selecting the atom of largest inner
product with the negative gradient, i.e., what we call the
linear minimization oracle (LMO). Yet, the main difference
is that MP methods optimize over the linear span of the
atoms, while FW methods optimize over their convex hull.

Despite the vast literature on MP-type methods which typi-
cally gives recovery guarantees for sparse signals, surpris-
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ingly little is known about MP algorithms in terms of op-
timization, i.e., how many iterations are needed to reach a
defined target accuracy. In particular, we are not aware of
any general-purpose explicit convergence rates, which hold
for an arbitrary given set of atoms (here “explicit” means
that the result must not depend on iteration-dependent quan-
tities). Indeed, in the context of sparse recovery, conver-
gence rates typically come as a byproduct of the recovery
guarantees and hence depend on very strong assumptions
(from an optimization perspective), such as incoherence or
restricted isometry properties of the atom set (Tropp, 2004;
Davenport & Wakin, 2010). Motivated by this line of work,
(Gribonval & Vandergheynst, 2006; Temlyakov, 2013, 2014;
Nguyen & Petrova, 2014) specifically target convergence
rates but still rely on incoherence properties. On the other
hand, FW methods are well understood from an optimiza-
tion perspective, with strong explicit convergence results
available for a large class of input problems, see, e.g., (Jaggi,
2013; Lacoste-Julien & Jaggi, 2015) for a recent account.

In this paper, we provide a unified view on MP and FW
algorithms from an optimization perspective. Our joint
understanding of both classes of algorithms has several
benefits:

• We provide a clear presentation of MP methods with
their FW analogues in a unified context, for the task
of general convex optimization over any set of atoms
from a Hilbert space. Our view also includes weight-
corrective variants of MP and FW which we are able
to set in direct correspondence.
• Our derived convergence rates (sub-linear for the case

of smooth objective, and linear/geometric for the case
of smooth and strongly convex objective) are the first
explicit optimization rates for MP methods, for general
atom sets, to the best of our knowledge. We set the
new rates and their complexity constants in context
with existing FW rates. Our linear convergence rate of
MP is expressed in terms of a new quantity called the
minimal intrinsic directional width of the atoms.
• We allow for approximate subroutines in all proposed

MP and FW variants, that is the use of an approxi-
mate linear oracle (LMO). The level of approximation
quality is reflected in all convergence rates.
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• Additionally, we give affine invariant extensions of the
MP and FW algorithm variants, as well as convergence
rates in terms of affine invariant quantities. That is,
the algorithms and rates will be invariant under affine
transformations and re-parameterizations of the opti-
mization domain (a property which was known for
Newton’s method and FW methods, but is novel in the
MP context).

Motivation. The setting of optimization over linear or
convex combinations of atoms has served as a very use-
ful template in many applications, since the choice of the
atom set conveniently allows to encode structure desired
for the use case. Apart from many applications based on
sparse vectors, the use of rank-1 atoms gives rise to struc-
tured matrix and tensor factorizations, see, e.g., (Wang et al.,
2014; Yang et al., 2015; Yao & Kwok, 2016; Guo et al.,
2017). For example, minimizing the Bregman Divergence
over a set of structured rank-1 matrices yields an exponen-
tial family structured PCA (Gunasekar et al., 2014). Other
applications include multilinear multitask learning (Romera-
Paredes et al., 2013), matrix completion and image denois-
ing (Tibshirani, 2015).

Complexity Constants and Coherence. While our sub-
linear convergence rates for MP and FW only depend on
bounded norm of the iterates and on the diameter of the
atom set, the linear rates also depend on our notion of min-
imal intrinsic directional width. In contrast to the notion
of (cumulative) coherence commonly used in the context
of MP and OMP (Gribonval & Vandergheynst, 2006), our
width complexity notion is more robust, e.g., w.r.t. addition
of new atoms, and leading to provably better bounds than
coherence. Furthermore, our linear rates are significantly
easier to interpret than the linear rates obtained for FW algo-
rithm variants in (Lacoste-Julien & Jaggi, 2015) which rely
on a complex geometric quantity called pyramidal width. Fi-
nally, we elucidate the relationship between FW algorithms
and our proposed generalized MP variants, by showing that
the iterates of FW converge to those of MP as O(1/α), if
the atom set of FW is scaled by a growing factor α.

We note that a few recent works (Shalev-Shwartz et al.,
2010; Temlyakov, 2013, 2014, 2015; Nguyen & Petrova,
2014; Yao & Kwok, 2016) proposed similar algorithms
extending MPs to general smooth objective functions, al-
though with less general convergence rates and without
studying the algorithms in the larger context of MP and
FW. The relation to these works is discussed in detail in
Section 8.

Notation. Let [d] be the set {1, 2, . . . , d}. Given a non-
empty subset A of some vector space, let conv(A) be the
convex hull of the set A, and let lin(A) denote the linear
span of the elements in A. Given a closed set A we call its
diameter diam(A) = maxz1,z2∈A ‖z1 − z2‖ and its radius
radius(A) = maxz∈A ‖z‖. Note that for convex hulls of

finite atom sets A we have diam(conv(A)) = diam(A),
i.e., the diameter is attained at two vertices (Ziegler, 1995).
‖x‖A := inf{c > 0: x ∈ c · conv(A)} is the atomic norm
of x over a set A (also known as the gauge function of
conv(A)). We call a subset A of a Hilbert space symmetric
if A = −A. We write clip[0,1](s) := max{0,min{1, s}}.

2 Matching Pursuit and Frank-Wolfe

We start by reviewing the MP (Mallat & Zhang, 1993),
the OMP (Chen et al., 1989; Tropp, 2004), and the FW
algorithm (Frank & Wolfe, 1956; Jaggi, 2013) in Hilbert
spaces. The setting considered throughout this paper is the
following. Let H be a Hilbert space with associated inner
product 〈x,y〉, ∀x,y ∈ H. The inner product induces
the norm ‖x‖2 := 〈x,x〉, ∀x ∈ H. Let A ⊂ H be a
non-empty bounded set (the set of atoms or dictionary)
and let f : H→R be convex and L-smooth (L-Lipschitz
gradient in the finite-dimensional case). IfH is an infinite-
dimensional Hilbert space, then f is assumed to be Fréchet
differentiable.

In each iteration, both the MP/OMP and the FW algorithm
query a so-called linear minimization oracle (LMO) which
solves the optimization problem

LMOD(y) := arg min
z∈D

〈y, z〉 (1)

for given y ∈ H and D ⊂ H. As computing an exact so-
lution (1), depending on D, is often hard in practice, it is
desirable to rely on an approximate LMO that returns an
approximate minimizer of (1). Different notions of approxi-
mate LMOs are discussed in more detail in Section 3.4.

MP and OMP, presented in Algorithm 1, aim at approx-
imating a target point y ∈ H as well as possible in the
least-squares sense using no more than T atoms form a
possibly countable or finite dictionary A ⊂ H.

Algorithm 1 (Orthogonal) Matching Pursuit

1: init x0 ∈ lin(A) S = {x0}
2: for t = 0 . . . T
3: Find zt := (Approx-)LMOA∪−A(−y + xt)
4: S = S ∪ zt
5: Update MP: xt+1 := arg min

x:=xt+γzt
γ∈R

‖y − x‖2, or

6: Update OMP: xt+1 := arg minx∈lin(S) ‖y−x‖2
7: end for

At each iteration, OMP adds a new atom to the active set S
and computes the new iterate as the least-squares approx-
imation of y in terms of the atoms in S. As a result, the
residual rt+1 := y − xt+1 is orthogonal to lin(S). This
is in contrast to MP, which only minimizes the residual
error ‖rt+1‖2 w.r.t. zt so that rt+1 is orthogonal to zt,
but not necessarily to all zt′ , t′ ≤ t − 1. Note that MP
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does not require to maintain the active set S as the up-
date only relies on zt. Also note that in the signal process-
ing literature MP and OMP are typically formulated using
zt := arg maxz∈A |〈y − xt, z〉| in Line 3 of Algorithm 1
instead of zt := LMOA∪−A(−y+xt). The solution of this
alternative LMO definition is equal to that of LMOA∪−A
up to the sign, so that the iterates xt are identical for both
definitions. Relying on LMOA∪−A here allows to better
illustrate the parallels between MP/OMP and FW.

We now turn to the FW algorithm (Frank & Wolfe, 1956;
Jaggi, 2013), also referred to as conditional gradient in the
literature. The FW algorithm, presented in Algorithm 2,
targets the optimization problem

min
x∈D

f(x), (2)

where D ⊂ H is convex and bounded. In many ap-
plications, D is the convex hull of a dictionary A, i.e.,
D = conv(A), in which case LMOD(y) = LMOA(y).

Algorithm 2 Frank-Wolfe

1: init x0 ∈ conv(A)
2: for t = 0 . . . T
3: Find zt := (Approx-)LMOA(∇f(xt))
4: Variant 0: γ := 2

t+2
5: Variant 1: γ := arg min

γ∈[0,1]
f(xt+γ(zt − xt))

6: Variant 2: γ := clip[0,1]

[ 〈−∇f(xt),zt−xt〉
diam‖.‖(A)2L

]
7: Variant 3: γ := clip[0,1]

[ 〈−∇f(xt),zt−xt〉
‖zt−xt‖2L

]
8: Update xt+1 := xt + γ(zt − xt)
9: end for

At each iteration, the FW algorithm selects a new atom zt
from D by querying the LMO and computes the new iterate
as a convex combination of zt and the old iterate xt. As dis-
cussed in (Jaggi, 2013), the convex update can be performed
either by line search (line 5 in Algorithm 2) or as a convex
combination of all previously selected atoms zt′ , t′ ≤ t.

The steps in Line 3 of MP (Algorithm 1) and Line 3 of FW
(Algorithm 2) (finding the step direction) are identical up
to symmetrization of A. This is seen as follows. Recall
that MP and OMP approximate y in the least-squares sense,
i.e., they aim at minimizing f(x) := 1

2‖y − x‖2. For this
choice of f we have ∇f(xt) = −y + xt = −rt, i.e.,
LMOA∪−A(−rt) = LMOA∪−A(∇f(xt)).

3 Greedy Algorithms in Hilbert Spaces
We present new greedy algorithms—inspired by MP, OMP,
and FW—for the minimization of functions f over a con-
vex and bounded set D ⊂ H, or over the linear span of a
dictionary A ⊂ H. As MP, OMP, and FW, these algorithms
alternate between querying the LMO defined in (1) and
updating the current iterate xt. Common to all of our algo-
rithms is that their update step minimizes an upper bound

of f at xt, given as

gxt(x) := f(xt) + 〈∇f(xt),x− xt〉+
L

2
‖x− xt‖2 (3)

where L is an upper bound on the smoothness constant of f
w.r.t. a chosen norm ‖.‖. Optimizing this norm problem
instead of the original f objective allows for substantial
efficiency gains in the case of complicated f objective.

We note that our algorithms can be made affine invari-
ant, i.e., invariant under affine transformations and re-
parameterizations of the domain, by simple modifications
of the update steps. For simplicity of exposition, we present
these algorithm versions, along with corresponding sub-
linear and linear convergence results later in Section 6.

3.1 Constrained Optimization
We consider constrained optimization problems of the
form (2) with D := conv(A) for some dictionary A ⊂ H.
Inspired by the fully-corrective Frank-Wolfe variant (see,
e.g., (Holloway, 1974; Jaggi, 2013)) which, in each update
step, re-optimizes the original objective over the convex hull
of all previously selected atoms, conv(S), we instead pro-
pose to minimize the simpler quadratic upper bound (3) over
the atom selected at the current iteration (using line-search)
or over conv(S). We call this algorithm variant, presented
in Algorithm 3, norm-corrective Frank-Wolfe.

Algorithm 3 Norm-Corrective Frank-Wolfe

1: init x0 ∈ conv(A), and S := {x0}
2: for t = 0 . . . T
3: Find zt := (Approx-)LMOA(∇f(xt))
4: S := S ∪ {zt}
5: Let b := xt − 1

L∇f(xt)

6: Variant 0: Update xt+1 := arg min
z:=xt+γ(zt−xt)

γ∈[0,1]

‖z− b‖22

Variant 1: Update xt+1 := arg min
z∈conv(S)

‖z− b‖22
7: Optional: Correction of some/all atoms z0...t
8: end for

The name “norm-corrective” is used to illustrate that the
algorithm employs a simple squared norm surrogate func-
tion (or upper bound on f ), which only depends on the
smoothness constant L. This is in contrast to second-order
optimization methods such as Newton’s method, which rely
on a non-uniform quadratic surrogate function at each it-
eration. Importantly, we do not need to know L (and the
corresponding constant in the affine invariant algorithm ver-
sions in Section 6) exactly in any of the proposed algorithms;
an upper bound is always sufficient to ensure convergence.
Finding the closest point in norm can typically be performed
much more efficiently than solving a general optimization
problem, such as if we would minimize f over the same
domain, which is what the “fully-corrective” algorithm vari-
ants require in each iteration. Approximately solving the
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subproblem in Variant 1 can be done efficiently using pro-
jected gradient steps on the weights (as projection onto the
simplex and L1 ball is efficient). Assuming a fixed quadratic
subproblem as in Variant 1, the CoGEnT algorithm of (Rao
et al., 2015) uses the same “enhancement” steps. The differ-
ence in the presentation here is that we address general f , so
that the quadratic correction subproblem changes in every
iteration in our case.

3.2 Optimization over the linear span of a dictionary
We now move on to optimization over linear span of a
dictionary A ⊂ H, i.e., we consider problems of the form

min
x∈lin(A)

f(x). (4)

To solve (4), we present the Norm-Corrective Generalized
Matching Pursuit (GMP) in Algorithm 4 which is again
based on the quadratic upper bound (3) and can be seen as
an extension of MP and OMP to smooth functions f .

Algorithm 4 Norm-Corrective Generalized Matching Pur-
suit

1: init x0 ∈ lin(A), and S := {x0}
2: for t = 0 . . . T
3: Find zt := (Approx-)LMOA(∇f(xt))
4: S := S ∪ {zt}
5: Let b := xt − 1

L∇f(xt)

6: Variant 0: Update xt+1 := arg min
z:=xt+γzt

γ∈R

‖z− b‖22

Variant 1: Update xt+1 := arg min
z∈lin(S)

‖z− b‖22
7: Optional: Correction of some/all atoms z0...t
8: end for

Here, the updates in line 6 are again either over the most
recently selected atom (Variant 0) or over all perviously
selected atoms (Variant 1). However, the optimization is
unconstrained as opposed to norm-corrective FW. Note that
the update step in line 6 of Algorithm 4 Variant 0 (line-
search) has the closed-form solution γ = − 〈xt−b,zt〉‖zt‖2 .

It is important to stress the fact that for Variant 1, at the end
of iteration t, ∇f(xt+1) is not always orthogonal to lin(S)
as it is the case for OMP (see the discussion in Section 2).

This difference is rooted in the fact that the OMP resid-
ual rt+1 = y − xt+1 (i.e., the gradient at iteration t + 1,
∇f(xt+1)) can be obtained by projecting the rt (i.e., the
gradient at iteration t, ∇f(xt)) onto the orthogonal com-
plement of ẑt, where ẑt is obtained by orthogonalizing zt
w.r.t. zt′ , t′ ≤ t − 1. In other words, the OMP update
step maintains orthogonality of the gradient w.r.t. the atoms
selected in all previous iterations, which is not the case for
general smooth functions f due to varying curvature.

3.3 Discussion
The update step in line 6 in Algorithms 3 and 4 is very simi-
lar to a projected gradient descent step with a step-size of

1/L (i.e., b = xt− 1
L∇f(xt) is a gradient descent step with

step size 1/L and the update step in line 6 is a projection
of b). However, the crucial difference to projected gradient
descent is that the projection step is only partial, i.e., the
projection is only onto conv(S) and lin(S) instead of the
entire constraint set conv(A) and lin(A) for Algorithms 3
and 4, respectively.

The total number of iterations T of Algorithms 3 and 4 con-
trols the trade-off between approximation quality, i.e., how
close f(xT ) is to the optimum f(x?), and the “structured-
ness” of the (approximate) solution xT . The structure is due
to the fact that we only use T atoms from A and due to the
structure of the atoms themselves (e.g., sparsity). A concrete
example for an application of Algorithm 4 that requires such
a structure is low-rank matrix factorization: Choosing for f
a function measuring the approximation quality of a given
matrix to a target matrix and rank-1 matrices with unit norm
as atom set, T controls the rank of the solution matrix.

3.4 Approximate linear oracles and atom corrections

Recall that an exact LMO is often very costly, in particular
when applied to matrix (or tensor) factorization problems,
while approximate versions can be much more efficient. We
now generalize all the presented Algorithms to allow for
an approximate LMO. Different notions of such an LMO
were already explored for the Frank-Wolfe framework in
(Lacoste-Julien et al., 2013). Here, we focus on multiplica-
tive errors and define two different approximate LMO s,
one for Algorithm 3 and another one for Algorithm 4. We
discuss their relationship in Section 7. Formally, for a given
quality parameter δFW ∈ (0, 1] and for a given direction
d ∈ H, the approximate LMO for Algorithm 3 returns a
vector z̃ ∈ A satisfying

〈d, z̃− xt〉 ≤ δFW min
z∈A
〈d, z− xt〉. (5)

For given quality parameter δMP ∈ (0, 1] and given direction
d ∈ H, the approximate LMO for Algorithm 4 returns a
vector z̃ ∈ A such that

〈d, z̃〉 ≤ δMP〈d, z〉, (6)

where z = LMOA(d). We will often refer to the quality
parameter simply as δ.

Further, as shown in line 7 of Algorithms 3 and 4, we also
allow for correction of some/all atoms in the active set S,
see, e.g., (Laue, 2012; Guo et al., 2017), to obtain a better
objective cost while maintaining the same (small) number
of atoms.

4 Sublinear Convergence Rates

In this section we present sub-linear convergence guarantees
for Algorithms 3 and 4. All proofs are deferred to the
Appendix in the supplement.
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Frank-Wolfe algorithm variants. We start with the con-
vergence result for Algorithm 3, which targets optimization
problems of the form (2). Let x? ∈ arg minx∈conv(A) f(x)
be an optimal solution of (2).

Theorem 1. Let A ⊂ H be a bounded set and
let f : H→R be L-smooth w.r.t. a given norm ‖.‖,
over conv(A). Then, the Frank-Wolfe method (Algorithm 2),
as well as Norm-Corrective Frank-Wolfe (Algorithm 3), con-
verge for t ≥ 0 as

f(xt)− f(x?) ≤
2
(
1
δLdiam‖.‖(A)2 + ε0

)
δt+ 2

where ε0 := f(x0)− f(x?) is the initial error in objective,
and δ ∈ (0, 1] is the accuracy parameter of the employed
approximate LMO (Equation (5)).

Matching pursuit algorithm variants. We now move
on to Algorithm 4 which solves optimization problems
over a linear span, as given in (4). We again write x? ∈
arg minx∈lin(A) f(x) for an optimal solution. Our rates will
crucially depend on a (possibly loose) upper bound on the
atomic norm of the solution and iterates: Let ρ > 0 s.t.

ρ ≥ max {‖x?‖A, ‖x0‖A . . . , ‖xT ‖A} . (7)

If the optimum is not unique, we consider x? to be one
of largest atomic norm. We now present the convergence
results for the Matching Pursuit algorithm variants.

Theorem 2. Let A ⊂ H be a bounded and symmetric set,
and let f : H→R be L-smooth w.r.t. a given norm ‖.‖,
over ρ conv(A) with ρ < ∞. Then, Norm-Corrective
Matching Pursuit (Algorithm 4), converges for t ≥ 0 as

f(xt)− f(x?) ≤
4
(
2
δLρ

2 radius‖.‖(A)2 + ε0
)

δt+ 4

where ε0 := f(x0)− f(x?) is the initial error in objective,
and δ ∈ (0, 1] is the relative accuracy of the employed
approximate LMO (6).

The proof of Theorem 2 extends the FW convergence anal-
ysis from conv(A) to lin(A) by rescaling conv(A) so that
it includes x? and xt for all t ≤ T , the reason for which
the rate in Theorem 2 depends on the upper bound ρ on
the atomic norm of x? and xt, t ≤ T . The relationship
between Norm-Corrective FW and Norm-Corrective GMP
is systematically studied in Section 7.

Using well-known results from convex optimization, we can
particularize Theorem 2 for f(x) := 1

2‖y−x‖2 and obtain
iterate-independent constants (i.e., constants independent
of ρ) as follows.

Definition 3. The effective inradius of a convex set A, de-
noted by inr(A), is the radius of the largest d-dimensional
Euclidean ball which can be inscribed in A, where d is the
dimension of the subspace spanned by lin(A).

Corollary 4. LetA ∈ Rd be a finite symmetric set of atoms,
or the convex hull of a finite set of atoms, and let ρ̃ ≥
max {‖x?‖, ‖x0‖, . . . , ‖xT ‖}, ρ̃ < ∞. Then, under the
conditions of Theorem 2, Algorithm 4 converges both with

f(xt) − f(x?) ≤ 2ρ̃2 diam‖.‖(A)2

δ2 inr(conv(A))2(t+2) . If further f(x) :=
1
2‖y − x‖2, then ρ̃ can be replaced by ‖y‖.

The effective inradius inr(conv(A)) generally depends on
the ambient space dimension d. For example, the effective
inradius of the L1-ball scales as O(

√
d). Hence, if A is the

L1-ball, Corollary 4 tells us that we need to take T at least
on the order of d to obtain an O(1) error f(xt)− f(x?).

5 Linear Convergence Rates
It is possible to obtain faster convergence rates for some
classes of objective functions, still over arbitrary dictionar-
ies. In this section, we present linear convergence rates for
our generalized matching pursuit, Algorithm 4. While
linear rates have recently been demonstrated for Frank-
Wolfe algorithm variants for strongly convex objectives
by (Lacoste-Julien & Jaggi, 2015), we are not aware of
any existing explicit linear convergence rates for matching
pursuit algorithms (see Section 8 for a discussion).

We begin our analysis by proposing a new geometric com-
plexity measure of the atom set which we call the minimal
intrinsic directional width. It builds upon the classic geo-
metric width as follows:

Definition 5. The directional width of a set A as a function
of a given non-zero vector d is defined as

WA(d) := max
z∈A
〈 d
‖d‖ , z〉.

In general, the directional width can be zero depending on
the choice of d. Building upon the the concept of directional
width, we are ready to define our main complexity constant,
which will be crucial to our linear convergence guarantees.

Definition 6. Given a bounded setA, we define its minimal
intrinsic directional width as

mDW(A) := min
d∈lin(A)

d6=0

WA(d) .

A crucial aspect of the preceding definition is that only
directions in lin(A) are allowed, hence the name intrinsic.
If the minimum was not over d ∈ lin(A), the width would
be zero whenever A does not span the ambient space.

Properties. Note that mDW(A) > 0 implies that the
origin is in the relative interior of conv(A) and hence the
atomic is well defined ∀x ∈ lin(A) (which ensures that
ρ < ∞). Furthermore, note how for a fixed sequence of
iterates and x? the value of ρ is a monotone decreasing
function of the mDW(A). Moreover, any symmetric set
satisfies the property mDW(A) > 0. For example, the L1
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ball in Rd has mDW(A) = 1√
d

. The quantity mDW(A)

is meaningful for both undercomplete and overcomplete,
possibly continuous, atom sets, and plays a similar role
as the coherence in coherence-based convergence analysis
of MPs (this is discussed in more detail at the end of this
section).

We now present our main linear convergence result for opti-
mization over the linear span of atoms as defined in (4). As
we will only consider strongly convex objective functions f ,
the optimum x? is unique here, as opposed to the general
context of our sub-linear rates.

Theorem 7. Let A ⊂ H be a bounded set such that
mDW(A) > 0, and let the objective function f : H→R
be both globally L-smooth and globally µ-strongly convex
w.r.t. a given norm ‖.‖ over ρ conv(A). Then, for t ≥ 0, the
suboptimality of the iterates of Algorithm 4 decays exponen-
tially as

εt+1 ≤

(
1− δ2 µmDW(A)

2

L radius‖.‖(A)2

)
εt,

where εt := f(xt) − f(x?) is the suboptimality at step t,
and δ ∈ (0, 1] is the relative accuracy parameter of the
employed approximate LMO (6).

Even though mDW(A) can take on values larger than 1
(depending on A) the rate in Theorem 7 is always valid as
mDW(A) / radius‖.‖(A) < 1 for any non-empty A.

We present an additional illustrative experiment measur-
ing the practical dependence of the convergence upon the
defined mDW(A) quantity in Appendix A.

Lower Bounds. We continue by presenting a lower bound
on the decay of the suboptimality of the iterates for GMP.
This lower bound depends on the width WA, which shows
that this quantity plays a fundamental role for the conver-
gence of GMP. We first consider the general strongly convex
and smooth functions and the particularize the result for the
least-squares function f(x) := 1

2‖y − x‖2, which allows
to compute the update in closed-form. Furthermore, we
consider only the case of the exact oracle (δ = 1 in Equa-
tion (6)).

Theorem 8. Assume that x? ∈ lin(A) and let zt be the
atom selected at iteration t by the LMO. Then, under the
assumptions of Theorem 7, the suboptimality of the iterates
of Algorithm 4 Variant 0 with an exact LMO (δ = 1) does
not decay faster than

εt+1 ≥
(

1− WA(−∇f(xt))
2

‖zt‖2
2L− µ
µ

)
εt

Note that the lower bound on the exponential decay given in
Theorem 8 depends on the iteration t. We now particularize
the result for the least-squares function.

Corollary 9. Let A := {±ei} ⊂ Rd be the vertices of
the L1 ball. Suppose we are minimizing f(x) := 1

2‖y −

x‖2 over the linear span of A with y ∈ Rd. Let x0 be
the starting point of the Matching Pursuit Algorithm and
assume that ∀i ∈ [d] (x0)i 6= yi. Then

εt+1 ≥
(

1− 1

d− t

)
εt .

This result is discussed in more detail in Appendix B.8.

Relationship between mDW(A) and cumulative coher-
ence. It is interesting to compare the rate in Theorem 2
with the coherence-based rates from the literature, such as
(Gribonval & Vandergheynst, 2006). In order to relate the
two notions of cumulative coherence and directional width,
we need some additional assumptions. We only consider the
least-squares function in Rd and assume that its minimizer
over Rd lies in the span of the atom set A. Further, we
require symmetry so that the definition of LMO given in
Equation (1) is equivalent (up to the sign) to the one used
for MP in (Gribonval & Vandergheynst, 2006).

Theorem 10. Let A ⊂ Rd be a symmetric set of 2n atoms
with ‖s‖2 = 1 for all s ∈ A. Let B be a set such that
A = B ∪ −B with B ∩ −B = ∅ and |B| = n. Then, the cu-
mulative coherence of the set B, defined as µ(B,m) :=
maxI⊂B,|I|=m maxsi∈B\I

∑
sj∈I |〈si, sj〉|, m < n, is

lower-bounded as µ(B, n− 1) ≥ 1− n ·mDW(A)
2.

In essence, Theorem 10 shows that if the directional width
is close to zero, the cumulative coherence is close to 1 with
a factor that depends on n. Note that by increasing the num-
ber of atoms, both the cumulative coherence and mDW(A)
grow. Recall that when the cumulative coherence is 1, ac-
cording to the rate for MP in (Gribonval & Vandergheynst,
2006) there is no linear convergence. Furthermore, our rate
is more robust than the one in (Gribonval & Vandergheynst,
2006) in the following sense. An adversary could add an
atom to the dictionary, making the coherence 1. In contrast,
adding an atom cannot make mDW(A) = 0. In addition, if
the atom is added so that mDW(A) is arbitrarily small, the
cumulative coherence is arbitrarily close to 1 by Theorem 10.
Finally, the linear rate for MP presented in (Gribonval &
Vandergheynst, 2006) assumes that the optimum can be rep-
resented exactly usingm atoms. Therefore, the rate depends
on µ(B,m− 1) while mDW(A) can be compared only to
the cumulative coherence of the whole set (i.e., µ(B, n−1))
since it is an intrinsic property of the atom set.

6 Affine Invariant Algorithms and Rates
We now present affine invariant versions of Algorithms 3
and 4, along with sub-linear and linear convergence guaran-
tees. An optimization method is called affine invariant if it is
invariant under affine transformations of the input problem:
If one chooses any re-parameterization of the domain Q
by a surjective linear or affine map M : Q̂ → Q, then the
“old” and “new” optimization problems minx∈Q f(x) and
minx̂∈Q̂ f̂(x̂) for f̂(x̂) := f(Mx̂) look the same to the
algorithm.



Francesco Locatello, Rajiv Khanna*, Michael Tschannen*, Martin Jaggi

6.1 Affine Invariant Frank-Wolfe
To define an affine invariant upper bound on the objective
function f , we use the affine invariant definition of the
curvature constant from (Jaggi, 2013)

Cf,A := sup
s∈A,x∈conv(A)

γ∈[0,1]
y=x+γ(s−x)

2

γ2
D(y,x), (8)

where for cleaner exposition, we have used the shorthand
notation D(y,x) to denote the difference of f(y) and its
linear approximation at x, i.e.,

D(y,x) := f(y)− f(x)− 〈y − x,∇f(x)〉.

Bounded curvature Cf,A closely corresponds to smoothness
of the objective f . More precisely, if∇f is L-Lipschitz con-
tinuous on conv(A) with respect to some arbitrary chosen
norm ‖.‖, i.e., ‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖, where
‖.‖∗ is the dual norm of ‖.‖, then

Cf,A ≤ Ldiam‖.‖(A)2 , (9)

where diam‖.‖(.) denotes the ‖.‖-diameter, see (Jaggi, 2013,
Lemma 7). The curvature constant Cf,A is affine invariant,
does not depend on any norm. It combines the complexity
of the domain conv(A) and the curvature of the objective
function f into a single quantity.

We are now ready to present the affine invariant version of
the Norm-Corrective Frank-Wolfe algorithm (Algorithm 3).

Algorithm 5 Affine Invariant Frank-Wolfe

Same as Algorithm 3, except,
5. γ := clip[0,1]

[
〈−∇f(xt), zt − xt〉/Cf,A

]
6. Update xt+1 := xt + γ(zt − xt)

The following theorem characterizes the sub-linear conver-
gence rate of Algorithm 5.
Theorem 11. Let A ⊂ H be a bounded set and let
f : H→R be a convex function with curvatureCf,A overA
as defined in (8). Then, the Affine Invariant Frank-Wolfe
algorithm (Algorithm 5) converges for t ≥ 0 as

f(xt)− f(x?) ≤
2
(
1
δCf,A + ε0

)
δt+ 2

where ε0 := f(x0)− f(x?) is the initial error in objective,
and δ ∈ (0, 1] is the accuracy parameter of the employed
approximate LMO (Equation (5)).

6.2 Affine Invariant Generalized Matching Pursuit
To design an affine invariant MP algorithm we will rely on
the following slight variation of Cf,A (defined in (8)) using
y = x + γs instead of y = x + γ(s− x), i.e.,

CMP
f,A := sup

s∈A,x∈conv(A)
γ∈[0,1]
y=x+γs

2

γ2
D(y,x). (10)

Throughout this section, we again assume availability of
a finite constant ρ > 0 as an upper bound of the atomic
norms ‖.‖A of the optimum x?, as well as the iterate se-
quence (xt)

T
t=0 up to the current iteration, as defined in (7).

We now present the affine invariant version of the Norm-
Corrective GMP algorithm (Algorithm 4, Variant 0) in Al-
gorithm 6. The algorithm uses the bounded curvature CMP

f,ρA
over the rescaled set ρ conv(A), rather than conv(A).

Algorithm 6 Affine Invariant Generalized Matching Pursuit

Same as Algorithm 4 except,
5. Variant 1: γ := 〈−∇f(xt), ρ

2zt〉/CMP
f,ρA

6. Update xt+1 := xt + γzt
5. Variant 2: xt+1 = arg minx∈lin(S) f(x)

A sub-linear convergence guarantee for Algorithm 6 is pre-
sented in the following theorem.

Theorem 12. Let A ⊂ H be a bounded and symmetric set
such that ρ <∞. Then, Algorithm 6 converges for t ≥ 0 as

f(xt)− f(x?) ≤
2
(

2
δC

MP
f,ρA + ε0

)
δ
2 t+ 2

,

where δ ∈ (0, 1] is the relative accuracy parameter of the
employed approximate LMO (6).

Exact knowledge of CMP
f,ρA is not required: The same the-

orem also holds if any upper bound on CMP
f,ρA is used in

the algorithm and resulting rate instead. Note further that
the convergence guarantee in Theorem 12 is linear invariant
only as the assumption of A being symmetric precludes
affine maps involving translations.

We proceed by establishing a linear convergence guarantee
for Algorithm 6. For lower-bounding the error at iteration t,
we need to define an affine invariant analog of strong con-
vexity over the requisite domain. The following positive
step size quantity relates the dual certificate value of the
descent direction x? − x with the MP selected atom,

γ(x,x?) :=
〈−∇f(x),x? − x〉
〈−∇f(x), s(x)〉

, (11)

for s(x) := arg mins∈A 〈∇f(x), s〉.

A quantity similar to (11) but using a different direction
s(x) was also used by (Lacoste-Julien & Jaggi, 2015) to
study linear convergence of FW variants. We now define
the complexity measure µMP

f,A, which serves as an affine
invariant notion of strong convexity of the objective f , over
the domain conv(A).

µMP
f,A := inf

x∈conv(A)
inf

x?∈conv(A)
〈∇f(x),x?−x〉<0

2

γ(x,x?)2
D(x?,x).

(12)
In the following, our results will depend on µMP

f,ρA, which is
this quantity µMP

f,A taken over the scaled set ρA instead ofA.
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This is analogous to the smoothness parameter CMP
f,A as we

have seen in the previous results. Theorem 13 characterizes
the linear convergence of Algorithm 6.
Theorem 13. Let A ⊂ H be a bounded set. Then, Algo-
rithm 6 converges linearly as

εt+1 ≤
(

1− δ2
µMP
f,ρA

CMP
f,ρA

)
εt

where εt := f(xt) − f(x?) is the suboptimality at step t,
and δ ∈ (0, 1] is the relative accuracy parameter of the
employed approximate LMO (6).

Discussion: Note that the new affine invariant conver-
gence rates in Theorems 11, 12, and 13 do imply the rates
presented earlier for their norm-based algorithm counter-
parts in Theorems 1, 2, and 7, respectively, for any choice
of norm. This follows simply establishing the relationships
between Cf,A and L (see (9)) and accordingly for the strong
convexity notion µMP

f,A compared to µ. For the latter, it is not
hard to show that if mDW(A) > 0, µMP

f,A ≥ µmDW(A)
2,

see Lemma 16 in the appendix. The affine invariant con-
vergence guarantees are therefore more general than the
norm-based ones.

7 On the Relationship Between Matching
Pursuit and Frank-Wolfe

The sub-linear convergence rates for MP and FW are related
by the constant ρ that essentially simulates a “blown up” set
in which the analysis of FW can be applied. In this section,
we explore this relationship.

Let αA := {αz | z ∈ A}, and assume α ≥ ρ
δ . We will

consider Norm-Corrective FW (Algorithm 3) on the set αA
and analyze its behavior when α grows to infinity, relating
the iterates of Algorithm 3 with the ones of Algorithm 4.
Theorem 14. Let A ⊂ H be a bounded set and let
f : H→R be a L-smooth convex function. Let α > 0
and let us fix t > 0 with iterate xt. There exists a polyno-
mial function θ(f,xt, α) such that if θ(f,xt, α) ≤ 1 the
new iterate xFWα

t+1 of Frank-Wolfe (Algorithm 2) using the set
αA converges to the new iterate xMP

t+1 of Matching Pursuit
(Algorithm 4) applied on the linear span of the set A with
rate: ∥∥xFWα

t+1 − xMP
t+1

∥∥ ∈ O( 1

α

)
.

In particular, when α grows to infinity, the condition
θ(f,xt, α) ≤ 1 always holds (for all steps t). Otherwise, the
difference of the iterates satisfies

∥∥xFWα
t+1 − xMP

t+1

∥∥ ∈ O (α) .

Our analysis shows that, in some sense, FW can be suitable
to solve the optimization problem (4). Indeed, if we knew
the atomic norm of the iterates and the optimum in advance
(which is usually not the case in practice), we could just con-
sider a large enough convex set and run FW (Algorithm 2)
on αA with α = ρ (ρ as defined in Section 4) for an exact
oracle (this can be seen in the proof of Theorem 2).

8 Relation to Prior Generalizations of MP
Shalev-Shwartz et al. (2010), Temlyakov (2013, 2014,
2015), and Nguyen & Petrova (2014) propose and study
algorithms similar to Algorithm 4—although using the ob-
jective function directly in the update step instead of a
quadratic upper bound—for the optimization of smooth
functions on Banach spaces. Nguyen & Petrova (2014) con-
sider orthonormal bases as dictionaries only. The sub-linear
rates derived in (Temlyakov, 2013, 2014, 2015; Nguyen &
Petrova, 2014) are similar to ours, whereas the linear rates in
(Temlyakov, 2013, 2014) critically rely on incoherence and
approximate sparsity (of the optimal solution) assumptions.
Most importantly, these linear rates only hold for a finite
number of iterations that is related to the sparsity level of the
solution. Note that the linear rates for (least-squares) MP
and OMP in (Gribonval & Vandergheynst, 2006) hold under
similar incoherence and sparsity assumptions. The linear
rates for a fully-corrective GMP variant in (Shalev-Shwartz
et al., 2010) holds under a (sparsity-based) restricted strong
convexity assumption.

Much more general rates are known for the class of random
pursuit algorithms — which are derivative-free and use
random directions instead of an LMO — as shown by (Stich
et al., 2013). These rates only apply to the unconstrained
setting A = Rd (so do not cover the general Hilbert-space
case) and do scale with the dimension as Θ(d), whereas our
rates are dimension independent (but need an LMO).

In the statistics community, very related methods are studied
under the names of, e.g., forward selection and stage-wise
algorithms, see (Tibshirani, 2015) for a recent overview.
The stage-wise framework considers the evolution of the
solution—the regularization path—as the scaling of the con-
straint set grows (or the corresponding regularizer weakens).
Our results can help to also equip such algorithms with
explicit convergence rate, at any fixed regularizer value.

To the best of our knowledge, the only prior work on greedy
optimization that also relies on a quadratic upper bound of
the (smooth) objective function in the update step is (Yao &
Kwok, 2016). However, (Yao & Kwok, 2016) specifically
targets matrix completion, considers the set of unit norm
rank-one matrices as dictionary only, and obtains problem-
specific (i.e., matrix-specific) and iterate-dependent (im-
plicit) sub-linear and linear rates. Hence, the setting con-
sidered here, i.e., functions on Hilbert spaces and general
dictionaries, and the linear rate depending only on geometric
properties of the dictionary enjoy much higher generality.

Finally, recovery guarantees for sparse solutions of convex
optimization problems using generalized MPs were pro-
posed, e.g., in (Blumensath & Davies, 2008; Zhang, 2011).

Acknowledgments: The authors thank Zaid Harchaoui
and Gunnar Rätsch for fruitful discussions. FL is supported
by the Max Plank-ETH Center for Learning Systems.
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A An Illustrative Experiment

In this section we numerically investigate the tightness of
the linear rate presented in Theorem 7 and illustrate the im-
pact of the mDW(A) on the empirical rate of Algorithm 4
(Variant 0, with exact LMO). The experiment setup is the
following. We minimize the function f(x) = ‖x? − x‖2
over the set

A := {Aθ ∪ −Aθ} where Aθ :=
{(1

0

)
,

(
cos θ

sin θ

)}
with θ ∈ (0, π/2] and x? := (−1, 1)

>.

This choice for the set A allows to control mDW(A) by
acting on θ. In Figure 1 we plot the ratio between the theoret-
ical linear rate in Theorem 7 and the empirical rate, averaged
over 20 random initializations chosen within conv(A). The
rate is tight when the bound on the error decrease matches
the empirical decay, i.e., when their ratio is equal to 1. It
can be seen that the upper bound in Theorem 7 is within a
factor 2.5 of the empirical rate on average.

3 (rad)
10-2 10-1 100

ra
tio

0.5
1
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Figure 1: Ratio of theoretical rate and empirical rate, mini-
mum, maximum and average ratio over 20 runs from random
starting point in conv(A).

B Proofs of the Main Results

An optimization method is called affine invariant if it is
invariant under affine transformations of the input problem:
If one chooses any re-parameterization of the domain Q
by a surjective linear or affine map M : Q̂ → Q, then the
“old” and “new” optimization problems minx∈Q f(x) and
minx̂∈Q̂ f̂(x̂) for f̂(x̂) := f(Mx̂) look the same to the
algorithm (Jaggi, 2013).

B.1 Sublinear FW rate

Theorem’ 11. Let A ⊂ H be a bounded set and let
f : H→R be a convex function with curvatureCf,A overA
as defined in (8). Then, the Frank-Wolfe method (Algo-
rithm 2) with step-size variants 1 and 2, converges for t ≥ 0
as

f(xt)− f(x?) ≤
2
(
1
δCf,A + ε0

)
δt+ 2

where ε0 := f(x0)− f(x?) is the initial error in objective,
and δ ∈ (0, 1] is the accuracy parameter of the employed
approximate LMO (Equation (5)).

Proof. At iteration t, let zt ∈ A be the atom selected by the
Approx-LMO. The key to the proof is to use the definition
of the curvature constant Cf,A as to give an affine invariant
upper bound on the objective f :

f(xt + γ(zt − xt)) ≤
gxt(xt + γ(zt − xt)) := (13)

f(xt) + γ〈∇f(xt), zt − xt〉+
γ2

2
Cf,A.

By computing the closed-form-solution for γ minimizing
the right hand side, we have

γ =
〈−∇f(xt), zt − xt〉

Cf,A
. (14)

This is exactly the update-step used by variant 2 of the FW
algorithm (Algorithm 2). In other words, the algorithm in
each iteration performs a step as to minimize this upper
bound to f , over the line segment [xt, z].

Writing εt := f(xt) − f(x?) for the suboptimality, we
apply the certificate property of the duality gap, εt ≤
〈−∇f(xt), zt − xt〉. Combining this with the given ap-
proximation quality δ ∈ (0, 1] of the used Approx-LMO,
we have

δεt ≤ 〈−∇f(xt), zt − xt〉 .

Continuing from (13),

εt+1 ≤ εt + minγ∈[0,1]

{
−γδεt + γ2

2 Cf,A

}
≤ εt − 2

δt+2δεt + 1
2

(
2

δt+2

)2
Cf,A

Finally, we show by induction

εt ≤ 2

(
1
δCf,A + ε0

)
δt+ 2

.

for t ≥ 0.

When t = 0 we get ε0 ≤
(
1
δCf,A + ε0

)
. Therefore, the

base case holds. We now prove the induction step assuming

εt ≤
2
(
1
δ Cf,A+ε0

)
δt+2 .

εt+1 ≤
(

1− 2δ
δt+2

)
εt + 1

2Cf,A

(
2

δt+2

)2
≤
(

1− 2δ
δt+2

) 2
(
1
δ Cf,A+ε0

)
δt+2

+ 1
2

(
2

δt+2

)2
Cf,A + 2

(δt+2)2 δε0

=
2
(
1
δ Cf,A+ε0

)
δt+2

(
1− 2δ

δt+2 + δ
δt+2

)
≤

2
(
1
δ Cf,A+ε0

)
δ(t+1)+2
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The same rate will hold for variant 1 (line-search on the
true f ) of Algorithm 2, since the resulting objective per
step will always be at least as good as the pre-determined
step-size as in variant 2.

Norm-based Variants. Note that for any choice of norm
‖.‖, the analogous sublinear convergence rates do hold if
the objective function is L-smooth (i.e., ∇f is L-Lipschitz)
with respect to the norm ‖.‖.
Theorem’ 1. Let A ⊂ H be a bounded set and
let f : H→R be L-smooth w.r.t. a given norm ‖.‖,
over conv(A). Then, the Frank-Wolfe method (Algorithm 2)
, as well as Norm-Corrective Frank-Wolfe (Algorithm 3),
converge for t ≥ 0 as

f(xt)− f(x?) ≤
2
(
1
δLdiam‖.‖(A)2 + ε0

)
δt+ 2

where ε0 := f(x0)− f(x?) is the initial error in objective,
and δ ∈ (0, 1] is the accuracy parameter of the employed
approximate LMO (Equation (5)).

Proof. The proof for variant 3 of Algorithm 2 follows di-
rectly from the fact that any norm gives an upper bound on
Cf,A, as shown in (9).

For variant 4 of Algorithm 2, as well as for the Norm-
Corrective Frank-Wolfe (Algorithm 3), the analogous con-
vergence rate follows by using the quadratic upper bound

gxt(x) = f(xt) + 〈∇f(xt),x−xt〉+
L

2
‖x−xt‖2 (15)

instead of (13) in the above proof.

Also compare the above proof to Theorem C.1 (Lacoste-
Julien et al., 2013), which can be extended to the same
algorithm variants as of our interest here.

B.2 Sublinear MP rates

Theorem’ 12. Let A ⊂ H be a bounded and symmetric
set and let ρ := max {‖x?‖A, ‖x0‖A, . . . , ‖xT ‖A}. Then,
Algorithm 6 converges for t ≥ 0 as

f(xt)− f(x?) ≤
4
(

2
δC

MP
f,ρA + ε0

)
δt+ 4

,

where δ ∈ (0, 1] is the relative accuracy parameter of the
employed approximate LMO (6).

Proof. Recall that z̃t is the atom selected in iteration t by
the approximate LMO defined in (6). We start by upper-
bounding f on ρ conv(A) using the definition of CMP

f,ρA as

follows

f(xt+1) ≤ min
γ∈[0,1]

f(xt) + γ〈∇f(xt), ρz̃t〉+
γ2

2
CMP
f,ρA

≤ f(xt) + min
γ∈[0,1]

{
−δ

2
γεt +

γ2

2
CMP
f,ρA

}
,(16)

where the first inequality holds for Algorithm 6 because the
step size in Algorithm 6 is chosen by minimizing the RHS
over γ ∈ R. To get the second inequality note that both−xt
and x? are in ρ · conv(A) by symmetry. We therefore have
the following sequence of inequalities

〈∇f(xt),−2
ρ

δ
z̃t〉 = 〈∇f(xt),−

ρ

δ
z̃t〉+ 〈∇f(xt),−

ρ

δ
z̃t〉

≥ 〈∇f(xt),−ρzt〉+ 〈∇f(xt),−ρzt〉
(17)

≥ 〈∇f(xt),xt − x?〉 (18)
≥ f(xt)− f(x?) =: εt, (19)

where (17) follows from the definition of inexactness of
the LMO (Equation (6)) and (18) from the fact that −ρzt
has the largest inner product with the positive gradient with
respect to all the elements in conv(ρA). Note that by the
symmetry of A and by definition of ρ both −xt and x? are
in conv(ρA). Equation (19) (known as weak duality) again
follows from the convexity of f .

Now, subtracting f(x?) from both sides of (16), we get

εt+1 ≤ εt + minγ∈[0,1]

{
− δ2γεt + γ2

2 C
MP
f,ρA

}
≤ εt − 2

δ′t+2δ
′εt + 1

2

(
2

δ′t+2

)2
CMP
f,ρA,

where we set δ′ := δ/2 and used γ = 2
δ′t+2 ∈ [0, 1] to

obtain the second inequality. Finally, we show by induction

εt ≤
4
(

2
δC

MP
f,ρA + ε0

)
t+ 4

= 2

(
1
δ′C

MP
f,ρA + ε0

)
δ′t+ 2

for t ≥ 0.

When t = 0 we get ε0 ≤
(

1
δ′C

MP
f,ρA + ε0

)
. Therefore, the

base case holds. We now prove the induction step assuming

εt ≤
2( 1
δ′C

MP
f,ρA+ε0)
δ′t+2 as :

εt+1 ≤
(

1− 2δ′

δ′t+2

)
εt + 1

2C
MP
f,ρA

(
2

δ′t+2

)2
≤
(

1− 2δ′

δ′t+2

)
2( 1
δ′C

MP
f,ρA+ε0)
δ′t+2

+ 1
2

(
2

δ′t+2

)2
CMP
f,ρA + 2

(δ′t+2)2 δ
′ε0

=
2( 1
δ′C

MP
f,ρA+ε0)
δ′t+2

(
1− 2δ′

δ′t+2 + δ′

δ′t+2

)
≤ 2( 1

δ′C
MP
f,ρA+ε0)

δ′(t+1)+2 .
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We next explore the relationship of CMP
f,ρA and the smooth-

ness parameter. Recall that f is L-smooth w.r.t. a given
norm ‖.‖ over a set Q if

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖ for all x,y ∈ Q , (20)

where ‖.‖∗ is the dual norm of ‖.‖.
Lemma 15. Assume f is L-smooth w.r.t. a given norm ‖.‖,
over the set conv(A) with mDW(A) > 0. Then,

CMP
f,A ≤ L radius‖.‖(A)2 (21)

Proof. By the definition of smoothness of f w.r.t. ‖.‖,

D(y,x) ≤ L

2
‖y − x‖2.

Hence, from the definition of CMP
f,A,

CMP
f,A ≤ sup

s∈A,x∈conv (A)
γ∈[0,1]
y=x+γs

2

γ2
L

2
‖y − x‖2

= L sup
s∈conv (A)

‖s‖2

= L radius‖.‖(A)2 .

As an immediate corollary of the above lemma, we have
that CMP

f,ρA ≤ Lρ2 radius‖.‖(A)2 for any scaled set ρA and
any norm, if f is L-smooth w.r.t. that norm.

Related to our above complexity quantitiesCf,A given in (8)
and CMP

f,A given in (10), Lacoste-Julien & Jaggi (2015) have
defined a slight variation called CAW

f,A, in order to bound
the convergence rates for the Away-Step and Pairwise FW
methods. CAW

f,A is defined as

CAW
f,A := sup

s,v∈A,x∈conv(A)
γ∈[0,1]

y=x+γ(s−v)

2

γ2
D(y,x). (22)

Our CMP
f,A can be considered as a variant of CAW

f,A with the
away atom v fixed to be 0. Thus, CMP

f,A ≤ CAW
f,A.

Norm-based Variants. Note that for any choice of norm
‖.‖, the analogous sublinear convergence rates do hold if
the objective function is L-smooth (i.e., ∇f is L-Lipschitz)
with respect to the norm ‖.‖.
Theorem’ 2. Let A ⊂ H be a bounded and symmetric set,
and let f : H→R be L-smooth w.r.t. a given norm ‖.‖,
over ρ conv(A), with ρ < ∞. Then, Norm-Corrective
Matching Pursuit (Algorithm 4), converges for t ≥ 0 as

f(xt)− f(x?) ≤
2
(
2
δLρ

2 radius‖.‖(A)2 + ε0
)

δ
2 t+ 2

where ε0 := f(x0)− f(x?) is the initial error in objective,
and δ ∈ (0, 1] is the relative accuracy of the employed
approximate LMO (6).

Proof. The proof follows directly from the fact that
CMP
f,ρA ≤ Lρ2 radius‖.‖(A)2 for any scaled set ρA, under

smoothness of f , as shown in Lemma 15.

B.3 Linear MP rates

Theorem’ 13. Let A ⊂ H be a bounded set.

Then, Algorithm 6 converges linearly as

εt+1 ≤
(

1− δ2
µMP
f,ρA

CMP
f,ρA

)
εt

where εt := f(xt) − f(x?) is the suboptimality at step t,
and δ ∈ (0, 1] is the relative accuracy parameter of the
employed approximate LMO (Equation (6)).

Proof. Using the definition of CMP
f,ρA we upper-bound f on

ρ conv(A) as follows

f(xt+1) ≤ min
γ∈[0,1]

f(xt) + γ〈∇f(xt), ρz̃t〉+
γ2

2
CMP
f,ρA

= min
γ∈R

f(xt) + γ〈∇f(xt), ρz̃t〉+
γ2

2
CMP
f,ρA

= f(xt)−
ρ2

2CMP
f,ρA

〈∇f(xt), z̃t〉2 .

This upper bound holds for Algorithm 6 as γ minimizing
the RHS of the first equality coincides with the update of
Algorithm 6 Line 5. The first equality holds as CMP

f,ρA is
defined on ρ conv(A) and ρ conv(A) contains all iterates
by definition, so that the unconstrained minimum lies in
[0, 1].

Using εt = f(x?) − f(xt), we can lower bound the error
decay as

εt − εt+1 ≥
ρ2

2CMP
f,ρA

〈∇f(xt), z̃t〉2 . (23)

Starting from the definition of µMP
f,ρA in (12), we get,

γ(xt,x
?)2

2
µMP
f,ρA ≤ f(x?)− f(xt)− 〈∇f(xt),x

? − xt)〉

= −εt + γ(xt,x
?)〈−∇f(xt), s(xt)〉,

which gives

εt ≤ −γ(xt,x
?)2

2
µMP
f,ρA + γ(xt,x

?)〈−∇f(xt), s(xt)〉

≤ 〈−∇f(xt), s(xt)〉2

2µMP
f,ρA

=
〈−∇f(xt), ρz̃t〉2

2δ2µMP
f,ρA

(24)



Francesco Locatello, Rajiv Khanna*, Michael Tschannen*, Martin Jaggi

where the last inequality is by the quality of the approximate
LMO as used in the algorithm, as defined in (6).

Combining equations (23) and (24), we have

εt − εt+1 ≥ δ2
µMP
f,ρA

CMP
f,ρA

εt,

which proves the claimed result.

Similar to the relationship between Cf and smoothness,
we explore the relationship of µMP

f,A with strong convexity.
Lemma 16 is analogous to a similar result explored for
the Frank-Wolfe case by (Lacoste-Julien & Jaggi, 2015)
relating an analogous quantity to the more complex notion
of pyramidal width.

Lemma 16. If f is µ-strongly convex over the domain
ρ conv(A) with respect to some arbitrary chosen norm ‖.‖
and mDW(A) > 0, then

µMP
f,A ≥ µmDW(A)

2 (25)

Proof. By the definition of strong convexity, for any x ∈
ρ conv(A),

D(x?,x) ≥ µ‖x? − x‖2.

Hence,

µMP
f,A ≥ µ

γ(x,x?)2
‖x? − x‖

= µ
〈−∇f(x), s(x)〉
〈−∇f(x), x?−x

‖x?−x‖ 〉

2

We now split −∇f(x) = d‖ + d⊥, so that d‖ ∈ lin(A)
while d⊥ lies in the orthogonal complement of lin(A).
Since s(x),x?,x all lie in ρ conv(A) ⊆ lin(A), we get

µMP
f,A ≥ µ

〈d‖, s(x)〉
〈d‖, x?−x

‖x?−x‖ 〉

2

≥ µ
〈d‖, s(x)〉2

‖d‖‖2

= µ
〈 d‖

‖d‖‖
, s(x)

〉2
≥ µmDW(A)

2
,

where the last inequality holds since mDW(A) > 0. Indeed,
it holds that:

〈
d‖

‖d‖‖
, s(x)〉 = max

z∈A
〈
−d‖
‖d‖‖

, z〉 ≥ mDW(A) (26)

which can be squared provided that 〈 d‖
‖d‖‖

, s(x)〉 and
mDW(A) are both positive which is the case if
mDW(A) > 0.

Norm-based Variants
Theorem’ 7. Let A ⊂ H be a bounded set such that
mDW(A) > 0. and let the objective function f : H→R be
both L-smooth and µ-strongly convex over ρ conv(A).

Then, Matching Pursuit and Norm-Corrective Matching
Pursuit (Algorithm 4) converge linearly as

εt+1 ≤
(

1− δ2 µmDW(A)
2

L radius(A)2

)
εt

where εt := f(xt) − f(x?) is the suboptimality at step t,
and δ ∈ (0, 1] is the relative accuracy parameter of the
employed approximate LMO (Equation (6)).

Proof. From Lemma 15, CMP
f,ρA ≤ Lρ2 radius‖.‖(A)2,

while from Lemma 16, µMP
f,ρA ≥ µρ2 mDW(A)

2. Com-
bining,

µMP
f,ρA

CMP
f,ρA

≥ µmDW(A)
2

L radius(A)2

The result now follows from Theorem 13.

B.4 Proof of Corollary 4

We have

‖xt‖A ≤
‖xt‖

inr(conv(A))
, (27)

for all t = 1 . . . T , and hence ρ ≤ ρ̃
inr(conv(A)) , which yields

the first upper bound on f(xt)−f(x?) in Corollary 4. Here,
(27) essentially follows from the definition of the atomic
norm. A formal proof can be obtained by writing the atomic
norm as the value of an `1-norm minimization problem
(Chandrasekaran et al., 2012) and using arguments from the
proof of Theorem 2.5 in (Soltanolkotabi & Candès, 2012).

To get upper bound on f(xt)−f(x?) for f(x) = 1
2d

2(x,y),
note that for this particular choice of f , xt − b = y and the
update step in Algorithm 4 can be written as xt+1 = Pty,
where Pt is the orthogonal projection operator onto S in
iteration t. Hence, we have ‖xt‖ ≤ ‖y‖, for all t ∈ [T ], as
a consequence of ‖Pt‖op = 1.

B.5 Lower Bound

Theorem’ 8. Let A ⊂ H be a bounded set and let the
objective function f : H→R be both L-smooth and µ-
strongly convex. Assume, x? := arg minx∈lin(A) f(x) =
arg minx∈H f(x). Let εt := f(xt)− f(x?) be the subopti-
mality of the iterates and zt the atom selected at iteration
t by the LMO. Then, for t ≥ 0 the suboptimality of the
iterates of Matching Pursuit (Algorithm 4 variant 0) with
an exact LMO does not decay faster than:

εt+1 ≥
(

1− WA(−∇f(xt))
2

‖zt‖2
2L− µ
µ

)
εt
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Proof. First of all we note how the least-squares function is
both L-smooth and µ-strongly convex with L = µ. Recall
that the new iterate xt+1 is obtained as xt+1 = xt + γzt
where γ = − 〈∇f(xt),zt〉L‖zt‖2 . By strong convexity we get:

f(xt+1) ≥ f(xt)−
〈∇f(xt), zt〉2

L‖zt‖2
+

+
µ

2

(
〈∇f(xt), zt〉
L‖zt‖2

)2

‖zt‖2

and subtracting f(x?) on both sides yields:

εt+1 ≥ εt −
〈∇f(xt), zt〉2

L‖zt‖2
+
µ

2

(
〈∇f(xt), zt〉
L‖zt‖2

)2

‖zt‖2

≥ εt −
1

L

〈
∇f(xt),

zt
‖zt‖

〉2 (
1− µ

2L

)
. (28)

By smoothness we obtain:

f(xt + γ(x? − xt))

≤ f(xt) + γ〈∇f(xt),x
? − xt〉+ γ2

L

2
‖x? − xt‖2.

Now we can further lower bound the LHS by f(x?) and
minimize the RHS by γ = − 〈∇f(xt),x

?−xt〉
L‖x?−xt‖2 . Therefore:

f(x?) ≤ (29)

f(xt)− 1
L 〈∇f(xt),

x?−xt
‖x?−xt‖ 〉

2 + 1
2L 〈∇f(xt),

x?−xt
‖x?−xt‖ 〉

2

which by definition of εt becomes:

εt ≥ 1
2L 〈∇f(xt),

x?−xt
‖x?−xt‖ 〉

2

= 1
2L‖∇f(xt)‖2〈 ∇f(xt)‖∇f(xt)‖ ,

x?−xt
‖x?−xt‖ 〉

2 (30)

≥ 1
2L‖∇f(xt)‖2 µL .

Recall the first-order optimality condition for constrained
optimization. We have that 〈∇f(x?),x? − xt〉 = 0. In
the last inequality of Equation (30) we used the following
arguments along with the first order optimality condition:

−〈∇f(xt),x
? − xt〉

str. conv
+

opt. cond.
≥ µ‖x? − xt‖2

multiplying and dividing by the norm of the gradient and
rearranging we obtain:

−
〈
∇f(xt)

‖∇f(xt)‖
,

x? − xt
‖x? − xt‖

〉
≥ µ‖x

? − xt‖
‖∇f(xt)‖

L-smooth
+

opt. cond.
≥ µ

L

By taking the square we obtain the inequality used in Equa-
tion (30).

Combining (28) with (30) (the latter being 1 ≤

2LLµ
1

‖∇f(xt)‖2 εt), we finally obtain:

εt+1 ≥ εt −
〈∇f(xt),

zt
‖zt‖ 〉

2

‖∇f(xt)‖2
2L

µ

(
1− µ

2L

)
εt

= εt −
WA(−∇f(xt))

2

‖zt‖2
2L

µ

(
2L− µ

2L

)
εt

= εt −
WA(−∇f(xt))

2

‖zt‖2
1
µ (2L− µ)εt

B.6 Proof of Theorem 10

Let A ∈ Rd be a symmetric set with ‖s‖2 = 1, for all
s ∈ A, which spans Rd. Let also B be a set such that
A = B ∪ −B with B ∩ −B = ∅ and |B| = n.

Our proofs rely on the Gram matrix G(J ) of the atoms in B
indexed by J ⊆ [n], i.e., (G(J ))i,j := 〈si, sj〉, i, j ∈ J .

To prove Theorem 10 , we use the following known results.
Lemma 17 (Tropp (2004)). The smallest eigenvalue
γmin(G(J )) of G(J ) obeys γmin(G(J )) > 1−µ(B,m−
1), where m = |J |.
Lemma 18 (DeVore & Temlyakov (1996)). For every in-
dex set J ⊆ [n] and every linear combination p of the
atoms in B indexed by J , i.e., p :=

∑
j∈J vjsj , we have

maxj∈J |〈p, sj〉| ≥ ‖p‖2
‖v‖1 = 〈v,G(J )v〉2

‖v‖1 , where v 6= 0 is
the vector having the vj as entries.
Theorem’ 10. Let A ⊂ Rd be a symmetric set of 2n atoms
with ‖s‖2 = 1 for all s ∈ A. Let also B be a set such that
A = B ∪ −B with B ∩ −B = ∅ and |B| = n. Then, the
cumulative coherence of the set B is bounded by: µ(B, n−
1) ≥ 1− n ·mDW(A)

2.

Proof. For each direction d ∈ lin(A) with ‖d‖ = 1 it holds
that:

max
z∈A
|〈d, z〉|

Lemma 18
≥ ‖d‖2

‖v‖1

=

√
〈v,G(J )v〉2‖d‖

‖v‖1

≥
√
〈v,G(J )v〉2√

n‖v‖2
Lemma 17
≥

√
1− µ(B, n− 1)

n

This holds for every direction in lin(A), included the one
that minimizes maxz∈A |〈d, z〉|. Therefore, we have:

mDW(A)
2 ≥ 1− µ(B, n− 1)

n

Rearranging we obtain:

µ(B, n− 1) ≥ 1− n ·mDW(A)
2
.
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B.7 On the Relationship Between Matching Pursuit
and Frank-Wolfe

Theorem’ 14. Let A ⊂ H be a bounded set and let
f : H→R be a L-smooth convex function. Let α > 0
and let us fix an iteration t > 0 and the iterate computed at
the previous iteration xt. If − 〈∇f(xt),αzt−xt〉L‖αzt−xt‖2 ≤ 1 the new
iterate xFWα

t+1 = xt+γ(αzt−xt)
∣∣
γ∈[0,1] of Frank-Wolfe (Al-

gorithm 2) using the set αA = {x : ∃z ∈ A s.t. x = αz}
converges to the new iterate xMP

t+1 = xt+γzt
∣∣
γ∈R of Match-

ing Pursuit (Algorithm 4 variant 0) applied on the linear
span of the set A with rate:

‖xFWα
t+1 − xMP

t+1‖ ∈ O
(

1

α

)
In particular when α grows to infinity the condition
− 〈∇f(xt),αzt−xt〉L‖αzt−xt‖2 ≤ 1 always holds (for all steps t). If

the condition − 〈∇f(xt),αzt−xt〉L‖αzt−xt‖2 ≤ 1 is not satisfied at step
t then the difference of the iterates increases linearly:

‖xFWα
t+1 − xMP

t+1‖ ∈ O (α)

Proof. In both the algorithms the new iterate is obtained by
minimizing the quadratic approximation of f computed at
xt. Let gxt(x) be the quadratic approximation of f at xt
given by

gxt(x) = f(xt) + 〈∇f(xt),x− xt〉+
L

2
‖x− xt‖2.

At iteration t > 0 the new iterate xFWα
t+1 of Frank-Wolfe

(Algorithm 2) on the set conv(αA) is computed as xFWα
t+1 =

xt + γ(αzt − xt), where:

γ = arg min
γ∈[0,1]

gxt(xt + γ(αzt − xt))

= f(xt)+

min
γ∈[0,1]

{
+γ〈∇f(xt), αzt − xt〉+

Lγ2

2
‖αzt − xt‖2

}
which solved for γ yields:

xFWα
t+1 =


if − 〈∇f(xt),αzt−xt〉L‖αzt−xt‖2 ≤ 1 :

xt − 〈∇f(xt),αzt−xt〉L‖αzt−xt‖2 (αzt − xt)

otherwise:
αzt

(31)

On the other hand, the new iterate xMP
t+1 of Matching Pursuit

(Algorithm 4 variant 0) on the set A is computed as xMP
t+1 =

xt + γzt where:

γ = arg min
γ∈R

gxt(xt + γzt)

= f(xt) + min
γ∈R

{
+γ〈∇f(xt), zt〉+

Lγ2

2
‖zt‖2

}

which solved for γ yields:

xMP
t+1 = xt −

〈∇f(xt), zt〉
L‖zt‖2

zt (32)

Now:

‖xFWα
t+1 − xMP

t+1‖ =
if − 〈∇f(xt),αzt−xt〉L‖αzt−xt‖2 ≤ 1 :

‖ 〈∇f(xt),zt〉L‖zt‖2 zt − 〈∇f(xt),αzt−xt〉L‖αzt−xt‖2 (αzt − xt)‖
otherwise:
‖αzt + 〈∇f(xt),zt〉

L‖zt‖2 zt‖

Using the fact that ‖αzt − xt‖2 = 〈αzt − xt, αzt − xt〉
it is easy to show that the distance depends on 1/α when
− 〈∇f(xt),αzt−xt〉L‖αzt−xt‖2 ≤ 1 while is linear in α in the other case.

Furthermore, when α grows − 〈∇f(xt),αzt−xt〉L‖αzt−xt‖2 ≤ 1 always
holds. Therefore:

lim
α→∞

‖xFWα
t+1 − xMP

t+1‖ = 0 (33)

Therefore, the Frank-Wolfe step converges to the Matching-
Pursuit step when α (i.e., the diameter of the set) grows to
infinity.

B.8 Proof of Corollary 9

Let us discuss the following example. Let ∆ =
{e1, . . . , ed} be the natural basis of Rd and assume we
are minimizing f(x) = 1

2‖y − x‖2 over the set lin(A) =
lin(∆ ∪ −∆) = lin ({e1,−e1, . . . , ed,−ed}) (i.e., sym-
metrized ∆) starting from x0 = 0. We further assume that
each component of the target vector y is equal to 1. This sat-
isfies the assumptions of Theorem 8. To estimate the lower
bound constant we note that if µ = L then L

µ
2L−µ
µ = 1.

We now have to bound WA(−∇f(xt))2
‖zt‖2 . At iteration t < d

we know that ∇f(xt) = −(y − xt). By the specific as-
sumptions we made on the set A and since y has a 1 in
each component, xt has exactly t values which are equal
to 1 and d − t zeros. Note that the minimization over the
span of the symmetrized natural basis ensures that Matching
Pursuit and Norm-Corrective Matching Pursuit coincide by
Gram-Schmidt. Indeed, this case is equivalent to computing
the representation of the vector y in the natural basis, one
component at the time. Each step affects only one of the
components of the residual and keeps the rest untouched,
which is to say that if they were zero at iteration t− 1 they
are zero also at iteration t. Therefore, the other d − t non
zero components have the same value they had at the first
iteration, which is to say they are all equal to −1. Then, we
have

WA(−∇f(xt))
2

‖zt‖2
=

1

d− t
. (34)

The lower bound becomes:

εt+1 ≥
(

1− 1

d− t

)
εt.
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Let us now consider the upper bound. Using the same
argument of Equation (34) we have that the exponential
decay is:

εt+1 ≤
(

1− 1

d− t

)
εt.

Therefore, the exponential decay is tight in this example. In
Theorem 7 we further bound the decay so that it depends
only on the geometry of the atoms set. In this example we
have mDW(A)

2
= 1

d . Hence, we have:

εt+1 ≤
(

1− 1

d− t

)
εt ≤

(
1− 1

d

)
εt.

Therefore, the ratio mDW(A)
radius(A) in the linear convergence rate

(Theorem 7) makes it loose in this example. On the other
hand, it does not depend on the particular iterate and yields
the global linear convergence rate. Note that the mDW(A)
is a geometric quantity and does not depend on either x0

or y. On the other hand, in the case of the symmetrized nat-
ural basis we can give an explicit value for WA(−∇f(xt))
at every iteration.

After this discussion, the proof of Corollary 4 is trivial
considering that at iteration t the gradient changed from the
first iteration only in the indexes in I (they became zero).
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