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Foundations of Implicit Function Types

MARTIN ODERSKY, AGGELOS BIBOUDIS, FENGYUN LIU, and OLIVIER BLANVILLAIN,
École Polytechnique Fédérale de Lausanne

Implicit parameters are used pervasively in Scala and are also present in a number of other programming

and theorem proving languages. �is paper describes a generalization of implicit parameters as they are

currently found in Scala to implicit function types. We motivate the construct by a series of examples and

provide formal foundations that closely follow the semantics implemented by the Scala compiler.

1 INTRODUCTION
A central issue with programming is how to express dependencies. A piece of program text can be

understood only in some context on which it depends. Most imperative programs express context

as global state. �is technique is non-modular and dangerous due to the pervasiveness of actions

a�ecting that state. �e object-oriented programming �eld has invented several more �ne-grained

dependency injection mechanisms, either in the language itself (e.g. the cake pa�ern [16]) or

external to it (e.g., Guice [23], Spring [8, 9], MacWire [26]).

Functional programming has a more straightforward answer: Dependencies are simply expressed

as parameters. A function that relies on some piece of data needs to be passed that data as a

parameter. �is is pleasingly simple and straightforward, but sometimes it’s too much of a good

thing. Programs can quickly become riddled with long parameter lists. A number of programming

techniques have been invented to combat that problem. Currying and point-free style, or the

reader monad [10], are some examples. Nevertheless, it’s fair to say that the �exible composition of

components with many functional dependencies remains challenging.

A straightforward way of dealing with the problem of having too many parameters is to make

some of them implicit. Arguments to implicit parameters are synthesized according to the type

of the parameter. Implicit parameters were �rst invented in Haskell [12]. �ey are widely used

in Scala, where they model type classes [25], con�gurations, capabilities, type constraints [7] and

many other forms of contextual abstractions. Implicit parameters have also been introduced to

Agda [6] and to OCaml [27].

Implicit parameters in Scala avoid the tedium of having to pass many parameters to many

functions. But they don’t eliminate all repetition as they still have to be declared in every function

that uses them. For instance, the Do�y compiler [14] for Scala contains over 2600 occurrences of

the parameter clause (implicit ctx:Context). �e next version of Scala as implemented by Do�y

supports a concept that can get rid of this repetition. Implicit function types are �rst-class types

representing implicit functions. Just as implicit parameters synthesize function applications to

implicit values, implicit function types synthesize implicit lambda abstractions. It turns out that

implicit function types are surprisingly powerful in that they can abstract over many di�erent kinds

of context dependencies. Implicit function types also appear under the name instance arguments in

Agda [6, 13].

Given the widespread use and power of implicits in Scala, it is important to have a precise formal-

ization that explains their semantics. �e implicit calculus [18, 19] is motivated by examples from
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both Scala’s implicits and Haskell’s type classes. It comes close to expressing Scala’s implemented

semantics, but there are also important di�erences. Some di�erences are syntactic - their calculus

demands queries of implicit values to be wri�en explicitly, whereas in Scala implicit values are

passed automatically as arguments to implicit functions. Others are semantic. For instance, the

implicit calculus allows for the automatic inference of chains of implicits, which makes implicit

resolution much more powerful, but also less predictable and more expensive than what Scala

implements.

In this paper, we explore foundations for implicits as they are found in Scala. We develop SI, a

calculus that expresses implicit parameters and implicit function types in a version of System F

with implicit type application. �e typing rules also provide a mapping from SI to full System F. �e

rules as given are quite a bit simpler than previous work and correspond closely to the semantics

of implicits in Scala. In particular, the calculus keeps Scala’s technique that implicit resolution

amounts to choosing an identi�er among a �nite number of candidates. Once this is done, the rest

is regular type checking and inference, no separate calculus or algorithm for implicit resolution is

needed.

Organization. In this paper we introduce a motivating example for implicit function types

(Section 2). Next, we introduce a formalization of implicit function types based on System F

(Section 3). �en, we navigate, through various di�erent applications, to a range of new coding

pa�erns available to the programmers (Section 4). In the end, we discuss the related work (Section 5).

2 OVERVIEW: FROM IMPLICIT PARAMETERS TO IMPLICIT FUNCTION TYPES
Implicit Parameters o�er a convenient way to write code without the need to pass all arguments

explicitly. �e compiler can automatically discover a required value and provide it, if available. We

can call methods with implicit parameters as usual. What is required is the method to have an

implicit parameter list which is identi�ed by the keyword implicit.

When we call a method with implicits, the compiler looks, at the point of the call, for any implicit

de�nitions or other implicit parameters that can satisfy the call. So, instead of passing a parameter

explicitly:

val number: Int = 1
def add(x: Int)(y: Int) = x + y
add(2, number)

we can mark a set of parameters as implicit (one parameter in this example) and let the compiler

retrieve the missing argument for us. In the following example add is a method with one implicit

parameter and number is an implicit de�nition.

implicit val number: Int = 1
def add(x: Int)(implicit y: Int) = x + y
add(2)

�is discovery process that the compiler performs is called implicit resolution. �ere are two

basic groups of rules that the resolution algorithm applies: 1) it looks for implicits in the current

scope and 2) in all associated types (e.g., companion objects and outer objects in the presence of

nested types). In the previous example, the implicit value is de�ned in the current scope and since

it is an Int, the compiler resolves the method call by passing number automatically.
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Implicits are expressive enough to capture more advanced design pa�erns. For example, with

implicits we can apply the type class-design pa�ern [25] in Scala. �e following example consists of

three parts: First, Ord[T], which is a regular trait with a single method, compare. Second, the generic

function comp, which compares two arguments and accepts an implicit object, providing evidence
that these two values can be compared. �ird, the implicit de�nition intOrd, which provides an

instance of the Ord trait for integers.

trait Ord[T] {
def compare(a: T, b: T): Boolean

}

def comp[T](x: T, y: T)(implicit ev: Ord[T]): Boolean =
ev.compare(x, y)

implicit def intOrd: Ord[Int] = new Ord[Int] {
def compare(a: Int, b: Int): Boolean = a < b

}
comp(1, 2)

�e code above is quite compact as far as comparisons are concerned. In particular, it’s nice that

intOrd can be passed implicitly, not only to a simple call chain described by comp, but also in case

we had nested calls. On the de�nition-side, however, every function that needs parameters to be

passed implicitly, must be equipped with an additional implicit parameter, as we have seen.

Having to refactor existing code might not look so cumbersome, but it certainly leads to boilerplate

code. In real-sized projects, this can get much worse. For instance, the Do�y compiler [14] uses

implicit abstraction over contexts for most of its parts. Consequently it ends up with no fewer than

2641 occurrences of this particular implicit de�nition: (implicit ctx: Context).

2.1 Introducing Implicit Function Types
What we can do currently, as a small refactoring step, is to move the implicit value to the right of

the equals sign:

def comp[T](x: T, y: T): Ord[T] => Boolean = { implicit ev: Ord[T] =>
ev.compare(x, y)

}

However, the return type of comp is now Ord[T] => Boolean, so the implicit nature of the input is

not re�ected anymore.

We introduce implicit function types; types for implicit function values. Just like the normal

function type syntax A => B desugars to scala.Function1[A, B], the implicit function type syntax

implicit A => B desugars to scala.ImplicitFunction1[A, B]:

trait ImplicitFunction1[-T0, R] extends Function1[T0, R] {
override def apply(implicit x: T0): R

}

We are now able to give a proper type to the comp function:

def comp[T](x: T, y: T): implicit Ord[T] => Boolean = ...
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Additionally, we can now alias the type giving a descriptive name to the concept that it represents:

type Ordered[T] = implicit Ord[T] => Boolean

def comp[T](x: T, y: T): Ordered[T] = {

implicitly[Ord[T]].compare(x, y)
}

Observing the examples closely, we have also eliminated the need to use names for implicit

parameters. Parameter names, are now auto-generated by the compiler and we can use implicitly

to refer to them. implicitly is already de�ned in the standard library as the implicit identity

function:

def implicitly[T](implicit x: T) = x

It simply looks in the implicit scope for a value of type T and returns it.

3 FORMALIZATION
We formalize implicit function types in the system SI, which is an extension of System F with

implicit function types. �e formulation is unique compared to other implicit calculi [18, 19]:

(1) It supports automatic application of implicit parameters without explicit query.

(2) It supports automatic expansion of expressions into implicit lambdas.

(3) It uni�es type checking with implicit resolution.

3.1 Syntax

t = Term
x variable
y implicit variable
λx.t function
t t application
? implicit query
let x : T = t in t explicit let
let ? : T = t in t implicit let

R = Restricted type
X type variable
T→ T function type

T = Full type
R restricted type
T ?→ T implicit function type
∀X.T polymorphic function type

Fig. 1. SI Syntax

�e syntax of the calculus is presented in Figure 1. At the term level, we have both explicit

variables (x) and implicit variables (y). �e separation saves us the e�ort to maintain two di�erent

environments in the typing rules. Only implicit variables are available for implicit resolution. We

assume that programmers only use explicit variables in the source code. Implicit variables are used

internally in type checking and semantic translation.

Lambdas don’t have type annotations on parameters, which will be inferred from the type

checking context. �ere are no lambdas for implicit functions, as they can be synthesized from

types in semantic translation. �e same holds true for type lambdas.
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x : T ∈ Γ

Γ ` x :. T
(Var)

Γ, x : S ` t / : T

Γ ` λx.t / : S→ T
(→ I)

Γ, y : S ` t / : T

Γ ` t / : S ?→ T
( ?→ I)

Γ, X ` t / : T

Γ ` t / : ∀X.T
(∀ I)

Γ ` t / : T Γ, x : T ` t′ :. T′

Γ ` let x : T = t in t′ :. T′

(Let-Ex)

y : T ∈ Γ

Γ ` ? :. T
(�ery)

Γ ` t1 :. S→ T Γ ` t2 / : S

Γ ` t1 t2 :. T
(→ E)

Γ ` t :. S ?→ T Γ ` ? / : S

Γ ` t :. T
( ?→ E)

Γ ` t :. ∀X.T

Γ ` t :. [X := T′]T
(∀ E)

Γ ` t / : T Γ, y : T ` t′ :. T′

Γ ` let ? : T = t in t′ :. T′
(Let-Im)

Γ ` t :. R

Γ ` t / : R
(Stitch)

Fig. 2. SI Typing Rules

In the calculus, implicit parameters get resolved and applied automatically. �e query operator

(denoted as ?) is for accessing implicit parameters of implicit functions (which will be synthesized

in semantic translation). Programmers can also use the query operator to trigger implicit resolution

explicitly – this corresponds then to the use of implicitly in Scala.

�e implicit let-binding allows us to introduce implicit variables. �e explicit let-binding is

designed to be the dual of the implicit let-binding. �e let-bindings introduce expected types, so

that we can omit type annotations on lambdas.

For types, in addition to the normal function type, we have implicit function types (T ?→ T). �e

types are divided into restricted types and non-restricted types. Restricted types consist of normal

function types and type variables. Restricted types is useful in the typing rules as we will discuss

below.

3.2 Type System
�e type system of SI is presented in Figure 2. �e type system is based on bidirectional type
checking. �e judgement form Γ ` t :. T means that the term t gets a synthesized type T under the

context Γ, while Γ ` t / : T means that the term t is checked to be compatible with the expected

type T under the context Γ.

Rule (Var) is standard. Its implicit analogue (�ery) can be thought as implicit resolution for

the query ?. �is is a synthesis rule, it doesn’t specify which implicit variable to choose from the

environment. We will discuss this ambiguity in Section 3.5.

�e typing rule (→ I) is standard. �e only di�erence is that in our system, the type annotation

for the lambda parameter can be inferred from the context, thus can be omi�ed.
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�e typing rule (→ E) is also standard. Note that in the typing of the argument t2, we use the

checking judgement, as the type S is already known from the type S→ T of the function t1.

�e typing rule ( ?→ I) type checks an expression by assuming its expansion to an implicit

function, but only if the expected type of the expression is of an implicit function type.

�at’s why we don’t have a syntax for implicit functions: if we did have a syntax for implicit

functions, this rule would be applied endlessly! While it’s a trivial check in the compiler to stop

applying this rule if the term is already an implicit function, it’s tricky to specify precedence of

rules in the calculus.

�e typing rule ( ?→ E) is where automatic resolution of implicits happens. �e rule says that if

a term t is of the implicit function type S ?→ T and implicit resolution can synthesize a term of the

type S, then we can type the term with the type T. �e resolution of the implicit parameter could

result in a term of implicit function type on which this rule is applied again. �is is how recursive

resolution works in the system.

�e typing rule (∀ I) and (∀ E) deal with type lambdas. �ere is no explicit syntax for type

lambdas in order to avoid verbosity in type abstraction and application. �e rule (∀ E) doesn’t

specify how to pick the type T′. In compiler implementations, this is handled by type inference.

�e typing rule (Let-Ex) type checks explicit let-bindings, while the rule (Let-Im) type checks

implicit let-bindings. Note that the let-bindings here have nothing to do with let-polymorphism.

Let-bindings are the only place programmers give type annotations, so that they can omit type

annotations in lambdas. We could follow System F and require type annotations on lambdas to get

rid of the explicit let-bindings. However, given than implicit let-bindings are needed anyway to

avoid introducing syntax for implicit functions – which would be at odds with the rule ( ?→ I) –

we prefer to have explicit let-bindings as the dual of implicit let-bindings for aesthetic reasons.

�e rule (Stitch) says that in order to check that a term t can take the type R, it su�ces to show

that the synthesized type for t is R. �is is the switch where we go from type checking to type

synthesis. We allow only restricted types to go through this rule, so that all implicit function types

will go through the rule ( ?→ I), and universal types will go through the rule (∀ E).

Notice that the two rules that handle implicit function types have di�erent directions. �e rule

( ?→ E) is a synthesis rule. It essentially expresses that implicit function types are eliminated

eagerly, as soon as they arise. On the other hand, the rule ( ?→ I) is a checking rule. It says that

implicit function types are introduced only if the expected type speci�es it. Together with the rule

(Stitch), these rules determine the following strategy in the compiler for type checking a term t:

(1) If the expected type is an implicit function type T ?→ T′, create an implicit closure by

entering in the environment an anonymous implicit value and proceed type checking t
with T′ as expected type.

(2) If the expected type is a restricted type R, type check t. If that succeeds with type T,

post-process T in step (3).

(3) If the type of t is an implicit function type T ?→ T′, perform an implicit search for T. If a

unique term t′ is found that matches T, continue by type checking t t′.

Compared to the implicit calculi proposed in the literature [18, 19], the system SI is the closest

modeling of Scala implicits. It presents several advantages over existing implicit calculi.

First, the calculus supports automatic application of implicit parameters. �e implicit calculi in

the literature usually require an explicit query operator like ?T to trigger implicit resolution for

the type T. In contrast, in our calculus a term t of the type S ?→ T will trigger implicit resolution

automatically. �is is the beauty of implicits and the reason why they are so popular in Scala and

other languages. Previous calculi all fall short in this regard.
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Second, the calculus uni�es type checking and implicit resolution. �e implicit calculi in the

literature usually require separate rules for implicit resolution. �e uni�cation of type checking and

implicit resolution results in a simpler system, which is also closer to the compiler implementation.

�ird, the calculus automatically expands expressions of implicit function types to implicit

functions during semantic translation. No syntax for implicit functions is needed. It reduces

boilerplate in using implicit function types, which is a big advantage over existing calculi in the

literature.

3.3 Type Checking Examples
To illustrate how the type system works, we walk through two code examples. Both are in Scala

syntax for readability. �e �rst example is as follows:

val f: implicit Char => Boolean = ???
implicit val n: Int = 3
implicit val g: implicit Int => Char = ???

f : Boolean

In the code above, read the type implicit S => T as S ?→ T. �e implicit variable de�nition

implicit val f: T = ... is equivalent to let ?:T = ..., and f : Boolean is equivalent to let x:Boolean

= f in x in the calculus.

f ∈ Γ
(Var)

Γ ` f :. Char ?→ Boolean

g ∈ Γ
(�ery)

Γ `? :. Int ?→ Char

n ∈ Γ
(�ery)

Γ `? :. Int
(Stitch)

Γ `? / : Int
( ?→ E)

Γ `? :. Char
(Stitch)

Γ `? / : Char
( ?→ E)

Γ ` f :. Boolean
(Stitch)

f, n, g ` f / : Boolean

Fig. 3. Type Derivation for f: Boolean

�e type derivation tree for type checking f with the expected type Boolean is given in Figure 3.

For readability, we omit types of variables in the environment and abstract them by Γ when its

meaning is clear from the context. As it can be seen, automatic implicit resolution happens with

the rule ( ?→ E). �e oracle rule (Query) is used twice to pick the right implicits g and n from the

environment.

Here’s is another example which covers the rule ( ?→ I):

val h: implicit (implicit Int => Char) => Boolean = ???
implicit val n: Int = 3
implicit val g: implicit Int => Char = ???

h : Boolean

�e type derivation for type checking h with the expected type Boolean is given in Figure 4.

An essential di�erence compared to the previous example is that in the resolution of the implicit

parameter for h (with the type Int ?→ Char), we cannot apply the rule (Stitch) as it only works

for restricted types, not implicit function types. �e only possible choice here is to use the rule
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( ?→ I), which does type checking by assuming expansion of expressions into implicit functions.

�e oracle rule (Query) is also used twice to pick the right implicits g and y from the environment.

Note that the oracle prefers inner-most implicit in the environment, thus y is chosen instead of n.

h ∈ Γ
(Var)

Γ ` h :. (Int ?→ Char) ?→ Boolean

g ∈ Γ ′
(�ery)

Γ ′ `? :. Int ?→ Char

y ∈ Γ ′
(�ery)

Γ ′ `? :. Int
(Stitch)

Γ ′ `? / : Int
( ?→ E)

Γ, y:Int `? / : Char
( ?→ I)

Γ `? / : Int ?→ Char
( ?→ E)

Γ ` h :. Boolean
(Stitch)

h, n, g ` h / : Boolean

Fig. 4. Type Derivation for h: Boolean

3.4 Translation to System F
We introduce a type-preserving translation from SI to System F. �e syntax, typing rules and

semantics of System F are standard, thus we omit here.

�e translation of types is given below:

(S ?→ T)∗ = S∗ → T∗

(S→ T)∗ = S∗ → T∗

(∀X.T)∗ = ∀X.T∗

T∗ = T, otherwise

We use the following judgment form to mean that a well-typed term t in SI will be translated

into a term t′ in System F:

Γ ` t : T { t′

�e translation is presented in Figure 5. Note that we don’t translate implicit variables and

assume that the target language treats implicit variables and explicit variables the same way. �e

translation rules are straight-forward, thus we omit the explanation.

Theorem 3.1 (Type-preserving Translation). Let t be a SI term of type T, and t′ be an System
F term. If ∅ ` t : T { t′ , then ∅ ` t′ : T∗.

Proof. Straight-forward induction on the typing rules. �

Now the type safety of SI can be expressed in terms of type safety of System F. We de�ne the

dynamic semantics of SI as the following:

eval(t) = v where ∅ ` t : T { t′ and t′ →∗ v

In the above,→∗ is the re�exive, transitive closure of System F’s standard small-step call-by-value

reduction relation.

�e type safety of SI is stated by the following theorem:

Theorem 3.2 (Type Safety). If ∅ ` t : T, then eval(t) = v for some System F value v.

Proof. Immediate from normalization of System F and type-preservation translation. �
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x : T ∈ Γ

Γ ` x :. T { x
(Var-Ex)

Γ, x : S ` t / : T { u

Γ ` λx.t / : S→ T { λx:S∗.u
(→ I)

y fresh Γ, y : S ` t / : T { u

Γ ` t / : S ?→ T { λy:S∗.u
( ?→ I)

Γ, X ` t / : T { u

Γ ` t / : ∀X.T { ΛX.u
(∀ I)

Γ ` t / : T { u Γ, x : T ` t′ :. T′ { u′

Γ ` let x : T = t in t′ :. T′ { (λx:T∗.u′) u
(Let-Ex)

y : T ∈ Γ

Γ ` ? :. T { y
(�ery)

Γ ` t1 :. S→ T { u Γ ` t2 / : S { u′

Γ ` t1 t2 :. T { u u′

(→ E)

Γ ` t :. S ?→ T { u Γ ` ? / : S { u′

Γ ` t :. T { u u′

( ?→ E)

Γ ` t :. ∀X.T { u

Γ ` t :. [X := T′]T { u [T′∗]
(∀ E)

Γ ` t / : T { u y fresh
Γ, y : T ` t′ :. T′ { u′

Γ ` let ? : T = t in t′ :. T′ { (λy:T∗.u′) u
(Let-Im)

Γ ` t :. R { u

Γ ` t / : R { u
(Stitch)

Fig. 5. Type-directed translation from SI to System F

3.5 Ambiguity
�e calculus presented in Figure 2 is ambiguous. �e problem is that the rule (�ery) doesn’t

specify how to pick an implicit variable from the environment. By the rule itself, any implicit

variable in the environment quali�es, thus it’s ambiguous.

�e Scala compiler contains rules for disambiguating based on speci�city and nesting. Generally,

an implicit candidate A is as good as B if it wins or draws in a tournament that awards one point

for each of the following comparisons:

(1) A is nested more deeply than B.

(2) �e nesting levels of A and B are the same, and A’s owner derives from B’s owner.

(3) A’s type is more speci�c than B’s type.

�e nesting rule can be expressed in the language of the calculus with the de�nition of well-
scopedness.

De�nition 3.3. A typing derivation D is well-scoped, if for every subgoal Γ `? : R { y t in D, if

Γ `? : R { y′ t′ is derivable, then y = y′ or y′ is bound in Γ to the le� of y.

In a sense, well-scoped typing derivations always pick the rightmost (innermost) eligible implicit.

We can show that the following holds for the monomorphic system without polymorphic function

types:
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Proposition 3.4. Given Γ and t, there is at most one restricted type R and one term u such that
Γ ` t :. R { u by a well-scoped typing derivation.

Proposition 3.5. Given Γ, t and T, there is at most one term u such that Γ ` t / : T { u by a
well-scoped typing derivation.

�e propositions don’t hold anymore once we add polymorphic function types because type

instantiation in the rule (∀ E) is also non-deterministic, and interacts in interesting ways with

implicit search. Dealing with this will require a formalization of local type inference and how it is

in�uenced by implicit search.

�ere are some deep questions to cover here, in particular, the decision which type variables

should be instantiated before doing an implicit search and which type variables should be le�

uninstantiated, so that they can be further constrained by the implicit resolution. Instantiating

type variables too early risks cu�ing o� parts of the solution space which might result in failures

to �nd a matching implicit instance. On the other hand , instantiating type variables too late might

lead to ambiguity errors. All of this is for future work, however.

3.6 Examples
Next, we present two examples that apart from using syntax equivalent to the notation of the

calculus they are also veri�ed by the Do�y compiler. �e implicit function type S ?→ T is wri�en

implicit S => T in Scala. Instead of the query operator ? we write implicitly and instead of the

let constructs of the calculus we use defs. Since Scala does not allow defs to be anonymous, we

use anonymized names such as __1 and __2, for implicit de�nitions instead. �ese names are used

nowhere else in the program, so their precise spelling is not important.

Example: Ordering. �is example de�nes a typeclass for orderings with instances on Int and

List. It models higher-order implicits, i.e. implicits that depend on other implicits. In the example,

the implicit for the type Ord[List[T]] depends on an implicit instance of Ord[T]. Since higher-order

implicits are modeled by our calculus, they can be implemented easily in SI and Scala.

object Orderings {
trait Ord[T] { def less: T => T => Boolean }

implicit def __1: Ord[Int] = new Ord[Int] {
def less: Int => Int => Boolean = x => y => x < y

}

implicit def __2[T]: implicit Ord[T] => Ord[List[T]] = new Ord[List[T]] {
def less: List[T] => List[T] => Boolean =
xs => ys =>

if ys.isEmpty then false
else if xs.isEmpty then true
else if xs.head == ys.head then less(xs.tail)(ys.tail)
else isLess(xs.head)(ys.head)

}

def isLess[T]: T => T => implicit Ord[T] => Boolean =
x => y => implicitly[Ord[T]].less(x)(y)

}
import Orderings._

isLess(Nil)(List(1, 2, 3))
isLess(List(List(1)))(List(List(1)))
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Example: Propagation of Session Context . �is example models a conference management system.

In this system, users are not allowed to see the scores or rankings of their own papers. �us, all

operations, like ge�ing the score of a paper or rankings of papers, depends on the identity of the

current user. Passing current user (or session) explicitly as parameters of the operations would

be very verbose. Implicit function types help here. By minor changes to the type signatures of

methods, the compiler will propagate the session context automatically.

case class Person(name: String)
case class Paper(title: String, authors: List[Person], body: String)

class ConfManagement(papers: List[Paper], realScore: Map[Paper, Int]) {
type Session[T] = implicit Person => T
def currentUser: Session[Person] = implicitly
def hasConflict(p: Person, ps: List[Person]) = ps contains p

def score: Paper => Session[Int] = paper =>
if hasConflict(currentUser, paper.authors) then -1
else realScore(paper)

def viewRankings: Session[List[Paper]] =
papers.sortBy(score(_))

}

�e following code demonstrates a simple setup where the assumed logged-in user is Bob, who

has also submi�ed a paper in the system. By running this program we observe that Bob is unable

to see the score of his paper (–1 instead of 4 which is the actual value).

val bob = Person("Bob")
val eve = Person("Eve")
val p1 = Paper("Bob's paper", List(bob), "...")
val p2 = Paper("Eve's paper", List(eve), "...")
val cm = new ConfManagement(List(p1, p2), Map(p1 -> 4, p2 -> 3))

implicit def __1: Person = bob

cm.score(p1) // -1
cm.score(p2) // 3

4 APPLICATIONS USING IMPLICIT FUNCTION TYPES
�is section introduces three applications that demonstrate the expressive power of programming

with implicit function types. Additionally we provide a slightly larger case study, introducing a

new encoding of Free Monads.

4.1 Reader Monad: Use Contextual Abstraction
�e reader monad represents computations with the ability to read from an environment and pass

values retrieved from it to functions. It is de�ned in term of two operations, ask, to retrieve the

environment, and local to modify the environment for sub-computations. A simple example is

Reader, a trait de�ned as follows (we omit the de�nition of the monad instance):
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trait Reader[R, A] {
def ask: R
def local[A](f: R => R)(a: A): A

}

Reader expressions are formed using the for-comprehension syntax of Scala (equivalent to the

do-notation syntax of Haskell)):

val expr1: Reader[Environment, Int] = ...
val expr2: Reader[Environment, Int] = ...
val expr3: Reader[Environment, Int] =

for {
e1 <- expr1
e2 <- expr2

} yield e1 + e2

Implicit function types can be used to obtain a concise alternative to Reader:

type Env[T] = implicit Environment => T

Values of type Ctx[T] automatically obtain an Environment from the implicit context, and propa-

gate this value to all sub-expressions in the right-hand side of their de�nition:

val expr1: Env[Int] = ...
val expr2: Env[Int] = ...
val expr3: Env[Int] = expr1 + expr2

Environment values can be obtained using implicitly[Environment] in the body of Env expression,

which corresponds to the ask operation on Reader. Analogously, a new Environment can be de�ned

for all sub-expressions via by de�ning a local implicit value of that type.

�is pa�ern is very common is large-scale applications. For instance, in web programming, the

majority of functions takes a context argument to propagate information about the request that is

currently being processed. Implicits provide a simple and concise way to transmit this information

across such applications.

4.2 Builder Pa�ern: Expressive DSL
Implicit function types have considerable expressive power. In this application, we demonstrate

how we can support the builder pa�ern using the new type. �e goal is to provide a type-safe,

declarative API to program builders [1] without any boilerplate on the client-side. �e following

code presents a small DSL that o�ers constructs to create tables:

table {
row {

cell("top left")
cell("top right")

}
row {

cell("botttom left")
cell("bottom right")
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}
}

Each keyword–table, row and cell–is a regular factory method. Every call of these functions,

constructs a node (resembling to an AST) that comprises our table. For instance, the Table class

contains the necessary machinery to store rows and a way to print itself.

What we need, is to update a Table instance through the table method and to propagate it in the

subsequent calls. �e following code shows how this dependency is represented using contextual

abstraction where the context is the Table. Consequently, the argument of the table method is

parameterized by an implicit function which accepts a Table, implicitly. We omit the de�nitions

for row and cell as they follow the same philosophy.

class Table {
val rows = new ArrayBuffer[Row]
def add(r: Row): Unit = rows += r
override def toString = rows.mkString("Table(", ", ", ")")

}
def table(init: implicit Table => Unit) = {

implicit val t = new Table
init
t

}

�e table construction above is translated into the following:

table { implicit $t: Table =>
row { implicit $r: Row =>

cell("top left")($r)
cell("top right")($r)

}($t)
row { implicit $r: Row =>

cell("botttom left")($r)
cell("bottom right")($r)

}($t)
}

As we notice the compiler translated the builder example in method invocations passing lambdas

that take the expected implicit arguments as parameters.

4.3 Tagless Interpreters: Abstracting over the number of constraints
Implicit function types are introducing a very useful indirection that enables us to abstract the

number of implicit parameters being introduced in some scope. We demonstrate this pa�ern through

a tagless interpreter [5] (or object algebra [17] as popularized in the OOP domain) for expressions.

Tagless interpreters use a �nal encoding for DSL construction. �ey solve the extensibility problem

so we can add both new syntactic elements and interpretations without breaking the existing

hierarchy e�ectively solving the Expression Problem [24].

We present the tagless de�nition of a small expression language with only two constructs: lit and

add. �e trait Exp de�nes functions (and not constructors) for both constructs and is parameterized

by a generic type of interpreters. We can de�ne the semantic domain of these two functions by

providing instances e.g., for integer expressions.
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trait Exp[T] {
def lit(i: Int): T
def add(l: T, r: T): T

}
object ExpSyntax {

def lit[T](i: Int) (implicit e: Exp[T]): T = e.lit(i)
def add[T](l: T, r: T)(implicit e: Exp[T]): T = e.add(l, r)

}
def tf1[T: Exp]: T = add(lit(8), add(lit(1), lit(2)))

trait Mult[T] {
def mul(l: T, r: T): T

}
object MultSyntax {

def mul[T](l: T, r: T)(implicit e: Mult[T]): T = e.mul(l, r)
}
def tfm1[T: Exp : Mult] = add(lit(7), mul(lit(1), lit(2)))

As a result, the example de�ned with function tf1 can be used to evaluate the expression 8+(1+2).
tf1 requires an interpreter of type Exp which is expressed as a context bound on the generic type–

which is a concise form in place of an implicit parameter implicit ev: Exp[T]. We then proceed

with the de�nition of multiplication for this language which is de�ned similarly. Evaluating an

expression with multiplication with tfm1 now requires both Exp and Mul interpreters. Both examples

need the evidence for expressions of integers:

implicit val evalExp: Exp[Int] = new Exp[Int] {
def lit(i: Int): Int = i
def add(l: Int, r: Int): Int = l + r

}
implicit val evalMult: Mult[Int] = new Mult[Int] {

def mul(l: Int, r: Int): Int = l * r
}

As we observe, by increasing the number of interpreters we increase the number of context bounds

and implicit parameters cannot be used to abstract over the arity of such constraints. On the

contrary, implicit function types can be aliased. For instance, we can group both constraints using

a Ring type which liberates us from maintaining an explicit list of “requirements” in all use-sides.

�e la�er methods, tfm1 and tfm2 demonstrate the aforementioned desirable property.

type Ring[T] = implicit (Exp[T], Mult[T]) => T

def tfm1[T]: Ring[T] = add(lit(7), mul(lit(1), lit(2)))
def tfm2[T]: Ring[T] = mul(lit(7), tf1)

4.4 Case Study: a New Encoding of Free Monads
�is section presents a new implementation of free monads using implicit function types. �e

ability to factor out type class constraints in a type alias lead to an encoding that is both simpler

and faster without introducing addition verbosity. Firstly, we present traditional encoding for free

monads followed then, by a new implementation. We summarize this case study by comparing the

two approaches.
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4.4.1 Approach with implicits: À la carte encoding. Data types à la carte [21] popularized the

free monad pa�ern, an abstraction to decouple monadic expressions and semantics. Typical Scala

implementations [4] of this idea use a (generalized) algebraic data type to encapsulate the monadic

structure:

sealed trait Free[A[_], T]
case class Pure[A[_], T](a: T) extends Free[A, T]
case class Suspend[A[_], T](a: A[T]) extends Free[A, T]
case class FlatMapped[A[_], B, C](c: Free[A, C], f: C => Free[A, B]) extends Free[A, B]

�e primitive operations to be used in a free monad are also de�ned using a generalized algebra

data type which is o�en called an algebra:

sealed trait KVStoreA[T] // Key Value store Algebra
case class Put(key: String, value: Int) extends KVStoreA[Unit]
case class Get(key: String) extends KVStoreA[Option[Int]]

Expressions in this newly de�ned languages are instances of the KVStore type, de�ned as follows:

type KVStore[T] = Free[KVStoreA, T]

In order to beautify the de�nition of expressions, users of free monads de�ne additional boilerplate

to li� the algebra into the Free structure:

def put(key: String, value: Int): KVStore[Unit] =
Suspend[KVStoreA, Unit](Put(key, value))

def get(key: String): KVStore[Option[Int]] =
Suspend[KVStoreA, Option[Int]](Get(key))

Expressions are de�ned in for-comprehensions, using KVStore as a monad (a monad instance for

Free is provided as part of the free monad library):

val alacarteExpr: KVStore[Option[Int]] =
for {

_ <- put("foo", 2)
_ <- put("bar", 5)
n <- get("foo")

} yield n

Finally, interpretation is done through the de�nition of a natural transformation and a foldMap

function. �e later is being provided as part of the infrastructure of the free monad library:

def alacarteInterpreter = new Natural[KVStoreA, Future] {
def apply[T](ft: KVStoreA[T]): Future[T] = ???

}

def foldMap[A[_], T, M[_]: Monad](e: Free[A, T])(n: Natural[A, M]): M[T] = ...

val alacarteOutput: Future[Option[Int]] = foldMap(alacarteExpr)(alacarteInterpreter)
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4.4.2 Approach with implicit function type encoding. Implicit function types open the door to

an alternative design of free monad that is simpler to use, more e�cient and doesn’t require any

library infrastructure.

�e new design de�nes a FreeIFT type alias with two curried implicit function types, mirroring

the signature of foldMap: a function accepting a natural transformation from the algebra to a monad,

returning an interpretation of the expression in the given monad:

type FreeIFT[A[_], M[_], T] = implicit Natural[A, M] => implicit Monad[M] => M[T]

�e algebra can be de�ned as an enumeration [15]:

enum KVStoreB[T] {
case Put(key: String, value: Int) extends KVStoreB[Unit]
case Get(key: String) extends KVStoreB[Option[Int]]

}
import KVStoreB._

type KVStoreIFT[M[_], T] = FreeIFT[KVStoreB, M, T]

In this new encoding of free monads, expressions are function type parametric in the monad

used for interpretation:

def iftExpr[M[_]]: KVStoreIFT[M, Option[Int]] =
for {

_ <- Put("foo", 2).lift
_ <- Put("bar", 5).lift
n <- Get("foo").lift

} yield n

In this setup, lift is an extension method that applies a natural transformation:

implicit class NaturalLiftSyntax[F[_], M[_], A](fa: F[A])(implicit F: Natural[F, M]) {
def lift: M[A] = F(fa)

}

Interpreters are, as before, natural transformations. However, the interpretation doesn’t require

any library infrastructure, it a simple function application of the expr function with an interpreter

(the monad instance for Future is passed as an implicit parameter):

def iftInterpreter = new Natural[KVStoreB, Future] {
def apply[T](fa: KVStoreB[T]): Future[T] = ???

}
val iftOutput: Future[Option[Int]] = iftExpr[Future](iftInterpreter)

4.4.3 Comparing Encodings. �e basic bene�t, in this new design of free monad, is that it

doesn’t require any library support, (besides the orthogonal de�nitions of monad and natural

transformations). From a user perspective, there is also absolutely no boilerplate involved.
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�e two encodings can be shown to be equivalent by de�ning a bijection between representations.

Consequently, the conversion to the À la carte encoding is done via a interpretation of KVStoreA as

a Free[KVStoreA, ?] using an interpreter (with A = KVStoreA): 1

def initialize[A[_]] = new Natural[A, [T] => Free[A, T]] {
def apply[T](a: A[T]): Free[A, T] = Suspend[A, T](a)

}

Conversion from the À la carte encoding also goes through an interpretation, from KVStoreA to

new Expr trait, capturing the polymorphism in expressions by the implicit function type encoding
2

(with A = KVStoreA):

trait Expr[A[_], T] {
def e[M[_]]: FreeIFT[A, M, T]

}

def finalize[A[_]] = new Natural[A, [T] => Expr[A, T]] {
def apply[T](a: A[T]): Expr[A, T] = new Expr[A, T] {

def e[M[_]]: FreeIFT[A, M, T] = a.lift
}

}

4.4.4 Performance Evaluation. �is new approach shows signi�cant improvements in term of

runtime performance. As opposed to the traditional encoding of free monad, the implicit function

type encoding does not allocate any intermediate structure to capture the monadic structure.

Instead, the interpretation �ows directly through the de�nition!

Benchmark Description. We benchmark our free monad encoding against three other implemen-

tations taken from established Scala libraries, Scalaz 7.2 [3], Cats 0.9 [2] and E� 4.2 [22]. Scalaz

and Cats are general-purpose, functional programming libraries that provide de�nition of standard

type classes and implementations of commonly used functional data structures, including free

monads. E� is a Scala implementation of the Freer Monads described in [11], used with a single

e�ect/interpreter in this experiment.

�e benchmark simulates a state monad with an expression that counts to 10 by successively read-

ing from the state, incrementing by 1, and writing back to the state. Interpreters are implemented

in the simplest possible way by storing the state in mutable variables.

Results. Figure 6
3

shows the throughput for creating and interpreting of a simple expression

using di�erent free monad implementations. �e Scalaz implementation closely follows the pa�ern

described in the Data Types à la Carte paper[21]. �e Cats implementation is a slight simpli�cation

over Scalaz’, in that it does not require a functor instance. E� is a Scala implementation of the

Freer Monads described in [11], used with a single e�ect/interpreter in this experiment. �e

implicit function type encoding described in this section has the best performance among all

implementations.

1
�e [T] => Expr[A, T] uses the new syntax for type lambdas implemented in the Do�y compiler.

2
Language support for polymorphic functions would remove the need for a Expr trait.

3
�ese measurements are the average of 10 runs executed on an i7-7700K Processor CPU running Oracle JVM 1.8.0 on

Debian 9.0 with binaries produced by scalac 2.11.11. We use the Java Microbenchmark Harness (JMH) [20] tool with default

se�ings: each run averages throughput of execution over 1 second period for 20 warp-up iteration and 20 measurements

iteration. �e results are statistically signi�cant.
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Fig. 6. Benchmark of free monad implementations

Overall, Scalaz’s infrastructure about free monads is over 500LOC. Cats’ is on the same order of

magnitude, with about 250LOC. �is new encoding is able to implement equivalent functionalities

with a single type alias. We expect the pa�ern of factoring out type class constraints to be applicable

to a large number of problems. For example, the technique can be used to build Free counterparts

of other type classes such as applicative functors and co-monads.

5 RELATEDWORK
�e Haskell programming language supports implicit parameters [12] through the ImplicitParams

language extension. Implicit parameters in Haskell are orthogonal to the built-in type class

mechanism, but are used in a similar manner as constraints on functions. Several language

extensions are available to generalize the use of constraints in the language. For example, the

Generalized Algebraic Data Types extension allows programmers to write constraints on data type

de�nitions.

�e Glasgow Haskell Compiler also supports the ConstraintKinds extension, that relaxes the

kind of constraints supported by the compiler. In particular, it can be used to group type classes

in tuples and use this tuple as constraint. Implicit function types enable implicits (and thus type

classes) to be factored out Scala, similarly to ConstraintKinds language extension.

Agda instance arguments [6] are closely related to Haskell’s type class constraints and were

inspired by both Scala’s implicits and Agda’s existing implicit arguments. With implicit function

types, we li� the limitations that are described in Devriese et. al [6, Section 1.5] for Scala. Addition-

ally, we present a self-contained high-level formalization, whereas Devriese et. al present a more

algorithmic description on how to modify Agda’s existing implicit search mechanism.
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5.1 Implicit Calculi
�e Implicit Calculus [18] provides a general formalization of implicit programming. It supports

partial resolution and higher-order rules. In the calculus, it introduces rule types which are similar

to our implicit function types.

Cochis[19] is a recent calculus that tries to combine the strength of Haskell typeclasses and

Scala implicits, i.e. the combination of ease of reasoning and �exibility. Cochis supports local

implicits and meanwhile guarantees coherency. Coherency in Cochis means that substitution of

equals doesn’t change the semantics of programs, which is a reasonable property of pure functional

programs.

According to the Cochis paper, Scala implicits are incoherent. However, this claim is contestable,

as it depends on the time when the substitution happens. If we take equivalent expressions, directly

from source code “substituting equals by equals”, then indeed the semantics might change. But that’s

neither how the compiler reasons about the code nor what the programmer expects. Otherwise, by

doing so, we can turn a well-typed program into an ill-typed program. If we consider “substitution

of equals by equals” happening a�er type checking, as it’s done in the compiler, of course Scala

implicits are coherent, and that’s what programmers expect.

Both of the two calculi mentioned above depend on an explicit type query ?T to trigger implicit

resolution for an instance of a type T. Its noticeable that explicit type query loses the essential

appeal of implicit programming. In this regard, our calculus is closer to Scala implicits.

�e calculi mentioned above, describe more powerful implicit resolution algorithms. However,

the implementation of Scala implicits restrains the power of implicit resolution. Weird or complex

resolutions harm maintainability of the code, and may give rise to tricky bugs in programs. Con-

cequently we keep implicit resolution simple and intuitive to programmers. For this reason our

calculus be�er models implicits in practical programming languages.

Finally, the two papers mentioned above are more oriented towards resolution algorithms and

the connection between logic and resolution. In this paper we provide a calculus that takes the �rst

step on contextual abstraction in a practical programming language, based on implicit function

types.

6 CONCLUSION
We proposed implicit function types as a simple and powerful tool for dealing with contexts in

programming. We formalized the concept in the system SI, which is so far the calculus that

models Scala implicits most closely. Implicit function types have been implemented in Do�y, the

prospective Scala compiler. We presented several applications, from expressive DSL to elegant

contextual abstraction, which evidence the utility and beauty of implicit function types.

Acknowledgements. We thank Sandro Stucki and Arjen Rouvoet for discussions we had on the in

the SI system. �e conference management example in the paper was inspired by a talk of Nadia

Polikarpova.
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